WO2023134555A1 - 一种无线传输的静电场检测装置及无线供电系统 - Google Patents

一种无线传输的静电场检测装置及无线供电系统 Download PDF

Info

Publication number
WO2023134555A1
WO2023134555A1 PCT/CN2023/070843 CN2023070843W WO2023134555A1 WO 2023134555 A1 WO2023134555 A1 WO 2023134555A1 CN 2023070843 W CN2023070843 W CN 2023070843W WO 2023134555 A1 WO2023134555 A1 WO 2023134555A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic field
signal
field detection
electrostatic
vibration unit
Prior art date
Application number
PCT/CN2023/070843
Other languages
English (en)
French (fr)
Inventor
陆文通
乔畅君
刘波文
张华平
钟权宝
宋锡祥
王海飞
郑琦
韩玲玲
顾大元
Original Assignee
深圳市中明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中明科技股份有限公司 filed Critical 深圳市中明科技股份有限公司
Publication of WO2023134555A1 publication Critical patent/WO2023134555A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the invention relates to the field of detection technology, in particular to a wireless transmission electrostatic field detection device and a wireless power supply system.
  • embodiments of the present invention provide a wireless transmission electrostatic field detection device and a wireless power supply system.
  • the first aspect of the embodiment of the present invention provides a wireless transmission electrostatic field detection device, including: an electrostatic field detection sensor, a signal processing module, a wireless data transmitter and a wireless power supply module;
  • the electrostatic field detection sensor includes a shielding shell and an electrostatic field detection window is arranged on the shielding shell.
  • an electrostatic alternating current signal is obtained, and outputting the electrostatic alternating current signal to the signal processing module;
  • the signal processing module is used to convert the electrostatic alternating current signal into a digital electrical signal, and after detecting the digital electrical signal, obtain the numerical value of the electrostatic field strength and transmit the numerical value of the electrostatic field strength to the wireless data transmitter;
  • the wireless data transmitter is used to send the numerical value of the electrostatic field strength through wireless transmission
  • the wireless power supply module is used for supplying the operation of the electrostatic field detection sensor in a wireless power supply mode.
  • the electrostatic field detection sensor also includes an electrostatic field electric signal receiving probe, a first vibration unit, a second vibration unit and a driving unit, wherein the first vibration unit and the second vibration unit are respectively connected to The vibration unit is connected;
  • the shielding shell has an electrostatic field detection window and an electrostatic field electric signal receiving probe is arranged inside, and the electrostatic field electric signal receiving probe is used to receive the electrostatic field electric signal;
  • the electrostatic field electrical signal receiving probe is fixed in a cantilever arm and connected to an electrical signal transmission line; the cantilever arm is fixed between the first vibration unit and the second vibration unit;
  • the drive unit is used to generate a vibration frequency signal according to the first vibration unit and the second vibration unit, and the vibration frequency signal is used to drive the resonant mechanical mechanism to vibrate at the same frequency and in the same direction, so that the cantilever arm vibrates vertically; the cantilever The vibration of the arm drives the electrostatic field electric signal receiving probe to vibrate vertically, so that the electrostatic direct current signal received by the electrostatic field electric signal receiving probe located at the electrostatic field detection window in the electrostatic field detection window is transformed into an electrostatic alternating current signal.
  • the first vibration unit includes at least a positive electrode layer, an insulating layer and a negative electrode layer, and the positive electrode layer, the insulating layer and the negative electrode layer are arranged in sequence;
  • the second vibration unit at least includes a positive electrode layer, an insulating layer and a negative electrode layer, and the positive electrode layer, the insulating layer and the negative electrode layer are arranged in sequence.
  • the positive electrode layer of the first vibration unit is connected to the positive electrode layer of the second vibration unit, and the positive electrode layer of the second vibration unit is connected to a reverse voltage signal with an absolute value equivalent, and the positive electrode layer of the first vibration unit The negative electrode layer is in contact with the negative electrode layer of the second vibration unit.
  • the first vibration unit and the second vibration unit are respectively fixed on insulating supports.
  • the signal processing module includes a transformer, an effective value chip and a processor
  • the transformer is used to receive high-voltage electrical signals output by the first vibration unit and the second vibration unit, and perform step-down processing on the high-voltage electrical signals to obtain a step-down electrical signal;
  • the effective value chip is used to convert the step-down electrical signal into a digital control signal, and send the digital control signal to the processor.
  • the signal processing module also includes an amplifier and a low-pass filter
  • the amplifier is used to amplify the received electrostatic AC signal to obtain the amplified AC signal
  • the low-pass filter is used to filter the amplified AC signal to obtain a filtered AC signal, and send the filtered AC signal to a processor.
  • the processor includes an analog-to-digital converter, a digital filter and a detector;
  • the analog-to-digital converter is used to convert the filtered alternating current signal into a digital electric signal
  • the digital filter is used to filter the digital electrical signal to obtain a filtered digital signal
  • the detector is used to perform a detection operation on the digital control signal and the filtered digital signal, and determine the value of the electrostatic field strength according to the filtered digital signal when it is judged that the digital control signal and the filtered digital signal are of the same frequency , and transmit the numerical value of the electrostatic field strength to the wireless data transmitter.
  • the second aspect of the embodiment of the present invention provides a wireless power supply system, including: a wireless power supply module and a wireless transmission device, wherein the wireless power supply module is connected to the wireless transmission device, and the wireless power supply module is located in the In the electrostatic field detection device of the wireless transmission.
  • the wireless sending device supplies power to the wireless power supply module in an electromagnetic wave induction wireless manner.
  • the electrostatic field detection device for wireless transmission and the wireless power supply system include an electrostatic field detection sensor, a signal processing module, a wireless data transmitter and a wireless power supply module;
  • the body is provided with an electrostatic field detection window.
  • the electrostatic field detection window faces the electrostatic field detection source for electrostatic detection, the electrostatic alternating current signal is obtained, and the electrostatic alternating current signal is output to the signal processing module; the signal processing module is used to convert the electrostatic alternating current
  • the electrical signal is converted into a digital electrical signal, and after the digital electrical signal is detected, the electrostatic field strength value is obtained and the electrostatic field strength value is transmitted to the wireless data transmitter; the wireless data transmitter is used to send the electrostatic field intensity value through wireless transmission.
  • the wireless power supply module is used to supply the operation of the electrostatic field detection sensor in a wireless power supply mode.
  • the wireless transmission electrostatic field detection device can be moved to any position at will, and the flexibility is stronger.
  • FIG. 1 is a schematic structural diagram of an electrostatic field detection device for wireless transmission provided in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the detection process of the electrostatic field detection device for wireless transmission provided in the embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of a wireless power supply system provided in an embodiment of the present invention.
  • FIG. 1 is a structural block diagram of an electrostatic field detection device for wireless transmission provided in an embodiment of the present invention, which at least includes in an embodiment of the present invention: an electrostatic field detection sensor 101, a signal processing module 102, a wireless data transmitter 103 and Wireless power supply module 104;
  • the electrostatic field detection sensor 101 includes a shielding shell and is provided with an electrostatic field detection window on the shielding shell.
  • the electrostatic field detection window faces the electrostatic field detection source for electrostatic detection, the electrostatic alternating current signal is obtained, and the electrostatic alternating current signal output to the signal processing module;
  • the signal processing module 102 is used to convert the electrostatic alternating current signal into a digital electrical signal, and after detecting the digital electrical signal, obtain the numerical value of the electrostatic field strength and transmit the numerical value of the electrostatic field strength to the wireless data transmitter;
  • Wireless data transmitter 103 is used for sending electrostatic field strength numerical value by wireless transmission mode
  • the wireless power supply module 104 is used for supplying the operation of the electrostatic field detection sensor in a wireless power supply mode.
  • the wireless transmission mode includes bluetooth, wifi and other transmission modes.
  • the electrostatic field detection sensor also includes an electrostatic field electric signal receiving probe, a first vibration unit, a second vibration unit and a drive unit, wherein the first vibration unit and the second vibration unit are respectively connected to the vibration unit;
  • the electrostatic field electric signal receiving probe is a metal probe.
  • the shielding shell has an electrostatic field detection window and an electrostatic field electric signal receiving probe is arranged in the electrostatic field electric signal receiving probe for receiving the electrostatic field electric signal;
  • the electrostatic field electrical signal receiving probe is fixed in a cantilever arm and connected to an electrical signal transmission line; the cantilever arm is fixed between the first vibration unit and the second vibration unit;
  • the drive unit is used to generate a vibration frequency signal according to the first vibration unit and the second vibration unit, and the vibration frequency signal is used to drive the resonant mechanical mechanism to vibrate at the same frequency and in the same direction, so that the cantilever arm vibrates vertically; the vibration of the cantilever arm drives the electric signal of the electrostatic field
  • the receiving probe vibrates vertically, so that the electrostatic direct current signal received by the electrostatic field electric signal receiving probe at the electrostatic field detection window in the electrostatic field detection window is transformed into an electrostatic alternating current signal.
  • the first vibration unit includes at least a positive electrode layer, an insulating layer and a negative electrode layer, wherein piezoelectric ceramics are embedded in the insulating layer, and the positive electrode layer, the insulating layer and the negative electrode layer are arranged in sequence;
  • the second vibration unit at least includes a positive electrode layer, an insulating layer and a negative electrode layer, wherein piezoelectric ceramics are embedded in the insulating layer, and the positive electrode layer, the insulating layer and the negative electrode layer are arranged in sequence.
  • the positive electrode layer of the first vibration unit is connected to the positive electrode layer of the second vibration unit, and the positive electrode layer of the second vibration unit is connected to a reverse voltage signal with an absolute value equivalent, and the positive electrode layer of the first vibration unit The negative electrode layer is in contact with the negative electrode layer of the second vibration unit.
  • the first vibration unit and the second vibration unit are respectively fixed on the insulating support.
  • the signal processing module includes a transformer, an effective value chip and a processor
  • the transformer is used to receive the high-voltage electrical signal output by the first vibration unit and the second vibration unit, and perform step-down processing on the high-voltage electrical signal to obtain a step-down electrical signal; wherein, the transformer is a transformer;
  • the RMS chip is used to convert the step-down electrical signal into a digital control signal, and send the digital control signal to the processor.
  • the signal processing module also includes an amplifier and a low-pass filter
  • the amplifier is used to amplify the received electrostatic AC signal to obtain the amplified AC signal
  • the low-pass filter is used to filter the amplified AC signal to obtain a filtered AC signal, and send the filtered AC signal to the processor.
  • the electrostatic alternating electric signal passes through the amplifier to increase the electrostatic field electric signal obtained by the metal electrostatic field electric signal receiving probe and then outputs it to the low-pass filter, and the low-pass filter filters the increased electrostatic field electric signal and transmits it
  • the analog electrical signal is converted into a digital electrical signal (filtered AC signal).
  • the processor includes an analog-to-digital converter, a digital filter and a detector;
  • the analog/digital converter is used to convert the filtered alternating current signal into a digital electric signal
  • the digital filter is used to filter digital electrical signals to obtain filtered digital signals
  • the detector is used to perform detection operations on the digital control signal and the filtered digital signal.
  • the electrostatic field strength value is determined according to the filtered digital signal, and the electrostatic field strength value is transmitted to the wireless data transmission device.
  • the digital electrical signal is output to the digital filter built in the processor for digital filtering, and the effective value chip obtains the digital electrical signal after the step-down for detection operation, and after detecting whether the two signals are of the same frequency, the digital electrical signal passed through the digital filter is The digital signal is calculated to obtain the value of the electrostatic field strength and sent to the data transmitter.
  • Fig. 2 is the detection flow schematic diagram of the electrostatic field detection device of the wireless transmission that provides in the embodiment of the present invention, as shown in Fig. 2:
  • the vibration drive circuit (drive unit) outputs a specified frequency pulse signal or voltage
  • the drive unit drives the first vibration unit and the second vibration unit to generate a specified longitudinal vibration frequency
  • the first vibration unit and the second vibration unit drive the numerical value electrostatic field charge collection probe (electrostatic field electric signal receiving probe) positioned at the electrostatic field detection window to vibrate vertically;
  • the electrostatic field electric signal receiving probe has a regular distance change between the vertical vibration and the detection surface, so that the received electrostatic direct current signal is converted into an electrostatic alternating current signal;
  • the digital signal processed by the analog-to-digital change passes through the digital filter in the processor;
  • the digital signal output by the digital filter is transmitted to the data sending module (wireless data transmitter) after detection operation;
  • Terminal devices can be PCs, mobile terminals, etc.
  • Fig. 3 is a schematic structural diagram of a wireless power supply system provided in an embodiment of the present invention. As shown in Fig. 3, an embodiment of the present invention also provides a wireless power supply system, including: a wireless power supply device and a wireless receiving device, wherein the wireless power supply device It is connected with the wireless receiving device, and the wireless receiving device is located in the above-mentioned electrostatic field detection device for wireless transmission.
  • a wireless power supply system including: a wireless power supply device and a wireless receiving device, wherein the wireless power supply device It is connected with the wireless receiving device, and the wireless receiving device is located in the above-mentioned electrostatic field detection device for wireless transmission.
  • the electrostatic field detection device includes an electrostatic field detection sensor, a signal processing module and a wireless data transmitter; the electrostatic field detection sensor also includes an electrostatic field electric signal receiving probe, a first vibration unit, a second vibration unit and a driving unit; the signal processing module Including transformers, effective value chips, amplifiers, low-pass filters and processors; processors include analog-to-digital converters, digital filters and detectors; specific functions have been described in detail in the above-mentioned embodiments, and will not be repeated here repeat.
  • the wireless power supply device supplies power to the wireless receiving device in an electromagnetic wave inductive wireless manner.
  • the wireless power supply device and the electrostatic field detection device, and the electrostatic field detection device and the monitoring terminal are all connected wirelessly, compared with the wired connection, there is no wiring restriction, and the electrostatic field online monitoring device can be moved to any desired position at will. Easy to move and more flexible.
  • the electrostatic field detection device for wireless transmission and the wireless power supply system include an electrostatic field detection sensor, a signal processing module, a wireless data transmitter and a wireless power supply module;
  • the body is provided with an electrostatic field detection window.
  • the electrostatic field detection window faces the electrostatic field detection source for electrostatic detection, the electrostatic alternating current signal is obtained, and the electrostatic alternating current signal is output to the signal processing module; the signal processing module is used to convert the electrostatic alternating current
  • the electrical signal is converted into a digital electrical signal, and after the digital electrical signal is detected, the electrostatic field strength value is obtained and the electrostatic field strength value is transmitted to the wireless data transmitter; the wireless data transmitter is used to send the electrostatic field intensity value through wireless transmission.
  • the wireless power supply module is used to supply the operation of the electrostatic field detection sensor in a wireless power supply mode.
  • the wireless transmission electrostatic field detection device can be moved to any position at will, and the flexibility is stronger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种无线传输的静电场检测装置以及无线供电系统,包括静电场检测传感器(101)、信号处理模块(102)、无线数据发送器(103)和无线供电模块(104);静电场检测传感器(101)的静电场检测窗口对着静电场检测源进行静电检测,得到静电交流电信号,并将静电交流电信号输出到信号处理模块(102);信号处理模块(102)获得静电场强度数值并将静电场强度数值传送至无线数据发送器(103);无线数据发送器(103)用于通过无线传输方式发送静电场强度数值,无线供电模块(104)用于无线供电方式供给静电场检测传感器运作,根据环境的现场布局要求,由于无线供电装置与无线传输的静电检测装置之间无线连接,与有线相比,没有供电电源线的限制,无线传输的静电场检测装置可随意移至任何位置,灵活性更强。

Description

一种无线传输的静电场检测装置及无线供电系统 技术领域
本发明涉及检测技术领域,尤其涉及一种无线传输的静电场检测装置及无线供电系统。
背景技术
随着半导体芯片制造工艺的不断发展以及人们对智能设备需求的提高,高集成度半导体芯片的需求也在日益增长。半导体芯片的生产车间,从晶圆的加工开始到半导体芯片成品的制造过程中,对无尘洁净要求等级远远超过了医疗手术室。然而这种洁净度的要求不仅是对空气杂质密度大小,也对微量的静电场大小也有极高的要求。由于微量的静电场的存在不仅会让灰尘被带入半导体芯片制造的现场中,并且微量的静电放电现象会引起半导体芯片中的集成电路的损坏,大大降低了成品率。
目前,半导体芯片生产厂家大多使用静电场测量器对半导体生产设备进行实时检测;但是,传统的有线传输式静电场测量仪器,普遍存在布线和维护成本高,导致工厂的建造及搬迁成本高,及扩展性差等问题。
发明内容
针对上述技术问题,本发明实施例提供了一种无线传输的静电场检测装置及无线供电系统。
本发明实施例第一方面提供一种无线传输的静电场检测装置,包括:静电场检测传感器、信号处理模块、无线数据发送器和无线供电模块;
所述静电场检测传感器包括一屏蔽壳体且在所述屏蔽壳体上设置有静电场检测窗口,当所述静电场检测窗口对着静电场检测源进行静电检测,得到静电交流电信号,并将所述静电交流电信号输出到所述信号处理模块;
所述信号处理模块用于将静电交流电信号转换成数字电信号,并对所述数字电信号进行检波后,获得静电场强度数值并将所述静电场强度数值传送至无线数据发送器;
所述无线数据发送器用于通过无线传输方式发送所述静电场强度数值;
所述无线供电模块用于无线供电方式供给所述静电场检测传感器运作。
可选地,所述静电场检测传感器还包括静电场电信号接收探针、第一振动单元、第二振动单元和驱动单元,其中,所述第一振动单元和所述第二振动单元分别与振动单元相连;
所述屏蔽壳体且带有静电场检测窗口内设有一静电场电信号接收探针,所述静电场电信号接收探针用于接收静电场电信号;
所述的静电场电信号接收探针固定在一悬梁臂内且连接一电信号传输线;所述悬梁臂固定在第一振动单元和第二振动单元之间;
所述驱动单元用于根据所述第一振动单元和第二振动单元生成振动频率信号,所述振动频率信号用于驱动谐振机械机构同频同向振动,以使得悬梁臂垂直振动;所述悬梁臂的振动带动静电场电信号接收探针垂直振动,使得位于静电场检测窗口的静电场电信号接收探针在静电场检测窗口所接收到的静电直流电信号,转变为静电交变电信号。
可选地,所述第一振动单元至少包括正电极层、绝缘层和负电极层,且正电极层、绝缘层和负电极层依次排列;
所述第二振动单元至少包括正电极层、绝缘层和负电极层,且正电极层、绝缘层和负电极层依次排列。
可选地,第一振动单元的正电极层与第二振动单元的正电极层相连,所述第二振动单元的正电极层接入绝对值等值的反向电压信号,第一振动单元的负电极层与第二振动单元的负电极层相接。
可选地,所述第一振动单元和第二振动单元分别固定在绝缘支架上。
可选地,所述信号处理模块包括互感器、有效值芯片和处理器;
所述互感器用于接收第一振动单元和第二振动单元输出的高压电信号,并对所述高压电信号进行降压处理,得到降压电信号;
所述有效值芯片用于将降压电信号转换成数字控制信号,并将所述数字控制信号发送至处理器中。
可选地,所述信号处理模块还包括放大器和低通滤波器;
所述放大器用于对接收到的静电交流电信号进行放大,得到放大后的交流电信号;
所述低通滤波器用于对所述放大后的交流电信号进行滤波,得到滤波交流电信号,并将所述滤波交流电信号发送至处理器。
可选地,所述处理器包括模/数变换器、数字滤波器和检波器;
所述模/数变换器用于将滤波交流电信号转变成数字电信号;
所述数字滤波器用于对所述数字电信号进行过滤,得到过滤数字信号;
所述检波器用于对所述数字控制信号和所述过滤数字信号进行检波运算,当判断所述数字控制信号和所述过滤数字信号为同频时,根据所述过滤数字信号确定静电场强度数值,并将所述静电场强度数值传送至所述无线数据发送器。
本发明实施例第二方面提供一种无线供电系统,包括:无线供电模块和无线发送设备,其中,所述无线供电模块与所述无线发送设备相连,所述无线供电模块位于第一方面所述的无线传输的静电场检测装置内。
可选地,所述无线发送设备通过电磁波感应式的无线方式为所述无线供电模块供电。
本发明实施例提供的无线传输的静电场检测装置以及无线供电系统,包括静电场检测传感器、信号处理模块、无线数据发送器和无线供电模块;静电场检测传感器包括一屏蔽壳体且在屏蔽壳体上设置有静电场检测窗口,当静电场检测窗口对着静电场检测源进行静电检测,得到静电交流电信号,并将静电交流电信号输出到信号处理模块;信号处理模块用于将静电交流电信号转换成数字电信号,并对数字电信号进行检波后,获得静电场强度数值并 将静电场强度数值传送至无线数据发送器;无线数据发送器用于通过无线传输方式发送静电场强度数值,无线供电模块用于无线供电方式供给所述静电场检测传感器运作,通过本发明实施例可以根据环境的现场布局要求,由于无线供电装置与无线传输的静电检测装置之间无线连接,与有线相比,没有供电电源线的限制,无线传输的静电场检测装置可随意移至任何位置,灵活性更强。
附图说明
图1为本发明实施例中提供的无线传输的静电场检测装置的结构示意图;
图2为本发明实施例中提供的无线传输的静电场检测装置的检测流程示意图;
图3为本发明实施例中提供的无线供电系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本发明实施例中提供的无线传输的静电场检测装置的结构框图,本发明实施例中至少包括:包括静电场检测传感器101、信号处理模块102、无线数据发送器103和无线供电模块104;
静电场检测传感器101包括一屏蔽壳体且在屏蔽壳体上设置有静电场检测窗口,当静电场检测窗口对着静电场检测源进行静电检测,得到静电交流电信号,并将静电交流电信号输出到信号处理模块;
信号处理模块102用于将静电交流电信号转换成数字电信号,并对数字电信号进行检波后,获得静电场强度数值并将静电场强度数值传送至无线数据发送器;
无线数据发送器103用于通过无线传输方式发送静电场强度数值;
无线供电模块104用于无线供电方式供给所述静电场检测传感器运作。
其中,无线传输方式包括蓝牙、wifi等传输方式。
可选地,静电场检测传感器还包括静电场电信号接收探针、第一振动单元、第二振动单元和驱动单元,其中,第一振动单元和第二振动单元分别与振动单元相连;
其中,静电场电信号接收探针为金属探针。
屏蔽壳体且带有静电场检测窗口内设有一静电场电信号接收探针,静电场电信号接收探针用于接收静电场电信号;
的静电场电信号接收探针固定在一悬梁臂内且连接一电信号传输线;悬梁臂固定在第一振动单元和第二振动单元之间;
驱动单元用于根据第一振动单元和第二振动单元生成振动频率信号,振动频率信号用于驱动谐振机械机构同频同向振动,以使得悬梁臂垂直振动;悬梁臂的振动带动静电场电信号接收探针垂直振动,使得位于静电场检测窗口的静电场电信号接收探针在静电场检测窗口所接收到的静电直流电信号,转变为静电交变电信号。
可选地,第一振动单元至少包括正电极层、绝缘层和负电极层,其中压电陶瓷镶嵌在绝缘层中,且正电极层、绝缘层和负电极层依次排列;
第二振动单元至少包括正电极层、绝缘层和负电极层,其中压电陶瓷镶嵌在绝缘层中,且正电极层、绝缘层和负电极层依次排列。
可选地,第一振动单元的正电极层与第二振动单元的正电极层相连,所述第二振动单元的正电极层接入绝对值等值的反向电压信号,第一振动单元的负电极层与第二振动单元的负电极层相接。
可选地,第一振动单元和第二振动单元分别固定在绝缘支架上。
可选地,信号处理模块包括互感器、有效值芯片和处理器;
互感器用于接收第一振动单元和第二振动单元输出的高压电信号,并对高压电信号进行降压处理,得到降压电信号;其中,互感器为变压器;
有效值芯片用于将降压电信号转换成数字控制信号,并将数字控制信号发送至处理器中。
可选地,信号处理模块还包括放大器和低通滤波器;
放大器用于对接收到的静电交流电信号进行放大,得到放大后的交流电信号;
低通滤波器用于对放大后的交流电信号进行滤波,得到滤波交流电信号,并将滤波交流电信号发送至处理器。
静电交变电信号经过放大器,增大金属质静电场电信号接收探针所获得的静电场电信号后输出给低通滤波器,由低通滤波器过滤增大过后的静电场电信号并传输给控制器中的模/数变换器,将模拟电信号转变成数字电信号(滤波交流电信号)。
可选地,处理器包括模/数变换器、数字滤波器和检波器;
模/数变换器用于将滤波交流电信号转变成数字电信号;
数字滤波器用于对数字电信号进行过滤,得到过滤数字信号;
检波器用于对数字控制信号和过滤数字信号进行检波运算,当判断数字控制信号和过滤数字信号为同频时,根据过滤数字信号确定静电场强度数值,并将静电场强度数值传送至无线数据发送器。
数字电信号输出到处理器内设的数字滤波器进行数字滤波后与有效值芯片获得降压后的数字电信号进行检波运算,检测两个信号是否同频后,将所述经过数字滤波器的数字信号进行计算获得静电场强度数值并传送至数据发送器。
图2为本发明实施例中提供的无线传输的静电场检测装置的检测流程示 意图,如图2所示:
振动驱动电路(驱动单元)输出指定的频率脉冲信号或电压;
驱动单元驱动第一振动单元和第二振动单元发生指定的纵向振动频率;
第一振动单元和第二振动单元带动位于静电场检测窗口的经数值静电场电荷采集探针(静电场电信号接收探针)垂直振动;
静电场电信号接收探针因垂直振动与检测面存在规律的距离变化,使得接收到的静电直流电信号,转变成静电交流电信号;
静电交流信号经放大、低通滤波过滤信号上存在的噪点后,传输到处理器进行模数变换;
模数变化处理后的数字信号在经过处理器中的数字滤波器;
由数字滤波器输出的数字信号经过检波运算后传输至数据发送模块(无线数据发送器);
数据发送模块接收到数据后,然后发送至终端设备,由终端设备对数据进行电场强度计算、记录、存储和显示。终端设备可为PC、移动端等。
图3为本发明实施例中提供的无线供电系统的结构示意图,如图3所示,本发明实施例还提供一种无线供电系统,包括:无线供电设备和无线接收设备,其中,无线供电设备与无线接收设备相连,无线接收设备位于上述的无线传输的静电场检测装置内。
静电场检测装置包括静电场检测传感器、信号处理模块和无线数据发送器;静电场检测传感器还包括静电场电信号接收探针、第一振动单元、第二振动单元和驱动单元;该信号处理模块包括互感器、有效值芯片、放大器、低通滤波器和处理器;处理器包括模/数变换器、数字滤波器和检波器;具体功能在上述实施例中已做具体介绍,在此不再赘述。
可选地,无线供电设备通过电磁波感应式的无线方式为无线接收设备供 电。
由于无线供电装置与静电场检测装置、静电场检测装置与监控端之间均为无线连接,与有线连接相比,没有布线的限制,静电场在线监测装置可随意移动至任何所需的位置,移动方便,灵活性更强。
本发明实施例提供的无线传输的静电场检测装置以及无线供电系统,包括静电场检测传感器、信号处理模块、无线数据发送器和无线供电模块;静电场检测传感器包括一屏蔽壳体且在屏蔽壳体上设置有静电场检测窗口,当静电场检测窗口对着静电场检测源进行静电检测,得到静电交流电信号,并将静电交流电信号输出到信号处理模块;信号处理模块用于将静电交流电信号转换成数字电信号,并对数字电信号进行检波后,获得静电场强度数值并将静电场强度数值传送至无线数据发送器;无线数据发送器用于通过无线传输方式发送静电场强度数值,无线供电模块用于无线供电方式供给所述静电场检测传感器运作,通过本发明实施例可以根据环境的现场布局要求,由于无线供电装置与无线传输的静电检测装置之间无线连接,与有线相比,没有供电电源线的限制,无线传输的静电场检测装置可随意移至任何位置,灵活性更强。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种无线传输的静电场检测装置,其特征在于,包括静电场检测传感器、信号处理模块、无线数据发送器和无线供电模块;
    所述静电场检测传感器包括一屏蔽壳体且在所述屏蔽壳体上设置有静电场检测窗口,当所述静电场检测窗口对着静电场检测源进行静电检测,得到静电交流电信号,并将所述静电交流电信号输出到所述信号处理模块;
    所述信号处理模块用于将静电交流电信号转换成数字电信号,并对所述数字电信号进行检波后,获得静电场强度数值并将所述静电场强度数值传送至无线数据发送器;
    所述无线数据发送器用于通过无线传输方式发送所述静电场强度数值;
    所述无线供电模块用于无线供电方式供给所述静电场检测传感器运作。
  2. 根据权利要求1所述的静电场检测装置,其特征在于:所述静电场检测传感器还包括静电场电信号接收探针、第一振动单元、第二振动单元和驱动单元,其中,所述第一振动单元和所述第二振动单元分别与振动单元相连;
    所述屏蔽壳体且带有静电场检测窗口内设有一静电场电信号接收探针,所述静电场电信号接收探针用于接收静电场电信号;
    所述的静电场电信号接收探针固定在一悬梁臂内且连接一电信号传输线;所述悬梁臂固定在第一振动单元和第二振动单元之间;
    所述驱动单元用于根据所述第一振动单元和第二振动单元生成振动频率信号,所述振动频率信号用于驱动谐振机械机构同频同向振动,以使得悬梁臂垂直振动;所述悬梁臂的振动带动静电场电信号接收探针垂直振动,使得位于静电场检测窗口的静电场电信号接收探针在静电场检测窗口所接收到的静电直流电信号,转变为静电交变电信号。
  3. 根据权利要求2所述的静电场检测装置,其特征在于:所述第一振动单元至少包括正电极层、绝缘层和负电极层,且正电极层、绝缘层和负电极层依次排列;
    所述第二振动单元至少包括正电极层、绝缘层和负电极层,且正电极层、绝缘层和负电极层依次排列。
  4. 根据权利要求3所述的静电场检测装置,其特征在于:第一振动单元的正电极层与第二振动单元的正电极层相连,所述第二振动单元的正电极层接入绝对值等值的反向电压信号,第一振动单元的负电极层与第二振动单元的负电极层相接。
  5. 根据权利要求4所述的静电场检测装置,其特征在于:所述第一振动单元和第二振动单元分别固定在绝缘支架上。
  6. 根据权利要求1所述的静电场检测装置,其特征在于:所述信号处理模块包括互感器、有效值芯片和处理器;
    所述互感器用于接收第一振动单元和第二振动单元输出的高压电信号,并对所述高压电信号进行降压处理,得到降压电信号;
    所述有效值芯片用于将降压电信号转换成数字控制信号,并将所述数字控制信号发送至处理器中。
  7. 根据权利要求6所述的静电场检测装置,其特征在于:所述信号处理模块还包括放大器和低通滤波器;
    所述放大器用于对接收到的静电交流电信号进行放大,得到放大后的交流电信号;
    所述低通滤波器用于对所述放大后的交流电信号进行滤波,得到滤波交流电信号,并将所述滤波交流电信号发送至处理器。
  8. 根据权利要求7所述的静电场检测装置,其特征在于:所述处理器包括模/数变换器、数字滤波器和检波器;
    所述模/数变换器用于将滤波交流电信号转变成数字电信号;
    所述数字滤波器用于对所述数字电信号进行过滤,得到过滤数字信号;
    所述检波器用于对所述数字控制信号和所述过滤数字信号进行检波运算,当判断所述数字控制信号和所述过滤数字信号为同频时,根据所述过滤数字信号确定静电场强度数值,并将所述静电场强度数值传送至所述无线数据发送器。
  9. 一种无线供电系统,其特征在于:无线供电模块和无线发送设备,其中,所述无线供电模块与所述无线发送设备相连,所述无线供电模块位于如权利要求1-8任一所述的无线传输的静电场检测装置内。
  10. 根据权利要求9所述的无线供电系统,其特征在于:所述无线发送设备通过电磁波感应式的无线方式为所述无线供电模块供电。
PCT/CN2023/070843 2022-01-14 2023-01-06 一种无线传输的静电场检测装置及无线供电系统 WO2023134555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210041359.8A CN114545103A (zh) 2022-01-14 2022-01-14 一种无线传输的静电场检测装置及无线供电系统
CN202210041359.8 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023134555A1 true WO2023134555A1 (zh) 2023-07-20

Family

ID=81671802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070843 WO2023134555A1 (zh) 2022-01-14 2023-01-06 一种无线传输的静电场检测装置及无线供电系统

Country Status (2)

Country Link
CN (1) CN114545103A (zh)
WO (1) WO2023134555A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545103A (zh) * 2022-01-14 2022-05-27 深圳市中明科技股份有限公司 一种无线传输的静电场检测装置及无线供电系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281435A1 (en) * 2005-06-08 2006-12-14 Firefly Power Technologies, Inc. Powering devices using RF energy harvesting
CN102353855A (zh) * 2011-09-28 2012-02-15 上海安平静电科技有限公司 一种便携式静电检测装置及其静电检测方法
CN107015072A (zh) * 2017-05-25 2017-08-04 北京中科飞龙传感技术有限责任公司 一种基于电场传感器的密封型非接触式手持静电仪
CN107329004A (zh) * 2016-12-02 2017-11-07 北京理工大学 一种基于静电感应原理的非接触式mems自激励静场电探测系统及其探测方法
CN207895003U (zh) * 2017-12-05 2018-09-21 广东电网有限责任公司江门供电局 一种mems电场传感器及其无线供能系统
CN109521258A (zh) * 2019-01-30 2019-03-26 云南电网有限责任公司电力科学研究院 一种基于mems电场传感器的直流验电系统及方法
CN112505436A (zh) * 2020-11-20 2021-03-16 石家庄铁道大学 非接触式静电场测试装置及测试方法
CN114384334A (zh) * 2021-12-03 2022-04-22 深圳市中明科技股份有限公司 一种无线传输的静电场在线监测装置及无线监控系统
CN114527336A (zh) * 2022-01-14 2022-05-24 深圳市中明科技股份有限公司 一种非接触式静电场检测传感探头装置
CN114545103A (zh) * 2022-01-14 2022-05-27 深圳市中明科技股份有限公司 一种无线传输的静电场检测装置及无线供电系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640591B (zh) * 2021-09-07 2022-04-29 清华大学 一种基于压电薄膜形变的差动式微型电场传感器件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281435A1 (en) * 2005-06-08 2006-12-14 Firefly Power Technologies, Inc. Powering devices using RF energy harvesting
CN102353855A (zh) * 2011-09-28 2012-02-15 上海安平静电科技有限公司 一种便携式静电检测装置及其静电检测方法
CN107329004A (zh) * 2016-12-02 2017-11-07 北京理工大学 一种基于静电感应原理的非接触式mems自激励静场电探测系统及其探测方法
CN107015072A (zh) * 2017-05-25 2017-08-04 北京中科飞龙传感技术有限责任公司 一种基于电场传感器的密封型非接触式手持静电仪
CN207895003U (zh) * 2017-12-05 2018-09-21 广东电网有限责任公司江门供电局 一种mems电场传感器及其无线供能系统
CN109521258A (zh) * 2019-01-30 2019-03-26 云南电网有限责任公司电力科学研究院 一种基于mems电场传感器的直流验电系统及方法
CN112505436A (zh) * 2020-11-20 2021-03-16 石家庄铁道大学 非接触式静电场测试装置及测试方法
CN114384334A (zh) * 2021-12-03 2022-04-22 深圳市中明科技股份有限公司 一种无线传输的静电场在线监测装置及无线监控系统
CN114527336A (zh) * 2022-01-14 2022-05-24 深圳市中明科技股份有限公司 一种非接触式静电场检测传感探头装置
CN114545103A (zh) * 2022-01-14 2022-05-27 深圳市中明科技股份有限公司 一种无线传输的静电场检测装置及无线供电系统

Also Published As

Publication number Publication date
CN114545103A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023134555A1 (zh) 一种无线传输的静电场检测装置及无线供电系统
JP3556549B2 (ja) シート抵抗測定器および電子部品製造方法
JP4607753B2 (ja) 電圧測定装置および電力測定装置
CN1143752A (zh) 物体探测装置及生物体探测装置
JP2015508495A (ja) 結合を用いた非接触式温度測定システム及びその測定方法
JP2007163414A (ja) 可変容量回路、電圧測定装置および電力測定装置
JP2015087833A (ja) 信号処理装置
JP2011098071A5 (zh)
CN103947080A (zh) 供电装置以及供电控制方法
CN105242180A (zh) 一种用于gil/gis的放电源进行检测和定位的装置及方法
CN113533826B (zh) 一种高精度电流监测处理系统
KR20190043764A (ko) 전기자동차 충전소의 상태 확인을 위한 IoT 장치 및 방법
CN111351977A (zh) 一种交、直流一体的组合式验电器
CN113514710B (zh) 一种静电检测装置
JP2010115062A (ja) 発電装置および電子機器
CN114147622A (zh) 一种cmp电涡流终点检测装置
CN114384334B (zh) 一种无线传输的静电场在线监测装置及无线监控系统
CN1774943A (zh) 测试移动台中设备的方法和装置
JP2001330620A (ja) 振動・衝撃警報装置
JP4067053B2 (ja) 静電容量センサ式計測装置
CN202748343U (zh) 一种基于无线网络的多功能集成非破坏检测传感器
CN109300816A (zh) 一种硅片位置信息采集装置、系统以及方法
CN210091900U (zh) 降噪装置
CN111220927A (zh) 无线供电的传输效率检测装置、系统及方法
CN220626254U (zh) 一种机器人寻迹传感控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739899

Country of ref document: EP

Kind code of ref document: A1