WO2023134616A1 - 一种耐臭氧腐蚀高强度管道及其制造方法 - Google Patents

一种耐臭氧腐蚀高强度管道及其制造方法 Download PDF

Info

Publication number
WO2023134616A1
WO2023134616A1 PCT/CN2023/071256 CN2023071256W WO2023134616A1 WO 2023134616 A1 WO2023134616 A1 WO 2023134616A1 CN 2023071256 W CN2023071256 W CN 2023071256W WO 2023134616 A1 WO2023134616 A1 WO 2023134616A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
resistant layer
pipeline
layer
present
Prior art date
Application number
PCT/CN2023/071256
Other languages
English (en)
French (fr)
Inventor
闫博
焦四海
王治宇
李占杰
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2023134616A1 publication Critical patent/WO2023134616A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention relates to a pipeline and a manufacturing method thereof, in particular to an ozone corrosion-resistant high-strength pipeline and a manufacturing method thereof.
  • ozone is usually used to disinfect and sterilize water sources to ensure water quality.
  • the pipelines between the ozone generators and the ozone dosing device of the water supply station are usually in direct contact with the ozone gas, and the outlet pipes of the pre-ozone contact tank and the ozone contact tank are also in contact with the water in which ozone is dissolved. If these equipment and pipelines are not specially treated, they are easily corroded by ozone. Therefore, in order to prevent these equipment and pipelines from being corroded by ozone as far as possible, carbon steel materials and 316 stainless steel materials are usually used for production and manufacture.
  • carbon steel materials are often used to prepare carbon steel pipes.
  • This carbon steel pipe can be used as the outlet pipe after the valve of the pre-ozone contact tank and the ozone contact tank.
  • the water conveyed inside contains a small amount of residual ozone.
  • the corrosion resistance of the inner wall of the pipeline is generally adopted by applying a special anti-ozone fluorocarbon coating on the inner wall.
  • the coating on the inner wall of the pipeline still has problems such as coating damage and peeling, during long-term use and operation, carbon steel pipes are still inevitably corroded by ozone, resulting in water pollution, and even pipeline leakage, squib.
  • the present invention expects to obtain a new pipeline, which not only has excellent ozone corrosion resistance, but also has good mechanical properties and economic efficiency, and has extremely great economic and social benefits.
  • One of the objectives of the present invention is to provide a pipeline, which not only has excellent ozone corrosion resistance, but also has good mechanical properties and high economic efficiency, which can solve the problem of the current water supply station in the environment of ozone corrosion medium.
  • the essential pain point of the 316 stainless steel or carbon steel used meets the continuous improvement of the corrosion resistance and mechanical properties of the pipeline equipment used in the ozone corrosive medium environment of the water supply plant, and greatly improves the applicability, safety, and reliability of these pipeline equipment. Durability, while avoiding secondary pollution to water quality, has great economic and social benefits.
  • the present invention provides a pipeline
  • the pipeline has a corrosion-resistant layer and a base layer in the thickness direction
  • the corrosion-resistant layer is at least located on the inner wall of the pipeline
  • the corrosion-resistant layer contains Fe and unavoidable impurities
  • it also contains the following chemical elements in the following mass percentages:
  • the mass percentage of each chemical element in the corrosion-resistant layer is:
  • the balance is Fe and unavoidable impurities
  • the ozone corrosion resistance of the corrosion-resistant layer In order to ensure the ozone corrosion resistance of the pipeline, the ozone corrosion resistance of the corrosion-resistant layer must first be ensured.
  • the pipeline between the ozone generator and the ozone dosing device will transport or come into contact with 100% ozone gas as the medium; while the flanges, dull plates, and outlet pipes of the pre-ozone contact tank and the ozone contact tank
  • Such facilities will transport or contact the water with the dissolved amount of ozone in the range of 1mg/L-3mg/L, which may contain up to 5ppm of Cl - , the main corrosive medium is ozone, and the working temperature is 0-40°C.
  • the inventor Based on the working conditions of the above-mentioned current pipeline equipment in the water supply plant station in the environment of ozone corrosive medium, the inventor has conducted a lot of research and optimized the chemical element composition of the corrosion-resistant layer to ensure the corrosion-resistant layer. Ozone corrosion resistance.
  • the design principle of the chemical elements of the corrosion-resistant layer is as follows:
  • C is a strong austenite-forming element, which can replace nickel to a certain extent, promote the formation of austenite, stabilize the austenite structure, and increase the strength of stainless steel.
  • the content of C element should not be too high.
  • the mass percentage of the C element is controlled to satisfy 0 ⁇ C ⁇ 0.08%.
  • Si element is mainly used for deoxidation during the smelting process, so it generally contains a certain amount of silicon.
  • the Si element content should not be too high.
  • the mass percentage content of the Si element is controlled to satisfy 0 ⁇ Si ⁇ 0.75%.
  • the mass percentage of Si is preferably controlled between 0.3-0.6%, more preferably between 0.4-0.6%.
  • the Mn element is a strong austenite stabilizing element, and can increase the solubility of nitrogen in steel. But manganese has a negative impact on the corrosion resistance of austenitic stainless steel at the same time. Therefore, considering the beneficial effects and adverse effects of the Mn element, in the corrosion-resistant layer of the present invention, the mass percentage content of the Mn element is controlled to satisfy 0 ⁇ Mn ⁇ 2.0%.
  • the mass percentage content of the Mn element is preferably controlled between 0.5-1.5%, more preferably between 1.10-1.25%.
  • Ni is the most important element for forming and stabilizing the austenite phase. Adding an appropriate amount of Ni element can ensure the formation of austenite structure of the steel at room temperature. But the price of nickel is expensive, in order to ensure relatively low cost, in the corrosion-resistant layer of the present invention, the mass percentage content of Ni element is controlled between 10.00-14.00%.
  • Ni element in order to obtain a better implementation effect, it is preferable to control the mass percentage of Ni element between 12.00-14.00%.
  • Cr In the corrosion-resistant layer of the present invention, Cr is the guarantee to obtain stainless steel's rust resistance and corrosion resistance. Generally, the minimum chromium content to obtain corrosion resistance is 10.5%. Since chromium is an element that significantly enhances corrosion resistance, in order to ensure good corrosion resistance, the content of chromium in the steel of the present invention is controlled above 16.0%. However, chromium is the main ferrite forming element, and too high content of chromium will make it difficult to ensure that the coating obtains austenite structure at room temperature. Therefore, in the corrosion-resistant layer of the present invention, the mass percent content of Cr element is controlled between 16.00-18.00%.
  • Mo is an important element to improve corrosion resistance, and its mechanism is to stabilize the passivation film and promote the enrichment of chromium in the passivation film.
  • Molybdenum can also act synergistically with nitrogen , to further improve pitting resistance, so the main function of adding molybdenum is to improve corrosion resistance. It should be noted that the content of Mo element should not be too high, too high content of molybdenum will increase the cost of the alloy. In order to ensure relatively low cost, in the corrosion-resistant layer of the present invention, the mass percent content of Mo element is controlled between 2.00-3.00%.
  • N is a very strong element that forms, stabilizes and expands the austenite zone. Adding an appropriate amount of N element can effectively improve the pitting corrosion resistance of stainless steel. However, when the nitrogen content is too high, the risk of nitrogen-containing intermetallic phase formation will be increased, and the difficulty of smelting and thermal processing will be increased, resulting in difficulty in production. Therefore, in the corrosion-resistant layer of the present invention, the mass percent content of N element is controlled between 0.02-0.20%.
  • N element in order to obtain a better implementation effect, it is preferable to control the mass percentage of N element between 0.05-0.15%.
  • the corrosion-resistant layer of the present invention while controlling the mass percentage content of a single chemical element, it is also preferable to control the Cr element, Mo element and N element to satisfy the following inequality: Cr+3.3 ⁇ Mo +16 ⁇ N ⁇ 25%. Each element in the formula is substituted into the mass percentage of the corresponding element. Through such control, it can be further ensured that the corrosion-resistant layer has quite excellent corrosion resistance in an ozone environment.
  • the mass percentage content of each chemical element in the corrosion-resistant layer satisfies at least one of the following items:
  • unavoidable impurities include: S ⁇ 0.030%; P ⁇ 0.045%.
  • both P and S are unavoidable impurity elements.
  • the lower the content of the impurity elements in the steel the better, if conditions permit.
  • S element is a harmful impurity element, so it is necessary to strictly control the mass percentage of S element in the corrosion-resistant layer, and the control of S element satisfies: S ⁇ 0.030%.
  • the S element can be controlled between 0-0.005%.
  • P element is a harmful impurity element, so it is necessary to strictly control the mass percentage of P element in the corrosion-resistant layer, and the control of P element meets: P ⁇ 0.045%.
  • P element is controlled between 0-0.035%.
  • the thickness of the single-layer corrosion-resistant layer accounts for 0.5%-20% of the total thickness of the pipeline, and the mass percentage of each chemical element in the base layer is:
  • the balance is Fe and unavoidable impurities.
  • the base layer also includes at least one of the following:
  • the mass percentage content of each chemical element in the base layer satisfies at least one of the following items:
  • the chemical element composition of the base carbon steel needs to ensure both high strength and good machinability.
  • C is an austenite stabilizing element, which can play a role of solid solution strengthening in steel, and can obviously improve the strength of steel.
  • the content of C element in the steel should not be too high.
  • the mass percentage content of the C element is controlled between 0.01-0.20%,
  • the addition of C is controlled at 0.01-0.20%, which not only ensures that the steel plate can obtain a certain hardness and strength under the condition of air cooling after rolling, but also avoids deterioration of the welding performance of the base steel.
  • the carbon content of the base-layer steel is required to be controlled within the above range.
  • the mass percentage content of the C element between 0.01-0.18%.
  • Si In the base layer of the present invention, adding Si element to the steel can effectively improve the purity and deoxidation of the steel. Si element can play solid solution strengthening effect in steel, but Si element is unfavorable for the weldability of material; In the present invention, control the silicon content of base carbon steel to be less than or equal to 0.5%, will not affect the corrosion resistance of corrosion-resistant layer There is no impact on the properties, and the base carbon steel has good welding performance. Therefore, in the base layer of the present invention, the mass percentage of Si element is controlled between 0.10-0.50%.
  • the mass percent content of Si element between 0.10-0.30%.
  • Mn In the base layer of the present invention, adding an appropriate amount of Mn element to the steel can delay the pearlite transformation, reduce the critical cooling rate, and improve the hardenability of the steel; at the same time, the Mn element also has the effect of solid solution strengthening, which is the The main solid solution strengthening elements in However, it should be noted that the Mn element should not be added too much. When the Mn element content in the steel is too high, segregation bands and martensitic structures are prone to appear, which has an adverse effect on the toughness of the steel, and the appearance of segregation bands has a negative impact on the steel. The corrosion resistance performance will also be reduced. The amount of Mn added mainly depends on the strength level of the steel.
  • the manganese content in low-carbon micro-alloyed steel does not exceed 2.0%.
  • the Mn element contained in the base carbon steel will not have adverse effects on the corrosion-resistant layer. Based on this, in the base layer of the present invention, the mass percentage content of Mn element is controlled between 0.50-2.00%.
  • the mass percentage content of the Mn element between 0.50-1.50%.
  • Al is a strong deoxidizing element.
  • the mass percentage content of the Al element is controlled between 0.02-0.04%.
  • the excess Al and N elements in the steel can combine to form AlN precipitates, thereby improving the strength of the steel and refining the austenite grain size of the steel during heat treatment.
  • Ti is a strong carbide forming element. Adding a small amount of Ti in the steel is beneficial to fix the N in the steel, and the TiN formed by the combination of Ti and N can make the matrix blank of the base layer heated. The grains of tenite do not grow too much, and the grain size of original austenite is refined.
  • Ti can also be combined with carbon and sulfur in steel to form TiC, TiS, Ti 4 C 2 S 2, etc., which can exist in the form of inclusions and second phase particles. These carbonitride precipitates of Ti are in the During welding, it can also prevent the grain growth in the heat-affected zone and improve the welding performance of the base carbon steel. Based on this, in the base layer of the present invention, the mass percentage content of Ti element is controlled between 0.005-0.018%.
  • the mass percentage content of the Ti element between 0.005-0.015%.
  • Nb is a strong carbide forming element, and a small amount of niobium is added to the steel mainly to increase the recrystallization temperature to match the composite plate formed by the base layer slab and the corrosion-resistant layer slab.
  • the higher final rolling temperature in the subsequent rolling process makes the grain refinement of the base layer after rolling in the recrystallization and non-recrystallization regions, which is beneficial to the improvement of the low temperature impact toughness of the base layer.
  • the mass percent content of Nb element is controlled between 0.005-0.020%.
  • element N In the base layer of the present invention, element N can form second-phase particles with titanium and aluminum to refine grains and improve strength. However, when the mass percentage of N element is too high, the amount of TiN produced is too large and the particles are too coarse, which will affect the plasticity of the composite material substrate of the present invention. Based on this, in the base layer of the present invention, the mass percentage content of N element is controlled to be N ⁇ 0.006%.
  • B can greatly improve the hardenability of steel.
  • the high corrosion-resistant composite plate corrosion-resistant layer slab + base slab
  • it is required to obtain ferrite + pearlescent as much as possible body structure, inhibiting the formation of bainite, especially for high corrosion-resistant strip steel with a corrosion-resistant layer thickness in the range of 0.5%-5% of the total thickness. Therefore, in the present invention, it is required to control the addition amount of B element in the base layer to satisfy 0 ⁇ B ⁇ 0.0003%.
  • Ni is an element that stabilizes austenite, and it has a certain effect on improving the strength of steel.
  • adding an appropriate amount of Ni to steel, especially adding an appropriate amount of Ni to quenched and tempered steel can greatly improve the low temperature impact toughness of steel.
  • an appropriate amount of Ni can be added, and the amount of Ni element added can be controlled to satisfy 0 ⁇ Ni ⁇ 0.20%.
  • the segregation tendency of the Cr element is smaller than that of Mn.
  • Mn content of the base carbon steel is high, and when there are obvious segregation bands and banded structures in the steel, the Mn content can be appropriately reduced, and the insufficient part can be reduced by Cr substitution.
  • adding an appropriate amount of Cr to the base carbon steel is also beneficial to inhibit the diffusion of Cr in the corrosion-resistant layer to the base layer. Based on this, in the base layer of the present invention, the Cr element of 0 ⁇ Cr ⁇ 0.20% can be added.
  • Mo element can significantly refine grains and improve the strength and toughness of steel.
  • Mo can also reduce the temper brittleness of steel, and at the same time, very fine carbides can be precipitated during tempering, which can significantly strengthen the steel matrix.
  • the addition of Mo element is also beneficial to suppress the self-temper brittleness of the steel plate that is easy to occur during the air cooling process. Based on this, in the base layer of the present invention, an appropriate amount of Mo can be added, and the amount of added Mo element can be controlled to satisfy 0 ⁇ Mo ⁇ 0.10%.
  • unavoidable impurities include: S ⁇ 0.010%; P ⁇ 0.015%.
  • P and S are unavoidable impurity elements in the base layer, and S will combine with Mn in the steel to form plastic inclusion manganese sulfide, which is especially unfavorable to the lateral plasticity and toughness of the steel. Therefore, the S in the base layer
  • the content of elements should be as low as possible.
  • P is also a harmful element in steel, which will seriously damage the plasticity and toughness of the steel plate.
  • both S and P are unavoidable impurity elements, and the lower the better, considering the actual steelmaking level of the steel plant, in the base layer described in the present invention, the control of S and P elements satisfies: S ⁇ 0.010%; P ⁇ 0.015%.
  • the thickness of the single-layer corrosion-resistant layer accounts for 0.5-20% of the total thickness of the pipeline.
  • the selection of the thickness of the corrosion-resistant layer plays a vital role in obtaining good corrosion resistance, mechanical properties, and formability of the pipeline described in the present invention. Too thick a corrosion-resistant layer will affect the mechanical properties of the material. Performance and production cost; and the corrosion resistance layer is too thin, it will reduce the corrosion resistance and service life of the material. For this reason, in the present invention, it is preferable to control the thickness of the corrosion-resistant layer to account for 0.5%-20% of the total thickness of the pipeline, more preferably 2.5-10%.
  • the microstructure of the base layer is ferrite+pearlite or ferrite+pearlite+bainite; the microstructure of the corrosion-resistant layer is austenite.
  • the yield strength of the pipeline is ⁇ 435MPa
  • the tensile strength is ⁇ 590MPa
  • the elongation is ⁇ 30%, preferably ⁇ 32%
  • the uniform corrosion rate of the corrosion-resistant layer in an ozone environment is ⁇ 0.05mm/year.
  • another object of the present invention is to provide a manufacturing method of the above-mentioned pipeline, which is simple and feasible, can effectively prepare the above-mentioned pipeline of the present invention, and can break the limitation of the thickness of the corrosion-resistant layer, and reduce the thickness of the corrosion-resistant layer to The thickness is controlled within the range of 0.5-20% of the total thickness of the pipe.
  • the present invention proposes the method for manufacturing above-mentioned pipeline, and it comprises the steps:
  • Heating and rolling heat the composite slab at a temperature of 1100-1200°C, and then conduct multiple passes within the temperature range of austenite recrystallization and non-recrystallization of the base slab and corrosion-resistant layer slab
  • the total reduction ratio shall not be lower than 90%, and the final rolling temperature shall not be lower than 900°C;
  • the inventor optimized and designed a new manufacturing method through a large amount of research, and the above-mentioned ozone corrosion-resistant high-strength pipeline of the present invention can be effectively prepared by using this method.
  • smelting and casting can be designed according to the chemical composition to prepare the corrosion-resistant layer slab and the base layer slab, and then the two can be assembled to obtain a high-corrosion-resistant composite plate (corrosion-resistant layer plate + base layer plate ).
  • the obtained high-corrosion-resistant composite plate is further heated, rolled, and coiled to obtain a hot-rolled coil with a composite interlayer structure, and the hot-rolled coil is subjected to surface treatment and then made into a tube to obtain the present invention. pipeline.
  • the inventor has optimized the heating and rolling process of step (3) to ensure that a certain thickness of steel can be formed between the corrosion-resistant layer of the high-corrosion-resistant composite plate and the base layer through processes such as heating and rolling.
  • the structure of the transition layer is used to realize the complete metallurgical combination of the corrosion-resistant layer and the base layer, thereby improving the applicability and economy of the material while ensuring ozone corrosion resistance and mechanical properties.
  • the prepared corrosion-resistant layer slab and the base slab can be pretreated, and the slab bonding surface is welded and sealed around, and the joint surface after welding and sealing Carry out vacuum treatment to complete the blank assembly.
  • step (5) the surface treatment of the hot-rolled coil can be carried out by pickling or mechanical descaling.
  • step (6) conventional spiral welded pipes or straight seam welded pipes can be used for forming and welding, and the welding methods can be submerged arc welding, gas metal arc welding Shielded welding, plasma arc welding, stick arc welding, high frequency welding or laser welding.
  • the finishing temperature is controlled to be 920-1000°C.
  • a preheating step is further included between step (2) and step (3), wherein the preheating temperature is 1150-1250°C.
  • the composite slab obtained by forming the billet can be heated at a temperature of 1150-1250°C, so that the corrosion-resistant layer on the surface of the composite slab can obtain a uniform austenitized structure, and the original possible existing
  • the carbides are completely dissolved, and at the same time, all or part of the compounds of alloying elements such as niobium and titanium in the carbon steel are dissolved; the elements of the corrosion-resistant layer and the carbon steel base layer are diffused at the interface to form a stable transition layer, and then slowly cooled to room temperature .
  • cold rolling and annealing are also included between step (5) and step (6).
  • the target product before pipe making is cold-rolled coils, rather than hot-rolled coils, then between step (5) and step (6) can also further Added are cold rolling and annealing steps, which can be achieved by cold rolling to the target thickness, followed by annealing.
  • the annealing temperature is 900-1000°C.
  • the inventors designed the composition of the corrosion-resistant layer and the base layer, and the ratio design of the two, and formed an ozone-resistant corrosion-resistant layer on the surface of the base carbon steel plate through a rolling process, and finally formed a corrosion-resistant layer with ozone corrosion resistance. , good mechanical properties and high economic efficiency, and then processed into pipes, which are used in the pipeline equipment used in the ozone corrosive medium environment of the water supply station.
  • the composition design of the corrosion-resistant layer and the base layer needs to meet the comprehensive performance of the material.
  • the composition of the corrosion-resistant layer needs to be designed according to the characteristics of ozone corrosion to meet the requirements of corrosion resistance under the working conditions.
  • the carbon steel composition design of the base layer should also consider that when the carbon content of the transition layer combined with the two is high, there is a lack of stabilizing elements, and there will be an obvious decarburization layer on the carbon steel side of the interface joint.
  • the structure of the material is uneven, surface defects are prone to occur after processing, and the mechanical properties are difficult to meet.
  • the ratio of the corrosion-resistant layer to the base metal and the difference in material properties will make it difficult to control the heating process, rolling process, and heat treatment process.
  • the temperature is not uniform during the heating process, which causes deformation and swelling, which makes it impossible to combine with the base layer.
  • the inventor successfully overcomes the above-mentioned difficulties through rational design, and obtains the ozone-corrosion-resistant high-strength pipeline described in the present invention.
  • the ozone corrosion-resistant high-strength pipeline and its manufacturing method according to the present invention have the following advantages and beneficial effects:
  • the corrosion-resistant layer and the base layer are designed by designing the composition of the corrosion-resistant layer and the base layer, and the ratio of the two is designed to combine the corrosion-resistant layer and the
  • the base layer is combined with the billet, and the appropriate heating, rolling, coiling process is applied, and the pipe making process is combined to obtain a pipe with ozone corrosion resistance, good mechanical properties and high economic efficiency.
  • the yield strength is ⁇ 435MPa, tensile strength ⁇ 590MPa, elongation ⁇ 30%, uniform corrosion rate of corrosion-resistant layer ⁇ 0.05mm/year in ozone environment.
  • a transition layer structure with a certain thickness is formed between the corrosion-resistant layer and the base layer through processes such as heating and rolling, and the complete metallurgical combination of the corrosion-resistant layer and the base layer is realized, so as to ensure the ozone corrosion resistance and mechanical properties. While improving the performance, the applicability and economy of the material are improved.
  • the pipeline manufactured by the above-mentioned composition design and process control method can solve the essential pain point of 316 stainless steel or carbon steel used in the ozone corrosive medium environment of the water supply plant station; the pipeline can be used for the pipeline used in the ozone corrosive medium environment of the water supply plant station , equipment, such as the pipeline between the ozone generator, the ozone dosing device, the pre-ozone contact tank and the outlet pipeline of the ozone contact tank, which can meet the requirements of these pipelines and equipment for ozone corrosion resistance and mechanical properties, and greatly improve these pipeline equipment Applicability, safety, durability, while avoiding secondary pollution to water quality, it has great economic and social benefits.
  • the strength of the pipeline of the present invention is higher, welding, The machining is simpler, the corrosion resistance is better, and it has higher economy.
  • the pipeline of the present invention can avoid the pipeline corrosion resistance coating process, and at the same time, it has the corrosion resistance and corrosion resistance that carbon steel pipes cannot match. Durability, and more energy-saving, environmental protection, maintenance-free.
  • Fig. 1 is a schematic diagram of the interlayer structure of the pipeline in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the interlayer structure of the pipeline according to another embodiment of the present invention.
  • Example 3 is a photo of the microstructure of the interface between the base layer and the corrosion-resistant layer of the pipeline in Example 5.
  • FIG. 4 is a photograph of the microstructure of the base layer of the pipeline of Example 5.
  • Table 1 lists the mass percentage of each chemical element in the corrosion-resistant layer of the pipelines of Examples 1-6 and Comparative Example 1.
  • Example 1 0.012 0.50 1.18 12.80 16.80 2.62 0.06 0.030 0.001 26.4
  • Example 2 0.005 0.40 1.25 11.60 18.00 2.00 0.20 0.028 0.002 27.8
  • Example 3 0.080 0.75 0.10 14.00 16.00 3.00 0.02 0.045 0.030 26.2
  • Example 4 0.015 0.45 1.10 10.18 16.70 2.16 0.08 0.032 0.002 25.1
  • Example 5 0.022 0.52 1.16 12.78 17.20 2.75 0.15 0.031 0.002 28.7
  • Example 6 0.020 0.45 1.20 12.78 16.20 3.00 0.08 0.030 0.001 27.4
  • Example 7 0.020 0.45 2.0 12.78 16.20 2.98 0.07 0.030 0.001 27.2 Comparative example 1 0.026 0.38 1.36 10.08 16.20 2.05 0.04 0.031 0.002 23.6
  • Table 2 lists the mass percentage of each chemical element in the base layer of the pipeline of Examples 1-6 and Comparative Example 1.
  • Example 1 0.01 0.50 2.00 0.030 0.010 0.018 0.0060 0.0002 0.20 - - 0.015 0.010
  • Example 2 0.14 0.25 1.00 0.030 0.014 0.011 0.0052 0.0002 - 0.20 - 0.010 0.005
  • Example 3 0.20 0.15 0.50 0.020 0.005 0.005 0.0040 0.0001 - 0.10 - 0.008 0.004
  • Example 4 0.11 0.30 1.48 0.026 0.008 0.010 0.0038 - - - - 0.008 0.005
  • Example 5 0.10 0.35 1.50 0.040 0.018 0.020 0.0045 0.0003 - - 0.10 0.010 0.005
  • Example 6 0.10 0.40 1.55 0.040 0.015 0.020 0.0045 0.0003 - - 0.10 0.008 0.004
  • Example 7 0.10 0.40 1.55 0.040 0.015 0.020 0.0045 0.0003 - - 0.10 0.008
  • Heating and rolling heat the composite slab at a temperature of 1100-1200°C, and then conduct multiple passes within the temperature range of austenite recrystallization and non-recrystallization of the base slab and corrosion-resistant layer slab
  • the total reduction rate is controlled to be not less than 90%
  • the final rolling temperature is not lower than 900°C
  • the final rolling temperature is preferably between 920-1000°C.
  • Pipe making use spiral welded pipe or straight seam welded pipe for forming and welding; welding methods can choose submerged arc welding, gas metal arc welding pipe, tungsten inert gas shielded welding, plasma arc welding, electrode arc welding , high frequency welding or laser welding for tube making.
  • Table 3 lists the specific process parameters of the pipelines of Examples 1-6 and Comparative Example 1 in the steps of the above-mentioned manufacturing method.
  • the boards prepared according to the various embodiments and comparative examples can be further used in the pipe-making process of step (6) to produce corresponding pipes.
  • Ozone corrosion resistance performance test adopt the "hanging test method for use scenarios", put the test sample hanging piece in the outlet pipe of the pre-ozone contact pool of the water supply plant, take it out after 3 months, and observe the surface condition of the corrosion-resistant layer to see if there is corrosion phenomenon, thus the ozone corrosion resistance of the sample pipelines of Examples 1-6 and Comparative Example 1 can be obtained.
  • Table 4 lists the test results of the microstructure, mechanical properties and ozone corrosion resistance of the pipes of Examples 1-6 and Comparative Example 1.
  • the yield strength of the pipelines of Examples 1-6 is between 435-516MPa, the tensile strength is between 590-650MPa, and the elongation is between 30.0-40.0%. And it has excellent ozone corrosion resistance, and the corrosion-resistant layer has not been corroded for 3 months under the ozone environment; and comparative example 1 does not meet the design requirements of the present invention because the composition design of the corrosion-resistant layer does not meet the design requirements of the present invention, and its final corrosion-resistant layer There is slight corrosion.
  • the present invention can obtain pipes with good mechanical properties and ozone corrosion resistance through suitable material selection, composition design, rolling and heat treatment processes and pipe making, which can solve the problem of existing water supply plants.
  • the essential pain point of 316 stainless steel or carbon steel used in the environment of ozone corrosive medium meets the continuous improvement of pipeline equipment used in the environment of ozone corrosive medium in the water supply plant.
  • the demand for corrosion resistance and mechanical properties has great economic and social benefit.
  • Fig. 1 is a schematic diagram of the interlayer structure of the pipeline according to the present invention in an embodiment.
  • the pipeline of the present invention may include: two corrosion-resistant layers on the inner surface and the outer surface of the pipeline and a base layer in the middle.
  • Fig. 2 is a schematic diagram of the interlayer structure of the pipeline according to the present invention in another embodiment.
  • the pipeline of the present invention may include: a corrosion-resistant layer on the inner surface of the pipeline and a base layer on the outer surface of the pipeline.
  • Example 3 is a photo of the microstructure of the interface between the base layer and the corrosion-resistant layer of the pipeline in Example 5.
  • the microstructure of the base layer of the pipeline is ferrite-pearlite-bainite; the microstructure of the corrosion-resistant layer is austenite; correspondingly, the corrosion-resistant layer and the base layer are respectively Elements diffuse at the bonding interface to form a stable transition layer, and the diffusion distance is between 50-100 ⁇ m.
  • FIG. 4 is a photograph of the microstructure of the base layer of the pipeline of Example 5.
  • Example 5 the microstructure of the base layer of the pipe is ferrite-pearlite-bainite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种管道,其在厚度方向上具有耐蚀层和基层,耐蚀层至少位于管道内壁,耐蚀层除了含有Fe和不可避免的杂质之外,还含有以wt%计的下述化学元素:0<C≤0.08%;0<Si≤0.75%;0<Mn≤2.0%;Ni:10.00-14.00%;Cr:16.00-18.00%;Mo:2.00-3.00%;N:0.02-0.20%;并且Cr、Mo和N满足不等式:Cr+3.3×Mo+16×N≥25%。相应地,本发明还公开了上述管道的制造方法,其包括步骤:(1)制备耐蚀层板坯和基层板坯;(2)对耐蚀层板坯和基层板坯进行组坯,获得复合板坯;(3)加热和轧制:在1100-1200℃的温度下对复合板坯进行加热,然后进行多道次轧制,总压下率不低于90%,终轧温度不低于900℃;(4)卷取:水冷后,控制卷取温度为500-650℃,获得热轧卷;(5)对热轧卷进行表面处理;(6)制管。

Description

一种耐臭氧腐蚀高强度管道及其制造方法 技术领域
本发明涉及一种管道及其制造方法,尤其涉及一种耐臭氧腐蚀高强度管道及其制造方法。
背景技术
众所周知,在当前给水厂站中,通常会采用臭氧对水源进行消毒杀菌处理,以确保水质。在实际应用过程中,给水厂站的臭氧发生器间管道及臭氧投加装置通常会直接与臭氧气体接触,预臭氧接触池和臭氧接触池的出水管道还会接触到溶解臭氧的水。若不对这些设备和管道进行特殊处理,则非常容易被臭氧腐蚀。因此,为了尽量防止这些设备、管道被臭氧腐蚀,目前通常使用碳钢材料以及316类不锈钢材料进行生产制造。
然而,相较于碳钢材料,316类不锈钢结构的强度较低,在同样使用工况下,所需厚度较大,会导致材料的用量增加。同时,采用316类不锈钢材料的焊接、机械加工等难度较大。此外,316类不锈钢本身含有较多Cr、Ni、Mo等贵重的金属元素,从而在生产、制作、安装过程中,会导致使用成本提高。常规成分的316L不锈钢在使用过程中,还会出现局部材料腐蚀情况,主要原因是在臭氧环境下的综合腐蚀能力不足。
由此,当前也常采用碳钢材料制备碳钢钢管,这种碳钢钢管能够用做预臭氧接触池和臭氧接触池的阀后出水管道,其内部输送的水中含有少量的余臭氧,为加强管道内壁耐腐蚀性能,一般采用在内壁涂刷抗臭氧专用氟炭涂层的措施。但是,由于在管道内壁涂刷的涂层仍然存在着涂层破损、剥落等问题,在长期的使用运行过程中,碳钢钢管仍然不可避免的被臭氧腐蚀,导致水质污染,乃至管道渗漏、爆管。
基于此,针对上述现有技术中的不足与缺陷,本发明期望获得一种新的管道,该管道在具有优异的耐臭氧腐蚀性能的同时,还兼具良好的力学性能以及经济性,具备极大的经济和社会效益。
发明内容
本发明的目的之一在于提供一种管道,该管道不仅具有优异的耐臭氧腐蚀能力,还兼 具良好的力学性能以及较高的经济性,其能够解决目前给水厂站在臭氧腐蚀介质环境下使用的316不锈钢或碳钢的本质痛点,满足给水厂站在臭氧腐蚀介质环境下使用的管道设备对于管道耐蚀、机械性能方面不断提高的需求,大幅提升这些管道设备的适用性、安全性、耐久性,同时避免对水质造成二次污染,具备极大的经济和社会效益。
为了实现上述目的,本发明提供了一种管道,所述管道在厚度方向上具有耐蚀层和基层,所述耐蚀层至少位于管道内壁,所述耐蚀层除了含有Fe和不可避免的杂质之外,还含有质量百分比如下的下述化学元素:
0<C≤0.08%;
0<Si≤0.75%;
0<Mn≤2.0%;
Ni:10.00-14.00%;
Cr:16.00-18.00%;
Mo:2.00-3.00%;
N:0.02-0.20%;
并且Cr、Mo和N满足如下不等式:Cr+3.3×Mo+16×N≥25%。
优选地,所述耐蚀层的各化学元素质量百分比为:
0<C≤0.08%;
0<Si≤0.75%;
0<Mn≤2.0%;
Ni:10.00-14.00%;
Cr:16.00-18.00%;
Mo:2.00-3.00%;
N:0.02-0.20%;
余量为Fe和不可避免的杂质;
并且Cr、Mo和N满足如下不等式:Cr+3.3×Mo+16×N≥25%。
为确保管道的耐臭氧腐蚀性能,首先要保证耐蚀层的耐臭氧腐蚀性能。
在当前现有给水厂站中,臭氧发生器间管道、臭氧投加装置会输送或接触到介质为100%的臭氧气体;而预臭氧接触池及臭氧接触池的法兰、闷板、出水管道等设施会输送或接触介质为臭氧溶解量为1mg/L-3mg/L的水,该水中可能还含有最高达5ppm的Cl -,其主要的腐蚀介质为臭氧,工作温度0-40℃。
基于上述当前给水厂站的管道设备在臭氧腐蚀介质环境下的使用工况条件,发明人进行了大量的研究,并对耐蚀层的化学元素成分进行了优化设计,以此保证耐蚀层的耐臭氧腐蚀性能。
在本发明中,耐蚀层的化学元素的设计原理如下所述:
C:在本发明所述的耐蚀层中,C是强奥氏体形成元素,一定程度上可以取代镍,促进奥氏体形成,并稳定奥氏体组织,同时可以提高不锈钢的强度。但需要注意的是,C元素含量不宜过高,当碳含量过高时,碳与铬结合后会在晶界形成富铬碳化物,导致晶间腐蚀。因此,为了发挥C元素的有益效果,在本发明所述的耐蚀层中,控制C元素的质量百分含量满足0<C≤0.08%。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将C元素的质量百分含量控制在0.005-0.03%之间。
Si:在本发明所述的耐蚀层中,Si元素主要在熔炼过程中用于脱氧,因此一般含有一定含量的硅。但需要注意的是,Si元素含量同样不宜过高,当硅含量过高时,将降低氮的溶解度。因此,在本发明所述的耐蚀层中,控制Si元素的质量百分含量满足0<Si≤0.75%。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将Si元素的质量百分含量控制在0.3-0.6%之间、更优选在0.4-0.6%之间。
Mn:在本发明所述的耐蚀层中,Mn元素是强烈的奥氏体组织稳定元素,并能提高氮在钢中的溶解度。但锰同时对奥氏体不锈钢的耐蚀性有着负面影响,因此,考虑到Mn元素的有益效果以及不利影响,在本发明所述的耐蚀层中,控制Mn元素的质量百分含量满足0<Mn≤2.0%。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将Mn元素的质量百分含量控制在0.5-1.5%之间、更优选在1.10-1.25%之间。
Ni:在本发明所述的耐蚀层中,Ni是形成和稳定奥氏体相最重要的元素,添加适量的Ni元素可以确保钢在室温的奥氏体组织形成。但镍的价格昂贵,为保证相对较低的成本,在本发明所述的耐蚀层中,将Ni元素的质量百分含量控制在10.00-14.00%之间。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将Ni元素的质量百分含量控制在12.00-14.00%之间。
Cr:在本发明所述的耐蚀层中,Cr是获得不锈钢不锈性和耐蚀性的保证,一般地获得耐腐蚀性的最低铬含量是10.5%。由于铬是显著增强耐腐蚀性能的元素,为保证良好的耐蚀性,本发明钢中铬含量控制在16.0%以上。但是铬是主要的铁素体形成元素,过高含量 的铬将难以保证覆层获得室温奥氏体组织。因此,在本发明所述的耐蚀层中,将Cr元素的质量百分含量控制在16.00-18.00%之间。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将Cr元素的质量百分含量控制在16.50-17.50%之间。
Mo:在本发明所述的耐蚀层中,Mo是提高耐腐蚀性能的重要元素,其机理是稳定钝化膜及促进铬元素在钝化膜中的富集,钼还可以与氮协同作用,进一步提高耐点蚀性能,因此添加钼的主要作用是提高耐腐蚀性。需要说明的是,Mo元素含量同样不宜过高,钼含量过高将增加合金成本。为保证相对较低的成本,在本发明所述的耐蚀层中,将Mo元素的质量百分含量控制在2.00-3.00%之间。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将Mo元素的质量百分含量控制在2.50-3.00%之间。
N:在本发明所述的耐蚀层中,N是非常强烈的形成、稳定和扩大奥氏体区的元素,添加适量的N元素能够有效提高不锈钢的耐点腐蚀性能。但是氮含量过高时,将增大含氮金属间相形成的风险,同时提高熔炼和热加工的难度,导致难以生产。因此,在本发明所述的耐蚀层中,将N元素的质量百分含量控制在0.02-0.20%之间。
在一些优选的实施方式中,为了获得更优的实施效果,优选地将N元素的质量百分含量控制在0.05-0.15%之间。
相应地,需要注意的是,在本发明所述耐蚀层中,在控制单一化学元素质量百分含量的同时,还优选控制Cr元素、Mo元素和N元素满足如下不等式:Cr+3.3×Mo+16×N≥25%。式中各元素均代入对应元素的质量百分含量。通过这样的控制,可以进一步确保耐蚀层在臭氧环境中具有相当优异的耐腐蚀性能。
优选地,所述耐蚀层的各化学元素质量百分含量满足下述各项的至少其中之一:
C:0.005-0.03%;
Si:0.3-0.6%;
Mn:0.5-1.5%;
Ni:12.00-14.00%;
Cr:16.50-17.50%;
Mo:2.50-3.00%;
N:0.05-0.15%;
Cr+3.3×Mo+16×N≥26%。
优选地,在所述耐蚀层中,不可避免的杂质包括:S≤0.030%;P≤0.045%。
在本发明所述管道的耐蚀层中,P和S均是不可避免的杂质元素,为了确保钢材的质量,在条件允许的前提下,钢中杂质元素的含量越低越好。
S:在本发明所述的耐蚀层中,S元素是有害的杂质元素,因此需要严格控制耐蚀层中S元素的质量百分含量,控制S元素满足:S≤0.030%。优选地可以将S元素控制在0-0.005%之间。
P:在本发明所述的耐蚀层中,P元素是有害的杂质元素,因此需要严格控制耐蚀层中P元素的质量百分含量,控制P元素满足:P≤0.045%。优选地将P元素控制在0-0.035%之间。
优选地,单层耐蚀层厚度占管道总厚度的0.5%-20%,并且所述基层的各化学元素质量百分比为:
C:0.01-0.20%;
Si:0.10-0.50%;
Mn:0.50-2.00%;
Al:0.02-0.04%;
Ti:0.005-0.018%;
Nb:0.005-0.020%;
N≤0.006%;
余量为Fe和不可避免杂质。
优选地,所述基层还包括下述各项的至少其中一项:
0<B≤0.0003%;
0<Ni≤0.20%;
0<Cr≤0.20%;
0<Mo≤0.10%。
在本发明上述技术方案中,为了进一步优化基层钢材的质量,优选基层中进一步添加有B元素、Ni元素、Cr元素和Mo元素。
优选地,所述基层的各化学元素质量百分含量满足下述各项的至少其中一项:
C:0.01-0.18%;
Si:0.10-0.30%;
Mn:0.50-1.50%;
Al:0.02-0.03%;
Ti:0.005-0.015%;
Nb:0.005-0.015%。
在本发明中,为保证本发明所述的管道获得良好的力学性能,其基层碳钢的化学元素成分选择既需要保证较高的强度,又要兼顾较好的可加工性能。
由此,在本发明中,基层碳钢各化学元素的设计原理如下所述:
C:在本发明所述的基层中,C是奥氏体稳定化元素,其在钢中能够起到固溶强化的作用,可明显提高钢材的强度。但需要注意的是,钢中C元素含量不宜过高,当钢中C元素含量过高时,不仅不利于对材料的焊接性能和韧性,也容易增加珠光体组织及马奥岛等硬相组织,对钢材的耐腐蚀性能造成不利影响。因此,考虑到钢板的强韧性匹配以及对碳钢材料耐腐蚀性的要求,在本发明所述的基层钢材中,将C元素的质量百分含量控制在0.01-0.20%之间,
在本发明中,控制C的添加量为0.01-0.20%,不仅可以保证钢板在轧制后空冷情况下能够获得一定的硬度和强度,还可以避免恶化基层钢材的焊接性能。特别对于耐蚀层厚度占总厚度的0.5%-20%的高耐蚀复合板(耐蚀层板坯+基层板坯),基层钢材的碳含量要求控制在上述范围内。
为获得更优的实施效果,优选将C元素的质量百分含量控制在0.01-0.18%之间。
Si:在本发明所述的基层中,钢中加入Si元素能够有效提高钢质纯净度和脱氧。Si元素在钢中能够起到固溶强化作用,但Si元素不利于材料的焊接性能;在本发明中,控制基层碳钢的硅含量为小于等于0.5%,不会对耐蚀层的耐蚀性有任何影响,且基层碳钢具备良好的焊接性能。由此,在本发明所述的基层中,将Si元素的质量百分含量控制在0.10-0.50%之间。
为获得更优的实施效果,优选将Si元素的质量百分含量控制在0.10-0.30%之间。
Mn:在本发明所述的基层中,钢中加入适量的Mn元素可以推迟珠光体转变,降低临界冷却速度,提高钢材的淬透性;同时Mn元素还具有固溶强化的作用,其是钢中的主要固溶强化元素。但需要注意的是,Mn元素不宜过多添加,当钢中Mn元素含量太高时,则容易出现偏析带以及马氏体组织,其对于钢材的韧性有不利影响,且偏析带的出现对钢的耐腐蚀性能也会有所降低。Mn的加入量主要取决于钢的强度级别,一般低碳微合金钢中锰含量不超过2.0%,此时基层碳钢中含有的Mn元素也不会对耐蚀层有不良影响。基于此,在本发明所述的基层中,将Mn元素的质量百分含量控制在0.50-2.00%之间。
为获得更优的实施效果,优选将Mn元素的质量百分含量控制在0.50-1.50%之间。
Al:在本发明所述的基层中,Al是强脱氧元素。为了保证钢中的氧含量尽量地低,将Al元素的质量百分含量控制在0.02-0.04%之间。脱氧后多余的Al和钢中的N元素能够结合形成AlN析出物,从而提高钢材强度并且在热处理加热时能细化钢的元素奥氏体晶粒度。为获得更优的实施效果,优选将Al元素的质量百分含量控制在0.02-0.03%之间。
Ti:在本发明所述的基层中,Ti是强碳化物形成元素,钢中加入微量的Ti有利于固定钢中的N,Ti与N结合形成的TiN能使基层的基体坯料加热时基体奥氏体晶粒不过分长大,细化原始奥氏体晶粒度。此外,Ti在钢中还可分别与碳和硫化合生成TiC、TiS、Ti 4C 2S 2等,它们能够以夹杂物和第二相粒子的形式存在,Ti的这些碳氮化物析出物在焊接时还可以阻止热影响区晶粒长大,改善基层碳钢的焊接性能。基于此,在本发明所述的基层中,将Ti元素的质量百分含量控制在0.005-0.018%之间。
为获得更优的实施效果,优选将Ti元素的质量百分含量控制在0.005-0.015%之间。
Nb:在本发明所述的基层中,Nb是强碳化物形成元素,钢中加入少量的铌主要是为了提高再结晶温度,以配合基层板坯与耐蚀层板坯组坯形成的复合板材在后续轧制工艺过程中的较高终轧温度,使得该基层在再结晶及未再结晶区轧制结束后晶粒细化,有利于基层的低温冲击韧性的提高。基于此,在本发明所述的基层中,将Nb元素的质量百分含量控制在0.005-0.020%之间。
为了获得更优的实施效果,优选将Nb元素的质量百分含量控制在0.005-0.015%之间。
N:在本发明所述的基层中,N元素可以与钛、铝生成第二相粒子,细化晶粒,提高强度。然而,当N元素的质量百分比过高时,则生成的TiN量太大且颗粒过于粗大,会影响本发明所述复合材料基板的塑性。基于此,在本发明所述的基层中,将N元素的质量百分含量控制为N≤0.006%。
B:在本发明中,B能极大地提高钢的淬透性,针对高耐蚀复合板(耐蚀层板坯+基层板坯)生产轧后空冷情况,要求尽量全部得到铁素体+珠光体组织,抑制贝氏体的形成,特别对于耐蚀层厚度在总厚度的0.5%-5%范围内的高耐蚀板带钢。因此,在本发明中,要求控制基层的B元素的添加量满足0<B≤0.0003%。
Ni:在本发明中,Ni是稳定奥氏体的元素,其对提高钢材强度有一定的作用。此外,钢中添加适量的Ni,尤其是在调质钢中添加适量的Ni能够大幅提高钢的低温冲击韧性。基于此,在本发明所述的基层中,可以添加适量的Ni,并控制Ni元素的添加量满足0<Ni≤0.20%。
Cr:在本发明中,Cr元素的偏析倾向较Mn小,在基层碳钢Mn含量较高的时候,钢中有明显的偏析带及带状组织的时候,可适当降低Mn含量,不足部分以Cr替代。其次,基体碳钢中添加适量的Cr元素也有利于抑制耐蚀层的Cr向基层的扩散。基于此,在本发明所述的基层中,可以添加0<Cr≤0.20%的Cr元素。
Mo:在本发明中,Mo元素能够显著地细化晶粒,提高钢材的强度和韧性。此外,Mo还能减少钢的回火脆性,同时回火时还能析出非常细小的碳化物,显著强化钢的基体。另外,Mo元素的添加还有利于抑制钢板在空冷过程中容易产生的自回火脆性。基于此,在本发明所述的基层中,可以添加适量的Mo,并控制Mo元素的添加量满足0<Mo≤0.10%。
优选地,在所述基层中,不可避免的杂质包括:S≤0.010%;P≤0.015%。
在本发明上述技术方案中,P、S均属于基层中不可避免的杂质元素,S在钢中会与Mn化合形成塑性夹杂物硫化锰,尤其对钢的横向塑性和韧性不利,因此基层中S元素的含量应尽可能地低。此外,P也是钢中的有害元素,其会严重损害钢板的塑性和韧性。
对于本发明而言,S和P均是不可避免的杂质元素,应该越低越好,考虑到钢厂实际的炼钢水平,在本发明所述的基层中,控制S、P元素满足:S≤0.010%;P≤0.015%。
优选地,单层耐蚀层厚度占管道总厚度的0.5-20%。
在本发明中,根据使用工况,耐蚀层厚度选择对本发明所述的管道获得良好的耐蚀性能、力学性能、成形性能具有至关重要的作用,耐蚀层太厚会影响材料的力学性能以及生产成本;而耐蚀层太薄,则会降低材料的耐蚀性和使用寿命。为此,在本发明中,优选地控制耐蚀层厚度占管道总厚度的0.5%-20%,更优选为2.5-10%。
优选地,所述基层的微观组织为铁素体+珠光体或铁素体+珠光体+贝氏体;所述耐蚀层的微观组织为奥氏体。
优选地,所述管道的屈服强度≥435MPa,抗拉强度≥590MPa,延伸率≥30%、优选≥32%,在臭氧环境下耐蚀层的均匀腐蚀速率≤0.05mm/年。
相应地,本发明的另一目的在于提供一种上述管道的制造方法,该制造方法简便可行,其可以有效制备本发明上述的管道,并能够打破耐蚀层厚度的限制,将耐蚀层的厚度控制在管道总厚度的0.5-20%范围内。
为了实现上述目的,本发明提出了制造上述管道的方法,其包括如下步骤:
(1)制备耐蚀层板坯和基层板坯;
(2)对耐蚀层板坯和基层板坯进行组坯,获得复合板坯;其中,优选单层耐蚀层的厚度占复合板坯总厚度的0.5%-20%、更优选2.5-10%;
(3)加热和轧制:在1100-1200℃的温度下对复合板坯进行加热,然后在基层板坯和耐蚀层板坯的奥氏体再结晶及未再结晶温度范围内进行多道次轧制,总压下率不低于90%,终轧温度不低于900℃;
(4)卷取:水冷后,控制卷取温度为500-650℃,获得热轧卷;
(5)对热轧卷进行表面处理;
(6)制管。
在本发明中,在合理的化学成分设计基础上,发明人通过大量的研究,优化设计了一种新的制造方法,采用该方法可以有效制备本发明上述的耐臭氧腐蚀高强度管道。
在本发明上述制造方法中,可以根据化学成分设计冶炼和铸造制备耐蚀层板坯和基层板坯,而后将二者进行组坯即可获得高耐蚀复合板(耐蚀层板材+基层板材)。将获得的高耐蚀复合板进一步进行加热、轧制、卷取,即可获得具有复合层间结构的热轧卷,对热轧卷进行表面处理后进行制管,即可得到本发明所述的管道。
在本发明中,发明人对步骤(3)的加热和轧制工艺进行了优化设计,以确保高耐蚀复合板的耐蚀层与基层之间通过加热、轧制等过程能够形成一定厚度的过渡层组织,以此实现耐蚀层与基层的完全冶金结合,从而在保证耐臭氧腐蚀性和力学性能的同时,提升材料的适用性与经济性。
在本发明所述制造方法的步骤(2)中,可以对制备的耐蚀层板坯和基层板坯进行预处理,并对板坯贴合面进行四周焊接密封,对焊接密封后的结合面进行抽真空处理,以完成组坯。
相应地,在步骤(5)对热轧卷进行表面处理,可以采用酸洗或机械法除鳞。此外,在步骤(6)的制管工艺中,可以采用常规的螺旋焊管、或直缝焊管方式进行成型、焊接,其焊接方式可选择埋弧焊、熔化极气体保护电弧焊管、钨极惰性气体保护焊、等离子弧焊、焊条电弧焊、高频焊或激光焊。
优选地,在本发明所述的制造方法中,在步骤(3)中,控制终轧温度为920-1000℃。
优选地,在本发明所述的制造方法中,在步骤(2)和步骤(3)之间还包括预加热步骤,其中预加热温度为1150-1250℃。
在本发明所述的制造方法中,根据成品性能要求,还可以在步骤(2)和步骤(3)之间确定是否选择预加热工艺。在预加热工艺中,组坯获得的复合板坯可以在1150-1250℃的温度下加热,以使复合板坯表面的耐蚀层能获得均匀的奥氏体化组织,尽量使原先可能存在的碳化物完全溶解,同时使碳钢中的铌、钛等合金元素的化合物全部或部分溶解;使耐 蚀层与碳钢基层各元素在界面发生扩散,形成稳定的过渡层,之后缓冷至室温。
优选地,在本发明所述的制造方法中,在步骤(5)和步骤(6)之间还包括冷轧和退火。
在本发明所述的制造方法中,若在实际使用过程中,制管前的目标产品为冷轧卷,而不是热轧卷,则在步骤(5)和步骤(6)之间还可以进一步添加有冷轧和退火步骤,其可以通过冷轧至目标厚度,之后进行退火。优选地,退火温度为900-1000℃。
由此可见,在本发明中,发明人通过耐蚀层与基层成分设计、两者配比设计,通过轧制工艺在基层碳钢板表面形成耐臭氧的耐蚀层,最终形成兼具耐臭氧腐蚀、良好的力学性能以及较高的经济性的板带,再加工成管道,用于给水厂站在臭氧腐蚀介质环境下使用的管道设备。
需要说明的是,在本申请设计过程中,其难度包括:
1)耐蚀层、基层成分设计需要满足材料的综合性能。耐蚀层需要针对臭氧腐蚀的特点设计成分,满足使用工况下耐腐蚀的要求。基层碳钢成分设计,除考虑满足力学性能要求外,还要考虑两者结合过渡层碳含量较高时,缺少稳定化元素,界面结合处碳钢一侧会存在明显脱碳层,碳钢基材组织不均匀,加工后容易产生表面缺陷,力学性能也难以满足。
2)耐蚀层与基体金属的比例、材料特性的差异将导致加热工序、轧制工序、热处理工序难以控制。比如加热过程温度不均匀,引起的变形鼓包,导致与基层无法结合。比如,在轧制过程中容易与基体分离、开裂,厚度的均匀性难以保证。
3)对于给水厂站在臭氧腐蚀介质环境下使用的管道、设备,如臭氧发生器间管道、臭氧投加装置、预臭氧接触池及臭氧接触池的出水管道等,如果前期的复合未完成,结合质量不佳,则经过后续酸洗、制管成型、焊接等加工后,成品的耐蚀层的连续性、均匀性无法保证,会对设备及管道的适用性、安全性、耐久性造成巨大隐患。
在本发明中,发明人通过合理的设计,成功地克服了上述难点,并制备获得了本发明所述的耐臭氧腐蚀高强度管道。
相较于现有技术,本发明所述的耐臭氧腐蚀高强度管道及其制造方法具有如下所述的优点以及有益效果:
在本发明中,发明人考虑到根据当前给水厂站的管道设备在臭氧腐蚀介质环境下的使用工况条件,通过对耐蚀层和基层成分设计、两者配比设计,将耐蚀层和基层结合组坯,并施以合适的加热、轧制、卷取工艺,配合制管工艺,即可得到兼具耐臭氧腐蚀、良好的力学性能以及较高的经济性的管道,其屈服强度≥435MPa,抗拉强度≥590MPa,延伸率 ≥30%,在臭氧环境下耐蚀层的均匀腐蚀速率≤0.05mm/年。
在本发明中,其耐蚀层与基层之间通过加热、轧制等过程形成了一定厚度的过渡层组织,实现了耐蚀层与基层的完全冶金结合,以在保证耐臭氧腐蚀性和力学性能的同时,提升材料的适用性与经济性。
采用上述成分设计和工艺控制方法制造的管道,能够解决给水厂站在臭氧腐蚀介质环境下使用的316不锈钢或碳钢的本质痛点;该管道可用于给水厂站在臭氧腐蚀介质环境下使用的管道、设备,如臭氧发生器间管道、臭氧投加装置、预臭氧接触池及臭氧接触池的出水管道,其能够满足这些管道及设备对于耐臭氧腐蚀性能和力学性能的需求,大幅提升这些管道设备的适用性、安全性、耐久性,同时避免对水质造成二次污染,具备极大的经济和社会效益。
相比于目前给水厂站的臭氧发生器间管道、臭氧投加装置、预臭氧接触池及臭氧接触池的出水管道等使用的316不锈钢管道,本发明所述的管道的强度更高,焊接、机械加工更简单,耐腐蚀性能更好,且具有更高的经济性。相比于目前预臭氧接触池和臭氧接触池的阀后出水管道使用的碳钢钢管,本发明所述的管道可以免除管道耐蚀涂装工序,同时又具有碳钢管难以企及的耐蚀性和耐久性,且更加节能、环保、免维护。
附图说明
图1为本发明所述管道在一种实施方式下的层间结构示意图。
图2为本发明所述管道在另一种实施方式下的层间结构示意图。
图3为实施例5的管道的基层与耐蚀层结合界面的微观组织照片。
图4为实施例5的管道的基层微观组织照片。
具体实施方式
下面将结合说明书附图和具体的实施例对本发明所述的管道及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6和比较例1
表1列出了实施例1-6以及比较例1的管道的耐蚀层中各化学元素质量百分比。
表1(wt%,余量为Fe和除P、S以外的其他不可避免的杂质)
编号 C Si Mn Ni Cr Mo N P S Cr+3.3×Mo+16×N
实施例1 0.012 0.50 1.18 12.80 16.80 2.62 0.06 0.030 0.001 26.4
实施例2 0.005 0.40 1.25 11.60 18.00 2.00 0.20 0.028 0.002 27.8
实施例3 0.080 0.75 0.10 14.00 16.00 3.00 0.02 0.045 0.030 26.2
实施例4 0.015 0.45 1.10 10.18 16.70 2.16 0.08 0.032 0.002 25.1
实施例5 0.022 0.52 1.16 12.78 17.20 2.75 0.15 0.031 0.002 28.7
实施例6 0.020 0.45 1.20 12.78 16.20 3.00 0.08 0.030 0.001 27.4
实施例7 0.020 0.45 2.0 12.78 16.20 2.98 0.07 0.030 0.001 27.2
比较例1 0.026 0.38 1.36 10.08 16.20 2.05 0.04 0.031 0.002 23.6
注:在上述表1中,式子Cr+3.3×Mo+16×N中各元素均代入对应元素的质量百分含量。
表2列出了实施例1-6以及比较例1的管道的基层中各化学元素质量百分比。
表2(wt%,余量为Fe和除P、S以外的其他不可避免的杂质)
编号 C Si Mn Al Ti Nb N B Ni Cr Mo P S
实施例1 0.01 0.50 2.00 0.030 0.010 0.018 0.0060 0.0002 0.20 - - 0.015 0.010
实施例2 0.14 0.25 1.00 0.030 0.014 0.011 0.0052 0.0002 - 0.20 - 0.010 0.005
实施例3 0.20 0.15 0.50 0.020 0.005 0.005 0.0040 0.0001 - 0.10 - 0.008 0.004
实施例4 0.11 0.30 1.48 0.026 0.008 0.010 0.0038 - - - - 0.008 0.005
实施例5 0.10 0.35 1.50 0.040 0.018 0.020 0.0045 0.0003 - - 0.10 0.010 0.005
实施例6 0.10 0.40 1.55 0.040 0.015 0.020 0.0045 0.0003 - - 0.10 0.008 0.004
实施例7 0.10 0.40 1.55 0.040 0.015 0.020 0.0045 0.0003 - - 0.10 0.008 0.004
比较例1 0.08 0.20 0.85 0.028 0.009 0.012 0.0035 0.0002 0.10 0.15 - 0.011 0.003
本发明实施例1-6以及比较例1的管道采用以下步骤制得:
(1)根据表1和表2所示的化学成分冶炼和铸造,以分别制备耐蚀层板坯和基层板坯。
(2)对耐蚀层板坯和基层板坯进行组坯,获得复合板坯:控制耐蚀层厚度为复合板坯总厚度的0.5%-20%,对耐蚀层、基层板坯进行预处理,并对板坯贴合面贴合面进行四周焊接密封,对焊接密封后的结合面进行抽真空处理;组坯后根据成品性能要求,确定是否选择预加热工序,若需要进行预加热,则控制预加热温度为1150-1250℃。
(3)加热和轧制:在1100-1200℃的温度下对复合板坯进行加热,然后在基层板坯和耐蚀层板坯的奥氏体再结晶及未再结晶温度范围内进行多道次轧制,控制总压下率不低于90%,终轧温度不低于900℃,优选终轧温度介于920-1000℃之间。
(4)卷取:水冷后,控制卷取温度为500-650℃,获得热轧卷。
(5)采用酸洗或机械法除磷,对热轧卷进行表面处理;若目标产品为冷轧卷,则还进一步进行冷轧和退火工艺,冷轧至目标厚度之后进行退火。
(6)制管:采用螺旋焊管、或直缝焊管方式,进行成型、焊接;焊接方式可选择埋弧焊、熔化极气体保护电弧焊管、钨极惰性气体保护焊、等离子弧焊、焊条电弧焊、高频焊或激光焊多种方式进行制管。
需要说明的是,在本发明中,本发明实施例1-6的管道均采用以上步骤(1)-步骤(6)的工艺流程制得,其化学成分及相关工艺参数均满足本发明设计规范控制要求。
表3列出了实施例1-6以及比较例1的管道在上述制造方法的步骤流程中的具体工艺参数。
表3
Figure PCTCN2023071256-appb-000001
需要注意的是,在按照上述表3所示的工艺参数,实施例1和实施例3在步骤(5)对热轧卷进行表面处理后,还进一步进行了冷轧和退火,由此获得冷轧板;而实施例2、实施例4、实施例5、实施例6和比较例1经步骤(5)获得热轧板。
相应地,根据各实施例和比较例制备的板材,可以进一步在步骤(6)的制管工艺中,制得对应的管道。
将采用上述工艺制得的实施例1-6以及比较例1的管道分别取样,并进一步地对实施例1-6和比较例1的样品管道的微观组织进行观察,观察获得各管道的微观组织后,进一步对实施例1-6和比较例1的样品管道进行力学性能测试和耐臭氧腐蚀性能的测试,所得的测试结果列于下述表4之中。
相关性能测试手段,如下所述:
力学性能测试:按照GB/T 6396-2008复合钢板力学及工艺性能试验方法进行,由此可以得到实施例1-6和比较例1的样品管道的屈服强度、抗拉强度以及延伸率。
耐臭氧腐蚀性能测试:采用“针对使用场景的挂片实验方法”,将试验样品挂片在给 水厂预臭氧接触池出水管道中,3个月后取出观察耐蚀层表面情况,是否出现有腐蚀现象,由此可以得到实施例1-6和比较例1的样品管道的耐臭氧腐蚀性能。
表4列出了实施例1-6和比较例1的管道的微观组织、力学性能和耐臭氧腐蚀性能的测试结果。
表4
Figure PCTCN2023071256-appb-000002
结合上述表4可以看出,在本发明中,实施例1-6的管道的屈服强度在435-516MPa之间,抗拉强度在590-650MPa之间,延伸率在30.0-40.0%之间,并且具有优异的耐臭氧腐蚀性能,在臭氧环境下3个月耐蚀层均未发生腐蚀;而比较例1由于耐蚀层的成分设计并不满足本发明的设计要求,其最终的耐蚀层有轻微腐蚀。
从以上实施例可以看出,本发明通过合适的选材、成分设计、轧制和热处理工艺并配合制管,可以获得具有良好力学性能以及耐臭氧腐蚀性能的管道,其能够解决目前给水厂站在臭氧腐蚀介质环境下使用的316不锈钢或碳钢的本质痛点,满足给水厂站在臭氧腐蚀介质环境下使用的管道设备对管道耐蚀、机械性能方面不断提高的需求,具备极大的经济和社会效益。
图1为本发明所述的管道在一种实施方式下的层间结构示意图。
如图1所示,在该实施方式中,本发明所述的管道可以包括:位于管道内表面和外表面的两个耐蚀层以及位于中间的基层。
图2为本发明所述的管道在另一种实施方式下的层间结构示意图。
如图2所示,在该实施方式中,本发明所述的管道可以包括:位于管道内表面的耐蚀层以及位于管道外表面的基层。
图3为实施例5的管道的基层与耐蚀层结合界面的微观组织照片。
如图3所示,在实施例5中,管道的基层的微观组织为铁素体-珠光体-贝氏体;耐蚀层的微观组织为奥氏体;相应地,耐蚀层与基层各元素在结合界面发生扩散,形成了稳定的 过渡层,其扩散距离在50-100μm之间。
图4为实施例5的管道的基层微观组织照片。
如图4所示,在实施例5中,管道的基层的微观组织为铁素体-珠光体-贝氏体。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (15)

  1. 一种管道,其特征在于,所述管道在厚度方向上具有耐蚀层和基层,所述耐蚀层至少位于管道内壁,所述耐蚀层除了含有Fe和不可避免的杂质之外,还含有质量百分比如下的下述化学元素:
    0<C≤0.08%;
    0<Si≤0.75%;
    0<Mn≤2.0%;
    Ni:10.00-14.00%;
    Cr:16.00-18.00%;
    Mo:2.00-3.00%;
    N:0.02-0.20%;
    并且Cr、Mo和N满足如下不等式:Cr+3.3×Mo+16×N≥25%。
  2. 根据权利要求1所述的管道,其特征在于,所述耐蚀层的各化学元素质量百分比为:
    0<C≤0.08%;
    0<Si≤0.75%;
    0<Mn≤2.0%;
    Ni:10.00-14.00%;
    Cr:16.00-18.00%;
    Mo:2.00-3.00%;
    N:0.02-0.20%;
    余量为Fe和不可避免的杂质;
    并且Cr、Mo和N满足如下不等式:Cr+3.3×Mo+16×N≥25%。
  3. 根据权利要求2所述的管道,其特征在于,所述耐蚀层的各化学元素质量百分含量满足下述各项的至少其中之一:
    C:0.005-0.03%;
    Si:0.3-0.6%;
    Mn:0.5-1.5%;
    Ni:12.00-14.00%;
    Cr:16.50-17.50%;
    Mo:2.50-3.00%;
    N:0.05-0.15%;
    Cr+3.3×Mo+16×N≥26%。
  4. 根据权利要求1或2所述的管道,其特征在于,在所述耐蚀层中,不可避免的杂质包括:S≤0.030%;P≤0.045%。
  5. 根据权利要求1或2所述的管道,其特征在于,单层耐蚀层的厚度占管道总厚度的0.5%-20%,并且所述基层的各化学元素质量百分比为:
    C:0.01-0.20%;
    Si:0.10-0.50%;
    Mn:0.50-2.00%;
    Al:0.02-0.04%;
    Ti:0.005-0.018%;
    Nb:0.005-0.020%;
    N≤0.006%;
    余量为Fe和不可避免杂质。
  6. 根据权利要求5所述的管道,其特征在于,所述基层还包括下述各项的至少其中一项:
    0<B≤0.0003%;
    0<Ni≤0.20%;
    0<Cr≤0.20%;
    0<Mo≤0.10%。
  7. 根据权利要求5所述的管道,其特征在于,所述基层的各化学元素质量百分含量满足下述各项的至少其中一项:
    C:0.01-0.18%;
    Si:0.10-0.30%;
    Mn:0.50-1.50%;
    Al:0.02-0.03%;
    Ti:0.005-0.015%;
    Nb:0.005-0.015%。
  8. 根据权利要求5所述的管道,其特征在于,在所述基层中,不可避免的杂质包括:
    S≤0.010%;P≤0.015%。
  9. 根据权利要求1或2所述的管道,其特征在于,单层耐蚀层的厚度占管道总厚度的0.5%-20%。
  10. 根据权利要求1或2所述的管道,其特征在于,所述基层的微观组织为铁素体+珠光体或铁素体+珠光体+贝氏体;所述耐蚀层的微观组织为奥氏体。
  11. 根据权利要求1或2所述的管道,其特征在于,所述管道的屈服强度≥435MPa,抗拉强度≥590MPa,延伸率≥30%,在臭氧环境下耐蚀层的均匀腐蚀速率≤0.05mm/年。
  12. 制造权利要求1-11中任一项所述管道的方法,其特征在于,所述方法包括如下步骤:
    (1)制备耐蚀层板坯和基层板坯;
    (2)对耐蚀层板坯和基层板坯进行组坯,获得复合板坯;其中,优选单层耐蚀层的厚度占复合板坯总厚度的0.5%-20%、更优选2.5-10%;
    (3)加热和轧制:在1100-1200℃的温度下对复合板坯进行加热,然后进行多道次轧制,总压下率不低于90%,终轧温度不低于900℃;
    (4)卷取:水冷后,控制卷取温度为500-650℃,获得热轧卷;
    (5)对热轧卷进行表面处理;
    (6)制管。
  13. 根据权利要求12所述的方法,其特征在于,在步骤(3)中,终轧温度为920-1000℃。
  14. 根据权利要求12所述的方法,其特征在于,在步骤(2)和步骤(3)之间还包括预加热步骤,其中预加热温度为1150-1250℃。
  15. 根据权利要求12所述的方法,其特征在于,在步骤(5)和步骤(6)之间还包括冷轧和退火,优选地,退火温度为900-1000℃。
PCT/CN2023/071256 2022-01-13 2023-01-09 一种耐臭氧腐蚀高强度管道及其制造方法 WO2023134616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210038703.8A CN116479319A (zh) 2022-01-13 2022-01-13 一种耐臭氧腐蚀高强度管道及其制造方法
CN202210038703.8 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023134616A1 true WO2023134616A1 (zh) 2023-07-20

Family

ID=87216447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071256 WO2023134616A1 (zh) 2022-01-13 2023-01-09 一种耐臭氧腐蚀高强度管道及其制造方法

Country Status (2)

Country Link
CN (1) CN116479319A (zh)
WO (1) WO2023134616A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
CN109306436A (zh) * 2017-07-28 2019-02-05 宝山钢铁股份有限公司 一种具有耐腐蚀性的抗酸管线用复合钢板及其制造方法
US20190219218A1 (en) * 2016-06-30 2019-07-18 Jfe Steel Corporation Electric-resistance-welded stainless clad steel pipe or tube and method of producing same
CN112359295A (zh) * 2020-10-26 2021-02-12 安徽天康特种钢管有限公司 一种防腐蚀船用不锈钢管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190219218A1 (en) * 2016-06-30 2019-07-18 Jfe Steel Corporation Electric-resistance-welded stainless clad steel pipe or tube and method of producing same
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
CN109306436A (zh) * 2017-07-28 2019-02-05 宝山钢铁股份有限公司 一种具有耐腐蚀性的抗酸管线用复合钢板及其制造方法
CN112359295A (zh) * 2020-10-26 2021-02-12 安徽天康特种钢管有限公司 一种防腐蚀船用不锈钢管

Also Published As

Publication number Publication date
CN116479319A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US7776161B2 (en) Cold-rolled steel sheet excellent in workability
WO2018099326A1 (zh) 一种超级奥氏体不锈钢轧制复合钢板及其制造方法
WO2021143661A1 (zh) 一种高耐蚀带钢及其制造方法
CN113272452A (zh) 高压氢气环境用钢材和高压氢气环境用钢结构物及高压氢气环境用钢材的制造方法
CN108034885A (zh) 一种低温条件下使用的低裂纹敏感性管件用钢板及其制造方法
JPWO2013018722A1 (ja) 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法
CN109161790A (zh) 一种酸性条件下使用的高级别高韧性管件钢板及其制造方法
JP2016510361A (ja) 780MPa級冷間圧延二相帯鋼及びその製造方法
CN105624585B (zh) 一种浮式lng管线用x80q热轧厚板及其生产方法
CN112410668B (zh) 一种780MPa级汽车结构用钢及生产方法
TWI470094B (zh) 冷軋鋼板用熱軋鋼板、熔融鍍鋅鋼板用熱軋鋼板及其製造方法
CN110863135A (zh) 一种低温容器用高镍钢及其制造方法
JP3546726B2 (ja) 耐hic性に優れた高強度厚鋼板の製造方法
JP6892842B2 (ja) 高強度冷延鋼板用の素材熱延鋼板およびその製造方法
WO2023134616A1 (zh) 一种耐臭氧腐蚀高强度管道及其制造方法
CN109022708A (zh) 一种超低温条件下使用的低碳易焊接正火抗酸管线钢板
CN116162864A (zh) 具有-70℃低温冲击09MnNiDR钢板及其制造方法
WO2023138595A1 (zh) 一种耐氢氧化钠腐蚀的高强度管道及其制造方法
CN114737130A (zh) 一种355MPa级低温钢及制造方法
WO2023143290A1 (zh) 一种耐硫酸铝腐蚀的高强度管道及其制造方法
KR20240109264A (ko) 오존 부식 방지 고강도 튜브 및 그 제조방법
JPS6220822A (ja) 溶接性と低温じん性の優れた非調質高張力鋼板の製造方法
CN114959440B (zh) 一种热辊弯成形部件及其热辊弯成形方法
CN116162855B (zh) 一种600MPa级厚规格含磷热轧耐候钢板及其制造方法
WO2023093798A1 (zh) 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739958

Country of ref document: EP

Kind code of ref document: A1