WO2023134111A1 - 一种信号电压检测方法、系统、设备及服务器 - Google Patents

一种信号电压检测方法、系统、设备及服务器 Download PDF

Info

Publication number
WO2023134111A1
WO2023134111A1 PCT/CN2022/098736 CN2022098736W WO2023134111A1 WO 2023134111 A1 WO2023134111 A1 WO 2023134111A1 CN 2022098736 W CN2022098736 W CN 2022098736W WO 2023134111 A1 WO2023134111 A1 WO 2023134111A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal voltage
measured
voltage
converter
signal
Prior art date
Application number
PCT/CN2022/098736
Other languages
English (en)
French (fr)
Inventor
马井彬
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Publication of WO2023134111A1 publication Critical patent/WO2023134111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2503Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)

Definitions

  • the present application relates to the field of server testing, in particular to a signal voltage detection method, system, equipment and server.
  • the inventor realizes that it is necessary to debug and detect faults on the server during the R&D and mass production stages of the server. For example, if a technician suspects that the waveform of a certain signal voltage in the server is abnormal, an oscilloscope is needed to monitor the signal voltage. The waveform is detected. By connecting the signal voltage to an oscilloscope and using the oscilloscope to display the waveform of the signal voltage, it is possible to observe whether the signal voltage is abnormal.
  • the oscilloscope is expensive and bulky, and it is often difficult to carry the oscilloscope for fault detection at the customer site.
  • the purpose of this application is to provide a signal voltage detection method, system, device and server, which greatly saves the cost compared with the use of an oscilloscope, and does not have the problem of large volume and not easy to carry.
  • the application provides a signal voltage detection method, which is applied to the BMC in the server.
  • the BMC includes an A/D converter.
  • the signal voltage detection method includes:
  • the voltage value of the signal voltage to be measured is sent to the terminal, so that the terminal determines and displays the waveform of the signal voltage to be measured according to the voltage value of the signal voltage to be measured.
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured, including:
  • the ratio of the maximum sampling rate of the A/D converter to the frequency of the signal voltage to be measured is not less than a first preset ratio, the first preset ratio is not less than 1;
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to a first preset ratio.
  • determining the frequency of the signal voltage to be tested includes:
  • the frequency of the signal voltage to be measured input by the user is received, the frequency of the signal voltage to be measured is converted into integer data.
  • the sampling rate of the A/D converter before setting the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured, it also includes:
  • the signal type includes digital signal and analog signal
  • Set the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured including:
  • the A/D converter is set according to the frequency of the signal voltage to be measured. Sampling rate, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to the second preset ratio;
  • the ratio of the maximum sampling rate of the A/D converter to the frequency of the signal voltage to be measured is not less than the third preset ratio, neither the second preset ratio nor the third preset ratio is less than 1, and the second preset ratio is smaller than the third preset ratio;
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to a third preset ratio.
  • obtaining the voltage value sampled by the A/D converter includes:
  • the first fixed end of the sliding rheostat is connected to the test channel, the second fixed end is grounded, and the sliding end is connected to A /D converter connection, the corresponding relationship between the preset sampled voltage value and the voltage value of the signal voltage to be measured is:
  • V1 (m/2n)*(Rm/R1)*(Vm+1), where V1 is the voltage value of the signal voltage to be measured, Vm is the voltage value sampled by the A/D converter, and Rm is the sliding rheostat Nominal value, R1 is the resistance value between the second fixed terminal and the sliding terminal, m is the maximum input voltage of the A/D converter, and the precision of the A/D converter is n bits.
  • the terminal before sending the voltage value of the signal voltage to be measured to the terminal, it further includes:
  • the current working mode includes normal mode, rising edge trigger mode and falling edge trigger mode;
  • the latest voltage value of the signal voltage to be measured will be The calculated second preset number of voltage values and the latest calculated voltage value of the signal voltage to be measured are sent to the terminal, so that the terminal determines and displaying the waveform of the voltage of the signal under test;
  • the latest voltage value of the signal voltage to be measured will be The calculated third preset number of voltage values and the latest calculated voltage value of the signal voltage to be measured are sent to the terminal, so that the terminal determines and Displays the waveform of the signal voltage to be measured.
  • the present application also provides a signal voltage detection system, including:
  • a frequency determination unit configured to determine the frequency of the signal voltage to be measured
  • a sampling rate determination unit is used to set the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured
  • the A/D converter control unit is used to control the A/D converter to sample the signal voltage to be measured of the test channel connected to the A/D converter;
  • a sampling voltage value acquisition unit configured to acquire a voltage value sampled by the A/D converter
  • the voltage value calculation unit of the signal voltage to be measured is used to calculate the voltage value of the signal voltage to be measured according to the preset corresponding relationship between the sampled voltage value and the voltage value of the signal voltage to be measured and the sampled voltage value;
  • the voltage value sending unit of the signal voltage to be measured is used for sending the voltage value of the signal voltage to be measured to the terminal, so that the terminal can determine the waveform of the signal voltage to be measured according to the voltage value of the signal voltage to be measured.
  • the present application also provides a signal voltage detection device, including a memory and one or more processors, where computer-readable instructions are stored in the memory, and when the computer-readable instructions are executed by the one or more processors, the The one or more processors execute the steps of any one of the signal voltage detection methods described above.
  • the present application also provides a server, including the above-mentioned signal voltage detection device and multiple A/D converters, and the multiple A/D converters are all connected to the signal voltage detection device.
  • the present application also provides one or more non-volatile computer-readable storage media storing computer-readable instructions that, when executed by one or more processors, cause the one or more The processor executes the steps of any one of the signal voltage detection methods described above.
  • FIG. 1A is an application scenario diagram of a signal voltage detection method provided by the present application according to one or more embodiments
  • FIG. 1 is a flow chart of a signal voltage detection method provided by the present application according to one or more embodiments
  • Fig. 2 is a schematic structural diagram of a signal voltage detection system provided by the present application according to one or more embodiments;
  • Fig. 3 is a schematic structural diagram of a signal voltage detection device according to one or more embodiments of the present application.
  • the core of the present application is to provide a signal voltage detection method, system, device and server, which greatly saves the cost compared with the use of an oscilloscope, and does not have the problem of being too large and not easy to carry.
  • the signal voltage detection method provided in the present application can be applied in the application environment shown in FIG. 1A .
  • the terminal 102a communicates with the server 104a through a network.
  • the terminal 102a can be, but not limited to, various personal computers, notebook computers, smart phones, tablet computers and portable wearable devices, and the server 104a can be realized by an independent server or a server cluster composed of multiple servers.
  • the server 104a determines the frequency of the signal voltage to be tested, sets the sampling rate of the A/D converter according to the frequency of the signal voltage to be tested, and controls the A/D converter to measure the frequency of the test channel connected to the A/D converter.
  • the signal voltage is sampled, the voltage value sampled by the A/D converter is obtained, and the voltage value of the signal voltage to be measured is calculated according to the corresponding relationship between the preset sampled voltage value and the voltage value of the signal voltage to be measured and the sampled voltage value , and send the voltage value of the signal voltage to be measured to the terminal 102a, so that the terminal 102a determines and displays the waveform of the signal voltage to be measured according to the voltage value of the signal voltage to be measured.
  • FIG. 1 is a flow chart of a signal voltage detection method provided in the present application.
  • a signal voltage detection method is applied to a BMC (Baseboard Management Controller, baseboard management controller) in a server, and the BMC includes an A/D (analog to digital, analog/digital) converter, and the signal voltage detection method includes:
  • S2 setting the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured
  • the signal to be tested will be determined first.
  • the frequency of the voltage for example, the frequency of the signal voltage to be measured is obtained by prompting the user to input the frequency of the signal voltage to be measured.
  • the sampling rate of the A/D converter is set according to the frequency of the signal under test, so that within one period of the voltage of the signal under test, the A/D converter can perform multiple samplings of the voltage of the signal under test.
  • S3 controlling the A/D converter to sample the signal voltage under test of the test channel connected to the A/D converter;
  • the signal voltage to be measured needs to be sampled multiple times to obtain the voltage values of a plurality of signal voltages to be measured.
  • the signal voltage under test of the test channel connected to the device is sampled multiple times.
  • S5 Calculate the voltage value of the signal voltage to be measured according to the corresponding relationship between the preset sampled voltage value and the voltage value of the signal voltage to be measured and the sampled voltage value;
  • V1 (m/2n)*(Vm+1), wherein, V1 is the voltage value of the signal voltage to be measured, and Vm sampled Voltage value, m is the maximum input voltage of the A/D converter, and the precision of the A/D converter is n bits, which is not specifically limited in this embodiment.
  • S6 Send the voltage value of the signal voltage to be measured to the terminal, so that the terminal determines and displays the waveform of the signal voltage to be measured according to the voltage value of the signal voltage to be measured.
  • the calculated voltage value of the signal voltage to be measured needs to be sent to the terminal, such as a server. After receiving the voltage value of the signal voltage to be measured, the terminal constructs the waveform of the signal voltage to be measured according to the voltage value of the signal voltage to be measured .
  • the voltage value of the signal voltage to be measured when the voltage value of the signal voltage to be measured is sent to the terminal, it may be sent through a network protocol, such as Bluetooth or Wi-Fi, which is not specifically limited in this embodiment.
  • the signal voltage to be tested is detected by the A/D converter in the BMC, and the corresponding relationship between the preset sampled voltage value and the voltage value of the signal voltage to be tested and the sampled
  • the voltage value calculates the voltage value of the signal voltage to be tested, and sends the voltage value of the signal to be tested to the terminal to generate the waveform of the signal voltage, so that technicians can troubleshoot. Since the A/D converter in the BMC is used to detect the signal voltage, compared with using an oscilloscope, the cost is greatly saved, and there is no problem that it is too large and not easy to carry.
  • the A/D converter in the BMC can not only sample and detect the voltage value of the signal voltage, but also sample and detect the voltage value of the DC voltage, which can replace the multimeter to measure the voltage.
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured, including:
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured based on the determination result, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to The first preset ratio.
  • the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured indicates the number of times the A/D converter samples the voltage of the signal to be measured within one signal period of the signal voltage to be measured. In one signal cycle of the signal voltage to be tested, if the A/D converter samples the signal to be tested more times, the constructed waveform of the signal voltage to be tested will be more accurate. Based on the above principles, in this embodiment, it will be judged whether the ratio of the maximum sampling rate of the A/D converter to the frequency of the signal voltage to be measured is not less than the first preset ratio, that is, the A/D converter is at a higher rate than the frequency of the signal voltage to be measured.
  • the maximum number of sampling times in one signal cycle is not less than the first preset ratio, if it is less than, it means that the frequency of the signal voltage to be measured is too high, and the accuracy of the waveform obtained by sampling the voltage of the signal to be measured by using the A/D converter will decrease.
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to the first preset ratio, That is, the number of sampling times within one signal period of the signal voltage to be tested reaches a first preset ratio, so that the obtained waveform of the signal voltage to be tested is sufficiently accurate.
  • determining the frequency of the signal voltage to be measured includes:
  • the frequency of the signal voltage to be measured input by the user is received, the frequency of the signal voltage to be measured is converted into integer data.
  • the frequency of the signal voltage to be tested input by the user is a visible character
  • the sampling rate of the A/D converter before setting the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured, it also includes:
  • the signal type includes digital signal and analog signal
  • Set the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured including:
  • the signal voltage to be measured is a digital signal, determine whether the ratio of the maximum sampling rate of the A/D converter to the frequency of the signal voltage to be measured is not less than a second preset ratio;
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to the second preset ratio;
  • the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured based on the determination result, so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to Second preset ratio.
  • the signal voltage to be measured is an analog signal
  • the signal voltage to be measured is an analog signal
  • the ratio of the frequency of the signal voltage to be measured is not less than the third preset ratio, and the sampling rate of the A/D converter is set according to the frequency of the signal voltage to be measured based on the determination result, so that the sampling rate of the A/D converter is the same as the frequency of the signal voltage to be measured.
  • the frequency ratio of the measured signal voltage is equal to the third preset ratio.
  • the signal voltage to be tested may be an analog signal or a digital signal
  • the signal voltage to be tested is a digital signal
  • the number of sampling times of the signal voltage to be tested by the A/D converter can be Relatively less
  • the signal voltage to be tested is an analog signal, in order to construct the waveform of the analog signal more accurately, the A/D converter should sample more times of the signal voltage to be tested within one signal cycle of the signal voltage to be tested Some.
  • the A/D sampling rate will be set for the digital signal so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to the second preset ratio, that is, in one of the digital signals Sampling the voltage of the second preset ratio number of times in the signal cycle; for the analog signal, the A/D sampling rate can be set so that the ratio of the sampling rate of the A/D converter to the frequency of the signal voltage to be measured is equal to the third preset ratio, that is, at The voltage of the third preset ratio times is sampled in one signal period of the digital signal.
  • the third preset ratio is greater than the second preset ratio, that is, within one signal period, the number of sampling times of the analog signal is more than that of the digital signal, so as to construct the waveform of the analog signal more accurately.
  • the ratio of the maximum sampling rate of the A/D converter to the frequency of the signal voltage to be measured is less than the second preset ratio or when the signal voltage to be measured is an analog signal, the A/D If the ratio of the maximum sampling rate of the converter to the frequency of the signal voltage to be measured is less than the third preset ratio, it indicates that the frequency of the signal voltage to be measured is too high, and the A/D converter can sample the signal voltage to be measured within one signal period. If the number of sampling times is too low, the waveform of the signal voltage to be tested cannot be constructed accurately, and the user may be prompted that the frequency of the signal voltage to be tested does not meet the test requirements, which is not specifically limited in this embodiment.
  • the frequency cannot exceed 500 kHz when the signal voltage to be measured is a digital signal
  • the frequency cannot exceed 100 kHz.
  • obtaining the voltage value sampled by the A/D converter includes:
  • the reading operation frequency of reading data in the register is equal to the sampling rate of the A/D converter, which ensures that the voltage value sampled by the A/D converter is read in time.
  • the first fixed end of the sliding rheostat is connected to the test channel, the second fixed end is grounded, and the sliding end is connected to the test channel.
  • the A/D converter is connected, and the corresponding relationship between the preset sampled voltage value and the voltage value of the signal voltage to be measured is:
  • V1 (m/2n)*(Rm/R1)*(Vm+1), where V1 is the voltage value of the signal voltage to be measured, Vm is the voltage value sampled by the A/D converter, and Rm is the sliding rheostat Nominal value, R1 is the resistance value between the second fixed terminal and the sliding terminal, m is the maximum input voltage of the A/D converter, and the precision of the A/D converter is n bits.
  • the technician can adjust the resistance value of the sliding rheostat in combination with the maximum input voltage of the A/D converter and the signal voltage to be tested, so that the voltage input to the A/D converter does not exceed the A/D converter the maximum input voltage.
  • the terminal before sending the voltage value of the signal voltage to be measured to the terminal, it also includes:
  • the current working mode includes normal mode, rising edge trigger mode and falling edge trigger mode;
  • the current working mode is the rising edge trigger mode, it is judged whether the trigger voltage is less than the latest obtained voltage value of the signal voltage to be measured and greater than the voltage value of the signal voltage to be measured obtained last time;
  • the current working mode is the rising edge trigger mode
  • the voltage value of the signal voltage to be measured is greater than the voltage value of the signal voltage to be measured obtained last time. Based on the judgment result, the voltage value of the second preset number calculated before the newly obtained voltage value of the signal voltage to be measured and the latest obtained The second preset number of voltage values calculated after the voltage value of the signal voltage to be measured is sent to the terminal.
  • the current working mode is the falling edge trigger mode, it is judged whether the trigger voltage is greater than the latest obtained voltage value of the signal voltage to be measured and smaller than the voltage value of the signal voltage to be measured obtained last time;
  • the current working mode is the falling edge trigger mode
  • the voltage value of the signal voltage to be measured is less than the voltage value of the signal voltage to be measured obtained last time, and based on the judgment result, the voltage value of the latest obtained voltage value of the signal voltage to be measured is calculated before the third preset number and the latest obtained A third preset number of voltage values calculated after the voltage value of the signal voltage to be measured is sent to the terminal.
  • the testing requirements of technicians in different scenarios are met. For example, for a certain signal voltage to be tested, it should be a square wave with a low level of 0 volts and a high level of 1.5V during normal operation.
  • the technician wants to detect whether there are individual waveforms with a high level exceeding 1.5 volts.
  • Set the trigger voltage to 1.5V, and set the current working mode to rising edge trigger, and the second preset number is 10.
  • the latest obtained signal voltage to be tested has a voltage value of 1.6V and the last obtained If the voltage value of the signal voltage to be measured is 0V, the newly obtained voltage value of the signal voltage to be measured is the voltage value of the 10 signal voltages to be measured calculated before 1.6V and the 10 voltage values of the signal voltage to be measured calculated after 1.6V.
  • the voltage value of the measured signal voltage is sent to the terminal to construct a waveform and display it.
  • FIG. 2 is a schematic structural diagram of a signal voltage detection system provided in the present application.
  • the present application also provides a signal voltage detection system, including:
  • a frequency determination unit 21 configured to determine the frequency of the signal voltage to be measured
  • a sampling rate determining unit 22 configured to set the sampling rate of the A/D converter according to the frequency of the signal voltage to be measured;
  • the A/D converter control unit 23 is used to control the A/D converter to sample the signal voltage under test of the test channel connected to the A/D converter;
  • a sampling voltage value acquisition unit 24 configured to acquire the voltage value sampled by the A/D converter
  • the voltage value calculation unit 25 of the signal voltage to be measured is used to calculate the voltage value of the signal voltage to be measured according to the corresponding relationship between the preset sampled voltage value and the voltage value of the signal voltage to be measured and the sampled voltage value;
  • the voltage value sending unit 26 of the signal voltage to be measured is configured to send the voltage value of the signal voltage to be measured to the terminal, so that the terminal can determine the waveform of the signal voltage to be measured according to the voltage value of the signal voltage to be measured.
  • FIG. 3 is a schematic structural diagram of a signal voltage detection device provided in the present application.
  • the present application also provides a signal voltage detection device, the signal voltage detection device may be a computer device, the computer device may be a terminal or a server, and the signal voltage detection device includes:
  • memory 31 for storing computer readable instructions
  • One or more processors 32 are configured to execute computer-readable instructions stored in the memory. When the computer-readable instructions are executed by the processors, the steps of the signal voltage detection method in any one of the above-mentioned embodiments can be implemented.
  • a non-volatile computer-readable storage medium stores computer-readable instructions, and when the computer-readable instructions are executed by one or more processors, any one of the above implementations can be realized The steps of the signal voltage detection method of the example.
  • the present application also provides a server, including the above-mentioned signal voltage detection device and multiple A/D converters, and the multiple A/D converters are all connected to the signal voltage detection device.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for relevant details, please refer to the description of the method part.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM random access memory
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Abstract

一种信号电压检测方法,该方法包括:确定待测信号电压的频率(S1),根据待测信号电压的频率设置A/D转换器的采样率(S2),控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行采样(S3),获取A/D转换器采样到的电压值(S4),根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值(S5),将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形(S6)。一种信号电压检测系统、设备及服务器。

Description

一种信号电压检测方法、系统、设备及服务器
相关申请的交叉引用
本申请要求于2022年01月12日提交中国专利局,申请号为202210029328.0,申请名称为“一种信号电压检测方法、系统、设备及服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器测试领域,特别是涉及一种信号电压检测方法、系统、设备及服务器。
背景技术
发明人意识到,在服务器的研发阶段和量产阶段需要对服务器进行调试和故障检测,例如技术人员怀疑服务器中某个信号电压的波形异常,这时就需要用到示波器来对该信号电压的波形进行检测,通过将该信号电压连接至示波器,用示波器显示该信号电压的波形,来观察信号电压是否异常。但是示波器成本高昂且体积庞大,在客户现场进行的故障检测,往往难以携带示波器。
发明内容
本申请的目的是提供一种信号电压检测方法、系统、设备及服务器,相比于使用示波器,大大节约了成本,且不存在体积较大不容易携带的问题。
为解决上述技术问题,本申请提供了一种信号电压检测方法,应用于服务器中的BMC,BMC包括A/D转换器,信号电压检测方法包括:
确定待测信号电压的频率;
根据待测信号电压的频率设置A/D转换器的采样率;
控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行采样;
获取A/D转换器采样到的电压值;
根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值;和
将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形。
在其中一个实施例中,根据待测信号电压的频率设置A/D转换器的采样率,包括:
在A/D转换器的最大采样率与待测信号电压的频率的比值不小于第一预设比值时,第一预设比值不小于1;
根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第一预设比值。
在其中一个实施例中,确定待测信号电压的频率,包括:
在接收到用户输入的待测信号电压的频率时,将待测信号电压的频率转换为整型数据。
在其中一个实施例中,根据待测信号电压的频率设置A/D转换器的采样率之前,还包括:
确定待测信号电压的信号类型,信号类型包括数字信号和模拟信号;
根据待测信号电压的频率设置A/D转换器的采样率,包括:
在待测信号电压为数字信号,A/D转换器的最大采样率与待测信号电压的频率的比值不小于第二预设比值时,根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第二预设比值;
在待测信号电压为模拟信号,A/D转换器的最大采样率与待测信号电压的频率的比值不小于第三预设比值时,第二预设比值和第三预设比值均不小于1,且第二预设比值小于第三预设比值;
根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第三预设比值。
在其中一个实施例中,获取A/D转换器采样到的电压值,包括:
周期性的读取A/D转换器的寄存器中保存的A/D转换器采样到的电压值且读取的频率等于A/D转换器的采样率。
在其中一个实施例中,在A/D转换器与测试通道之间设置有用于分压的滑动变阻器时,滑动变阻器的第一固定端与测试通道连接,第二固定端接地,滑动端与A/D转换器连接,预设采样到的电压值与待测信号电压的电压值的对应关系为:
V1=(m/2n)*(Rm/R1)*(Vm+1),其中,V1为待测信号电压的电压值,Vm为A/D转换器采样到的电压值,Rm为滑动变阻器的标称值,R1为第二固定端与滑动端之间的电阻值,m为A/D转换器的最大输入电压,A/D转换器的精度为n比特。
在其中一个实施例中,将待测信号电压的电压值发送到终端之前,还包括:
确定当前工作模式,当前工作模式包括正常模式、上升沿触发模式和下降沿触发模式;
在当前工作模式为上升沿触发模式或下降沿触发模式时,确定触发电压;
将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形,包括:
在当前工作模式为正常模式时,每次发送第一预设数量的待测信号电压的电压值发送到终端,以便终端根据第一预设数量的待测信号电压的电压值确定并显示待测信号电压的波形;
在当前工作模式为上升沿触发模式,触发电压小于最新得到的待测信号电压的电压值且大于上一次得到的待测信号电压的电压值时,将最新得到的待测信号电压的电压值之前计算出的第二预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第二预设数量的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形;和
在当前工作模式为下降沿触发模式,触发电压大于最新得到的待测信号电压的电压值且小于上一次得到的待测信号电压的电压值时,将最新得到的待测信号电压的电压值之前计算出的第三预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第三预设数量的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形。
本申请还提供了一种信号电压检测系统,包括:
频率确定单元,用于确定待测信号电压的频率;
采样率确定单元,用于根据待测信号电压的频率设置A/D转换器的采样率;
A/D转换器控制单元,用于控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行采样;
采样电压值获取单元,用于获取A/D转换器采样到的电压值;
待测信号电压的电压值计算单元,用于根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值;和
待测信号电压的电压值发送单元,用于将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定待测信号电压的波形。
本申请还提供了一种信号电压检测设备,包括存储器及一个或多个处理器,存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行上述任意一项信号电压检测方法的步骤。
本申请还提供了一种服务器,包括如上述的信号电压检测设备及多个A/D转换器,多个A/D转换器均与信号电压检测设备连接。
本申请最后还提供了一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行上述任意一项信号电压检测方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为本申请根据一个或多个实施例提供的一种信号电压检测方法的应用场景图;
图1为本申请根据一个或多个实施例提供的一种信号电压检测方法的流程图;
图2为本申请根据一个或多个实施例提供的一种信号电压检测系统的结构示意图;
图3为本申请根据一个或多个实施例提供的一种信号电压检测设备的结构示意图。
具体实施方式
本申请的核心是提供一种信号电压检测方法、系统、设备及服务器,相比于使用示波器,大大节约了成本,且不存在体积较大不容易携带的问题。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的信号电压检测方法,可以应用于如图1A所示的应用环境中。其中,终端102a与服务器104a通过网络进行通信。终端102a可以但不限于是各种个人计算机、 笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,服务器104a可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
具体地,服务器104a确定待测信号电压的频率,根据待测信号电压的频率设置A/D转换器的采样率,控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行采样,获取A/D转换器采样到的电压值,根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值,和将待测信号电压的电压值发送到终端102a,以便终端102a根据待测信号电压的电压值确定并显示待测信号电压的波形。
具体请参照图1,图1为本申请提供的一种信号电压检测方法的流程图。
一种信号电压检测方法,应用于服务器中的BMC(Baseboard Management Controller,基板管理控制器),BMC包括A/D(analog to digital,模拟/数字)转换器,信号电压检测方法包括:
S1:确定待测信号电压的频率;
S2:根据待测信号电压的频率设置A/D转换器的采样率;
考虑到在利用A/D转换器对待测信号电压进行采样时,若采样率过低,则在待测信号电压的一个周期内,A/D转换器采样的次数会很少,使得根据A/D转换器采样到的电压值处理后得到的待测信号电压的波形的准确度不高,并不能满足对待测信号电压进行诊断的需求,因此,在本实施例中,会先确定待测信号电压的频率,例如,通过提示用户输入待测信号电压的频率的方式,得到待测信号电压的频率。然后根据待测信号的频率来设置A/D转换器的采样率,以使得在待测信号电压的一个周期内,A/D转换器能够对待测信号电压进行多次采样。
还需要说明的是,为了使A/D转换器正常工作,在根据待测信号电压的频率设置A/D转换器的采样率之前,还需要读取A/D转换器的状态寄存器,判断A/D转换器是否进行了时序初始化,若没有进行时序初始化,则需要对A/D转换器进行时序初始化。若已完成了时序初始化,则根据A/D转换器的要求计算并配置A/D转换器的补偿值来矫正误差,并根据待测信号电压的频率计算并配置A/D转换器的时钟频率。
S3:控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行采样;
为了得到待测信号电压的波形,需要对待测信号电压进行多次采样,以得到多个待测信号电压的电压值,在本实施例中,通过控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行多次采样。
S4:获取A/D转换器采样到的电压值;
为了得到待测信号电压的电压值,需要先从A/D转换器中读取A/D转换器采样到的电压值,以便后续根据预设采样到的电压值与待测信号电压的电压值的对应关系得到待测信号电压的电压值。
S5:根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值;
预设采样到的电压值与待测信号电压的电压值的对应关系可以为V1=(m/2n)*(Vm+1),其中,V1为待测信号电压的电压值,Vm采样到的电压值,m为A/D转换器的最大输入电压,A/D转换器的精度为n比特,本实施例对此不作特别的限定。
S6:将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形。
在根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算出待测信号电压的电压值之后,为了根据待测信号电压的电压值,得到待测信号电压的波形,需要将计算出的待测信号电压的电压值发送到终端,例如服务器,终端接收到待测信号的电压值后,根据待测信号电压的电压值构建待测信号电压的波形。
另外,将待测信号电压的电压值发送到终端时,可以通过网络协议,例如蓝牙或Wi-Fi发送,本实施例在此不作特别的限定。
综上,在本实施例中,通过BMC中的A/D转换器来对待测信号电压进行检测,并根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值,将待测信号的电压值发送到终端生成信号电压的波形,以便技术人员进行故障排查。由于是采用BMC中自带的A/D转换器进行检测信号电压,相比于使用示波器,大大节约了成本,且不存在体积较大不容易携带的问题。此外,采用BMC中A/D转换器不仅可以对信号电压的电压值进行采样检测也可以对直流电压的电压值进行采样检测,能够替代万用表对电压进行测量。
在上述实施例的基础上:
作为一种优选的实施例,根据待测信号电压的频率设置A/D转换器的采样率,包括:
判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第一预设比值,第一预设比值不小于1;
若不小于,根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第一预设比值。
其中,判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第一预设比值,在判定A/D转换器的最大采样率与待测信号电压的频率的比值不小于第一预设比值时,基于该判定结果根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第一预设比值。
具体地,由于A/D转换器的采样率与待测信号电压的频率的比值表示,在待测信号电压在一个信号周期内,A/D转换器对待测信号电压进行采样的次数。而在待测信号电压的一个信号周期内,若A/D转换器对待测试信号的采样次数越多,则构建出的待测信号电压的波形更加的准确。基于上述原理,在本实施例中,会判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第一预设比值,即A/D转换器在待测信号电压的一个信号周期内的最大采样次数是否不小于第一预设比值,若小于,则说明待测信号电压的频率过高,采用A/D转换器对待测信号电压进行采样得到的波形准确度会很低,若不小于,则根据待测信号电压的频率设置A/D转换器的采样率,使A/D转换器的采样率与待测信号电压的频率的比值等于第一预设比值,即在待测信号电压的一个信号周期内的采样次数达到第一预设比值,以便得到的待测信号电压的波形足够准确。
作为一种优选的实施例,确定待测信号电压的频率,包括:
在接收到用户输入的待测信号电压的频率时,将待测信号电压的频率转换为整型数据。
由于用户输入的待测信号电压的频率为可见字符,为了便于BMC对待测试信号电压的频率进行处理,需要将待测信号电压的频率准换为整型数据。
作为一种优选的实施例,根据待测信号电压的频率设置A/D转换器的采样率之前,还包括:
确定待测信号电压的信号类型,信号类型包括数字信号和模拟信号;
根据待测信号电压的频率设置A/D转换器的采样率,包括:
在待测信号电压为数字信号时,判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第二预设比值;
若不小于,根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第二预设比值;
其中,判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第二预设比值,在判定A/D转换器的最大采样率与待测信号电压的频率的比值不小于第二预设比值时,基于该判定结果根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第二预设比值。
在待测信号电压为模拟信号时,判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第三预设比值,第二预设比值和第三预设比值均不小于1,且第二预设比值小于第三预设比值;
若不小于,根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第三预设比值。
其中,在待测信号电压为模拟信号时,判断A/D转换器的最大采样率与待测信号电压的频率的比值是否不小于第三预设比值,判定A/D转换器的最大采样率与待测信号电压的频率的比值不小于第三预设比值,基于该判定结果根据待测信号电压的频率设置A/D转换器的采样率,以使A/D转换器的采样率与待测信号电压的频率的比值等于第三预设比值。
其中,考虑到待测信号电压可能为模拟信号或数字信号,在待测信号电压为数字信号时,在待测试信号电压的一个信号周期内,A/D转换器对待测试信号电压的采样次数可以相对少一些,而在待测信号电压为模拟信号时,为了更加准确的构建模拟信号的波形,在待测试信号电压的一个信号周期内A/D转换器对待测试信号电压的采样次数要更多一些。
因此,在本实施例中,对于数字信号会设置A/D采样率使得A/D转换器的采样率与待测信号电压的频率的比值等于第二预设比值,即在该数字信号的一个信号周期内采样第二预设比值次数的电压;对于模拟信号会设置A/D采样率使得A/D转换器的采样率与待测信号电压的频率的比值等于第三预设比值,即在该数字信号的一个信号周期内采样第三预设比值次数的电压。而第三预设比值要大于第二预设比值,也即在一个信号周期内,对于模拟信号采样的次数要多于数字信号,以便能更准确的构建模拟信号的波形。而若在待测信号电压为数字信号时,A/D转换器的最大采样率与待测信号电压的频率的比值小于第二预设比值或在待测信号电压为模拟信号时,A/D转换器的最大采样率与待测信号电压的频率的比值小于第三预设比值,则说明待测信号电压的频率过高,A/D转换器对待测信号电压进行采样时在一个信号周期内采样的次数过低,无法准确的构建待测信号电压的波形,可以提示用户待测信号电压的频率不符合测试要求,本实施例对此不作特别的限定。
例如,在A/D转换器的最大采样率为1兆赫兹,第二预设比值为2,第三预设比值为10时,在待测信号电压为数字信号时频率不能超过500千赫兹,在待测信号电压为模拟信号时频率不能超过100千赫兹。
作为一种优选的实施例,获取A/D转换器采样到的电压值,包括:
周期性的读取A/D转换器的寄存器中保存的A/D转换器采样到的电压值且读取的频率等于A/D转换器的采样率。
因为A/D转换器采样到的电压值会保存在寄存器中,因此需要通过读取寄存器中保存的电压值来获取A/D转换器采样到的电压值,而在周期性的读取寄存器中保存的A/D转换器采样到的电压值时,若进行读取的操作的频率过高,会导致寄存器中保存的同一电压值被重复读取,若进行读取的操作的频率过低,则会导致无法及时获取A/D转换器采样到的电压值。因此,在本实施例中,读取寄存器中的数据的读取操作频率等于A/D转换器的采样率,保证了A/D转换器采样到的电压值被及时读取。
作为一种优选的实施例,在A/D转换器与测试通道之间设置有用于分压的滑动变阻器时,滑动变阻器的第一固定端与测试通道连接,第二固定端接地,滑动端与A/D转换器连接,预设采样到的电压值与待测信号电压的电压值的对应关系为:
V1=(m/2n)*(Rm/R1)*(Vm+1),其中,V1为待测信号电压的电压值,Vm为A/D转换器采样到的电压值,Rm为滑动变阻器的标称值,R1为第二固定端与滑动端之间的电阻值,m为A/D转换器的最大输入电压,A/D转换器的精度为n比特。
考虑到A/D转换器能够输入的电压有限,若待测信号电压的电压值过大,则无法进行测量,为了解决上述问题,可以在A/D转换器与测试通道之间设置有用于分压的滑动变阻器,技术人员可以结合A/D转换器的最大输入电压和待测试信号电压的大小调节滑动变阻器的电阻值,以使输入到A/D转换器的电压不超过A/D转换器的最大输入电压。在设置了滑动变阻器后,预设采样到的电压值与待测信号电压的电压值的对应关系为V1=(m/2n)*(Rm/R1)*(Vm+1),例如在A/D转换器的精度为10比特,最大输入电压为1.8V时,V1=(1.8/210)*(Rm/R1)*(Vm+1)。通过在A/D转换器与测试通道之间设置滑动变阻器,增大了A/D转换器所能输入的最大的待测试信号电压。
作为一种优选的实施例,将待测信号电压的电压值发送到终端之前,还包括:
确定当前工作模式,当前工作模式包括正常模式、上升沿触发模式和下降沿触发模式;
在当前工作模式为上升沿触发模式或下降沿触发模式时,确定触发电压;
将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形,包括:
在当前工作模式为正常模式时,每次发送第一预设数量的待测信号电压的电压值发送到终端,以便终端根据第一预设数量的待测信号电压的电压值确定并显示待测信号电压的波形;
在当前工作模式为上升沿触发模式时,判断触发电压是否小于最新得到的待测信号电压的电压值且大于上一次得到的待测信号电压的电压值;
若是,则将最新得到的待测信号电压的电压值之前计算出的第二预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第二预设数量的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形;
其中,在当前工作模式为上升沿触发模式时,判断触发电压是否小于最新得到的待测信号电压的电压值且大于上一次得到的待测信号电压的电压值,判定触发电压小于最新得到的待测信号电压的电压值且大于上一次得到的待测信号电压的电压值,基于该判定结果将最新得到的待测信号电压的电压值之前计算出的第二预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第二预设数量的电压值发送到终端。
在当前工作模式为下降沿触发模式时,判断触发电压是否大于最新得到的待测信号电压的电压值且小于上一次得到的待测信号电压的电压值;
若是,则将最新得到的待测信号电压的电压值之前计算出的第三预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第三预设数量的电压值发送到终端,以便终端根据待测信号电压的电压值确定并显示待测信号电压的波形。
其中,在当前工作模式为下降沿触发模式时,判断触发电压是否大于最新得到的待测信号电压的电压值且小于上一次得到的待测信号电压的电压值,判定触发电压大于最新得到的待测信号电压的电压值且小于上一次得到的待测信号电压的电压值,基于该判定结果将最新得到的待测信号电压的电压值之前计算出的第三预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第三预设数量的电压值发送到终端。
本实施例中,通过设置不同的工作模式,满足了技术人员在不同场景下的测试需求。例如,对于某个待测试信号电压,正常工作时应当是低电平0伏,高电平1.5V的方波,技术人员想要检测波形中是否有个别波形高电平超过1.5伏,技术人员设置触发电压为1.5V,并设置当前工作模式为上升沿触发,第二预设数量为10,一旦满足触发条件,例如最新得到的待测信号电压的电压值为1.6V且上一次得到的待测信号电压的电压值为0V,则会将最新得到的待测信号电压的电压值也即1.6V之前计算出的10个待测信号电压的电压值和在1.6V之后计算出的10个待测信号电压的电压值发送到终端来构建波形并进行显示。
具体请参照图2,图2为本申请提供的一种信号电压检测系统的结构示意图。
本申请还提供了一种信号电压检测系统,包括:
频率确定单元21,用于确定待测信号电压的频率;
采样率确定单元22,用于根据待测信号电压的频率设置A/D转换器的采样率;
A/D转换器控制单元23,用于控制A/D转换器对与A/D转换器连接的测试通道的待测信号电压进行采样;
采样电压值获取单元24,用于获取A/D转换器采样到的电压值;
待测信号电压的电压值计算单元25,用于根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算待测信号电压的电压值;
待测信号电压的电压值发送单元26,用于将待测信号电压的电压值发送到终端,以便终端根据待测信号电压的电压值确定待测信号电压的波形。
关于该信号电压检测系统的相关介绍,请参照上述实施例,本申请在此不再赘述。
具体请参照图3,图3为本申请提供的一种信号电压检测设备的结构示意图。
本申请还提供了一种信号电压检测设备,该信号电压检测设备可以为计算机设备,该计算机设备可以为终端或者服务器,该信号电压检测设备包括:
存储器31,用于存储计算机可读指令;
一个或者多个处理器32,用于执行存储器存储的计算机可读指令,该计算机可读指令被处理器执行时可实现如上述任意一个实施例的信号电压检测方法的步骤。
关于该信号电压检测设备的相关介绍,请参照上述实施例,本申请在此不再赘述。
一种非易失性计算机可读存储介质,该非易失性计算机可读存储介质中存储有计算机可读指令,该计算机可读指令被一个或多个处理器执行时可实现上述任意一个实施例的信号电压检测方法的步骤。
本申请还提供了一种服务器,包括如上述的信号电压检测设备及多个A/D转换器,多个A/D转换器均与信号电压检测设备连接。
关于该服务器的相关介绍,请参照上述实施例,本申请在此不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方 法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种信号电压检测方法,其特征在于,应用于服务器中的BMC,所述BMC包括A/D转换器,所述信号电压检测方法包括:
    确定待测信号电压的频率;
    根据所述待测信号电压的频率设置所述A/D转换器的采样率;
    控制所述A/D转换器对与所述A/D转换器连接的测试通道的待测信号电压进行采样;
    获取所述A/D转换器采样到的电压值;
    根据预设采样到的电压值与待测信号电压的电压值的对应关系和所述采样到的电压值计算所述待测信号电压的电压值;和
    将所述待测信号电压的电压值发送到终端,以便所述终端根据所述待测信号电压的电压值确定并显示所述待测信号电压的波形。
  2. 如权利要求1所述的信号电压检测方法,其特征在于,所述根据所述待测信号电压的频率设置所述A/D转换器的采样率,包括:
    在所述A/D转换器的最大采样率与所述待测信号电压的频率的比值不小于第一预设比值时,所述第一预设比值不小于1;
    根据所述待测信号电压的频率设置所述A/D转换器的采样率,以使所述A/D转换器的采样率与所述待测信号电压的频率的比值等于所述第一预设比值。
  3. 如权利要求1所述的信号电压检测方法,其特征在于,所述确定待测信号电压的频率,包括:
    在接收到用户输入的待测信号电压的频率时,将所述待测信号电压的频率转换为整型数据。
  4. 如权利要求1所述的信号电压检测方法,其特征在于,所述根据所述待测信号电压的频率设置所述A/D转换器的采样率之前,还包括:
    确定所述待测信号电压的信号类型,所述信号类型包括数字信号和模拟信号;
    所述根据所述待测信号电压的频率设置所述A/D转换器的采样率,包括:
    在所述待测信号电压为数字信号,所述A/D转换器的最大采样率与所述待测信号电压的频率的比值不小于第二预设比值时,根据所述待测信号电压的频率设置所述A/D转换器的采样率,以使所述A/D转换器的采样率与所述待测信号电压的频率的比值等于所述第二预设比值;和
    在所述待测信号电压为模拟信号,所述A/D转换器的最大采样率与所述待测信号电压的频率的比值不小于第三预设比值时,所述第二预设比值和所述第三预设比值均不小于1,且所述第二预设比值小于所述第三预设比值;
    根据所述待测信号电压的频率设置所述A/D转换器的采样率,以使所述A/D转换器的采样率与所述待测信号电压的频率的比值等于所述第三预设比值。
  5. 如权利要求1所述的信号电压检测方法,其特征在于,所述获取所述A/D转换器采样到的电压值,包括:
    周期性的读取所述A/D转换器的寄存器中保存的所述A/D转换器采样到的电压值且读取的频率等于所述A/D转换器的采样率。
  6. 如权利要求1所述的信号电压检测方法,其特征在于,在所述A/D转换器与所述测试通道之间设置有用于分压的滑动变阻器时,所述滑动变阻器的第一固定端与所述测试通道连接,第二固定端接地,滑动端与所述A/D转换器连接,预设采样到的电压值与待测信号电压的电压值的对应关系为:
    V 1=(m/2 n)*(R m/R 1)*(V m+1),其中,V 1为所述待测信号电压的电压值,V m为所述A/D转换器采样到的电压值,R m为所述滑动变阻器的标称值,R 1为所述第二固定端与所述滑动端之间的电阻值,m为所述A/D转换器的最大输入电压,所述A/D转换器的精度为n比特。
  7. 如权利要求1至6任一项所述的信号电压检测方法,其特征在于,所述将所述待测信号电压的电压值发送到终端之前,还包括:
    确定当前工作模式,所述当前工作模式包括正常模式、上升沿触发模式和下降沿触发模式;
    在所述当前工作模式为所述上升沿触发模式或所述下降沿触发模式时,确定触发电压;
    所述将所述待测信号电压的电压值发送到终端,以便所述终端根据所述待测信号电压的电压值确定并显示所述待测信号电压的波形,包括:
    在所述当前工作模式为所述正常模式时,每次发送第一预设数量的待测信号电压的电压值发送到所述终端,以便所述终端根据所述第一预设数量的待测信号电压的电压值确定并显示所述待测信号电压的波形;
    在所述当前工作模式为所述上升沿触发模式,所述触发电压小于最新得到的待测信号电压的电压值且大于上一次得到的待测信号电压的电压值时,将最新得到的待测信号电压的电压值之前计算出的第二预设数量的电压值和最新得到的待测信号电压的电压值 之后计算出的第二预设数量的电压值发送到所述终端,以便所述终端根据所述待测信号电压的电压值确定并显示所述待测信号电压的波形;和
    在所述当前工作模式为所述下降沿触发模式,所述触发电压大于最新得到的待测信号电压的电压值且小于上一次得到的待测信号电压的电压值时,将最新得到的待测信号电压的电压值之前计算出的第三预设数量的电压值和最新得到的待测信号电压的电压值之后计算出的第三预设数量的电压值发送到所述终端,以便所述终端根据所述待测信号电压的电压值确定并显示所述待测信号电压的波形。
  8. 一种信号电压检测系统,其特征在于,包括:
    频率确定单元,用于确定待测信号电压的频率;
    采样率确定单元,用于根据所述待测信号电压的频率设置A/D转换器的采样率;
    A/D转换器控制单元,用于控制所述A/D转换器对与所述A/D转换器连接的测试通道的待测信号电压进行采样;
    采样电压值获取单元,用于获取所述A/D转换器采样到的电压值;
    待测信号电压的电压值计算单元,用于根据预设采样到的电压值与待测信号电压的电压值的对应关系和采样到的电压值计算所述待测信号电压的电压值;和
    待测信号电压的电压值发送单元,用于将所述待测信号电压的电压值发送到终端,以便所述终端根据所述待测信号电压的电压值确定所述待测信号电压的波形。
  9. 一种信号电压检测设备,其特征在于,包括存储器及一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行如权利要求1-7任意一项所述的方法的步骤。
  10. 一种服务器,其特征在于,包括如权利要求9所述的信号电压检测设备及多个A/D转换器,多个所述A/D转换器均与所述信号电压检测设备连接。
  11. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,其特征在于,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如权利要求1-7任意一项所述的方法的步骤。
PCT/CN2022/098736 2022-01-12 2022-06-14 一种信号电压检测方法、系统、设备及服务器 WO2023134111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210029328.0 2022-01-12
CN202210029328.0A CN114047378B (zh) 2022-01-12 2022-01-12 一种信号电压检测方法、系统、设备及服务器

Publications (1)

Publication Number Publication Date
WO2023134111A1 true WO2023134111A1 (zh) 2023-07-20

Family

ID=80196346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098736 WO2023134111A1 (zh) 2022-01-12 2022-06-14 一种信号电压检测方法、系统、设备及服务器

Country Status (2)

Country Link
CN (1) CN114047378B (zh)
WO (1) WO2023134111A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047378B (zh) * 2022-01-12 2022-04-22 苏州浪潮智能科技有限公司 一种信号电压检测方法、系统、设备及服务器
CN116990582A (zh) * 2023-04-27 2023-11-03 海的电子科技(苏州)有限公司 Shorting Bar的输出电压校准方法和设备、存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1781069A2 (en) * 2005-10-31 2007-05-02 Sony Corporation Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
CN103245825A (zh) * 2012-02-07 2013-08-14 鸿富锦精密工业(深圳)有限公司 电压侦测系统及方法
CN106407059A (zh) * 2016-09-28 2017-02-15 郑州云海信息技术有限公司 一种服务器节点测试系统及方法
US20170185123A1 (en) * 2014-07-31 2017-06-29 Hewlett Packard Enterprise Development Lp Removable test and diagnostics circuit
CN108761163A (zh) * 2018-05-30 2018-11-06 郑州云海信息技术有限公司 一种用于服务器维护的示波器及故障定位方法
CN109633253A (zh) * 2018-12-07 2019-04-16 中电科仪器仪表(安徽)有限公司 一种基于fpga实现电压瞬变信号检测电路及方法
CN110133363A (zh) * 2019-05-30 2019-08-16 北京机械设备研究所 一种线缆电平变化的探测装置及方法
CN111367222A (zh) * 2020-03-23 2020-07-03 杭州远方光电信息股份有限公司 一种多频率自动切换的采样方法及装置
CN111478617A (zh) * 2020-04-02 2020-07-31 广东美的制冷设备有限公司 脉冲电路、半桥驱动电路、线路板及空调器
CN211478926U (zh) * 2020-03-23 2020-09-11 杭州远方光电信息股份有限公司 一种多频率自动切换的采样装置
CN113866671A (zh) * 2021-08-30 2021-12-31 苏州浪潮智能科技有限公司 一种监测服务器电压漏电的方法、系统、实现方法、装置
CN114047378A (zh) * 2022-01-12 2022-02-15 苏州浪潮智能科技有限公司 一种信号电压检测方法、系统、设备及服务器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202339369U (zh) * 2011-12-01 2012-07-18 北京航天测控技术有限公司 一种交流低频rms值转换装置
CN110018938A (zh) * 2019-04-22 2019-07-16 苏州浪潮智能科技有限公司 一种硬件id识别装置、方法及服务器系统
CN112666485B (zh) * 2020-11-25 2022-07-29 山东云海国创云计算装备产业创新中心有限公司 一种电源稳定性分析装置及电源系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1781069A2 (en) * 2005-10-31 2007-05-02 Sony Corporation Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
CN103245825A (zh) * 2012-02-07 2013-08-14 鸿富锦精密工业(深圳)有限公司 电压侦测系统及方法
US20170185123A1 (en) * 2014-07-31 2017-06-29 Hewlett Packard Enterprise Development Lp Removable test and diagnostics circuit
CN106407059A (zh) * 2016-09-28 2017-02-15 郑州云海信息技术有限公司 一种服务器节点测试系统及方法
CN108761163A (zh) * 2018-05-30 2018-11-06 郑州云海信息技术有限公司 一种用于服务器维护的示波器及故障定位方法
CN109633253A (zh) * 2018-12-07 2019-04-16 中电科仪器仪表(安徽)有限公司 一种基于fpga实现电压瞬变信号检测电路及方法
CN110133363A (zh) * 2019-05-30 2019-08-16 北京机械设备研究所 一种线缆电平变化的探测装置及方法
CN111367222A (zh) * 2020-03-23 2020-07-03 杭州远方光电信息股份有限公司 一种多频率自动切换的采样方法及装置
CN211478926U (zh) * 2020-03-23 2020-09-11 杭州远方光电信息股份有限公司 一种多频率自动切换的采样装置
CN111478617A (zh) * 2020-04-02 2020-07-31 广东美的制冷设备有限公司 脉冲电路、半桥驱动电路、线路板及空调器
CN113866671A (zh) * 2021-08-30 2021-12-31 苏州浪潮智能科技有限公司 一种监测服务器电压漏电的方法、系统、实现方法、装置
CN114047378A (zh) * 2022-01-12 2022-02-15 苏州浪潮智能科技有限公司 一种信号电压检测方法、系统、设备及服务器

Also Published As

Publication number Publication date
CN114047378A (zh) 2022-02-15
CN114047378B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023134111A1 (zh) 一种信号电压检测方法、系统、设备及服务器
US10126374B2 (en) Universal power distribution test tool and methodology
CN101191831A (zh) 示波器测试系统及方法
US6542838B1 (en) System and method for performing autoranging in a measurement device
CN212514879U (zh) 运放测试系统
CN107783069A (zh) 集成电路测试系统中直流测量单元的在线校准系统及方法
CN101413967B (zh) 控制示波器自动化量测的方法
EP2905625B1 (en) Method for probe equalization
CN111190089B (zh) 抖动时间的确定方法及装置、存储介质和电子设备
Brogan et al. Technique for pre-compliance testing of phasor measurement units
US10509064B2 (en) Impedance measurement through waveform monitoring
US20090093987A1 (en) Method for accurate measuring stray capacitance of automatic test equipment and system thereof
US10962585B2 (en) Gate charge measurements using two source measure units
CN111220901A (zh) 运放测试系统和方法
Leger et al. Automated system for determining frequency dependent parameter model of transmission line in a laboratory environment
Janković et al. Microcontroller power consumption measurement based on PSoC
JP5174433B2 (ja) Ad変換器及び秤
Balestrieri et al. Word error rate measurement uncertainty estimation in digitizing waveform recorders
CN109061524B (zh) 电源测试电路及方法
US10955462B2 (en) Apparatus and method for frequency characterization of an electronic system
Clarkson et al. The calibration of IEC standard flickermeters using complex modulated signals
TWI835494B (zh) 信號抖動自動量測方法
CN113484811B (zh) 一种用于直流电阻分压器自校准方法及系统
CN110888045B (zh) 抖动确定方法及装置、存储介质和电子设备
JP2011185884A (ja) Dcバイアス−容量特性の計測方法および計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919748

Country of ref document: EP

Kind code of ref document: A1