WO2023134410A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2023134410A1
WO2023134410A1 PCT/CN2022/140508 CN2022140508W WO2023134410A1 WO 2023134410 A1 WO2023134410 A1 WO 2023134410A1 CN 2022140508 W CN2022140508 W CN 2022140508W WO 2023134410 A1 WO2023134410 A1 WO 2023134410A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
sdt
information
session
data
Prior art date
Application number
PCT/CN2022/140508
Other languages
English (en)
French (fr)
Inventor
张戬
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22920041.5A priority Critical patent/EP4444019A1/en
Publication of WO2023134410A1 publication Critical patent/WO2023134410A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, device, and system.
  • the RRC inactive (RRC_INACTIVE) state is introduced at the radio resource control (RRC) level, and the terminal device can be in the RRC inactive state when there is no data transmission. active state.
  • RRC radio resource control
  • SDT small data transmission
  • the base station where it currently resides may be different from the anchor base station where it resides before entering the RRC inactive state.
  • SDT whether to migrate the anchor point of the base station, there is currently no relevant plan.
  • the present application provides a communication method, device and system, and provides a processing solution for whether anchor points need to be migrated during SDT.
  • a communication method can be applied to a terminal device, and the communication method can include: the terminal device generates a first message, the first message includes a first request and first auxiliary information, and the first request uses When requesting to establish a small data transfer SDT session, the first auxiliary information is used to determine whether to migrate the anchor point. Afterwards, the terminal device sends the first message to the serving access network device.
  • the first auxiliary information may include at least one of the following: the duration of the SDT service, the number of times the terminal device expects to continuously transmit data in the SDT session, the time interval and duration of the terminal device's expected monitoring scheduling information, and the movement of the terminal device. Trajectory, mobility of terminal equipment, maximum delay allowed for scheduling data, total amount of data to be sent during an SDT session.
  • the SDT session is used for the transmission of SDT services.
  • the terminal device when the terminal device initiates SDT, it can send the first auxiliary information together with the first request, and the first auxiliary information can be used to determine whether to perform anchor point migration.
  • the communication method provided by this application provides When performing SDT, it is necessary to deal with the migration of anchor points. Moreover, determining whether to migrate the anchor point according to the first auxiliary information can ensure that the migration of the anchor point is performed under appropriate conditions, and avoid waste of communication resources caused by the migration of the anchor point in an unnecessary scenario.
  • the first auxiliary information is collected by the terminal device or is configured by the core network device to the terminal device.
  • the first auxiliary information may also be used to perform SDT in the SDT session, and the first auxiliary information may also include at least one of the following items: whether the data transmitted in the SDT session is Segmentation indication, remaining data volume to be transmitted in the SDT session, radio bearer information, attribute information of the service carried by the radio bearer; wherein, the information of the radio bearer includes the type of the radio bearer or the service type carried by the radio bearer
  • the attribute information of the service includes at least one of the frequency of service transmission, the period of service transmission, the duration of the service, or the data volume of the service.
  • the communication method may further include: the terminal device acquires the first data packet.
  • the terminal device generating the first message may specifically include: if the size of the first data packet is less than or equal to the first threshold, generating the first message, where the first message includes the first data packet.
  • SDT can be triggered when the packet size is smaller than a threshold. It should be understood that, for transmission of small data packets using the SDT session, the terminal device does not need to switch to the RRC connection state, thereby saving communication resources occupied by state switching.
  • the communication method may further include: acquiring the second data packet. If the size of the second data packet is greater than the first threshold, send a second message or a third message to the anchor point access network device, and the second message is used to request the anchor point access network device to configure the terminal device to switch to the radio resource control RRC connection state, the third message is used to indicate the termination of the SDT session.
  • the second message or the third message is any of the following: RRC message, medium access control layer control element MAC CE, or dedicated control channel DCCH message.
  • the communication method may further include: acquiring the second data packet. Afterwards, a second data packet is sent through the SDT session, and the size of the second data packet is smaller than the first threshold, or equal to the first threshold, or larger than the first threshold.
  • the communication method may further include: sending the fourth message or the fifth message to the anchor access network device.
  • the fourth message is used to request the anchor access network device to configure the terminal device to switch to the RRC connection state
  • the fifth message is used to indicate the termination of the SDT session.
  • the size of the data packet sent by the terminal device may not be limited, but in this scenario, the number of data packets is limited. Therefore, it is possible to prevent the SDT session from transmitting too many large data packets, thereby increasing the burden on the SDT session.
  • the fourth message or the fifth message is any of the following: RRC message, medium access control layer control element MAC CE, or dedicated control channel DCCH message.
  • the communication method may further include: when the terminal device sends the first message, starting a timer.
  • the duration of the timer is the first duration.
  • the duration of the timer is the second duration. Wherein, the first duration is longer than the second duration.
  • the terminal device may monitor the response message of the first message during the running of the timer.
  • a communication method which can be applied to a service access network device, and the communication method can include: receiving a first message from a terminal device, where the first message includes a first request and first auxiliary information , the first request is used to establish a small data packet transmission SDT session, and the first auxiliary information is used to determine whether to migrate the anchor point. Afterwards, a sixth message is sent to the anchor access network device, where the sixth message is used to indicate establishment of the SDT session, and the sixth message includes the first auxiliary information. And, receiving a seventh message from the anchor point access network device, where the seventh message includes second indication information, and the second indication information is used to indicate whether to perform migration of the anchor point.
  • the serving access network device may transmit the first auxiliary information to the anchor point access network device, and the first auxiliary information may be used to determine whether to migrate the anchor point. In addition, it may also be determined whether to perform migration of the anchor point according to the second indication information sent by the anchor point access network device.
  • the first auxiliary information includes at least one of the following items: the duration of the SDT service, the number of times the terminal device expects to continuously transmit data in the SDT session, and the terminal device expects to monitor scheduling information The time interval and duration of the terminal equipment, the movement trajectory of the terminal equipment, the mobility of the terminal equipment, the maximum delay allowed for scheduling data, and the total amount of data to be sent during the SDT session; where the SDT session is used for the transmission of SDT services.
  • the first auxiliary information is also used to assist SDT, and the first auxiliary information further includes at least one of the following: an indication of whether the data transmitted in the SDT session is segmented, an SDT The amount of remaining data to be transmitted in the session, the information of the radio bearer, and the attribute information of the service carried by the radio bearer; wherein, the information of the radio bearer includes at least one of the type of the radio bearer or the type of service carried by the radio bearer, and the information of the service
  • the attribute information includes at least one of the frequency of service transmission, the cycle of service transmission, the duration of the service, or the data volume of the service.
  • the sixth message further includes at least one of the following: the locale identifier LCID of the radio bearer transmitting the first message, and information about network slices supported by the serving access network device List, security capabilities of service access network devices.
  • the second indication information indicates anchor point migration
  • the seventh message further includes first auxiliary information
  • the first auxiliary information is also used to assist SDT, and/or, It is used to determine whether to switch the terminal equipment to the RRC connection state.
  • the seventh message further includes third indication information, where the third indication information indicates whether to suggest the terminal device to switch to the RRC connection state.
  • the second indication information indicates anchor point migration
  • the seventh message further includes second auxiliary information
  • the second auxiliary information is used to assist SDT, and/or, use To determine whether to switch the terminal equipment to the RRC connection state.
  • the second auxiliary information includes at least one of the following: an indication of whether to allow the terminal device to send or receive data in the RRC inactive state, whether to allow the terminal device to send or receive data in the RRC inactive state Select the network slice information to send data in the state, the period of the terminal device's RRC inactive state, the duration of the SDT session, the duration of the terminal device sending data packets in the RRC inactive state, the terminal device in the RRC inactive state Send or The interval for receiving data packets, the time interval for establishing an SDT session, the number and size of data packets transmitted during the SDT session, the number and size of data packets sent by the terminal device in the RRC inactive state, the terminal The trajectory of the device moving in the RRC inactive state, the number of cells that the terminal device traverses when sending data in the RRC inactive state, the moving speed of the terminal device when sending data in the RRC inactive state, and the identification of the SDT bearer.
  • the second indication information indicates that the migration of the anchor point is performed
  • the communication method may further include: sending a path switching request to the first core network device, and the path switching request is used to Requesting the first core network device to switch the core network path to the serving access network device.
  • the first message includes a first data packet
  • the communication method may further include: sending the first data packet to a user plane functional network element.
  • a communication method which can be applied to an anchor access network device, and the communication method can include: receiving a sixth message from a serving access network device, where the sixth message is used to indicate the establishment of an SDT session, the sixth message includes the first auxiliary information, and the first auxiliary information is used to determine whether to migrate the anchor point. And, sending a seventh message to the serving access network device, where the seventh message includes second indication information, and the second indication information is used to indicate whether to migrate the anchor point.
  • the first auxiliary information includes at least one of the following: duration of the SDT service, number of times the terminal device expects to continuously transmit data in the SDT session, and the terminal device expects to monitor scheduling information The time interval and duration of the terminal equipment, the movement trajectory of the terminal equipment, the mobility of the terminal equipment, the maximum delay allowed for scheduling data, and the total amount of data to be sent during the SDT session; where the SDT session is used for the transmission of SDT services.
  • the first auxiliary information is also used to assist SDT, and the first auxiliary information further includes at least one of the following: an indication of whether the data transmitted in the SDT session is segmented, an SDT The amount of remaining data to be transmitted in the session, the information of the radio bearer, and the attribute information of the service carried by the radio bearer; wherein, the information of the radio bearer includes at least one of the type of the radio bearer or the type of service carried by the radio bearer, and the information of the service
  • the attribute information includes at least one of the frequency of service transmission, the cycle of service transmission, the duration of the service, or the data volume of the service.
  • the seventh message further includes the first auxiliary information, and the first auxiliary information is also used to assist the SDT, and/or Or, it is used to determine whether to switch the terminal device to the RRC connection state.
  • the seventh message further includes third indication information, and the third indication information is used to indicate whether to recommend the terminal device to switch to RRC connection status.
  • a communication method which can be applied to an anchor access network device, and the communication method can include: receiving second assistance information from a core network device during establishment of a radio bearer, the second assistance The information is used to assist the SDT, and/or to determine whether to migrate the anchor point. And, receiving a sixth message from the serving access network device, where the sixth message is used to indicate establishment of the SDT session, where the sixth message includes first auxiliary information, and the first auxiliary information is used to determine whether to migrate the anchor point. Afterwards, a seventh message is sent to the serving access network device, where the seventh message includes second indication information, and the second indication information is used to indicate whether to migrate the anchor point.
  • the anchor access network device can obtain the second auxiliary information from the core network device during the establishment of the radio bearer, and then, when the terminal device initiates SDT, it can obtain the first auxiliary information again, so that when initiating During the SDT, the anchor point access network device may determine whether to perform anchor point migration according to the first auxiliary information and the second auxiliary information.
  • This communication method provides a processing solution for whether anchor points need to be migrated when performing SDT.
  • the terminal device When the terminal device initiates the SDT, it can send the first auxiliary information together with the first request, and the first auxiliary information can be used to determine whether to migrate the anchor point. It can be seen that the communication method provided by this application provides , is it necessary to migrate the anchor point? Moreover, the method of the present application determines whether to migrate the anchor point according to the first auxiliary information, which can avoid the waste of communication resources caused by the migration of the anchor point in unnecessary scenarios.
  • the second auxiliary information is information collected by core network equipment, or information about static subscription.
  • the second auxiliary information includes at least one of the following: an indication of whether to allow the terminal device to send or receive data in the RRC inactive state; whether to allow the terminal device to send or receive data in the RRC inactive state; Select the network slice information to send data in the state, the period of the terminal device's RRC inactive state, the duration of the SDT session, the duration of the terminal device sending data packets in the RRC inactive state, the terminal device in the RRC inactive state Send or The interval for receiving data packets, the time interval for establishing an SDT session, the number and size of data packets transmitted during the SDT session, the number and size of data packets sent by the terminal device in the RRC inactive state, the terminal The trajectory of the device moving in the RRC inactive state, the number of cells that the terminal device traverses when sending data in the RRC inactive state, the moving speed of the terminal device when sending data in the RRC inactive state, and the identification of the SDT bearer.
  • the first auxiliary information includes at least one of the following: the duration of the SDT service, the number of times the terminal device expects to continuously transmit data in the SDT session, and the terminal device expects to monitor scheduling information The time interval and duration of the terminal equipment, the movement trajectory of the terminal equipment, the mobility of the terminal equipment, the maximum delay allowed for scheduling data, and the total amount of data to be sent during the SDT session; where the SDT session is used for the transmission of SDT services.
  • the first auxiliary information is also used to assist SDT, and the first auxiliary information further includes at least one of the following: an indication of whether the data transmitted in the SDT session is segmented, an SDT The amount of remaining data to be transmitted in the session, the information of the radio bearer, and the attribute information of the service carried by the radio bearer; wherein, the information of the radio bearer includes at least one of the type of the radio bearer or the type of service carried by the radio bearer, and the information of the service
  • the attribute information includes at least one of the frequency of service transmission, the cycle of service transmission, the duration of the service, or the data volume of the service.
  • the seventh message further includes the first auxiliary information and the second auxiliary information, and the first auxiliary information and the second auxiliary information
  • the auxiliary information is also used to determine whether to switch the terminal equipment to the RRC connected state.
  • the seventh message further includes third indication information, and the third indication information is used to indicate whether to recommend the terminal device to switch to RRC connection status.
  • the seventh message further includes partial context of the terminal device and configuration information of the SDT session.
  • the seventh message further includes all contexts of the terminal device.
  • a communication device for implementing the above method.
  • the communication device may be the service access network device in the first aspect above, or the anchor access network device in the second to fourth aspects above, or the terminal device in the fifth aspect above, and the communication device may include
  • the modules, units, or means can be implemented by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, and the transceiver module is used to execute the method of the first aspect, the second aspect, the third aspect or the fourth aspect, and the communication device side performs message Operations of receiving and sending: the processing module is used to call instructions to execute message processing or control operations performed by the communication device side in the method of the first aspect, the second aspect, the third aspect or the fourth aspect.
  • a communication device including: a processor; the processor is used to be coupled with the memory, and after reading the computer instructions stored in the memory, execute the above-mentioned first aspect, the second aspect, and the first aspect according to the instructions.
  • a communication device including: a processor; the processor is used to be coupled with the memory, and after reading the computer instructions stored in the memory, execute the above-mentioned first aspect, the second aspect, and the first aspect according to the instructions.
  • the communication device further includes a memory; the memory is used to store computer instructions.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the communication device may be a chip or a chip system. Wherein, when the communication device is a system-on-a-chip, the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • the above-mentioned communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system wait.
  • the processors described above may also be embodied as processing circuits or logic circuits.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when it is run on a computer, the computer can execute the above-mentioned first aspect, second aspect, third aspect or The method described in the fourth aspect.
  • a computer program product containing instructions, which, when run on a computer, enable the computer to execute the method described in the first aspect, the second aspect, the third aspect or the fourth aspect.
  • the communication system includes a generator that executes the data transmission method described in the first aspect above, an updater that executes the data transmission method described in the second aspect above, and an updater that executes the data transmission method described in the third aspect above The updating party of the data transmission method.
  • FIG. 1 is a communication network architecture diagram provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an interaction process in which a UE requests to restore the RRC connection state for data transmission provided by an embodiment of the present application;
  • FIG. 3 is a flowchart of an SDT provided in an embodiment of the present application.
  • FIG. 4 is a flow chart of another SDT provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of a UE provided in an embodiment of the present application.
  • FIG. 8 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 10 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 11 is a flowchart of a method for establishing a radio bearer provided by an embodiment of the present application.
  • FIG. 12 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 13 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 14 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 15 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 16 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 17 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 18 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • FIG. 1 shows a schematic diagram of a 5G network architecture.
  • Figure 1 takes the network service architecture of the 5G system as an example to show the interaction between network functions and entities and the corresponding interfaces.
  • the 3rd generation partnership project (3GPP) of the 5G system is based on the service
  • the network functions and entities included in the network architecture mainly include: user equipment (user equipment, UE), access network (access network, AN) or radio access network (radio access network, RAN) , user plane function (user plane function, UPF), data network (data network, DN), access management function (access management function, AMF), session management function (session management function, SMF), authentication service function (authentication server function, AUSF), policy control function (policy control function, PCF), application function (application function, AF), network slice selection function (network slice selection function, NSSF), unified data management (unified data management, UDM), network Open function (network exposure function, NEF) and network storage function (
  • UE user equipment
  • access network access network
  • a network function can be implemented as a network element running on dedicated hardware, or as a software instance running on dedicated hardware, or as a virtual function instantiated on a suitable platform, such as a cloud infrastructure.
  • AN/RAN can include various forms of base stations, such as: macro base stations, micro base stations (also known as "small stations"), distributed unit-control units (distribute unit-control unit, DU-CU), etc. .
  • the above-mentioned base station may also be a wireless controller in a cloud radio access network (CRAN) scenario, or a relay station, an access point, a vehicle-mounted device, a wearable device, or a future evolved public land mobile network (public land mobile network, PLMN) network equipment, etc.
  • the AN/RAN may also include broadband network gateways (broadband network gateways, BNGs), aggregation switches, non-3GPP access devices, and the like.
  • AN/RAN is mainly responsible for wireless resource management on the air interface side, uplink and downlink data classification, quality of service (QoS) management, data compression and encryption, and completion of signaling processing with control plane network elements or with user plane function network elements Data forwarding and other functions.
  • QoS quality of service
  • the embodiment of the present application does not limit the specific form and structure of the AN/RAN. For example, in systems adopting different wireless access technologies, the names of equipment with base station functions may be different.
  • the base station can be an evolved universal terrestrial radio access network (evolved universal terrestrial radio access network, E-UTRAN) device in LTE, such as an evolved node B (evolutional NodeB, eNB or e-NodeB), or it can be a 5G Next generation radio access network (NG-RAN) equipment (such as gNB) in the system.
  • E-UTRAN evolved universal terrestrial radio access network
  • NG-RAN Next generation radio access network
  • gNB Next generation radio access network
  • UPF It is mainly responsible for packet routing and forwarding, as well as QoS processing of user plane data or accounting information statistics.
  • the transmission resources and scheduling functions that provide services for UE in UPF are managed and controlled by SMF.
  • DN is the network used to transmit data.
  • the DN may be an operator service network, an Internet access or a third-party service network, and the like.
  • Radio resource control (RRC) status :
  • RRC states are defined in 5G NR: inactive state, connected state, and idle (IDLE) state.
  • the three states are described as follows:
  • Connection state RRC_CONNECTED state, also called connected state.
  • the connected state means that the RRC connection between the UE and the access network has been established.
  • the connections between the UE and the access network (such as the base station) and the core network (such as the AMF unit) are established. If there is data to be transmitted, it can be completed directly through the established connection.
  • the RRC connection is used to process control plane messages between the UE and the access network.
  • Inactive state the RRC_INACTIVE state, also called the deactivated state or the third state.
  • the inactive state means that the RRC connection between the UE and the access network (such as the base station) has been disconnected, but the connection between the UE's corresponding access network (such as the base station) and the core network (such as the AMF) has not been disconnected.
  • the RRC connection between the UE and the access network such as a base station
  • the access network such as a base station
  • the context of the UE When the UE enters the inactive state, the context of the UE is suspended (suspend) on the terminal and the base station side, and the context of the UE is saved in the last cell where the UE resides before entering the inactive state, or in the last In a cell (also called an anchor cell) that provides services for the UE.
  • the UE can acquire the context of the UE by initiating an RRC resume request (RRCResumeRequest), so as to resume the RRC connection according to the context of the UE.
  • the context of the UE includes: the security context of the UE, UE capability information and so on.
  • Idle state RRC_IDLE.
  • the idle state means that the RRC connection between the UE and the access network equipment (such as the base station) has not been established, and the connection between the UE's corresponding access network equipment (such as the base station) and the core network equipment (such as the AMF) has not been established.
  • the UE is in the idle state, if there is data to be transmitted, it is necessary to establish a connection between the UE and the access network device (such as a base station), and between the access network device (such as a base station) and the core network device (such as AMF). connection for data transmission.
  • the base station to which the cell where the UE currently camps belongs, or the base station that currently provides services for the UE may be called a serving base station.
  • the base station to which the last cell the UE camps on belongs, or the base station that provides services for the UE last before the UE enters the inactive state may be called an anchor base station.
  • the UE has mobility, and the UE may move after entering the inactive state, so the serving base station of the UE may be different from the anchor base station.
  • FIG. 2 shows an interactive process in which the UE requests to restore the RRC connection state for data transmission.
  • the interactive process may include the following steps:
  • Step 201 the UE in the RRC inactive state sends an RRC resume request (RRCResumeRequest) message to the serving base station.
  • RRC resume request RRCResumeRequest
  • Step 202 If the serving base station of the UE is not the anchor base station of the UE, the serving base station sends a Retrieve UE CONTEXT REQUEST message to the anchor base station to request the context of the UE.
  • Step 203 the anchor base station sends a Retrieve UE CONTEXT RSPONSE message to the serving base station, and the message includes the context of the UE.
  • Step 204 After receiving the retrieval context response message, the serving base station sends an RRC resume (RRCResume) message to the UE, so as to make the UE switch to the RRC connected state.
  • RRC resume RRCResume
  • Step 205 after receiving the RRC recovery message, the UE switches to the RRC connection state.
  • Step 206 after the UE recovers to the RRC connection state, it sends an RRC recovery complete (RRCResumeComplete) message to the serving base station.
  • RRC recovery complete RRCResumeComplete
  • Step 207 After receiving the RRC recovery complete message, the serving base station sends the address indication (Xn-U address indication) information of the Xn interface to the anchor base station.
  • Step 208 the serving base station sends a channel switch request (path switch request) message to the AMF, and receives a path switch response (path switch response) message, and performs channel switching, so that the channel of the core network equipment is switched to the serving base station.
  • path switch request path switch request
  • path switch response path switch response
  • Step 209 After channel switching, the serving base station sends a UE context release (UE context release) message to the anchor base station to instruct the anchor base station to release the context of the UE.
  • UE context release UE context release
  • the serving base station becomes the new anchor base station. Therefore, the original anchor base station (that is, the anchor base station in FIG. 2 ) does not need to reserve the context of the UE, so the context of the UE can be released.
  • Step 210 after the channel is switched, the UE in the RRC connection state can perform data transmission with the UPF.
  • Step 211 after the data transmission is completed, the serving base station (which is also the anchor base station) may send an RRC release (RRCRelease) message to the UE, so that the UE switches to the RRC inactive state.
  • RRC release RRCRelease
  • the RRC release message may include a suspend configuration (suspendconfig), which is used to instruct the UE to suspend the UE context.
  • suspendconfig a suspend configuration
  • the UE restored to the inactive state needs to send data again, it may re-execute the above steps 201 to 211.
  • the UE performs SDT in the inactive state, which can be divided into two scenarios: anchor point relocation and anchor point non-relocation.
  • the migration of the anchor point means that when the UE requests SDT in the inactive state, it can perform a solution similar to the above step 206 to step 208, and switch the channel of the AMF to the current serving base station, so that the current serving base station becomes the anchor After clicking the base station (that is, the migration of the anchor point), data transmission is performed.
  • the non-migration of the anchor point means that there is no need to switch the channel of the AMF to the current serving base station, and the original anchor base station still controls the data transmission.
  • FIG. 3 is a flow chart of performing SDT in the scenario of anchor point migration. As shown in FIG. 3 , the process may include the following steps:
  • Step 301 the UE in the RRC inactive state carries the SDT data packet in the RRC recovery request message sent to the serving base station, and the RRC recovery request message carrying the SDT data packet can be used to request SDT.
  • Step 302. If the serving base station of the UE is not the anchor base station of the UE, the serving base station sends a retrieval context request message to the anchor base station.
  • the retrieval context request message may include an SDT indication to instruct the anchor base station to perform SDT.
  • Step 303 the anchor base station sends a retrieval context response message to the serving base station.
  • Step 304 the serving base station and the anchor base station send address indication information of the Xn interface.
  • Step 305 the serving base station sends a channel switching request message to the AMF, and receives a channel switching response message, and performs channel switching, so that the channel of the core network equipment is switched to the serving base station.
  • Step 306 after channel switching, the serving base station directly sends the SDT data packet carried by the UE in the RRC recovery request message to the UPF.
  • Step 307 after channel switching, the serving base station also sends a UE context release message to the anchor base station to instruct the anchor base station to release the UE context.
  • Step 308 after channel switching, the UE transmits subsequent SDT data packets through the serving base station and the UPF.
  • Step 309 after the data transmission is completed, the serving base station (which is also the anchor base station) sends an RRC release message to the UE.
  • the RRC release message may include a suspension configuration, which is used to instruct the UE to suspend the UE context.
  • FIG. 4 is a flow chart of performing SDT in a scenario where the anchor point does not migrate. As shown in FIG. 4, the process may include the following steps:
  • Step 401 the UE in the RRC inactive state carries the SDT data packet in the RRC recovery request message sent to the serving base station, and the RRC recovery request message carrying the SDT data packet can be used to request SDT.
  • Step 402 If the serving base station of the UE is not the anchor base station of the UE, the serving base station sends a retrieval context request message to the anchor base station.
  • the retrieval context request message may include an SDT indication to instruct the anchor base station to perform SDT.
  • Step 403 the anchor base station sends a retrieval context response message to the serving base station.
  • Step 404 the serving base station sends the SDT data packet carried by the UE in the RRC recovery request message to the UPF through the anchor base station.
  • Step 405 the UE transmits subsequent SDT data packets with the UPF through the serving base station and the anchor base station.
  • Step 406 after the data transmission is completed, the serving base station sends an RRC release message to the UE.
  • the RRC release message may include a suspension configuration, which is used to instruct the UE to suspend the UE context.
  • the embodiment of the present application provides a communication method.
  • the anchor base station can determine whether to perform anchor migration according to the auxiliary information.
  • the embodiment of the present application can be applied to but not limited to the following communication systems: narrow band-internet of things (NB-IoT) system, wireless local area network (wireless local access network, WLAN) system, long term evolution (long term evolution, LTE) ) system, 5G mobile communication system, or communication system after 5G, such as 6G system, device to device (device to device, D2D) communication system, Internet of Vehicles, etc.
  • NB-IoT narrow band-internet of things
  • WLAN wireless local area network
  • LTE long term evolution
  • 5G mobile communication system or communication system after 5G, such as 6G system, device to device (device to device, D2D) communication system, Internet of Vehicles, etc.
  • FIG. 5 is a communication system provided by an embodiment of the present application.
  • the communication system includes a terminal device 501 , a service access network device 502 and an anchor point access network device 503 .
  • the anchor access network device 503 is the last access network device that provides services for the terminal device 501 before the terminal device 501 enters the inactive state, and the anchor access network device 503 is different from the serving access network device 502 .
  • the access network device to which the cell where the terminal device currently resides belongs, or the access network device that currently provides services for the terminal device may be referred to as a serving access network device (such as the above described serving base station).
  • a serving access network device such as the above described serving base station.
  • an anchor access network device such as the above-described anchor base station.
  • FIG. 1 a schematic diagram of a network architecture corresponding to the communication system shown in FIG. 5 that is applicable to a possible embodiment of the present application may be shown in FIG. 1 .
  • the terminal device 501 may be the UE in Figure 1
  • the serving access network device 502 or the anchor access network device 503 may be a device in the AN or RAN shown in Figure 1 .
  • the system architecture described in the embodiments of the present application is to illustrate the technical solutions of the embodiments of the present application more clearly, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • Those of ordinary skill in the art know that with the evolution of the network architecture With the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the access network device involved in this application may be a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the access network device in this embodiment of the present application may be a base station. Therefore, the serving access network device 502 may be a serving base station, and the anchor access network device 503 may be an anchor base station.
  • the base station may include various forms, for example: a macro base station, a micro base station (also called a small station), a relay station, an access point (access point), and the like.
  • the names of access network devices may be different, for example: global system for mobile communication (GSM) or code division multiple access (code division multiple access, Base Transceiver Station (BTS) in CDMA) network, NB (NodeB) in wideband code division multiple access (WCDMA), eNB in Long Term Evolution (LTE) Or eNodeB (evolutional NodeB), a base station in a 5G network or a future evolved public land mobile network (public land mobile network, PLMN).
  • the access network device may also be a broadband network gateway (broadband network gateway, BNG), an aggregation switch or a non-3GPP access device.
  • the access network device may also be a wireless controller in a cloud radio access network (CRAN), or a transmission and reception point (TRP), or a device including a TRP. This application The embodiment does not specifically limit this.
  • the terminal device involved in the embodiment of this application can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); Can be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a UE, an access terminal, a terminal unit, a subscriber unit, a terminal station, or a mobile station (Mobile Station) in a 5G network or a future evolved public land mobile network (PLMN). , MS), mobile station, remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent or terminal device, etc.
  • An access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ), wireless terminals in a smart city, wireless terminals in a smart home, etc. Terminals can be mobile or fixed. The embodiment of the present application does not limit the specific type and structure of the terminal.
  • FIG. 6 is a schematic structural diagram of a communication device 60 provided by an embodiment of the present application.
  • the communication device 60 includes one or more processors 601, communication lines 602, and at least one communication interface ( It is only exemplary to include a communication interface 603 and a processor 601 for illustration), and optionally, a memory 604 may also be included.
  • the processor 601 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 602 may include a path for communication between various components.
  • the communication interface 603 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN), etc.
  • the transceiving module may be a device such as a transceiver or a transceiver.
  • the communication interface 603 may also be a transceiver circuit located in the processor 601 to realize signal input and signal output of the processor.
  • the memory 604 may be a device having a storage function.
  • it can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other medium, but not limited to.
  • the memory may exist independently and be connected to the processor through the communication line 602 . Memory can also be integrated with the processor.
  • the memory 604 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 601 .
  • the processor 601 is configured to execute computer-executed instructions stored in the memory 604, so as to implement the communication method provided in the embodiment of the present application.
  • the processor 601 may also perform processing-related functions in the communication method provided in the following embodiments of the present application, and the communication interface 603 is responsible for communicating with other devices or communication networks.
  • the embodiment does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 601 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 6 .
  • the communication device 60 may include multiple processors, for example, the processor 601 and the processor 607 in FIG. 6 .
  • processors may be a single-core processor or a multi-core processor.
  • the processor here may include but not limited to at least one of the following: central processing unit (central processing unit, CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence
  • central processing unit central processing unit, CPU
  • microprocessor digital signal processor
  • microcontroller microcontroller unit, MCU
  • artificial intelligence Various types of computing devices that run software such as processors, each computing device may include one or more cores for executing software instructions to perform calculations or processing.
  • the communication device 60 may further include an output device 605 and an input device 606 .
  • Output device 605 is in communication with processor 601 and can display information in a variety of ways.
  • the output device 605 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device 606 communicates with the processor 601 and can receive user input in various ways.
  • the input device 606 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the aforementioned communication device 60 may sometimes also be referred to as a communication device, which may be a general-purpose device or a special-purpose device.
  • the communication device 60 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, the above-mentioned terminal device, the above-mentioned network device, or a 6 devices with similar structures.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 60 .
  • FIG. 7 shows a schematic diagram of a hardware structure of a UE.
  • the structure of the UE may be as shown in FIG. 7, and the UE may include: a processor 710, an external memory interface 720, an internal memory 721, and a universal serial bus (universal serial bus, USB) Interface 730, charging management module 740, power management module 741, battery 742, antenna 1, antenna 2, mobile communication module 750, wireless communication module 760, audio module 770, speaker 770A, receiver 770B, microphone 770C, earphone jack 770D, sensor Module 780, button 790, motor 791, indicator 792, camera 793, display screen 794, and subscriber identification module (subscriber identification module, SIM) card interface 795, etc.
  • SIM subscriber identification module
  • the sensor module 780 may include a pressure sensor 780A, a gyroscope sensor 780B, an air pressure sensor 780C, a magnetic sensor 780D, an acceleration sensor 780E, a distance sensor 780F, a proximity light sensor 780G, a fingerprint sensor 780H, a temperature sensor 780J, a touch sensor 780K, and ambient light Sensor 780L, bone conduction sensor 780M, etc.
  • the structure shown in this embodiment does not constitute a specific limitation on the UE.
  • the UE may include more or fewer components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 710 may include one or more processing units, for example: the processor 710 may include an application processor (application processor, AP), a Modem, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor) , ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • Modem graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the charging management module 740 is configured to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 741 is used for connecting the battery 742 , the charging management module 740 and the processor 710 .
  • the power management module 741 receives the input of the battery 742 and/or the charging management module 740, and supplies power for the processor 710, the internal memory 721, the display screen 794, the camera 793, and the wireless communication module 760, etc.
  • the wireless communication function of the UE may be implemented by the antenna 1, the antenna 2, the mobile communication module 750, the wireless communication module 760, a modem, and a baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the UE can be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • the mobile communication module 750 can provide wireless communication solutions including 2G/3G/4G/5G applied to the UE.
  • the wireless communication module 760 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system ( Global navigation satellite system (GNSS), frequency modulation (frequency modulation, FM), near field communication (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 760 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 760 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 710 .
  • the wireless communication module 760 can also receive the signal to be sent from the processor 710 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the wireless communication module 760 may be used for the UE to send a request for resuming the RRC connection to the network node, and to receive a response message from the network node.
  • the UE realizes the display function through the GPU, the display screen 794, and the application processor.
  • the GPU is a microprocessor for image processing, connected to the display screen 794 and the application processor.
  • the display screen 794 is used to display images, videos and the like.
  • a series of graphical user interfaces may be displayed on the display screen 794 of the UE.
  • the UE can realize the shooting function through ISP, camera 793, video codec, GPU, display screen 794 and application processor.
  • Camera 793 is used to capture still images or video.
  • the external memory interface 720 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the UE.
  • an external memory card such as a Micro SD card
  • the internal memory 721 may be used to store computer-executable program code, which includes instructions.
  • the processor 710 executes various functional applications and data processing of the UE by executing instructions stored in the internal memory 721 .
  • the UE can implement audio functions through the audio module 770, the speaker 770A, the receiver 770B, the microphone 770C, the earphone interface 770D, and the application processor. Such as music playback, recording, etc.
  • UE may also include pressure sensor 780A, air pressure sensor 780C, gyro sensor 780B, magnetic sensor 780D, acceleration sensor 780E, distance sensor 780F, proximity light sensor 780G, ambient light sensor 780L, fingerprint sensor 780H, temperature sensor 780J, touch sensor 780K , bone conduction sensor 780M, button 790, motor 791, indicator 792, etc.
  • the SIM card interface 795 is used for connecting a SIM card.
  • the SIM card can be connected to and separated from the UE by being inserted into the SIM card interface 795 or pulled out from the SIM card interface 795 .
  • the UE can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 795 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 795 at the same time.
  • the SIM card interface 795 is also compatible with external memory cards. The UE interacts with the network through the SIM card to implement functions such as calling and data communication.
  • operating systems such as Hongmeng operating system, iOS operating system, Android operating system, Windows operating system, etc.
  • Applications can be installed and run on this operating system.
  • the hardware modules included in the UE shown in FIG. 7 are only described as examples, and do not limit the specific structure of the UE.
  • the UE provided in the embodiment of the present application may also include other hardware modules that have an interactive relationship with the hardware modules shown in the figure, which is not specifically limited here.
  • the UE may also include a flashlight, a micro projection device, and the like.
  • the UE may also include components such as a keyboard and a mouse.
  • the communication method provided by the embodiment of the present application will be described below with reference to FIG. 1 to FIG. 7 .
  • the devices in the following embodiments may have the components shown in FIG. 7 .
  • the actions and terms involved in the various embodiments of the present application may refer to each other without limitation.
  • the names of messages exchanged between various devices or the names of parameters in messages are just examples, and other names may also be used in specific implementations, which are not limited.
  • the embodiment of this application provides A flowchart of a communication method may be shown in FIG. 8 .
  • the communication method may include the following steps:
  • Step 801 the UE sends an RRC recovery request, UE assistance information and a first data packet to the serving base station.
  • Step 801 is performed by the UE after triggering the SDT. Triggering the SDT means that the UE determines to perform the SDT.
  • the UE sends an RRC recovery request to the serving base station to request establishment of an SDT session, and the SDT session can be used for transmission of SDT services.
  • the RRC recovery request message may carry a cause value, and the cause value may be used to indicate the purpose of the RRC recovery request message.
  • the cause value carried in the RRC recovery request message may be a mobile originating (MO) small data transmission indication (MO-SDT), so that the purpose of the RRC recovery request message is to request the establishment of an SDT session.
  • the auxiliary information of the UE may include at least one of the following information: UE attribute information, radio bearer (radio bearer, RB) information, attribute information of services carried by the radio bearer, SDT service information, and SDT session information.
  • the attribute information of the UE may include at least one of the following: the moving track of the UE, the mobility of the UE, and the time interval and duration that the UE expects to monitor the scheduling information.
  • the mobile trajectory of the UE can be represented by the cells that the UE traverses and the time that the UE stays in each cell.
  • the mobility of the UE can be high mobility, medium mobility or low mobility, and the time that the UE expects to monitor scheduling information
  • the interval and duration can be configuration parameters for small data transmission-discontinuous reception (SDT-DRX).
  • the SDT-DRX parameter can be the parameter configuration expected by the UE during the SDT, or it can be pre-configured to the UE by the anchor base station (for example, configured through an RRC dedicated message, or configured through broadcast). It should be noted that if the UE receives both the SDT-DRX configuration parameters through the RRC dedicated message and the SDT-DRX configuration parameters through the base station broadcast, the UE will select the configuration parameters with a shorter listening interval.
  • the information of the radio bearer may include at least one of the following: the type of the radio bearer and the service type carried by the radio bearer.
  • the type of the radio bearer may include: signaling radio bearer (signalling RB, SRB) and data radio bearer (data RB, DRB), and the SRB may further include types such as SRB1, SRB2, and SRB3.
  • the service type carried by the SRB may be a signaling service type, such as a positioning service
  • the service carried by the DRB may be a data transmission service, such as an SDT service.
  • the attribute information of the service carried by the radio bearer may include at least one of the following: transmission quality information required by the service (such as transmission delay, packet loss rate, etc.), frequency of service transmission (such as single transmission, multiple transmissions, or specific number of transmissions, etc.), service sending cycle, service duration (such as average duration, minimum duration, maximum duration, etc.), and business data volume (such as average data volume, minimum data volume, maximum data volume, total data volume, etc.).
  • transmission quality information required by the service such as transmission delay, packet loss rate, etc.
  • frequency of service transmission such as single transmission, multiple transmissions, or specific number of transmissions, etc.
  • service sending cycle such as service duration, minimum duration, maximum duration, etc.
  • business data volume such as average data volume, minimum data volume, maximum data volume, total data volume, etc.
  • the information of the SDT service may include at least one of the following: the duration of the SDT service, and the maximum time delay allowed by scheduling data.
  • the information of the SDT session may include at least one of the following: the number of times the UE expects to continuously transmit data in the SDT session, an indication of whether the data transmitted in the SDT session is segmented, and the amount of data to be sent during the SDT session.
  • content included in the UE's assistance information may be used to assist the anchor base station in communicating with the UE, such as assisting in establishing an SDT session and assisting in performing SDT.
  • the auxiliary information of the UE may be calculated by the UE itself during the previous process of establishing the radio bearer, or it may also be configured to the UE by a network element of the core network (for example, a network element with access and mobility management functions) .
  • multiple ways may be used to configure or instruct the UE to send the auxiliary information of the UE after the SDT is triggered.
  • the display configuration message (such as RRC exclusive message, broadcast message, etc.) sent by the network side is used to indicate, and the UE can check the configuration message after triggering the SDT to determine whether to send the auxiliary information of the UE.
  • the UE may be configured in advance, so that the UE sends the auxiliary information of the UE by default after the SDT is triggered.
  • the auxiliary information of the UE is time-sensitive, and the UE may be configured to send the auxiliary information of the UE after the SDT is triggered as long as the auxiliary information of the UE is valid.
  • a higher layer of the UE such as a non-access stratum (Non-access stratum, NAS) may instruct the UE to send the auxiliary information of the UE.
  • NAS non-access stratum
  • the first data packet is a data packet of the SDT service, and the first data packet is transmitted through the SDT bearer.
  • the size of the first data packet is smaller than a first threshold, and the first threshold may be considered as a data packet size requirement for triggering SDT.
  • the UE may determine that the first data packet belongs to the SDT service, and may also determine that the size of the SDT data packet is smaller than the first threshold. Based on this, the UE may determine to trigger SDT, request An SDT session is established to send the first data packet.
  • the RRC recovery request, the auxiliary information of the UE and the first data packet may be encapsulated in the same message and sent to the serving base station.
  • Step 802 the serving base station sends a retrieval context request message to the anchor base station, where the retrieval context request message is used to request establishment of an SDT session.
  • the serving base station is different from the anchor base station, so the serving base station needs to request the anchor base station to establish an SDT session.
  • the retrieval context request message may include at least one of the following: SDT indication (SDT Indicator) information, a locale identifier (locale identifier, LCID), auxiliary information of the UE, a list of network slice information supported by the serving base station, and information provided by the serving base station security capabilities.
  • SDT indication information in the retrieval context request message may be used to indicate that the retrieval context request message is for requesting establishment of an SDT session.
  • the LCID, the UE's auxiliary information, the network slice information list supported by the serving base station, and the security capabilities of the serving base station can be used to assist the anchor base station to establish an SDT session and perform SDT.
  • the LCID is a media access control (media access control, MAC) layer LCID including the first data packet
  • the serving base station can obtain the LCID after parsing the MAC layer data packet of the first data packet, and the LCID can be used to identify A radio bearer for transmitting the first data packet.
  • the network slice information list supported by the serving base station may include single network slice selection assistance information (single network slice selection assistance information, S-NSSAI).
  • the security capabilities of the serving base station may include NR encryption algorithms (NR encryption algorithms), NR integrity protection algorithms (NR integrity protection algorithms), E-UTRA integrity protection algorithms (E-UTRA integrity protection algorithms), etc.
  • E-UTRA refers to the evolved UMTS terrestrial radio access network (evolved UMTS terrestrial radio access network)
  • UMTS refers to the universal mobile telecommunications system (universal mobile telecommunications system).
  • Step 803 the anchor base station determines whether to perform anchor migration.
  • the auxiliary information of the UE may be used to assist the anchor base station in determining whether to perform anchor migration.
  • the anchor base station may determine whether to perform anchor migration according to the auxiliary information of the UE carried therein.
  • the UE's assistance information may include the UE's movement trajectory and the UE's mobility. If the UE's movement trajectory indicates that the UE has not traversed other cells, and the UE's mobility is low mobility, then the anchor base station may consider the UE as The UE will not move out of the current serving base station in a short period of time, so the anchor base station can consider that there is no need to perform anchor migration. On the contrary, if the movement track of the UE indicates that the UE has traversed many other cells, and the mobility of the UE is high mobility, the anchor base station may consider that anchor point relocation is required. It should be understood that if the UE seldom moves, even if the anchor base station does not migrate to the serving base station, the UE can still communicate with the network stably, and not performing anchor migration can save communication resources.
  • the auxiliary information of the UE may also include information such as the duration of the SDT service, the maximum delay allowed by the scheduling data, and the amount of data to be sent during the SDT session. If the duration of the SDT service is longer and the time allowed by the scheduling data The shorter the maximum delay and the larger the amount of data to be sent during the SDT session, the anchor base station may consider that anchor point migration is required. On the contrary, the anchor base station may consider that there is no need to perform anchor migration. It should be understood that, if the maximum time delay allowed by the scheduling data is relatively short, the relocation of the anchor point can shorten the time delay for transmitting data between the UE and the anchor base station, so as to meet the time delay requirement of the scheduling data. In addition, when the duration of the SDT service is long and the amount of data to be sent during the SDT session is large, the migration of the anchor point can prevent the SDT from occupying too many resources of the original anchor point base station.
  • the anchor base station can determine whether to perform anchor migration according to the auxiliary information of the UE. Compared with the default scheme of anchor migration, the scheme of this application can be determined according to actual needs, which can save information. Signaling resources, to avoid the waste of signaling resources caused by unnecessary migration of anchor points.
  • the anchor base station may determine whether to perform anchor migration based on but not limited to UE auxiliary information. For example, the anchor base station may also determine whether to perform anchor migration in combination with its own load conditions. In addition, the anchor base station may make a judgment according to one or more parameters in the assistance information of the UE.
  • the migration of the anchor point refers to the migration of the anchor point of the base station to the serving base station, so that the serving base station of the UE also serves as the anchor base station of the UE, that is, the serving base station and the anchor base station are the same base station.
  • the anchor base station may also determine whether to suggest the UE to switch to the RRC connection state according to the assistance information of the UE.
  • the anchor base station may determine whether the UE switches to the RRC connection state according to parameters such as the amount of transmitted data and the duration of data transmission.
  • the auxiliary information of the UE may also include information such as the duration of the SDT service and the amount of data to be sent during the SDT session. If the duration of the SDT service is longer and the amount of data to be sent during the SDT session is greater, the anchor point The base station may consider that it is necessary for the UE to switch to the RRC connected state.
  • the purpose of the SDT technology to allow the UE to transmit data in the RRC inactive state is to prevent the UE from wasting communication resources due to frequent switching between the RRC inactive state and the RRC connected state. If the amount of data to be sent by the UE is large and the transmission time is long, it is not necessary to transmit in the RRC inactive state, so the anchor base station can suggest the UE to switch to the RRC connected state.
  • Step 804 the anchor base station sends a retrieval context response message to the serving base station.
  • the retrieval context response message may include: all contexts of the UE and auxiliary information of the UE. It should be understood that since the entire context of the UE and the auxiliary information of the UE are retained by the anchor base station, and the anchor base station is about to migrate to the serving base station, the anchor base station can send the entire context of the UE and the auxiliary information of the UE to the serving base station , the entire context of the UE and the auxiliary information of the UE can be used for the serving base station to communicate with the UE subsequently, for example, the serving base station can assist the serving base station in establishing an SDT session and performing SDT transmission.
  • the retrieval context response message may include indication information indicating whether to migrate the anchor point.
  • the Retrieve Context Response message may also include indication information whether to suggest the UE to restore to the RRC connected state.
  • Step 805 the serving base station sends a path switch request message to the AMF, and receives a path switch response message from the AMF, so that the core network path is switched to the serving base station.
  • the serving base station receives all the context information of the UE and switches the core network path to the serving base station, the migration of the anchor point is realized, and the serving base station also becomes the anchor point base station of the UE.
  • Step 806 the serving base station sends the first data packet to the UPF.
  • the serving base station may temporarily store the first data packet locally in the serving base station.
  • the anchor base station sends the context information to the serving base station through the retrieval context response message
  • the serving base station may send the first data packet to the UPF.
  • the execution order of step 805 and step 804 is not limited in this application.
  • Step 807 the serving base station sends an RRC recovery message to the UE.
  • the serving base station may determine whether to switch the UE to the RRC connected state according to the auxiliary information of the UE, and the serving base station may determine whether to switch the UE to the RRC connected state with the anchor base station to determine whether It is recommended that the method for the UE to restore to the RRC connected state is similar, and will not be repeated here.
  • the serving base station may also refer to the indication information to determine whether to switch the UE to the RRC connection state.
  • FIG. 8 illustrates that the serving base station determines to switch the UE to the RRC connected state.
  • the RRC recovery message sent by the serving base station can be used to configure the UE to switch to the RRC connected state.
  • the UE may notify the upper layer of the UE that the SDT session is terminated and the first data packet is sent successfully.
  • the UE may switch to the RRC connected state according to the RRC recovery message.
  • Step 808 the UE sends an RRC recovery complete message to the serving base station.
  • the UE After the UE is switched to the RRC connected state, it can send an RRC recovery complete message to the serving base station to indicate that the state switching of the UE is completed. Therefore, the UE and the serving base station (which is also the anchor base station) can communicate in the RRC connected state.
  • the embodiment shown in FIG. 8 is a scenario where the anchor base station determines to perform anchor migration, and the serving base station determines to switch the UE to the RRC connection state.
  • FIG. 9 is a flowchart of another communication method provided by the present application. As shown in FIG. 9, the communication method may include the following steps:
  • Step 901 the UE sends an RRC recovery request, UE assistance information and a first data packet to the serving base station.
  • Step 902 the serving base station sends a retrieval context request message to the anchor base station, where the retrieval context request message is used to request establishment of an SDT session.
  • Step 903 the anchor base station determines whether to perform anchor migration.
  • Step 904 the anchor base station sends a retrieval context response message to the serving base station.
  • Step 905 the serving base station sends a path switching request message to the AMF, and receives a path switching response message from the AMF, so that the path of the core network is switched to the serving base station.
  • Step 906 the serving base station sends the first data packet to the UPF.
  • steps 901 to 906 reference may be made to the description of steps 801 to 806.
  • the serving base station may determine that there is no need to switch the UE to the RRC connection state. In this case, the UE can continue to communicate with the serving base station in the RRC inactive state, and can continue to transmit data through the SDT session. In the subsequent data transmission process, the serving base station is the anchor base station of the UE.
  • step 907 subsequent data transmission is performed between the UE and the UPF through the serving base station.
  • Step 908 the serving base station sends an RRC release message to the UE, and the RRC release message is used to terminate the SDT session.
  • the serving base station may decide to terminate the SDT session according to certain judgment conditions. For example, when the duration of the SDT service ends or the SDT data transmission is completed, the serving base station may decide to terminate the SDT session.
  • the RRC release message may configure the UE to continue to maintain the RRC inactive state, or configure the UE to enter the RRC idle state.
  • a first possible implementation when the size of the data packet is smaller than the first threshold, the UE triggers SDT, and the data packet can be considered as the first data packet transmitted through the SDT session (for example, in the embodiment shown in FIG. 8 or FIG. 9 of the first packet). And, the size of the data packets sent by the subsequent UE through the SDT session should be smaller than the first threshold.
  • the UE may notify the anchor point access network device to terminate the SDT session and/or request the anchor point access network device to configure the UE Switch to RRC connection state.
  • the UE when the size of the data packet is smaller than the first threshold, the UE triggers SDT, and the data packet can be considered as the first data packet transmitted through the SDT session (for example, in the embodiment shown in FIG. 8 or FIG. 9 of the first packet).
  • the size of the data packets sent by the subsequent UE through the SDT session there is no limitation on the size of the data packets sent by the subsequent UE through the SDT session.
  • the number of data packets sent by the subsequent UE through the SDT session is limited, for example, the number is limited to the second threshold.
  • the UE may notify the anchor point access network device to terminate the SDT session and/or request The anchor point access network device configures the UE to switch to the RRC connection state.
  • the UE may determine that the data packet is successfully transmitted after receiving layer 1 or layer 2 feedback, and at this time, the UE may increment the counter by 1. In this way, the UE can measure the number of data packets sent.
  • the UE may notify the anchor point access network through an RRC message (such as an RRC recovery request message), a MAC layer control element (MAC control element, MAC CE), or a dedicated control channel (dedicated control channel, DCCH).
  • RRC message such as an RRC recovery request message
  • MAC control element MAC control element
  • DCCH dedicated control channel
  • the data packet transmitted through SDT may be PDCP SDU, RLC SDU or MAC SDU.
  • SDU refers to the service data unit (service data unit)
  • PDCP refers to the packet data convergence protocol (packet data convergence protocol)
  • RLC refers to the radio link layer control protocol (radio link control).
  • the UE may notify the network device of the situation through a dedicated DCCH message or an RRC recovery request message.
  • the RRC recovery request message sent by the UE may carry a new cause value, for example, the cause value in the RRC recovery request message may be: non-SDT data arrival (non-SDT data arrival).
  • the anchor base station may first instruct the UE to switch to the RRC connection state, and then send the non-SDT bearer downlink data.
  • the anchor base station can directly terminate the current SDT session, and then the UE can send an RRC recovery request message process to request switching to the RRC connection state, and then the anchor base station sends the downlink data of the non-SDT bearer to the UE.
  • the anchor base station can directly terminate the current SDT session by using an RRC release message, wherein the RRC release message can carry random access channel (random access channel, RACH) resources or configure uplink resources. This method can enable the UE to subsequently send After the RRC recovery request message, the network can be quickly accessed through a 2-step (2-step) RACH, thereby quickly switching to the RRC connection state.
  • the uplink resource can adapt to the size of the transmission of the first piece of uplink data (such as the first data sent by the UE and the auxiliary information of the UE, etc.) or signaling (such as an RRC recovery request), the second A piece of uplink data or signaling can be transmitted in segments.
  • the RRC recovery request is not allowed to be segmented.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • explicit feedback such as layer 1 or layer 2 feedback
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the UE needs to receive explicit feedback (such as layer 1 or layer 2 feedback) before continuing to send subsequent data or signaling.
  • the explicit feedback of the first message may be that the base station uses the UE's cell-radio network temporary identifier (C-RNTI) to schedule uplink and downlink data for feedback, or it may also be explicit
  • C-RNTI cell-radio network temporary identifier
  • the contention resolution feedback message (for example, the Msg4 message in the RACH process, the Msg4 message carries the contention resolution identifier).
  • the UE when the UE acquires the first data packet and triggers the SDT, the UE may not have access to the network. In this case, the UE may request the serving base station for transmission during the process of randomly accessing the network. Uplink resource of SDT service data.
  • the embodiment of the present application provides another communication method, as shown in FIG. 10 , the communication method may include the following steps:
  • Step 1001 the UE sends a random access preamble to the serving base station.
  • the random access preamble refers to a preamble (sequence) code.
  • the UE may not have accessed the serving base station of the current cell, so the UE sends a random access preamble to the serving base station to request access to the network.
  • Step 1001 may be performed after the UE triggers the SDT, and the UE may trigger the SDT after obtaining the first data packet.
  • the random access preamble sent by the UE to the serving base station may also be used to request an uplink resource for transmitting SDT service data (such as the first data packet acquired by the UE).
  • Step 1002 the serving base station sends a random access response (random access response, RAR) message to the UE.
  • RAR random access response
  • the RAR message is used to indicate that the UE has successfully accessed the network.
  • the RAR message may carry uplink resources for transmitting SDT service data.
  • the uplink resource may be used to transmit the first message sent by the UE after the SDT is triggered, such as the message encapsulated by the RRC recovery request, the auxiliary information of the UE, and the first data packet.
  • Step 1003 the UE sends an RRC recovery request, UE auxiliary information and a first data packet to the serving base station.
  • step 1003 reference may be made to the related description of step 901, which will not be repeated here.
  • the UE after the UE sends the RRC recovery request, it can start the RACH contention resolution timer (ra-ContentionResolutionTimer), and the UE can monitor the feedback message within the time of the timer, and the feedback
  • the message is a feedback message including an RRC recovery request, UE assistance information and a message of the first data packet.
  • the duration of the RACH contention resolution timer may be greater than the default duration.
  • the default duration refers to the duration of the RACH contention resolution timer when the serving base station of the UE is the same as the anchor base station. It should be understood that when the serving base station of the UE is not the anchor base station of the UE, the serving base station needs to obtain all or part of the context of the UE before sending the contention resolution identifier. In this scenario, the anchor point of the base station may be relocated, and its signaling overhead will take a certain amount of time. This application prolongs the duration of the RACH contention resolution timer when the UE's serving base station is not the UE's anchor base station, so that the contention resolution timer can be avoided from overtime.
  • the duration of the RACH contention resolution timer of the UE may be automatically extended by k times.
  • k may be determined by network configuration or a default protocol.
  • the initial duration of the RACH contention resolution timer can be configured as one of ⁇ sf8, sf16, sf24, sf32, sf40, sf48, sf56, sf64 ⁇ , assuming that the duration of the RACH contention resolution timer is sf48, and k is 2 , the length of the extended RACH contention resolution timer should be sf96.
  • Step 1004 the serving base station sends a retrieval context request message to the anchor base station, where the retrieval context request message is used to request establishment of an SDT session.
  • Step 1005 the anchor base station determines whether to perform anchor migration.
  • Step 1006 the anchor base station sends a retrieval context response message to the serving base station.
  • steps 1004 to 1006 reference may be made to the relevant descriptions of steps 902 to 904, which will not be repeated here.
  • Step 1007 the serving base station sends a Msg4 message to the UE, and the Msg4 message carries a contention resolution identifier.
  • the UE may determine that the RRC recovery request, the auxiliary information of the UE, and the first data packet are sent successfully.
  • Step 1008 the serving base station sends a path switching request message to the AMF, and receives a path switching response message from the AMF, so that the core network path is switched to the serving base station.
  • Step 1009 the serving base station sends the first data packet to the UPF.
  • Step 10010 the subsequent data transmission is performed between the UE and the UPF through the serving base station.
  • Step 10011 the serving base station sends an RRC release message to the UE, and the RRC release message is used to terminate the SDT session.
  • steps 1008 to 10011 reference may be made to the relevant descriptions of steps 905 to 908, and details are not repeated here.
  • step 1001 and step 1002 may also be executed before step 801 ; after step 801 is executed, a contention resolution timer may also be started; after step 803 is executed, step 1006 may also be executed.
  • a method for establishing a radio bearer is provided.
  • Figure 11 shows the process of establishing a radio bearer, as shown in Figure 11 , the method for establishing a radio bearer may include the following steps:
  • Step 1101 the UE registers with the network.
  • the UE After the UE is turned on, it can register in the network. During the registration period, the UE can interact with the anchor base station and core network equipment (such as AMF). For example, the UE has the ability to transmit in the RRC inactive state.
  • AMF core network equipment
  • the serving base station of the UE is also the anchor base station.
  • Step 1102 AMF sends an initial context setup request (initial context setup request) message to the anchor base station.
  • the initial context establishment request message may be used to request the anchor base station to establish radio bearer resources.
  • the initial context establishment request message may include assisted parameters (CN assisted parameters) of a core network (core network, CN), and the assisted parameters of the core network may be used to assist the anchor base station to establish a radio bearer and assist the anchor base station to communicate with the Communication of UE, etc.
  • assisted parameters CN assisted parameters
  • core network core network
  • the auxiliary parameters of the core network may include at least one of the following: an indication of whether to allow the terminal device to send or receive data in the RRC inactive state, whether to allow the terminal device to select network slice information to send data in the RRC inactive state , the period of the RRC inactive state of the terminal device, the duration of the SDT session, the duration of the terminal device sending data packets in the RRC inactive state, the interval for the terminal device to send or receive data packets in the RRC inactive state, and establishing SDT
  • the time interval of the session, the number and size of data packets transmitted during the SDT session, the number and size of data packets sent by the terminal device in the RRC inactive state, and the movement of the terminal device in the RRC inactive state The trajectory of the terminal device, the number of cells traversed by the terminal device when sending data in the RRC inactive state, the moving speed of the terminal device when sending data in the RRC inactive state, and the identification of the SDT bearer.
  • the auxiliary parameters of the core network may be data collected by core network equipment or statically subscribed data. If the auxiliary parameter of the core network is the statistics data of the core network equipment, the parameter can be refreshed by the core network equipment periodically. After the core network equipment refreshes the parameter, it can send the refreshed parameter to the anchor base station, so that the anchor base station can be updated in time The parameter. If the auxiliary parameters of the core network are statically subscribed data, when the subscribed data is updated (that is, after the parameter is updated), the core network equipment may send the updated parameters to the anchor base station.
  • the auxiliary parameters of the core network may be stored in the AMF, or stored in an entity of the AMF.
  • the static subscription data may be stored in a subscription database, and the subscription database may be located in the AMF or in an entity of the AMF.
  • the anchor base station may establish the initial context and establish the radio bearer on the network side.
  • the anchor base station can also configure radio bearers according to the auxiliary parameters of the core network. For example, it can identify a certain bearer as an SDT bearer, or indicate whether the data of a certain bearer is allowed to be transmitted in the RRC inactive state, or indicate whether a certain bearer is allowed. A bearer receives data and so on in the RRC inactive state.
  • the indication of whether the terminal device is allowed to send or receive data in the RRC inactive state is not included in the auxiliary parameters of the core network, and the indication is directly carried in the initial context establishment request message.
  • Step 1103 the anchor base station sends a radio bearer setup request (RB setup request) message to the UE.
  • RB setup request radio bearer setup request
  • the radio bearer establishment request is used to request the UE to establish a radio bearer on the user side.
  • the radio bearer establishment request may also include an auxiliary parameter of the core network, which is used to assist the UE in establishing the radio bearer.
  • Step 1104 the UE sends a radio bearer setup response (RB setup response) message to the anchor base station.
  • RB setup response radio bearer setup response
  • the radio bearer setup response message is a response message to the radio bearer setup request message, and the radio bearer setup response message may be used to indicate that the UE has completed the setup of the radio bearer.
  • Step 1105 the anchor base station sends an initial context establishment response message to the AMF.
  • the initial context establishment response message is a response message to the initial context establishment request message, and may be used to indicate that the UE and the anchor base station have completed the radio bearer establishment.
  • steps 1101 to 1105 are executed, the radio bearers on the user side and the network side are established, and the subsequent UE and UPF can transmit uplink or downlink data through the anchor base station.
  • the auxiliary parameters of the core network are carried in the initial context establishment request message as an example for illustration.
  • the auxiliary parameters of the core network may also be in the process of establishing the radio Other messages are sent to the anchor base station.
  • FIG. 11 uses AMF as an example for illustration.
  • the network element that sends the auxiliary parameters of the core network may be other network elements.
  • the network element that sends the auxiliary parameters of the core network may be different. , for example, is an access and mobility management functional network element in a communication network. The embodiments of the present application do not limit this.
  • FIG. 12 is a flow chart of the communication method. As shown in FIG. 12 , the communication The method may include the steps of:
  • Step 1201 establish a radio bearer, during which the anchor base station acquires auxiliary parameters of the core network.
  • auxiliary parameters of the core network may be used to determine whether to migrate the anchor point.
  • Step 1202 the anchor base station sends an RRC release message to the UE, and the RRC release message is used to configure the UE to enter the RRC inactive state.
  • Step 1203 the UE sends an RRC recovery request, UE assistance information and a first data packet to the serving base station.
  • Step 1204 the serving base station sends a retrieval context request message to the anchor base station, where the retrieval context request message is used to request establishment of an SDT session.
  • step 1203 and step 1204 For the implementation of step 1203 and step 1204, reference may be made to the description of step 801 and step 802, which will not be repeated here.
  • Step 1205 the anchor base station determines whether to perform anchor migration.
  • the anchor base station determines whether to implement anchor migration, which is different from that in step 803. Compared with the embodiment shown in FIG. 8 , the difference is that: the anchor base station may also determine whether to perform anchor migration based on auxiliary parameters of the core network. It should be understood that the manner of determining whether to migrate the anchor based on the auxiliary parameters of the core network is similar to the manner of determining whether to migrate the anchor based on the auxiliary information of the UE in step 801 , and will not be repeated here.
  • FIG. 12 is described by taking the anchor base station as an example to determine the migration of the anchor point.
  • Step 1206 the anchor base station sends a retrieval context response message to the serving base station.
  • step 1206 is similar to that of step 804, and reference may be made to the description of step 804.
  • the difference lies in that the retrieval context response message may also include at least part of auxiliary parameters of the core network.
  • Step 1207 the serving base station sends a path switching request message to the AMF, and receives a path switching response message from the AMF, so that the path of the core network is switched to the serving base station.
  • Step 1208 the serving base station sends the first data packet to the UPF.
  • Step 1209 the serving base station sends an RRC recovery message to the UE.
  • Step 12010 the UE sends an RRC recovery complete message to the serving base station.
  • step 1207 to step 12010 reference may be made to the description of step 805 to step 808, which will not be repeated here.
  • FIG. 13 is a flow chart of the communication method. As shown in FIG. 13 , the communication The method may include the steps of:
  • Step 1301 establish a radio bearer, during which the anchor base station acquires auxiliary parameters of the core network.
  • Step 1302 the anchor base station sends an RRC release message to the UE, and the RRC release message is used to configure the UE to enter the RRC inactive state.
  • Step 1303 the UE sends an RRC recovery request, UE assistance information and a first data packet to the serving base station.
  • Step 1304 the serving base station sends a retrieval context request message to the anchor base station, where the retrieval context request message is used to request establishment of an SDT session.
  • Step 1305 the anchor base station determines whether to perform anchor migration.
  • Step 1306 the anchor base station sends a retrieval context response message to the serving base station.
  • Step 1307 the serving base station sends a path switch request message to the AMF, and receives a path switch response message from the AMF, so that the core network path is switched to the serving base station.
  • Step 1308 the serving base station sends the first data packet to the UPF.
  • steps 1301 to 1308 is similar to that of steps 1201 to 1208, and reference may be made to the description of steps 1201 to 1208.
  • step 1309 subsequent data transmission is performed between the UE and the UPF through the serving base station.
  • Step 13010 the serving base station sends an RRC release message to the UE, and the RRC release message is used to terminate the SDT session.
  • step 1309 and step 13010 is similar to that of step 907 and step 908, and reference may be made to the description of step 907 and step 908.
  • this embodiment of the present application provides another communication method, and the communication method may include the following steps:
  • Step 1401 establish a radio bearer, during which the anchor base station acquires auxiliary parameters of the core network.
  • Step 1402 the anchor base station sends an RRC release message to the UE, and the RRC release message is used to configure the UE to enter the RRC inactive state.
  • Step 1403 the UE sends an RRC recovery request, UE assistance information and a first data packet to the serving base station.
  • Step 1404 the serving base station sends a retrieval context request message to the anchor base station, where the retrieval context request message is used to request establishment of an SDT session.
  • steps 1401 to 1404 is similar to that of steps 1201 to 1205, and reference may be made to the description of steps 1201 to 1204.
  • Step 1405 the anchor base station determines whether to perform anchor migration.
  • step 1305 the implementation manner of determining whether to perform anchor migration by the anchor base station is the same as step 1305 .
  • Step 1406 the anchor base station sends a retrieval context response message to the serving base station.
  • the content of the retrieval context response message in the embodiment shown in FIG. 14 is different from the content of the retrieval context response message in the embodiment shown in FIG. 12 .
  • the retrieval context response message may include: part of the UE is the context, SDT configuration information, and QoS-related parameters.
  • the part of the context of the UE may include the UE's PDU session list, or the UE's DRX configuration parameters during the SDT
  • the SDT configuration information may include the configuration of the SDT session at the RLC level
  • the QoS-related parameters may include the QoS carried by the SDT parameter.
  • Step 1407 the serving base station sends the first data packet to the UPF.
  • Step 1408 the subsequent data transmission is performed between the UE and the UPF through the serving base station.
  • Step 1409 the serving base station sends an RRC release message to the UE, and the RRC release message is used to terminate the SDT session.
  • steps 1407 to 1409 is similar to that of steps 1307 to 1309 , and reference may be made to the description of steps 1307 to 1309 .
  • FIG. 8 to FIG. 14 are several exemplary descriptions of the communication methods provided in this application.
  • the embodiment of the present application discloses a communication method, as shown in Figure 15, the method includes the following steps:
  • Step 1501 the terminal device sends a first message to the service access network device.
  • the first message includes a first request and first auxiliary information
  • the first request is used to request establishment of an SDT session
  • the first auxiliary information is used to determine whether to migrate the anchor point.
  • step 1501 is performed by the terminal device after triggering SDT, and triggering SDT means that the terminal device determines to perform SDT.
  • the first request can be the RRC recovery request in the embodiments shown in Figures 8 to 10 and Figures 12 to 14, the first request can refer to Figures 8 to 10 and Figures 12 to the related description of the RRC recovery request in the embodiment shown in FIG. 14 .
  • the SDT session that the first request is used to request to establish can be used for transmission of SDT services.
  • the first auxiliary information may be used to assist the anchor point access network device in determining whether to perform anchor point migration.
  • the first auxiliary information includes at least one of the following: the duration of the SDT service, the maximum delay allowed for scheduling data, the number of times the terminal device expects to continuously transmit data in the SDT session, and the time the terminal device expects to monitor the scheduling information Interval and duration, movement trajectory of terminal equipment, mobility of terminal equipment, total amount of data to be sent during the SDT session, which is used for the transmission of SDT services.
  • the first auxiliary information may also be used to assist SDT.
  • the first auxiliary information may also include at least one of the following: an indication of whether the data transmitted in the SDT session is segmented, the remaining amount of data to be transmitted in the SDT session, the information of the radio bearer, and the attribute information of the service carried by the radio bearer.
  • the radio bearer information includes at least one of the radio bearer type and the service type carried by the radio bearer
  • the attribute information of the service includes the transmission quality information required by the service, the frequency of service transmission, the period of service transmission, and the duration of the service. At least one of the time and the data volume of the business.
  • the first auxiliary information may be calculated by the terminal device itself during the previous process of establishing the radio bearer, or it may also be configured to the terminal by a core network element (for example, an access and mobility management function network element) equipment.
  • a core network element for example, an access and mobility management function network element
  • the first auxiliary information may be the auxiliary information of the UE in the embodiments shown in FIG. 8 to FIG. 10 and FIG. 12 to FIG. 14 .
  • the SDT may be triggered by the first data packet, and before step 1501, the terminal device may acquire the first data packet.
  • the first data packet may be the first data packet in the embodiments shown in Fig. 8 to Fig. 10 and Fig. 12 to Fig. 14, and reference may be made to related descriptions. Therefore, optionally, when the size of the first data packet is less than or equal to the first threshold, the terminal device may generate a first message, where the first message may include the first data packet.
  • the first message generated by the terminal device may be the embodiment shown in Figure 8 to Figure 10 and Figure 12 to Figure 14, including the RRC recovery request, UE auxiliary information and the first data packet news.
  • the terminal device when sending the first message, the terminal device may start a timer, and the terminal device may monitor the response message of the first message during the running of the timer.
  • the duration of the timer when the serving access network device is not the anchor access network device, the duration of the timer is the first duration.
  • the duration of the timer is the second duration. The first duration is greater than the second duration.
  • the timer can be the RACH contention resolution timer in the embodiment shown in FIG. 10
  • the timer and the duration of the timer can refer to the RACH contention resolution timing in the embodiment shown in FIG. 10 A description of the device and its duration.
  • the terminal device may also obtain the second data packet after sending the first message.
  • the terminal device may send the second data packet through the SDT session. If the size of the second data packet is greater than the first threshold, the terminal device may send a second message or a third message to the anchor access network device, and the second message is used to request the anchor access network device to configure the terminal device to switch to the RRC connection state, the third message is used to indicate the termination of the SDT session.
  • the size of the second data packet may not be limited, and the terminal device may directly send the second data packet.
  • the size of the second data packet may be smaller than the first threshold, or may be equal to the first threshold, or may be larger than the first threshold.
  • the size of the second data packet is not limited, there is a certain limit on the number of data packets sent through the SDT session. For example, if the number of data packets sent through the SDT session reaches the second threshold, the terminal device may send a fourth message or a fifth message to the anchor point access network device, and the fourth message is used to request the anchor point access network device to configure the terminal The device switches to the RRC connection state, and the fifth message is used to indicate the termination of the SDT session.
  • the second message, the third message, the fourth message or the fifth message may be any of the following: RRC message, MAC CE, or DCCH message.
  • step 150 For the content of step 1501, reference may be made to the description of step 801, step 901, step 1003, step 1203, step 1303 or step 1403.
  • Step 1502 the serving access network device sends a sixth message to the anchor access network device, the sixth message is used to indicate the establishment of the SDT session, and the sixth message includes the first auxiliary information.
  • the sixth message may further include at least one of the following: LCID of the radio bearer transmitting the first message, an information list of network slices supported by the serving access network device, and security capabilities possessed by the serving access network device.
  • the sixth message may be the retrieval context request message in the embodiments shown in FIG. 8 to FIG. 10 and FIG. 12 to FIG. Description of step 1004, step 1204, step 1304 or step 1404.
  • Step 1503 the anchor point access network device determines whether to perform anchor point migration.
  • the first auxiliary information may be used to assist the anchor point access network device in determining whether to perform anchor point migration.
  • the anchor point access network device may determine whether to perform anchor point migration according to the first auxiliary information carried in the sixth message.
  • the first auxiliary information may include the movement track of the terminal device and the mobility of the terminal device. If the movement track of the terminal device indicates that the terminal device has not crossed other cells, and the mobility of the terminal device is low mobility, then the anchor The point base station may consider that the terminal device will not move out of the current serving base station in a short period of time, so the anchor base station may consider that there is no need to perform anchor migration. On the contrary, if the movement trajectory of the terminal device indicates that the terminal device has traversed many other cells, and the mobility of the terminal device is high mobility, then the anchor base station may consider that it is necessary to relocate the anchor point. It should be understood that if the terminal device seldom moves, even if the anchor base station does not migrate to the serving base station, the terminal device can still communicate with the network stably, and not performing anchor migration can save communication resources.
  • the first auxiliary information may also include information such as the duration of the SDT service, the maximum delay allowed by the scheduling data, and the amount of data to be sent during the SDT session.
  • the anchor base station may consider that anchor point migration is required. On the contrary, the anchor base station may consider that there is no need to perform anchor migration. It should be understood that if the maximum time delay allowed by the scheduling data is relatively short, the migration of the anchor point can shorten the time delay between the terminal device and the anchor base station for data transmission, so as to meet the time delay requirement of the scheduling data.
  • the duration of the SDT service is long and the amount of data to be sent during the SDT session is large, the migration of the anchor point can prevent the SDT from occupying too many resources of the original anchor point base station.
  • the anchor base station may determine whether to perform anchor migration based on but not limited to the first auxiliary information. For example, the anchor base station may also determine whether to perform anchor migration in combination with its own load conditions. In addition, the anchor base station may judge according to one or more parameters in the first assistance information.
  • the anchor base station may also determine whether to suggest the terminal device to switch to the RRC connection state according to the first assistance information.
  • the anchor base station may determine whether the terminal device switches to the RRC connection state according to parameters such as the amount of transmitted data and the duration of data transmission.
  • the first auxiliary information may also include information such as the duration of the SDT service and the amount of data to be sent during the SDT session. If the duration of the SDT service is longer and the amount of data to be sent during the SDT session is greater, the anchor point The base station may consider that it is necessary for the terminal equipment to switch to the RRC connection state.
  • the SDT technology allows the terminal device to transmit data in the RRC inactive state in order to avoid wasting communication resources caused by the frequent switching between the RRC inactive state and the RRC connected state of the terminal device. If the amount of data to be sent by the terminal device is large and the transmission time is long, it is not necessary to transmit in the RRC inactive state, so the anchor base station can suggest that the terminal device switches to the RRC connection state.
  • the anchor access network device may be an anchor base station
  • the first auxiliary information may be the auxiliary information of the UE in the embodiments shown in FIG. 8 to FIG. 10 and FIG. 12 to FIG. 14
  • the content of step 1503 can refer to the description of step 803 , step 903 , step 1005 , step 1205 , step 1305 or step 1405 .
  • Step 1504 the anchor point access network device sends a seventh message to the serving access network device, the seventh message includes second indication information, and the second indication information is used to indicate whether to perform anchor point migration.
  • the seventh message may further include first auxiliary information, and the first auxiliary information may be used to: assist the SDT, and/or assist the anchor point access network device to determine Whether to switch the terminal device to the RRC connection state.
  • the seventh message may also include the configuration information of the partial context of the terminal device and the SDT session, and the partial context of the terminal device and the configuration information of the SDT session are used for the service
  • the base station establishes the bearer of the SDT session with the anchor base station, and then performs SDT.
  • the second indication information indicates not to migrate the anchor point, and reference may be made to the related description of step 1406 .
  • the seventh message may also include auxiliary information, all contexts of the terminal device, and third indication information, and the entire context of the terminal device is used to establish the SDT session and perform SDT, the third indication information is used to indicate whether to suggest the terminal equipment to switch to the RRC connection state.
  • the second indication information indicates to migrate the anchor point, and reference may be made to related descriptions of step 804 , step 904 , step 1006 , step 1206 or step 1306 .
  • the seventh message may be the retrieval context response message in the embodiments shown in FIG. 8 to FIG. 10 and FIG. 12 to FIG. Description of step 1006, step 1206, step 1306 or step 1406.
  • the communication method may further include: Step 1505, the serving access network device sends a path switch request to the access and mobility management network element and receives a request from the access network element. Incoming and path switching responses of mobility management network elements. Therefore, the core network path can be switched to the service access network device.
  • Step 1505 reference may be made to the description of step 805, step 905, step 1008, step 1207, or step 1307.
  • the communication method may further include: Step 1506, the serving access network device sends the first data packet to the user plane functional network element.
  • Step 1506 reference may be made to the description of step 806, step 906, step 1009, step 1208, step 1308 or step 1407.
  • the serving access network device may also determine whether to switch the terminal device to the RRC connection state according to the first auxiliary information and/or the third indication information.
  • the manner of determining whether to switch the terminal device to the RRC connection state is similar to the manner of determining whether to perform anchor point migration.
  • the communication method may also include: step 1506, the serving access network device sends an eighth message to the terminal device, and the eighth message is used to instruct the terminal device to switch to RRC connection state.
  • the eighth message may be the RRC recovery complete message in the embodiment shown in FIG. 8 or FIG. 12 , and for step 1507, reference may be made to the description of step 807 or step 1209 .
  • the embodiment of the present application also discloses a communication method, as shown in Figure 16, the method includes the following steps:
  • Step 1601 the terminal device sends a first message to the service access network device.
  • the first message includes a first request and first auxiliary information
  • the first request is used to request establishment of an SDT session
  • the first auxiliary information is used to determine whether to migrate the anchor point.
  • Step 1602 the serving access network device sends a sixth message to the anchor access network device, the sixth message is used to indicate the establishment of the SDT session, and the sixth message includes the first auxiliary information.
  • Step 1603 the anchor point access network device determines whether to perform anchor point migration.
  • Step 1604 the anchor point access network device sends a seventh message to the serving access network device, the seventh message includes second indication information, and the second indication information is used to indicate whether to perform migration of the anchor point.
  • the communication method may further include: Step 1605, the serving access network device sends a path switch request to the access and mobility management network element and receives a path switch response from the access and mobility management network element.
  • the communication method may further include: Step 1606, the serving access network device sends the first data packet to the user plane functional network element.
  • steps 1601 to 1606 reference may be made to steps 1501 to 1506, which will not be repeated here.
  • the communication method may further include: step 1607, the terminal device performs subsequent data transmission with the user plane functional network element. And step 1608, the service access network device sends a ninth message to the terminal device, where the ninth message is used to instruct the terminal device to terminate the SDT session.
  • the terminal device may be a UE, and the ninth message may be an RRC release message.
  • step 1607 refer to the description of step 907, step 10010, step 1309 or step 1408.
  • step 1608 refer to step 908 and step 10011. , the description of step 13010 or step 1409.
  • FIG. 16 may refer to the embodiment shown in FIG. 9 .
  • the embodiment of the present application also discloses a communication method, as shown in Figure 17, the method includes the following steps:
  • Step 1701. Establish a radio bearer, during which the anchor access network device acquires second auxiliary information.
  • the second auxiliary information is sent by the core network device to the anchor access network device during the establishment of the radio bearer.
  • the core network device may be an access and mobility management functional network element, such as an AMF.
  • the second auxiliary information may include at least one of the following: an indication of whether the terminal device is allowed to send or receive data in the RRC inactive state, whether the terminal device is allowed to select network slice information to send data in the RRC inactive state, the terminal The period of the RRC inactive state of the device, the duration of the SDT session, the duration of the terminal device sending data packets in the RRC inactive state, the interval for the terminal device to send or receive data packets in the RRC inactive state, the establishment of the SDT session Time interval, the number and size of data packets transmitted during the SDT session, the number and size of data packets sent by the terminal device in the RRC inactive state, and the trajectory of the terminal device in the RRC inactive state , the number of cells traversed by the terminal device when sending data in the RRC inactive state, the moving speed of the terminal device when sending data in the RRC inactive state, and the identifier of the SDT bearer.
  • the second auxiliary information may be the auxiliary parameters of the core network obtained by the anchor base station during the establishment of the radio bearer in the embodiments shown in FIGS. 11 to 14 .
  • the second auxiliary information For the content of , please refer to the relevant description of the auxiliary parameters of the core network in step 1102.
  • Step 1702 the terminal device sends a first message to the service access network device.
  • the first message includes a first request and first auxiliary information
  • the first request is used to request establishment of an SDT session
  • the first auxiliary information is used to determine whether to migrate the anchor point.
  • Step 1703 the serving access network device sends a sixth message to the anchor access network device, the sixth message is used to indicate the establishment of the SDT session, and the sixth message includes the first auxiliary information.
  • Step 1704 the anchor point access network device determines whether to perform anchor point migration.
  • the anchor point access network device may determine whether to perform anchor point migration according to the first auxiliary information and the second auxiliary information.
  • step 1704 reference may be made to the description of step 1205.
  • Step 1705 the anchor point access network device sends a seventh message to the serving access network device, the seventh message includes second indication information, and the second indication information is used to indicate whether to perform anchor point migration.
  • the seventh message may include the first auxiliary information and the second auxiliary information.
  • step 1704 reference may be made to the description of step 1206.
  • the communication method may further include: Step 1706, the serving access network device sends a path switch request to the access and mobility management network element and receives a path switch response from the access and mobility management network element.
  • the communication method may further include: Step 1707, the serving access network device sends the first data packet to the user plane functional network element.
  • the serving access network device may determine whether to switch the terminal device to the RRC connection state according to at least one of the first auxiliary information, the second auxiliary information, and the third indication information.
  • the manner of determining whether to switch the terminal device to the RRC connection state is similar to the manner of determining whether to perform anchor point migration.
  • the communication method may also include: step 1708, the serving access network device sends an eighth message to the terminal device, and the eighth message is used to instruct the terminal device to switch to RRC connection state.
  • the eighth message may be the RRC recovery complete message in the embodiment shown in FIG. 8 or FIG. 12 , and for step 1504, reference may be made to the description of step 807 or step 1209 .
  • the communication method may further include: step 1709, the anchor point access network device sends a tenth message to the terminal device, the tenth message is used to release the connection established during the establishment of the radio bearer, and Configure the terminal device in the RRC inactive state.
  • the tenth message may be an RRC release message.
  • step 1709 refer to related descriptions of step 1202, step 1302, or step 1402.
  • the embodiment of the present application also discloses a communication method, as shown in Figure 18, the method includes the following steps:
  • Step 1801. Establish a radio bearer, during which the anchor access network device acquires second auxiliary information.
  • Step 1802 the terminal device sends a first message to the service access network device.
  • the first message includes a first request and first auxiliary information
  • the first request is used to request establishment of an SDT session
  • the first auxiliary information is used to determine whether to migrate the anchor point.
  • Step 1803 the serving access network device sends a sixth message to the anchor access network device, the sixth message is used to indicate the establishment of the SDT session, and the sixth message includes the first auxiliary information.
  • Step 1804 the anchor point access network device determines whether to perform anchor point migration.
  • the anchor point access network device may determine whether to perform anchor point migration according to the first auxiliary information and the second auxiliary information.
  • step 1804 reference may be made to the description of step 1205.
  • Step 1805 the anchor point access network device sends a seventh message to the serving access network device, the seventh message includes second indication information, and the second indication information is used to indicate whether to perform anchor point migration.
  • the seventh message may include the first auxiliary information and the second auxiliary information.
  • step 1804 reference may be made to the description of step 1206.
  • the communication method may further include: Step 1806, the serving access network device sends a path switch request to the access and mobility management network element and receives a path switch response from the access and mobility management network element.
  • the communication method may further include: Step 1807, the serving access network device sends the first data packet to the user plane functional network element.
  • the communication method may further include: step 1808, the terminal device performs subsequent data transmission with the user plane functional network element. And step 1809, the service access network device sends a ninth message to the terminal device, where the ninth message is used to instruct the terminal device to terminate the SDT session.
  • the communication method may further include: step 18010, the anchor point access network device sends a tenth message to the terminal device, the tenth message is used to release the connection established during the establishment of the radio bearer, and Configure the terminal device to be in the RRC inactive state.
  • the tenth message may be an RRC release message.
  • step 18010 refer to the related description of step 1202, step 1302 or step 1402.
  • the serving access network s device (such as the serving base station) is different from the anchor point access network device (such as the anchor point base station).
  • the service access network device of the terminal device can also be the anchor point access network s device of the terminal device.
  • the service access network device (also the anchor point access network device) can also obtain the first Auxiliary information (sent by the terminal device to the service access network device) and second auxiliary information (sent by the core network device to the service access network device), the first auxiliary information and the second auxiliary information can be used for service access
  • the network device determines whether the terminal device needs to switch to the RRC connection state.
  • the actions of the service access network device in the above method embodiments can be executed by the processor 601 in the communication device 60 shown in FIG. 6 calling the application program code stored in the memory 604 to instruct the service access network device
  • the actions of the anchor access network device can be executed by the processor 601 in the communication device 60 shown in FIG.
  • the processor 601 in the communication device 60 shown in FIG. 6 invokes the application program code stored in the memory 604 to instruct the terminal device to execute.
  • the methods and/or steps implemented by the target node may also be implemented by components (such as chips or circuits) that can be used for the target node.
  • the embodiment of the present application further provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the target node in the above method embodiment, or a device including the above target node, or a component that can be used for the target node.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application may divide the functional modules of the communication device according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 19 shows a schematic structural diagram of a communication device 190 .
  • the communication device 190 includes a processing module 1901 and a transceiver module 1902 .
  • the transceiver module 1902 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 1901 may be configured to generate a first message, the first message is used to establish a small data transmission SDT session, the first message includes first auxiliary information, and the first auxiliary information is used to determine whether to migrate the anchor point; wherein, the first Auxiliary information is collected by the terminal device or is configured by the core network device to the terminal device.
  • the transceiver module 1902 may be configured to send the first message to the service access network device.
  • the processing module 1901 may also be configured to obtain the first data packet.
  • the processing module 1901 may specifically be configured to generate the first message when the size of the first data packet is less than or equal to the first threshold, where the first message includes the first data packet.
  • the processing module 1901 may also be configured to obtain the second data packet.
  • the transceiver module 1902 is further configured to send a second message or a third message to the anchor point access network device when the size of the second data packet is greater than the first threshold, and the second message is used to request the anchor point access network device to configure The terminal device switches to the RRC connection state, and the third message is used to indicate the termination of the SDT session.
  • the processing module 1901 may also be configured to obtain the second data packet.
  • the processing module 1901 may also be configured to send a second data packet through the SDT session, where the size of the second data packet is smaller than the first threshold, or equal to the first threshold, or larger than the first threshold.
  • the transceiver module 1902 may also be configured to send a fourth message or a fifth message to the anchor point access network device when the number of data packets sent through the SDT session reaches a second threshold, the fourth message is used to request
  • the anchor point access network device configures the terminal device to switch to the RRC connection state, and the fifth message is used to indicate the termination of the SDT session.
  • the processing module 1901 may also be configured to start a timer when sending the first message.
  • the duration of the timer is the first duration;
  • the duration of the timer is the second duration; the first duration is greater than the second duration.
  • the processing module 1901 may also be configured to monitor the response message of the first message during the running of the timer.
  • the second indication information indicates anchor point migration
  • the transceiver module 1902 may also be configured to send a path switching request to the first core network device, where the path switching request is used to request the first core network device to switch the core network path to the service access network device.
  • the first message further includes a first data packet
  • the transceiver module 1902 may also be configured to send the first data packet to a user plane functional network element.
  • the transceiver module 1902 may be configured to receive a first message from a terminal device, the first message is used for an SDT session, the first message includes first auxiliary information, and the first auxiliary information is used to determine whether to migrate the anchor point.
  • the transceiver module 1902 may also be configured to send a sixth message to the anchor access network device, where the sixth message is used to indicate the establishment of the SDT session, and the sixth message includes the first auxiliary information.
  • the transceiver module 1902 may also be configured to receive a seventh message from the anchor point access network device, where the seventh message includes second indication information, and the second indication information is used to indicate whether to perform anchor point migration.
  • the transceiver module 1902 may also be configured to send an eighth message to the terminal device, where the eighth message is used to instruct the terminal device to switch to the RRC connection state.
  • the transceiver module 1902 may also be configured to send a ninth message to the terminal device, where the ninth message is used to instruct the terminal device to terminate the SDT session.
  • the transceiver module 1902 may be configured to receive a sixth message from the service access network device, the sixth message is used to indicate the establishment of an SDT session, the sixth message includes first auxiliary information, and the first auxiliary information is used to determine whether to perform anchor point migrate.
  • the transceiving module 1902 may also be configured to send a seventh message to the serving access network device, where the seventh message includes second indication information, and the second indication information is used to indicate whether to migrate the anchor point.
  • the processing module 1901 may be configured to determine whether to migrate the anchor point according to the first auxiliary information.
  • the processing module 1901 may be configured to determine whether to suggest the terminal device to switch to the RRC connection state according to the first auxiliary information.
  • the transceiving module 1902 may be configured to receive second auxiliary information from a core network device during establishment of a radio bearer, the second auxiliary information is used to assist SDT, and/or is used to determine whether to perform anchor migration.
  • the transceiver module 1902 may also be configured to receive a sixth message from the service access network device, the sixth message is used to indicate the establishment of an SDT session, the sixth message includes first auxiliary information, and the first auxiliary information is used to determine whether to perform an anchor point migration.
  • the transceiving module 1902 may also be configured to send a seventh message to the serving access network device, where the seventh message includes second indication information, and the second indication information is used to indicate whether to migrate the anchor point.
  • the processing module 1901 may be configured to determine whether to migrate the anchor point according to the first auxiliary information and/or the second auxiliary information.
  • the processing module 1901 may be configured to determine whether to suggest the terminal device to switch to the RRC connection state according to the first auxiliary information and/or the second auxiliary information.
  • the service access network device, anchor point access network device, or terminal device in this embodiment of the application can also be called a communication device, which can be a general-purpose device or a dedicated device. This is not specifically limited.
  • the communication device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 190 can take the form of the communication device 60 shown in FIG. 6 .
  • the processor 601 in the communication device 60 shown in FIG. 6 may invoke the computer-executed instructions stored in the memory 604, so that the communication device 60 executes the communication method in the foregoing method embodiments.
  • the functions/implementation process of the processing module 1901 and the transceiver module 1902 in FIG. 19 can be implemented by the processor 601 in the communication device 60 shown in FIG. 6 invoking computer-executed instructions stored in the memory 604 .
  • the function/implementation process of the processing module 1901 in FIG. 19 can be realized by the processor 601 in the communication device 60 shown in FIG. /The implementation process can be implemented through the communication interface 603 in the communication device 60 shown in FIG. 6 .
  • the communication device 190 provided in this embodiment can execute the above-mentioned communication method, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as a DVD
  • a semiconductor medium such as a solid state disk (Solid State Disk, SSD)
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures thereon.
  • These components can be communicated via, for example, data based on having one or more packets of data (e.g., data from a component that interacts with another component in a local system, a distributed system, and/or in a signaled network to interact with other systems) to communicate with local and/or remote processes.
  • data e.g., data from a component that interacts with another component in a local system, a distributed system, and/or in a signaled network to interact with other systems
  • the word "exemplary” is used as an example, illustration or illustration. Any embodiment or design described herein as “example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be used interchangeably.
  • “ ⁇ (of)”, “corresponding (corresponding, relevant)” and “corresponding (corresponding)” can sometimes be used interchangeably.
  • System and “network” can sometimes be used interchangeably.
  • “communication network” also refers to "communication system”.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置及系统,应用于通信技术领域。该通信方法包括:首先,终端设备向服务接入网设备发送第一消息,第一消息包括第一请求和第一辅助信息,第一请求用于请求建立小数据传输SDT会话,第一辅助信息用于确定是否进行锚点的迁移。然后,服务接入网设备向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括该第一辅助信息。之后,锚点接入网设备向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。该方法提供了在进行SDT时,是否需要对锚点进行迁移的处理方案,并且该方法可以避免在非必要场景进行锚点迁移导致浪费通信资源。

Description

通信方法、装置及系统
本申请要求于2022年01月14提交国家知识产权局、申请号为202210045092.X、发明名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
第5代新空口(5th generation new radio,5G NR)系统中,在无线资源控制(radio resource control,RRC)层面引入了RRC非激活(RRC_INACTIVE)状态,终端设备在无数据传输时可以处于RRC非激活状态。基于小包数据传输(small data transmission,SDT)技术,终端设备可以在RRC非激活状态传输数据。
不过,由于终端设备具有移动性,其当前驻留的基站与进入RRC非激活状态前所驻留的锚点基站可能不同。在进行SDT时,是否对基站的锚点进行迁移,目前还没有相关方案。
发明内容
本申请提供一种通信方法、装置及系统,提供了在进行SDT时,是否需要对锚点进行迁移的处理方案。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供了一种通信方法,该通信方法可以应用于终端设备,该通信方法可以包括:终端设备生成第一消息,第一消息包括第一请求和第一辅助信息,第一请求用于请求建立小数据传输SDT会话,第一辅助信息用于确定是否进行锚点的迁移。之后,终端设备向服务接入网设备发送该第一消息。其中,第一辅助信息可以包括以下至少一项:SDT业务的持续时间、终端设备期待在SDT会话中连续传输数据的次数、终端设备期待的监听调度信息的时间间隔和持续时间、终端设备的移动轨迹、终端设备的移动性、调度数据允许的最大时延、SDT会话期间待发送的数据总量。SDT会话用于SDT业务的传输。
基于该方案,终端设备在发起SDT时,可以随着第一请求一起发送第一辅助信息,该第一辅助信息可以用于确定是否进行锚点的迁移,可以看出本申请提供的通信方法提供了在进行SDT时,是否需要对锚点进行迁移的处理方案。并且,根据第一辅助信息来确定是否进行锚点的迁移,能够确保在合适的条件下进行锚点的迁移,避免在非必要场景进行锚点的迁移而导致通信资源的浪费。
结合上述第一方面,在一种可能的实现方式中,第一辅助信息为终端设备统计的或者为核心网设备配置给终端设备的。
结合上述第一方面,在一种可能的实现方式中,第一辅助信息还可以用于在SDT会话中进行SDT,第一辅助信息还可以包括以下至少一项:SDT会话中传输的数据是否被分段的指示、SDT会话中待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,无线承载的信息包括无线承载的类型或无线承载所承载的业务类型中的至少一项,业务的属性信息包括业务发送的频次、业务发送的周期、业务持续的时间、或业务的数据量中的至少一项。
结合上述第一方面,在一种可能的实现方式中,通信方法还可以包括:终端设备获取第一数据包。终端设备生成第一消息,具体可以包括:若第一数据包的大小小于或者等于第一阈值,生成第一消息,第一消息包括第一数据包。
基于该方案,当数据包大小小于阈值时可以触发SDT。应理解,对于小数据包使用SDT会话进行传输,终端设备可以无需切换至RRC连接状态,从而可以节约状态切换所占用的通信资源。
结合上述第一方面,在一种可能的实现方式中,通信方法还可以包括:获取第二数据包。若第二数据包的大小大于第一阈值,向锚点接入网设备发送第二消息或第三消息,第二消息用于请求锚点接入网设备配置终端设备切换至无线资源控制RRC连接状态,第三消息用于指示终止SDT会话。
基于该方案,在触发SDT后,传输的数据包如果大于阈值,则会切换至RRC连接状态进行传输,避免SDT会话传输较大的数据包。
结合上述第一方面,在一种可能的实现方式中,第二消息或第三消息为以下任一种:RRC消息、介质访问控制层控制元素MAC CE、或者专用控制信道DCCH消息。
结合上述第一方面,在一种可能的实现方式中,通信方法还可以包括:获取第二数据包。之后,通过SDT会话发送第二数据包,第二数据包的大小小于第一阈值,或者等于第一阈值,或者大于第一阈值。
结合上述第一方面,在一种可能的实现方式中,若通过SDT会话发送的数据包的数量达到第二阈值,通信方法还可以包括:向锚点接入网设备发送第四消息或第五消息,第四消息用于请求锚点接入网设备配置终端设备切换至RRC连接状态,第五消息用于指示终止SDT会话。
基于上述两种实现方式,在触发SDT后,终端设备发送的数据包的大小也可以不做限定,但是此种场景下,数据包的数量有限制。从而,可以避免SDT会话传输太多较大的数据包,而增大SDT会话的负担。
结合上述第一方面,在一种可能的实现方式中,第四消息或第五消息为以下任一种:RRC消息、介质访问控制层控制元素MAC CE、或者专用控制信道DCCH消息。
结合上述第一方面,在一种可能的实现方式中,通信方法还可以包括:终端设备在发送第一消息时,启动定时器。当服务接入网设备不是锚点接入网设备时,定时器的时长为第一时长。当所服务接入网设备是锚点接入网设备时,定时器的时长为第二时长。其中,第一时长大于第二时长。终端设备可以在定时器运行期间监听第一消息的响应消息。
第二方面,提供了一种通信方法,该通信方法可以应用于服务接入网设备,该通信方法可以包括:接收来自终端设备的第一消息,第一消息包括第一请求和第一辅助信息,第一请求用于建立小数据包传输SDT会话,第一辅助信息用于确定是否进行锚点的迁移。之后,向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息。以及,接收来自锚点接入网设备的第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
基于该方案,服务接入网设备可以将第一辅助信息传输至锚点接入网设备,该第一辅助信息可以用于确定是否进行锚点的迁移。并且,还可以根据锚点接入网设备发送的第二指示信息确定是否进行锚点的迁移。
结合上述第二方面,在一种可能的实现方式中,第一辅助信息包括以下至少一项:SDT 业务的持续时间、终端设备期待在SDT会话中连续传输数据的次数、终端设备期待监听调度信息的时间间隔和持续时间、终端设备的移动轨迹、终端设备的移动性、调度数据允许最大的时延、SDT会话期间待发送的数据总量;其中,SDT会话用于SDT业务的传输。
结合上述第二方面,在一种可能的实现方式中,第一辅助信息还用于辅助SDT,第一辅助信息还包括以下至少一项:SDT会话中传输的数据是否被分段的指示、SDT会话待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,无线承载的信息包括无线承载的类型或无线承载所承载的业务类型中的至少一项,业务的属性信息包括业务发送的频次、业务发送的周期、业务持续的时间、或业务的数据量中的至少一项。
结合上述第二方面,在一种可能的实现方式中,第六消息还包括以下至少一项:传输第一消息的无线承载的区域设置标识符LCID、服务接入网设备支持的网络切片的信息列表、服务接入网设备具备的安全能力。
结合上述第二方面,在一种可能的实现方式中,第二指示信息指示进行锚点的迁移,第七消息还包括第一辅助信息,第一辅助信息还用于辅助SDT,和/或,用于确定是否将终端设备切换至RRC连接状态。
结合上述第二方面,在一种可能的实现方式中,第七消息还包括第三指示信息,第三指示信息指示是否建议终端设备切换至RRC连接状态。
结合上述第二方面,在一种可能的实现方式中,第二指示信息指示进行锚点的迁移,第七消息还包括第二辅助信息,第二辅助信息用于辅助SDT,和/或,用于确定是否将终端设备切换至RRC连接状态。
结合上述第二方面,在一种可能的实现方式中,第二辅助信息包括以下至少一项:是否允许终端设备在RRC非激活状态下发送或接收数据的指示、是否允许终端设备在RRC非激活状态下选择网络切片信息发送数据、终端设备的RRC非激活状态的周期、SDT会话持续的时间、终端设备在RRC非激活状态下发送数据包的持续时间、终端设备在RRC非激活状态下发送或接收数据包的间隔、建立SDT会话的时间间隔、SDT会话期间传输的数据包的个数和数据包的大小、终端设备在RRC非激活状态下发送数据包的个数和数据包的大小、终端设备在RRC非激活状态下移动的轨迹、终端设备在RRC非激活状态下发送数据时穿越小区的数目、终端设备在RRC非激活状态下发送数据时的移动速度、SDT承载的标识。
结合上述第二方面,在一种可能的实现方式中,第二指示信息指示进行锚点的迁移,通信方法还可以包括:向第一核心网设备发送路径切换请求,所述路径切换请求用于请求所述第一核心网设备将核心网路径切换至所述服务接入网设备。
结合上述第二方面,在一种可能的实现方式中,第一消息包括第一数据包,通信方法还可以包括:向用户面功能网元发送所述第一数据包。
第三方面,提供了一种通信方法,该通信方法可以应用于锚点接入网设备,该通信方法可以包括:接收来自服务接入网设备的第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息,第一辅助信息用于确定是否进行锚点的迁移。以及,向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
结合上述第三方面,在一种可能的实现方式中,第一辅助信息包括以下至少一项:SDT业务的持续时间、终端设备期待在SDT会话中连续传输数据的次数、终端设备期待监听 调度信息的时间间隔和持续时间、终端设备的移动轨迹、终端设备的移动性、调度数据允许最大的时延、SDT会话期间待发送的数据总量;其中,SDT会话用于SDT业务的传输。
结合上述第三方面,在一种可能的实现方式中,第一辅助信息还用于辅助SDT,第一辅助信息还包括以下至少一项:SDT会话中传输的数据是否被分段的指示、SDT会话待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,无线承载的信息包括无线承载的类型或无线承载所承载的业务类型中的至少一项,业务的属性信息包括业务发送的频次、业务发送的周期、业务持续的时间、或业务的数据量中的至少一项。
结合上述第三方面,在一种可能的实现方式中,若第二指示信息指示进行锚点的迁移,则第七消息还包括第一辅助信息,第一辅助信息还用于辅助SDT,和/或,用于确定是否将终端设备切换至RRC连接状态。
结合上述第三方面,在一种可能的实现方式中,若第二指示信息指示进行锚点的迁移,第七消息还包括第三指示信息,第三指示信息用于指示是否建议终端设备切换至RRC连接状态。
第四方面,提供了一种通信方法,该通信方法可以应用于锚点接入网设备,该通信方法可以包括:在建立无线承载期间,接收来自核心网设备的第二辅助信息,第二辅助信息用于辅助SDT,和/或,用于确定是否进行锚点的迁移。以及,接收来自服务接入网设备的第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息,第一辅助信息用于确定是否进行锚点的迁移。之后,向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
基于该方案,锚点接入网设备可以在在建立无线承载期间,从核心网设备处获得第二辅助信息,之后,在终端设备在发起SDT时,又可以获得第一辅助信息,使得在发起SDT时,锚点接入网设备可以根据第一辅助信息和第二辅助信息确定是否进行锚点的迁移。该通信方法提供了在进行SDT时,是否需要对锚点进行迁移的处理方案。
终端设备在发起SDT时,可以随着第一请求一起发送第一辅助信息,该第一辅助信息可以用于确定是否进行锚点的迁移,可以看出本申请提供的通信方法提供了在进行SDT时,是否需要对锚点进行迁移的处理方案。并且,本申请的方法根据第一辅助信息来确定是否进行锚点的迁移,能够避免在非必要场景进行锚点的迁移而导致通信资源的浪费。
结合上述第四方面,在一种可能的实现方式中,第二辅助信息为核心网设备统计的信息,或者为静态签约的信息。
结合上述第四方面,在一种可能的实现方式中,第二辅助信息包括以下至少一项:是否允许终端设备在RRC非激活状态下发送或接收数据的指示、是否允许终端设备在RRC非激活状态下选择网络切片信息发送数据、终端设备的RRC非激活状态的周期、SDT会话持续的时间、终端设备在RRC非激活状态下发送数据包的持续时间、终端设备在RRC非激活状态下发送或接收数据包的间隔、建立SDT会话的时间间隔、SDT会话期间传输的数据包的个数和数据包的大小、终端设备在RRC非激活状态下发送数据包的个数和数据包的大小、终端设备在RRC非激活状态下移动的轨迹、终端设备在RRC非激活状态下发送数据时穿越小区的数目、终端设备在RRC非激活状态下发送数据时的移动速度、SDT承载的标识。
结合上述第四方面,在一种可能的实现方式中,第一辅助信息包括以下至少一项:SDT 业务的持续时间、终端设备期待在SDT会话中连续传输数据的次数、终端设备期待监听调度信息的时间间隔和持续时间、终端设备的移动轨迹、终端设备的移动性、调度数据允许最大的时延、SDT会话期间待发送的数据总量;其中,SDT会话用于SDT业务的传输。
结合上述第四方面,在一种可能的实现方式中,第一辅助信息还用于辅助SDT,第一辅助信息还包括以下至少一项:SDT会话中传输的数据是否被分段的指示、SDT会话待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,无线承载的信息包括无线承载的类型或无线承载所承载的业务类型中的至少一项,业务的属性信息包括业务发送的频次、业务发送的周期、业务持续的时间、或业务的数据量中的至少一项。
结合上述第四方面,在一种可能的实现方式中,若第二指示信息指示进行锚点的迁移,则第七消息还包括第一辅助信息和第二辅助信息,第一辅助信息和第二辅助信息还用于确定是否将终端设备切换至RRC连接状态。
结合上述第四方面,在一种可能的实现方式中,若第二指示信息指示进行锚点的迁移,第七消息还包括第三指示信息,第三指示信息用于指示是否建议终端设备切换至RRC连接状态。
结合上述第四方面,在一种可能的实现方式中,若第二指示信息指示不进行锚点的迁移,则第七消息还包括终端设备的部分上下文和SDT会话的配置信息。
结合上述第四方面,在一种可能的实现方式中,若第二指示信息指示进行锚点的迁移,则第七消息还包括终端设备的全部上下文。
第五方面,提供了一种通信装置用于实现上述方法。该通信装置可以为上述第一方面的服务接入网设备,或者可以为上述第二方面至第四方面的锚点接入网设备,或者为上述第五方面的终端设备,该通信装置可以包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
一种可能的实现方式中,该通信装置包括处理模块和收发模块,该收发模块用于执行上述第一方面、第二方面、第三方面或第四方面的方法中,由通信装置侧进行消息接收和发送的操作;该处理模块用于调用指令,执行上述第一方面、第二方面、第三方面或第四方面的方法中,由通信装置侧进行的消息处理或控制操作。
第六方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述第一方面、第二方面、第三方面或第四方面所述的方法。
在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在一种可能的实现方式中,该通信装置可以是芯片或芯片系统。其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
在一种可能的实现方式中,当通信装置为芯片或芯片系统时,上述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。上 述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面、第二方面、第三方面或第四方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面、第二方面、第三方面或第四方面所述的方法。
第九方面,提供一种通信系统,该通信系统包括执行上述第一方面所述的数据传输方法的生成方、执行上述第二方面所述的数据传输方法的更新方、以及执行上述第三方面所述的数据传输方法的更新方。
其中,第五方面至第九方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面、第二方面、第三方面或第四方面中不同实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信网络架构图;
图2为本申请实施例提供的一种UE请求恢复RRC连接状态进行数据传输的交互过程示意图;
图3为本申请实施例提供的一种SDT的流程图;
图4为本申请实施例提供的另一种SDT的流程图;
图5为本申请实施例提供的一种通信系统的结构示意图;
图6为本申请实施例提供的一种通信设备的结构示意图;
图7为本申请实施例提供的一种UE的硬件结构示意图;
图8为本申请实施例提供的一种通信方法的流程图;
图9为本申请实施例提供的另一种通信方法的流程图;
图10为本申请实施例提供的又一种通信方法的流程图;
图11为本申请实施例提供的一种建立无线承载的方法的流程图;
图12为本申请实施例提供的又一种通信方法的流程图;
图13为本申请实施例提供的又一种通信方法的流程图;
图14为本申请实施例提供的又一种通信方法的流程图;
图15为本申请实施例提供的又一种通信方法的流程图;
图16为本申请实施例提供的又一种通信方法的流程图;
图17为本申请实施例提供的又一种通信方法的流程图;
图18为本申请实施例提供的又一种通信方法的流程图;
图19为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个) 或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
为方便理解,以下对本申请涉及的几个术语以及相关技术做简单介绍。
1、第五代(5th generation,5G)网络架构:
请参考图1,图1示出了5G网络架构的示意图。其中,图1以5G系统的网络服务架构为例展示了网络功能和实体之间的交互关系以及对应的接口,该5G系统的第三代合作伙伴项目(the 3rd generation partnership project,3GPP)基于服务的网络架构(service-based architecture,SBA)包括的网络功能和实体主要包括:用户设备(user equipment,UE)、接入网(access network,AN)或无线接入网(radio access network,RAN)、用户面功能(user plane function,UPF)、数据网络(data network,DN)、接入管理功能(access management function,AMF)、会话管理功能(session management function,SMF)、认证服务功能(authentication server function,AUSF)、策略控制功能(policy control function,PCF)、应用功能(application function,AF)、网络切片选择功能(network slice selection function,NSSF)、统一数据管理(unified data management,UDM)、网络开放功能(network exposure function,NEF)和网络存储功能(network repository function,NRF)。
网络功能能够作为一个运行在专有硬件上的网络元素,或者运行在专有硬件上的软件实例,或者在一个合适平台上进行实例化的虚拟功能,比如在一个云基础设备被实施。
下面对各个网元的主要功能做具体介绍。
AN/RAN:AN/RAN中可以包括各种形式的基站,例如:宏基站,微基站(也称为“小站”),分散单元-控制单元(distribute unit-control unit,DU-CU)等。另外,上述基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者中继站、接入点、车载设备、可穿戴设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备等。AN/RAN也可以包括宽带网络业务网关(broadband network gateway,BNG),汇聚交换机,非3GPP接入设备等。
AN/RAN主要负责空口侧的无线资源管理、上下行数据分类、服务质量(quality of service,QoS)管理、数据压缩和加密、与控制面网元完成信令处理或与用户面功能网元完成数据转发等功能。本申请实施例对AN/RAN的具体形态和结构不做限定。如,在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,基站可以是LTE中的演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)设备,如演进型节点B(evolutional NodeB,eNB或e-NodeB),也可以是5G系统中的下一代无线接入网(next generation radio access network,NG-RAN)设备(如gNB)等。
UPF:主要负责分组路由和转发,以及用户面数据的QoS处理或计费信息统计等。UPF中为UE提供服务的传输资源和调度功能由SMF管理和控制。
DN:DN是用于传输数据的网络。例如:DN可以是运营商服务网络、互联网接入或第三方服务网络等。
对于AUSF、NSSF、NEF、NRF和UDM等网元的功能等的介绍,可以参考常规技术中的解释和说明,这里不做赘述。
2、无线资源控制(radio resource control,RRC)状态:
5G NR中定义了三种RRC状态:非激活状态、连接状态、以及空闲(IDLE)状态。该三种状态的介绍如下:
1)、连接状态:即RRC_CONNECTED状态,也称连接态。连接状态是指UE与接入网之间的RRC连接已建立。当UE处于连接状态时,UE与接入网(如基站)以及核心网(如AMF单元)之间的连接均建立,若有数据需要传输,可以直接通过已建立的连接完成。其中,RRC连接用于处理UE和接入网之间的控制面消息。
2)、非激活状态:即RRC_INACTIVE状态,也称去激活态或者第三态。非激活状态是指UE与接入网(如基站)之间的RRC连接已断开,但是UE对应的接入网(如基站)与核心网(如AMF)之间的连接未断开。现有技术中,当UE处于去激活状态时,若有数据需要传输,需要先恢复UE与接入网(如基站)之间的RRC连接,才能进行数据传输。
当UE进入非激活状态后,UE的上下文(context)在终端和基站侧被挂起(suspend),UE的上下文被保存在UE进入非激活状态之前所驻留的最后一个小区,或者保存在最后为UE提供服务的小区(也称锚点(anchor)小区)中。当有数据和/或信令传输需求时,UE可以通过发起RRC恢复请求(RRCResumeRequest)获取UE的上下文,以根据UE的上下文恢复RRC连接。示例性的,UE的上下文包括:UE的安全上下文,UE能力信息等。
3)、空闲状态:即RRC_IDLE。空闲状态是指UE与接入网设备(如基站)之间的RRC连接未建立,且UE对应的接入网设备(如基站)与核心网设备(如AMF)之间的连接未建立。当UE处于空闲状态时,若有数据需要传输,需要先建立UE与接入网设备(如基站)之间的连接,以及接入网设备(如基站)与核心网设备(如AMF)之间的连接,才能进行数据传输。
另外,UE当前所驻留的小区所属的基站,或者当前为UE提供服务的基站,可以称为服务基站。UE在进入非激活状态之前,所驻留的最后一个小区所属的基站,或者UE在进入非激活状态之前最后为UE提供服务的基站,可以称为锚点基站。需要说明的是,UE具备移动性,UE在进入到非激活状态后,可能会发生移动,从而UE的服务基站与锚点基站可能是不同的。
3、RRC非激活态向RRC连接状态切换:
现有技术中,如果UE在RRC非激活状态下有数据需要发送,那么UE可以先切换到RRC连接状态,然后发送数据和/或信令。示例地,图2示出了一种UE请求恢复RRC连接状态进行数据传输的交互过程,如图2所示,该交互过程可以包括如下步骤:
步骤201、RRC非激活状态下的UE向服务基站发送RRC恢复请求(RRCResumeRequest)消息。
步骤202、如果UE的服务基站不是UE的锚点基站,服务基站向锚点基站发送检索上下文请求(Retrieve UE CONTEXT REQUEST)消息,用于请求UE的上下文。
步骤203、锚点基站向服务基站发送检索上下文响应(Retrieve UE CONTEXT RSPONSE)消息,该消息包括UE的上下文。
步骤204、服务基站接收到检索上下文响应消息后,向UE发送RRC恢复(RRCResume)消息,用于使UE切换至RRC连接状态。
步骤205、UE在收到RRC恢复消息后,切换至RRC连接状态。
步骤206、UE在恢复至RRC连接状态后,向服务基站发送RRC恢复完成(RRCResumeComplete)消息。
步骤207、服务基站在接收到RRC恢复完成消息后,向锚点基站发送Xn接口的地址指示(Xn-U address indication)信息。
步骤208、服务基站向AMF发送信道切换请求(path switch request)消息,以及接收通道切换响应(path switch response)消息,进行信道的切换,使核心网设备的信道切换至服务基站。
步骤209、信道切换后,服务基站向锚点基站发送UE上下文释放(UE context release)消息,以指示锚点基站释放UE的上下文。
应理解,步骤208后,该服务基站即成为了新的锚点基站。从而,原锚点基站(即图2中的锚点基站)无需再保留UE的上下文,从而可以释放UE的上下文。
步骤210、信道切换后,RRC连接状态下的UE可以与UPF进行数据传输。
步骤211、数据传输完成后,该服务基站(同时也是锚点基站)可以向UE发送RRC释放(RRCRelease)消息,使UE切换至RRC非激活状态。
其中,该RRC释放消息可以包括挂起配置(suspendconfig),用于指示UE挂起UE的上下文。
恢复到非激活状态下的UE如果需要再次发送数据,可以重新执行上述步骤201至步骤211。
不过,从上述步骤201至211可以看出,如果数据传输的次数比较频繁,那么UE需要频繁的在非激活状态和连接状态之间进行切换,从而占用大量的信令资源。然而,为了传输小数据包而占用大量的信令资源,会导致信令资源的浪费。因此,在一种可能的实现方式中,提出了一种小包数据传输(small data transmission,SDT)技术,可以使UE在RRC非激活状态传输数据。
4、SDT:
UE在非激活状态下进行SDT,可以分为锚点的迁移和锚点不迁移两种场景。锚点的迁移是指,UE在非激活状态下请求进行SDT时,可以执行类似于上述步骤206至步骤208的方案,将AMF的信道切换至当前的服务基站上,使得当前的服务基站成为锚点基站(即是锚点的迁移)后,再进行数据传输。锚点不迁移则是指无需将AMF的信道切换至当前的服务基站,依然由原来的锚点基站来控制数据的传输。
示例地,图3为一种锚点的迁移的场景下进行SDT的流程图,如图3所示,该过程可以包括如下步骤:
步骤301、RRC非激活状态下的UE在向服务基站发送的RRC恢复请求消息中携带SDT数据包,该携带SDT数据包的RRC恢复请求消息可以用来请求进行SDT。
步骤302、如果UE的服务基站不是UE的锚点基站,服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息可以包括SDT指示,以指示锚点基站进行SDT。
步骤303、锚点基站向服务基站发送检索上下文响应消息。
步骤304、服务基站锚点基站发送Xn接口的地址指示信息。
步骤305、服务基站向AMF发送信道切换请求消息,以及接收通道切换响应消息,进行信道的切换,使核心网设备的信道切换至服务基站。
步骤306、信道切换后,服务基站将UE在RRC恢复请求消息中携带的SDT数据包直接发送给UPF。
步骤307、信道切换后,服务基站还向锚点基站发送UE上下文释放消息,以指示锚点基站释放UE的上下文。
步骤308、信道切换后,UE通过服务基站与UPF传输后续的SDT数据包。
步骤309、数据传输完成后,该服务基站(同时也是锚点基站)向UE发送RRC释放消息。
其中,该RRC释放消息可以包括挂起配置,用于指示UE挂起UE的上下文。
又示例地,图4为一种锚点不迁移的场景下进行SDT的流程图,如图4所示,该过程可以包括如下步骤:
步骤401、RRC非激活状态下的UE在向服务基站发送的RRC恢复请求消息中携带SDT数据包,该携带SDT数据包的RRC恢复请求消息可以用来请求进行SDT。
步骤402、如果UE的服务基站不是UE的锚点基站,服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息可以包括SDT指示,以指示锚点基站进行SDT。
步骤403、锚点基站向服务基站发送检索上下文响应消息。
步骤404、服务基站将UE在RRC恢复请求消息中携带的SDT数据包通过锚点基站发送给UPF。
步骤405、UE通过服务基站和锚点基站与UPF传输后续的SDT数据包。
步骤406、数据传输完成后,该服务基站向UE发送RRC释放消息。
其中,该RRC释放消息可以包括挂起配置,用于指示UE挂起UE的上下文。
不过,实际应用中,在进行SDT时,如果终端设备的服务基站与锚点基站不同,是否进行锚点的迁移,目前还没有相关方案。
本申请实施例提供了一种通信方法,当终端设备的服务基站与锚点基站不同时,锚点基站可以根据辅助信息确定是否进行锚点的迁移。
本申请实施例可以适用但不限于以下通信系统:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、长期演进(long term evolution,LTE)系统、5G移动通信系统、或者5G之后的通信系统,例如6G系统、设备到设备(device to device,D2D)通信系统、车联网等。
图5为本申请实施例提供的一种通信系统,如图5所示,该通信系统包括终端设备501、服务接入网设备502和锚点接入网设备503。其中,锚点接入网设备503为终端设备501进入非激活状态前最后一个为终端设备501提供服务的接入网设备,该锚点接入网设备503与服务接入网设备502不同。
需要说明的是,本申请实施例中,终端设备当前驻留的小区所属的接入网设备,或者当前为终端设备提供服务的接入网设备,可以称为服务接入网设备(例如上文所描述的服务基站)。终端设备在进入非激活状态之前,驻留的最后一个小区所属的接入网设备,或者最后为终端设备提供服务的接入网设备,可以称为锚点接入网设备(例如上文所描述的锚点基站)。
可选的,以5G通信系统为例,本申请实施例适用的一种可能的图5所示的通信系统对应的网络架构示意图,可以如图1所示。例如,终端设备501可以为图1中的UE,服务接入 网设备502或锚点接入网设备503可以是图1所示的AN或RAN中的设备。
本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请涉及的接入网设备可以是一种部署在无线接入网中为终端设备提供无线通信功能的装置。本申请实施例中的接入网设备可以为基站,从而,上述服务接入网设备502可以为服务基站,锚点接入网设备503可以为锚点基站。基站可以包括多种形式,例如:宏基站,微基站(也称为小站),中继站,接入点(access point)等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(evolutional NodeB),5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站。接入网设备也可以是宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非3GPP接入设备。此外,接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器,或者传输接收节点(transmission and reception point,TRP),或者包括TRP的设备等,本申请实施例对此不作具体限定。
本申请实施例所涉及的终端设备,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。其中,终端设备可以是5G网络或者未来演进的公共陆地移动网(public land mobile network,PLMN)中的UE、接入终端、终端单元、用户单元(subscriber unit)、终端站、移动站(Mobile Station,MS)、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。本申请实施例对终端的具体类型和结构等不作限定。
可选地,本申请实施例中的终端设备、服务接入网设备、以及锚点接入网设备可采用图6所示的组成结构或者包括图6所示的部件。图6为本申请实施例提供的一种通信设备60的结构示意图,如图6所示,该通信设备60包括一个或多个处理器601,通信线路602,以及至少一个通信接口(图6中仅是示例性的以包括通信接口603,以及一个处理器601为例进行说明),可选的还可以包括存储器604。
处理器601可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路602可包括一通路,用于不同组件之间的通信。
通信接口603,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口603也可以是位于处理器601内的收发电路,用以实现处理器的信号输入和信号输出。
存储器604可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路602与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器604用于存储执行本申请方案的计算机执行指令,并由处理器601来控制执行。处理器601用于执行存储器604中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,可选的,本申请实施例中,也可以是处理器601执行本申请下述实施例提供的通信方法中的处理相关的功能,通信接口603负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备60可以包括多个处理器,例如图6中的处理器601和处理器607。这些处理器中的每一个可以是一个单核(single-core)处理器,也可以是一个多核(multi-core)处理器。这里的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。
在具体实现中,作为一种实施例,通信设备60还可以包括输出设备605和输入设备606。输出设备605和处理器601通信,可以以多种方式来显示信息。例如,输出设备605可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备606和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备606可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备60有时也可以称为通信装置,其可以是一个通用设备或者是一个专用设备。例如通信设备60可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备、上述终端设备,上述网络设备、或具有图6中类似结构的设备。本申请实施例不限定通信设备60的类型。
可选地,图7示出了一种UE的硬件结构示意图。如图7所示,在一些实施例中,UE的 结构可以如图7所示,UE可以包括:处理器710,外部存储器接口720,内部存储器721,通用串行总线(universal serial bus,USB)接口730,充电管理模块740,电源管理模块741,电池742,天线1,天线2,移动通信模块750,无线通信模块760,音频模块770,扬声器770A,受话器770B,麦克风770C,耳机接口770D,传感器模块780,按键790,马达791,指示器792,摄像头793,显示屏794,以及用户标识模块(subscriber identification module,SIM)卡接口795等。其中传感器模块780可以包括压力传感器780A,陀螺仪传感器780B,气压传感器780C,磁传感器780D,加速度传感器780E,距离传感器780F,接近光传感器780G,指纹传感器780H,温度传感器780J,触摸传感器780K,环境光传感器780L,骨传导传感器780M等。
可以理解的是,本实施例示意的结构并不构成对UE的具体限定。在另一些实施例中,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器710可以包括一个或多个处理单元,例如:处理器710可以包括应用处理器(application processor,AP),Modem,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
充电管理模块740用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块741用于连接电池742,充电管理模块740与处理器710。电源管理模块741接收电池742和/或充电管理模块740的输入,为处理器710,内部存储器721,显示屏794,摄像头793,和无线通信模块760等供电。
UE的无线通信功能可以通过天线1,天线2,移动通信模块750,无线通信模块760,调制解调器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。UE中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
移动通信模块750可以提供应用在UE上的包括2G/3G/4G/5G等无线通信的解决方案。
无线通信模块760可以提供应用在UE上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块760可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块760经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器710。无线通信模块760还可以从处理器710接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在本申请实施例中,无线通信模块760可用于UE向网络节点发送恢复RRC连接的请求,以及接收网络节点的响应消息。
UE通过GPU,显示屏794,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏794和应用处理器。
显示屏794用于显示图像,视频等。UE的显示屏794上可以显示一系列图形用户界面 (graphical user interface,GUI)。
UE可以通过ISP,摄像头793,视频编解码器,GPU,显示屏794以及应用处理器等实现拍摄功能。
摄像头793用于捕获静态图像或视频。
外部存储器接口720可以用于连接外部存储卡,例如Micro SD卡,实现扩展UE的存储能力。
内部存储器721可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器710通过运行存储在内部存储器721的指令,从而执行UE的各种功能应用以及数据处理。
UE可以通过音频模块770,扬声器770A,受话器770B,麦克风770C,耳机接口770D,以及应用处理器等实现音频功能。例如音乐播放,录音等。UE还可以包括压力传感器780A,气压传感器780C,陀螺仪传感器780B,磁传感器780D,加速度传感器780E,距离传感器780F,接近光传感器780G,环境光传感器780L,指纹传感器780H,温度传感器780J,触摸传感器780K,骨传导传感器780M,按键790,马达791,指示器792等。
SIM卡接口795用于连接SIM卡。SIM卡可以通过插入SIM卡接口795,或从SIM卡接口795拔出,实现和UE的接触和分离。UE可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口795可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口795可以同时插入多张卡。SIM卡接口795也可以兼容外部存储卡。UE通过SIM卡和网络交互,实现通话以及数据通信等功能。
另外,在上述部件之上,运行有操作系统,例如鸿蒙操作系统、iOS操作系统,Android操作系统,Windows操作系统等。在该操作系统上可以安装运行应用程序。在另一些实施例中,UE内运行的操作系统可以有多个。
应理解,图7所示UE包括的硬件模块只是示例性地描述,并不对UE的具体结构做出限定。事实上,本申请实施例提供的UE中还可以包含其它与图中示意的硬件模块具有交互关系的其它硬件模块,这里不作具体限定。例如,UE还可以包括闪光灯、微型投影装置等。又如,若UE是PC,那么UE还可以包括键盘、鼠标等部件。
下面将结合图1至图7,对本申请实施例提供的通信方法进行描述。其中,下述实施例中的设备可以具有图7所示部件。其中,本申请各实施例之间涉及的动作,术语等均可以相互参考,不予限制。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
在一种可能的实施例中,以接入网设备为基站(服务接入网设备为服务基站,锚点接入网设备为锚点基站),终端设备为UE为例,本申请实施例提供的一种通信方法的流程图可以如图8所示。参见图8,该通信方法可以包括如下步骤:
步骤801、UE向服务基站发送RRC恢复请求、UE的辅助信息和第一数据包。
步骤801为UE在触发SDT后执行的,触发SDT是指UE确定要进行SDT。
UE向服务基站发送RRC恢复请求用于请求建立SDT会话,SDT会话可以用于SDT业务的传输。其中,该RRC恢复请求消息可以携带原因值,该原因值可以用于指示该RRC恢复请求消息的目的。本申请实施例中,该RRC恢复请求消息携带的原因值可以为移动主叫(mobile originating,MO)小数据传输指示(MO-SDT),从而该RRC恢复请求消息的目的是请求建立SDT会话。
UE的辅助信息可以包括以下至少一种信息:UE的属性信息、无线承载(radio bearer,RB)的信息、无线承载所承载的业务的属性信息、SDT业务的信息、以及SDT会话的信息。
UE的属性信息可以包括以下至少一种:UE的移动轨迹、UE的移动性、以及UE期待的监听调度信息的时间间隔和持续时间。其中,UE的移动轨迹可以由UE穿越的小区和UE待在每个小区下的时间来表示,UE的移动性可以为高移动性、中移动性或低移动性,UE期待的监听调度信息的时间间隔和持续时间可以为小数据包传呼非连续监听(small data transmission-discontinuous reception,SDT-DRX)的配置参数。该SDT-DRX参数可以为UE在SDT期间所期待的参数配置,或者可以是锚点基站预先配置给UE的(比如通过RRC专有消息配置的,或者通过广播配置的)。需要说明的是,如果UE既通过RRC专有消息接收到SDT-DRX的配置参数,又通过基站广播接收到SDT-DRX的配置参数,UE将选择监听时间间隔更短的配置参数。
无线承载的信息可以包括以下至少一种:无线承载的类型和无线承载所承载的业务类型。其中,无线承载的类型可以包括:信令无线承载(signalling RB,SRB)和数据无线承载(data RB,DRB),SRB又可以包括SRB1、SRB2、SRB3等类型。SRB承载所承载的业务类型可以为信令业务类型,例如定位业务等,DRB承载的业务可以为数据传输业务,例如SDT业务。
无线承载所承载的业务的属性信息可以包括以下至少一种:业务要求的传输质量信息(例如传输时延,丢包率等)、业务发送的频次(例如单次传输,多次传输,或者具体的传输次数等)、业务发送的周期、业务持续的时间(例如平均持续时间,最小持续时间,最大持续时间等)、以及业务的数据量(例如平均数据量,最小数据量,最大数据量,总数据量等)。
SDT业务的信息可以包括以下至少一种:SDT业务的持续时间、调度数据允许的最大时延。
SDT会话的信息可以包括以下至少一种:UE期待在SDT会话中连续传输数据的次数、SDT会话中传输的数据是否被分段的指示、SDT会话期间待发送的数据量。
本申请实施例中,UE的辅助信息所包括的内容可以用于辅助锚点基站与UE进行通信,比如辅助建立SDT会话和辅助进行SDT。
可选地,UE的辅助信息可以是UE在之前建立无线承载的过程中自己统计的,或者,也可以是由核心网网元(比如,接入及移动性管理功能网元)配置给UE的。
本申请实施例中,可以通过多种方式配置或指示UE在触发SDT后,发送UE的辅助信息。作为一种可能的实现方式,通过网络侧发送的显示配置消息(比如RRC专有消息、广播消息等)进行指示,UE在触发SDT后可以查看该配置消息以确定是否发送UE的辅助信息。作为另一种可能的实现方式,可以预先对UE进行配置,使得UE默认在触发SDT后,发送UE的辅助信息。可选地,UE的辅助信息具有时效性,UE可以被配置为只要UE的辅助信息有效,触发SDT后均发送该UE的辅助信息。作为又一种可能的实现方式,UE在触发SDT后,可以由UE的高层(比如非接入层(Non-access stratum,NAS))指示UE发送UE的辅助信息。
第一数据包为SDT业务的数据包,该第一数据包通过SDT承载传输。另外,该第一数据包的大小小于第一阈值,该第一阈值可以认为是触发SDT的数据包大小要求。本申请实施例中,UE在生成该第一数据包后可以确定该第一数据包属于SDT业务,还可以确定该SDT数据包的大小小于第一阈值,基于此,UE可以确定触发SDT,请求建立SDT会话以发送该 第一数据包。
需要说明的是,RRC恢复请求、UE的辅助信息和第一数据包可以封装在同一个消息中发送给服务基站。
步骤802、服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息用于请求建立SDT会话。
图8所示的实施例中,服务基站与锚点基站不同,从而服务基站需要请求锚点基站建立SDT会话。
该检索上下文请求消息可以包括以下至少一种:SDT指示(SDT Indicator)信息、区域设置标识符(locale identifier,LCID)、UE的辅助信息、服务基站支持的网络切片信息列表、以及服务基站具备的安全能力。检索上下文请求消息中的SDT指示信息可以用来指示该检索上下文请求消息是用于请求建立SDT会话的。LCID、UE的辅助信息、服务基站支持的网络切片信息列表、以及服务基站具备的安全能力可以用于辅助锚点基站建立SDT会话和进行SDT。
其中,LCID为包括第一数据包的媒体接入控制(media access control,MAC)层LCID,服务基站在解析第一数据包的MAC层数据包后,可以获得该LCID,该LCID可以用来标识传输第一数据包的无线承载。可选地,服务基站支持的网络切片信息列表可以包括单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)。服务基站具备的安全能力可以包括NR加密算法(NR encryption algorithms),NR完整性保护算法(NR integrity protection algorithms),E-UTRA完整性保护算法(E-UTRA integrity protection algorithms)等。其中,E-UTRA是指演进的UMTS陆地无线接入网(evolved UMTS terrestrial radio access network),UMTS是指通用移动通讯系统(universal mobile telecommunication system)。
步骤803、锚点基站确定是否进行锚点的迁移。
本申请实施例中,UE的辅助信息可以用于辅助锚点基站确定是否进行锚点的迁移。锚点基站在接收到检索上下文请求消息后,可以根据其中携带的UE的辅助信息确定是否进行锚点的迁移。
示例地,UE的辅助信息可以包括UE的移动轨迹和UE的移动性,如果UE的移动轨迹指示该UE没有穿越其他小区,并且该UE的移动性为低移动性,那么锚点基站可以认为该UE短时间内不会移动出当前的服务基站,从而锚点基站可以认为无需进行锚点的迁移。反之,如果UE的移动轨迹指示该UE穿越了很多其他的小区,并且该UE的移动性为高移动性,则锚点基站可以认为需要进行锚点的迁移。应理解,如果UE很少移动,那么锚点基站即使不迁移至服务基站,UE依然可以稳定地与网络通信,并且,不进行锚点的迁移可以节约通信资源。
又示例地,UE的辅助信息还可以包括SDT业务的持续时间、调度数据允许的最大时延、以及SDT会话期间待发送的数据量等信息,如果SDT业务的持续时间越长、调度数据允许的最大时延越短、以及SDT会话期间待发送的数据量越大,锚点基站则可以认为需要进行锚点的迁移。反之,锚点基站可以认为不需要进行锚点的迁移。应理解,如果调度数据允许的最大时延较短,那么进行锚点的迁移可以缩短UE与锚点基站传输数据地时延,以满足调度数据的时延要求。另外,在SDT业务的持续时间较长、SDT会话期间待发送的数据量较大的情况下,进行锚点的迁移可以避免SDT占用原锚点基站过多的资源。
本申请实施例中,锚点基站可以根据UE的辅助信息来确定是否进行锚点的迁移,相较于默认进行锚点的迁移的方案,本申请的方案可以根据实际需求来确定,可以节约信令资源,避免在非必要的情况下进行锚点的迁移而导致信令资源的浪费。
需要说明的是,锚点基站确定是否进行锚点的迁移可以基于但不限于UE的辅助信息,比如锚点基站还可以结合自身的负荷情况确定是否进行锚点的迁移。另外,锚点基站可以根据UE的辅助信息中的一个或多个参数进行判断。
本申请实施例中,锚点的迁移是指将基站的锚点的迁移至服务基站,使得UE的服务基站也作为UE的锚点基站,即服务基站和锚点基站为同一基站。
可选地,锚点基站还可以根据UE的辅助信息确定是否建议UE切换至RRC连接状态。作为一种可能的实现方式,锚点基站可以根据传输的数据量和数据传输的时长等参数来确定是否UE切换至RRC连接状态。示例地,UE的辅助信息还可以包括SDT业务的持续时间、以及SDT会话期间待发送的数据量等信息,如果SDT业务的持续时间越长、SDT会话期间待发送的数据量越大,锚点基站则可以认为需要UE切换至RRC连接状态。应理解,SDT技术让UE处于RRC非激活状态下传输数据,是为了避免UE在RRC非激活状态与RRC连接状态之间频繁切换而浪费通信资源。如果UE待发送的数据量较大,传输时间较长,则无需处于RRC非激活状态下进行传输,从而锚点基站可以建议UE切换至RRC连接状态。
步骤804、锚点基站向服务基站发送检索上下文响应消息。
需要说明的是,图8所示的实施例以进行锚点的迁移为例进行说明的。基于该实施例,检索上下文响应消息可以包括:UE的全部上下文和UE的辅助信息。应理解,由于UE的全部上下文和UE的辅助信息是由锚点基站保留的,而锚点基站即将迁移至服务基站,从而锚点基站可以将UE的全部上下文和UE的辅助信息发送至服务基站,该UE的全部上下文和UE的辅助信息后续可以用于服务基站与UE进行通信,比如可以辅助服务基站建立SDT会话和进行SDT传输。
可选地,检索上下文响应消息可以包括指示是否进行锚点的迁移的指示信息。
可选地,检索上下文响应消息还可以包括是否建议UE恢复到RRC连接态的指示信息。
步骤805、服务基站向AMF发送路径切换请求消息,以及接收来自AMF的路径切换响应消息,使核心网路径切换至该服务基站。
需要说明的是,在服务基站接收到UE的全部上下文信息,以及将核心网路径切换至该服务基站后,就实现了锚点的迁移,该服务基站也成为了UE的锚点基站。
步骤806、服务基站将第一数据包发送至UPF。
需要说明的是,服务基站在步骤801中接收到第一数据包后,可以将该第一数据包暂存至服务基站本地。可选地,当锚点基站将上下文信息通过检索上下文响应消息发送给服务基站后,服务基站可以将该第一数据包发送至UPF。可选地,步骤805与步骤804的执行顺序,本申请不做限定。
步骤807、服务基站向UE发送RRC恢复消息。
需要说明的是,在执行步骤803后,服务基站可以根据UE的辅助信息来确定是否将UE切换至RRC连接状态,服务基站确定是否将UE切换至RRC连接状态的方法可以与锚点基站确定是否建议UE恢复到RRC连接态的方法类似,此处不再赘述。可选地,如果检索上下文响应消息还包括是否建议UE恢复到RRC连接态的指示信息,服务基站还可以参考该指示信息来确定是否将UE切换至RRC连接状态。
图8是以服务基站确定将UE切换至RRC连接状态进行说明的。该场景下,服务基站发送RRC恢复消息可以用于配置UE切换至RRC连接状态。
UE在接收到RRC恢复消息后,可以通知UE的高层:SDT会话终结,第一数据包发送成功。并且,UE可以根据RRC恢复消息切换至RRC连接状态。
步骤808、UE向服务基站发送RRC恢复完成消息。
UE在切换至RRC连接状态后,可以向服务基站发送RRC恢复完成消息,用于指示UE的状态切换完成。从而,UE和服务基站(也是锚点基站)可以在RRC连接状态下进行通信。
根据上述步骤801至步骤808可以看出,图8所示的实施例为锚点基站确定进行锚点的迁移,且服务基站确定将UE切换至RRC连接状态的场景。
可选地,在锚点基站确定进行锚点的迁移时,UE可以无需切换至RRC连接状态。比如,继续以接入网设备为基站,终端设备为UE为例,图9为本申请提供的另一种通信方法的流程图,如图9所示,该通信方法可以包括如下步骤:
步骤901、UE向服务基站发送RRC恢复请求、UE的辅助信息和第一数据包。
步骤902、服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息用于请求建立SDT会话。
步骤903、锚点基站确定是否进行锚点的迁移。
步骤904、锚点基站向服务基站发送检索上下文响应消息。
步骤905、服务基站向AMF发送路径切换请求消息,以及接收来自AMF的路径切换响应消息,使核心网路径切换至该服务基站。
步骤906、服务基站将第一数据包发送至UPF。
需要说明的是,步骤901至步骤906可以参考步骤801至步骤806的描述。
需要说明的是,在图9所示的实施例中,服务基站在接收到检索上下文响应消息后,可以确定无需将UE切换至RRC连接状态。此种情况下,UE可以在RRC非激活状态下继续与服务基站进行通信,可以继续通过SDT会话传输数据。在后续的数据传输过程中,该服务基站即是UE的锚点基站。
步骤907、UE与UPF之间通过服务基站进行后续的数据传输。
步骤908、服务基站向UE发送RRC释放消息,该RRC释放消息用于终止SDT会话。
服务基站可以根据某些判断条件来决定终止SDT会话,比如,当SDT业务的持续时间结束,或者SDT数据传输完成时,服务基站可以决定终止SDT会话。
可选地,该RRC释放消息可以配置UE继续保持RRC非激活状态,或者配置UE进入RRC空闲状态。
根据上述步骤901至步骤908可以看出,本申请实施例中,即使锚点基站确定进行锚点的迁移,不过UE可以无需切换至RRC连接状态。
需要说明的是,本申请实施例中,对于UE通过SDT会话发送的数据包的大小或数量有一定的限制。
第一种可能的实现方式:当数据包的大小小于第一阈值时,UE触发SDT,该数据包可以认为通过SDT会话传输的第一个数据包(比如图8或图9所示实施例中的第一数据包)。并且,后续UE通过SDT会话发送的数据包的大小都应该小于该第一阈值。
可选地,在UE触发SDT后,如果后续某个待传输的数据包大小超过了第一阈值,UE可以通知锚点接入网设备终止SDT会话和/或请求锚点接入网设备配置UE切换至RRC连接 状态。
第二种可能的实现方式,当数据包的大小小于第一阈值时,UE触发SDT,该数据包可以认为通过SDT会话传输的第一个数据包(比如图8或图9所示实施例中的第一数据包)。并且,后续UE通过SDT会话发送的数据包的大小不做限制。不过,后续UE通过SDT会话发送的数据包的数量有限制,比如数量限制为第二阈值。
可选地,在UE触发SDT后,如果UE发送的数据包的数量已经达到了第二阈值,后续待发送的数据包到达时,UE可以通知锚点接入网设备终止SDT会话和/或请求锚点接入网设备配置UE切换至RRC连接状态。
可选地,UE每次发送数据包后,可以在接收到层1或层2反馈后,确定该数据包传输成功,此时UE可以让计数器自增1。UE可以通过此种方式来计量发送的数据包的数量。
本申请实施例中,UE可以通过RRC消息(比如RRC恢复请求消息)、MAC层控制元素(MAC control element,MAC CE)、或者专用控制信道(dedicated control channel,DCCH)来通知锚点接入网设备终止SDT会话和/或请求锚点接入网设备配置UE切换至RRC连接状态。
本申请实施例中,通过SDT传输的数据包可以是PDCP SDU、RLC SDU或MAC SDU。其中,SDU是指业务数据单元(service data unit),PDCP是指分组数据汇聚协议(packet data convergence protocol),RLC是指无线链路层控制协议(radio link control)。
可选地,在通过SDT会话传输数据的期间,如果UE中有属于非SDT承载的上行数据到达时,UE可以通过专有DCCH消息或RRC恢复请求消息将该情况通知网络设备。示例地,该情况下,UE发送的RRC恢复请求消息可以携带新的原因值,例如,RRC恢复请求消息中的原因值可以为:非SDT数据到达(non-SDT data arrival)。
可选地,在通过SDT会话传输数据的期间,如果锚点基站中有属于非SDT承载的下行数据到达时,锚点基站可以先指示UE切换至RRC连接状态,之后再发送该非SDT承载的下行数据。或者,锚点基站可以直接终止本次SDT会话,然后UE可以发送RRC恢复请求消息流程用于请求切换至RRC连接状态,之后锚点基站再向UE发送该非SDT承载的下行数据。可选地,锚点基站直接终止本次SDT会话可以采用RRC释放消息实现,其中RRC释放消息可携带随机接入信道(random access channel,RACH)资源或者配置上行资源,该方法可以使得UE后续发送RRC恢复请求消息后能够通过2步(2-step)RACH快速接入网络,从而快速切换至RRC连接状态。
可选地,UE在触发SDT后,如果上行资源无法适应传输第一条上行数据(比如UE发送的第一数据和UE的辅助信息等)或信令(比如RRC恢复请求)的大小时,第一条上行数据或信令可以被分段传输。可选地,RRC恢复请求不允许被分段传输。
可选地,当第一条上行数据或信令被发送后,UE需要收到明确的反馈(比如层1或层2的反馈)后才可以继续发送随后的数据或信令。示例地,当第一条消息或信令在配置资源(configured grant,CG)上发送后,即便后续的数据或信令已经到达UE的缓存中,如果UE没有收到第一条消息的明确的反馈,UE也不能在CG上发送后续的数据和信令。
可选地,第一条消息的明确的反馈可以是基站用UE的小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)调度了上下行数据进行反馈的,或者,也可以是明确的竞争解决反馈消息(例如RACH流程中的Msg4消息,Msg4消息携带竞争解决标识)。
可选地,UE在获取到第一数据包并触发SDT时,UE可能还未接入到网络中,此种情况 下,UE可以在随机接入网的过程中,向服务基站请求用于传输SDT业务数据的上行资源。
下面,以UE还未接入网络、反馈消息为Msg4消息为例,本申请实施例又提供了一种通信方法,如图10所示,该通信方法可以包括如下步骤:
步骤1001、UE向服务基站发送随机接入前导码。
其中,随机接入前导码是指preamble(序列)码。
在图10所示的实施例中,在步骤1001之前,UE可能还未接入当前小区的服务基站,从而UE向服务基站发送随机接入前导码用于请求接入网络。
步骤1001可以是在UE触发SDT后执行的,UE可以是在获取到第一数据包后触发SDT的,关于SDT的触发以及第一数据包的相关描述可以参考图8和图9所示的实施例中的描述,此处不再赘述。从而,该UE向服务基站发送随机接入前导码还可以用于请求传输SDT业务数据(比如UE获取的第一数据包)的上行资源。
步骤1002、服务基站向UE发送随机接入响应(random access response,RAR)消息。
RAR消息用于指示UE成功接入到网络中。并且,该RAR消息可以携带用于传输SDT业务数据的上行资源。本申请实施例中,该上行资源可以用于传输UE在触发SDT后发送的第一条消息,比如由RRC恢复请求、UE的辅助信息和第一数据包封装的消息。
步骤1003、UE向服务基站发送RRC恢复请求、UE的辅助信息和第一数据包。
步骤1003可以参考步骤901的相关描述,此处不再赘述。
需要说明的是,在图10所示的实施例中,UE在发送RRC恢复请求后,可以启动RACH竞争解决计时器(ra-ContentionResolutionTimer),UE可以在计时器的时间内监听反馈消息,该反馈消息为包括RRC恢复请求、UE的辅助信息和第一数据包的消息的反馈消息。
本申请实施例中,当UE的服务基站不是UE的锚点基站时,RACH竞争解决计时器的时长可以大于默认时长。其中,默认时长是指UE的服务基站与锚点基站相同时,RACH竞争解决计时器的时长。应理解,UE的服务基站不是UE的锚点基站时,服务基站需要获得UE的全部或部分上下文后才可以发送竞争解决标识。而在这种场景下,基站的锚点可能会发生迁移,其信令开销会占用一定的时长。本申请延长了UE的服务基站不是UE的锚点基站时RACH竞争解决计时器的时长,从而可以避免竞争解决计时器超时。
作为一种可能的实现方式,在SDT场景下,当UE服务基站不是UE的锚点基站时,UE的RACH竞争解决计时器的时长可以自动延长k倍。其中,k可以由网络配置,或协议默认确定。示例地,RACH竞争解决计时器的初始时长可以配置为{sf8,sf16,sf24,sf32,sf40,sf48,sf56,sf64}中的一项,假设RACH竞争解决计时器的时长为sf48,k为2,延长后的RACH竞争解决计时器的时长应当为sf96。
步骤1004、服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息用于请求建立SDT会话。
步骤1005、锚点基站确定是否进行锚点的迁移。
步骤1006、锚点基站向服务基站发送检索上下文响应消息。
步骤1004至步骤1006可以参考步骤902至步骤904的相关描述,此处不再赘述。
步骤1007、服务基站向UE发送Msg4消息,该Msg4消息携带竞争解决标识。
UE在接收到Msg4消息后,可以确定RRC恢复请求、UE的辅助信息和第一数据包发送成功。
步骤1008、服务基站向AMF发送路径切换请求消息,以及接收来自AMF的路径切换响 应消息,使核心网路径切换至该服务基站。
步骤1009、服务基站将第一数据包发送至UPF。
步骤10010、UE与UPF之间通过服务基站进行后续的数据传输。
步骤10011、服务基站向UE发送RRC释放消息,该RRC释放消息用于终止SDT会话。
步骤1008至步骤10011可以参考步骤905至步骤908的相关描述,此处不再赘述。
需要说明的是,UE通过随机接入过程接入到网络、启动竞争解决计时器以及接收竞争解决反馈消息,并不限于图10所示的锚点的迁移、UE不切换至RRC连接状态的场景中。比如,在图8所示的场景中,在步骤801之前也可以执行步骤1001和步骤1002;执行步骤801后,也可以启动竞争解决计时器;在执行步骤803之后,也可以执行步骤1006。
在一种可能的实施例中,以接入网设备为基站,终端设备为UE为例,提供了一种建立无线承载的方法,图11示出了建立无线承载的流程,如图11所示,该建立无线承载的方法可以包括如下步骤:
步骤1101、UE注册到网络。
UE在开机后,可以注册到网络中,在注册期间,UE可以与锚点基站以及核心网设备(比如AMF)交互相关的能力,比如,UE具备在RRC非激活状态下传输的能力。
需要说明的是,UE在开机后注册到网络时,UE的服务基站同时也是锚点基站。
步骤1102、AMF向锚点基站发送初始上下文建立请求(initial context setup request)消息。
其中,该初始上下文建立请求消息可以用于请求锚点基站建立无线承载资源。
可选地,该初始上下文建立请求消息可以包括核心网(core network,CN)的辅助参数(CN assisted parameters),核心网的辅助参数可以用于辅助锚点基站建立无线承载以及辅助锚点基站与UE的通信等。
可选地,该核心网的辅助参数可以包括以下至少一项:是否允许终端设备在RRC非激活状态下发送或接收数据的指示、是否允许终端设备在RRC非激活状态下选择网络切片信息发送数据、终端设备的RRC非激活状态的周期、SDT会话持续的时间、终端设备在RRC非激活状态下发送数据包的持续时间、终端设备在RRC非激活状态下发送或接收数据包的间隔、建立SDT会话的时间间隔、SDT会话期间传输的数据包的个数和数据包的大小、终端设备在RRC非激活状态下发送数据包的个数和数据包的大小、终端设备在RRC非激活状态下移动的轨迹、终端设备在RRC非激活状态下发送数据时穿越小区的数目、终端设备在RRC非激活状态下发送数据时的移动速度、SDT承载的标识。
可选地,核心网的辅助参数可以为核心网设备统计的数据,也可以是静态签约的数据。如果核心网的辅助参数为核心网设备统计的数据,该参数可以定期由核心网设备刷新,核心网设备刷新该参数后,可以将刷新后的参数发送给锚点基站,使得锚点基站及时更新该参数。如果核心网的辅助参数为静态签约的数据,当签约的数据更新后(也即是该参数更新后),核心网设备可以将更新后的参数发送给锚点基站。
可选地,核心网的辅助参数可以存储在AMF中,或者存储在AMF的实体中。示例地,静态签约的数据可以存储在签约数据库中,签约数据库可以位于AMF中或AMF的实体中。
可选地,锚点基站在接收到初始上下文建立请求消息后,可以建立初始上下文,以及建立网络侧的无线承载。另外,锚点基站还可以根据核心网的辅助参数配置无线承载,比如,可以标识某个承载为SDT承载,或标识是否允许某个承载的数据在RRC非激活状态下传输,或者标识是否允许某个承载在RRC非激活状态下接收数据等。
可选地,是否允许终端设备在RRC非激活状态下发送或接收数据的指示不包括在核心网的辅助参数中,该指示直接携带在初始上下文建立请求消息中。
步骤1103、锚点基站向UE发送无线承载建立请求(RB setup request)消息。
其中,该无线承载建立请求用于请求UE建立用户侧的无线承载。该无线承载建立请求也可以包括核心网的辅助参数,该参数用于辅助UE建立无线承载。
步骤1104、UE向锚点基站发送无线承载建立响应(RB setup response)消息。
无线承载建立响应消息为无线承载建立请求消息的响应消息,无线承载建立响应消息可以用于指示UE完成了无线承载的建立。
步骤1105、锚点基站向AMF发送初始上下文建立响应消息。
其中,初始上下文建立响应消息为初始上下文建立请求消息的响应消息,可以用于指示UE和锚点基站完成了无线承载的建立。
需要说明的是,在执行完步骤1101至步骤1105之后,用户侧和网络侧的无线承载均建立完成,后续UE和UPF可以通过锚点基站进行上行或下行数据的传输。
需要说明的是,图11是以核心网的辅助参数携带在初始上下文建立请求消息中为例进行说明的,可选地,核心网的辅助参数也可以是在建立无线承载的过程中,AMF通过其他消息发送给锚点基站的。另外,图11是以AMF为例进行说明的,可选地,发送核心网的辅助参数的网元可以为其他网元,根据通信网络的不同,该发送核心网的辅助参数的网元可以不同,比如,为通信网络中的接入及移动性管理功能网元。本申请实施例对此均不做限定。
在一种可能的实施例中,以接入网设备为基站,终端设备为UE为例,提供了又一种通信方法,图12为该通信方法的流程图,如图12所示,该通信方法可以包括如下步骤:
步骤1201、建立无线承载,期间,锚点基站获取核心网的辅助参数。
需要说明的是,UE和基站建立无线承载的流程可参考图11所示的实施例。根据图11所示的实施例可知,锚点基站可以在建立无线承载期间接收到AMF发送核心网的辅助参数。在图12所示的实施例中,核心网的辅助参数可以用来确定是否进行锚点的迁移。
步骤1202、锚点基站向UE发送RRC释放消息,该RRC释放消息用于配置UE进入RRC非激活状态。
步骤1203、UE向服务基站发送RRC恢复请求、UE的辅助信息和第一数据包。
步骤1204、服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息用于请求建立SDT会话。
步骤1203和步骤1204的实现可以参考步骤801和步骤802的描述,此处不再赘述。
步骤1205、锚点基站确定是否进行锚点的迁移。
需要说明的是,步骤1205中锚点基站确定是否进行锚点的迁移的实现方式,与步骤803中不同。相比于图8所示的实施例,其区别之处在于:锚点基站还可以基于核心网的辅助参数来确定是否进行锚点的迁移。应理解,基于核心网的辅助参数来确定是否进行锚点的迁移的方式与步骤801中基于UE的辅助信息确定是否进行锚点的迁移的方式类似,此处不再赘述。
需要说明的是,图12所示的实施例是以锚点基站确定进行锚点的迁移为例进行说明的。
步骤1206、锚点基站向服务基站发送检索上下文响应消息。
步骤1206的实现与步骤804类似,可以参考步骤804的描述。不过,需要说明的是,相比于图8所示的实施例,其区别之处在于:检索上下文响应消息还可以包括至少部分核心网 的辅助参数。
步骤1207、服务基站向AMF发送路径切换请求消息,以及接收来自AMF的路径切换响应消息,使核心网路径切换至该服务基站。
步骤1208、服务基站将第一数据包发送至UPF。
步骤1209、服务基站向UE发送RRC恢复消息。
步骤12010、UE向服务基站发送RRC恢复完成消息。
步骤1207至步骤12010的实现可以参考步骤805至步骤808的描述,此处不再赘述。
在一种可能的实施例中,以接入网设备为基站,终端设备为UE为例,提供了又一种通信方法,图13为该通信方法的流程图,如图13所示,该通信方法可以包括如下步骤:
步骤1301、建立无线承载,期间,锚点基站获取核心网的辅助参数。
步骤1302、锚点基站向UE发送RRC释放消息,该RRC释放消息用于配置UE进入RRC非激活状态。
步骤1303、UE向服务基站发送RRC恢复请求、UE的辅助信息和第一数据包。
步骤1304、服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息用于请求建立SDT会话。
步骤1305、锚点基站确定是否进行锚点的迁移。
步骤1306、锚点基站向服务基站发送检索上下文响应消息。
步骤1307、服务基站向AMF发送路径切换请求消息,以及接收来自AMF的路径切换响应消息,使核心网路径切换至该服务基站。
步骤1308、服务基站将第一数据包发送至UPF。
步骤1301至步骤1308的实现与步骤1201至步骤1208类似,可以参考步骤1201至步骤1208的描述。
步骤1309、UE与UPF之间通过服务基站进行后续的数据传输。
步骤13010、服务基站向UE发送RRC释放消息,该RRC释放消息用于终止SDT会话。
步骤1309和步骤13010的实现与步骤907和步骤908类似,可以参考步骤907和步骤908的描述。
在一种可能的实施例中,以接入网设备为基站,终端设备为UE为例,如图14所示,本申请实施例提供了又一种通信方法,该通信方法可以包括如下步骤:
步骤1401、建立无线承载,期间,锚点基站获取核心网的辅助参数。
步骤1402、锚点基站向UE发送RRC释放消息,该RRC释放消息用于配置UE进入RRC非激活状态。
步骤1403、UE向服务基站发送RRC恢复请求、UE的辅助信息和第一数据包。
步骤1404、服务基站向锚点基站发送检索上下文请求消息,该检索上下文请求消息用于请求建立SDT会话。
步骤1401至步骤1404的实现与步骤1201至步骤1205类似,可以参考步骤1201至步骤1204的描述。
步骤1405、锚点基站确定是否进行锚点的迁移。
需要说明的是,锚点基站确定是否进行锚点的迁移的实现方式与步骤1305相同。不过,在图14所示的实施例中,是以锚点基站确定不进行锚点的迁移为例进行说明的。
步骤1406、锚点基站向服务基站发送检索上下文响应消息。
由于锚点基站确定不进行锚点的迁移,因此图14所示的实施例中的检索上下文响应消息的内容与图12所示的实施例中的检索上下文响应消息的内容不同。
在图14所示的实施例中,该检索上下文响应消息可以包括:UE的部分是上下文、SDT的配置信息、以及QoS相关的参数等。示例地,UE的部分是上下文可以包括UE的PDU会话列表、或UE在SDT期间的DRX配置参数,SDT的配置信息可以包括SDT会话在RLC层面的配置,QoS相关的参数可以包括SDT承载的QoS参数。
步骤1407、服务基站将第一数据包发送至UPF。
步骤1408、UE与UPF之间通过服务基站进行后续的数据传输。
步骤1409、服务基站向UE发送RRC释放消息,该RRC释放消息用于终止SDT会话。
步骤1407至步骤1409的实现与步骤1307至步骤1309类似,可以参考步骤1307至步骤1309的描述。
需要说明的是,上述图8至图14所示的实施例为本申请提供的通信方法的几种示例性的说明。
综上,本申请实施例公开了一种通信方法,如图15所示,该方法包括如下步骤:
步骤1501、终端设备向服务接入网设备发送第一消息。其中,第一消息包括第一请求和第一辅助信息,第一请求用于请求建立SDT会话,第一辅助信息用于确定是否进行锚点的迁移。
本申请实施例中,步骤1501是终端设备在触发SDT后执行的,触发SDT是指终端设备确定要进行SDT。
作为一种可能的实现方式,第一请求可以为图8至图10、以及图12至图14所示的实施例中的RRC恢复请求,该第一请求可以参考图8至图10、以及图12至图14所示的实施例中对RRC恢复请求的相关描述。第一请求用于请求建立的SDT会话可以用于SDT业务的传输。
第一辅助信息可以用于辅助锚点接入网设备确定是否进行锚点的迁移。可选地,第一辅助信息包括以下至少一项:SDT业务的持续时间、调度数据允许的最大时延、终端设备期待在SDT会话中连续传输数据的次数、终端设备期待的监听调度信息的时间间隔和持续时间、终端设备的移动轨迹、终端设备的移动性、SDT会话期间待发送的数据总量,SDT会话用于SDT业务的传输。
可选地,第一辅助信息还可以用于辅助SDT。第一辅助信息还可以包括以下至少一项:SDT会话中传输的数据是否被分段的指示、SDT会话中待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息。其中,无线承载的信息包括无线承载的类型和无线承载所承载的业务类型中的至少一项,业务的属性信息包括业务要求的传输质量信息、业务发送的频次、业务发送的周期、业务持续的时间、以及业务的数据量中的至少一项。
可选地,第一辅助信息可以是终端设备在之前建立无线承载的过程中自己统计的,或者,也可以是由核心网网元(比如,接入及移动性管理功能网元)配置给终端设备的。
作为一种可能的实现方式,以终端设备为UE为例,该第一辅助信息可以为图8至图10、以及图12至图14所示的实施例中的UE的辅助信息,可以参考上述实施例中对UE的辅助信息的相关描述。
本申请实施例中,SDT可以是由第一数据包触发的,在步骤1501之前,终端设备可以获取第一数据包。作为一种可能的实现方式,该第一数据包可以为图8至图10、以及图12至 图14所示的实施例中的第一数据包,可以参考上述实施例中对第一数据包的相关描述。从而,可选地,在第一数据包的大小小于或者等于第一阈值时,终端设备可以生成第一消息,该第一消息可以包括第一数据包。
以终端设备为UE为例,终端设备生成的第一消息可以为图8至图10、以及图12至图14所示的实施例中,包括RRC恢复请求、UE的辅助信息和第一数据包的消息。
可选地,在发送第一消息时,终端设备可以启动定时器,终端设备可以在在定时器运行期间监听第一消息的响应消息。其中,当服务接入网设备不是锚点接入网设备时,该定时器的时长为第一时长。当所服务接入网设备是锚点接入网设备时,定时器的时长为第二时长。第一时长大于第二时长。
作为一种可能的实现方式,该定时器可以为图10所示的实施例中的RACH竞争解决计时器,该定时器以及定时器的时长可以参考图10所示实施例中对RACH竞争解决计时器及其时长的相关描述。
可选地,终端设备在发送第一消息后还可以获取第二数据包。
作为一种可能的实现方式,当第二数据包的大小小于第一阈值时,终端设备可以通过SDT会话发送该第二数据包。若第二数据包的大小大于第一阈值,终端设备可以向锚点接入网设备发送第二消息或第三消息,第二消息用于请求锚点接入网设备配置终端设备切换至RRC连接状态,第三消息用于指示终止SDT会话。
作为另一种可能的实现方式,第二数据包的大小可以不做限制,终端设备可以直接发送该第二数据包。其中,第二数据包的大小可以小于第一阈值,或者可以等于第一阈值,或者可以大于第一阈值。可选地,在不限制第二数据包大小的情况下,对于通过SDT会话发送的数据包数量有一定的限制。比如,若通过SDT会话发送的数据包的数量达到第二阈值,终端设备可以向锚点接入网设备发送第四消息或第五消息,第四消息用于请求锚点接入网设备配置终端设备切换至RRC连接状态,第五消息用于指示终止SDT会话。
可选地,第二消息、第三消息、第四消息或第五消息可以为以下任一种:RRC消息、MAC CE、或者DCCH消息。
上述步骤1501的内容可以参考步骤801、步骤901、步骤1003、步骤1203、步骤1303或步骤1403的描述。
步骤1502、服务接入网设备向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息。
可选地,第六消息还可以包括以下至少一项:传输第一消息的无线承载的LCID、服务接入网设备支持的网络切片的信息列表、服务接入网设备具备的安全能力。
作为一种可能的实现方式,该第六消息可以为图8至图10、以及图12至图14所示的实施例中的检索上下文请求消息,步骤1502的内容可以参考步骤802、步骤902、步骤1004、步骤1204、步骤1304或步骤1404的描述。
步骤1503、锚点接入网设备确定是否进行锚点的迁移。
本申请实施例中,第一辅助信息可以用于辅助锚点接入网设备确定是否进行锚点的迁移。锚点接入网设备在接收到第六消息后,可以根据其中携带第一辅助信息确定是否进行锚点的迁移。
示例地,第一辅助信息可以包括终端设备的移动轨迹和终端设备的移动性,如果终端设备的移动轨迹指示该终端设备没有穿越其他小区,并且该终端设备的移动性为低移动性,那 么锚点基站可以认为该终端设备短时间内不会移动出当前的服务基站,从而锚点基站可以认为无需进行锚点的迁移。反之,如果终端设备的移动轨迹指示该终端设备穿越了很多其他的小区,并且该终端设备的移动性为高移动性,则锚点基站可以认为需要进行锚点的迁移。应理解,如果终端设备很少移动,那么锚点基站即使不迁移至服务基站,终端设备依然可以稳定地与网络通信,并且,不进行锚点的迁移可以节约通信资源。
又示例地,第一辅助信息还可以包括SDT业务的持续时间、调度数据允许的最大时延、以及SDT会话期间待发送的数据量等信息,如果SDT业务的持续时间越长、调度数据允许的最大时延越短、以及SDT会话期间待发送的数据量越大,锚点基站则可以认为需要进行锚点的迁移。反之,锚点基站可以认为不需要进行锚点的迁移。应理解,如果调度数据允许的最大时延较短,那么进行锚点的迁移可以缩短终端设备与锚点基站传输数据地时延,以满足调度数据的时延要求。另外,在SDT业务的持续时间较长、SDT会话期间待发送的数据量较大的情况下,进行锚点的迁移可以避免SDT占用原锚点基站过多的资源。
需要说明的是,锚点基站确定是否进行锚点的迁移可以基于但不限于第一辅助信息,比如锚点基站还可以结合自身的负荷情况确定是否进行锚点的迁移。另外,锚点基站可以根据第一辅助信息中的一个或多个参数进行判断。
可选地,锚点基站还可以根据第一辅助信息确定是否建议终端设备切换至RRC连接状态。作为一种可能的实现方式,锚点基站可以根据传输的数据量和数据传输的时长等参数来确定是否终端设备切换至RRC连接状态。示例地,第一辅助信息还可以包括SDT业务的持续时间、以及SDT会话期间待发送的数据量等信息,如果SDT业务的持续时间越长、SDT会话期间待发送的数据量越大,锚点基站则可以认为需要终端设备切换至RRC连接状态。应理解,SDT技术让终端设备处于RRC非激活状态下传输数据,是为了避免终端设备在RRC非激活状态与RRC连接状态之间频繁切换而浪费通信资源。如果终端设备待发送的数据量较大,传输时间较长,则无需处于RRC非激活状态下进行传输,从而锚点基站可以建议终端设备切换至RRC连接状态。
作为一种可能的实现方式,锚点接入网设备可以为锚点基站,第一辅助信息可以为图8至图10、以及图12至图14所示的实施例中的UE的辅助信息,步骤1503的内容可以参考步骤803、步骤903、步骤1005、步骤1205、步骤1305或步骤1405的描述。
步骤1504、锚点接入网设备向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
可选地,若第二指示信息指示进行锚点的迁移,第七消息还可以包括第一辅助信息,第一辅助信息可以用于:辅助SDT,和/或,辅助锚点接入网设备确定是否将终端设备切换至RRC连接状态。
可选地,若第二指示信息指示不进行锚点的迁移,则第七消息还可以包括终端设备的部分上下文和SDT会话的配置信息,终端设备的部分上下文和SDT会话的配置信息用于服务基站与锚点基站建立SDT会话的承载,进而进行SDT。示例地,第二指示信息指示不进行锚点的迁移,可以参考步骤1406的相关描述。
可选地,若第二指示信息指示进行锚点的迁移,则第七消息还可以包括辅助信息、终端设备的全部上下文、以及第三指示信息,终端设备的全部上下文用于建立SDT会话以及进行SDT,第三指示信息用于指示是否建议终端设备切换至RRC连接状态。示例地,第二指示信息指示进行锚点的迁移,可以参考步骤804、步骤904、步骤1006、步骤1206或步骤1306 的相关描述。
作为一种可能的实现方式,该第七消息可以为图8至图10、以及图12至图14所示的实施例中的检索上下文响应消息,步骤1504的内容可以参考步骤804、步骤904、步骤1006、步骤1206、步骤1306或步骤1406的描述。
可选地,以第二指示信息指示进行锚点的迁移为例,该通信方法还可以包括:步骤1505、服务接入网设备向接入及移动性管理网元发送路径切换请求以及接收来自接入及移动性管理网元的路径切换响应。从而可以将核心网路径切换至服务接入网设备。作为一种可能的实现方式,步骤1505可以参考步骤805、步骤905、步骤1008、步骤1207、或步骤1307的描述。
可选地,若第一消息包括第一数据包,该通信方法还可以包括:步骤1506、服务接入网设备向用户面功能网元发送第一数据包。作为一种可能的实现方式,步骤1506可以参考步骤806、步骤906、步骤1009、步骤1208、步骤1308或步骤1407的描述。
可选地,服务接入网设备还可以根据第一辅助信息和/或第三指示信息确定是否将终端设备切换至RRC连接状态。其中,确定是否将终端设备切换至RRC连接状态的方式,与确定是否进行锚点的迁移的方式类似。
以服务接入网设备确定将终端设备切换至RRC连接状态为例,该通信方法还可以包括:步骤1506、服务接入网设备向终端设备发送第八消息,第八消息用于指示终端设备切换至RRC连接状态。作为一种可能的实现方式,第八消息可以为图8或图12所示的实施例中的RRC恢复完成消息,步骤1507可以参考步骤807或步骤1209的描述。
需要说明的是,图15所示的实施例可以参考图8所示实施例的相关描述。
此外,本申请实施例还公开了一种通信方法,如图16所示,该方法包括如下步骤:
步骤1601、终端设备向服务接入网设备发送第一消息。其中,第一消息包括第一请求和第一辅助信息,第一请求用于请求建立SDT会话,第一辅助信息用于确定是否进行锚点的迁移。
步骤1602、服务接入网设备向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息。
步骤1603、锚点接入网设备确定是否进行锚点的迁移。
步骤1604、锚点接入网设备向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
可选地,该通信方法还可以包括:步骤1605、服务接入网设备向接入及移动性管理网元发送路径切换请求以及接收来自接入及移动性管理网元的路径切换响应。
可选地,该通信方法还可以包括:步骤1606、服务接入网设备向用户面功能网元发送第一数据包。
上述步骤1601至步骤1606可以参考步骤1501至步骤1506,此处不再赘述。
可选地,以服务接入网设备确定无需将终端设备切换至RRC连接状态为例,通信方法还可以包括:步骤1607、终端设备与用户面功能网元进行后续的数据传输。以及步骤1608、服务接入网设备向终端设备发送第九消息,第九消息用于指示终端设备终止SDT会话。作为一种可能的实现方式,终端设备可以为UE,第九消息可以为RRC释放消息,步骤1607可以参考步骤907、步骤10010、步骤1309或步骤1408的描述,步骤1608可以参考步骤908、步骤10011、步骤13010或步骤1409的描述。
需要说明的是,图16所示的实施例可以参考图9所示的实施例。
此外,本申请实施例还公开了一种通信方法,如图17所示,该方法包括如下步骤:
步骤1701、建立无线承载,期间,锚点接入网设备获取第二辅助信息。
其中,该第二辅助信息是建立无线承载的期间,由核心网设备发送给锚点接入网设备的。作为一种可能的实现方式,该核心网设备可以为接入及移动性管理功能网元,比如AMF。
可选地,第二辅助信息可以包括以下至少一项:是否允许终端设备在RRC非激活状态下发送或接收数据的指示、是否允许终端设备在RRC非激活状态下选择网络切片信息发送数据、终端设备的RRC非激活状态的周期、SDT会话持续的时间、终端设备在RRC非激活状态下发送数据包的持续时间、终端设备在RRC非激活状态下发送或接收数据包的间隔、建立SDT会话的时间间隔、SDT会话期间传输的数据包的个数和数据包的大小、终端设备在RRC非激活状态下发送数据包的个数和数据包的大小、终端设备在RRC非激活状态下移动的轨迹、终端设备在RRC非激活状态下发送数据时穿越小区的数目、终端设备在RRC非激活状态下发送数据时的移动速度、SDT承载的标识。
作为一种可能的实现方式,该第二辅助信息可以为图11至图14所示的实施例中锚点基站在建立无线承载的过程中获取到的核心网的辅助参数,该第二辅助信息的内容可以参考步骤1102中对核心网的辅助参数的相关描述。
步骤1702、终端设备向服务接入网设备发送第一消息。其中,第一消息包括第一请求和第一辅助信息,第一请求用于请求建立SDT会话,第一辅助信息用于确定是否进行锚点的迁移。
步骤1703、服务接入网设备向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息。
步骤1704、锚点接入网设备确定是否进行锚点的迁移。
需要说明的是,步骤1704中,锚点接入网设备可以根据第一辅助信息和第二辅助信息确定是否进行锚点的迁移。步骤1704可以参考步骤1205的描述。
步骤1705、锚点接入网设备向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
需要说明的是,步骤1705中,在确定进行锚点迁移的情况下,第七消息可以包括第一辅助信息和第二辅助信息。步骤1704可以参考步骤1206的描述。
可选地,该通信方法还可以包括:步骤1706、服务接入网设备向接入及移动性管理网元发送路径切换请求以及接收来自接入及移动性管理网元的路径切换响应。
可选地,该通信方法还可以包括:步骤1707、服务接入网设备向用户面功能网元发送第一数据包。
可选地,服务接入网设备可以根据第一辅助信息、第二辅助信息、以及第三指示信息中的至少一个确定是否将终端设备切换至RRC连接状态。其中,确定是否将终端设备切换至RRC连接状态的方式,与确定是否进行锚点的迁移的方式类似。
以服务接入网设备确定将终端设备切换至RRC连接状态为例,该通信方法还可以包括:步骤1708、服务接入网设备向终端设备发送第八消息,第八消息用于指示终端设备切换至RRC连接状态。作为一种可能的实现方式,第八消息可以为图8或图12所示的实施例中的RRC恢复完成消息,步骤1504可以参考步骤807或步骤1209的描述。
可选地,在步骤1702之前,该通信方法还可以包括:步骤1709、锚点接入网设备 向终端设备发送第十消息,该第十消息用于释放建立无线承载期间所建立的连接,并配置终端设备于RRC非激活状态。作为一种可能的实现方式,该第十消息可以为RRC释放消息。步骤1709可以参考步骤1202、步骤1302或步骤1402的相关描述。
需要说明的是,图17所示的实施例可以参考图12所示实施例的相关描述。
此外,本申请实施例还公开了一种通信方法,如图18所示,该方法包括如下步骤:
步骤1801、建立无线承载,期间,锚点接入网设备获取第二辅助信息。
步骤1802、终端设备向服务接入网设备发送第一消息。其中,第一消息包括第一请求和第一辅助信息,第一请求用于请求建立SDT会话,第一辅助信息用于确定是否进行锚点的迁移。
步骤1803、服务接入网设备向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息。
步骤1804、锚点接入网设备确定是否进行锚点的迁移。
需要说明的是,步骤1804中,锚点接入网设备可以根据第一辅助信息和第二辅助信息确定是否进行锚点的迁移。步骤1804可以参考步骤1205的描述。
步骤1805、锚点接入网设备向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
需要说明的是,步骤1805中,在确定进行锚点迁移的情况下,第七消息可以包括第一辅助信息和第二辅助信息。步骤1804可以参考步骤1206的描述。
可选地,该通信方法还可以包括:步骤1806、服务接入网设备向接入及移动性管理网元发送路径切换请求以及接收来自接入及移动性管理网元的路径切换响应。
可选地,该通信方法还可以包括:步骤1807、服务接入网设备向用户面功能网元发送第一数据包。
可选地,以服务接入网设备确定无需将终端设备切换至RRC连接状态为例,通信方法还可以包括:步骤1808、终端设备与用户面功能网元进行后续的数据传输。以及步骤1809、服务接入网设备向终端设备发送第九消息,第九消息用于指示终端设备终止SDT会话。
可选地,在步骤1802之前,该通信方法还可以包括:步骤18010、锚点接入网设备向终端设备发送第十消息,该第十消息用于释放建立无线承载期间所建立的连接,并配置终端设备处于RRC非激活状态。作为一种可能的实现方式,该第十消息可以为RRC释放消息。步骤18010可以参考步骤1202、步骤1302或步骤1402的相关描述。
需要说明的是,图18所示的实施例可以参考图13所示实施例的相关描述。
需要说明的,本申请上述实施例都是以服务接入网s设备(比如服务基站)与锚点接入网设备(比如锚点基站)不同的情况进行说明的。可选地,终端设备的服务接入网设备也可以为终端设备的锚点接入网s设备,此种情况下,该服务接入网设备(也是锚点接入网设备)也可以获得第一辅助信息(由终端设备发送给服务接入网设备)和第二辅助信息(由核心网设备发送给服务接入网设备),该第一辅助信息和第二辅助信息可以用于服务接入网设备确定终端设备是否需要切换至RRC连接状态。
需要说明的是,上述方法实施例中服务接入网设备的动作可以由图6所示的通信设备60中的处理器601调用存储器604中存储的应用程序代码以指令该服务接入网设备执行,锚点接入网设备的动作可以由图6所示的通信设备60中的处理器601调用存储器604中存储的应用程序代码以指令该锚点接入网设备执行,终端设备的动作可以由图6所示的通信设备60中 的处理器601调用存储器604中存储的应用程序代码以指令该终端设备执行。
可以理解的是,以上各个实施例中,由目标节点实现的方法和/或步骤,也可以由可用于目标节点的部件(例如芯片或者电路)实现。
可选地,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的目标节点,或者包含上述目标节点的装置,或者为可用于目标节点的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图19示出了一种通信装置190的结构示意图。该通信装置190包括处理模块1901和收发模块1902。所述收发模块1902,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,以通信装置190为上述方法实施例中的终端设备为例:
处理模块1901,可以用于生成第一消息,第一消息用于建立小数据传输SDT会话,第一消息包括第一辅助信息,第一辅助信息用于确定是否进行锚点的迁移;其中,第一辅助信息为终端设备统计的或者为核心网设备配置给终端设备的。收发模块1902,可以用于向服务接入网设备发送第一消息。
可选地,处理模块1901,还可以用于获取第一数据包。在生成第一消息时,处理模块1901,具体可以用于当第一数据包的大小小于或者等于第一阈值时,生成第一消息,第一消息包括第一数据包。
可选地,处理模块1901,还可以用于获取第二数据包。收发模块1902,还key有用于在第二数据包的大小大于第一阈值时,向锚点接入网设备发送第二消息或第三消息,第二消息用于请求锚点接入网设备配置终端设备切换至RRC连接状态,第三消息用于指示终止SDT会话。
可选地,处理模块1901,还可以用于获取第二数据包。处理模块1901,还可以用于通过SDT会话发送第二数据包,第二数据包的大小小于第一阈值,或者等于第一阈值,或者大于第一阈值。
可选地,收发模块1902,还可以用于在通过SDT会话发送的数据包的数量达到第二阈值时,向锚点接入网设备发送第四消息或第五消息,第四消息用于请求锚点接入网设备配置终端设备切换至RRC连接状态,第五消息用于指示终止SDT会话。
可选地,处理模块1901,还可以用于在发送第一消息时,启动定时器,当服务接入网设备不是锚点接入网设备时,定时器的时长为第一时长;当所服务接入网设备是锚点接入网设备时,定时器的时长为第二时长;第一时长大于第二时长。处理模块1901,还可以用于在 定时器运行期间监听第一消息的响应消息。
可选地,第二指示信息指示进行锚点的迁移,收发模块1902,还可以用于向第一核心网设备发送路径切换请求,路径切换请求用于请求第一核心网设备将核心网路径切换至服务接入网设备。
可选地,第一消息还包括第一数据包,可选地,收发模块1902,还可以用于向用户面功能网元发送第一数据包。
以通信装置190为上述方法实施例中的服务接入网设备为例:
收发模块1902,可以用于接收来自终端设备的第一消息,第一消息用于SDT会话,第一消息包括第一辅助信息,第一辅助信息用于确定是否进行锚点的迁移。收发模块1902,还可以用于向锚点接入网设备发送第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息。收发模块1902,还可以用于接收来自锚点接入网设备的第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
可选地,收发模块1902,还可以用于向终端设备发送第八消息,第八消息用于指示终端设备切换至RRC连接状态。
可选地,收发模块1902,还可以用于向终端设备发送第九消息,第九消息用于指示终端设备终止SDT会话。
以通信装置190为上述方法实施例中的锚点接入网设备为例:
收发模块1902,可以用于接收来自服务接入网设备的第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息,第一辅助信息用于确定是否进行锚点的迁移。收发模块1902,还可以用于向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
可选地,处理模块1901,可以用于根据第一辅助信息确定是否进行锚点的迁移。
可选地,处理模块1901,可以用于根据第一辅助信息确定是否建议终端设备切换至RRC连接状态。
以通信装置190为上述方法实施例中的锚点接入网设备为例:
收发模块1902,可以用于在建立无线承载期间,接收来自核心网设备的第二辅助信息,第二辅助信息用于辅助SDT,和/或,用于确定是否进行锚点的迁移。收发模块1902,还可以用于接收来自服务接入网设备的第六消息,第六消息用于指示建立SDT会话,第六消息包括第一辅助信息,第一辅助信息用于确定是否进行锚点的迁移。收发模块1902,还可以用于向服务接入网设备发送第七消息,第七消息包括第二指示信息,第二指示信息用于指示是否进行锚点的迁移。
可选地,处理模块1901,可以用于根据第一辅助信息和/或第二辅助信息确定是否进行锚点的迁移。
可选地,处理模块1901,可以用于根据第一辅助信息和/或第二辅助信息确定是否建议终端设备切换至RRC连接状态。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。由于本实施例提供的通信装置190可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例中的服务接入网设备、锚点接入网设备、或者终端设备也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限 定。
在本实施例中,该通信装置190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置190可以采用图6所示的通信设备60的形式。
比如,图6所示的通信设备60中的处理器601可以通过调用存储器604中存储的计算机执行指令,使得通信设备60执行上述方法实施例中的通信方法。
具体的,图19中的处理模块1901和收发模块1902的功能/实现过程可以通过图6所示的通信设备60中的处理器601调用存储器604中存储的计算机执行指令来实现。或者,图19中的处理模块1901的功能/实现过程可以通过图6所示的通信设备60中的处理器601调用存储器604中存储的计算机执行指令来实现,图19中的收发模块1902的功能/实现过程可以通过图6中所示的通信设备60中的通信接口603来实现。
由于本实施例提供的通信装置190可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从 一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
本申请围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“系统”和“网络”有时可以混用,在不强调其区别时,其所要表达的含义是一致的,比如,“通信网络”也即是指“通信系统”。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    生成第一消息,所述第一消息包括第一请求和第一辅助信息,所述第一请求用于请求建立小数据传输SDT会话,所述第一辅助信息用于确定是否进行锚点的迁移;其中,所述第一辅助信息包括以下至少一项:SDT业务的持续时间、所述终端设备期待在所述SDT会话中连续传输数据的次数、所述终端设备期待的监听调度信息的时间间隔和持续时间、所述终端设备的移动轨迹、所述终端设备的移动性、调度数据允许的最大时延、所述SDT会话期间待发送的数据总量;所述SDT会话用于所述SDT业务的传输;
    向服务接入网设备发送所述第一消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一辅助信息还用于辅助SDT,所述第一辅助信息还包括以下至少一项:所述SDT会话中传输的数据是否被分段的指示、所述SDT会话中待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,所述无线承载的信息包括所述无线承载的类型或所述无线承载所承载的业务类型中的至少一项,所述业务的属性信息包括所述业务发送的频次、所述业务发送的周期、所述业务持续的时间、或所述业务的数据量中的至少一项。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    获取第一数据包;
    所述生成第一消息,包括:若所述第一数据包的大小小于或者等于第一阈值,生成所述第一消息,所述第一消息包括所述第一数据包。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取第二数据包;
    若所述第二数据包的大小大于所述第一阈值,向锚点接入网设备发送第二消息或第三消息,所述第二消息用于请求所述锚点接入网设备配置所述终端设备切换至无线资源控制RRC连接状态,所述第三消息用于指示终止所述SDT会话。
  5. 根据权利要求4所述的方法,其特征在于,所述第二消息或所述第三消息为以下任一种:RRC消息、介质访问控制层控制元素MAC CE、或者专用控制信道DCCH消息。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取第二数据包;
    通过所述SDT会话发送所述第二数据包,所述第二数据包的大小小于所述第一阈值,或者等于所述第一阈值,或者大于所述第一阈值。
  7. 根据权利要求6所述的方法,其特征在于,若通过所述SDT会话发送的数据包的数量达到第二阈值,所述方法还包括:
    向所述锚点接入网设备发送第四消息或第五消息,所述第四消息用于请求所述锚点接入网设备配置所述终端设备切换至RRC连接状态,所述第五消息用于指示终止所述SDT会话。
  8. 根据权利要求7所述的方法,其特征在于,所述第四消息或所述第五消息为以下任一种:RRC消息、介质访问控制层控制元素MAC CE、或者专用控制信道DCCH消息。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    在发送所述第一消息时,启动定时器,当所述服务接入网设备不是锚点接入网设备时,所述定时器的时长为第一时长;当所服务接入网设备是锚点接入网设备时,所述定时器的时 长为第二时长;所述第一时长大于所述第二时长;
    在所述定时器运行期间监听所述第一消息的响应消息。
  10. 一种通信方法,其特征在于,应用于服务接入网设备,所述方法包括:
    接收来自终端设备的第一消息,所述第一消息包括第一请求和第一辅助信息,所述第一请求用于建立小数据包传输SDT会话,所述第一辅助信息用于确定是否进行锚点的迁移;
    向锚点接入网设备发送第六消息,所述第六消息用于指示建立所述SDT会话,所述第六消息包括所述第一辅助信息;
    接收来自所述锚点接入网设备的第七消息,所述第七消息包括第二指示信息,所述第二指示信息用于指示是否进行锚点的迁移。
  11. 根据权利要求10所述的方法,其特征在于,所述第一辅助信息包括以下至少一项:SDT业务的持续时间、所述终端设备期待在所述SDT会话中连续传输数据的次数、所述终端设备期待监听调度信息的时间间隔和持续时间、所述终端设备的移动轨迹、所述终端设备的移动性、调度数据允许最大的时延、所述SDT会话期间待发送的数据总量;其中,所述SDT会话用于所述SDT业务的传输。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一辅助信息还用于辅助SDT,所述第一辅助信息还包括以下至少一项:所述SDT会话中传输的数据是否被分段的指示、所述SDT会话待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,无线承载的信息包括无线承载的类型或无线承载所承载的业务类型中的至少一项,所述业务的属性信息包括所述业务发送的频次、所述业务发送的周期、所述业务持续的时间、或所述业务的数据量中的至少一项。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第六消息还包括以下至少一项:传输所述第一消息的无线承载的区域设置标识符LCID、所述服务接入网设备支持的网络切片的信息列表、所述服务接入网设备具备的安全能力。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述第二指示信息指示进行锚点的迁移,所述第七消息还包括所述第一辅助信息,所述第一辅助信息还用于辅助SDT,和/或,用于确定是否将终端设备切换至RRC连接状态。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述第七消息还包括第三指示信息,所述第三指示信息指示是否建议所述终端设备切换至RRC连接状态。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述第二指示信息指示进行锚点的迁移,所述第七消息还包括所述第二辅助信息,所述第二辅助信息用于辅助SDT,和/或,用于确定是否将终端设备切换至RRC连接状态。
  17. 根据权利要求16所述的方法,其特征在于,所述第二辅助信息包括以下至少一项:是否允许所述终端设备在RRC非激活状态下发送或接收数据的指示、是否允许终端设备在RRC非激活状态下选择网络切片信息发送数据、所述终端设备的RRC非激活状态的周期、SDT会话持续的时间、所述终端设备在RRC非激活状态下发送数据包的持续时间、所述终端设备在RRC非激活状态下发送或接收数据包的间隔、建立SDT会话的时间间隔、SDT会话期间传输的数据包的个数和数据包的大小、所述终端设备在RRC非激活状态下发送数据包的个数和数据包的大小、所述终端设备在RRC非激活状态下移动的轨迹、所述终端设备在RRC非激活状态下发送数据时穿越小区的数目、所述终端设备在RRC非激活状态下发送数据时的移动速度、SDT承载的标识。
  18. 一种通信方法,其特征在于,应用于锚点接入网设备,所述方法包括:
    接收来自服务接入网设备的第六消息,所述第六消息用于指示建立SDT会话,所述第六消息包括第一辅助信息,所述第一辅助信息用于确定是否进行锚点的迁移;
    向服务接入网设备发送第七消息,所述第七消息包括第二指示信息,所述第二指示信息用于指示是否进行锚点的迁移。
  19. 根据权利要求18所述的方法,其特征在于,所述第一辅助信息包括以下至少一项:SDT业务的持续时间、所述终端设备期待在所述SDT会话中连续传输数据的次数、所述终端设备期待监听调度信息的时间间隔和持续时间、所述终端设备的移动轨迹、所述终端设备的移动性、调度数据允许最大的时延、所述SDT会话期间待发送的数据总量;其中,所述SDT会话用于所述SDT业务的传输。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一辅助信息还用于辅助SDT,所述第一辅助信息还包括以下至少一项:所述SDT会话中传输的数据是否被分段的指示、所述SDT会话待传输的剩余数据量、无线承载的信息、无线承载所承载的业务的属性信息;其中,无线承载的信息包括无线承载的类型或无线承载所承载的业务类型中的至少一项,所述业务的属性信息包括所述业务发送的频次、所述业务发送的周期、所述业务持续的时间、或所述业务的数据量中的至少一项。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,若所述第二指示信息指示进行锚点的迁移,则所述第七消息还包括所述第一辅助信息,所述第一辅助信息还用于辅助SDT,和/或,用于确定是否将终端设备切换至RRC连接状态。
  22. 根据权利要求18-21任一项所述的方法,其特征在于,若所述第二指示信息指示进行锚点的迁移,所述第七消息还包括第三指示信息,所述第三指示信息用于指示是否建议所述终端设备切换至RRC连接状态。
  23. 一种通信方法,其特征在于,应用于锚点接入网设备,所述方法包括:
    在建立无线承载期间,接收来自核心网设备的第二辅助信息,所述第二辅助信息用于辅助SDT,和/或,用于确定是否进行锚点的迁移;
    接收来自服务接入网设备的第六消息,所述第六消息用于指示建立SDT会话,所述第六消息包括第一辅助信息,所述第一辅助信息用于确定是否进行锚点的迁移;
    向服务接入网设备发送第七消息,所述第七消息包括第二指示信息,所述第二指示信息用于指示是否进行锚点的迁移。
  24. 根据权利要求23所述的方法,其特征在于,所述第二辅助信息为所述核心网设备统计的信息,或者为静态签约的信息。
  25. 根据权利要求23或24所述的方法,其特征在于,若所述第二指示信息指示进行锚点的迁移,则所述第七消息还包括所述第一辅助信息和所述第二辅助信息,所述第一辅助信息和所述第二辅助信息还用于确定是否将终端设备切换至RRC连接状态。
  26. 一种数据处理装置,其特征在于,所述数据处理装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述处理器执行所述计算机执行指令时,以使所述数据处理装置执行如权利要求1-9或10-17或18-22或23-25中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求1-9或10-17或18-22或23-25中任一项所述的方法。
PCT/CN2022/140508 2022-01-14 2022-12-20 通信方法、装置及系统 WO2023134410A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22920041.5A EP4444019A1 (en) 2022-01-14 2022-12-20 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210045092.X 2022-01-14
CN202210045092.XA CN116489723A (zh) 2022-01-14 2022-01-14 通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023134410A1 true WO2023134410A1 (zh) 2023-07-20

Family

ID=87212510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140508 WO2023134410A1 (zh) 2022-01-14 2022-12-20 通信方法、装置及系统

Country Status (3)

Country Link
EP (1) EP4444019A1 (zh)
CN (1) CN116489723A (zh)
WO (1) WO2023134410A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147030A1 (en) * 2020-01-22 2021-07-29 Nec Corporation Methods, devices, and medium for communication
WO2021163394A1 (en) * 2020-02-13 2021-08-19 Ofinno, Llc Small data transmission (sdt)
WO2021195843A1 (en) * 2020-03-30 2021-10-07 Lenovo (Beijing) Limited Method and apparatus for data transmission
WO2021260256A1 (en) * 2020-06-24 2021-12-30 Nokia Technologies Oy User equipment context duplication
CN115484615A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 通信方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147030A1 (en) * 2020-01-22 2021-07-29 Nec Corporation Methods, devices, and medium for communication
WO2021163394A1 (en) * 2020-02-13 2021-08-19 Ofinno, Llc Small data transmission (sdt)
WO2021195843A1 (en) * 2020-03-30 2021-10-07 Lenovo (Beijing) Limited Method and apparatus for data transmission
WO2021260256A1 (en) * 2020-06-24 2021-12-30 Nokia Technologies Oy User equipment context duplication
CN115484615A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 通信方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Support of RACH based small data transmission", 3GPP DRAFT; R3-210139, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974874 *

Also Published As

Publication number Publication date
CN116489723A (zh) 2023-07-25
EP4444019A1 (en) 2024-10-09

Similar Documents

Publication Publication Date Title
US10624146B2 (en) Radio link failure handling method, related device, and communications system
US11470674B2 (en) Communication method and communications apparatus
US12035174B2 (en) Rate control method, apparatus, and system
JP6893931B2 (ja) デバイスツーデバイス通信方法、端末デバイス及びネットワークデバイス
JP7540502B2 (ja) 端末装置及び基地局
WO2021062797A1 (zh) 配置方法和装置
JP2024096768A (ja) 通信方法、slrb確立方法、および通信装置
WO2019062621A1 (zh) 一种进行重复传输的方法和设备
US20230088082A1 (en) Small data transmission method, user equipment, and base station
WO2022206618A1 (zh) 一种通信方法及装置
US20240049327A1 (en) Communication method, apparatus, and system
WO2022002017A1 (zh) 一种通信方法及装置
CN113810964B (zh) 一种通信方法及设备
CN114698151A (zh) 定位数据发送方法、接收方法、终端及网络侧设备
WO2021027660A1 (zh) 无线通信的方法和通信装置
US20230224785A1 (en) Service data transmission method and apparatus, terminal device, and network device
CN114503649A (zh) 通信方法和通信装置
WO2023134410A1 (zh) 通信方法、装置及系统
US20240365423A1 (en) Method and apparatus for small data transmission
KR102701637B1 (ko) 세션 관리 방법
WO2021204270A1 (zh) 通信方法及装置
WO2021232281A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2024109726A1 (zh) 随机接入方法及装置、存储介质、终端设备、网络设备
WO2023169362A1 (zh) 一种寻呼方法及其装置
WO2023231632A1 (zh) Sdt事件记录方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022920041

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022920041

Country of ref document: EP

Effective date: 20240705

NENP Non-entry into the national phase

Ref country code: DE