WO2023134458A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2023134458A1
WO2023134458A1 PCT/CN2022/143312 CN2022143312W WO2023134458A1 WO 2023134458 A1 WO2023134458 A1 WO 2023134458A1 CN 2022143312 W CN2022143312 W CN 2022143312W WO 2023134458 A1 WO2023134458 A1 WO 2023134458A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pin
detection circuit
processor
electronic device
Prior art date
Application number
PCT/CN2022/143312
Other languages
English (en)
French (fr)
Inventor
王兴华
黄允春
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22920088.6A priority Critical patent/EP4283822A1/en
Publication of WO2023134458A1 publication Critical patent/WO2023134458A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present application relates to the technical field of charge and discharge, and in particular to an electronic device.
  • the charging interface is Type -C as an example, currently the maximum voltage of the VBUS pin used to transmit the charging voltage can reach about 20V.
  • the present application provides an electronic device, which can reduce breakdown of devices connected to a charging interface in the electronic device and reduce damage to devices in the electronic device.
  • the embodiment of the present application provides an electronic device, the electronic device includes an interface, a voltage detection circuit, and a processor, wherein,
  • the interface is used to connect the power supply equipment, the interface includes a first pin and a second pin, the first pin is used to transmit data signals, and the second pin is used to transmit charging voltage signals; the voltage detection circuit is connected to the first pin and the second pin respectively. processor connection;
  • the voltage detection circuit is used to: detect the voltage of the first pin;
  • the processor is configured to: when the power supply device transmits a charging voltage signal of the first voltage value to the second pin and the power supply device supports fast charging, determine the second voltage value according to the voltage of the first pin; send the second voltage value to the power supply The device is used for the power supply device to adjust the voltage value of the charging voltage signal to a second voltage value.
  • the second voltage value is determined according to the voltage of the first pin, thereby preventing In the case of a short circuit between one pin and the second pin, the second pin transmits a charging voltage signal with an excessive voltage value, which can reduce the breakdown of the subsequent devices of the first pin caused by the excessive voltage value of the charging voltage signal To reduce the damage of components in electronic equipment.
  • the second voltage value is determined according to the voltage of the first pin, and the processor is specifically configured to:
  • the voltage of the first pin is less than the preset first threshold value, determine that the second voltage value is the second value; the first value is less than the second value, the first threshold value is less than or equal to the first voltage value, and is greater than the value transmitted by the first pin The maximum voltage value of the data signal.
  • the electronic device further includes a protocol processing circuit, the protocol processing circuit is respectively connected to the third pin of the interface and the processor, and the third pin is used to transmit data signals;
  • the second voltage value is sent to the protocol processing circuit, and the protocol processing circuit is used for: sending the second voltage value to the power supply device through the third pin of the interface.
  • the voltage detection circuit includes: a first analog-to-digital converter ADC module and a first resistor, wherein,
  • the input end of the voltage detection circuit is used to connect to the first pin, and the output end is used to connect to the processor;
  • the input terminal of the voltage detection circuit is connected to the input terminal of the first ADC module through the first resistor; the output terminal of the first ADC module is used as the output terminal of the voltage detection circuit;
  • the first ADC module is used for: converting the received analog voltage signal into a digital voltage signal, and sending the digital voltage signal to the processor.
  • the input end of the voltage detection circuit is connected to the input end of the first ADC module through a first resistor, including:
  • the input terminal of the voltage detection circuit is grounded through the second resistor and the third resistor connected in series, and the connecting terminal of the second resistor and the third resistor is connected to the input terminal of the first ADC module through the first resistor.
  • the input end of the voltage detection circuit is connected to the input end of the first ADC module through a first resistor, including: the input end of the voltage detection circuit is connected to the first ADC module through a series switch and the first resistor input terminal; the control terminal of the switch is connected to the processor;
  • the processor is configured to: control the switch to be turned on when it is determined that the power supply device supports fast charging; and control the switch to be turned off after the second voltage value is determined.
  • the first ADC module is located in a power management unit PMU of the electronic device, or located in a processor.
  • the detection of the voltage of the first pin is implemented, and the voltage detection circuit is specifically used for:
  • the voltage detection circuit includes:
  • the input end of the voltage detection circuit is used to connect to the first pin, and the output end is used to connect to the processor;
  • the input terminal of the voltage detection circuit is connected to the first input terminal of the comparator through the fourth resistor, the second input terminal of the comparator is connected to the reference voltage terminal, the voltage of the reference voltage terminal is the first threshold value, and the output terminal of the comparator is used as the voltage detection circuit. output terminal;
  • the comparator is used for: comparing the voltages received by the first input end and the second input end, and outputting the comparison result.
  • the interface is a Type-C interface
  • the second pin is a VBUS pin
  • the first pin is any data pin in the Type-C interface.
  • an embodiment of the present application provides a charging system, including a power supply device and the above-mentioned electronic device.
  • FIG. 1A is a schematic diagram of a pin structure of a Type-C interface
  • FIG. 1B is an example diagram of the circuit structure when the VBUS pin and the SBU pin are short-circuited
  • FIG. 1C is an example diagram of the circuit structure when the VBUS pin and the D+/D- pin are short-circuited;
  • Fig. 2 is a schematic diagram of the circuit structure of the charging system in the charging scene applicable to the electronic equipment of the present application;
  • FIG. 3 is a schematic diagram of the processing flow of an embodiment of the processor in the electronic device of the present application.
  • FIG. 4 is a schematic structural diagram of an embodiment of a voltage detection circuit in an electronic device of the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of the voltage detection circuit in the electronic device of the present application.
  • FIG. 6A is a schematic structural diagram of a third embodiment of a voltage detection circuit in an electronic device of the present application.
  • 6B is a schematic structural diagram of a fourth embodiment of the voltage detection circuit in the electronic device of the present application.
  • FIG. 6C is a schematic structural diagram of a fifth embodiment of the voltage detection circuit in the electronic device of the present application.
  • FIG. 7 is a schematic structural diagram of a sixth embodiment of the voltage detection circuit in the electronic device of the present application.
  • FIG. 8 is a schematic structural diagram of a seventh embodiment of a voltage detection circuit in an electronic device of the present application.
  • the voltage for charging the battery of electronic equipment is getting higher and higher, so the voltage carried by the pins used to transmit the charging voltage in the charging interface of electronic equipment is getting higher and higher.
  • the maximum can reach about 20V.
  • Figure 1A shows a schematic diagram of the pin structure of the Type-C interface, where the VBUS pin is used to transmit the charging voltage, SBU1, SBU2, CC1, CC2, TX1+, TX1-, TX2+, TX2-, RX1+, RX1-, RX2+, RX2-, D+, D- and other pins are generally used to transmit data signals.
  • the above-mentioned pins used to transmit data signals are collectively referred to as data below. pins.
  • the above-mentioned VBUS pin transmits a charging voltage generally not greater than 5V.
  • the transmitted charging voltage can reach up to about 20V.
  • the maximum voltage value of the data signal transmitted by the above-mentioned data pin is generally below 5V, and some components of the electronic equipment connected to the subsequent stage generally have a withstand voltage of about 6V.
  • the VBUS pin and each data pin in the Type-C interface transmit signals independently of each other. Therefore, when the data pin normally transmits data signals, the device connected to the subsequent stage (hereinafter referred to as the subsequent stage) Devices) generally do not appear damage caused by breakdown.
  • the VBUS pin may be short-circuited with other data pins in the Type-C interface.
  • VBUS pins and/or data pins for example, CC1 pins, TX1- pins, etc.
  • a short circuit occurs between one or more data pins of the Type-C interface and the VBUS pin due to abnormal conditions such as liquid or foreign objects entering the Type-C interface.
  • the withstand voltage of the downstream device connected to the data pin shorted to the VBUS pin is lower than the charging voltage transmitted by the VBUS pin, the subsequent device will be broken down, resulting in damage to the subsequent device.
  • the maximum voltage of the charging voltage transmitted by the VBUS pin is about 20V
  • the withstand voltage of the analog switch (such as the headphone analog switch) connected to the SBU pin of the Type-C interface is only 6V.
  • the high voltage of 20V on the VBUS pin can break down the analog switch, causing the analog switch to fail, and the high voltage may also cause a short circuit between the SBU pin and the VBUS pin.
  • the data pin D+/D- of the Type-C interface is connected to the common mode inductor in the subsequent stage, and the path impedance of the common mode inductor About 3ohm, the current capacity is 100mA, the peak value is 500mA, and the TVS clamping voltage of the main board is 8.5V.
  • the mold inductor is blown due to overcurrent, and may even cause the Type-C interface to be unusable.
  • the present application proposes an electronic device, which can reduce the breakdown of the device components connected to the charging interface in the electronic device, and reduce the damage of the components in the electronic device.
  • Fig. 2 is a schematic structural diagram of a charging system circuit in a charging scenario according to an embodiment of the present application.
  • the electronic device in the embodiment of the present application will be exemplarily described in conjunction with the circuit structure of the charging system in the charging scene.
  • the charging system may include: an electronic device 210 , a power supply device 220 , and a charging cable 230 .
  • the power supply device may be a charging head or other devices capable of charging electronic devices.
  • the electronic device 210 is connected to the power supply device 220 through a charging cable 230, and the charging cable 230 is specifically connected to the electronic device through a Type-C interface.
  • the method of charging an electronic device by a power supply device through a charging cable may be called direct charging or cable charging.
  • the electronic device 210 may include: a Type-C interface 211, an insertion detection circuit 212, a protocol processing circuit 213, a processor 214, a power management unit (power management unit, PMU) 215, a battery pack 216, and a voltage detection circuit 217.
  • a Type-C interface 211 an insertion detection circuit 212, a protocol processing circuit 213, a processor 214, a power management unit (power management unit, PMU) 215, a battery pack 216, and a voltage detection circuit 217.
  • PMU power management unit
  • the insertion detection circuit 212 is respectively connected to the CC pin of the Type-C interface 211 and the processor 214 .
  • the insertion detection circuit 212 is used to detect whether the plug of the charging cable is inserted into the Type-C interface 211 of the electronic device by detecting the voltage of the CC pin, etc. interface 211, a first signal is sent to the processor 214 to notify the processor 214 that a charging cable plug is inserted into the Type-C interface 211 of the electronic device.
  • the plug-in detection circuit can be implemented through the hot-plug detection technology of the relevant Type-C interface, and the specific circuit implementation structure will not be described here.
  • the protocol processing circuit 213 is respectively connected to the CC/D+/D- pins of the Type-C interface 211 and the processor 214 .
  • the protocol processing circuit 213 is used to communicate with the power supply device 220 through a charging protocol such as the USB Power Delivery (USB Power Delivery, USB-PD) protocol, and complete the communication negotiation process with the power supply device 220 based on the charging protocol. Communication of the protocol processing circuit 213 with the power supply device 220 may be triggered by the processor 214 . Optionally, data communication may be performed between the protocol processing circuit 213 and the processor 214 through an I2C interface.
  • the protocol processing circuit 213 can be implemented using a related charging protocol processing chip, and the specific circuit implementation structure will not be described here.
  • the PMU 215 is respectively connected to the VBUS pin of the Type-C interface 211 , the processor 214 and the battery pack 216 .
  • the PMU 215 is used to provide power to the power-consuming circuit in the electronic device 210 such as the processor 214 according to the charging voltage signal received from the VBUS pin, and the PMU 215 can be used to charge the battery pack 216 of the electronic device according to the charging voltage signal.
  • the PMU215 can be realized by using a related PMU chip, and the specific circuit implementation structure will not be described here.
  • the voltage detection circuit 217 is respectively connected to the target pin of the Type-C interface 211 (the SBU1 pin is taken as an example in FIG. 2 ) and the processor 214 .
  • the voltage detection circuit 217 is used to detect the voltage of the target pin, and send the detection result to the processor 214 .
  • the specific implementation structure of the voltage detection circuit 217 is described in more detail in the following text through FIGS. 4 to 8 , and will not be repeated here.
  • step S1 the insertion detection circuit 212 detects whether a charging cable plug is inserted into the Type-C interface 211 of the electronic device. If the insertion detection circuit 212 detects that a plug with a charging cable is inserted into the Type-C interface 211 of the electronic device 210, the insertion detection circuit 212 sends a first signal to the processor 214, and the first signal is used to indicate that the processor 214 has a charging cable. Insert the plug into the Type-C interface of the electronic device.
  • Step S2 the processor 214 sends a second signal to the protocol processing circuit 213 in response to the first signal, and the second signal is used to instruct the protocol processing circuit 213 to communicate with the power supply device 220 .
  • Step S3 the protocol processing circuit 213 responds to the second signal, communicates with the power supply device 220 through a charging protocol such as the USB Power Delivery (USB Power Delivery, USB-PD) protocol, and completes the communication negotiation process based on the charging protocol with the power supply device 220 .
  • a charging protocol such as the USB Power Delivery (USB Power Delivery, USB-PD) protocol
  • USB Power Delivery USB Power Delivery
  • the communication data between the protocol processing circuit 213 and the power supply device 220 can pass through the data pins of the Type-C interface 211 (such as CC1 pins, CC2 pins, D+ pins, or D- pins, etc. ) and the data transmission line corresponding to the data pin in the charging cable 230.
  • step S4 the communication between the protocol processing circuit 213 and the power supply device 220 is completed, and the power supply device 220 starts to output a charging voltage signal for the electronic device 210 via the charging cable 230 and the VBUS pin of the Type-C interface 211 .
  • the voltage value of the charging voltage signal is generally the charging voltage value in the normal charging mode supported by the power supply device 220 , for example, it may be 5V.
  • the charging voltage signal is specifically transmitted to the PMU215 of the electronic device 210.
  • the PMU215 can provide power for the power-consuming circuit in the electronic device 210 such as the processor 214 according to the charging voltage signal, and the PMU215 can provide power for the battery of the electronic device according to the charging voltage signal.
  • Group 216 is charged.
  • the protocol processing circuit 213 obtains charging-related information such as the power supply capability of the power supply device 220 , and the protocol processing circuit 213 sends the charging-related information to the processor 214 .
  • the power supply capability may include: whether to support fast charging.
  • Step S5 the voltage detection circuit 217 detects the voltage of the target pin in the Type-C interface 211 (the target pin is the SBU1 pin in FIG. 2 as an example), and sends the detected voltage to the processor 214 .
  • the voltage detection circuit 217 may be enabled and controlled by the processor 214 .
  • the processor 214 may send the first enable signal to the voltage detection circuit 217 after determining that the power supply device 220 supports fast charging according to the power supply capability of the power supply device 220, so as to control the voltage detection circuit 217 to start detecting the charging in the Type-C interface 211.
  • the voltage of the target pin may be enabled and controlled by the processor 214 .
  • Step S6 the processor 214 determines the expected value of the charging voltage for this charging according to the power supply capability of the power supply device 220 and the voltage of the target pin detected by the voltage detection circuit 217, and sends the determined expected value of the charging voltage to the protocol processing circuit 213, and then the The protocol processing circuit 213 sends data to the power supply device 220 via the data pin of the Type-C interface 211 and the charging cable 230 .
  • the expected charging voltage value may be the charging voltage value in the normal charging mode supported by the power supply device 220 (that is, the charging voltage value during non-fast charging), such as 5V, or the charging voltage value of the fast charging supported by the power supply device 220, such as 20V .
  • the processor 214 can send a second enable signal to the voltage detection circuit 217 to control the voltage detection circuit 217 to stop detecting the voltage of the target pin in the Type-C interface 211 .
  • step S7 the power supply device 220 adjusts the voltage value of the charging voltage signal transmitted to the VBUS pin of the electronic device 210 according to the expected value of the charging voltage indicated by the electronic device 210.
  • the charging voltage signal of the power supply device 220 is still transmitted to the PMU 215 of the electronic device 210 via the charging cable 230 and the VBUS pin of the Type-C interface 211, and the PMU 215 can The signal provides electric energy for the electric circuit in the electronic device 210 such as the processor 214, and the PMU 215 can charge the battery pack 216 of the electronic device according to the charging voltage signal.
  • Step 301 The processor 214 determines whether the power supply device 220 supports fast charging according to the power supply capability of the power supply device 220; if it supports fast charging, execute step 302; if not, execute step 304.
  • the situation that the power supply device 220 supports fast charging can be screened out, so as to further screen out the short circuit between the VBUS pin and the target pin in the subsequent step 302 .
  • Step 302 Obtain the voltage of the target pin, and determine whether the voltage of the target pin is greater than a preset first threshold, if yes, perform step 304; if not, perform step 303.
  • the first threshold may be greater than the maximum voltage value (for example, 3.3V) of the data signal transmitted by the target pin, and less than or equal to the initial voltage value (for example, 5V) of the charging voltage signal when the power supply device 220 charges the electronic device 210 .
  • this step it is determined whether there is a short circuit between the target pin and the VBUS pin by judging whether the voltage of the target pin is greater than a preset first threshold. The reason is: if a short circuit occurs between the target pin and the VBUS pin, then the voltage of the target pin should be equal to the voltage value of the charging voltage signal in step S4, and this voltage value is greater than the maximum voltage of the data signal transmitted by the target pin In other words, if the voltage of the target pin is greater than the maximum voltage value of the data signal transmitted by the target pin, it means that a short circuit occurs between the target pin and the VBUS pin.
  • the situation that the power supply device 220 supports fast charging and the target pin and the VBUS pin are not short-circuited, and the situation that the power supply device 220 supports fast charging but the target pin and the VBUS pin are short-circuited can be screened out.
  • Step 303 Determine the expected value of the charging voltage as a second value, the second value may be the voltage value of the charging voltage signal in the fast charging mode.
  • This step is performed after judging that the power supply device 220 supports fast charging in step 301, and judging in step 302 that the voltage of the target pin is not greater than the preset first threshold, that is, after the power supply device 220 supports fast charging, and the target pin is compatible with the VBUS pin.
  • the charging efficiency of the electronic device can be improved by determining the expected value of the charging voltage as the second value, such as the voltage value in the fast charging mode.
  • Step 304 Determine the expected value of the charging voltage as a first value, the first value may be the voltage value of the charging voltage signal in the normal charging mode.
  • This step can be performed after judging that the power supply device 220 does not support fast charging in step 301. Since the power supply device 220 does not support fast charging, the expected value of the charging voltage can only be determined as the first value, that is, the voltage value in the normal charging mode; or , this step can be performed after judging that the power supply device 220 supports fast charging in step 301, and judging in step 302 that the voltage of the target pin is greater than the preset first threshold, that is, when the power supply device 220 supports fast charging but the target pin is not connected to the VBUS pin.
  • the expected value of the charging voltage as the first value, such as the voltage value in the normal charging mode, it can be ensured that the voltage value of the charging voltage signal will not be greater than the withstand voltage of the subsequent device of the target pin , so as to ensure that the charging voltage signal will not cause damage to the subsequent device of the target pin.
  • Fig. 4 to Fig. 8 only show circuit structures such as the Type-C interface 211 and the processor 214 associated with the voltage detection circuit 217, and omit the insertion detection circuit 212, Circuit structures such as the protocol processing circuit 213 are not intended to limit the specific implementation of the electronic device in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an implementation of a voltage detection circuit provided in an embodiment of the present application.
  • the target pin is the SBU1 pin
  • the downstream device connected to the SBU1 pin is a headphone analog switch. It should be noted that, in practical applications, the embodiments of the present application do not limit the downstream devices connected to the SBU1 pins in the electronic equipment.
  • the voltage detection circuit 217 of the SBU1 pin may include:
  • the SBU1 pin of the Type-C interface 211 is connected to the first signal input terminal IN01 of the analog-to-digital converter (ADC) module through the first resistor R1, and the first output terminal OUT01 of the ADC module is connected to the first input terminal IN11 of the processor;
  • ADC analog-to-digital converter
  • the ADC module is used to convert the analog voltage signal received by the first signal input terminal IN01 into a digital voltage signal, and output the digital voltage signal to the processor 214 through the first output terminal OUT01 .
  • the SBU1 pin is connected to the first signal input terminal IN01 of the ADC module through the first resistor R1, so that the first signal input terminal IN01 of the ADC module can detect the voltage signal of the SBU1 pin, which is an analog voltage signal; the ADC module will After the detected analog voltage signal of the SBU1 pin is converted into a digital voltage signal, the digital voltage signal can be transmitted to the processor 214 .
  • FIG. 5 is a schematic structural diagram of a second implementation of the voltage detection circuit provided by the embodiment of the present application.
  • the target pin is the SBU1 pin
  • the downstream device connected to the SBU1 pin is the headphone analog switch.
  • the main difference between the voltage detection circuit shown in Figure 5 and the voltage detection circuit shown in Figure 4 is that the SBU1 pin of the Type-C interface 211 is grounded through the second resistor R2 and the third resistor R3 connected in series, and the second resistor R2 and the third resistor The connection terminal A of the resistor R3 is connected to the first signal input terminal IN01 of the ADC module through the first resistor R1.
  • the second resistor R2 and the third resistor R3 divide the voltage of the SBU1 pin, so that the voltage detected by the first signal input terminal IN01 of the ADC module is the voltage division signal of the SBU1 pin; the ADC module will detect the SBU1 tube After the divided voltage signal of the pin is converted into a digital voltage signal, the digital voltage signal can be transmitted to the processor 214 .
  • the processor 214 can calculate and obtain the digital voltage signal of the SBU1 pin based on the digital electrical signal.
  • the detection range of the ADC module can be smaller than the above-mentioned first threshold, and by adjusting the voltage values of the second resistor R2 and the third resistor R3, the analog voltage signal input to the ADC module can be made to conform to the ADC module.
  • the detection range improves the detection accuracy of the ADC module.
  • the ADC module in the shown voltage detection circuit can reuse the existing ADC module in the electronic device. Therefore, it is only necessary to add traces on the PCB without adding a new ADC module, so that the area occupied by the voltage detection circuit on the PCB is relatively smaller.
  • the existing ADC module in the above-mentioned electronic equipment may be an ADC module provided separately, or may be an ADC module included in an existing device (such as a PMU or a processor).
  • the aforementioned existing device may be a device in the circuit branch connected to the target pin, or may be a device outside the circuit branch connected to the target pin.
  • FIG. 6A is a schematic structural diagram of a third implementation of the voltage detection circuit provided by the embodiment of the present application. Take the ADC module in the voltage detection circuit shown in Figure 4 as an existing ADC module in the PMU215 as an example.
  • FIG. 6B is a schematic structural diagram of a fourth implementation of the voltage detection circuit provided by the embodiment of the present application. Take the ADC module in the voltage detection circuit shown in FIG. 5 as an example that is already present in the PMU215.
  • the voltage detection circuit can multiplex the first signal input terminal IN01 of the ADC module with other existing devices.
  • the first resistor R1 and A switch is set in the branch where the ADC module is located, and the processor selects the switch when it needs to detect the voltage of the target pin.
  • FIG. 6C uses FIG. 6C as an example for illustration.
  • FIG. 6C is a schematic structural diagram of a fifth implementation of the voltage detection circuit provided by the embodiment of the present application.
  • a first switch K1 is added between the SBU1 pin and the first resistor R1, and the control terminal of the first switch K1 can be connected to the processor 214, which is controlled by the processor 214 when it needs to obtain the voltage of the SBU1 pin
  • the first switch K1 is turned on, and the first switch K1 is controlled to be turned off at other times.
  • the target pin is the SBU1 pin as an example.
  • the target pin can also be any other pin used for data transmission in the Type-C interface, such as CC1 , CC2, SBU2, D+, D-, etc. The following is illustrated by an example in FIG. 7 .
  • FIG. 7 is a schematic diagram of a sixth implementation structure of the voltage detection circuit provided by the embodiment of the present application, taking the example of replacing the target pin in the circuit shown in FIG. 5 with other pins.
  • the only difference from the circuit shown in FIG. 5 is that the target pin is replaced by a CC1 or D+ or D- pin from the SBU1 pin, and correspondingly, the subsequent device of the target pin uses a protocol processing circuit 213 (for example PD/SOC/protocol IC) as an example.
  • a protocol processing circuit 213 for example PD/SOC/protocol IC
  • the above-mentioned ADC module can be replaced by a comparator, or a logic gate, etc., or the voltage detection circuit can also multiplex the IO pin of the SOC, through The IO pin detects the high and low level to detect the voltage of the target pin.
  • the above methods also occupy less area of the PCB board. The following is illustrated by an example in FIG. 8 .
  • FIG. 8 is a schematic structural diagram of a seventh implementation of the voltage detection circuit provided by the embodiment of the present application, taking the example in which the ADC module in the voltage detection circuit shown in FIG. 4 is replaced by a comparator.
  • the voltage detection circuit may include:
  • the positive input terminal of the comparator A1 is connected to the SBU1 pin of the Type-C interface through the first resistor R1, the negative input terminal receives the reference voltage signal, and the output terminal is connected to the processor 214;
  • Comparator A1 is used for: when the voltage of the positive input terminal is higher than the voltage of the negative input terminal, the output terminal outputs a high-level signal, and when the voltage of the positive input terminal is not higher than the voltage of the negative input terminal, the output terminal outputs a low-level signal .
  • the positive input terminal of the comparator A1 can detect the voltage of the SBU1 pin, and the voltage value of the reference voltage signal at the negative input terminal can be the first threshold, so that the comparator A1 can compare the voltage of the SBU1 pin and the voltage of the reference voltage signal, And send the comparison result to the processor 214 through the output high level signal or low level signal.
  • the processor can learn whether the voltage of the SBU1 pin is higher than the preset first threshold according to the received high-level signal or low-level signal.
  • the voltage detection circuit may be specifically configured to: compare the voltage of the first pin with a preset first threshold, and send the comparison result to the processor; correspondingly, the processor may determine the above-mentioned expected voltage value according to the comparison result.
  • the charging interface of the electronic device is the Type-C interface as an example. It should be noted that the charging interface of the electronic device in the embodiment of the present application can also be other than the Type-C interface, including the charging voltage signal transmission pin. And the charging interface of the data pin, such as USB interface, Lightning interface, etc. other than the Type-C interface, is not limited in this embodiment of the present application.

Abstract

一种电子设备,上述电子设备包括接口、电压检测电路以及处理器,接口用于连接供电设备,接口包括第一管脚和第二管脚,第一管脚用于传输数据信号,第二管脚用于传输充电电压信号;电压检测电路分别与第一管脚以及处理器连接;电压检测电路用于:检测第一管脚的电压;处理器用于:在供电设备向第二管脚传输第一电压值的充电电压信号且供电设备支持快充时,根据第一管脚的电压确定第二电压值;将第二电压值发送至供电设备,第二电压值用于供电设备将充电电压信号的电压值调整为第二电压值。本申请能够减少电子设备中与充电接口相连接的设备器件被击穿的情况,减少电子设备中器件的损坏。

Description

一种电子设备 技术领域
本申请涉及充放电技术领域,特别涉及一种电子设备。
背景技术
随着快充技术的发展,为电子设备的电池进行充电的电压越来越高,从而电子设备的充电接口中用于传输充电电压的管脚承载的电压越来越大,以充电接口是Type-C为例,目前用于传输充电电压的VBUS管脚的最大电压可以达到约20V。
但是,随着该管脚承载的电压的增大,电子设备中与充电接口相连接的设备器件被击穿的情况也随之增加,从而导致电子设备中器件的损坏。
申请内容
本申请提供了一种电子设备,能够减少电子设备中与充电接口相连接的设备器件被击穿的情况,减少电子设备中器件的损坏。
第一方面,本申请实施例提供电子设备,电子设备包括接口、电压检测电路以及处理器,其中,
接口用于连接供电设备,接口包括第一管脚和第二管脚,第一管脚用于传输数据信号,第二管脚用于传输充电电压信号;电压检测电路分别与第一管脚以及处理器连接;
电压检测电路用于:检测第一管脚的电压;
处理器用于:在供电设备向第二管脚传输第一电压值的充电电压信号且供电设备支持快充时,根据第一管脚的电压确定第二电压值;将第二电压值发送至供电设备,用于供电设备将充电电压信号的电压值调整为第二电压值。
该电子设备中,在供电设备向第二管脚传输第一电压值的充电电压信号且所述供电设备支持快充时,根据第一管脚的电压确定第二电压值,从而可以防止在第一管脚与第二管脚短路的情况下第二管脚传输电压值过大的充电电压信号,进而可以减少由于充电电压信号的电压值过大导致的第一管脚后级器件被击穿的情况,减少电子设备中器件的损坏。
在一种可能的实现方式中,实现根据第一管脚的电压确定第二电压值,处理器具体用于:
在第一管脚的电压不小于预设第一阈值时,确定第二电压值为第一数值;
在第一管脚的电压小于预设第一阈值时,确定第二电压值为第二数值;第一数值小于第二数值,第一阈值小于等于第一电压值,大于第一管脚传输的数据信号的最大电压值。
在一种可能的实现方式中,电子设备还包括协议处理电路,协议处理电路分别连接接口的第三管脚以及处理器,第三管脚用于传输数据信号;
实现将第二电压值发送至供电设备,处理器具体用于:
将第二电压值发送至协议处理电路,协议处理电路用于:将第二电压值通过接口的第三管脚发送至供电设备。
在一种可能的实现方式中,电压检测电路包括:第一模数转换器ADC模块以及第一电阻,其中,
电压检测电路的输入端用于连接第一管脚,输出端用于连接处理器;
电压检测电路的输入端通过第一电阻连接第一ADC模块的输入端;第一ADC模块的输出端作为电压检测电路的输出端;
第一ADC模块用于:将接收到的模拟电压信号转换为数字电压信号,将数字电压信号发送至处理器。
在一种可能的实现方式中,电压检测电路的输入端通过第一电阻连接第一ADC模块的输入端,包括:
电压检测电路的输入端通过串联的第二电阻和第三电阻接地,第二电阻和第三电阻的连接端通过第一电阻连接第一ADC模块的输入端。
在一种可能的实现方式中,电压检测电路的输入端通过第一电阻连接第一ADC模块的输入端,包括:电压检测电路的输入端通过串联的开关和第一电阻连接第一ADC模块的输入端;开关的控制端连接处理器;
处理器用于:在确定供电设备支持快充时,控制开关导通;在确定第二电压值后,控制开关关断。
在一种可能的实现方式中,第一ADC模块位于电子设备的电源管理单元PMU中,或者,位于处理器中。
在一种可能的实现方式中,实现检测第一管脚的电压,电压检测电路具体用于:
比较第一管脚的电压与预设第一阈值,将比较结果发送至处理器。
在一种可能的实现方式中,电压检测电路包括:
电压检测电路的输入端用于连接第一管脚,输出端用于连接处理器;
电压检测电路的输入端通过第四电阻连接比较器的第一输入端,比较器的第二输入端连接参考电压端,参考电压端的电压为第一阈值,比较器的输出端作为电压检测电路的输出端;
比较器用于:比较第一输入端和第二输入端接收到的电压,输出比较结果。
在一种可能的实现方式中,接口是Type-C接口,第二管脚是VBUS管脚,第一管脚是Type-C接口中任一数据管脚。
第二方面,本申请实施例提供了一种充电系统,包括供电设备和上述的电子设备。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1A为Type-C接口的管脚结构示意图;
图1B为VBUS管脚与SBU管脚发生短路时的电路结构示例图;
图1C为VBUS管脚与D+/D-管脚发生短路时的电路结构示例图;
图2为本申请电子设备适用的充电场景的充电系统电路结构示意图;
图3为本申请电子设备中处理器一个实施例的处理流程示意图;
图4为本申请电子设备中电压检测电路一个实施例的结构示意图;
图5为本申请电子设备中电压检测电路另一个实施例的结构示意图;
图6A为本申请电子设备中电压检测电路第三个实施例的结构示意图;
图6B为本申请电子设备中电压检测电路第四个实施例的结构示意图;
图6C为本申请电子设备中电压检测电路第五个实施例的结构示意图;
图7为本申请电子设备中电压检测电路第六个实施例的结构示意图;
图8为本申请电子设备中电压检测电路第七个实施例的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
随着快充技术的发展,为电子设备的电池进行充电的电压越来越高,从而电子设备的充电接口中用于传输充电电压的管脚承载的电压越来越大,目前最大可以达到约20V。
以充电接口是Type-C为例,图1A示出了Type-C接口的管脚结构示意图,其中的VBUS管脚是用于传输充电电压的管脚,SBU1、SBU2、CC1、CC2、TX1+、TX1-、TX2+、TX2-、RX1+、RX1-、RX2+、RX2-、D+、D-等管脚一般用于传输数据信号,为便于描述,以下将上述用于传输数据信号的管脚统称为数据管脚。
上述VBUS管脚在普通充电模式(未使用快充)下,传输的充电电压一般不大于5V,在快充模式下,传输的充电电压最高可以达到约20V。
上述数据管脚传输的数据信号的最大电压值一般在5V以下,其后级连接的电子设备的部分器件一般耐压为6V左右。
正常情况下,VBUS管脚与Type-C接口中的各个数据管脚之间相互独立传输信号,因此在数据管脚正常传输数据信号的情况下,其后级连接的器件(以下简称为后级器件)一般不会出现因为击穿引起的损坏。
但是,在某些场景下,VBUS管脚可能会与Type-C接口中的其他数据管脚之间出现短路的情况。举例来说:Type-C接口中的VBUS管脚和/或数据管脚(例如,CC1管脚、TX1-管脚等)可能会发生倾斜,从而导致VBUS管脚与相邻的数据管脚之间出现短路;或者,Type-C接口中产生进液或者进入异物等异常状况,导致Type-C接口中的某一个或者多个数据管脚与VBUS管脚之间出现短路。
这时,如果与VBUS管脚短路的数据管脚连接的后级器件的耐受电压低于VBUS管脚传输的充电电压,会击穿该后级器件,导致该后级器件的损坏。举例来说:参见图1B所示,VBUS管脚传输的充电电压的最高电压约20V,Type-C接口的SBU管脚所连接的模拟开关(例如耳机模拟开关)的耐受电压仅为6V,当Type-C接口出现进液或者异物等问题导致VBUS管脚与SBU管脚短路时,VBUS管脚上20V的高压可击穿该模拟开关,导致该模拟开关失效,同时该高压还可能在击穿模拟开关后导致后级连接的其他后 级器件(例如Codec)失效;如图1C所示,Type-C接口的数据管脚D+/D-后级连接共模电感,共模电感的通路阻抗约3ohm,通流能力100mA,峰值500mA,主板后级TVS钳位电压8.5V,当VBUS管脚与数据管脚D+/D-短路且VBUS管脚传输电压达到20V高压时,高压可导致该共模电感因为过流而烧断,甚至还可能导致Type-C接口无法使用。
为此,本申请提出一种电子设备,能够减少电子设备中与充电接口相连接的设备器件被击穿的情况,减少电子设备中器件的损坏。
图2是本申请实施例涉及的充电场景的充电系统电路结构示意图。以下,将结合充电场景的充电系统电路结构对本申请实施例的电子设备进行示例性说明。
如图2所示,该充电系统可以包括:电子设备210,供电设备220,充电线缆230。其中,供电设备可以是充电头或者其他能够为电子设备充电的设备。电子设备210与供电设备220之间通过充电线缆230连接,充电线缆230具体通过Type-C接口与电子设备连接。由供电设备通过充电线缆为电子设备充电的方式可以称为直充或者线充。
电子设备210可以包括:Type-C接口211,插入检测电路212,协议处理电路213,处理器214,电源管理单元(power management unit,PMU)215,电池组216,以及电压检测电路217。其中,
插入检测电路212分别连接Type-C接口211的CC管脚以及处理器214。插入检测电路212用于通过检测CC管脚的电压等方式来检测是否有充电线缆的插头插入电子设备的Type-C接口211,在检测到有充电线缆的插头插入电子设备的Type-C接口211时,向处理器214发送第一信号,以通知处理器214有充电线缆的插头插入电子设备的Type-C接口211。插入检测电路可以通过相关的Type-C接口的热插拔检测技术实现,具体电路实现结构这里不赘述。
协议处理电路213分别连接Type-C接口211的CC/D+/D-管脚以及处理器214。协议处理电路213用于通过充电协议例如USB功率传输(USB Power Delivery,USB-PD)协议与供电设备220通信,完成与供电设备220之间基于充电协议的通信协商流程。协议处理电路213与供电设备220的通信可以由处理器214触发。可选地,协议处理电路213与处理器214之间可以通过I2C接口进行数据通信。协议处理电路213可以使用相关的充电协议处理芯片实现,具体电路实现结构这里不赘述。
PMU215分别连接Type-C接口211的VBUS管脚、处理器214以及电池组216。PMU215用于根据从VBUS管脚接收到的充电电压信号为电子设备210中的用电电路例如处理器214提供电能,并且,PMU215可以用于根据充电电压信号为电子设备的电池组216充电。PMU215可以使用相关的PMU芯片实现,具体电路实现结构这里不赘述。
电压检测电路217分别连接Type-C接口211的目标管脚(图2中以SBU1管脚为例)以及处理器214。电压检测电路217用于检测目标管脚的电压,将检测结果发送至处理器214。电压检测电路217的具体实现结构在后文中通过图4~图8进行了更为具体的说明,这里不赘述。
对图2所示电路的工作原理进行示例性说明:
步骤S1,插入检测电路212检测是否有充电线缆的插头插入电子设备的Type-C接口211。如果插入检测电路212检测到有充电线缆的插头插入电子设备210的Type-C接 口211,插入检测电路212向处理器214发送第一信号,第一信号用于指示处理器214有充电线缆的插头插入电子设备的Type-C接口。
步骤S2,处理器214响应于第一信号,向协议处理电路213发送第二信号,第二信号用于指示协议处理电路213与供电设备220通信。
步骤S3,协议处理电路213响应于第二信号,通过充电协议例如USB功率传输(USB Power Delivery,USB-PD)协议与供电设备220通信,完成与供电设备220之间基于充电协议的通信协商流程。如图2所示,协议处理电路213与供电设备220之间的通信数据可以通过Type-C接口211的数据管脚(例如CC1管脚、CC2管脚、D+管脚、或者D-管脚等)以及充电线缆230中数据管脚对应的数据传输线传输。
步骤S4,协议处理电路213与供电设备220通信完成,供电设备220开始通过充电线缆经由充电线缆230、Type-C接口211的VBUS管脚为电子设备210输出充电电压信号。该充电电压信号的电压值一般是供电设备220支持的普通充电模式下的充电电压值,例如可以是5V。
该充电电压信号具体传输至电子设备210的PMU215,PMU215可以根据该充电电压信号为电子设备210中的用电电路例如处理器214提供电能,并且,PMU215可以根据该充电电压信号为电子设备的电池组216充电。
并且,协议处理电路213与供电设备220通信完成,协议处理电路213获得供电设备220的供电能力等充电相关信息,协议处理电路213将充电相关信息发送至处理器214。供电能力可以包括:是否支持快充。
步骤S5,电压检测电路217检测Type-C接口211中目标管脚(图2中以目标管脚是SBU1管脚为例)的电压,将检测到的电压发送至处理器214。
可选地,电压检测电路217可以由处理器214进行使能控制。具体的,处理器214可以在根据供电设备220的供电能力确定供电设备220支持快充后,向电压检测电路217发送第一使能信号,以控制电压检测电路217开始检测Type-C接口211中目标管脚的电压。
步骤S6,处理器214根据供电设备220的供电能力以及电压检测电路217检测到的目标管脚的电压确定本次充电的充电电压期望值,将确定的充电电压期望值发送至协议处理电路213,再由协议处理电路213经由Type-C接口211的数据管脚以及充电线缆230发送至供电设备220。
充电电压期望值可以是供电设备220支持的普通充电模式下的充电电压值(也即非快充时的充电电压值),例如5V,或者,供电设备220支持的快充的充电电压值,例如20V。
本步骤中处理器214根据供电设备220的供电能力以及目标管脚的电压确定本次充电的充电电压期望值的具体实现在下文中通过图3进行了更为具体的说明,这里不赘述。
可选地,处理器214在确定本次充电的充电电压期望值后,可以向电压检测电路217发送第二使能信号,以控制电压检测电路217停止检测Type-C接口211中目标管脚的电压。
步骤S7,供电设备220根据电子设备210指示的充电电压期望值调整向电子设备 210的VBUS管脚传输的充电电压信号的电压值。
充电电压信号的电压值调整为充电电压期望值后,供电设备220的充电电压信号仍然经由充电线缆230、Type-C接口211的VBUS管脚传输至电子设备210的PMU215,PMU215可以根据该充电电压信号为电子设备210中的用电电路例如处理器214提供电能,并且,PMU215可以根据该充电电压信号为电子设备的电池组216充电。
以下,通过图3所示的流程图对步骤S6中处理器214根据供电设备220的供电能力以及目标管脚的电压确定本次充电的充电电压期望值的实现进行具体说明。
步骤301:处理器214根据供电设备220的供电能力判断供电设备220是否支持快充;如果支持快充,执行步骤302,如果不支持快充,执行步骤304。
本步骤中,通过判断供电设备220是否支持快充,可以筛选出供电设备220支持快充的情况,以便进一步在后续步骤302中筛选出VBUS管脚与目标管脚之间发生短路的情况。
步骤302:获取目标管脚的电压,判断目标管脚的电压是否大于预设第一阈值,如果是,执行步骤304;如果否,执行步骤303。
可选地,第一阈值可以大于目标管脚传输的数据信号的最大电压值(例如,3.3V),小于等于供电设备220为电子设备210充电时充电电压信号的初始电压值(例如,5V)。
本步骤中,通过判断目标管脚的电压是否大于预设第一阈值来判断目标管脚与VBUS管脚之间是否存在短路。原因在于:如果目标管脚与VBUS管脚之间发生短路,那么,目标管脚的电压应该等于步骤S4中充电电压信号的电压值,而该电压值大于目标管脚传输的数据信号的最大电压值,也即是说,如果目标管脚的电压大于目标管脚传输的数据信号的最大电压值,则说明目标管脚与VBUS管脚之间发生短路。
通过本步骤的判断,可以筛选出供电设备220支持快充且目标管脚与VBUS管脚未发生短路的情况,以及供电设备220支持快充但目标管脚与VBUS管脚发生短路的情况。
步骤303:将充电电压期望值确定为第二数值,第二数值可以是快充模式下充电电压信号的电压值。
本步骤在步骤301中判断供电设备220支持快充、步骤302中判断目标管脚的电压不大于预设第一阈值后执行,也即在供电设备220支持快充、且目标管脚与VBUS管脚未发生短路的情况下执行,通过将充电电压期望值确定为第二数值,例如快充模式下的电压值,可以提高电子设备的充电效率。
步骤304:将充电电压期望值确定为第一数值,第一数值可以是普通充电模式下充电电压信号的电压值。
本步骤可以在步骤301中判断供电设备220不支持快充后执行,由于供电设备220不支持快充,从而充电电压期望值只能确定为第一数值,也即普通充电模式下的电压值;或者,本步骤可以在步骤301中判断供电设备220支持快充、步骤302中判断目标管脚的电压大于预设第一阈值后执行,也即在供电设备220支持快充但目标管脚与VBUS管脚发生短路的情况下执行,通过将充电电压期望值确定为第一数值,例如普通 充电模式下的电压值,可以保证充电电压信号的电压值不会大于目标管脚的后级器件的耐受电压,从而保证充电电压信号不会对目标管脚的后级器件造成损坏。
接下来,通过图4~图8对上述实施例中电压检测电路217的电路实现结构进行示例性说明。需要说明的是,图4~图8中仅示出了与电压检测电路217相关联的Type-C接口211以及处理器214等电路结构,省略了图3所示电路中的插入检测电路212、协议处理电路213等电路结构,并不用以限制本申请实施例电子设备的具体实现。
图4为本申请实施例提供的电压检测电路的一种实现结构示意图。在图4中,以目标管脚是SBU1管脚,SBU1管脚连接的后级器件是耳机模拟开关为例。需要说明的是,在实际应用中,电子设备中与SBU1管脚连接的后级器件具体是哪些器件本申请实施例不作限定。
参见图4,SBU1管脚的电压检测电路217可以包括:
Type-C接口211的SBU1管脚通过第一电阻R1连接模数转换器(ADC)模块的第一信号输入端IN01,ADC模块的第一输出端OUT01连接处理器的第一输入端IN11;
ADC模块用于将第一信号输入端IN01接收到的模拟电压信号转换为数字电压信号,将数字电压信号通过第一输出端OUT01输出至处理器214。
图4所示电压检测电路的工作原理说明如下:
SBU1管脚通过第一电阻R1连接ADC模块的第一信号输入端IN01,从而ADC模块的第一信号输入端IN01可以检测到SBU1管脚的电压信号,该电压信号是模拟电压信号;ADC模块将检测到的SBU1管脚的模拟电压信号转换为数字电压信号后,可以将数字电压信号传输至处理器214。
图5为本申请实施例提供的电压检测电路的第二种实现结构示意图。图5中仍以目标管脚是SBU1管脚,SBU1管脚连接的后级器件是耳机模拟开关为例。图5所示电压检测电路与图4所示电压检测电路的区别主要在于:Type-C接口211的SBU1管脚通过串联的第二电阻R2和第三电阻R3接地,第二电阻R2和第三电阻R3的连接端A通过第一电阻R1连接ADC模块的第一信号输入端IN01。
图5所示电压检测电路的工作原理说明如下:
第二电阻R2和第三电阻R3对SBU1管脚的电压进行分压,从而ADC模块的第一信号输入端IN01检测到的电压是SBU1管脚的分压信号;ADC模块将检测到的SBU1管脚的分压信号转换为数字电压信号后,可以将数字电压信号传输至处理器214。在明确第二电阻R2和第三电阻R3阻值的情况下,处理器214可以基于数字电信号计算得到SBU1管脚的数字电压信号。
图5所示电压检测电路中,ADC模块的检测范围可以小于上述第一阈值,通过调整第二电阻R2和第三电阻R3的电压值,可以使得输入至ADC模块的模拟电压信号符合ADC模块的检测范围,提高ADC模块的检测精度。
电子设备的很多器件中设置有ADC模块,例如电子设备中的处理器芯片、PMU芯片等中都设置有ADC模块,因此,为了减少电压检测电路对于PCB板面积的占用,上 述图4和图5所示电压检测电路中的ADC模块可以复用电子设备中已有的ADC模块。从而PCB板上只需要增加走线,而无需增加新的ADC模块,从而电压检测电路对于PCB板面积的占用相对更小。上述电子设备中已有的ADC模块可以是单独设置的ADC模块,也可以是已有器件(例如PMU,或者处理器)中包括的ADC模块。上述已有器件可以是与目标管脚连接的电路支路中的器件,也可以是与目标管脚连接的电路支路以外的器件。以下通过图6A~图6B对电压检测电路中ADC模块使用已有ADC模块时电压检测电路的实现结构进行举例说明。
图6A是本申请实施例提供的电压检测电路的第三种实现结构示意图。以图4所示电压检测电路中的ADC模块是PMU215中已有的ADC模块为例。
图6B是本申请实施例提供的电压检测电路的第四种实现结构示意图。以图5所示电压检测电路中的ADC模块是PMU215中已有的ADC模块为例。
上述图6A和图6B的电路连接关系以及工作原理可以参考图4和图5中的对应说明,这里不再赘述。
如果电压检测电路中包括的ADC模块是电子设备中已有的ADC模块,电压检测电路可以与其他已有器件复用ADC模块的第一信号输入端IN01,此时,可以在第一电阻R1与ADC模块所在支路中设置开关,由处理器在需要进行目标管脚的电压检测时才选通开关。以下以图6C为例进行举例说明。
图6C是本申请实施例提供的电压检测电路的第五种实现结构示意图。以图6A所示电压检测电路增加上述开关为例。如图6C所示,在SBU1管脚与第一电阻R1之间增加第一开关K1,第一开关K1的控制端可以连接处理器214,由处理器214在需要获取SBU1管脚的电压时控制第一开关K1导通,其他时间控制第一开关K1关断。
以上对电压检测电路的实现结构的举例中,以目标管脚是SBU1管脚为例,该目标管脚也可以是Type-C接口中的其他任一用于进行数据传输的管脚,例如CC1、CC2、SBU2、D+、D-等。以下通过图7举例说明。
图7是本申请实施例提供的电压检测电路的第六种实现结构示意图,以图5所示电路中的目标管脚替换为其他管脚为例。参见图7,与图5所示电路的区别仅在于:目标管脚从SBU1管脚替换为CC1或者D+或者D-管脚,相应的,目标管脚的后级器件以协议处理电路213(例如PD/SOC/协议IC)为例。
在本申请实施例提供的电压检测电路的另一种电路实现结构中,上述ADC模块可以被替换为比较器、或者逻辑门等,或者,电压检测电路也可以复用SOC的IO引脚,通过IO引脚检测高低电平的方式来检测目标管脚的电压。以上方式同样占用PCB板的面积较少。以下通过图8举例说明。
图8是本申请实施例提供的电压检测电路的第七种实现结构示意图,以图4所示电压检测电路中的ADC模块被替换为比较器为例。参见图8所示,电压检测电路可以包括:
比较器A1的正向输入端通过第一电阻R1连接Type-C接口的SBU1管脚,负向输 入端接收参考电压信号,输出端连接处理器214;
比较器A1用于:正相输入端的电压高于负向输入端的电压时,输出端输出高电平信号,正向输入端的电压不高于负向输入端的电压时,输出端输出低电平信号。
图8所示电压检测电路的工作原理说明如下:
比较器A1的正向输入端可以检测SBU1管脚的电压,负向输入端的参考电压信号的电压值可以是第一阈值,从而比较器A1可以比较SBU1管脚的电压以及参考电压信号的电压,并通过输出的高电平信号或者低电平信号将比较结果发送至处理器214。
从而,处理器可以根据接收到的高电平信号或者低电平信号获知SBU1管脚的电压是否高于预设第一阈值。此时,电压检测电路具体可以用于:比较所述第一管脚的电压与预设第一阈值,将比较结果发送至处理器;相应的,处理器可以根据比较结果确定上述期望电压值。
以上实施例中以电子设备的充电接口是Type-C接口为例,需要说明的是,本申请实施例电子设备的充电接口也可以是Type-C接口之外的其他包括充电电压信号传输管脚以及数据管脚的充电接口,例如Type-C接口之外的其他USB接口、Lightning接口等,本申请实施例不作限定。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种电子设备,其特征在于,所述电子设备包括接口、电压检测电路以及处理器,其中,
    所述接口用于连接供电设备;所述接口包括第一管脚和第二管脚,所述第一管脚用于传输数据信号,所述第二管脚用于传输充电电压信号;
    所述电压检测电路分别与所述第一管脚以及所述处理器连接;
    所述电压检测电路用于:检测第一管脚的电压;
    所述处理器用于:
    在所述供电设备向所述第二管脚传输第一电压值的充电电压信号且所述供电设备支持快充时,根据所述第一管脚的电压确定第二电压值;
    将所述第二电压值发送至所述供电设备,用于所述供电设备将所述充电电压信号的电压值调整为所述第二电压值。
  2. 根据权利要求1所述的电子设备,其特征在于,实现根据所述第一管脚的电压确定第二电压值,所述处理器具体用于:
    在所述第一管脚的电压不小于预设第一阈值时,确定所述第二电压值为第一数值;
    在所述第一管脚的电压小于预设第一阈值时,确定所述第二电压值为第二数值;所述第一数值小于所述第二数值,所述第一阈值小于等于所述第一电压值,大于所述第一管脚传输的数据信号的最大电压值。
  3. 根据权利要求1或2所述的电子设备,其特征在于,所述电子设备还包括协议处理电路,所述协议处理电路分别连接所述接口的第三管脚以及所述处理器,所述第三管脚用于传输数据信号;
    实现将所述第二电压值发送至所述供电设备,所述处理器具体用于:将所述第二电压值发送至所述协议处理电路;
    所述协议处理电路用于:将所述第二电压值通过所述接口的第三管脚发送至所述供电设备。
  4. 根据权利要求1所述的电子设备,其特征在于,所述电压检测电路包括:第一ADC模块以及第一电阻,其中,
    所述电压检测电路的输入端用于连接所述第一管脚,输出端用于连接所述处理器;
    所述电压检测电路的输入端通过所述第一电阻连接所述第一ADC模块的输入端;所述第一ADC模块的输出端作为所述电压检测电路的输出端;
    所述第一ADC模块用于:将接收到的模拟电压信号转换为数字电压信号,将所述数字电压信号发送至所述处理器。
  5. 根据权利要求4所述的电子设备,其特征在于,所述电压检测电路的输入端通过所述第一电阻连接所述第一ADC模块的输入端,包括:
    所述电压检测电路的输入端通过串联的第二电阻和第三电阻接地,所述第二电阻和第三电阻的连接端通过所述第一电阻连接所述第一ADC模块的输入端。
  6. 根据权利要求4所述的电子设备,其特征在于,所述电压检测电路的输入端通过所述第一电阻连接所述第一ADC模块的输入端,包括:
    所述电压检测电路的输入端通过串联的开关和所述第一电阻连接所述第一ADC模块的输入端;所述开关的控制端连接所述处理器;
    所述处理器用于:在确定所述供电设备支持快充时,控制所述开关导通;在确定所述第二电压值后,控制所述开关关断。
  7. 根据权利要求4至6任一项所述的电子设备,其特征在于,所述第一ADC模块位于所述电子设备的电源管理单元PMU中,或者,位于所述处理器中。
  8. 根据权利要求1或2所述的电子设备,其特征在于,实现检测第一管脚的电压,所述电压检测电路具体用于:
    比较所述第一管脚的电压与预设第一阈值,将比较结果发送至所述处理器。
  9. 根据权利要求8所述的电子设备,其特征在于,所述电压检测电路包括:
    所述电压检测电路的输入端用于连接所述第一管脚,输出端用于连接所述处理器;
    所述电压检测电路的输入端通过第四电阻连接比较器的第一输入端,所述比较器的第二输入端连接参考电压端,所述参考电压端的电压为所述第一阈值,所述比较器的输出端作为所述电压检测电路的输出端;
    所述比较器用于:比较所述第一输入端和所述第二输入端接收到的电压,输出比较结果。
  10. 根据权利要求1或2所述的电子设备,其特征在于,所述接口是Type-C接口,所述第二管脚是VBUS管脚,所述第一管脚是所述Type-C接口中任一数据管脚。
  11. 一种充电系统,包括供电设备和如权利要求1至10任一项所述的电子设备。
  12. 一种电子设备,其特征在于,所述电子设备包括接口、电压检测电路以及处理器,其中,
    所述接口用于连接供电设备;所述接口包括第一管脚和第二管脚,所述第一管脚用于传输数据信号,所述第二管脚用于传输充电电压信号;
    所述电压检测电路分别与所述第一管脚以及所述处理器连接;
    所述电压检测电路用于:检测第一管脚的电压;
    所述处理器用于:
    在所述供电设备向所述第二管脚传输第一电压值的充电电压信号且所述供电设备支持快充时,根据所述第一管脚的电压确定第二电压值;
    将所述第二电压值发送至所述供电设备,用于所述供电设备将所述充电电压信号的电压值调整为所述第二电压值;
    实现根据所述第一管脚的电压确定第二电压值,所述处理器具体用于:
    在所述第一管脚的电压不小于预设第一阈值时,确定所述第二电压值为第一数值;
    在所述第一管脚的电压小于预设第一阈值时,确定所述第二电压值为第二数值;所述第一数值小于所述第二数值,所述第一阈值小于等于所述第一电压值,大于所述第一管脚传输数据信号的最大电压值。
  13. 根据权利要求12所述的电子设备,其特征在于,所述电子设备还包括协议处理电路,所述协议处理电路分别连接所述接口的第三管脚以及所述处理器,所述第三管脚用于传输数据信号;
    实现将所述第二电压值发送至所述供电设备,所述处理器具体用于:将所述第二电 压值发送至所述协议处理电路;
    所述协议处理电路用于:将所述第二电压值通过所述接口的第三管脚发送至所述供电设备。
  14. 根据权利要求12所述的电子设备,其特征在于,所述电压检测电路包括:第一ADC模块以及第一电阻,其中,
    所述电压检测电路的输入端用于连接所述第一管脚,输出端用于连接所述处理器;
    所述电压检测电路的输入端通过所述第一电阻连接所述第一ADC模块的输入端;所述第一ADC模块的输出端作为所述电压检测电路的输出端;
    所述第一ADC模块用于:将接收到的模拟电压信号转换为数字电压信号,将所述数字电压信号发送至所述处理器。
  15. 根据权利要求14所述的电子设备,其特征在于,所述电压检测电路的输入端通过所述第一电阻连接所述第一ADC模块的输入端,包括:
    所述电压检测电路的输入端通过串联的第二电阻和第三电阻接地,所述第二电阻和第三电阻的连接端通过所述第一电阻连接所述第一ADC模块的输入端。
  16. 根据权利要求14所述的电子设备,其特征在于,所述电压检测电路的输入端通过所述第一电阻连接所述第一ADC模块的输入端,包括:
    所述电压检测电路的输入端通过串联的开关和所述第一电阻连接所述第一ADC模块的输入端;所述开关的控制端连接所述处理器;
    所述处理器用于:在确定所述供电设备支持快充时,控制所述开关导通;在确定所述第二电压值后,控制所述开关关断。
  17. 根据权利要求14至16任一项所述的电子设备,其特征在于,所述第一ADC模块位于所述电子设备的电源管理单元PMU中,或者,位于所述处理器中。
  18. 根据权利要求12所述的电子设备,其特征在于,实现检测第一管脚的电压,所述电压检测电路具体用于:
    比较所述第一管脚的电压与预设第一阈值,将比较结果发送至所述处理器。
  19. 根据权利要求18所述的电子设备,其特征在于,所述电压检测电路包括:
    所述电压检测电路的输入端用于连接所述第一管脚,输出端用于连接所述处理器;
    所述电压检测电路的输入端通过第一电阻连接比较器的第一输入端,所述比较器的第二输入端连接参考电压端,所述参考电压端的电压为所述第一阈值,所述比较器的输出端作为所述电压检测电路的输出端;
    所述比较器用于:比较所述第一输入端和所述第二输入端接收到的电压,输出比较结果。
  20. 根据权利要求12所述的电子设备,其特征在于,所述接口是Type-C接口,所述第二管脚是VBUS管脚,所述第一管脚是所述Type-C接口中任一数据管脚。
PCT/CN2022/143312 2022-01-11 2022-12-29 一种电子设备 WO2023134458A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22920088.6A EP4283822A1 (en) 2022-01-11 2022-12-29 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210023848.0 2022-01-11
CN202210023848.0A CN114039400B (zh) 2022-01-11 2022-01-11 一种电子设备

Publications (1)

Publication Number Publication Date
WO2023134458A1 true WO2023134458A1 (zh) 2023-07-20

Family

ID=80147451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143312 WO2023134458A1 (zh) 2022-01-11 2022-12-29 一种电子设备

Country Status (3)

Country Link
EP (1) EP4283822A1 (zh)
CN (1) CN114039400B (zh)
WO (1) WO2023134458A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039400B (zh) * 2022-01-11 2022-06-07 荣耀终端有限公司 一种电子设备
CN116455035B (zh) * 2023-05-30 2023-10-20 荣耀终端有限公司 保护电路及电子设备
CN117200403A (zh) * 2023-11-03 2023-12-08 武汉星纪魅族科技有限公司 充电控制方法、电子设备、电源适配器及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024195A (zh) * 2012-12-27 2013-04-03 青岛海信移动通信技术股份有限公司 一种智能移动终端及其充电实现方法
CN106549459A (zh) * 2016-12-29 2017-03-29 硅谷数模半导体(北京)有限公司 充电电压的确定方法和移动终端
US20180048170A1 (en) * 2016-08-15 2018-02-15 Beijing Xiaomi Mobile Software Co., Ltd. Electronic equipment, charger and charging method
CN111817378A (zh) * 2020-07-14 2020-10-23 维沃移动通信有限公司 充电器、数据线和充电设备
CN114039400A (zh) * 2022-01-11 2022-02-11 荣耀终端有限公司 一种电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202117B (zh) * 2011-04-22 2015-01-28 中兴通讯股份有限公司 一种具有usb接口的电子设备及其usb通信启动方法
CN204304549U (zh) * 2014-12-26 2015-04-29 罗勇进 充电器及充电管理电路
CN105553002B (zh) * 2015-12-24 2018-03-20 南通钰泰电子科技有限公司 一种移动电源的充放电管理方法及集成电路
CN106100025B (zh) * 2016-06-24 2019-04-19 青岛海信移动通信技术股份有限公司 一种充电保护电路、充电保护方法及移动终端
CN106026006B (zh) * 2016-06-30 2019-07-16 成绎半导体技术(上海)有限公司 一种USB Type-C接口母头智能检测和保护电路
CN106451628A (zh) * 2016-10-21 2017-02-22 上海与德信息技术有限公司 Otg 充电控制电路及充电控制方法
CN112737566B (zh) * 2021-04-02 2021-06-22 荣耀终端有限公司 一种接口转换电路及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024195A (zh) * 2012-12-27 2013-04-03 青岛海信移动通信技术股份有限公司 一种智能移动终端及其充电实现方法
US20180048170A1 (en) * 2016-08-15 2018-02-15 Beijing Xiaomi Mobile Software Co., Ltd. Electronic equipment, charger and charging method
CN106549459A (zh) * 2016-12-29 2017-03-29 硅谷数模半导体(北京)有限公司 充电电压的确定方法和移动终端
CN111817378A (zh) * 2020-07-14 2020-10-23 维沃移动通信有限公司 充电器、数据线和充电设备
CN114039400A (zh) * 2022-01-11 2022-02-11 荣耀终端有限公司 一种电子设备

Also Published As

Publication number Publication date
CN114039400A (zh) 2022-02-11
EP4283822A1 (en) 2023-11-29
CN114039400B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2023134458A1 (zh) 一种电子设备
KR101374638B1 (ko) 모바일 디바이스 자동 검출 장치 및 방법
US10181742B2 (en) Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
US20160336779A1 (en) Charging Method, Alternating Current Adaptor, Charging Management Device and Terminal
US8745301B2 (en) High voltage dedicated charging port
KR101592840B1 (ko) 고전압 전용 충전 포트
US9960617B2 (en) Mobile terminal with multi-port charging control function
US9787115B2 (en) Universal serial bus adaptor and universal serial bus cable
US10658860B2 (en) Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
CN101102119B (zh) 一种电器设备的充电检测电路及充电检测方法
EP2533348B1 (en) Charging system and charging method
US8749221B2 (en) Input-output circuit
CN102223439B (zh) 一种具有usb接口的电子设备及其usb通信启动方法
US20120254478A1 (en) Input-output circuit
JP2012205366A (ja) 入出力回路
US20160034333A1 (en) Power supply device, controller thereof, method of controlling the same, and electronic device employing the same
US20130049680A1 (en) Electronic device
KR20130122266A (ko) 호스트모드에서 충전동작을 수행하는 시스템, 장치 및 방법
US10243386B2 (en) Power supply circuit in electronic device and control method thereof
CN114336814A (zh) 一种多口充电控制电路、充电芯片及供电设备
JP5349953B2 (ja) 低電圧送受信器を保護するためのシステム及び方法
CN104066028A (zh) 基于耳机插孔的通信方法和终端设备
CN101359836A (zh) 一种自切换充电电路
CN114977444A (zh) 移动电源芯片、检测电路和电子设备
WO2020048276A1 (zh) 一种充电接口的保护方法及充电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022920088

Country of ref document: EP

Effective date: 20230822

WWE Wipo information: entry into national phase

Ref document number: 18279320

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920088

Country of ref document: EP

Kind code of ref document: A1