WO2023134344A1 - 离心叶轮及离心风机 - Google Patents
离心叶轮及离心风机 Download PDFInfo
- Publication number
- WO2023134344A1 WO2023134344A1 PCT/CN2022/137640 CN2022137640W WO2023134344A1 WO 2023134344 A1 WO2023134344 A1 WO 2023134344A1 CN 2022137640 W CN2022137640 W CN 2022137640W WO 2023134344 A1 WO2023134344 A1 WO 2023134344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- trailing edge
- centrifugal impeller
- top plate
- axis
- Prior art date
Links
- 230000007423 decrease Effects 0.000 claims abstract description 6
- 238000010586 diagram Methods 0.000 description 21
- 238000001816 cooling Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- GYDJEQRTZSCIOI-UHFFFAOYSA-N Tranexamic acid Chemical group NCC1CCC(C(O)=O)CC1 GYDJEQRTZSCIOI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/667—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present application relates to the field of fan equipment, in particular to a centrifugal impeller and a centrifugal fan.
- the present application provides a centrifugal impeller and a centrifugal fan.
- the centrifugal impeller can improve the efficiency of the fan and meet the refrigeration requirement of the temperature control system.
- the centrifugal impeller in the present application may include a bottom plate, a top plate, and a plurality of blades, and the plurality of blades may be uniformly arranged along the circumferential direction of the axis of the top plate and the bottom plate and are all located between the bottom plate and the top plate between;
- the blade may have a leading edge, a blade root, a trailing edge and a blade tip, the leading edge and the trailing edge are arranged oppositely, the blade root and the blade tip are arranged oppositely, from the blade root to the blade
- the blade includes a main flow area and a jet flow area, a part of the leading edge is located in the main flow area, and another part is located in the jet flow area; the relative velocity of the air flow flowing into the centrifugal impeller and the blade
- the opposite direction of the direction of the rotation speed of the leading edge located in the main flow area forms an inlet angle ⁇ 1 , and the direction of the relative speed of the airflow and the blade is the
- the variation trend of the inlet angle ⁇ 1 in the mainstream region is different from the variation tendency of the inlet angle ⁇ 2 in the jet region, which can make the area where the blade tip and the leading edge connect to be upwarped , and then can guide the jet flow smoothly into the airflow channel of the fan impeller, thereby reducing the influence of the jet flow on the mainstream, so as to improve the efficiency of the fan.
- the main flow area may include multiple sub-areas from the root to the tip of the blade, and the maximum difference between the entrance angle of the sub-area adjacent to the jet flow area and ⁇ 2 It can be 5 to 35°, and in this way, the area where the tip and the leading edge are connected can be made to warp significantly.
- the inlet angle ⁇ 1 in order to further improve the efficiency of the centrifugal impeller, from the direction from the blade root to the blade tip, the inlet angle ⁇ 1 can be reduced from 40° to 25°, and the inlet angle ⁇ 2 can be determined by 25° increased to 50°.
- the rotational speed of the tangent of the centerline of the blade at the leading edge and the tangent point is The included angle of the direction is ⁇ 3 , wherein the difference between ⁇ 3 and ⁇ 1 and ⁇ 2 may be -10° to 10°.
- the camber of the blade tip needs to be adjusted accordingly.
- the angle t in the circumferential direction of the centerline of the blade is transverse Coordinates, the plane formed by taking m as the ordinate, where,
- M represents the integral length of the projection of any centerline of the blade on the meridian plane from the leading edge to the trailing edge direction; r represents the distance from any point on the centerline to the axis of rotation of the centrifugal impeller; in the projection of the blade in (t, m), the jet
- the length of the line between the centerline of the jet zone and the intersection of the leading edge and the trailing edge is c, the centerline of the jet zone and the line (the line between the centerline of the jet zone and the intersection of the leading edge and the trailing edge
- the height of the connecting line) is y, and the value of
- y/c may be 0.05, so that the centerline of the jet flow region and the centerline of the main flow region are smoother from the leading edge to the trailing edge.
- the curvature of the centerline of the jet flow zone is greater than the curvature of the centerline of any of the main flow zones.
- each part of the blade needs to meet the following conditions: In the direction of the bottom plate, in the clockwise direction, the included angle between the line connecting the end of the blade and the axis and the connection between the leading edge and the blade root and the axis is The included angle between the line connecting the end of the blade and the axis and the line connecting the front edge and the blade tip and the axis is The included angle between the line connecting the end of the blade and the axis and the line connecting the trailing edge to the leading edge closest to the axis is The included angle between the line connecting the end of the blade and the axis and the connection between the blade root and the trailing edge and the axis is The included angle between the line connecting the end of the blade and the axis and the connection between the blade tip and the trailing edge and the axis is
- the trailing edge in order to reduce the stress concentration between the blade root and the bottom plate, the blade tip and the top of the blade, the trailing edge may be an inverted C shape.
- the included angle between the tangent of the blade root at the connection between the blade root and the trailing edge and the tangent of the trailing edge at the connection between the trailing edge and the blade root is ⁇ 1
- the trailing edge The included angle between the tangent of the blade tip at the junction of the trailing edge and the tip and the tangent of the tip at the junction of the tip and the trailing edge is ⁇ 2 , wherein the ⁇ 1 and ⁇ 2 Greater than 15° and less than 60°.
- ⁇ 1 may be 30°
- ⁇ 2 may be 40°
- the present application also provides a centrifugal fan, including a motor, an air guide ring, and the centrifugal impeller in any technical solution in the first aspect, wherein the air guide ring is located above the top plate, and the air guide The axial distance between the ring and the junction of the blade tip and the leading edge is 0 to 10 mm. Specifically, due to the change of blades in the centrifugal impeller, the flow of the cascade channel in the centrifugal fan can be significantly improved, thereby improving the efficiency of the centrifugal fan.
- the axial distance between the wind guide ring and the connection between the blade tip and the leading edge may be 4 mm.
- an assembly hole for installing the motor is provided on the axis of the bottom plate, the head of the motor is arranged in the assembly hole, and the head of the motor faces toward the top of the top plate.
- the motor head is also provided with a guide surface, the guide surface is located in the circumferential direction of the platform, the diameter of the platform is D 1 , the diameter of the side of the bottom plate away from the top plate is D 2 , D 1 /D 2 ⁇ 0.2; the side of the bottom plate facing the top plate forms a continuous curved surface with the guide surface, and the curvature radius ⁇ of any point on the curved surface is >10mm.
- the vortex flow at the junction of the motor and the bottom plate can be eliminated, thereby improving the efficiency of the centrifugal fan, and there is no need to install a wind guide cover, which simplifies the assembly process of the device, and can also reduce the use of materials to save cost.
- D 1 may be 45mm
- D 2 may be 600mm
- ⁇ may be 22.5mm.
- Fig. 1 is a structural schematic diagram of a centrifugal fan in the prior art
- Fig. 2 a is the front view of Fig. 1;
- Figure 2b is a partial side view of Figure 1;
- Fig. 3 is a schematic structural diagram of a blade in a centrifugal wind wheel provided by an embodiment of the present application
- Fig. 4 is a partial side view of the centrifugal wind wheel provided by the embodiment of the present application with the wind guiding ring;
- Fig. 5 is a schematic structural diagram of the centrifugal wind wheel provided by the embodiment of the present application.
- Fig. 6 is a structural schematic diagram showing the inlet angle of the centrifugal wind wheel provided by the embodiment of the present application.
- Fig. 7a is a simulation diagram of the blades in the centrifugal wind rotor provided by the embodiment of the present application.
- Figure 7b is a schematic diagram of the centerline of the main flow area and the jet flow area of the blade provided by the embodiment of the present application;
- Fig. 8 is a schematic diagram of the projection of the blade on a two-dimensional plane provided by the embodiment of the present application.
- Fig. 9 is a top view of the centrifugal wind wheel provided by the embodiment of the present application from the top plate to the bottom plate;
- Fig. 10 is a schematic structural view showing a blade of the centrifugal wind wheel provided by the embodiment of the present application.
- Fig. 11a is a simulation diagram of stress concentration of a centrifugal wind wheel in the prior art
- Figure 11b is a simulation diagram of the stress concentration of the centrifugal wind wheel provided by the embodiment of the present application.
- Fig. 12a is a schematic diagram of 95% of the blade height of the prior art centrifugal wind rotor and the stretched projection of the adjacent flow field on the plane;
- Fig. 12b is a schematic diagram of 99% of the blade height of the prior art centrifugal wind rotor and the stretched projection of the adjacent flow field on the plane;
- Fig. 12c is a schematic diagram of 95% of the blade height of the centrifugal wind rotor and the stretched projection of the adjacent flow field on the plane provided by the embodiment of the present application;
- Figure 12d is a schematic diagram of 99% of the blade height of the centrifugal wind rotor and the adjacent flow field stretched projection on the plane provided by the embodiment of the present application;
- Fig. 13 is a schematic diagram of the detection structure of the centrifugal fan efficiency provided by the embodiment of the present application.
- Fig. 14 is a schematic diagram of the cooperation between the motor and the bottom plate in the centrifugal fan provided by the embodiment of the present application;
- Figure 15a is a schematic diagram of the vortex flow at the junction of the motor and the bottom plate in the prior art centrifugal fan;
- Figure 15b is a schematic diagram of the vortex flow at the junction of the motor and the bottom plate in the centrifugal fan provided by the embodiment of the present application;
- Fig. 16 is another schematic diagram of the detection structure of the centrifugal fan efficiency provided by the embodiment of the present application.
- the centrifugal fan is the core refrigeration component of the data center. As shown in FIG. At the entrance of the impeller, there is a certain overlapping length with the entrance of the impeller in the axial direction, and there is a small distance in the radial direction with the entrance of the impeller.
- the main function of the air guide ring 1 is to guide the airflow smoothly into the impeller of the fan; the impeller is a rotating part, including The top plate 2, the bottom plate 3 and several blades 4 placed between the top plate 2 and the bottom plate 3; the motor 5 is a power component, and the motor 5 is directly connected to the impeller.
- the impeller rotates and does work on the gas, so that the air is " It is sucked into the air guide ring and then enters the impeller, and then turned about 90° and then is "thrown” to the outside, thus forming an air flow to dissipate heat for the refrigeration equipment.
- the present application provides a centrifugal impeller and a centrifugal fan.
- references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
- appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
- the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
- chord direction In order to facilitate the understanding of this application, the chord direction, span direction and meridian plane of the blade are introduced below.
- It is called the blade root 12
- the connection between the blade 10 and the top plate is called the blade tip 14
- the direction from the leading edge 11 to the trailing edge 13 is called the chord direction
- the direction from the blade root 12 to the blade tip 14 is called the span direction.
- the midline of the blade is the line connecting the midpoints of the upper and lower surfaces of the blade in the vertical direction, and the mid-arcs of all the spanwise sections of the blade 10 form the central plane of the blade.
- chord and span positions are defined here, and a The arc length in the spanwise section is l, and the spanwise height of a certain chordwise section is h, then the chordwise 10% position refers to a certain spanwise section, moving 0.1l from the leading edge 11 to the trailing edge 13 along the central plane, 10% spanwise
- the vertical height refers to the movement of a chord-wise section along the central plane from the blade root 12 to the blade tip 14 for 0.1h.
- the meridian plane is the plane passing through the rotating shaft of the centrifugal fan.
- the meridian plane channel of the centrifugal fan refers to the intersection line between the bottom plate 30, the top plate 20 and the meridian plane, and the meridian plane channel also includes fan blades 10 on the meridian plane in the circumferential direction.
- the projection of that is, the leading edge 11 and trailing edge 13 of the blade shown in the meridian plane rotates around the axis of the centrifugal fan, and the curved surface formed can just contain the leading edge 11 and trailing edge 13 of all the blades 10 of the centrifugal fan.
- the present application provides a centrifugal impeller, including a bottom plate 30, a top plate 20 and a plurality of blades 10, wherein the plurality of blades 10 are evenly arranged along the circumference of the axis of the top plate 20 and the bottom plate 30, and more A blade 10 is located between the bottom plate 30 and the top plate 20; the blade 10 has a leading edge 11, a blade root 12, a trailing edge 13 and a blade tip 14, the leading edge 11 and the trailing edge 13 are arranged oppositely, and the blade root 12 and the blade tip 14 are arranged oppositely ; From the blade root 12 to the blade tip 14 direction, the blade 10 includes a main flow area and a jet flow area, a part of the leading edge 11 is located in the main flow area, and another part is located in the jet flow area; The direction opposite to the rotation speed of the leading edge 11 located in the mainstream area forms an inlet angle ⁇ 1 , and the direction of the relative velocity of the airflow and the blade 10 forms an inlet angle ⁇ 2
- W represents the direction of the relative velocity between the airflow and the blade 10
- U represents the direction of the rotational velocity of the leading edge 11
- C represents the absolute velocity of the airflow
- ⁇ 1 and ⁇ 2 are the angles between W and the reverse direction of U
- the jet region can be expressed as the area between the line near the blade tip 14 in Figure 7a and the blade tip 14 (it can be understood as the area from the blade root 12 to In the direction of the blade tip 14, more than 95% of the area is the jet region, wherein the position of the jet region can also be adjusted according to the actual situation), because the variation trend of the inlet angle ⁇ 1 of the mainstream region is different from the inlet angle ⁇ 2 of the jet region
- the change trend of the blade tip 14 and the leading edge 11 can be made upturned, and the jet flow can be guided smoothly into the airflow channel of the impeller of the centrifugal fan, thereby reducing the influence of the jet flow on the mainstream and
- the main flow area can include a plurality of sub-areas, and the maximum difference between the entrance angle of the sub-area adjacent to the jet flow area and ⁇ 2 is 5 to 5 35°, and the difference between the inlet angle of the sub-region adjacent to the jet region and ⁇ 2 is 5 to 35°, which can make the region where the blade tip 14 connects with the leading edge 11 have obvious upturning, so as to Guide the jet flow smoothly into the airflow channel of the impeller of the centrifugal fan, reducing the influence of the jet flow on the mainstream.
- FIG. 7b A line is defined as the blade tip centerline 140, and it can be known from Fig. 7a and Fig. 7b that the blade tip centerline 140 and the blade root centerline 120 and the lines between the blade tip centerline 140 and the blade root centerline 120 have obvious differences , the leading edge of the blade tip centerline 140 has obvious upturning.
- the angle between the tangent of the center line of the blade 10 at the leading edge 11 and the rotational speed direction of the tangent point is is ⁇ 3 , where the difference between ⁇ 3 and ⁇ 1 and ⁇ 2 may be -10 to 10°.
- the camber of the blade tip needs to be adjusted accordingly.
- the angle t of the centerline of the blade in the circumferential direction is the abscissa
- m is the plane formed by the ordinate
- M represents the integral length of the projection of any centerline of the blade on the meridian plane from the leading edge to the trailing edge; r represents the distance from any point on the centerline to the axis of the bottom plate; in the projection of (t, m), the centerline of the jet zone and the leading edge
- the length of the line connecting the intersection of 11 and trailing edge 13 is c
- the height between the midline of the jet area and the line between the center line of the jet area and the intersection of leading edge 11 and trailing edge 13 is y
- the value of y/c may be 0.05 to make the centerline of the blade smoother from the leading edge 11 to the trailing edge 13 , wherein the value of y/c may also be 0.03, 0.1, 0.16 and so on.
- the projection of the centerline of the jet flow zone is different from the projection of the centerline of the 90% (mainstream zone) of the blade span, that is, the projection of the centerline of the jet flow zone has a curvature greater than that of the centerline of the mainstream zone.
- each part of the blades needs to meet the following conditions: in the direction from the top plate to the bottom plate 30, and in the clockwise direction, the The line connecting the end of the blade and the axis of the bottom plate 30 and the top plate (the horizontal projection is the center of the top plate) is defined as a straight line a, and the line connecting the connection between the leading edge 11 and the blade root 12 and the axis is defined as a straight line b , the line connecting the connection between the leading edge 11 and the blade tip 14 and the axis is defined as a straight line c, the line connecting the trailing edge 13 to the axis closest to the leading edge 11 is defined as a straight line d, and the connection between the blade root 12 and the trailing edge 13
- the line connecting the blade tip 14 and the trailing edge 13 and the axis is defined as a straight line e, and the line connecting the blade tip 14 and the trail
- ⁇ 1 the included angle between the tangent of the blade root 12 at the junction of the blade root 12 and the trailing edge 13 and the tangent of the trailing edge 13 at the junction of the trailing edge 13 and the blade root 12 is ⁇ 1
- ⁇ 1 can be 30°
- the angle between the tangent of the trailing edge 13 at the junction of the trailing edge 13 and the blade tip 14 and the tangent of the blade tip 14 at the junction of the blade tip 14 and the trailing edge 13 is ⁇ 2
- ⁇ 2 can be 40°, wherein , since the values of ⁇ 1 and ⁇ 2 can be greater than 15° and less than 60°, the stress concentration between the blade root 12 and the bottom plate 30, the blade tip 14 and the top plate 20 on the blade 10 can be reduced, and the aerodynamic force of the centrifugal fan can also be improved. efficiency.
- a centrifugal fan with an inverted C-shaped trailing edge and a centrifugal fan without a C-shaped trailing edge are compared.
- the local stress concentration of the centrifugal fan at the trailing edge can be reduced from 220MPa to 140MPa, and the aerodynamic efficiency of the centrifugal fan with a C-shaped trailing edge in this application can be increased by 0.5%.
- the centrifugal fan can include a motor 50, an air guiding ring 40 and the above-mentioned centrifugal impeller, and the air guiding ring 40 is located above the top plate 20 of the centrifugal impeller, and the air guiding ring
- the axial distance between 40 and the joint between the tip 14 and the leading edge 11 of the blade 10 in the centrifugal impeller is 0 to 10 mm.
- the axial distance between the blade tip 14 and the leading edge 11 of the blade 10 can be 4mm, and the blade root 12 to the spanwise 95% blade height can be the main flow area, and the inlet angle ⁇ 1 in the main flow area is given by 40° is slowly reduced to 25°, the inlet angle ⁇ 2 in the jet zone is rapidly increased from 25° to 50°, and the value of y/c can be 0.05, so that the centerline of the blade 10 is from the leading edge 11 to the trailing edge 13 Much smoother.
- Figure 12a is a schematic diagram of 95% of the blade height of the prior art centrifugal wind wheel and the stretched projection of the adjacent flow field on a plane
- Figure 12b is a schematic diagram of the 99% blade height of the prior art centrifugal wind wheel and the stretched projection of the adjacent flow field on the plane
- the schematic diagram above; with reference to Fig. 12a, Fig. 12b, Fig. 12c and Fig. 12d, all the blades and their adjacent flow fields in the spanwise 95% and 99% blade heights are stretched and projected onto the plane, and the impellers in the prior art can be seen Local obvious vortex or separation flow, while the fluidity of the cascade channel of the impeller in the present application has been significantly improved.
- P represents the back pressure of the fan (Pa)
- Q represents the flow rate of the fan (CMH)
- the test standard is AMCA 210-07
- the vertical axis on the right represents the aerostatic efficiency of the fan.
- the maximum aerodynamic efficiency of the centrifugal fan under application is about 3% higher than that of the existing centrifugal fan.
- an assembly hole can be provided at the axis of the bottom plate 30, and the head of the motor is arranged in the assembly hole, wherein the side of the motor head facing the top plate has a platform 51.
- the motor head is also provided with a guide surface, the guide surface is located in the circumferential direction of the platform, the diameter of the platform 51 is D 1 , and the diameter of the side of the bottom plate 30 away from the top plate is D 2 , where D 1 /D 2 ⁇ 0.2;
- the side of the bottom plate 30 facing the top plate forms a continuous curved surface with the guide surface, and any point on the curved surface has a curvature radius ⁇ >10mm.
- the vortex flow caused by the discontinuity of the junction between the impeller and the motor can be eliminated without using the shroud, so as to improve the aerodynamic efficiency of the centrifugal fan.
- this can not only reduce the structural parts of the centrifugal fan, but also reduce installation and production costs without compromising the cooling requirements of high-power motors.
- D1 can be 45mm
- D2 can be 600mm
- the plane of the bottom plate 30 toward the top plate protrudes toward the position of the top plate, and the connection between the bottom plate and the platform 51 of the motor is a curved surface, and the curvature of the connection
- the radius is the smallest, and the smallest curvature radius ⁇ may be 22.5mm.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本申请涉及风机设备领域,尤其涉及到一种离心叶轮及离心风机。离心叶轮包括:底板、顶板和沿顶板和底板的轴线的周向均匀布置且均位于底板和顶板之间的多个叶片;叶片具有前缘、叶根、尾缘和叶尖,前缘和尾缘相对设置,叶根和叶尖相对设置;由叶根至叶尖的方向,叶片包括主流区和射流区,前缘的一部分位于主流区中,另一部分位于射流区中;流入离心叶轮的气流与叶片的相对速度的方向与位于主流区的前缘的旋转速度的反方向形成入口角β 1,气流与叶片的相对速度的方向与位于射流区的前缘的旋转速度的反方向形成入口角β 2,在离心叶轮旋转过程中,入口角β 1逐渐减小,入口角β 2逐渐增加。本申请中的离心叶轮能够提高风机的气动效率。
Description
相关申请的交叉引用
本申请要求在2022年01月12日提交中国专利局、申请号为202210030674.0、申请名称为“离心叶轮及离心风机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及风机设备领域,尤其涉及到一种离心叶轮及离心风机。
随着电子设备芯片功耗的不断增加,对各类温控系统的制冷需求量也越来越多,温控系统能耗也不断的增加。例如,各类大、中、小型数据中心温控系统中的单个制冷机的制冷量需求已经达到了数十至数百千瓦,其能耗也几乎达到了相同的量级,提升制冷量和能效比已经成为温控系统的核心需求。在各类数据中心的温控系统中,大型离心风机(直径400~1000mm,功耗在千瓦级别)是常用且核心的制冷部件。
因此,如何提升离心风机的效率是温控系统的核心问题。
发明内容
本申请提供了一种离心叶轮及离心风机,该离心叶轮可以提高风机的效率,满足温控系统的制冷需求。
第一方面,本申请中的离心叶轮可以包括底板、顶板和多个叶片,多个叶片可以沿所述顶板和所述底板的轴线的周向均匀布置且均位于所述底板和所述顶板之间;叶片可以具有前缘、叶根、尾缘和叶尖,所述前缘和所述尾缘相对设置,所述叶根和所述叶尖相对设置,由所述叶根至所述叶尖的方向,所述叶片包括主流区和射流区,所述前缘的一部分位于所述主流区中,另一部分位于所述射流区中;流入所述离心叶轮的气流与所述叶片的相对速度的方向与位于所述主流区的所述前缘的旋转速度的反方向形成入口角β
1,气流与所述叶片的相对速度的方向与位于所述射流区的所述前缘的旋转速度的反方向形成入口角β
2,在所述离心叶轮旋转过程中,入口角β
1逐渐减小,入口角β
2逐渐增加。
具体来说,由叶根至叶尖的方向,主流区的入口角β
1的变化趋势与射流区的入口角β
2的变化趋势不同,可以使叶尖与前缘连接处所在的区域上翘,进而可以引导射流平滑的进入到风机叶轮气流通道中,从而降低射流对主流的影响,以提高风机的效率。
需要说明的是,为了使离心叶轮的效率提高,由叶根至叶尖的方向,主流区可以包括多个子区域,与射流区相邻的子区域的入口角与β
2之间的最大差值可以为5至35°,这样,可以使叶尖与前缘连接处所在的区域上翘明显。
在一种可能的实施例中,为了进一步提高离心叶轮的效率,由所述叶根至所述叶尖的方向,入口角β
1可以由40°减小至25°,入口角β
2可以由25°增加至50°。
在一种可能的实施例中,为了使叶片的设计更加合理,所述前缘至所述尾缘的方向上, 所述叶片的中线位于所述前缘处的切线与该切点的旋转速度方向的夹角为β
3,其中,β
3与β
1以及β
2的差值可以为-10至10°。
在一种可能的实施例中,为了使叶片的中线从前缘至尾缘平滑的过渡,叶尖的弯度需要进行适应的调整,具体而言,所述叶片的中线的圆周方向的角度t为横坐标,以m为纵坐标形成的平面,其中,
M表示由所述前缘至尾缘方向,叶片任意中线在子午面投影的积分长度;r表示中线上任意一点距离离心叶轮的旋转轴线的距离;叶片在(t,m)的投影中,射流区的中线与所述前缘和所述尾缘的交点之间的连线的长度为c,所述射流区的中线与连线(射流区的中线与前缘和尾缘交点的连线之间的连线)的高度为y,所述|y|/c的值可以为0至0.2。以保证叶片由前缘至尾缘的方向更加的平滑。
需要说明的是,y/c的值可以为0.05,以使的射流区的中线以及主流区的中线从前缘至尾缘更加的平滑。
在一种可能的实施例中,为了使叶片的中线从前缘至尾缘平滑的过渡,在(t,m)投影上,射流区的中线的弯度大于任意所述主流区的中线的弯度。
在一种可能的实施例中,在具体设置叶片时,为了使叶片的叶尖和叶根后掠,尾缘呈现C型结构,叶片的各个部分需要满足以下的条件:在所述顶板向所述底板的方向上,沿顺时针的方向,所述叶片的端部与所述轴线的连线与,所述前缘和所述叶根的连接处与所述轴线的连线的夹角为
所述叶片的端部与所述轴线的连线与,所述前缘和所述叶尖的连接处与所述轴线的连线的夹角为
所述叶片的端部与所述轴线的连线与,所述尾缘距离所述前缘最近处于所述轴线的连线的夹角为
所述叶片的端部与所述轴线的连线与,所述叶根与所述尾缘的连接处和所述轴线的连线的夹角为
所述叶片的端部与所述轴线的连线与,所述叶尖与所述尾缘的连接处和所述轴线的连线的夹角为
在一种可能的实施例中,为了降低叶片上叶根与底板、叶尖与顶部之间的应力集中,尾缘可以为倒C型。具体的,所述叶根位于所述叶根与所述尾缘连接处的切线与所述尾缘位于所述尾缘与所述叶根连接处的切线的夹角为α
1,所述尾缘位于所述尾缘与所述叶尖的连接处的切线与所述叶尖位于所述叶尖与所述尾缘连接处的切线的夹角为α
2,其中,所述α
1和α
2大于15°小于60°。
需要说明的是,α
1可以为30°,α
2可以为40°。
第二方面,本申请还提供了一种离心风机,包括电机、导风圈和第一方面中的任一技术方案中的离心叶轮,其中,导风圈位于顶板的上方,且所述导风圈与所述叶尖与所述前缘连接处的轴向距离为0至10mm。具体而言,由于离心叶轮中叶片的改变,可以使离心风机中叶栅通道的流动得到明显的改善,从而提高了离心风机的效率。
需要说明的是,为了提高离心风机的效率,所述导风圈与所述叶尖与所述前缘连接处的轴向距离可以为4mm。
在一种可能的实施例中,所述底板的轴线处上设置有用于安装所述电机的装配孔,所述电机的头部设置于所述装配孔,所述电机头部朝向所述顶板的一侧具有平台,电机头部还设置有导向面,导向面位于平台的周向,所述平台的直径为D
1,所述底板远离顶板的一 侧的直径为D
2,D
1/D
2<0.2;所述底板朝向所述顶板的一侧与导向面形成连续的曲面,且该曲面上任意一点的曲率半径ρ>10mm。此种的设置方式中,可以使电机与底板交界处的漩涡流动消失,进而提高离心风机的效率,且不需要再设置导风罩,简化装置的装配过程,还可以降低材料的使用,以节约成本。
需要说明的是,为了使离心风机的效率更高,其中,D
1可以为45mm,D
2可以为600mm,ρ可以为22.5mm。
图1为现有技术中离心风机的结构示意图;
图2a为图1的主视图;
图2b为图1的局部侧视图;
图3为本申请实施例提供的离心风轮中的叶片的结构示意图;
图4为本申请实施例提供的离心风轮上设有导风圈的局部侧视图;
图5为本申请实施例提供的离心风轮中的结构示意图;
图6为本申请实施例提供的离心风轮显示入口角的结构示意图;
图7a为本申请实施例提供的离心风轮中的叶片的仿真图;
图7b为本申请实施例提供的叶片的主流区和射流区的中线的示意图;
图8为本申请实施例提供的叶片在二维平面上的投影的示意图;
图9为本申请实施例提供的离心风轮由顶板至底板方向的俯视图;
图10为本申请实施例提供的离心风轮显示一个叶片的结构示意图;
图11a为现有技术离心风轮应力集中的仿真图;
图11b为本申请实施例提供的离心风轮应力集中的仿真图;
图12a为现有技术离心风轮95%叶高及相邻流场拉伸投影在平面上的示意图;
图12b为现有技术离心风轮99%叶高及相邻流场拉伸投影在平面上的示意图;
图12c为本申请实施例提供的离心风轮95%叶高及相邻流场拉伸投影在平面上的示意图;
图12d为本申请实施例提供的离心风轮99%叶高及相邻流场拉伸投影在平面上的示意图;
图13为本申请实施例提供的离心风机效率的检测结构的一种示意图;
图14为本申请实施例提供的离心风机中电机与底板配合的示意图;
图15a为现有技术离心风机中电机与底板交界处涡旋流动的示意图;
图15b为本申请实施例提供的离心风机中电机与底板交界处涡旋流动的示意图;
图16为本申请实施例提供的离心风机效率的检测结构的又一种示意图。
附图标记:
1-导风圈;2-顶板;3-底板;4-叶片;5-电机;
10-叶片;11-前缘;12-叶根;120-叶根中线;13-尾缘;14-叶尖;140-叶尖中线;20-顶板;30-底板;40-导风圈;50-电机;51-平台。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
现有技术中,离心风机为数据中心的核心的制冷部件,如图1所示,离心风机包括导风圈1、叶轮和电机5,其中,导风圈1为静止件,导风圈1置于叶轮入口,并与叶轮入口在轴向上有一定的重叠长度,与叶轮入口在径向上存在较小距离,导风圈1的主要作用是引导气流平滑进入风机叶轮;叶轮为旋转件,包括顶板2、底板3和置于顶板2和底板3之间的若干叶片4;电机5为动力部件,电机5与叶轮直接相连,在电机5驱动下,叶轮旋转并对气体做功,使空气被“吸入”导风圈然后进入叶轮,进而转折约90°后被“甩”向外界,从而形成气流为制冷设备散热。
但是,以下的几个方面因素通常会对图1所示离心风机效率产生显著影响,以下结合图2a和图2b分别说明:
1.导风圈1与叶轮间隙的影响:导风圈1和叶轮分别是静止和转动部件,二者之间必然存在间隙,空气被“吸入”导风圈,使导风圈及其前方区域为“负压”区域(A区域),而反之叶轮外侧为“正压”区域(B区域),在正、负压差的作用下,气流从上述间隙“射入”叶轮气流通道,冲击叶片附近和叶轮气流通道内的气流,导致风机风量和效率下降。
2.电机5头部与叶轮底板3配合型线的影响:电机5和叶轮通常会分别设计且电机5体积较大,使电机5凸出叶轮底板3,且型线不连续,这使得气流进入叶轮后,由于电机5外轮廓的“阻挡”作用,在电机5与叶轮交界附近产生强烈的“漩涡”流动,这种流动会堵塞通道且会使动能不断耗散成热能,最终导致风机风量和气动效率下降。
为了解决上述的问题,本申请提供了一种离心叶轮及离心风机。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了便于理解本申请,下面对叶片的弦向、展向以及子午面进行介绍,参照图3,叶片10可细分为叶片前缘11、叶身和尾缘13,叶片10与底板连接处称为叶根12,叶片10与顶板连接处称为叶尖14。从前缘11至尾缘13的方向称为弦向,从叶根12至叶尖14的方向称为展向。叶片的中线为叶片上下表面在竖直方向高度中点的连线,叶片10所有展向截面的中弧线组成叶片的中心面,为便于后续描述,这里定义弦向和展向位置,设某展向截面中弧线长度为l,某弦向截面的展向高度为h,则弦向10%位置指某展向截面,沿中心面从前缘11向尾缘13移动0.1l,10%展向高度则指某弦向截面沿中心面从叶根12至叶尖14移动0.1h。
子午面是通过离心风机旋转轴的平面,参照图4,离心风机子午面流道指底板30与顶 板20与子午面的交线,子午面流道中还包括风机叶片10沿周向在子午面上的投影,即子午面中显示的叶片的前缘11和尾缘13绕离心风机轴线旋转,形成的曲面刚好可以包含离心风机所有叶片10的前缘11型线和尾缘13型线。
参照图3至图5,本申请提供了一种离心叶轮,包括底板30、顶板20和多个叶片10,其中,多个叶片10沿顶板20和底板30的轴线的周向均匀布设、且多个叶片10位于底板30和顶板20之间;叶片10具有前缘11、叶根12、尾缘13和叶尖14,前缘11和尾缘13相对设置,叶根12和叶尖14相对设置;由叶根12至叶尖14的方向,叶片10包括主流区和射流区,前缘11的一部分位于主流区中,另一部分位于射流区中;流入离心叶轮的气流与叶片10的相对速度的方向与位于主流区的前缘11的旋转速度的反方向形成入口角β
1,气流与叶片10的相对速度的方向与位于射流区的前缘11的旋转速度的反方向形成入口角β
2,在离心叶轮旋转过程中,入口角β
1逐渐减小,入口角β
2逐渐增加。
具体而言,为了更清楚的表达β
1和β
2,继续参照图6,W表示气流与叶片10的相对速度的方向,U表示前缘11旋转速度的方向,C表示气流的绝对速度,β
1以及β
2为W与U的反向之间的夹角;其中,射流区可以表示为图7a中靠近叶尖14的线条与叶尖14之间的区域(可以理解为由叶根12至叶尖14的方向,95%以上的区域为射流区,其中,射流区的位置还可以根据实际的情况进行调整),由于主流区的入口角β
1的变化趋势与射流区的入口角β
2的变化趋势不同,可以使叶尖14与前缘11连接处所在的区域上翘,进而可以引导射流平滑的进入到离心风机叶轮气流通道中,从而降低射流对主流的影响,以提高风机的效率。
为了使风机的效率更高,由叶根12至叶尖14的方向,主流区可以包括多个子区域,与射流区相邻的子区域的入口角与β
2之间的最大差值为5至35°,且与射流区相邻的子区域的入口角与β
2之间的差值为5至35°,可以使叶尖14与前缘11连接处所在的区域具有明显的上翘,以引导射流平滑的进入到离心风机叶轮气流通道中,降低射流对主流的影响。
需要说明的是,为了更清楚的表现出叶尖14与前缘11连接处有明显的上翘,可以参照图7b,在图7b中,可以将第一根线条定义为叶根中线120,最后一根线条定义为叶尖中线140,且由图7a和图7b中可以得知,叶尖中线140与叶根中线120以及其叶尖中线140与叶根中线120之间的线条具有明显的差异,叶尖中线140的前缘有明显的上翘。
在一种可能的实施例中,为了使叶片的设计更加合理,前缘11至尾缘13的方向上,叶片10的中线位于前缘11处的切线与该切点的旋转速度方向的夹角为β
3,其中,β
3与β
1以及β
2的差值可以为-10至10°。
在一种可能的实施例中,为了使叶片的中线从前缘至尾缘平滑的过渡,叶尖的弯度需要进行适应的调整,具体而言,参照图8,叶片的中线的圆周方向的角度t为横坐标,以m为纵坐标形成的平面,其中,
M表示由前缘至尾缘方向,叶片任意中线在子午面投影的积分长度;r表示中线上任意一点距离底板轴线的距离;在(t,m)的投影中,射流区的中线与前缘11和尾缘13的交点的连线的长度为c,射流区的中线和射流区的中线与前缘11和尾缘13交点的连线之间的高度为y,|y|/c的值可以为0至0.2。
需要说明的是,y/c的值可以为0.05,以使得叶片的中线从前缘11至尾缘13更加的平滑,其中,y/c的值还可以为0.03、0.1、0.16等。另外,根据图8可以得知,射流区的中 线的投影与叶片展向90%(主流区)中线的投影不同,即射流区的中线的投影具有弯度的大于主流区的中线的投影弯度。
参照图9,在具体设置叶片时,为了使叶片的尾缘13可以为倒C型,叶片的各个部分需要满足以下的条件:在顶板向底板30的方向,且沿顺时针的方向上,将叶片的端部与底板30和顶板的轴线(在水平的投影即为顶板的中心)的连线定义为直线a,将前缘11和叶根12的连接处与轴线的连线定义为直线b,将前缘11和叶尖14的连接处与轴线的连线定义为直线c,尾缘13距离前缘11最近处于轴线的连线定义为直线d,叶根12与尾缘13的连接处和轴线的连线定义为直线e,叶尖14与尾缘13的连接处和轴线的连线定义为直线f,其中,直线a与直线b之间的夹角为
直线a与直线c之间的夹角为
直线a与直线d之间的夹角为
直线a与直线e之间的夹角为
直线a与直线f之间的夹角为
其中,
更加具体的,
此种的设置方式可以降低叶根12与底板30连接处的应力集中,还可以降低叶尖14与顶板连接处的应力集中,进而提高离心风机的气动效率。
参照图9和图10,在具体设置
和
时,
可以为3°,
可以为30°,
可以为50°,
可以为65°,
可以为76°;此时,叶根12位于叶根12与尾缘13连接处的切线与尾缘13位于尾缘13与叶根12连接处的切线的夹角为α
1,α
1可以为30°,尾缘13位于尾缘13与叶尖14的连接处的切线与叶尖14位于叶尖14与尾缘13连接处的切线的夹角为α
2,α
2可以为40°,其中,由于α
1和α
2的值可以大于15°小于60°,可以使叶片10上的叶根12与底板30、叶尖14与顶板20之间的应力集中降低,还能够提高离心风机的气动效率。
更具体的,为了说明可以具有倒C型尾缘的离心风机的效果,参照图11a和图11b,对比具有倒C型尾缘的离心风机以及不具有C型尾缘的离心风机,具有C型尾缘的离心风机的局部应力集中可以从220MPa降低至140MPa,且本申请中具有C型尾缘的离心风机的气动效率可以提升0.5%。
当上述的如图3至6的离心叶轮应用于离心风机时,离心风机可以包括电机50、导风圈40和上述的离心叶轮,导风圈40位于离心叶轮的顶板20上方,且导风圈40与离心叶轮中叶片10的叶尖14与前缘11连接处的轴向距离为0至10mm。
具体而言,叶片10的叶尖14与前缘11连接处的轴向距离可以为4mm,叶根12至展向95%叶高处均可以为主流区,主流区中的入口角β
1由40°缓慢减小至25°,射流区中的入口角β
2由25°迅速的增加至50°,且y/c的值可以为0.05,以使叶片10的中线从前缘11至尾13缘更加的平滑。图12a为现有技术离心风轮95%叶高及相邻流场拉伸投影在平面上的示意图;图12b为现有技术离心风轮99%叶高及相邻流场拉伸投影在平面上的示意图;参照图12a、图12b、图12c以及图12d,将展向95%和99%叶高所有叶片及其相邻的流场拉伸投影到平面上,可见现有技术中的叶轮局域明显的涡旋或分离流动,而本申请中的叶轮的叶栅通道的流动性得到了明显的改善。另外,参照图13的实测结果,其中,P代表风扇运行背压(Pa),Q代表风扇流量(CMH),测试标准为AMCA 210-07,右侧纵轴表示风机的气动静压效率,本申请中的离心风机最大气动效率相对于现有的离心风机提升约3%。
继续参照图14,在具体设置与离心叶轮配合的电机时,可以在底板30的轴线处设置有装配孔,电机的头部设置在装配孔中,其中,电机头部朝向顶板的一侧具有平台51,电 机头部还设置有导向面,导向面位于平台的周向,平台51的直径为D
1,底板30远离顶板的一侧的直径为D
2,其中,D
1/D
2<0.2;底板30朝向顶板的一侧与导向面形成连续的曲面,且曲面上任意一点的曲率半径ρ>10mm。此种设置方式中,可以不使用导流罩来达到消除叶轮与电机相接处不连续带来的漩涡流动,以提升离心风机的气动效率,另外,这样不仅可以减少离心风机的结构件,降低安装和生产成本,而且不会影响大功率电机的散热需求。
更具体的,D
1可以为45mm,D
2可以为600mm,底板30朝向顶板的平面均向顶板所在的位置凸出,且底板与电机的平台51的连接处为曲面,且该连接处的曲率半径最小,且最小的曲率半径ρ可以为22.5mm。此时,参照图15a和图15b,对比现有技术的离心风机和本申请中的离心风机可知,本申请中的电机与底板交界处的漩涡流动消失。参照图16的实测结果可知,离心风机的气动效率提升2.1%,进而说明在不使用导风罩的情况下,可以使的漩涡流动消失,从而达到提升离心风机气动效率的目的。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (16)
- 一种离心叶轮,其特征在于,包括:底板、顶板和多个叶片,所述多个叶片沿所述顶板和所述底板的轴线的周向均匀布置、且均位于所述底板和所述顶板之间;每个所述叶片具有前缘、叶根、尾缘和叶尖,所述前缘和所述尾缘相对设置,所述叶根和所述叶尖相对设置;由所述叶根至所述叶尖的方向,所述叶片包括主流区和射流区,所述前缘的一部分位于所述主流区中,另一部分位于所述射流区中;流入所述离心叶轮的气流与所述叶片的相对速度的方向、与位于所述主流区的所述前缘的旋转速度的反方向形成入口角β 1,所述气流与所述叶片的相对速度的方向、与位于所述射流区的所述前缘的旋转速度的反方向形成入口角β 2;在所述离心叶轮旋转过程中,所述入口角β 1逐渐减小,所述入口角β 2逐渐增加。
- 根据权利要求1所述的离心叶轮,其特征在于,由所述叶根至所述叶尖的方向,所述主流区包括多个子区域,与所述射流区相邻的所述子区域的入口角与β 2之间的最大差值为5至35°。
- 根据权利要求1或2所述的离心叶轮,其特征在于,由所述叶根至所述叶尖的方向,所述入口角β 1由40°减小至25°,所述入口角β 2由25°增加至50°。
- 根据权利要求1至3任一项所述的离心叶轮,其特征在于,所述前缘至所述尾缘的方向上,所述叶片的中线位于所述前缘处的切线与该切点的旋转速度方向的夹角为β 3,其中,β 3与β 1以及β 2的差值为-10至10°。
- 根据权利要求5所述的离心叶轮,其特征在于,在(t,m)的投影上,所述射流区的中线的弯度大于任意所述主流区的中线的弯度。
- 根据权利要求5所述的离心叶轮,其特征在于,所述y/c=0.05。
- 根据权利要求1至7任一项所述的离心叶轮,其特征在于,所述尾缘为倒C型。
- 根据权利要求1至8任一项所述的离心叶轮,其特征在于,所述顶板上设有进风口,所述顶板与所述底板间隔设置,且所述顶板和所述底板的轴线重合。
- 根据权利要求11所述的离心叶轮,其特征在于,所述叶根位于所述叶根与所述尾缘连接处的切线与所述尾缘位于所述尾缘与所述叶根连接处的切线的夹角为α 1,所述尾缘位于所述尾缘与所述叶尖的连接处的切线与所述叶尖位于所述叶尖与所述尾缘连接处的切线的夹角为α 2,其中,所述α 1和α 2大于15°小于60°。
- 根据权利要求12所述的离心叶轮,其特征在于,所述α 1为30°,所述α 2为40°。
- 一种离心风机,其特征在于,包括电机、导风圈和如权利要求1至13任一项所述的离心叶轮;所述导风圈位于所述顶板上方,所述导风圈与所述叶尖与所述前缘连接处的轴向距离为0至10mm。
- 根据权利要求14所述的离心风机,其特征在于,所述底板的轴线处上设置有用于安装所述电机的装配孔,所述电机的头部设置于所述装配孔,所述电机头部朝向所述顶板的一侧具有平台,所述平台的直径为D 1,所述底板远离所述顶板的一侧的直径为D 2,D 1/D 2<0.2;所述电机的头部还设置有导向面,所述导向面设置于所述平台的周向,所述导向面与所述底板朝向所述顶板的一侧形成连续曲面,且所述曲面上任意一点的曲率半径ρ>10mm。
- 根据权利要求15所述的离心风机,其特征在于,所述D 1=45mm,所述D 2=600mm,所述ρ=22.5mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210030674.0A CN116464666A (zh) | 2022-01-12 | 2022-01-12 | 离心叶轮及离心风机 |
CN202210030674.0 | 2022-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023134344A1 true WO2023134344A1 (zh) | 2023-07-20 |
Family
ID=87172260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/137640 WO2023134344A1 (zh) | 2022-01-12 | 2022-12-08 | 离心叶轮及离心风机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116464666A (zh) |
WO (1) | WO2023134344A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120285173A1 (en) * | 2011-05-11 | 2012-11-15 | Alstom Technology Ltd | Lobed swirler |
CN102837383A (zh) * | 2012-08-08 | 2012-12-26 | 苏州工业园区协利塑胶有限公司 | 一种离心扇模具 |
CN111577655A (zh) * | 2020-04-14 | 2020-08-25 | 约克广州空调冷冻设备有限公司 | 叶片及使用其的轴流叶轮 |
CN111878455A (zh) * | 2020-09-17 | 2020-11-03 | 珠海格力电器股份有限公司 | 离心叶轮、离心风机及制冷设备 |
CN113202789A (zh) * | 2021-06-09 | 2021-08-03 | 清华大学 | 离心压缩机用叶轮及离心压缩机 |
CN113738694A (zh) * | 2021-08-25 | 2021-12-03 | 哈尔滨工业大学 | 一种具有圆头形前缘叶型的高性能呼吸机离心叶轮 |
-
2022
- 2022-01-12 CN CN202210030674.0A patent/CN116464666A/zh active Pending
- 2022-12-08 WO PCT/CN2022/137640 patent/WO2023134344A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120285173A1 (en) * | 2011-05-11 | 2012-11-15 | Alstom Technology Ltd | Lobed swirler |
CN102837383A (zh) * | 2012-08-08 | 2012-12-26 | 苏州工业园区协利塑胶有限公司 | 一种离心扇模具 |
CN111577655A (zh) * | 2020-04-14 | 2020-08-25 | 约克广州空调冷冻设备有限公司 | 叶片及使用其的轴流叶轮 |
CN111878455A (zh) * | 2020-09-17 | 2020-11-03 | 珠海格力电器股份有限公司 | 离心叶轮、离心风机及制冷设备 |
CN113202789A (zh) * | 2021-06-09 | 2021-08-03 | 清华大学 | 离心压缩机用叶轮及离心压缩机 |
CN113738694A (zh) * | 2021-08-25 | 2021-12-03 | 哈尔滨工业大学 | 一种具有圆头形前缘叶型的高性能呼吸机离心叶轮 |
Also Published As
Publication number | Publication date |
---|---|
CN116464666A (zh) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9267510B2 (en) | Centrifugal fan and air conditioner | |
JPH11201084A (ja) | 送風装置 | |
CN105697394B (zh) | 微小型高效出口流场无畸变离心风机 | |
US20230332615A1 (en) | Turbofan and air-conditioning apparatus | |
CN111043079A (zh) | 一种风扇叶片及风扇 | |
CN106089808B (zh) | 一种具有燕尾形前尾缘结构的叶片式扩压器及其造型方法 | |
CN109404305B (zh) | 一种仿生叶片无蜗壳离心通风机 | |
WO2023134344A1 (zh) | 离心叶轮及离心风机 | |
JP2002106494A (ja) | 軸流ファン | |
CN205639001U (zh) | 一种叶片压力面带小翼和叶顶有吹气结构的轴流风机 | |
CN216447178U (zh) | 一种后向离心风机 | |
TW200803710A (en) | Turbine set | |
WO2021017153A1 (zh) | 轴流风叶、轴流风机和空调器 | |
WO2021139508A1 (zh) | 扩压器、送风装置及吸尘设备 | |
CN113738695A (zh) | 一种具有抛物线型前缘叶片的高性能呼吸机离心叶轮 | |
CN208950927U (zh) | 一种多翼风机 | |
CN113883087B (zh) | 叶轮的子午流道型线、压气机叶轮、压气机和空气循环机 | |
KR20120023319A (ko) | 공기조화기용 터보팬 | |
CN221800195U (zh) | 一种轴流风机 | |
CN106015084B (zh) | 一种减小流量的离心泵叶轮 | |
CN219299605U (zh) | 叶轮及多翼离心风机 | |
CN212901758U (zh) | 一种空调室内机 | |
CN214742354U (zh) | 一种提效轴流风机集流器 | |
CN217440358U (zh) | 叶片、叶轮及通风设备 | |
CN215860958U (zh) | 一种离心风机用叶轮及应用其的离心风机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22919977 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |