WO2023134620A1 - 电子设备、通信方法和计算机程序产品 - Google Patents

电子设备、通信方法和计算机程序产品 Download PDF

Info

Publication number
WO2023134620A1
WO2023134620A1 PCT/CN2023/071295 CN2023071295W WO2023134620A1 WO 2023134620 A1 WO2023134620 A1 WO 2023134620A1 CN 2023071295 W CN2023071295 W CN 2023071295W WO 2023134620 A1 WO2023134620 A1 WO 2023134620A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
downlink
uplink
pool
Prior art date
Application number
PCT/CN2023/071295
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼集团公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 曹建飞 filed Critical 索尼集团公司
Publication of WO2023134620A1 publication Critical patent/WO2023134620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly, to an electronic device, a communication method and a computer program product that provide an improved beam pointing mechanism to increase its flexibility.
  • TCI Transmission Configuration Indication
  • QCL quasi-co-location
  • Each TCI state can contain four types of QCL assumptions: QCL-TypeA, QCL-TypeB, QCL-TypeC, and QCL-TypeD.
  • the user equipment (UE) can infer the timing of another reference signal from one reference signal according to the corresponding QCL assumption. Domain, frequency domain and/or space domain parameters, so that the parameters of another reference signal received before can be used to realize the reception of the upcoming reference signal, which is also the essence of QCL.
  • the TCI state including the QCL-TypeD hypothesis can be used for the indication of the spatial beam.
  • the base station can either configure a combined type of TCI state for the UE, that is, one TCI state can be applied to both uplink and downlink channels and/or signals, or configure a separate type of TCI state, namely , the uplink TCI state is only applicable to uplink channels and/or signals, and the downlink TCI state is only applicable to downlink channels and/or signals.
  • TCI states Both types have their advantages and disadvantages.
  • the current standard protocol does not yet support the mixed configuration of different types of TCI states, and lacks a signaling format that supports using them simultaneously for beam indication. This means that when switching from one type of TCI state to another type, high-level configuration of the TCI state needs to be re-configured, resulting in longer delay and more signaling consumption.
  • the present disclosure provides several aspects. The needs described above may be met by applying one or more aspects of the present disclosure.
  • an electronic device for a base station including:
  • processing circuitry configured to:
  • TCI transmission configuration indication
  • UE user equipment
  • the UE By pointing to the DCI of a code point in the set of code points, the UE is instructed to use the beam corresponding to the TCI state referenced by the code point.
  • an electronic device for a user equipment comprising:
  • processing circuitry configured to:
  • a MAC CE containing a set of code points is received from the base station to activate the TCI state in the TCI state pool, where each code point can refer to any of the following:
  • DCI directed to a codepoint of the set of codepoints is received from the base station to be instructed to use the beam corresponding to the TCI state referenced by the codepoint.
  • a communication method including:
  • TCI transmission configuration indication
  • UE user equipment
  • the UE By pointing to the DCI of a code point in the set of code points, the UE is instructed to use the beam corresponding to the TCI state referenced by the code point.
  • a communication method including:
  • a MAC CE containing a set of code points is received from the base station to activate the TCI state in the TCI state pool, where each code point can refer to any of the following:
  • DCI directed to a codepoint of the set of codepoints is received from the base station to be instructed to use the beam corresponding to the TCI state referenced by the codepoint.
  • a computer program product comprising executable instructions which, when executed, implement any one of the communication methods described above.
  • FIG. 1 is a simplified diagram illustrating the architecture of an NR communication system
  • 2A and 2B show the NR radio protocol stack for the user plane and the control plane, respectively;
  • FIG. 3 is a schematic configuration diagram illustrating a TCI state
  • Figure 4 illustrates the beam indication process based on separate TCI states
  • Figure 5 illustrates the beam indication process based on the joint TCI state
  • Fig. 6 illustrates the beam indication process according to the first embodiment
  • Figure 7 illustrates the MAC CE format for activating the TCI state
  • FIG. 8 illustrates a downlink control information (DCI) format for indicating a TCI state
  • FIG. 9 illustrates a beam indication process according to a second embodiment
  • FIG. 10 illustrates a beam indication process according to a third embodiment
  • Figure 11 illustrates the MAC CE format for selecting the TCI state pool
  • FIG. 12 illustrates a beam indication process according to a fourth embodiment
  • Figure 13 illustrates the MAC CE format for activating the TCI state
  • FIG. 14 illustrates a beam indication process according to a fifth embodiment
  • Figure 15 illustrates the MAC CE format for selecting a TCI state pool
  • Figure 16 shows the MAC CE format for enabling channel or reference signal combination
  • 17A and 17B illustrate an electronic device on the base station side and a communication method thereof according to an embodiment
  • 18A and 18B illustrate an electronic device on the UE side and a communication method thereof according to an embodiment
  • FIG. 19 illustrates a first example of a schematic configuration of a base station according to the present disclosure
  • FIG. 20 illustrates a second example of a schematic configuration of a base station according to the present disclosure
  • FIG. 21 illustrates a schematic configuration example of a smartphone according to the present disclosure
  • FIG. 22 illustrates a schematic configuration example of a car navigation device according to the present disclosure.
  • FIG. 1 is a simplified diagram showing the architecture of an NR communication system.
  • the radio access network (NG-RAN) nodes of the NR communication system include gNB and ng-eNB, where gNB is a node newly defined in the 5G NR communication standard, which communicates via the NG interface Connect to the 5G core network (5GC), and provide NR user plane and control plane protocols terminated with terminal equipment (also referred to as "user equipment", hereinafter referred to as "UE”); ng-eNB is designed to communicate with 4G A node defined for compatibility with the LTE communication system, which can be an upgrade of the evolved Node B (eNB) of the LTE radio access network, connects the device to the 5G core network via the NG interface, and provides an evolved universal terrestrial radio interface that terminates with the UE.
  • Incoming (E-UTRA) user plane and control plane protocols are collectively referred to as "base station”.
  • the “base station” mentioned in this disclosure is not limited to the above two nodes, but covers various control devices on the network side, and has the full breadth of its usual meaning.
  • a “base station” can also be an eNB, a remote radio head, a wireless access point, or a communication device that performs similar functions. device. The following chapters will describe the application examples of the base station in detail.
  • a UE has the full breadth of its usual meaning, including various terminal devices that communicate with a base station.
  • a UE may eg be a mobile phone, a laptop, a tablet, a vehicular communication device or a component thereof.
  • the following chapters will describe the application examples of UE in detail.
  • the radio protocol stack is shown as having three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 which is the lowest layer, is also called a physical layer, and implements various physical layer signal processing to provide transparent transmission of signals.
  • L1 provides physical transport channels for the upper layers.
  • L2 Layer 2
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the UE and the base station also include Layer 3 (L3), namely the Radio Resource Control (RRC) layer.
  • the RRC layer is responsible for obtaining radio resources and configuring lower layers using RRC signaling between the base station and UE.
  • the UE and the non-access stratum (NAS) control protocol in the core network (AMF) perform functions such as authentication, mobility management, and security control.
  • NAS non-access stratum
  • both base stations and UEs have many antennas, such as several, dozens, hundreds or even thousands of antennas.
  • MIMO multiple-input multiple-output
  • a three-layer mapping relationship is generally defined around the antenna, so that it can successfully undertake channel models and communication standards.
  • the bottom layer is the most basic physical unit - the antenna, which can also be called an antenna element.
  • Each antenna element radiates electromagnetic waves according to its own amplitude parameter and phase parameter.
  • the antenna elements are arranged in a matrix to form one or more antenna arrays.
  • An antenna array may consist of an entire row, an entire column, multiple rows, or multiple columns of antenna elements.
  • each antenna array actually constitutes a Transceiver Unit (TXRU).
  • TXRU Transceiver Unit
  • Each TXRU can be configured independently.
  • one or more TXRUs constitute the antenna port (Antenna Port) seen at the system level through logical mapping.
  • Antenna ports are defined such that the channel used to transmit a symbol on an antenna port can be inferred from the channel transmitting another symbol on the same antenna port.
  • Signals at different antenna ports may have significantly different large-scale properties due to different locations, different distances from UEs, different signal paths, etc.
  • the distance between antenna ports is not significant, and antenna ports located at different locations may have similar large-scale properties, it can be assumed that these antenna ports are quasi-co-located (QCL), with the same large-scale properties. This means that when two antenna ports are quasi-co-located, the large-scale property parameters of the channel estimated from the signal on one antenna port are also suitable for the signal on the other antenna port.
  • the large-scale characteristics of the channel include at least one of: Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters.
  • spatial reception parameters include beamforming parameters used to form reception beams for optimal reception of radio signals from a particular spatial direction.
  • these beamforming parameters are used to configure the antenna array for transmission, a transmission beam pointing to a specific spatial direction can be formed.
  • the sending beam and the receiving beam are sometimes not distinguished, and are collectively referred to as “beams”, and whether they are used for sending or receiving can be known in combination with context.
  • Antenna ports can be characterized by reference signals, such as Synchronization Signal Blocks (SSB), Channel State Information Reference Signals (CSI-RS), Sounding Reference Signals (SRS), etc., which can be used for channel estimation or for processing the same antenna The physical channel transmitted on the port.
  • reference signals such as Synchronization Signal Blocks (SSB), Channel State Information Reference Signals (CSI-RS), Sounding Reference Signals (SRS), etc.
  • SSB Synchronization Signal Blocks
  • CSI-RS Channel State Information Reference Signals
  • SRS Sounding Reference Signals
  • FIG. 3 is a configuration diagram illustrating a TCI state.
  • the TCI state is identified by a TCI state ID.
  • Each TCI state contains information for configuring one or two reference signals and transport channels (such as Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), Physical Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (PUSCH) , etc.) or QCL assumptions between reference signals such as demodulation reference signal (DMRS), sounding reference signal (SRS), etc.).
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • this QCL relation is configured by qcl-Type1.
  • the QCL relationship is configured by optional qcl-Type2.
  • qcl-Type1 or qcl-Type2 includes the following information:
  • BWP-Id Bandwidth Part ID
  • reference signal which represents the source reference signal resource providing QCL information, including NZP-CSI-RS resources identified by NZP-CSI-RS-ResoureId, SSB resources identified by SSB-Index, etc.;
  • QCL-TypeD which represents the QCL type corresponding to the listed reference signal, including QCL-TypeA, QCL-TypeB, QCL-TypeC, QCL-TypeD.
  • QCL-TypeD relates to spatial reception parameters, and in the beam indication process described in this disclosure, the mentioned TCI state includes the QCL assumption of QCL-TypeD type.
  • each TCI state is generally allowed to contain only one QCL hypothesis of type "QCL-TypeD".
  • the UE makes the following QCL assumption: the antenna port of the reference signal listed in the TCI state has a QCL relationship with respect to the spatial reception parameters with the channel or antenna port of the reference signal targeted by the TCI state , so that the UE can use the beam that previously received the listed reference signal to receive the desired downlink channel or reference signal, or based on the symmetry of the uplink beam and the downlink beam, the UE can use the beam that previously received the listed reference signal to receive the desired downlink channel or reference signal Send uplink channel or reference signal.
  • the current beam indication mechanism mainly includes two ways, that is, based on separate TCI states and based on combined TCI states.
  • Figure 4 shows the beam indication procedure based on separate TCI states.
  • the base station configures the DL for the UE through RRC signaling that only includes the TCI state for indicating the downlink beam (referred to as "downlink TCI state" or "DL TCI state” in this disclosure).
  • TCI state pool then use MAC CE to activate up to 8 DL TCI states, and then use DCI to indicate one of the activated DL TCI states (for example, TCI state #7), so that the UE can use the downlink beam indicated by the TCI state to Prepare for reception of, for example, PDCCH, PDSCH) or CSI-RS.
  • the base station configures the UE through RRC signaling to include only the TCI state for indicating the uplink beam (referred to as "uplink TCI state” or "UL TCI state” in this disclosure) UL TCI state pool, then use MAC CE to activate up to 8 UL TCI states, and then use DCI to indicate one of the activated UL TCI states (such as TCI state #5), so that the UE can use the downlink beam indicated by the TCI state to prepare for transmission of eg PUCCH, PUSCH or SRS.
  • Figure 5 shows the joint TCI state based beam indication process.
  • the base station configures a joint TCI state pool for the UE through RRC signaling, and each TCI state (referred to as "joint TCI state" in this article) can be used to indicate the uplink beam and the downlink beam at the same time .
  • the base station uses MAC CE to activate up to 8 joint TCI states, and then uses DCI to indicate one of the activated joint TCI states (for example, TCI state #7), so that the UE can use the beam indicated by the TCI state to prepare for the downlink channel (eg PDCCH, PDSCH) or downlink reference signal (eg CSI-RS) reception and uplink channel (eg PUCCH, PUSCH) or uplink reference signal (eg SRS) transmission.
  • the downlink channel eg PDCCH, PDSCH
  • downlink reference signal eg CSI-RS
  • uplink channel eg PUCCH, PUSCH
  • SRS uplink reference signal
  • the inventors of the present disclosure noticed that the existing beam indication mechanism still has deficiencies.
  • the uplink beam indication and the downlink beam indication are independent of each other. Even if the uplink and downlink can use symmetrical beams, a separate beam indication process is still required.
  • the uplink and downlink always use symmetrical beams, which may not meet the actual needs of uplink and downlink transmission. Switching between different beam indication methods requires reconfiguration of the TCI state pool, which will lead to increased delay and signaling burden.
  • the present disclosure provides a unified beam indication mechanism, and uses a set of general procedures to cope with different beam indication requirements, thereby improving beam management flexibility in various application scenarios.
  • Various aspects of the present disclosure will be described below with reference to exemplary embodiments, but it should be understood that the embodiments of the present disclosure can be implemented alone or in any combination, that is, any combination of two or more embodiments It is also within the protection scope of the present disclosure.
  • Fig. 6 shows a unified beam indication process according to the first embodiment of the present disclosure.
  • the circles of different fills are used to refer to the TCI state, and the numbers therein represent the TCI state ID, but it should be understood that the quantity, type, numbering, etc. limits.
  • the beam indication process according to the first embodiment can be divided into three stages: RRC configuration, MAC CE activation, and DCI indication. This is basically consistent with the beam indication process usually used for data channels (such as PDSCH, PUSCH) in existing standard protocols. However, for control channels such as PUCCH and PDCCH, the MAC CE for activating the TCI state can activate only one TCI state in the TCI state pool, so that no further indication of DCI is required, that is, the subsequent DCI indication stage can be omitted. Therefore, the beam indication process of the present disclosure is also applicable to the scenario where the MAC CE is used to directly indicate the UE's uplink beam and/or downlink beam, and the description will not be repeated below.
  • the base station can configure a TCI state pool for the UE through RRC signaling, which includes no more than a predetermined number (for example, 128) of TCI states.
  • RRC signaling refers to information elements (IEs) configured at the RRC layer.
  • IEs information elements
  • the base station can configure the parameter tci-StatesToAddModList in the PDSCH-Config information element shown below to add or modify the TCI state in the TCI state pool, or delete the TCI state in the TCI state pool by configuring the parameter tci-StatesToReleaseList TCI status.
  • the base station can configure the TCI state pool of the PDCCH by setting parameters of the ControlResourceSet information element, and so on.
  • the TCI state pool configured by the RRC may include different types of TCI states, for example, any two or three of joint TCI state, uplink TCI state, and downlink TCI state.
  • TCI state pools that only include one type of TCI state, such as shown in FIG. Circled), upstream TCI status (as shown by open circles with numbers 12, 23, 29, etc.), downstream TCI status (as shown by light-colored circles with numbers 13, 78, 54, etc.) Configured to UE.
  • Each TCI state may include a corresponding reference signal index to provide QCL source information.
  • the reference signal actually corresponds to the beam receiving or transmitting the reference signal at the UE.
  • the downlink TCI status may include a CSI-RS resource index or SSB index, so that the downlink TCI status may indicate the UE downlink receiving beam used to receive this CSI-RS or SSB;
  • the uplink TCI status may include a CSI-RS resource index , SSB index or SRS resource index, so that the uplink TCI status can indicate the symmetric uplink transmit beam of the UE downlink receive beam used to receive this CSI-RS or SSB, or the UE uplink transmit beam used to transmit this SRS;
  • joint TCI status It may contain a CSI-RS resource index or SSB index, so that the downlink TCI status may indicate the UE downlink receiving beam and symmetrical uplink transmitting beam used to receive the CSI-RS or SSB.
  • the base station can adopt various strategies to configure the TCI state pool. Generally speaking, based on the prediction of the UE's moving direction and moving speed, putting the TCI states corresponding to the beams that the UE may use on the moving trajectory in the pool helps to improve the efficiency of beam indication.
  • the base station can also dynamically add, modify or delete the TCI status in the TCI status pool.
  • the base station can also configure whether each TCI state is applicable to uplink channel or reference signal, downlink channel or reference signal, or both through RRC signaling, that is, each TCI state is an uplink TCI state, a downlink TCI state, and a downlink TCI state.
  • the state is also the joint TCI state. More preferably, it is also possible to specifically configure which channel or reference signal each TCI state is applicable to, which is especially advantageous for the case of using DCI that does not have a scheduling or triggering function for indication. However, if the DCI itself is used for scheduling e.g.
  • the UE can know that the TCI status indicated in the DCI is applicable to the scheduled PDSCH or triggered aperiodic CSI-RS, so there is no need to Configure the type of TCI state.
  • the base station can use the MAC CE to activate one or more TCI states in the TCI state pool.
  • the number of TCI states that can be activated does not exceed the number of code points in the MAC CE, for example, 8.
  • the activated TCI state may correspond to the predicted beam that the UE may use in moving in a period of time in the future.
  • MAC CE can refer to a TCI state at each code point, as shown in Figure 6, 8 code points of MAC CE can for example refer to TCI state #12, #1 respectively , #54, #3, #67, #56, #78, #26, wherein for example TCI state #12, #1, #67 is the uplink TCI state, TCI state #54, #56, #78 is the downlink TCI state , while TCI states #3 and #26 are joint TCI states.
  • some or all code points in the MAC CE according to the present disclosure may also refer to a pair of uplink TCI state and downlink TCI state.
  • the four code points of the MAC CE can refer to the paired uplink TCI state #1 and downlink TCI state #54, the paired uplink TCI state #29 and the downlink TCI state #64, the paired Uplink TCI state #1 and downlink TCI state #78, paired uplink TCI state #18 and downlink TCI state #54, while the other four code points can refer to a single TCI state #12 (downlink), #1 (uplink ), #54 (downstream), #26 (joint).
  • the base station can predict that the uplink transmit beam (or downlink receive beam) currently used by the UE will not change in the future, and only activate a single downlink TCI state (or uplink TCI state) corresponding to the downlink receive beam (or uplink transmit beam) that needs to be changed state).
  • the base station can predict that both the uplink transmit beam and the downlink receive beam currently used by the UE may change, and then activate the TCI states corresponding to the two beams at the same time, wherein, if the UE can use symmetrical uplink beams and downlink beams, it can Activate their corresponding joint TCI states (eg TCI state #26), or a pair of uplink TCI states indicating uplink beams (eg TCI state #1) and downlink TCI states indicating downlink beams (eg TCI state #54).
  • FIG. 7 shows an example of the format of a MAC CE according to the first embodiment.
  • the MAC CE shown in Figure 7 may include the following fields:
  • BWP ID indicating the downlink BWP applicable to the MAC CE
  • C N indicating the presence or absence of an octet containing an optional TCI state ID, where N is the index of the code point. For example, for the 1st code point ('000'), if C 0 is set to 1, it means that there is TCI state ID 0,2 , otherwise if C 0 is set to 0, it means that there is no TCI state ID 0, 2 , and so on;
  • TCI State ID N,1 "TCI State ID N,2”
  • N the index of the code point.
  • the TCI state ID field occupies 7 bits, so it can represent up to 128 TCI states.
  • the TCI state ID N, 1 will indicate the uplink TCI state
  • the TCI state ID N, 2 will indicate the downlink TCI state, or vice versa, so that the UE can distinguish between the two TCIs state.
  • the RRC signaling has already configured the TCI state type, it may not be set according to this corresponding relationship.
  • the base station may use the DCI as shown in FIG. 8 to indicate one of the activated TCI states to the UE.
  • the DCI also includes, for example, a 3-bit TCI status field.
  • the TCI status field can point to any code point of the MAC CE. For example, the field value "000" points to the first code point of the MAC CE, the field value "001" points to the second code point of the MAC CE, and so on.
  • the UE can extract the corresponding TCI state ID from the MAC CE based on the value of the TCI state field in the DCI, find the corresponding TCI state, and determine the beam for downlink reception and/or uplink transmission based on the TCI state.
  • the UE can use the beam corresponding to the downlink TCI state to prepare such as CSI-RS, PDCCH or PDSCH downlink reception.
  • the downlink channel or reference signal applicable to the downlink TCI state can be pre-configured, or can be determined according to the scope of the DCI. For example, the TCI state in the DCI scheduling PDSCH is used to determine the beam receiving the PDSCH, and so on;
  • the UE can use the beam corresponding to the uplink TCI state to prepare for downlink such as SRS, PUCCH, PUSCH take over.
  • the uplink channel or reference signal to which the uplink TCI state applies can be pre-configured, or can be determined according to the scope of the DCI, for example, the TCI state in the DCI scheduling PUSCH is used to determine the beam for sending the PUSCH, and so on;
  • the UE can use the beam preparation corresponding to the joint TCI state such as CSI-RS, PDCCH, PDSCH and downlink reception such as SRS, PUCCH, PUSCH.
  • the downlink channel or reference signal applicable to the joint TCI state can be pre-configured, or can be determined according to the scope of the DCI;
  • the UE can use the beam corresponding to the uplink TCI state to prepare such as SRS , PUCCH, PUSCH uplink transmission, and use the beam corresponding to the downlink TCI state to prepare for downlink reception such as CSI-RS, PDCCH, PDSCH.
  • uplink channels or reference signals applicable to the uplink TCI state and the downlink TCI state can be pre-configured, or can be determined according to the scope of the DCI.
  • the downlink TCI state may include QCL-TypeA assumptions about Doppler frequency shift and delay spread in addition to the QCL-TypeD assumption, and the uplink TCI state generally only includes QCL-TypeD assumptions.
  • the joint TCI state contains two QCL assumptions, namely QCL-TypeA assumption and QCL-TypeD assumption, and is indicated to the UE, for the uplink of the UE, the UE only refers to the QCL-TypeD assumption and can ignore the QCL-TypeA assumption .
  • unified configuration, activation and dynamic indication can be performed for various types of TCI states, which helps to improve the flexibility of beam indication.
  • the uplink and downlink TCI states can even be activated and indicated as a combination, which can realize simultaneous indication of using different beams for uplink and downlink transmission, and further improves the efficiency of beam indication.
  • the base station can configure a mixed TCI state pool for the UE, while according to the second embodiment, the base station can configure two independent TCI state pools.
  • FIG. 9 shows a beam indication process according to the second embodiment of the present disclosure.
  • the base station configures an uplink TCI status pool including only uplink TCI status (shown as a hollow circle) and a downlink pool including only downlink TCI status (shown as a light-colored circle) for the UE through RRC signaling.
  • TCI state pool including only uplink TCI status (shown as a hollow circle) and a downlink pool including only downlink TCI status (shown as a light-colored circle) for the UE through RRC signaling.
  • the UE may multiplex the downlink TCI state as the joint TCI state.
  • the downlink TCI state pool can be regarded as a TCI state pool in which the downlink TCI state and joint TCI state are mixed.
  • the uplink TCI status pool can be configured on the uplink BWP, and the downlink TCI status pool can be configured on the downlink BWP, so the two TCI status pools are on different active BWPs .
  • TDD time division duplex
  • uplink transmission and downlink transmission occupy the same active BWP, so the uplink TCI state pool and the downlink TCI state pool can be configured on the same BWP.
  • All the TCI states in the two configured TCI state pools are uniformly indexed, so that the TCI states in the two TCI state pools have mutually different indexes. From this point of view, the uplink TCI state pool and the downlink TCI state pool can be regarded as two proper subsets of the large TCI state pool. The advantage of this setting is that each TCI state ID is unique in the two TCI state pools, and unnecessary ambiguity will not be caused.
  • each code point of the MAC CE can refer to a single TCI state, or to a pair of uplink TCI state and downlink TCI state.
  • the MAC CE according to the second embodiment may also activate the downlink TCI state as the joint TCI state.
  • the base station needs to indicate to the UE the usefulness of the TCI state, that is, whether it is a downlink TCI state or a combined TCI state.
  • This can be achieved by modifying the MAC CE format shown in Figure 7.
  • the " CN " or "R” field in front of the TCI state ID field of the MAC CE can be redefined. If the " CN " or "R” field takes a certain value (for example, '1'), it means that this eight
  • the TCI status ID contained in the bit byte indicates the downlink TCI status, otherwise it indicates the joint TCI status.
  • the MAC CE may also add a flag field to indicate whether the corresponding TCI state is a downlink TCI state or a joint TCI state.
  • DCI indication phase according to the second embodiment is the same as that of the first embodiment, and will not be repeated here.
  • the base station can configure more standby TCI state pools for the UE, and use two MAC CE cascades to activate the TCI state in a certain TCI state pool.
  • Fig. 10 shows the beam indication process according to the third embodiment.
  • the base station can pre-configure 8 TCI state pools for the UE, where TCI state pools #1 and #3 only include uplink TCI states, and TCI state pools #2 and #4 include multiple types of TCI states, TCI state pools #5 and #7 only include downlink TCI states, while TCI state pools #6 and #8 only include joint TCI states.
  • TCI state pools #1 and #3 only include uplink TCI states
  • TCI state pools #2 and #4 include multiple types of TCI states
  • TCI state pools #5 and #7 only include downlink TCI states
  • TCI state pools #6 and #8 only include joint TCI states.
  • the number, size, type, etc. of the TCI state pools configured in FIG. 10 are merely examples, and the base station may actually configure them as required.
  • the TCI state pool according to the third embodiment does not require uniform indexing of the TCI states. That is, there may be overlapping TCI states between two TCI state pools. In this case, direct reference of TCI state ID by MAC CE may lead to ambiguity. Therefore, according to the third embodiment, the base station can utilize two MAC CEs to realize the activation of the TCI state, that is, the MAC CE activation phase includes the activation/selection of the TCI state pool and the activation of the specific TCI state.
  • the base station first uses the first MAC CE to select one or more TCI state pools (for example, TCI state pool #2 shown in FIG. 10 ) from the configured TCI state pools.
  • Figure 11 shows an example of the MAC CE format for selecting a TCI state pool. As shown in Figure 11, this MAC CE may include fields of "serving cell ID" and "BWP ID" to indicate the serving cell and BWP to which the MAC CE is applicable; and may include a field of "TCI state pool ID" to indicate The pool of TCI states to choose from.
  • the MAC CE can also select two TCI state pools through the "TCI state pool ID#1" and "TCI state pool ID#2" fields, for example, when the uplink and downlink use different TCI state pools. It is conceivable that the MAC CE may include more "TCI state pool ID” fields to select more TCI state pools.
  • the "TCI state pool ID” field of the MAC CE in Figure 11 occupies 7 bits, and supports configuration of up to 128 TCI state pools, but the number of actually configured TCI state pools is far less than 128, such as 4, 8, 16, 32, etc., then the "TCI state pool ID" field may occupy 2, 3, 4, 5 bits, etc. accordingly.
  • the base station can use the second MAC CE to activate one or more TCI states in the selected TCI state pool.
  • the format of the MAC CE used here may be the same as that of the MAC CE according to the first embodiment or the second embodiment.
  • the base station can use the DCI to indicate to the UE one of the activated TCI states.
  • the DCI indication phase according to the third embodiment is the same as that in the first embodiment, and will not be repeated here.
  • TRP transmit-receive point
  • Fig. 12 shows the beam indication process according to the fourth embodiment, in which the base station will dynamically indicate the beams for the UE to communicate with two TRPs for the UE. It should be understood that the number of TRPs may not be limited to two, but may be any number as required, and there is no difference in essence of the scheme.
  • the RRC configuration stage of the beam indication process according to the fourth embodiment is the same as that of the first embodiment, and will not be repeated here.
  • the MAC CE can activate the TCI state for each TRP respectively.
  • the code point of MAC CE has different references to the TCI state:
  • the code point can refer to a single TCI state, such as the uplink TCI state corresponding to the uplink transmission beam to be indicated (for example, TCI state #12, #1 ), the downlink TCI state corresponding to the downlink receiving beam to be indicated (for example, TCI state #54), and the joint TCI state corresponding to the symmetrical uplink and downlink beam (for example, TCI state #26);
  • the code point can refer to a pair of uplink TCI status and downlink TCI status, such as uplink TCI status #1 and downlink TCI status #54;
  • the code point can refer to two pairs of uplink TCI status and downlink TCI status, for example, uplink TCI status #1 and downlink TCI for the first TRP State #54, upstream TCI state #29 and downstream TCI state #64 for the second TRP;
  • the code point refers to a single TCI state (such as uplink TCI state, downlink TCI state, joint TCI state) for a certain TRP, and refers to a pair of TCI states for another TRP , so as to provide different beam indication effects for the two TRPs.
  • FIG. 13 shows an example of the format of a MAC CE according to the fourth embodiment.
  • An exemplary MAC CE may include fields of "serving cell ID" and "BWP ID” to indicate the serving cell and BWP to which the MAC CE applies.
  • the MAC CE may include multiple "TCI state pool ID" fields to indicate the TCI state to be activated.
  • each code point can refer to a maximum of 4 TCI states, corresponding to the uplink and downlink of 2 TRPs, but it should be understood that the maximum number of TCI states that can be referenced by each code point can vary with TRP increased and increased.
  • the field “C N,i ” represents whether there is a TCI state in the next octet, if it is 1, it means it exists, otherwise it means it does not exist.
  • the TCI status referenced by each code point can be in a predetermined order to facilitate UE identification, for example, the downlink TCI status or joint TCI status of the first TRP, the uplink TCI status of the first TRP, the second The downlink TCI status or joint TCI status of a TRP, the uplink TCI status of a second TRP, and so on.
  • the TCI state in each code point may also adopt other order or no order, as long as it can ensure that the UE can correspond the TCI state to the TRP.
  • the base station in the DCI indication phase, can point to a code point of the MAC CE through the DCI, thereby indicating to the UE the TCI state to be enabled.
  • Various possible situations are shown in the figure:
  • the UE uses the downlink receiving beam corresponding to the TCI state to prepare to receive the CSI-RS from the first TRP, PDSCH, PDCCH, etc.;
  • the UE uses the uplink transmission beam corresponding to the TCI state to prepare to send SRS, PUSCH, PUCCH to the first TRP wait;
  • the UE uses the downlink receiving beam corresponding to the TCI state to prepare to receive the CSI-RS from the first TRP, PDSCH, PDCCH, etc., and use the uplink transmission beam corresponding to the TCI state to prepare to send SRS, PUSCH, PUCCH, etc. to the first TRP;
  • the UE uses the uplink transmit beam corresponding to the uplink TCI state to prepare for the first TRP
  • a TRP sends SRS, PUSCH, PUCCH, etc., and the downlink receiving beam corresponding to the TCI state is ready to receive CSI-RS, PDSCH, PDCCH, etc. from the first TRP;
  • the code point references a paired TCI state for two TRPs, such as upstream TCI state #1 and downstream TCI state #54 for the first TRP, and upstream TCI state # for the second TRP 29 and downlink TCI state #64
  • the UE uses beams corresponding to TCI state #1 and TCI state #54 respectively to prepare for uplink transmission and downlink reception with the first TRP
  • the UE uses beams corresponding to TCI state #29 and TCI state #64 to prepare for uplink transmission and downlink reception with the second TRP.
  • flexible beam indication can be implemented simultaneously for multiple TRPs, which helps to improve the efficiency of beam indication.
  • the scenario in which the communication network configures the TCI state of a serving cell for the UE is discussed.
  • the fifth embodiment of the present disclosure will consider the scenario of multiple cells.
  • Fig. 14 shows the beam indication process according to the fifth embodiment.
  • the communication network can configure the TCI states of multiple serving cells and non-serving cells for the UE, and the specific number of TCI states of the cells that can be configured for the UE depends on the capabilities of the UE.
  • the UE may report its capabilities to the communication network after accessing the cell.
  • each cell is identified by a corresponding physical cell ID (PCI), and the base station (such as the primary cell) can configure TCI state pools of multiple cells for the UE, including the uplink TCI state pool of cell #0, The hybrid TCI status pool of cell #1, the downlink TCI status pool of cell #2, and the hybrid TCI status pool of cell #3.
  • PCI physical cell ID
  • the base station such as the primary cell
  • TCI state pools of multiple cells for the UE including the uplink TCI state pool of cell #0, The hybrid TCI status pool of cell #1, the downlink TCI status pool of cell #2, and the hybrid TCI status pool of cell #3.
  • the number of cells may not be limited to four
  • the TCI state pool of each cell may include one or more TCI states, and in combination with the second embodiment above, each cell It is possible to have more than one TCI state pool.
  • the base station can use two cascaded MAC CEs to realize the activation of the TCI state, that is, the MAC CE activation phase includes the selection of the cell and the activation of the specific TCI state.
  • the base station first uses the first MAC CE to select a corresponding cell (for example, PCI#1 shown in FIG. 14) from multiple cells, that is, that cell Next, beam management is performed on the UE.
  • a corresponding cell for example, PCI#1 shown in FIG. 14
  • FIG. 15 shows an example of a MAC CE format for selecting a cell.
  • this MAC CE may include "physical cell ID" and "BWP ID” fields to indicate the physical cell and BWP to which the MAC CE is applicable, where the physical cell ID (PCI) needs 10 bits to bear.
  • the MAC CE may also include a "TCI state pool ID” field to indicate the TCI state pool to be selected. This is especially useful when multiple TCI state pools are allocated to a cell (eg separate uplink TCI state pools and downlink TCI state pools).
  • the base station can use the second MAC CE to activate one or more TCI states in the selected TCI state pool.
  • the format of the MAC CE used here may be the same as that of the MAC CE according to the first embodiment or the second embodiment.
  • the base station can use the DCI to indicate one of the activated TCI states to the UE, so that the UE can quickly communicate with a serving cell or a non-serving cell or switch between cells.
  • the DCI indication phase according to the fifth embodiment is the same as that in the first embodiment, and will not be repeated here.
  • the same beam pair can be used between each channel and reference signal for communication between the base station and the UE, that is, the so-called co-beam operation is adopted without the need for individual Independent beam management of channels or reference signals. From this perspective, there is an opportunity to further reduce the signaling overhead of beam management.
  • the currently seen direction is that when two channels or reference signals need to perform common beam operation, the base station uses the common TCI state to perform beam indication through RRC configuration. But the problem is that the time delay of the RRC signaling is relatively obvious, and the common beam operation between the channel and the reference signal cannot be changed quickly.
  • the sixth embodiment of the present disclosure will discuss the implementation of flexible co-beam operation between two or more channels or reference signals on the basis of the foregoing first to fifth embodiments.
  • the base station may pre-define several channel or reference signal combinations that may be applicable to the co-beam operation, and configure them to the UE at one time through RRC signaling.
  • the base station can enable the combination through MAC CE.
  • the MAC CE can enable pre-configured combinations of channels or reference signals in the form of a bitmap, each bit in the bitmap corresponds to a corresponding combination.
  • MAC CE can give a 10-bit information, such as "1000100010", which indicates that the beam is shared between the PDCCH and its scheduled PDSCH, the beam is shared between the PUSCH and the PUCCH that provides HARQ feedback, and the PDCCH and its The triggered aperiodic SRSs share beams (downlink receive beam and its symmetrical uplink transmit beam).
  • the number of bits in the bitmap is not limited to 10, but may depend on the configured number of combinations, that is, it should be greater than or equal to the number of combinations.
  • the base station can indicate the corresponding TCI status for the channel or reference signal in the activated combination.
  • the base station can indicate the downlink TCI state corresponding to the beam to the UE, and the UE uses the beam indicated by the TCI state for Prepare for downlink reception of PDCCH and PDSCH.
  • the corresponding uplink TCI state and joint TCI state can be used to indicate the beam respectively.
  • the MAC CE can also directly specify the index of the channel or reference signal combination to be enabled.
  • Figure 16 shows an example of the format of such a MAC CE.
  • the MAC CE may include "Physical Cell ID" and "BWP ID” fields to indicate the physical cell and BWP to which the MAC CE is applicable, where the Physical Cell ID (PCI) needs 10 bits to bear.
  • the MAC CE may also include a "C&S Combination ID" field to indicate the channel or reference signal combination to be used for co-beam operation.
  • Figure 16 exemplifies enabling combination #6 and combination #1, it should be understood that this is only illustrative, and the MAC CE can enable only one combination, and can also enable more by including more "C&S combination ID” fields. The combination.
  • the base station can indicate the corresponding TCI status for the channel or reference signal in the enabled combination, and the UE based on the TCI status and the activation information of the combination, The beam indicated by the TCI state is used for all channels or reference signals in the combination.
  • bitmap or combination index can be included in the newly defined MAC CE, and can also be included in the MAC CE for activating the TCI state or the TCI state pool described above.
  • FIG. 17A is a block diagram illustrating an electronic device 100 on a base station side according to an embodiment of the present disclosure
  • FIG. 17B is a flowchart illustrating a communication method executable by the electronic device 100 .
  • the electronic device 100 may be a base station or a component thereof.
  • electronic device 100 includes processing circuitry 101 .
  • the processing circuit 101 includes at least an RRC configuration unit 102, a MAC CE activation unit 103 and a DCI indication unit 104.
  • the processing circuit 101 may be configured to execute the communication method shown in FIG. 17B .
  • Processing circuitry 101 may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital signals) circuitry that performs functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable gate arrays (FPGAs), ), a programmable hardware device, and/or a system including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • FPGAs field programmable gate arrays
  • the RRC configuration unit 102 in the processing circuit 101 is configured to configure a TCI state pool for the UE through RRC signaling, that is, execute step S101 in FIG. 17B .
  • the configured TCI state pool may be a single mixed TCI state pool, including at least two of joint TCI state, uplink TCI state, and downlink TCI state, or two or more separate TCI state pools.
  • the RRC configuration unit 102 may also configure multiple TCI state pools corresponding to multiple cells for the UE.
  • the MAC CE activating unit 103 is configured to activate the TCI state in the TCI state pool for the UE through the MAC CE containing a group of code points, that is, execute step S101 in FIG. 17B .
  • Each code point in the MAC CE can refer to any of the following: a) a single downlink TCI state; b) a single uplink TCI state; c) a single joint TCI state; and d) a paired uplink TCI state and downlink TCI state.
  • the MAC CE activation unit 103 may select one or more TCI state pools from multiple TCI state pools through the first MAC CE, and then activate the TCI state from the selected TCI state pools through the second MAC CE. In another example, the MAC CE activation unit 103 may activate a single TCI state or a pair of TCI states for each of multiple TRPs.
  • the DCI indication unit 104 is configured to instruct the UE to use the beam corresponding to the TCI state referenced by the code point through the DCI pointing to a code point in the group of code points, that is, to execute step S103 in FIG. 17B .
  • processing circuit 101 may further include a unit configured to indicate to the UE which combination or combinations of multiple predefined channel or reference signal combinations share a beam through the MAC CE.
  • the electronic device 100 may also include, for example, a communication unit 105 and a memory 106 .
  • the communication unit 105 may be configured to communicate with user equipment (such as the electronic equipment 200 described below) under the control of the processing circuit 101 .
  • the communication unit 105 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 105 is drawn with dashed lines, since it can also be located outside the electronic device 100 .
  • Electronic device 100 may also include memory 106 .
  • the memory 106 may store various data and instructions, programs and data for the operation of the electronic device 100, various data generated by the processing circuit 101, data received by the communication unit 105, and the like.
  • Memory 106 may be volatile memory and/or non-volatile memory.
  • memory 106 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • FIG. 18A is a block diagram illustrating an electronic device 200 according to the present disclosure.
  • the electronic device 200 may be user equipment or a component thereof.
  • electronic device 200 includes processing circuitry 201 .
  • the processing circuit 201 includes at least an RRC signaling receiving unit 202, a MAC CE receiving unit 203, and a DCI receiving unit 204.
  • the processing circuit 201 may be configured to execute the communication method shown in FIG. 18B.
  • Processing circuitry 201 may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital signals) circuitry that performs functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable gate arrays (FPGAs), ), a programmable hardware device, and/or a system including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • FPGAs field programmable gate arrays
  • the RRC signaling receiving unit 202 of the processing circuit 201 is configured to receive RRC signaling related to the configuration of the TCI state pool from the base station, that is, to execute step S201 in FIG. 18B .
  • the configured TCI state pool can be a single mixed TCI state pool, or two or more separate TCI state pools.
  • the RRC signaling can also configure multiple TCI state pools corresponding to multiple cells for the UE.
  • the MAC CE receiving unit 203 is configured to receive a MAC CE containing a set of code points from the base station to activate the TCI state in the TCI state pool, that is, to execute step S202 in FIG. 18B .
  • Each code point of a MAC CE can refer to any of the following: a) a single downlink TCI state; b) a single uplink TCI state; c) a single joint TCI state; and d) a paired uplink TCI state and a downlink TCI state.
  • the MAC CE received by the MAC CE receiving unit 203 may include a first MAC CE for selecting one or more TCI state pools from a plurality of TCI state pools, and a second MAC CE for activating the TCI state from the selected TCI state pool.
  • the MAC CE can activate a single TCI state or a pair of TCI states for each of multiple TRPs.
  • the DCI receiving unit 204 is configured to receive a DCI pointing to a code point in the set of code points from the base station, so as to be instructed to use the beam corresponding to the TCI state referenced by the code point, that is, to perform step S203 in FIG. 18B .
  • processing circuit 201 may further include a unit configured to receive a MAC CE indicating to the UE which combination or combinations of multiple predefined channel or reference signal combinations share a beam.
  • the electronic device 200 may also include, for example, a communication unit 205 and a memory 206 .
  • the communication unit 205 may be configured to communicate with a base station device (such as the electronic device 100 described above) under the control of the processing circuit 201 .
  • the communication unit 205 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 205 is drawn with dashed lines, since it can also be located outside the electronic device 200.
  • Electronic device 200 may also include memory 206 .
  • the memory 206 can store various data and instructions, such as programs and data for the operation of the electronic device 200, various data generated by the processing circuit 201, various control signaling or service data to be sent by the communication unit 205, and the like.
  • the memory 206 is drawn with dashed lines, since it can also be located within the processing circuit 201 or external to the electronic device 200 .
  • Memory 206 may be volatile memory and/or non-volatile memory.
  • memory 206 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • each unit of the electronic device 100, 200 described in the foregoing embodiments is only a logic module divided according to a specific function realized by it, and is not used to limit a specific implementation manner.
  • each of the above units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • each unit of the electronic device 100, 200 described in the foregoing embodiments is only a logic module divided according to a specific function realized by it, and is not used to limit a specific implementation manner.
  • each of the above units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • an electronic device for a base station comprising:
  • processing circuitry configured to:
  • TCI transmission configuration indication
  • UE user equipment
  • the UE By pointing to the DCI of a code point in the set of code points, the UE is instructed to use the beam corresponding to the TCI state referenced by the code point.
  • a first TCI state pool including uplink TCI states
  • a second pool of TCI states comprising downstream TCI states
  • the identification information of the TCI states in the first TCI state pool and the second TCI state pool are different from each other.
  • the processing circuit is further configured as:
  • the processing circuit is further configured as:
  • the MAC CE is used to activate the TCI state in the specific TCI state pool.
  • each code point in the set of code points can refer to a single TCI state or a paired uplink for each TRP in a plurality of transmission and reception points (TRPs) TCI status and downlink TCI status.
  • TRPs transmission and reception points
  • the processing circuit is further configured as:
  • an electronic device for user equipment comprising:
  • processing circuitry configured to:
  • a MAC CE containing a set of code points is received from the base station to activate the TCI state in the TCI state pool, where each code point can refer to any of the following:
  • DCI directed to a codepoint of the set of codepoints is received from the base station to be instructed to use the beam corresponding to the TCI state referenced by the codepoint.
  • each TCI state in the TCI state pool is a downlink TCI state, an uplink TCI state or a joint TCI state.
  • the electronic device according to 10), wherein the TCI state pool includes:
  • a first TCI state pool including uplink TCI states
  • a second pool of TCI states comprising downstream TCI states
  • the identification information of the TCI states in the first TCI state pool and the second TCI state pool are different from each other.
  • the MAC CE multiplexes one or more downlink TCI states in the second TCI state pool into a joint TCI state.
  • the processing circuit is further configured to:
  • the MAC CE is used to activate the TCI state in the specific TCI state pool.
  • each code point in the set of code points can refer to a single TCI state or a paired uplink for each TRP in a plurality of transmission and reception points (TRPs) TCI status and downlink TCI status.
  • TRPs transmission and reception points
  • the processing circuit is further configured to:
  • Another MAC CE is received from the base station, wherein the other MAC CE indicates which combination of a plurality of predefined channel or reference signal combinations shares a beam.
  • a communication method comprising:
  • TCI transmission configuration indication
  • UE user equipment
  • the UE By pointing to the DCI of a code point in the set of code points, the UE is instructed to use the beam corresponding to the TCI state referenced by the code point.
  • a communication method comprising:
  • a MAC CE containing a set of code points is received from the base station to activate the TCI state in the TCI state pool, where each code point can refer to any of the following:
  • DCI directed to a codepoint of the set of codepoints is received from the base station to be instructed to use the beam corresponding to the TCI state referenced by the codepoint.
  • a computer program product comprising executable instructions, when executed, the executable instructions implement the communication method according to any one of 19)-20).
  • the electronic device 100 may be implemented as or installed in various base stations, and the electronic device 200 may be implemented as or installed in various user equipments.
  • the communication method according to the embodiment of the present disclosure can be implemented by various base stations or user equipment; the method and operation according to the embodiment of the present disclosure can be embodied as computer-executable instructions, stored in a non-transitory computer-readable storage medium, and It may be executed by various base stations or user equipments to implement one or more functions described above.
  • the technology according to the embodiments of the present disclosure can be made into various computer program products, which are used in various base stations or user equipments to realize one or more functions described above.
  • the base station used in this disclosure is not limited to the above two nodes, but is an example of a control device on the network side, and has the full breadth of its usual meaning.
  • the base station mentioned in this disclosure can be implemented as any type of base station, preferably, such as macro gNB and ng-eNB defined in the 5G NR standard of 3GPP.
  • a gNB may be a gNB covering a cell smaller than a macro cell, such as a pico gNB, a micro gNB, and a home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB and base transceiver station (BTS).
  • the base station may also include: a body configured to control wireless communications, and one or more remote radio heads (RRHs), wireless relay stations, drone towers, control nodes in automated factories, etc., disposed at different places from the body.
  • RRHs remote radio heads
  • the term "UE” has the full breadth of its usual meaning, including various terminal devices or vehicle-mounted devices that communicate with a base station.
  • the UE may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or a vehicle terminal such as a car navigation device.
  • the UE may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal), a drone, sensors and actuators in automated factories, and the like.
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • Fig. 19 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station may be implemented as gNB 1400.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station apparatus 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or the base station device 1420) here may correspond to the above-mentioned electronic device 100.
  • Antenna 1410 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1410 can be arranged in an antenna array matrix, for example, and used for the base station device 1420 to transmit and receive wireless signals.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421 , a memory 1422 , a network interface 1423 and a wireless communication interface 1425 .
  • the controller 1421 can be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1420.
  • the controller 1421 may include the processing circuit 101 described above, execute the communication method described in FIG. 17B , or control various components of the electronic device 100 .
  • the controller 1421 generates a data packet according to data in a signal processed by the wireless communication interface 1425 and transfers the generated packet via the network interface 1423 .
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1421 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby gNBs or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to a core network 1424 (for example, a 5G core network).
  • the controller 1421 may communicate with a core network node or another gNB via a network interface 1423 .
  • gNB 1400 and core network nodes or other gNBs may be connected to each other through logical interfaces such as NG interface and Xn interface.
  • the network interface 1423 can also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1423 is a wireless communication interface, the network interface 1423 may use a higher frequency band for wireless communication than that used by the wireless communication interface 1425 .
  • the wireless communication interface 1425 supports any cellular communication scheme (such as 5G NR), and provides a wireless connection to terminals located in the cell of the gNB 1400 via the antenna 1410.
  • Wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and RF circuitry 1427 .
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal deal with. Instead of the controller 1421, the BB processor 1426 may have a part or all of the logic functions described above.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program can cause the function of the BB processor 1426 to change.
  • the module may be a card or blade inserted into a slot of the base station device 1420 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410 .
  • FIG. 19 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 may be connected to a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426 .
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427 .
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 19 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427 , the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427 .
  • the gNB 1400 shown in FIG. 19 one or more units included in the processing circuit 101 described with reference to FIG. 17A may be implemented in the wireless communication interface 1425. Alternatively, at least some of these components may be implemented in the controller 1421 .
  • the gNB 1400 includes a part (for example, the BB processor 1426) or the whole of the wireless communication interface 1425, and/or a module including the controller 1421, and one or more components may be implemented in the module.
  • the module may store a program for allowing a processor to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in gNB 1400, and wireless communication interface 1425 (e.g., BB processor 1426) and/or controller 1421 may execute the program.
  • wireless communication interface 1425 e.g., BB processor 1426
  • controller 1421 may execute the program.
  • the gNB 1400, the base station apparatus 1420, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 20 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station is shown as gNB 1530.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550 and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via RF cables.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via high-speed lines such as optical fiber cables.
  • the gNB 1530 (or the base station device 1550) here may correspond to the above-mentioned electronic device 100.
  • Antenna 1540 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1540 can be arranged in an antenna array matrix, for example, and used for the base station device 1550 to transmit and receive wireless signals.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551 , a memory 1552 , a network interface 1553 , a wireless communication interface 1555 and a connection interface 1557 .
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG. 19 .
  • the wireless communication interface 1555 supports any cellular communication scheme (such as 5G NR), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • Wireless communication interface 1555 may generally include, for example, BB processor 1556 .
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 19 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include multiple BB processors 1556 .
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 20 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556 , the wireless communication interface 1555 may also include a single BB processor 1556 .
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 can also be a communication module used to connect the base station equipment 1550 (wireless communication interface 1555) to the communication in the above-mentioned high-speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540 .
  • Wireless communication interface 1563 may generally include RF circuitry 1564, for example.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540 .
  • FIG. 20 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 may be connected to a plurality of antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564 .
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 20 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564 , the wireless communication interface 1563 may also include a single RF circuit 1564 .
  • the gNB 1500 shown in FIG. 20 one or more units included in the processing circuit 101 described with reference to FIG. 17A may be implemented in the wireless communication interface 1525. Alternatively, at least some of these components may be implemented in the controller 1521 .
  • the gNB 1500 includes a part (for example, the BB processor 1526) or the whole of the wireless communication interface 1525, and/or a module including the controller 1521, and one or more components may be implemented in the module.
  • the module may store a program for allowing a processor to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in gNB 1500, and wireless communication interface 1525 (e.g., BB processor 1526) and/or controller 1521 may execute the program.
  • the gNB 1500, the base station apparatus 1520, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smartphone 1600 may be implemented as the electronic device 200 described with reference to FIG. 18A .
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more Antenna switch 1615 , one or more antennas 1616 , bus 1617 , battery 1618 , and auxiliary controller 1619 .
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1600 .
  • the processor 1601 may include or serve as the processing circuit 201 described with reference to FIG. 18A .
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 .
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device, such as a memory card and a universal serial bus (USB) device, to the smartphone 1600 .
  • USB universal serial bus
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1607 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 1610, a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 1610 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 1600 .
  • the speaker 1611 converts an audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as 4G LTE or 5G NR, etc.), and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614 .
  • the BB processor 1613 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1616 .
  • the wireless communication interface 1612 may be a chip module on which a BB processor 1613 and an RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include multiple BB processors 1613 and multiple RF circuits 1614 .
  • FIG. 21 shows an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614
  • the wireless communication interface 1612 may include a single BB processor 1613 or a single RF circuit 1614 .
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (eg, circuits for different wireless communication schemes).
  • Antenna 1616 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1616 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • Smartphone 1600 may include one or more antenna panels (not shown).
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smartphone 1600 .
  • the bus 1617 connects the processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, and auxiliary controller 1619 to each other. connect.
  • the battery 1618 provides power to the various blocks of the smartphone 1600 shown in FIG. 21 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 1619 operates minimum necessary functions of the smartphone 1600, for example, in a sleep mode.
  • one or more units included in the processing circuit 201 described with reference to FIG. 18A may be implemented in the wireless communication interface 1612 .
  • at least some of these components may be implemented in the processor 1601 or the auxiliary controller 1619 .
  • smartphone 1600 includes part (e.g., BB processor 1613) or the entirety of wireless communication interface 1612, and/or a module including processor 1601 and/or auxiliary controller 1619, and one or more components may be implemented in this module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the smartphone 1600, and the wireless communication interface 1612 (e.g., the BB processor 1613), the processor 1601 and/or the auxiliary The controller 1619 can execute the program.
  • the smartphone 1600 or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 may be implemented as the electronic device 200 described with reference to FIG. 18A .
  • Car navigation device 1720 includes processor 1721, memory 1722, global positioning system (GPS) module 1724, sensor 1725, data interface 1726, content player 1727, storage medium interface 1728, input device 1729, display device 1730, speaker 1731, wireless communication interface 1733 , one or more antenna switches 1736 , one or more antennas 1737 , and battery 1738 .
  • GPS global positioning system
  • the processor 1721 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 1720 .
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721 .
  • the GPS module 1724 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensors 1725 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 1727 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1728 .
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as 4G LTE or 5G NR, and performs wireless communication.
  • Wireless communication interface 1733 may generally include, for example, a BB processor 1734 and RF circuitry 1735 .
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737 .
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include multiple BB processors 1734 and multiple RF circuits 1735 .
  • FIG. 22 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735
  • the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735 .
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733 , such as circuits for different wireless communication schemes.
  • Antenna 1737 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1737 can be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 can be omitted from the configuration of the car navigation device 1720 .
  • the battery 1738 supplies power to the various blocks of the car navigation device 1720 shown in FIG. 22 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 1738 accumulates electric power supplied from the vehicle.
  • one or more units included in the processing circuit 201 described with reference to FIG. 18A may be implemented in the wireless communication interface 1733 .
  • the car navigation device 1720 includes a part (for example, the BB processor 1734) or the whole of the wireless communication interface 1733, and/or a module including the processor 1721, and one or more components may be implemented in the module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 1720, and the wireless communication interface 1733 (for example, the BB processor 1734) and/or the processor 1721 may Execute the program.
  • the car navigation device 1720 or a module may be provided as a device including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 205 of FIG. 18A can be implemented in the wireless communication interface 1933 (eg, the RF circuit 1935).
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more blocks in a car navigation device 1720 , an in-vehicle network 1741 , and a vehicle module 1742 .
  • the vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and breakdown information, and outputs the generated data to the in-vehicle network 1741 .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be respectively implemented by separate devices.
  • one of the above functions may be realized by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in the steps of time-series processing, needless to say, the order can be appropriately changed.

Abstract

本公开涉及电子设备、通信方法和计算机程序产品。一种用于基站的电子设备包括处理电路,其被配置为:通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:a)单个用于指示下行波束的下行TCI状态;b)单个用于指示上行波束的上行TCI状态;c)单个用于指示下行波束和上行波束的联合TCI状态;和d)成对的上行TCI状态和下行TCI状态;以及通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。

Description

电子设备、通信方法和计算机程序产品 技术领域
本公开涉及无线通信领域,更具体地,涉及提供改进的波束指示机制以提高其灵活性的电子设备、通信方法和计算机程序产品。
背景技术
5G新无线电(NR)在Release 15中引入了传输配置指示(TCI)状态的概念,用于定义和指示两个参考信号之间的准共址(QCL)关系。每个TCI状态可以包含QCL-TypeA、QCL-TypeB、QCL-TypeC、QCL-TypeD四种类型的QCL假设,用户设备(UE)可以根据相应的QCL假设从一个参考信号推断另一个参考信号的时域、频域和/或空间域的参数,从而能够利用之前接收另一个参考信号的参数来实现即将到来的参考信号的接收,这也是QCL的精髓所在。其中,包含QCL-TypeD假设的TCI状态可以用于空间波束的指示。
根据目前的3GPP Release 17的讨论,基站可以为UE要么配置联合类型的TCI状态,即,一个TCI状态可以同时适用于上行和下行的信道和/或信号,或者要么配置分开类型的TCI状态,即,上行TCI状态仅适用于上行的信道和/或信号,而下行TCI状态仅适用于下行的信道和/或信号。
这两种类型的TCI状态各有其优点和缺点。然而,当前的标准协议尚不支持不同类型的TCI状态的混合配置,也缺乏支持同时利用它们进行波束指示的信令格式。这意味着当要从一种类型的TCI状态切换到另一种类型时,需要重新进行TCI状态的高层配置,造成较长的时延和较多的信令消耗。
因此,存在能够同时利用各种类型的TCI状态进行波束指示机制以提供其灵活性的需求。
发明内容
本公开提供了多个方面。通过应用本公开的一个或多个方面,可以满足上面所述的需求。
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种用于基站的电子设备,包括:
处理电路,被配置为:
通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;
通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。
根据本公开的一个方面,提供了一种用于用户设备(UE)的电子设备,包括:
处理电路,被配置为:
从基站接收关于传输配置指示(TCI)状态池的配置的RRC信令;
从基站接收包含一组码点的MAC CE以激活所述TCI状态池中 的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束。
根据本公开的一个方面,提供了一种通信方法,包括:
通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;
通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。
根据本公开的一个方面,提供了一种通信方法,包括:
从基站接收关于传输配置指示(TCI)状态池的配置的RRC信令;
从基站接收包含一组码点的MAC CE以激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束。
根据本公开的一个方面,提供了一种包括可执行指令的计算机程序产品,所述可执行指令当被执行时实现上述任何一种通信方法。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1是示出了NR通信系统的体系架构的简化示图;
图2A和2B分别示出了用于用户平面和控制平面的NR无线电协议栈;
图3是例示了TCI状态的配置示意图;
图4例示了基于分开的TCI状态的波束指示过程
图5例示了基于联合TCI状态的波束指示过程;
图6例示了根据第一实施例的波束指示过程;
图7例示了用于激活TCI状态的MAC CE格式;
图8例示了用于指示TCI状态的下行控制信息(DCI)格式;
图9例示了根据第二实施例的波束指示过程;
图10例示了根据第三实施例的波束指示过程;
图11例示了用于选择TCI状态池的MAC CE格式;
图12例示了根据第四实施例的波束指示过程;
图13例示了用于激活TCI状态的MAC CE格式;
图14例示了根据第五实施例的波束指示过程;
图15例示了用于选择TCI状态池的MAC CE格式
图16示出了用于启用信道或参考信号组合的MAC CE格式;
图17A和17B例示了根据实施例的基站侧的电子设备及其通信方法;
图18A和18B例示了根据实施例的UE侧的电子设备及其通信方法;
图19例示了根据本公开的基站的示意性配置的第一示例;
图20例示了根据本公开的基站的示意性配置的第二示例;
图21例示了根据本公开的智能电话的示意性配置示例;
图22例示了根据本公开的汽车导航设备的示意性配置示例。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有特征。然而应注意,在实现本公开的实施例时可以根据特定需求做出很多特定于实现方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的限制条件,并且这些限制条件可能会随着实现方式的不同而有所改变。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的技术方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
为了方便解释本公开的技术方案,下面将在5G NR的背景下描述本公开的各个方面。但是应注意,这不是对本公开的应用范围的限制,本公开的一个或多个方面还可以被应用于例如4G LTE/LTE-A等已经普遍使用的无线通信系统,或者将来发展的各种无线通信系统。下面的描述中提及的架构、实体、功能、过程等并非局限于NR通信系统中的那些,而可 以在其它的通信标准中找到对应。
【概述】
图1是示出了NR通信系统的体系架构的简化示图。如图1中所示,在网络侧,NR通信系统的无线接入网(NG-RAN)节点包括gNB和ng-eNB,其中gNB是在5G NR通信标准中新定义的节点,其经由NG接口连接到5G核心网(5GC),并且提供与终端设备(也可称为“用户设备”,下文中简称为“UE”)终接的NR用户平面和控制平面协议;ng-eNB是为了与4G LTE通信系统兼容而定义的节点,其可以是LTE无线接入网的演进型节点B(eNB)的升级,经由NG接口连接设备到5G核心网,并且提供与UE终接的演进通用陆地无线接入(E-UTRA)用户平面和控制平面协议。下文中将gNB和ng-eNB统称为“基站”。
应注意,本公开中所言的“基站”不仅限于上面这两种节点,而是涵盖网络侧的各种控制设备,具有其通常含义的全部广度。例如,除了5G通信标准中规定的gNB和ng-eNB之外,取决于本公开被应用的场景,“基站”例如还可以是eNB、远程无线电头端、无线接入点或者执行类似功能的通信装置。后面的章节将详细描述基站的应用示例。
另外,在本公开中,术语“UE”具有其通常含义的全部广度,包括与基站通信的各种终端设备。作为例子,UE例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备或其元件。后面的章节将详细描述UE的应用示例。
图2A和2B分别示出了用于用户平面和控制平面的NR无线电协议栈。无线电协议栈被示为具有三层:层1、层2和层3。
作为最低层的层1(L1)也被称为物理层,实现各种物理层信号处理以提供信号的透明传输。L1为上面的各层提供物理传输信道。
层2(L2)在物理层之上并且负责物理层之上的链路。在用户平面和控制平面中,L2包括介质接入控制(MAC)子层、无线电链路控制 (RLC)子层、以及分组数据汇聚协议(PDCP)子层。在用户平面中,UE和基站中还包括业务数据适配协议(SDAP)子层。
在控制平面中,UE和基站中还包括层3(L3),即无线电资源控制(RRC)层。RRC层负责获得无线电资源以及使用基站与UE之间的RRC信令来配置各下层。另外,UE与核心网(AMF)中的非接入层(NAS)控制协议执行例如认证、移动性管理、安全控制等功能。
在诸如5G NR之类的无线通信系统中,为了支持多输入多输出(MIMO)技术的应用,基站和UE均具有许多天线,例如几根、几十根、几百根甚至上千根。对于天线模型,一般围绕天线定义了三层的映射关系,使其能够顺利承接信道模型和通信标准。
最底层是最基本的物理单元——天线,也可以称为天线阵元。每个天线阵元按照各自的幅度参数和相位参数辐射电磁波。
天线阵元按照矩阵的形式被布置成一个或多个天线阵列。一个天线阵列可以由整行、整列、多行、多列的天线阵元构成。在这一层上,每个天线阵列实际上构成一个收发单元(Transceiver Unit,TXRU)。每一个TXRU都可以独立配置。通过配置组成该TXRU的天线阵元的波束赋形参数(幅度参数和/或相位参数),实现对该TXRU天线图样的调整,使得天线阵列内的所有天线阵元发射的电磁波辐射形成指向特定空间方向的较窄的波束,即,实现波束赋形。
最后,一个或多个TXRU通过逻辑映射构成系统层面上看到的天线端口(Antenna Port)。天线端口被定义为使得用于传送天线端口上的符号的信道能够从传送同一天线端口上的另一符号的信道推断出。
由于位置不同、与UE的距离不同、信号路径不同等,不同天线端口的信号可能具有显著不同的大尺度性质。然而,如果天线端口之间的距离不显著,位于不同位置的天线端口可能具有相似的大尺寸性质,则可以假设这些天线端口准共址(QCL),具有相同的大尺度性质。这意味着,当两个天线端口准共址时,从一个天线端口上的信号估计得到的信道大尺 度性质参数同样适合于另一个天线端口上的信号。
信道的大尺度特性包括以下至少之一:多普勒频移、多普勒扩展、平均延迟、延迟扩展和空间接收参数。特别而言,如果两个天线端口具有关于空间接收参数的QCL关系,则接收端可以使用相同的空间接收参数来实现这两个天线端口上的信号接收。如本公开中所使用的,“空间接收参数”包括用于形成接收波束以对来自于特定空间方向的无线电信号实现最佳接收的波束赋形参数。相应地,当用这些波束赋形参数配置天线阵列进行发送时,可以形成指向特定空间方向的发送波束。在本公开中,为了描述简单,有时不对发送波束和接收波束做区分,将统一称为“波束”,其用于发送还是接收可以结合上下文获知。
天线端口可以由参考信号表征,诸如同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、探测参考信号(SRS)等等,这些参考信号可以用于信道估计或者用于处理相同天线端口上传输的物理信道。天线端口与其参考信号之间存在一一对应的关系。正因如此,在下文中谈到两个天线端口QCL时,可能会直接说表征它们的两个参考信号和/或与参考信号复用的传输信道之间具有QCL关系。
典型地,基站可以利用TCI状态来向UE指示QCL关系。图3是例示了TCI状态的配置示意图。如图3中所示,TCI状态由TCI状态ID标识。每个TCI状态包含用于配置一个或两个参考信号与传输信道(诸如物理下行控制信道(PDCCH)、物理下行共享信道(PDSCH)、物理上行控制信道(PUCCH)、物理上行共享信道(PUSCH),等等)或参考信号(诸如解调参考信号(DMRS)、探测参考信号(SRS),等等)之间的QCL假设。对于第一个参考信号,这种QCL关系由qcl-Type1配置。如果还有第二个下行参考信号,则QCL关系由可选的qcl-Type2配置。如图3中所示,qcl-Type1或qcl-Type2包括以下信息:
–服务小区索引(ServCellIndex),其代表参考信号所在的服务小区;
–带宽部分ID(BWP-Id),其代表参考信号所在的下行带宽部分;
–参考信号(referenceSignal),其代表提供QCL信息的源参考信号资源,包括由NZP-CSI-RS-ResoureId标识的NZP-CSI-RS资源、由SSB-Index标识的SSB资源等;
–QCL类型(qcl-Type),其代表与所列出的参考信号对应的QCL类型,包括QCL-TypeA、QCL-TypeB、QCL-TypeC、QCL-TypeD。其中,QCL-TypeD关于空间接收参数,在本公开描述的波束指示过程中,所提到的TCI状态包括QCL-TypeD类型的QCL假设。
为了避免歧义,每个TCI状态一般仅允许包含一个“QCL-TypeD”类型的QCL假设。当UE接收到这种TCI状态时,UE做出如下QCL假设:TCI状态中列出的参考信号的天线端口与该TCI状态所针对的信道或参考信号的天线端口存在关于空间接收参数的QCL关系,从而UE可以使用先前接收所列出的参考信号的波束来接收期望的下行信道或参考信号,或者基于上行波束和下行波束的对称性,UE可以使用先前接收所列出的参考信号的波束来发送上行信道或参考信号。
对于上行和下行,目前的波束指示机制主要包括两种方式,即,基于分开的TCI状态以及基于联合的TCI状态。
图4示出了基于分开的TCI状态的波束指示过程。对于下行,如图4的上部分所示,基站通过RRC信令为UE配置仅包括用于指示下行波束的TCI状态(本公开中称为“下行TCI状态”或“DL TCI状态”)的DL TCI状态池,随后利用MAC CE激活多达8个DL TCI状态,再用DCI指示所激活的DL TCI状态之一(例如TCI状态#7),使得UE能够使用该TCI状态所指示的下行波束来准备例如PDCCH、PDSCH)或CSI-RS的接收。而对于上行,如图4的下部分所示,基站通过RRC信令为UE配置仅包括用于指示上行波束的TCI状态(本公开中称为“上行TCI状态”或“UL TCI状态”)的UL TCI状态池,随后利用MAC CE激活多达8个UL TCI状态,再用DCI指示所激活的UL TCI状态之一(例如TCI状态#5),使得UE能够使用该TCI状态所指示的下行波束来准备例如PUCCH、PUSCH或SRS的发送。
图5示出了基于联合的TCI状态的波束指示过程。如图5的上部分所示,基站通过RRC信令为UE配置一个联合TCI状态池,其中的每个TCI状态(本文中称为“联合TCI状态”)可同时用于指示上行波束和下行波束。随后,基站利用MAC CE激活多达8个联合TCI状态,再用DCI指示所激活的联合TCI状态之一(例如TCI状态#7),使得UE能够使用该TCI状态所指示的波束来准备下行信道(例如PDCCH、PDSCH)或下行参考信号(例如CSI-RS)的接收以及上行信道(例如PUCCH、PUSCH)或上行参考信号(例如SRS)的发送。
本公开的发明人注意到,现有的波束指示机制尚存在不足。一方面,如果利用分开的TCI状态,则上行波束指示和下行波束指示相互独立,即使上下行可以使用对称的波束,仍然需要经历分开的波束指示过程。另一方面,如果利用联合TCI状态,上下行总是使用对称的波束,这可能不符合上下行传输的实际需要。在不同的波束指示方式之间切换需要重新配置TCI状态池,这将导致时延和信令负担增大。
有鉴于此,本公开提供了统一的波束指示机制,利用一套通用的过程来应对不同的波束指示需要,从而提高各种应用场景下的波束管理灵活性。下面将参照示例性实施例来描述本公开的各个方面,但是应理解,本公开的实施例既可以单独实施,也可以按照任意方式组合实施,即,任意两个或更多个实施例的组合也在本公开的保护范围之内。
【第一实施例】
图6示出了根据本公开的第一实施例的统一波束指示过程。在图6中,使用不同填充的圆圈指代TCI状态,其中的数字表示TCI状态ID,但是应理解,图示的TCI状态的数量、类型、编号等仅仅是例示性的,而非对保护范围的限制。
根据第一实施例的波束指示过程可以分为RRC配置、MAC CE激活、DCI指示三个阶段。这与现有标准协议中通常用于数据信道(诸如PDSCH、PUSCH)的波束指示过程基本一致。然而,对于诸如PUCCH、PDCCH之类的控制信道,用于激活TCI状态的MAC CE可以激活TCI状态池中的仅 一个TCI状态,从而不需要DCI进一步指示,也即后续的DCI指示阶段可以省略。因此,本公开的波束指示过程也适用于利用MAC CE直接指示UE的上行波束和/或下行波束的场景,下面不再重复描述。
如图6中所示,在RRC配置阶段,基站可以通过RRC信令为UE配置一个TCI状态池,其包括不超过预定数量(例如128个)的TCI状态。
RRC信令是指在RRC层配置的信息元素(IE)。举例来说,对于PDSCH,基站可以在如下所示的PDSCH-Config信息元素中配置参数tci-StatesToAddModList来增加或修改TCI状态池中的TCI状态,或者通过配置参数tci-StatesToReleaseList来删除TCI状态池中的TCI状态。类似地,基站可以通过设置ControlResourceSet信息元素的参数来配置PDCCH的TCI状态池,等等。
Figure PCTCN2023071295-appb-000001
根据本公开的第一实施例,RRC配置的TCI状态池可以包括不同类型的TCI状态,例如包括联合TCI状态、上行TCI状态、下行TCI状态中的任意两种或者三种。换句话说,不同于传统的TCI状态池仅包括一种类型的TCI状态,例如图6中所示,本公开的第一实施例可以将包括联合TCI状态(如具有编号3、26的深色圆圈所示)、上行TCI状态(如具有编号12、23、29等的空心圆圈所示)、下行TCI状态(如具有编号13、78、54等的浅色圆圈所示)的混合TCI状态池配置给UE。
每个TCI状态可以包含相应的参考信号索引来提供QCL源信息,如前所述,此参考信号实际上对应着UE处接收或发送该参考信号的波束。举例来说,下行TCI状态可以包含CSI-RS资源索引或SSB索引,由此下行TCI状态可以指示用于接收此CSI-RS或SSB的UE下行接收波束;上行TCI状 态可以包含CSI-RS资源索引、SSB索引或SRS资源索引,由此上行TCI状态可以指示用于接收此CSI-RS或SSB的UE下行接收波束的对称上行发送波束,或者用于发送此SRS的UE上行发送波束;联合TCI状态可以包含CSI-RS资源索引或SSB索引,由此下行TCI状态可以指示用于接收此CSI-RS或SSB的UE下行接收波束以及对称的上行发送波束。
基站可以采用各种策略来配置TCI状态池。一般而言,基于对UE的移动方向和移动速度的预测,将与UE在移动轨迹上可能用到的波束对应的TCI状态放在池中有助于提高波束指示效率。基站也可以动态地增加、修改或删除TCI状态池中的TCI状态。
优选地,基站还可以通过RRC信令配置每个TCI状态是适用于上行的信道或参考信号、下行的信道或参考信号、还是这两者,即,每个TCI状态是上行TCI状态、下行TCI状态还是联合TCI状态。更优选地,还可以具体配置每个TCI状态适用于哪个/哪些信道或参考信号,这对于利用不具有调度或触发作用的DCI进行指示的情况尤其有利。然而,如果DCI本身用于调度例如PDSCH或用于触发非周期CSI-RS,则UE可以知道该DCI中指示的TCI状态适用于所调度的PDSCH或所触发的非周期CSI-RS,因此无需事先配置TCI状态的类型。
接下来,在MAC CE激活阶段,基站可以利用MAC CE激活TCI状态池中的一个或多个TCI状态。可激活的TCI状态数不超过MAC CE中的码点数,例如8个。例如,激活的TCI状态可以与预测UE在未来一段时间的移动中可能用到的波束对应。
与现有的标准协议兼容,根据本公开的MAC CE可以在每个码点引用一个TCI状态,如图6中所示,MAC CE的8个码点可以例如分别引用TCI状态#12、#1、#54、#3、#67、#56、#78、#26,其中例如TCI状态#12、#1、#67是上行TCI状态,TCI状态#54、#56、#78是下行TCI状态,而TCI状态#3、#26是联合TCI状态。
另外,根据本公开的MAC CE中的部分或全部码点也可以引用一对上行TCI状态和下行TCI状态。例如,图6中所示,MAC CE的四个码点可 以分别引用成对的上行TCI状态#1和下行TCI状态#54、成对的上行TCI状态#29和下行TCI状态#64、成对的上行TCI状态#1和下行TCI状态#78、成对的上行TCI状态#18和下行TCI状态#54,而另外四个码点可以分别引用单个TCI状态#12(下行)、#1(上行)、#54(下行)、#26(联合)。
MAC CE的码点激活单个TCI状态还是一对TCI状态取决于实际需要。例如,基站可以预测UE当前使用的上行发送波束(或下行接收波束)接下来不用改变,则可以仅激活与需要改变的下行接收波束(或上行发送波束)对应的单个下行TCI状态(或上行TCI状态)。此外,基站可以预测UE当前使用的上行发送波束和下行接收波束都可能改变,则可以同时激活与这两个波束对应的TCI状态,其中,如果UE可以使用对称的上行波束和下行波束,则可以激活与它们对应的联合TCI状态(例如TCI状态#26),或者一对指示上行波束的上行TCI状态(例如TCI状态#1)和指示下行波束的下行TCI状态(例如TCI状态#54)。
图7示出了根据第一实施例的MAC CE的格式示例。图7中所示的MAC CE可以包括以下字段:
–“R”,预留字段;
–“服务小区ID”,表示MAC CE所适用的服务小区;
–“BWP ID”,表示MAC CE所适用的下行BWP;
–“C N”,表示是否存在包含可选TCI状态ID的八比特字节,其中N是码点的索引。例如,对于第1个码点(‘000’),如果C 0被设置为1,则表示存在TCI状态ID 0,2,否则如果C 0被设置为0,则表示不存在TCI状态ID 0,2,以此类推;
–“TCI状态ID N,1”、“TCI状态ID N,2”,表示所激活的TCI状态,其中N是码点的索引。TCI状态ID字段占用7个比特,因此可以最多表示128个TCI状态。在需要激活一对TCI状态的情况下,可以预先告知TCI状态ID N,1将表示上行TCI状态、TCI状态ID N,2将表示下行TCI状态,或者反过来,以便于UE区分这两个TCI状态。可替代地,如果RRC信令已经配置 了TCI状态的类型,则可以不按照这种对应关系进行设置。
最后,在DCI指示阶段,基站可以使用如图8中所示的DCI来将所激活的TCI状态中的一个指示给UE。如图8所示,DCI除了包括载波指示符、BWP指示符、资源分派信息之外,还包括例如3比特的TCI状态字段。TCI状态字段可以指向MAC CE的任一个码点,例如字段值“000”指向MAC CE的第1个码点,字段值“001”指向MAC CE的第2个码点,依此类推。
UE可以基于DCI中的TCI状态字段的值从MAC CE中提取对应的TCI状态ID,找到对应的TCI状态,并基于TCI状态确定用于下行接收和/或上行发送的波束。
为了便于说明,接下来结合图6中所示的例子来描述各种情况:
1)如果DCI中的TCI状态字段所指向的MAC CE码点引用了单个下行TCI状态,诸如TCI状态#54,则UE可以使用与该下行TCI状态对应的波束准备诸如CSI-RS、PDCCH或PDSCH的下行接收。下行TCI状态适用的下行信道或参考信号可以预先配置,也可以根据DCI的作用范围来确定,例如,调度PDSCH的DCI中的TCI状态用于确定接收PDSCH的波束,诸如此类;
2)如果DCI中的TCI状态字段所指向的MAC CE码点引用了单个上行TCI状态,诸如TCI状态#1,则UE可以使用与该上行TCI状态对应的波束准备诸如SRS、PUCCH、PUSCH的下行接收。同样地,上行TCI状态适用的上行信道或参考信号可以预先配置,也可以根据DCI的作用范围来确定,例如,调度PUSCH的DCI中的TCI状态用于确定发送PUSCH的波束,诸如此类;
3)如果DCI中的TCI状态字段所指向的MAC CE码点引用了单个联合TCI状态,诸如TCI状态#26,则UE可以使用与该联合TCI状态对应的波束准备诸如CSI-RS、PDCCH、PDSCH的下行接收以及诸如SRS、PUCCH、PUSCH的下行接收。同样地,联合TCI状态适用的下行信道或 参考信号可以预先配置,也可以根据DCI的作用范围来确定;
4)如果DCI中的TCI状态字段所指向的MAC CE码点引用了一对TCI状态,诸如上行TCI状态#1和下行TCI状态#54,则UE可以使用与上行TCI状态对应的波束准备诸如SRS、PUCCH、PUSCH的上行发送,并使用与下行TCI状态对应的波束准备诸如CSI-RS、PDCCH、PDSCH的下行接收。同样地,上行TCI状态和下行TCI状态各自适用的上行信道或参考信号可以预先配置,也可以根据DCI的作用范围来确定。
这里需要说明的是,下行TCI状态可能中除了QCL-TypeD假设外还包含QCL-TypeA的关于多普勒频移和时延扩展的假设,上行TCI状态一般仅包含QCL-TypeD假设。当联合TCI状态包含两种QCL假设,即QCL-TypeA假设和QCL-TypeD假设,并被指示给UE的时候,对于UE的上行来说,UE仅参考QCL-TypeD假设,可以忽略QCL-TypeA假设。
根据本公开的第一实施例,可以针对各种类型的TCI状态进行统一的配置、激活和动态指示,这有利于提高波束指示的灵活性。此外,根据本公开的第一实施例,甚至可以将上下行TCI状态作为一个组合进行激活和指示,能够实现上下行传输使用不同波束的同时指示需要,进一步提高了波束指示的效率。
【第二实施例】
在第一实施例中,基站可以为UE配置混合的TCI状态池,而根据第二实施例,基站可以配置两个独立的TCI状态池。
图9示出了根据本公开的第二实施例的波束指示过程。如图9中所示,基站通过RRC信令为UE配置一个仅包括上行TCI状态(如空心圆圈所示)的上行TCI状态池和一个仅包括下行TCI状态(如浅色圆圈所示)的下行TCI状态池。
需要额外说明的是,由于联合TCI状态与下行TCI状态的同质特性,UE可以复用下行TCI状态作为联合TCI状态。换句话说,在一些情况下,下行TCI状态池可以看作下行TCI状态和联合TCI状态相混合的TCI状态 池。
例如,对于频分双工(FDD)系统,上行TCI状态池可以被配置在上行BWP上,而下行TCI状态池可以被配置在下行BWP上,因此这两个TCI状态池在不同的激活BWP上。而对于时分双工(TDD)系统,上行传输和下行传输占用同一个激活的BWP,因此上行TCI状态池和下行TCI状态池可以被配置为同一个BWP上。
所配置的两个TCI状态池中的所有TCI状态被统一索引,使得两个TCI状态池中的TCI状态具有相互不同的索引。从这个角度看,上行TCI状态池和下行TCI状态池可以看作大的TCI状态池的两个真子集。这样设置的好处在于,每一个TCI状态ID在两个TCI状态池上都是唯一的,不会引起不必要的歧义。
接下来,根据第二实施例的MAC CE阶段与第一实施例基本相同,所使用的MAC CE格式可以与图7中所示的MAC CE格式基本相同。具体而言,MAC CE的每个码点可以引用单个TCI状态,也可以引用一对上行TCI状态和下行TCI状态。
优选地,根据第二实施例的MAC CE可以还激活下行TCI状态作为联合TCI状态。对于这种情况,基站需要向UE指明该TCI状态的用处,即,是下行TCI状态还是联合TCI状态。这可以通过修改图7中所示的MAC CE格式来实现。例如,可以重新定义MAC CE的TCI状态ID字段前面的“C N”或“R”字段,如果“C N”或“R”字段取某个值(例如‘1’),则表示本个八比特字节中包含的TCI状态ID表示下行TCI状态,反之则表示联合TCI状态。作为替代,MAC CE也可以新增标记字段,以表示对应的TCI状态是下行TCI状态还是联合TCI状态。
最后,根据第二实施例的DCI指示阶段与第一实施例相同,这里不再赘述。
【第三实施例】
根据本公开的第三实施例,基站可以为UE配置更多的备用TCI状态 池,并使用2个MAC CE级联的方式来激活某个TCI状态池中的TCI状态。
图10示出了根据第三实施例的波束指示过程。如图10中所示,基站可以预先为UE配置8个TCI状态池,其中TCI状态池#1、#3仅包括上行TCI状态,TCI状态池#2、#4包括多种类型的TCI状态,TCI状态池#5、#7仅包括下行TCI状态,而TCI状态池#6、#8仅包括联合TCI状态。应理解,图10中配置的TCI状态池的数量、大小、类型等仅仅是示例,实际上基站可以根据需要来配置。
不同于第二实施例,根据第三实施例的TCI状态池不要求对TCI状态统一索引。也就是说,两个TCI状态池之间可能具有重合的TCI状态。在这种情况下,MAC CE直接引用TCI状态ID可能会导致歧义。因此,根据第三实施例,基站可以利用两个MAC CE来实现TCI状态的激活,即,MAC CE激活阶段包括TCI状态池的激活/选择以及具体TCI状态的激活。
具体而言,基站首先使用第一个MAC CE来从配置的TCI状态池中选择一个或多个TCI状态池(例如,图10中所示的TCI状态池#2)。图11示出用于选择TCI状态池的MAC CE格式的示例。如图11中所示,这种MAC CE可以包括“服务小区ID”、“BWP ID”字段,以表示MAC CE所适用的服务小区和BWP;并且可以包括“TCI状态池ID”字段,以表示要选择的TCI状态池。
如图11中所示,MAC CE还可以通过“TCI状态池ID#1”、“TCI状态池ID#2”字段选择两个TCI状态池,例如当上下行分别使用不同的TCI状态池时。可以想到,MAC CE可以包括更多的“TCI状态池ID”字段以选择更多个TCI状态池。图11中的MAC CE的“TCI状态池ID”字段占用7个比特,最多支持配置128个TCI状态池,但是实际配置的TCI状态池的数量远远少于128,例如4个、8个、16个、32个等,那么“TCI状态池ID”字段可以相应地占用2个、3个、4个、5个比特等。
回到图10,在选定TCI状态池之后,基站可以使用第二个MAC CE来激活所选择的TCI状态池中的一个或多个TCI状态。这里用到的MAC CE 的格式可以与根据第一实施例或第二实施例的MAC CE相同。
最后,基站可以使用DCI向UE指示所激活的TCI状态中的一个。根据第三实施例的DCI指示阶段与第一实施例相同,这里不再赘述。
【第四实施例】
在前面的第一至第三实施例中,讨论了单个发送接收点(TRP)的情况。本公开的第四实施例将考虑针对多个TRP的波束指示。
图12示出了根据第四实施例的波束指示过程,其中基站将为UE动态指示UE用于与两个TRP进行通信的波束。应理解,TRP的数量可以不限于两个,而可以根据需要是任意多个,其方案本质没有区别。
根据第四实施例的波束指示过程的RRC配置阶段与第一实施例相同,这里不再赘述。
如图12中所示,在MAC CE激活阶段,MAC CE可以分别针对各个TRP激活TCI状态。取决于不同的激活要求,MAC CE的码点对于TCI状态的引用存在不同的情况:
1)如果仅需对某个TRP的上行波束或者下行波束进行指示,则可以让码点引用单个TCI状态,诸如与要指示的上行发送波束对应的上行TCI状态(例如TCI状态#12、#1)、与要指示的下行接收波束对应的下行TCI状态(例如TCI状态#54)、与对称的上下行波束对应的联合TCI状态(例如TCI状态#26);
2)如果仅需对某个TRP设置不同的上行波束和下行波束,则可以让码点引用成对的上行TCI状态和下行TCI状态,例如上行TCI状态#1和下行TCI状态#54;
3)如果需要对两个TRP均设置不同的上行波束和下行波束,则可以让码点引用两对上行TCI状态和下行TCI状态,例如用于第一个TRP的上行TCI状态#1和下行TCI状态#54、用于第二个TRP的上行TCI状态#29和下行TCI状态#64;
4)虽然图12中未示出,但是也可以考虑让码点针对某个TRP引用单 个TCI状态(例如上行TCI状态、下行TCI状态、联合TCI状态)、针对另一个TRP引用成对的TCI状态,从而针对两个TRP提供不同的波束指示效果。
为了实现针对多个TRP的TCI状态激活,需要修改现有的MAC CE格式。图13示出了根据第四实施例的MAC CE的格式示例。示例性的MAC CE可以包括“服务小区ID”、“BWP ID”字段,以表示MAC CE所适用的服务小区和BWP。此外,MAC CE可以包括多个“TCI状态池ID”字段,以表示要激活的TCI状态。
在图13示出的MAC CE中,每个码点可以引用最多4个TCI状态,对应于2个TRP的上行和下行,然而应理解,每个码点可引用的最大TCI状态数量可以随着TRP增多而增加。对于第N个码点,字段“C N,i”代表下一个八比特字节是否存在TCI状态,如果为1,则代表存在,否则代表不存在。
优选地,每个码点引用的TCI状态可以按照某种预定的顺序,以便于UE识别,例如,第一个TRP的下行TCI状态或联合TCI状态、第一个TRP的上行TCI状态、第二个TRP的下行TCI状态或联合TCI状态、第二个TRP的上行TCI状态,等等。当然,每个码点中的TCI状态也可以采用其它顺序或者没有顺序,只有能够保证UE能够将TCI状态与TRP对应即可。
回到图12,在DCI指示阶段,基站可以通过DCI来指向MAC CE的一个码点,从而向UE指示要启用的TCI状态,各种可能的情况如图所示:
1)如果码点引用了用于例如第一个TRP的下行TCI状态,例如TCI状态#54,则UE使用与该TCI状态对应的下行接收波束来准备接收来自第一个TRP的CSI-RS、PDSCH、PDCCH等;
2)如果码点引用了用于例如第一个TRP的上行TCI状态,例如TCI状态#1,则UE使用与该TCI状态对应的上行发送波束来准备向第一个TRP发送SRS、PUSCH、PUCCH等;
3)如果码点引用了用于例如第一个TRP的联合TCI状态,例如TCI状态#26,则UE使用与该TCI状态对应的下行接收波束来准备接收来自第一个TRP的CSI-RS、PDSCH、PDCCH等,并使用与该TCI状态对应的上行发送波束来准备向第一个TRP发送SRS、PUSCH、PUCCH等;
4)如果码点引用了用于例如第一个TRP的成对TCI状态,例如上行TCI状态#1和下行TCI状态#54,则UE使用与上行TCI状态对应的上行发送波束来准备向第一个TRP发送SRS、PUSCH、PUCCH等,并与该TCI状态对应的下行接收波束来准备接收来自第一个TRP的CSI-RS、PDSCH、PDCCH等;
5)如果码点引用了用于两个TRP的成对TCI状态,例如用于第一个TRP的上行TCI状态#1和下行TCI状态#54、以及用于第二个TRP的上行TCI状态#29和下行TCI状态#64,则针对第一个TRP,UE使用分别与TCI状态#1和TCI状态#54对应的波束来准备与第一个TRP的上行发送和下行接收,针对第二个TRP,UE使用与TCI状态#29和TCI状态#64对应的波束来准备与第二个TRP的上行发送和下行接收。
利用本公开的第四实施例,可以针对多个TRP同时实现灵活的波束指示,有助于提高波束指示的效率。
【第五实施例】
在前面的第一至第四实施例中讨论了通信网络为UE配置一个服务小区的TCI状态的场景。本公开的第五实施例将考虑多个小区的场景。
图14示出了根据第五实施例的波束指示过程。通信网络可以为UE配置多个服务小区和非服务小区的TCI状态,而具体有多少个小区的TCI状态可以被配置给UE,取决于UE所具有的能力。UE可以在小区接入之后向通信网络上报其能力。
如图14中所示,每个小区由相应的物理小区ID(PCI)来标识,基站(例如主小区)可以为UE配置多个小区的TCI状态池,包括小区#0的上行TCI状态池、小区#1的混合TCI状态池、小区#2的下行TCI状态池、 小区#3的混合TCI状态池。但是应理解,图14仅仅是示意性的,小区的数量可以不限于4个,每个小区的TCI状态池可以包括一种或多种TCI状态,并且结合前面的第二实施例,每个小区可以具有不止一个TCI状态池。
根据第五实施例,基站可以利用两个级联的MAC CE来实现TCI状态的激活,即,MAC CE激活阶段包括小区的选择以及具体TCI状态的激活。
具体而言,如图14中所示,基站首先使用第一个MAC CE来从多个小区中选择一个对应的小区(例如,图14中所示的PCI#1),也就是说,那个小区接下来要对UE进行波束的管理。
图15示出了用于选择小区的MAC CE格式的示例。如图中所示,这种MAC CE可以包括“物理小区ID”、“BWP ID”字段,以表示MAC CE所适用的物理小区和BWP,其中物理小区ID(PCI)需要10个比特来承载。MAC CE还可以包括“TCI状态池ID”字段,以表示要选择的TCI状态池。这在为小区分配了多个TCI状态池(例如分开的上行TCI状态池和下行TCI状态池)的情况下尤其有用。
回到图14,在选定小区及其TCI状态池之后,基站可以使用第二个MAC CE来激活所选择的TCI状态池中的一个或多个TCI状态。这里用到的MAC CE的格式可以与根据第一实施例或第二实施例的MAC CE相同。
最后,基站可以使用DCI向UE指示所激活的TCI状态中的一个,从而UE可以快速地和某个服务小区或非服务小区进行通信或者小区切换。根据第五实施例的DCI指示阶段与第一实施例相同,这里不再赘述。
【第六实施例】
在实际部署NR通信系统之后,发现在很多情况下,各个信道和参考信号之间往往可以使用相同的波束对来进行基站和UE之间的通信,即,采用所谓的共波束操作,而无需各个信道或参考信号的独立的波束管理。从这个角度来讲,波束管理的信令的开销有进一步减少的机会。
目前看到的方向是当需要对两个信道或参考信号进行共波束操作时,基站通过RRC配置使用共同的TCI状态来进行波束指示。但是问题在于 RRC信令的时间延迟比较明显,无法快速地更改信道和参考信号之间的共波束操作。
本公开的第六实施例将讨论在前面的第一至第五实施例的基础上实现两个或更多个信道或参考信号之间的灵活的共波束操作。
根据本公开的第六实施例,基站可以预先定义若干可能适用共波束操作的信道或参考信号组合,通过RRC信令一次性配置给UE。
下面的表格例示了可以共用波束的若干信道或参考信号组合,然而应理解,这些组合仅仅是示意性的,根据实际需要,基站可以定义更多或更少的组合。
Figure PCTCN2023071295-appb-000002
当需要启用某个组合的共波束操作时,根据本公开的第六实施例,基站可以通过MAC CE来启用该组合。
在一个示例中,MAC CE可以以比特图的形式启用预先配置的信道或参考信号组合,比特图中的每个比特对应于相应的组合。结合上面的表格示例,MAC CE可以给出一个10比特的信息,例如“1000100010”,其表示PDCCH及其调度的PDSCH之间共用波束,PUSCH和提供HARQ反馈的PUCCH之间共用波束,PDCCH及其触发的非周期SRS之间共用波束(下行接收波束及其对称的上行发送波束)。应理解,比特图的比特数不限于10个,而是可以取决于所配置的组合数量,即,应该大于或等于组合的数量。
随后,通过本公开的第一至第五实施例中介绍的波束指示过程,基站可以为激活的组合中的信道或参考信号指示对应的TCI状态。例如,在上面的示例中,对于共用波束的PDCCH和PDSCH,基站可以将与波束对应的下行TCI状态指示给UE,UE基于TCI状态和该组合的启用信息,将TCI状态所指示的波束用于准备PDCCH和PDSCH的下行接收。类似地,对于共用波束的PUSCH和PUCCH、PDCCH和SRS,可以分别使用对应的上行TCI状态和联合TCI状态来进行波束指示。
在另一个示例中,MAC CE也可以直接指定要启用的信道或参考信号组合的索引。图16示出了这种MAC CE的格式示例。如图所示,MAC CE可以包括“物理小区ID”、“BWP ID”字段,以表示MAC CE所适用的物理小区和BWP,其中物理小区ID(PCI)需要10个比特来承载。MAC CE还可以包括“C&S组合ID”字段,以表示要采用共波束操作的信道或参考信号组合。虽然图16例示了启用组合#6和组合#1,但是应理解,这仅仅是示意性的,MAC CE可以仅启用一个组合,也可以通过包含更多的“C&S组合ID”字段来启用更多的组合。
随后,通过本公开的第一至第五实施例中介绍的波束指示过程,基站可以为启用的组合中的信道或参考信号指示对应的TCI状态,并且UE基于TCI状态和该组合的启用信息,将TCI状态所指示的波束用于组合中的所有信道或参考信号。
还存在其它可能的MAC CE格式,只要能够向UE告知采用共波束操作的信道或参考信号组合即可。另外,应理解,上述比特图或组合索引可 以被包括在新定义的MAC CE中,也可以被包括在前面介绍的用于激活TCI状态或TCI状态池的MAC CE中。
【电子设备和通信方法】
下面结合附图来描述用于实施本公开的各种实施例的电子设备和通信方法。
图17A是示出了根据本公开的实施例的基站侧的电子设备100的框图,图17B是示出了电子设备100可执行的通信方法的流程图。电子设备100可以是基站或其部件。
如图17A中所示,电子设备100包括处理电路101。处理电路101至少包括RRC配置单元102、MAC CE激活单元103和DCI指示单元104。处理电路101可被配置为执行图17B中所示的通信方法。处理电路101可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
处理电路101中的RRC配置单元102被配置为通过RRC信令为UE配置TCI状态池,即执行图17B中的步骤S101。所配置的TCI状态池可以是单个混合TCI状态池,其中包括联合TCI状态、上行TCI状态、下行TCI状态中的至少两种,也可以是两个或更多个单独的TCI状态池。此外,RRC配置单元102还可以为UE配置与多个小区相对应的多个TCI状态池。
MAC CE激活单元103被配置为通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,即执行图17B中的步骤S101。MAC CE中的每一个码点能够引用以下任一个:a)单个下行TCI状态;b)单个上行TCI状态;c)单个联合TCI状态;和d)成对的上行TCI状态和下行TCI状态。
在一个示例中,MAC CE激活单元103可以向通过第一MAC CE从多个TCI状态池中选择一个或多个TCI状态池,再通过第二MAC CE从选择的TCI状态池中激活TCI状态。在另一个示例中,MAC CE激活单元103可以针对多个TRP中的每一个激活单个TCI状态或成对的TCI状态。
DCI指示单元104被配置为通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束,即,执行图17B中的步骤S103。
另外,处理电路101还可以包括被配置为通过MAC CE向UE指示多个预定义的信道或参考信号组合中的哪个或哪些组合共用波束的单元。
电子设备100还可以包括例如通信单元105和存储器106。
通信单元105可以被配置为在处理电路101的控制下与用户设备(例如下面将描述的电子设备200)进行通信。在一个示例中,通信单元105可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元105用虚线绘出,因为它还可以位于电子设备100外。
电子设备100还可以包括存储器106。存储器106可以存储各种数据和指令、用于电子设备100操作的程序和数据、由处理电路101产生的各种数据、由通信单元105接收的数据等。存储器106可以是易失性存储器和/或非易失性存储器。例如,存储器106可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
图18A是例示了根据本公开的电子设备200的框图。电子设备200可以是用户设备或其部件。
如图18A中所示,电子设备200包括处理电路201。处理电路201至少包括RRC信令接收单元202、MAC CE接收单元203和DCI接收单元204。处理电路201可被配置为执行图18B中所示的通信方法。处理电路201可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模 拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
处理电路201的RRC信令接收单元202被配置为从基站接收关于TCI状态池的配置的RRC信令,即执行图18B中的步骤S201。所配置的TCI状态池可以是单个混合TCI状态池,也可以是两个或更多个单独的TCI状态池。此外,RRC信令还可以为UE配置与多个小区相对应的多个TCI状态池。
MAC CE接收单元203被配置为从基站接收包含一组码点的MAC CE以激活所述TCI状态池中的TCI状态,即执行图18B中的步骤S202。MAC CE的每一个码点能够引用以下任一个:a)单个下行TCI状态;b)单个上行TCI状态;c)单个联合TCI状态;和d)成对的上行TCI状态和下行TCI状态。
由MAC CE接收单元203接收的MAC CE可以包括从多个TCI状态池中选择一个或多个TCI状态池的第一MAC CE、以及从选择的TCI状态池中激活TCI状态的第二MAC CE。此外,MAC CE可以针对多个TRP中的每一个激活单个TCI状态或成对的TCI状态。
DCI接收单元204被配置为从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束,即执行图18B中的步骤S203。
另外,处理电路201还可以包括被配置为接收向UE指示多个预定义的信道或参考信号组合中的哪个或哪些组合共用波束的MAC CE的单元。
电子设备200还可以包括例如通信单元205和存储器206。
通信单元205可以被配置为在处理电路201的控制下与基站设备(例如上面所述的电子设备100)进行通信。在一个示例中,通信单元205可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单 元205用虚线绘出,因为它还可以位于电子设备200外。
电子设备200还可以包括存储器206。存储器206可以存储各种数据和指令,例如用于电子设备200操作的程序和数据、由处理电路201产生的各种数据、将由通信单元205发送的各种控制信令或业务数据等。存储器206用虚线绘出,因为它还可以位于处理电路201内或者位于电子设备200外。存储器206可以是易失性存储器和/或非易失性存储器。例如,存储器206可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
应当理解,上述各实施例中描述的电子设备100、200的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
上面已经详细描述了本公开的实施例的各个方面,但是应注意,上面为了描述了所示出的天线阵列的结构、布置、类型、数量等,端口,参考信号,通信设备,通信方法等等,都不是为了将本公开的方面限制到这些具体的示例。
应当理解,上述各实施例中描述的电子设备100、200的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1)、一种用于基站的电子设备,包括:
处理电路,被配置为:
通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;
通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。
2)、如1)所述的电子设备,其中,所述处理电路还配置为通过所述RRC信令配置所述TCI状态池中的每个TCI状态是下行TCI状态、上行TCI状态还是联合TCI状态。
3)、如1)所述的电子设备,其中,所述TCI状态池包括多个TCI状态池。
4)、如3)所述的电子设备,其中,所述TCI状态池包括:
包括上行TCI状态的第一TCI状态池;以及
包括下行TCI状态的第二TCI状态池,
其中,第一TCI状态池和第二TCI状态池中的TCI状态的标识信息相互不同。
5)、如4)所述的电子设备,所述处理电路还被配置为:
通过所述MAC CE将第二TCI状态池中的一个或多个下行TCI状态复用为联合TCI状态,
6)、如3)所述的电子设备,所述处理电路还被配置为:
通过另一MAC CE从所述多个TCI状态池中选择特定TCI状态池,以及
其中所述MAC CE用于激活所述特定TCI状态池中的TCI状态。
7)、如3)所述的电子设备,其中,所述多个TCI状态池对应于多 个小区。
8)、如1)所述的电子设备,其中,所述一组码点中的每一个码点能够针对多个发送接收点(TRP)中的每个TRP引用单个TCI状态或者成对的上行TCI状态和下行TCI状态。
9)、如1)所述的电子设备,所述处理电路还被配置为:
向所述UE发送另一MAC CE,其中所述另一MAC CE指示多个预定义的信道或参考信号组合中的哪个组合共用波束。
10)、一种用于用户设备(UE)的电子设备,包括:
处理电路,被配置为:
从基站接收关于传输配置指示(TCI)状态池的配置的RRC信令;
从基站接收包含一组码点的MAC CE以激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束。
11)、如10)所述的电子设备,其中,所述RRC信令还配置所述TCI状态池中的每个TCI状态是下行TCI状态、上行TCI状态还是联合TCI状态。
12)、如10)所述的电子设备,其中,所述TCI状态池包括多个TCI状态池。
13)、如10)所述的电子设备,其中,所述TCI状态池包括:
包括上行TCI状态的第一TCI状态池;以及
包括下行TCI状态的第二TCI状态池,
其中,第一TCI状态池和第二TCI状态池中的TCI状态的标识信息相互不同。
14)、如12)所述的电子设备,所述MAC CE将第二TCI状态池中的一个或多个下行TCI状态复用为联合TCI状态。
15)、如12)所述的电子设备,所述处理电路还被配置为:
从基站接收另一MAC CE,以从所述多个TCI状态池中选择特定TCI状态池,
其中所述MAC CE用于激活所述特定TCI状态池中的TCI状态。
16)、如12)所述的电子设备,其中,所述多个TCI状态池分别对应于多个小区。
17)、如10)所述的电子设备,其中,所述一组码点中的每一个码点能够针对多个发送接收点(TRP)中的每个TRP引用单个TCI状态或者成对的上行TCI状态和下行TCI状态。
18)、如10)所述的电子设备,所述处理电路还被配置为:
从基站接收另一MAC CE,其中所述另一MAC CE指示多个预定义的信道或参考信号组合中的哪个组合共用波束。
19)、一种通信方法,包括:
通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;
通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。
20)、一种通信方法,包括:
从基站接收关于传输配置指示(TCI)状态池的配置的RRC信令;
从基站接收包含一组码点的MAC CE以激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
a)单个用于指示下行波束的下行TCI状态;
b)单个用于指示上行波束的上行TCI状态;
c)单个用于指示下行波束和上行波束的联合TCI状态;和
d)成对的上行TCI状态和下行TCI状态;以及
从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束。
21)、一种包含可执行指令的计算机程序产品,所述可执行指令当被执行时实现如19)-20)中任一项所述的通信方法。
【本公开的应用实例】
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备100可以被实现为各种基站或者安装在基站中,电子设备200可以被实现为各种用户设备或被安装在各种用户设备中。
根据本公开的实施例的通信方法可以由各种基站或用户设备实现;根据本公开的实施例的方法和操作可以体现为计算机可执行指令,存储在非暂时性计算机可读存储介质中,并可以由各种基站或用户设备执行以实现上面所述的一个或多个功能。
根据本公开的实施例的技术可以制成各个计算机程序产品,被用于各种基站或用户设备以实现上面所述的一个或多个功能。
应注意,本公开中所使用的术语“基站”不仅限于上面这两种节点,而是作为网络侧的控制设备的示例,并具有其通常含义的全部广度。本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G NR标准中定义的宏gNB和ng-eNB。gNB可以是覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站 可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台、自动化工厂中的控制节点等。
另外,在本公开中,术语“UE”具有其通常含义的全部广度,包括与基站通信的各种终端设备或车载设备。UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机、自动化工厂中的传感器和执行器等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下面简单介绍可以应用本公开的技术的基站和UE的应用示例。
基站的第一应用示例
图19是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。在图19中,基站可以实现为gNB 1400。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备100。
天线1410包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1410例如可以被布置成天线阵列矩阵,并且用于基站设备1420发送和接收无线信号。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高 层的各种功能。例如,控制器1421可以包括上面所述的处理电路101,执行图17B中描述的通信方法,或者控制电子设备100的各个部件。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424(例如,5G核心网)的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如5G NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行各层(例如物理层、MAC层、RLC层、PDCP层、SDAP层)的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和 接收无线信号。虽然图19示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图19所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图19所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图19示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
在图19中示出的gNB 1400中,参照图17A描述的处理电路101中包括的一个或多个单元可被实现在无线通信接口1425中。可替代地,这些组件中的至少一部分可被实现在控制器1421中。例如,gNB 1400包含无线通信接口1425的一部分(例如,BB处理器1426)或者整体,和/或包括控制器1421的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1400中,并且无线通信接口1425(例如,BB处理器1426)和/或控制器1421可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1400、基站设备1420或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
基站的第二应用示例
图20是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。在图20中,基站被示出为gNB 1530。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线 路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备100。
天线1540包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1540例如可以被布置成天线阵列矩阵,并且用于基站设备1550发送和接收无线信号。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图19描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如5G NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图19描述的BB处理器1426相同。如图20所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图20示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接 口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图20示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图20所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图20示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图20中示出的gNB 1500中,参照图17A描述的处理电路101中包括的一个或多个单元可被实现在无线通信接口1525中。可替代地,这些组件中的至少一部分可被实现在控制器1521中。例如,gNB 1500包含无线通信接口1525的一部分(例如,BB处理器1526)或者整体,和/或包括控制器1521的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1500中,并且无线通信接口1525(例如,BB处理器1526)和/或控制器1521可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1500、基站设备1520或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第一应用示例
图21是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。在一个示例中,智能电话1600可以被实现为参照图18A描述的电子设备200。
智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、 显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。处理器1601可以包括或充当参照图18A描述的处理电路201。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如4G LTE或5G NR等等),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图21所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图21示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1616例如可以被布置成天线阵列矩阵,并且用于无线通信接口1612传送和接收无线信号。智能电话1600可以包括一个或多个天线面板(未示出)。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图21所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图21中示出的智能电话1600中,参照图18A描述的处理电路201中包括的一个或多个单元可被实现在无线通信接口1612中。可替代地,这些组件中的至少一部分可被实现在处理器1601或者辅助控制器1619中。作为一个示例,智能电话1600包含无线通信接口1612的一部分(例如,BB处理器1613)或者整体,和/或包括处理器1601和/或辅助控制器1619的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在 智能电话1600中,并且无线通信接口1612(例如,BB处理器1613)、处理器1601和/或辅助控制器1619可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话1600或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第二应用示例
图22是示出可以应用本公开的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720可以被实现为参照图18A描述的电子设备200。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如4G LTE或5G NR), 并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图22所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图22示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1737例如可以被布置成天线阵列矩阵,并且用于无线通信接口1733传送和接收无线信号。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图22所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图22中示出的汽车导航装置1720中,参照图18A描述的处理电路201中包括的一个或多个单元可被实现在无线通信接口1733中。可替代地,这些组件中的至少一部分可被实现在处理器1721中。作为一个示例,汽车导航装置1720包含无线通信接口1733的一部分(例如,BB处理器1734)或者整体,和/或包括处理器1721的模块,并且一个或多个组件可被实现在 该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置1720中,并且无线通信接口1733(例如,BB处理器1734)和/或处理器1721可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置1720或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图22中示出的汽车导航装置1720中,例如,图18A的通信单元205可被实现在无线通信接口1933(例如,RF电路1935)中。
本公开的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替 代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (21)

  1. 一种用于基站的电子设备,包括:
    处理电路,被配置为:
    通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;
    通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
    a)单个用于指示下行波束的下行TCI状态;
    b)单个用于指示上行波束的上行TCI状态;
    c)单个用于指示下行波束和上行波束的联合TCI状态;和
    d)成对的上行TCI状态和下行TCI状态;以及
    通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。
  2. 如权利要求1所述的电子设备,其中,所述处理电路还配置为通过所述RRC信令配置所述TCI状态池中的每个TCI状态是下行TCI状态、上行TCI状态还是联合TCI状态。
  3. 如权利要求1所述的电子设备,其中,所述TCI状态池包括多个TCI状态池。
  4. 如权利要求3所述的电子设备,其中,所述多个TCI状态池包括:
    包括上行TCI状态的第一TCI状态池;以及
    包括下行TCI状态的第二TCI状态池,
    其中,第一TCI状态池和第二TCI状态池中的TCI状态的标识信息相互不同。
  5. 如权利要求4所述的电子设备,所述处理电路还被配置为:
    通过所述MAC CE将第二TCI状态池中的一个或多个下行TCI状态复用为联合TCI状态。
  6. 如权利要求3所述的电子设备,所述处理电路还被配置为:
    通过另一MAC CE从所述多个TCI状态池中选择特定TCI状态池,以及
    其中所述MAC CE用于激活所述特定TCI状态池中的TCI状态。
  7. 如权利要求3所述的电子设备,其中,所述多个TCI状态池对应于多个小区。
  8. 如权利要求1所述的电子设备,其中,所述一组码点中的每一个码点能够针对多个发送接收点(TRP)中的每个TRP引用单个TCI状态或者成对的上行TCI状态和下行TCI状态。
  9. 如权利要求1所述的电子设备,所述处理电路还被配置为:
    向所述UE发送另一MAC CE,其中所述另一MAC CE指示多个预定义的信道或参考信号组合中的哪个组合共用波束。
  10. 一种用于用户设备(UE)的电子设备,包括:
    处理电路,被配置为:
    从基站接收关于传输配置指示(TCI)状态池的配置的RRC信令;
    从基站接收包含一组码点的MAC CE以激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
    a)单个用于指示下行波束的下行TCI状态;
    b)单个用于指示上行波束的上行TCI状态;
    c)单个用于指示下行波束和上行波束的联合TCI状态;和
    d)成对的上行TCI状态和下行TCI状态;以及
    从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束。
  11. 如权利要求10所述的电子设备,其中,所述RRC信令还配置所述TCI状态池中的每个TCI状态是下行TCI状态、上行TCI状态还是联合TCI 状态。
  12. 如权利要求10所述的电子设备,其中,所述TCI状态池包括多个TCI状态池。
  13. 如权利要求12所述的电子设备,其中,所述多个TCI状态池包括:
    包括上行TCI状态的第一TCI状态池;以及
    包括下行TCI状态的第二TCI状态池,
    其中,第一TCI状态池和第二TCI状态池中的TCI状态的标识信息相互不同。
  14. 如权利要求12所述的电子设备,所述MAC CE将第二TCI状态池中的一个或多个下行TCI状态复用为联合TCI状态。
  15. 如权利要求12所述的电子设备,所述处理电路还被配置为:
    从基站接收另一MAC CE,以从所述多个TCI状态池中选择特定TCI状态池,
    其中所述MAC CE用于激活所述特定TCI状态池中的TCI状态。
  16. 如权利要求12所述的电子设备,其中,所述多个TCI状态池分别对应于多个小区。
  17. 如权利要求10所述的电子设备,其中,所述一组码点中的每一个码点能够针对多个发送接收点(TRP)中的每个TRP引用单个TCI状态或者成对的上行TCI状态和下行TCI状态。
  18. 如权利要求10所述的电子设备,所述处理电路还被配置为:
    从基站接收另一MAC CE,其中所述另一MAC CE指示多个预定义的信道或参考信号组合中的哪个组合共用波束。
  19. 一种通信方法,包括:
    通过RRC信令为用户设备(UE)配置传输配置指示(TCI)状态池;
    通过包含一组码点的MAC CE,为所述UE激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
    a)单个用于指示下行波束的下行TCI状态;
    b)单个用于指示上行波束的上行TCI状态;
    c)单个用于指示下行波束和上行波束的联合TCI状态;和
    d)成对的上行TCI状态和下行TCI状态;以及
    通过指向所述一组码点中的一个码点的DCI,指示所述UE使用与该码点所引用的TCI状态对应的波束。
  20. 一种通信方法,包括:
    从基站接收关于传输配置指示(TCI)状态池的配置的RRC信令;
    从基站接收包含一组码点的MAC CE以激活所述TCI状态池中的TCI状态,其中每一个码点能够引用以下任一个:
    a)单个用于指示下行波束的下行TCI状态;
    b)单个用于指示上行波束的上行TCI状态;
    c)单个用于指示下行波束和上行波束的联合TCI状态;和
    d)成对的上行TCI状态和下行TCI状态;以及
    从基站接收指向所述一组码点中的一个码点的DCI,以被指示使用与该码点所引用的TCI状态对应的波束。
  21. 一种包含可执行指令的计算机程序产品,所述可执行指令当被执行时实现如权利要求19-20中任一项所述的通信方法。
PCT/CN2023/071295 2022-01-13 2023-01-09 电子设备、通信方法和计算机程序产品 WO2023134620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210034245.0A CN116489780A (zh) 2022-01-13 2022-01-13 电子设备、通信方法和计算机程序产品
CN202210034245.0 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023134620A1 true WO2023134620A1 (zh) 2023-07-20

Family

ID=87214197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071295 WO2023134620A1 (zh) 2022-01-13 2023-01-09 电子设备、通信方法和计算机程序产品

Country Status (2)

Country Link
CN (1) CN116489780A (zh)
WO (1) WO2023134620A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586862A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信息指示的方法及装置
US20200314880A1 (en) * 2019-03-28 2020-10-01 Ali Cagatay Cirik Activation Indication of Transmission Configuration Groups
CN112806083A (zh) * 2021-01-07 2021-05-14 北京小米移动软件有限公司 波束指示方法、装置及通信设备
US20210337525A1 (en) * 2020-04-23 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for dynamic beam indication mechanism
CN113574825A (zh) * 2019-03-27 2021-10-29 联想(新加坡)私人有限公司 用于多发送和接收点传输的下行链路资源分配的方法和装置
CN113597779A (zh) * 2021-06-18 2021-11-02 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质
WO2021253055A2 (en) * 2020-10-22 2021-12-16 Futurewei Technologies, Inc. Methods and apparatus for multi-beam operation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586862A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信息指示的方法及装置
CN113574825A (zh) * 2019-03-27 2021-10-29 联想(新加坡)私人有限公司 用于多发送和接收点传输的下行链路资源分配的方法和装置
US20200314880A1 (en) * 2019-03-28 2020-10-01 Ali Cagatay Cirik Activation Indication of Transmission Configuration Groups
US20210337525A1 (en) * 2020-04-23 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for dynamic beam indication mechanism
WO2021253055A2 (en) * 2020-10-22 2021-12-16 Futurewei Technologies, Inc. Methods and apparatus for multi-beam operation
CN112806083A (zh) * 2021-01-07 2021-05-14 北京小米移动软件有限公司 波束指示方法、装置及通信设备
CN113597779A (zh) * 2021-06-18 2021-11-02 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质

Also Published As

Publication number Publication date
CN116489780A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
WO2020108473A1 (zh) 电子设备、通信方法和存储介质
US10659985B2 (en) Base station side device and method for wireless communication, and user side device and method for wireless communication
EP3826404A1 (en) Electronic device and communication method
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
US9614596B2 (en) Communication control device, communication control method, and terminal device
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2021036875A1 (zh) 电子设备、通信方法和存储介质
CN113115445A (zh) 用于无线通信系统的电子设备、方法和存储介质
CN106160823A (zh) 用于无线通信的装置和方法
WO2018223982A1 (zh) 无线通信系统中的装置和方法
CN115298970A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP3905813A1 (en) Electronic device and method used for wireless communication, and computer-readable storage medium
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023134620A1 (zh) 电子设备、通信方法和计算机程序产品
EP4188012A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
CN116134926A (zh) 电子设备、无线通信方法以及计算机可读存储介质
WO2023056922A1 (zh) 电子设备、通信方法和计算机程序产品
WO2023030242A1 (zh) 电子设备、通信方法和计算机程序产品
EP4013114A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2022083541A1 (zh) 电子设备、通信方法和存储介质
CN116491105A (zh) 利用多波束增强上行链路传输

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739962

Country of ref document: EP

Kind code of ref document: A1