WO2023133930A1 - 一种散热器底座及散热器 - Google Patents
一种散热器底座及散热器 Download PDFInfo
- Publication number
- WO2023133930A1 WO2023133930A1 PCT/CN2022/073384 CN2022073384W WO2023133930A1 WO 2023133930 A1 WO2023133930 A1 WO 2023133930A1 CN 2022073384 W CN2022073384 W CN 2022073384W WO 2023133930 A1 WO2023133930 A1 WO 2023133930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- area
- gentle
- cpu
- heat
- raised structure
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 claims abstract description 74
- 230000004907 flux Effects 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 4
- 239000000110 cooling liquid Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 25
- 239000004519 grease Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 19
- 229920001296 polysiloxane Polymers 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 230000006978 adaptation Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000011056 performance test Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3675—Cooling facilitated by shape of device characterised by the shape of the housing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20254—Cold plates transferring heat from heat source to coolant
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20409—Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20436—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20518—Unevenly distributed heat load, e.g. different sectors at different temperatures, localised cooling, hot spots
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
Definitions
- the invention relates to the technical field of CPU cooling, in particular to a radiator base and a radiator.
- the general structure of a CPU is usually composed of several parts such as a circuit board with contacts or pins, a chip and other devices, and a metal (copper) cover.
- the heat generated by the CPU is mainly generated by the operation of the chip.
- the area of the chip is small, so a relatively large heat flux will be formed on the surface of the chip.
- the copper cover on the surface of the CPU is connected to the chip internally through thermal conductive silicone grease or metal brazing layer. In addition to playing a protective role, it can also make the heat emitted by the chip with a small area spread through the conduction of the copper cover.
- the temperature on the surface of the CPU copper cover is uneven, and the temperature distribution is from high to low centered on the internal chip.
- the temperature distribution of the copper cover also forms a relatively high heat flux area on the surface of the copper cover.
- the chips (groups) of the CPU can be physically gathered together, or dispersed into multiple (groups).
- the CPU will generate a lot of heat when it is working, and the heat needs to be dissipated in time, otherwise it will greatly affect the work of the CPU and shorten its service life.
- a heat sink with higher heat dissipation efficiency is required to provide secondary heat dissipation, which we usually call a CPU heat sink.
- the power consumption is also increasing, and the CPU radiator has also developed from the original pure metal radiator, metal radiator plus air-cooled heat dissipation, to the current heat pipe air-cooled radiator and water-cooled radiator. No matter what kind of heat sink, it must have a base.
- Thermal interface materials such as thermal conductive silicone grease are applied between the surface of the heat sink base and the surface of the CPU to fill the gap between the two surfaces due to the difference in flatness or roughness. , by applying a certain pressure on the special buckle to make the surface of the base and the surface of the CPU contact and connect together, that is, to play a stable fixing role, and to apply pressure to make the thermal conductive silicone grease stretch and thin as much as possible, reduce the contact thermal resistance, and improve cooling efficiency.
- the purpose of the present invention is to find out the reasons for the large difference and low consistency of the test performance of different CPUs by the same radiator through in-depth research, and to provide a radiator base and radiator, which can be tested on different CPUs of the same model. And in use, more stable and consistent heat dissipation performance can be obtained, and at the same time, product performance can be further improved.
- Table 1 Sample CPU surface flatness reference measurement data (unit: mm)
- the CPU is an industrial product with high precision, it will also cause differences in surface flatness due to different processing methods and technological levels. It is precisely because of these small differences that the surface of the CPU forms different types of shapes.
- the heat sink samples in the test all adopt uniform specifications of thermal conductive silicone grease, heat pipe, heat dissipation fin set, base material and consistent processing and assembly process, and ensure uniform buckle pressure.
- the only difference is the shape of the bottom surface of the heat sink base. Therefore, it can be inferred that the difference in contact thermal resistance between the bottom surface of the radiator base and the surface of the CPU is the root cause of the large difference in final heat dissipation performance.
- thermal interface material such as thermal grease
- thermal grease which is an important part that affects the contact thermal resistance.
- thermal conductive silicone grease it is a non-solid compound with good ductility under pressure.
- the thermal interface material filled between the top surface of the CPU and the bottom surface of the radiator base is usually extruded and stretched very thin under the pressure of the fastener, the dimension in the thickness direction is much smaller than the two horizontal directions, and the temperature in the thickness direction changes greatly. In the other two horizontal directions, the heat transfer through the interface material can be simplified as a one-dimensional steady-state heat conduction problem, then the thermal resistance R of the interface material layer can be expressed as:
- ⁇ is the thickness of the interface material
- ⁇ is the thermal conductivity of the interface material
- A is the contact area between the interface material and the top surface of the CPU.
- a gap is formed between the bottom of the flat-bottom heat sink and the slightly concave part of the CPU surface, where the pressure is smaller than the surrounding area, resulting in a larger thickness ⁇ of the silicone grease, and this position is the center of the CPU as shown in Figure 4-1, which is exactly the heat flow of the test sample CPU Areas with high density, so the heat dissipation performance is poor;
- the cone-convex structure located in the center of the heat sink can fill the gap caused by the concave surface of the CPU, it can even form a relatively high pressure in the high heat flux area of the CPU, which can make the thickness ⁇ of the silicone grease relatively small.
- the concave surface is similar to the cone-convex bottom of the heat sink, so a certain high-pressure contact area A can be formed in the high heat flux area of the CPU surface, and a better heat dissipation effect is obtained;
- the above matching relationship is a situation closest to the ideal state.
- the pressure distribution of the entire contact interface is relatively uniform, which can ensure that the thickness ⁇ of the heat-conducting interface material is relatively small and the contact area A is relatively large, so the heat dissipation performance is better;
- the cone-convex heat sink forms a relatively large pressure in the high heat flux area of the CPU, it forms a smaller interface material thickness ⁇ than that described in (3), which makes up for the relatively small shortage of high-pressure contact area A, so heat dissipation
- the performance is close to the adaptation performance of the above (3) flat bottom;
- the raised area of the CPU on the slightly convex surface is the high heat flux area of the CPU (as shown in Figure 2), and the raised part is an area with a certain area (as shown in Figure 4-2), so in this adaptation
- a region with a smaller interface material thickness ⁇ with a certain area A will be formed in the high heat flux region, so relatively optimal heat dissipation performance can be obtained under this adaptation relationship;
- the bottom surface design of the heat sink base in the prior art presets the CPU as a surface with a high flatness, ignoring the difference in contact thermal resistance due to the difference in the surface flatness and shape of the CPU, which will inevitably cause performance problems. Problems with large variance and poor consistency in performance. At the same time, it is also difficult to obtain better heat dissipation performance due to ignoring the above-mentioned problems.
- the CPU has subtle differences in surface morphology that are difficult to unify, resulting in the design of the bottom surface of the base commonly used in the above two existing technologies will always result in the heat dissipation design performance being achieved in some users, while in another part. Users cannot achieve the design performance during use, which eventually leads to the problem of poor consistency in the application effect of the radiator, and the consistency of performance is precisely one of the key indicators to measure the quality of industrial products.
- the position and area A of the high pressure area can be preset, that is, the high pressure in the high pressure area is stable and effective within a certain area, and the area can be set to adapt to different types of CPUs with different high heat flux characteristics. Cooling requirements. This results in more consistent performance and better average thermal performance.
- the present invention provides a radiator base, including a base body.
- the bottom of the base body has at least one raised structure, and the bottom of the base body abuts against the top of the CPU, and each raised structure includes a raised gentle area and a slope area surrounding the raised gentle area.
- the gentle area of the raised structure abuts against the high heat flux area on the top of the CPU, forming an area with relatively high pressure and relatively stable pressure compared with the slope area.
- the gentle area of the raised structure is located in the inner area of the raised structure, and the projection of the slope area is located on both sides of the projection of the gentle area.
- the gentle area of the raised structure is located in the inner area of the raised structure, and the projection of the slope area is located on three sides of the projection of the gentle area.
- the gentle area of the raised structure is located in the inner area of the raised structure, and the projection of the slope area is located around the projection of the gentle area.
- the height of the geometric center point of the gentle area is greater than or equal to the height of the edge of the area, and on any side contour line in the horizontal direction of any section passing through the geometric center point, any local area in the gentle area
- the absolute value of the vertical height difference corresponding to the unit horizontal distance of the range is smaller than the absolute value of the vertical height difference corresponding to the unit horizontal distance of any local range in the corresponding slope area.
- the center of the gentle area of the raised structure abuts against the center of the top high heat flux area of the CPU, and the gentle area forms a relatively high pressure and relatively stable pressure area compared with the slope area.
- the center of the gentle area of the raised structure is in contact with the center of the high heat flux area on the top of the CPU, and the gentle area has a relatively high pressure and relatively stable pressure compared with the slope area. Area.
- the projected area of the gentle area of the raised structure is smaller than the top area of the CPU.
- the projected form of the gentle region of the protrusion structure is a circle.
- the projection shape of the gentle region of the protrusion structure is an ellipse.
- the projection shape of the gentle region of the protrusion structure is a polygon.
- the cross-sectional outline of the gentle region of the raised structure is a straight line.
- the cross-sectional outline of the gentle region of the raised structure is an arc.
- the cross-sectional contour line of the gentle region of the raised structure is a broken line.
- the area of the gentle region of the raised structure is 20 mm 2 to 254 mm 2 .
- the area of the gentle region of the raised structure is 20 mm 2 to 177 mm 2 .
- the area of the gentle region of the raised structure is 20 mm 2 to 113 mm 2 .
- the area of the gentle region of the raised structure is 20 mm 2 to 79 mm 2 .
- the area of the gentle region of the raised structure is 20 mm 2 to 50 mm 2 .
- the present invention provides a heat sink for dissipating heat from a CPU
- the heat sink includes a base body.
- the bottom of the base body has at least one protruding structure, and the bottom of the base body abuts against the top of the CPU, and each protruding structure includes a raised gentle area and a slope area surrounding the raised gentle area.
- the gentle area of the raised structure abuts against the high heat flux area on the top of the CPU, forming an area with relatively high pressure and relatively stable pressure compared with the slope area.
- the gentle area of the raised structure is located in the inner area of the raised structure, and the projection of the slope area is located on both sides of the projection of the gentle area.
- the gentle area of the raised structure is located in the inner area of the raised structure, and the projection of the slope area is located on three sides of the projection of the gentle area.
- the gentle area of the raised structure is located in the inner area of the raised structure, and the projection of the slope area is located around the projection of the gentle area.
- the height of the geometric center point of the gentle area is greater than or equal to the height of the edge of the area, and on any side contour line in the horizontal direction of any section passing through the geometric center point, any local area in the gentle area
- the absolute value of the vertical height difference corresponding to the unit horizontal distance of the range is smaller than the absolute value of the vertical height difference corresponding to the unit horizontal distance of any local range in the corresponding slope area.
- the center of the gentle area of the raised structure abuts against the center of the top high heat flux area of the CPU, and the gentle area forms a relatively high pressure and relatively stable pressure area compared with the slope area.
- the center of the gentle area of the raised structure is in contact with the center of the high heat flux area on the top of the CPU, and the gentle area has a relatively high pressure and relatively stable pressure compared with the slope area. Area.
- the projected area of the gentle area of the raised structure is smaller than the top area of the CPU.
- the projected form of the gentle region of the protrusion structure is a circle.
- the projection shape of the gentle region of the protrusion structure is an ellipse.
- the projection shape of the gentle region of the protrusion structure is a polygon.
- the cross-sectional outline of the gentle region of the raised structure is a straight line.
- the cross-sectional outline of the gentle region of the raised structure is an arc.
- the cross-sectional contour line of the gentle region of the raised structure is a broken line.
- the area of the gentle region of the raised structure is 20 mm 2 to 254 mm 2 .
- the area of the gentle region of the raised structure is 20 mm 2 to 50 mm 2 .
- the heat sink further includes: a heat dissipation fin set, a heat pipe set, a heat dissipation fan, thermal conductive silicone grease, and a fixing component.
- the cooling fin group is arranged above the base body.
- the heat pipe group includes a plurality of heat pipes, the heat pipe includes a heat absorption section and a heat dissipation section, the heat absorption section is arranged on the base body, and the heat dissipation section is arranged in the heat dissipation fin group.
- the cooling fan is fixed on the cooling fin group.
- Thermal conductive silicone grease is arranged between the base body and the surface of the CPU.
- the fixing component is used for fixing the base body above the CPU.
- the radiator may not be provided with a cooling fan, or may be provided with multiple ones.
- the radiator further includes: a heat dissipation part, a heat absorption part and a pipe part.
- the cooling part is provided with a water inlet and a water outlet.
- the heat absorbing part is provided with a water inlet and a water outlet, and a water pump is arranged inside the heat absorbing part, and the heat absorbing part is arranged above the base body.
- the pipeline part includes a first pipeline and a second pipeline, one ends of the first pipeline and the second pipeline are respectively connected to the water inlet and the water outlet of the heat dissipation part, and the other ends of the first pipeline and the second pipeline are respectively connected to the outlet of the heat absorption part.
- the water inlet and the water inlet under the action of the water pump, the coolant circulates between the heat dissipation part, the pipeline part and the heat absorption part.
- the present invention can form a similar pressure characteristic within the range of its preset area when adapting to different types of CPUs by designing a raised gentle area, and then obtain a similar thickness ⁇ of the interface material, and obtain a similar Contact thermal resistance, compared with the existing technology, can obtain more consistent heat dissipation performance.
- the pressure in the gentle area is relatively high, and the area can be guaranteed by setting the gentle area, so a smaller average interface material thickness ⁇ can be obtained within a certain range, and an average smaller contact thermal resistance.
- the raised gentle area corresponds to the high heat flux area on the surface of the CPU, a better heat dissipation effect can be obtained.
- the heat sink base and the heat sink according to the present invention have a simple and reasonable structure, can better adapt to CPUs with different surface shapes, can obtain more stable and consistent heat dissipation performance, and can simultaneously The heat generated by the CPU is efficiently dissipated, which improves the heat dissipation efficiency.
- Figure 1-1 is a schematic diagram of the axis side structure of the existing CPU
- Figure 1-2 is a schematic diagram of the cross-sectional structure of the existing CPU
- Figure 2 is a schematic diagram of the surface temperature distribution of the existing CPU model Y;
- Fig. 3 is the cross-sectional shape schematic diagram of two kinds of prior art radiator bases
- Figure 4-1 is a schematic diagram of the top surface contour line of the existing micro-concave surface CPU of model X;
- Figure 4-2 is a schematic diagram of the top surface contour line of the existing slightly convex surface CPU of model X;
- Fig. 5 is a schematic cross-sectional view of the CPU with three existing surface forms
- Fig. 6 is the performance test data of two kinds of prior art radiator bases on CPUs with different surface forms
- Fig. 7 is a schematic diagram of the adaptation feature of the radiator base to the surface of the CPU in the prior art
- Fig. 8 is a schematic cross-sectional view of a central point of a gentle region in an embodiment of the present invention.
- FIG. 9 is a schematic structural view of a radiator base and a radiator according to an embodiment of the present invention.
- Fig. 10 is another schematic structural view of a radiator base and a radiator according to an embodiment of the present invention.
- Fig. 11 is a schematic diagram of three exemplary features of the cross-sectional outline of the gentle region of the raised structure according to an embodiment of the present invention.
- Fig. 12 is a schematic diagram of the performance performance of the heat sink base and the #2 module of the heat sink with four different bottoms on the dimple CPU according to an embodiment of the present invention
- Fig. 13 is a schematic diagram of the performance performance of the heat sink base and the #2 module of the heat sink with four different bases on a CPU with high flatness according to an embodiment of the present invention
- Fig. 14 is a schematic diagram of the performance of the heat sink base and the #2 module of the heat sink with four different bottoms on the micro-convex CPU according to an embodiment of the present invention
- Fig. 15 is a schematic diagram of the performance performance of the heat sink base and the #4 module of the heat sink with four different bottoms on the dimple CPU according to an embodiment of the present invention
- Fig. 16 is a schematic diagram of the performance performance of the heat sink base and the #4 module of the heat sink with four different bases on a CPU with high flatness according to an embodiment of the present invention
- Fig. 17 is a schematic diagram of the performance performance of the heat sink base and the #4 module of the heat sink with four different bottoms on the micro-convex CPU according to an embodiment of the present invention
- Fig. 18 is a schematic diagram of the positional relationship between the gentle area projection and the slope area projection according to an embodiment of the present invention.
- Fig. 19 is a schematic diagram of the projected shape of the gentle region of the protrusion structure according to an embodiment of the present invention.
- 1-base body 11-protruding structure, 111-flat area, 112-slope area, 2-radiating fin group, 3-heat pipe group, 4-radiating fan, 5-heat absorbing part, 6-radiating part.
- the radiator base in a preferred embodiment of the present invention, includes a base body 1 .
- the bottom of the base body 1 has at least one protruding structure 11, and the bottom of the base body 1 abuts against the top of the CPU, and each protruding structure 11 includes a gentle area 111 with a protrusion and a gentle area 111 surrounding the protrusion
- the gentle region 111 is located inside the protruding structure 11
- the slope region 112 is located at the periphery of the gentle region 111 .
- the gentle area 111 of the protruding structure 11 abuts against the high heat flux area on the top of the CPU, and forms an area with relatively high pressure and relatively stable pressure compared with the slope area 112 .
- the height of the geometric center point of the gentle area 111 is greater than or equal to the height of the edge of the area, and any local range in the gentle area 111 passes through the contour line on any side of the horizontal direction of any section of the geometric center point.
- the absolute value ⁇ H p of the vertical height difference corresponding to the unit horizontal distance a is smaller than the absolute value ⁇ H d of the vertical height difference corresponding to the unit horizontal distance a in any local area of the corresponding slope area 112 , ie ⁇ H p ⁇ H d .
- the gentle area 111 of the protruding structure 11 corresponds to the high heat flux area on the surface of the CPU. Compared with the slope area 112 , it forms an area with relatively high pressure and relatively stable pressure.
- ⁇ H p
- , H p2 is the vertical height of one point in the gentle area 111
- H p1 is the vertical height of another point in the gentle area 111
- the distance between two points is the unit horizontal distance a.
- ⁇ H d
- , H d2 is the vertical height of a point in the slope area 112
- H d1 is the vertical height of another point in the slope area 112
- the distance between two points is the unit horizontal distance a.
- the gentle area 111 of the raised structure 11 is located in the inner area of the raised structure 11 , and the projection of the slope area 112 is located on both sides of the projection of the gentle area 111 .
- the gentle area 111 of the raised structure 11 is located in the inner area of the raised structure 11
- the projection of the slope area 112 is located on three sides of the projection of the gentle area 111 .
- the gentle area 111 of the raised structure 11 is located in the inner area of the raised structure 11 , and the projection of the slope area 112 is located around the projection of the gentle area 111 .
- the center of the gentle area 111 of the protruding structure 11 abuts against the center of the top high heat flux area of the CPU or a position close to the center of the top high heat flux area.
- a region of relatively high pressure and relatively stable pressure is formed. That is to say, the center of the gentle area 111 abuts against the center of the top high heat flux area of the CPU or a position close to the above-mentioned center, as shown in Figures 9 and 10, the gentle area 111 is located inside the raised structure 11, but this The invention does not limit the position of the gentle area 111.
- the gentle area 111 can be at other positions on the bottom of the base body 1 (the specific drawings are not drawn).
- the center of the gentle area 111 only needs to be in line with the center of the top high heat flux area of the CPU or the above-mentioned center
- the similar position of the corresponding contact can be. That is to say, the present invention does not limit the specific location of the high heat flux area on the top of the CPU.
- the projected area of the gentle region 111 of the protruding structure 11 is smaller than the top area of the CPU.
- the projection shape of the gentle region 111 of the protruding structure 11 includes: a circle.
- the projection shape of the gentle region 111 of the protruding structure 11 includes: an ellipse.
- the projection shape of the gentle region 111 of the protruding structure 11 includes: a polygon.
- Fig. 11 is a schematic diagram of three examples of the gentle area 111 of the raised structure 11 at the bottom of the radiator according to the embodiment of the present invention.
- the profile line of the gentle area 111 includes: Lines, arcs, or polylines.
- the gentle areas 111 of three different shapes are correspondingly adapted to the high heat flux area on the top of the CPU.
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 254 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 177 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 113 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 79 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 50 mm 2 .
- a heat sink is used to dissipate heat from a CPU, and the heat sink includes a base body 1 .
- the bottom of the base body 1 has at least one protruding structure 11, and the bottom of the base body 1 abuts against the top of the CPU, and each protruding structure 11 includes a raised gentle area 111 and a slope surrounding the raised gentle area 111 In the area 112 , the gentle area is located inside the protruding structure 11 , and the slope area 112 is located at the periphery of the gentle area 111 .
- the gentle area 111 of the protruding structure 11 abuts against the high heat flux area on the top of the CPU, and forms an area with relatively high pressure and relatively stable pressure compared with the slope area 112 .
- the height of the geometric center point of the gentle region 111 is greater than or equal to the height of the edge of the region, and the contour line on any side of the horizontal direction of any section passing through the geometric center point , the absolute value ⁇ H p of the vertical height difference corresponding to the unit horizontal distance a of any local area in the gentle area 111 is smaller than the absolute value ⁇ H d of the vertical height difference corresponding to the unit horizontal distance a of any local area 112 in the corresponding slope area , that is, ⁇ H p ⁇ H d .
- the gentle area 111 of the protruding structure 11 corresponds to the high heat flux area on the surface of the CPU.
- ⁇ H p
- H p2 is the vertical height of one point in the gentle area 111
- H p1 is the vertical height of another point in the gentle area 111
- the distance between two points is the unit horizontal distance a.
- ⁇ H d
- H d2 is the vertical height of a point in the slope area 112
- H d1 is the vertical height of another point in the slope area 112
- the distance between two points is the unit horizontal distance a.
- the gentle area 111 of the raised structure 11 is located in the inner area of the raised structure 11 , and the projection of the slope area 112 is located on both sides of the projection of the gentle area 111 .
- the gentle area 111 of the raised structure 11 is located in the inner area of the raised structure 11
- the projection of the slope area 112 is located on three sides of the projection of the gentle area 111 .
- the gentle area 111 of the raised structure 11 is located in the inner area of the raised structure 11 , and the projection of the slope area 112 is located around the projection of the gentle area 111 .
- the center of the gentle region 111 of the protruding structure 11 abuts against the center of the top high heat flux region of the CPU or a position close to the center of the top high heat flux region, compared with the slope region 112 , forming a region with relatively high pressure and relatively stable pressure. That is to say, the center of the gentle area 111 abuts against the center of the top high heat flux area of the CPU or a position close to the above-mentioned center, as shown in Figures 9 and 10, the gentle area 111 is located inside the raised structure 11, but this The invention does not limit the position of the gentle area 111.
- the gentle area 111 can be at other positions on the bottom of the base body 1 (the specific drawings are not drawn).
- the center of the gentle area 111 only needs to be in line with the center of the top high heat flux area of the CPU or the above-mentioned center
- the similar position of the corresponding contact can be. That is to say, the present invention does not limit the specific location of the high heat flux area on the top of the CPU.
- the radiator further includes: a heat dissipation fin set 2 , a heat pipe set 3 , and a heat dissipation fan 4 , and the heat dissipation fin set 2 is disposed above the base body 1 .
- the heat pipe set 3 includes a plurality of heat pipes.
- the heat pipe includes a heat absorption section and a heat dissipation section.
- the heat absorption section is arranged on the base body 1
- the heat dissipation section is arranged in the heat dissipation fin set 2 .
- the cooling fan 4 is fixed on the cooling fin set 2 .
- the heat-conducting silicone grease is disposed between the base body 1 and the CPU. And the fixing component is used to fix the base body 1 above the CPU.
- the radiator may not be provided with a cooling fan, or may be provided with multiple ones.
- the radiator further includes: a heat dissipation part 6 , a heat absorption part 5 and a pipe part.
- the heat dissipation part 6 is provided with a water inlet and a water outlet.
- the heat absorbing part 5 is provided with a water inlet and a water outlet, and a water pump is arranged inside the heat absorbing part 5 , and the heat absorbing part 5 is arranged above the base body 1 .
- the pipe part includes a first pipe and a second pipe, one end of the first pipe and the second pipe are respectively connected to the water inlet and the water outlet of the heat dissipation part 6, and the other ends of the first pipe and the second pipe are respectively connected to the heat absorbing part 5
- the water outlet and the water inlet under the action of the water pump, the coolant circulates between the heat dissipation part 6, the pipeline part and the heat absorption part 5.
- the projected area of the gentle region 111 of the protruding structure 11 is smaller than the top area of the CPU.
- the projection shape of the gentle region 111 of the protruding structure 11 is a circle.
- the projection shape of the gentle region 111 of the protruding structure 11 is an ellipse.
- the projection shape of the gentle region 111 of the protruding structure 11 is a polygon.
- the cross-sectional outline of the gentle region 111 of the protruding structure 11 is a straight line.
- the section outline of the gentle region 111 of the protruding structure 11 is an arc.
- the section outline of the gentle region 111 of the protruding structure 11 is a broken line.
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 254 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 177 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 113 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 79 mm 2 .
- the area of the gentle region 111 of the protruding structure 11 is 20 mm 2 to 50 mm 2 .
- any raised structure 11 includes a gentle area 111 and a corresponding slope area 112 , the gentle area 111 is located inside the raised structure 11 , and the slope area 112 is located outside the gentle area 111 .
- the height of the center point of the area is greater than or equal to the height of the edge of the area, and the contour line on any side of the horizontal direction of any section passing through the geometric center point corresponds to the horizontal distance of any local range unit in the gentle area 111
- the absolute value of the vertical height difference is smaller than the absolute value of the vertical height difference corresponding to the unit horizontal distance of any local range of the corresponding slope area 112 .
- Fig. 11 shows the morphological features of gentle areas of the three embodiments of the patented technology.
- the present invention notices that whether it is the temperature gradient characteristic formed by the heating of the CPU chip on its surface or the convex-convex deformation characteristic of measuring the surface morphology of the CPU, there is a specific area range, and the two types of area ranges have a high overlap. Therefore, a raised gentle area 111 of a specific area is designed for the corresponding area (high heat flux area) of the corresponding CPU internal chip position at the bottom of the base of the heat sink, which can better adapt to the different surface forms of CPUs formed.
- a high pressure and relatively stable area, in which the pressure is relatively large but the pressure change is small, and outside this area is the slope area 112, which is characterized by small pressure and large change.
- This design realizes that within the range of the raised gentle area 111 with a certain set area, when adapting to different types of CPUs, similar pressure characteristics can be formed within the range of its preset area, and then similar interface materials can be obtained.
- the thickness ⁇ also obtains a similar contact thermal resistance, and can obtain a more consistent heat dissipation performance compared with the prior art.
- the pressure in the gentle area 111 is relatively high, and the area can be guaranteed by setting the gentle area 111, so a smaller average interface material thickness ⁇ can be obtained within a certain range, and the average Smaller contact thermal resistance, and because the raised gentle area 111 corresponds to a high heat flux area on the surface of the CPU, better heat dissipation effect can be obtained.
- CPU samples of three top shapes are: X is a certain type of CPU, and the overclocking power consumption can reach 280w.
- the present invention randomly selects 11 CPUs of this specification, and finds that 3, 1, and 7 CPUs whose surface morphology is slightly concave, flat, and slightly convex are respectively selected through testing; one of them is taken as used in the test the CPU;
- Astp refers to the projected area of the gentle region 111 of the raised base structure 11 of the present invention.
- Test conditions After obtaining samples of different bases, test them on CPUs with three surface shapes. The test equipment maintains strict and uniform settings from the beginning to the end, and the temperature of the experimental environment is controlled at 23-25°C; the test Adopt uniform specifications of thermal conductive silicone grease, heat pipe, heat dissipation fin group, base material and consistent processing and assembly process, and ensure that the pressure value of the buckle is consistent.
- the present invention is obtained on the basis of pioneering research on the matching relationship between the surface morphology of the CPU and the bottom of the radiator base. Therefore, compared with the prior art, its application can make the radiator adapt to CPUs with different surface morphology. , to obtain a more stable and consistent heat dissipation performance, which can greatly improve the reliability of the product.
- Table 3 The performance of the three sample groups on the Dimple CPU (B silicone grease was used in the test)
- Table 4 The performance of the three sample groups on the CPU with higher flatness (B silicone grease was used in the test)
- Table 5 The performance of the three sample groups on the slightly convex surface CPU (B silicone grease was used in the test)
- Table 6 Summary of the performance of the three sample groups on the three CPUs (B silicone grease was used in the test)
- the present invention considers such a development trend of multi-core, multi-thread, high performance, and higher power density of the CPU heating belt (DIE) of the CPU, and pioneers the bottom area of the radiator base corresponding to the CPU core heating belt (DIE). With targeted design, lower thermal resistance and better heat dissipation performance can also be obtained.
- DIE CPU heating belt
- Fig. 13 shows the performance of #2 heat pipe fins combined with four bases on a CPU with better flatness; it can be seen from the data that, on a CPU with better flatness, three kinds of projections with gentle regions 111 according to the present invention
- the base of the structure 11 also has better heat dissipation performance than the prior art flat bottom.
- Figure 15, Figure 16, and Figure 17 are the performances of #4 module with four types of bases on a CPU with a slightly concave surface, a CPU with a better flatness, and a CPU with a slightly convex surface.
- the bases of the three raised structures 11 with gentle regions 111 of the present invention also have better heat dissipation performance than the conical convex bottom of the prior art.
- the base body 1 of the present invention has at least one protruding structure 11 at the bottom, and the protruding structure 11 includes a protruding gentle area 111 and a slope area 112, and the whole is in contact with the surface of the CPU.
- the pressure is relatively high and relatively stable, and the present invention does not limit the number of protruding structures.
- the structure of the base body 1 defined in the present invention can be used to dissipate heat from the equipment, thereby greatly improving the heat dissipation efficiency and the consistency and reliability of product performance. sex.
- the heat sink base and the heat sink of the present invention have a simple and reasonable structure, can better adapt to CPUs with different surface shapes, reduce contact thermal resistance, and can efficiently dissipate the heat generated by the CPU, improving heat dissipation efficiency, and can Obtain more stable and consistent heat dissipation performance, which greatly improves the reliability of the product.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
本申请公开了一种散热器底座及散热器,其中散热器底座包括底座本体。底座本体的底部具有至少一个凸起结构,且底座本体的底部与CPU的顶部相抵接,每个凸起结构均包括具有凸起的平缓区域和围绕凸起的平缓区域的坡度区域。凸起结构的平缓区域与CPU的顶部高热流密度区域相抵接,与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。借此,本申请的散热器底座,结构简单合理,可以适配不同CPU的表面形态,能够将CPU产生的热量进行高效散热,提高了散热效率,可以获得更稳定且一致性更高的散热性能。
Description
本发明是关于CPU散热技术领域,特别是关于一种散热器底座及散热器。
随着电子信息技术的发展,CPU运算能力越来越强,伴随而来的是其发热量的提升,以及对散热的要求越来越高。
如图1-1、图1-2所示,CPU的一般结构通常由含触点或针脚的线路板、芯片以及其它器件、金属(铜)盖等几个部分构成。CPU的发热主要由芯片工作产生,芯片的面积较小,因此在芯片表面会形成比较大的热流密度。通常CPU表面的铜盖会在内部通过导热硅脂或金属钎焊层与芯片连接在一起,除了起到保护作用外,更是可以使由较小面积的芯片发出的热量通过铜盖的传导扩散而形成铜盖表面更大的发热面积,以便于与散热器抵接后形成更好的二次散热效果。但是由于铜的导热系数、密度、比热容都是有限的,因此,如图2所示,CPU铜盖表面的温度是不均匀的,这个温度分布是以内部芯片为中心向外呈现由高至低的温度分布的,从而在铜盖表面也形成相对的高热流密度区域。CPU的芯片(组)可以在物理上聚集在一起,也可以分散为多个(组)。
CPU在工作时会产生大量的热量,这些热量需要及时被散掉,否则会极大影响CPU的工作,缩短其使用寿命。为保证CPU工作时的有效散热,就需要更高散热效率的散热器对其提供二次散热,我们通常称其为CPU散热器。随着CPU的计算能力的提升,功耗也不断提高,CPU散热器也从最初的纯金属散热器,金属散热器加风冷散热,发展到当前热导管风冷散热器和水冷散热器。无论何种形式的散热器,都必须拥有 一个底座,散热器底座表面与CPU表面之间涂敷导热硅脂等导热介面材料,以填补两个面之间由于平面度或粗糙度差异造成的空隙,通过专用扣具通过施加一定的压力使其底座表面与CPU表面接触连接在一起,即起到稳固的固定作用,也可以通过施加压力使导热硅脂尽量延展变薄,降低接触热阻,提高散热效率。
从散热器底座底部形态看,如图3所示,目前行业中存在两种较为常用的CPU散热器底座底部形态设计:平面底和锥凸底。平面底的设计思路是散热器底座与CPU表面两个平面紧密接触以达到最小的接触热阻和更好的散热效能;锥凸底的设计初衷是由于早期CPU功耗不高,CPU芯片尺寸较小且位于CPU中央,同时CPU芯片与其表面铜盖的接触由非固态的导热硅脂在内部填充。通过特定机械加工方式将散热器底座底面加工成以底面中心为最高点向边缘形成连续坡度的锥形形态,可以经由扣具压力的夹持力,在芯片上方形成更大的压强,进而通过应力传导挤压力,使芯片上方铜盖与内部芯片之间的硅脂形成更薄的介面层,进而降低接触热阻,增强散热效果。但是,随着CPU制程的改进,目前较先进的CPU都采用金属钎焊工艺来连接芯片与铜盖,因此这种对铜盖内部硅脂的挤压效应已经不存在了。但是该效应同样适用于散热器底座底部和CPU铜盖外表面接触面所涂敷的导热硅脂,因此锥凸底也仍然是现在比较普遍的一种散热器底座底部形态。
但是在对同一型号的多个CPU样本进行性能测试的工程实践中,无论采用现有技术中的何种底座底部形态的单一散热器,都会存在同规格的不同CPU样本测试性能差异大的问题,有些测试案例反应出的测试结果甚至直接影响到了散热产品的有效性,因此这样的结果必然会直接影响到产品性能的一致性表现。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于通过深入的研究,找到导致同一散热器对不同CPU个体测试性能差异大、一致性低的原因,并提供一种散热器底座及散热器,可以在同型号的不同CPU个体测试及使用中获得更稳定且一致性更高的散热性能,同时也可以使产品性能得到进一步提升。
首先,通过对同型号的多个CPU样本进行精密测量发现,CPU的个体之间表面平面度存在差异,如表1所示:
表1:样本CPU表面平面度参考量测数据(单位:mm)
CPU样本编号 | X轴-边缘 | X轴-中心点 | Y轴-边缘 | Y轴-中心点 |
1 | 0 | 0.04 | 0 | 0.02 |
2 | 0 | 0.02 | 0 | 0.01 |
3 | 0 | 0.02 | 0 | 0.015 |
4 | 0 | 0.02 | 0 | 0.01 |
5 | -0.015 | -0.000 | 0.1 | 0 |
6 | -0.015 | -0.005 | 0.1 | -0.01 |
7 | -0.01 | -0.01 | 0.01 | -0.005 |
8 | 0.02 | 0 | 0.01 | -0.005 |
9 | 0 | 0.02 | 0 | 0.01 |
10 | 0 | 0.02 | 0 | 0.015 |
11 | 0 | 0.03 | 0 | 0.02 |
表1所示的平面度差异,可以通过构建如图4-1和4-2所示的实例模型更直观地体现,并最终可以归纳为图5所示的三种CPU表面的具体形态,即中心微凸、平面度较好、中心微凹三种类型。
CPU虽然属于精密度较高的工业制品,但也会因不同的加工方式和工艺水平造成表面平面度的差异,也正是由于这些微小差异的存在,造成了CPU表面形成了不同的形态类型。
接下来,通过对现有技术中的平面底和锥凸底散热器在不同CPU个体测试数据依据CPU不同表面形态类型进行归纳分析,发现特定散热器 性能表现与其所采用的底座底部形态以及所对应适配的CPU表面形态之间形成了较强的相关关系,如图6所示。
测试中的散热器样本均采用统一规格的导热硅脂、热导管、散热鳍片组、底座材质和一致的加工组装工艺,且保证扣具压力统一,唯一差异要素只有散热器底座的底面形态,因此可以推论:散热器底座底面与CPU的表面接触热阻差异是造成最终散热性能差异大的根本原因。
散热器底座底面和CPU表面之间需要填充诸如导热硅脂这样的导热介面材料,它是影响接触热阻的重要组成部分。以导热硅脂为例,它属于非固态的复合物,在压力的作用下具有很好的延展性。由于CPU顶面与散热器底座底面之间填充的导热介面材料在扣具压力作用下,通常被挤压延展得很薄,其厚度方向的尺寸远小于两个水平方向,厚度方向的温度变化远大于另外两个水平方向,因此通过介面材料的传热可以简化为一维稳态导热问题,那么介面材料层的热阻R可以表达为:
其中,δ是介面材料厚度,λ是介面材料导热系数,A是介面材料和CPU顶面的接触面积,δ越小,λ或A越大,则接触热阻R越小,散热性能越好。
另外,如图2所示,CPU表面的温度分布是不均匀的,会存在热流密度相对高的区域,如果在该区域实现最低的接触热阻,将最大化提升散热效果。
如图6和图7所示,通过逐一分析现有技术中平面底和锥凸底与不同表面形态的CPU适配特点,结合实际测试数据,可以很好地解释形成性能差异的原因,具体如下:
(1)平面底散热器与微凹表面的CPU适配:
平面底散热器底部与CPU表面微凹处形成空隙,该处压强小于周边 区域,导致硅脂厚度δ较大,而该位置如图4-1所示为CPU中心位置,正是测试样本CPU热流密度较大的区域,所以散热性能较差;
(2)锥凸底散热器与微凹表面的CPU适配:
由于位于散热器中心位置的锥凸结构可以填充因CPU表面下凹造成的空隙,甚至可以在CPU的高热流密度区域形成相对高的压强,可以使硅脂厚度δ相对小,同时,由于CPU微凹的表面和散热器的锥凸底形态相近,因此可以在CPU表面高热流密度区域形成一定的较高压强接触面积A,进而得到了较好的散热效果;
(3)平面底散热器与平面度较高的CPU适配:
上述适配关系是最接近理想状态的一种情形,整个接触介面压强分布较均匀,可保证导热介面材料厚度δ相对小和接触面积A相对大,因此散热性能较好;
(4)锥凸底散热器与平面度较高的CPU适配:
由于锥凸底散热器在CPU的高热流密度区域形成了较大压强,形成了比(3)所述更小的介面材料厚度δ,弥补了高压强接触面积A相对较小的不足,因此散热性能与上述(3)平面底适配性能接近;
(5)平面底散热器与微凸表面的CPU适配:
由于微凸表面CPU的凸起区域为CPU的高热流密度区域(如图2所示),同时凸起的部分为具有一定面积的区域(如图4-2所示),因此在本适配组合中会在高热流密度区域形成具有一定面积A的更小的介面材料厚度δ的区域,因此本适配关系下可获得相对最优的散热性能;
(6)锥凸底散热器与微凸表面的CPU适配:
虽然这种适配关系中,在CPU的高热流密度区域会在对应锥凸底的中心形成很高的压强,进而形成很小的介面材料厚度δ,但由于配合形 态特征造成压强由中心向外围迅速衰减,高压强区域A的面积非常小,所以此适配关系下性能表现相对最差;
通过以上分析可知,现有技术的散热器底座底面设计,将CPU预设为具有平面度很高的表面,忽视了由于CPU表面平面度及形态差异造成的接触热阻差异,因而也必然造成性能表现差异大、一致性差的问题。同时,由于忽视了上述问题,也很难获得更好的散热性能。
作为工业制品的CPU,由于其表面的形态存在难以统一的细微差异,导致以上两种现有技术所常用的底座底面形态设计总会造成在一部分用户使用中可以达成散热设计性能,而在另一部分用户使用中无法达成设计性能,最终导致散热器的应用效果一致性差的问题,而性能表现的一致性恰恰又是衡量工业产品质量的关键指标之一。
另外随着CPU性能的不断提升,发热功耗逐渐提升,发热核心的热流密度也逐渐增大,现有技术中的底座底部设计由于其局限性,难以满足进一步提升散热器散热性能的需求。
为解决上述问题,需要按照全新思路设计一种散热器底座的底部结构,可以满足与不同形态类型CPU抵接适配过程中,对应CPU中心高热流密度区域均可形成较高的压强,进而得到更小的介面材料厚度δ。同时该高压强区域位置及面积A可预设设定,即满足高压强区域内高压强在一定面积范围内稳定有效,又可以通过面积设定,适应具有不同高热流密度特征的不同种类CPU的散热需求。借此实现更高的性能一致性和更好的平均散热性能。
第一方面,本发明提供了一种散热器底座,包括底座本体。底座本体的底部具有至少一个凸起结构,且底座本体的底部与CPU的顶部相抵接,每个凸起结构均包括具有凸起的平缓区域和围绕凸起的平缓区域的坡度区域。凸起结构的平缓区域与CPU的顶部高热流密度区域相抵接,与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,凸起结构的平缓区域位于凸起结构的内部区域,坡度区域投影位于平缓区域投影的两侧。
在本发明的一实施方式中,凸起结构的平缓区域位于凸起结构的内部区域,坡度区域投影位于平缓区域投影的三侧。
在本发明的一实施方式中,凸起结构的平缓区域位于凸起结构的内部区域,坡度区域投影位于平缓区域投影的四周。
在本发明的一实施方式中,平缓区域的几何中心点高度大于或等于该区域边缘的高度,且通过该几何中心点任一剖面的水平方向任意一侧轮廓线上,平缓区域内任一局部范围单位水平距离所对应的垂直高度差值的绝对值小于相应坡度区域任一局部范围单位水平距离所对应的垂直高度差值的绝对值。
在本发明的一实施方式中,凸起结构的平缓区域中心与CPU的顶部高热流密度区域中心相对应抵接,平缓区域与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,凸起结构的平缓区域中心与CPU的顶部高热流密度区域中心的相近位置相对应抵接,平缓区域与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,凸起结构的平缓区域的投影面积小于CPU的顶部面积。
在本发明的一实施方式中,凸起结构的平缓区域的投影形态为圆形。
在本发明的一实施方式中,凸起结构的平缓区域的投影形态为椭圆形。
在本发明的一实施方式中,凸起结构的平缓区域的投影形态为多边形。
在本发明的一实施方式中,凸起结构的平缓区域部分的剖面轮廓线为直线。
在本发明的一实施方式中,凸起结构的平缓区域部分的剖面轮廓线为弧线。
在本发明的一实施方式中,凸起结构的平缓区域部分的剖面轮廓线为折线。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至254mm
2。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至177mm
2。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至113mm
2。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至79mm
2。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至50mm
2。
第二方面,本发明提供了一种散热器,用以对CPU进行散热,散热器包括底座本体。底座本体的底部具有至少一个凸起结构,且底座本体的底部与CPU的顶部相抵接,每个凸起结构包括具有凸起的平缓区域和围绕凸起的平缓区域的坡度区域。凸起结构的平缓区域与CPU的顶部高热流密度区域相抵接,与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,凸起结构的平缓区域位于凸起结构的内部区域,坡度区域投影位于平缓区域投影的两侧。
在本发明的一实施方式中,凸起结构的平缓区域位于凸起结构的内部区域,坡度区域投影位于平缓区域投影的三侧。
在本发明的一实施方式中,凸起结构的平缓区域位于凸起结构的内部区域,坡度区域投影位于平缓区域投影的四周。
在本发明的一实施方式中,平缓区域的几何中心点高度大于或等于该区域边缘的高度,且通过该几何中心点任一剖面的水平方向任意一侧轮廓线上,平缓区域内任一局部范围单位水平距离所对应的垂直高度差值的绝对值小于相应坡度区域任一局部范围单位水平距离所对应的垂直高度差值的绝对值。
在本发明的一实施方式中,凸起结构的平缓区域中心与CPU的顶部高热流密度区域中心相对应抵接,平缓区域与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,凸起结构的平缓区域中心与CPU的顶部高热流密度区域中心的相近位置相对应抵接,平缓区域与坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,凸起结构的平缓区域的投影面积小于CPU的顶部面积。
在本发明的一实施方式中,凸起结构的平缓区域的投影形态为圆形。
在本发明的一实施方式中,凸起结构的平缓区域的投影形态为椭圆形。
在本发明的一实施方式中,凸起结构的平缓区域的投影形态为多边形。
在本发明的一实施方式中,凸起结构的平缓区域部分的剖面轮廓线为直线。
在本发明的一实施方式中,凸起结构的平缓区域部分的剖面轮廓线为弧线。
在本发明的一实施方式中,凸起结构的平缓区域部分的剖面轮廓线为折线。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至254mm
2。
在本发明的一实施方式中,凸起结构的平缓区域的面积为20mm
2至50mm
2。
在本发明的一实施方式中,散热器还包括:散热鳍片组、热管组、散热风扇、导热硅脂以及固定组件。散热鳍片组设置于底座本体上方。热管组包括多个热管,热管包括吸热段和散热段,吸热段设置于底座本体上,且散热段设置于散热鳍片组中。散热风扇固定于散热鳍片组上。导热硅脂设置于底座本体与CPU表面之间。以及固定组件用以将底座本体固定于CPU的上方。
在本发明的一实施方式中,散热器可以不设置散热风扇,也可以设置多个。
在本发明的一实施方式中,散热器还包括:散热部、吸热部以及管道部。散热部上设有进水口和出水口。吸热部上设有进水口和出水口,吸热部的内部设有水泵,且吸热部设置于底座本体上方。以及管道部包括第一管道和第二管道,第一管道和第二管道的一端分别连接散热部的进水口和出水口,且第一管道和第二管道的另一端分别连接吸热部的出水口和进水口,在水泵的作用下,冷却液在散热部、管道部和吸热部之间循环流动。
首先,本发明通过设计凸起的平缓区域,在适配不同形态CPU时,均可在其预设面积的范围内形成相近的压强特征,进而得到相近的介面 材料厚度δ,也就获得了相近的接触热阻,与现有技术相比可以获得更为一致的散热性能表现。其次,由于凸起结构的特点,平缓区域的压强较大,且面积可以通过平缓区域的设置获得保证,因此可以在确定范围内得到更小的平均介面材料厚度δ,也就获得了平均更小的接触热阻。同时,由于凸起的平缓区域所对应的是CPU表面的高热流密度区域,因此可以获得更好的散热效果。
与现有技术相比,根据本发明的散热器底座及散热器,结构简单合理,可以更好地适配不同表面形态的CPU,可以获得更稳定且一致性更高的散热性能,同时能够将CPU产生的热能进行高效散热,提高了散热效率。
图1-1是现有CPU轴侧结构示意图;
图1-2是现有CPU剖面结构示意图;
图2是型号为Y的现有CPU表面温度分布示意图;
图3是两种现有技术散热器底座的剖面形态示意图;
图4-1是型号为X的现有微凹表面CPU的顶面等高线示意图;
图4-2是型号为X的现有微凸表面CPU的顶面等高线示意图;
图5是现有三种表面形态CPU的剖面示意图;
图6是两种现有技术散热器底座在不同表面形态CPU上的性能测试数据;
图7是现有技术散热器底座对CPU表面适配特征示意图;
图8是本发明一种实施例中过平缓区域中心点的某一剖面示意图;
图9是根据本发明一实施方式的散热器底座及散热器的一结构示意图;
图10是根据本发明一实施方式的散热器底座及散热器的另一结构示意图;
图11是根据本发明一实施方式的凸起结构平缓区域部分的剖面轮廓线三个示例特征示意图;
图12是根据本发明一实施方式的散热器底座及散热器的#2模组配四种不同底在微凹CPU上的性能表现示意图;
图13是根据本发明一实施方式的散热器底座及散热器的#2模组配四种不同底在平面度较高CPU上的性能表现示意图;
图14是根据本发明一实施方式的散热器底座及散热器的#2模组配四种不同底在微凸CPU上的性能表现示意图;
图15是根据本发明一实施方式的散热器底座及散热器的#4模组配四种不同底在微凹CPU上的性能表现示意图;
图16是根据本发明一实施方式的散热器底座及散热器的#4模组配四种不同底在平面度较高CPU上的性能表现示意图;
图17是根据本发明一实施方式的散热器底座及散热器的#4模组配四种不同底在微凸CPU上的性能表现示意图;
图18是根据本发明一实施方式的平缓区域投影与坡度区域投影位置关系示意图;
图19是根据本发明一实施方式的凸起结构的平缓区域的投影形态示意图。
主要附图标记说明:
1-底座本体,11-凸起结构,111-平缓区域,112-坡度区域,2-散热鳍 片组,3-热管组,4-散热风扇,5-吸热部,6-散热部。
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
第一方面,根据本发明一优选实施方式的一种散热器底座,散热器底座包括底座本体1。底座本体1的底部具有至少一个凸起结构11,且底座本体1的底部与CPU的顶部相抵接,每个凸起结构11均包括一个具有凸起的平缓区域111和围绕凸起的平缓区域111的坡度区域112,平缓区域111位于凸起结构11的内部,且坡度区域112位于平缓区域111的外围。凸起结构11的平缓区域111与CPU的顶部高热流密度区域相抵接,与坡度区域112相比,形成具有相对高压强且压强相对稳定的区域。
如图8所示,平缓区域111的几何中心点高度大于或等于该区域边缘的高度,且通过该几何中心点任一剖面的水平方向任意一侧轮廓线上,平缓区域111内任一局部范围单位水平距离a所对应的垂直高度差值的绝对值ΔH
p小于相应坡度区域112任一局部范围单位水平距离a所对应的垂直高度差值的绝对值ΔH
d,即ΔH
p<ΔH
d。凸起结构11的平缓区域111与CPU表面的高热流密度区域相对应,与坡度区域112相比,形成具有相对高压强且压强相对稳定的区域。其中,ΔH
p=|H
p2-H
p1|,H
p2为平缓区域111内一个点的垂直高度,H
p1为平缓区域111内另一个点的垂直高度,两个点间距为单位水平距离a。其中,ΔH
d=|H
d2-H
d1|,H
d2为坡度区域112内一个点的垂直高度,H
d1为坡度区域112内另一个点的垂直高 度,两个点间距为单位水平距离a。
如图18所示,在本发明的一实施方式中,凸起结构11的平缓区域111位于凸起结构11的内部区域,且坡度区域112投影位于平缓区域111投影的两侧。
如图18所示,在本发明的一实施方式中,凸起结构11的平缓区域111位于凸起结构11的内部区域,且坡度区域112投影位于平缓区域111投影的三侧。
如图18所示,在本发明的一实施方式中,凸起结构11的平缓区域111位于凸起结构11的内部区域,且坡度区域112投影位于平缓区域111投影的四周。
在本发明的实施方式中,凸起结构11的平缓区域111的中心与CPU的顶部高热流密度区域的中心或顶部高热流密度区域中心的相近位置相对应抵接,与坡度区域112相比,形成具有相对高压强且压强相对稳定的区域。也就是说,平缓区域111的中心与CPU的顶部高热流密度区域的中心或上述中心的相近位置相抵接,如图9和图10所示,平缓区域111位于凸起结构11的内部,但本发明并不限定平缓区域111的位置,平缓区域111可在底座本体1底部的其他位置上(具体图纸未绘制),平缓区域111的中心只需与CPU的顶部高热流密度区域的中心或上述中心的相近位置相对应抵接即可。也就是说,本发明也并不限定CPU的顶部高热流密度区域的具体位置。
在本发明的一实施方式中,凸起结构11的平缓区域111的投影面积小于CPU的顶部面积。
如图19所示,在本发明的一实施方式中,凸起结构11的平缓区域111的投影形态包括:圆形。
如图19所示,在本发明的一实施方式中,凸起结构11的平缓区域 111的投影形态包括:椭圆形。
如图19所示,在本发明的一实施方式中,凸起结构11的平缓区域111的投影形态包括:多边形。
图11是根据本发明实施方式的散热器底部凸起结构11平缓区域111三个示例特征示意图,如图11所示,平缓区域111的投影为圆形时,平缓区域111的剖面轮廓线包括:直线、弧线或折线。三种不同形态的平缓区域111与CPU顶部的高热流密度区域相对应适配。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至254mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至177mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至113mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至79mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至50mm
2。
第二方面,根据本发明另一优选实施方式的一种散热器,用以对CPU进行散热,散热器包括底座本体1。底座本体1的底部具有至少一个凸起结构11,且底座本体1的底部与CPU的顶部相抵接,每个凸起结构11包括具有凸起的平缓区域111和围绕凸起的平缓区域111的坡度区域112,平缓区域位于凸起结构11的内部,且坡度区域112位于平缓区域111的外围。凸起结构11的平缓区域111与CPU的顶部高热流密度区域相抵接,与坡度区域112相比,形成具有相对高压强且压强相对稳定的区域。
在本发明的一实施方式中,如图8所示,平缓区域111的几何中心点高度大于或等于该区域边缘的高度,且通过该几何中心点任一剖面的水平方向任意一侧轮廓线上,平缓区域111内任一局部范围单位水平距离a所对应的垂直高度差值的绝对值ΔH
p小于相应坡度区域112任一局部范围单位水平距离a所对应的垂直高度差值的绝对值ΔH
d,即ΔH
p<ΔH
d。凸起结构11的平缓区域111与CPU表面的高热流密度区域相对应,与坡度区域112相比,形成具有相对高压强且压强相对稳定的区域。其中,ΔH
p=|H
p2-H
p1|,H
p2为平缓区域111内一个点的垂直高度,H
p1为平缓区域111内另一个点的垂直高度,两个点间距为单位水平距离a。其中,ΔH
d=|H
d2-H
d1|,H
d2为坡度区域112内一个点的垂直高度,H
d1为坡度区域112内另一个点的垂直高度,两个点间距为单位水平距离a。
如图18所示,在本发明的一实施方式中,凸起结构11的平缓区域111位于凸起结构11的内部区域,且坡度区域112投影位于平缓区域111投影的两侧。
如图18所示,在本发明的一实施方式中,凸起结构11的平缓区域111位于凸起结构11的内部区域,且坡度区域112投影位于平缓区域111投影的三侧。
如图18所示,在本发明的一实施方式中,凸起结构11的平缓区域111位于凸起结构11的内部区域,且坡度区域112投影位于平缓区域111投影的四周。
在本发明的一实施方式中,凸起结构11的平缓区域111的中心与CPU的顶部高热流密度区域的中心或顶部高热流密度区域中心的相近位置相对应抵接,与坡度区域112相比,形成具有相对高压强且压强相对稳定的区域。也就是说,平缓区域111的中心与CPU的顶部高热流密度区域的中心或上述中心的相近位置相抵接,如图9和图10所示,平缓区域111位于凸起结构11的内部,但本发明并不限定平缓区域111的位 置,平缓区域111可在底座本体1底部的其他位置上(具体图纸未绘制),平缓区域111的中心只需与CPU的顶部高热流密度区域的中心或上述中心的相近位置相对应抵接即可。也就是说,本发明也并不限定CPU的顶部高热流密度区域的具体位置。
在本发明的一实施方式中,如图9所示,散热器还包括:散热鳍片组2、热管组3、散热风扇4,散热鳍片组2设置于底座本体1上方。热管组3包括多个热管,热管包括吸热段和散热段,吸热段设置于底座本体1上,且散热段设置于散热鳍片组2中。散热风扇4固定于散热鳍片组2上。导热硅脂设置于底座本体1与CPU之间。以及固定组件用以将底座本体1固定于CPU的上方。在其它实施例中,散热器可以不设置散热风扇,也可以设置多个。
在本发明的一实施方式中,如图10所示,散热器还包括:散热部6、吸热部5以及管道部。散热部6上设有进水口和出水口。吸热部5上设有进水口和出水口,吸热部5的内部设有水泵,且吸热部5设置于底座本体1上方。以及管道部包括第一管道和第二管道,第一管道和第二管道的一端分别连接散热部6的进水口和出水口,且第一管道和第二管道的另一端分别连接吸热部5的出水口和进水口,在水泵的作用下,冷却液在散热部6、管道部和吸热部5之间循环流动。
在本发明的一实施方式中,凸起结构11的平缓区域111的投影面积小于CPU的顶部面积。
如图19所示,在本发明的一实施方式中,凸起结构11的平缓区域111的投影形态为圆形。
如图19所示,在本发明的一实施方式中,凸起结构11的平缓区域111的投影形态为椭圆形。
如图19所示,在本发明的一实施方式中,凸起结构11的平缓区域111的投影形态为多边形。
在本发明的一实施方式中,凸起结构11的平缓区域111部分的剖面轮廓线为直线。
在本发明的一实施方式中,凸起结构11的平缓区域111部分的剖面轮廓线为弧线。
在本发明的一实施方式中,凸起结构11的平缓区域111部分的剖面轮廓线为折线。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至254mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至177mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至113mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至79mm
2。
在本发明的一实施方式中,凸起结构11的平缓区域111的面积为20mm
2至50mm
2。
其物理特征是,任一凸起结构11均包括一平缓区域111和与之对应的坡度区域112,平缓区域111位于凸起结构11内部区域,坡度区域112位于平缓区域111外围。在平缓区域111内,区域中心点高度大于或等于区域边缘的高度,且通过该几何中心点任一剖面的水平方向任意一侧轮廓线上,平缓区域111内任一局部范围单位水平距离所对应的垂直高度差值的绝对值小于相应坡度区域112任一局部范围单位水平距离所对应的垂直高度差值的绝对值。因为是一个凸起结构11顶部区域,因此在与CPU表面抵接时会形成较大的压强,又平缓区域111内单位水平距离内的高度变化小于坡度区域112,因此平缓区域111内的压强变化小于 外围坡度区域112。图11显示了本专利技术三个实施例的平缓区域形态特征。
在实际应用中,通过深入研究,发现了现实中CPU表面形态存在的差异,结合CPU的内、外部结构特征、发热机理以及技术发展趋势,利用大量实验样本的实测数据交叉比对分析了不同散热器底部形态与不同表面特征CPU的适配性能测试结果,开创性地设计出了具有稳定高压强区域的全新散热器底座底部设计结构,具体说明如下。
本发明注意到,无论是CPU芯片发热在其表面形成的温度梯度特征,还是测量CPU表面形态的凸凹形变特征,均存在一个特定区域范围,而两种类型的区域范围具有较高的重合性。因此在散热器的底座底部针对其所对应的CPU内部芯片位置所对应的区域(高热流密度区域)设计特定面积的凸起的平缓区域111,可更好适配不同表面形态CPU而形成的较高压强且较稳定的区域,在这个区域内压强较大但压强变化较小,在该区域外为坡度区域112其特征则是压强较小且变化较大。该设计实现了在具有一定设定面积的凸起的平缓区域111范围内,在适配不同形态CPU时,均可在其预设面积的范围内形成相近的压强特征,进而得到相近的介面材料厚度δ,也就获得了相近的接触热阻,与现有技术相比可以获得更为一致的散热性能表现。其次,由于凸起结构的特点,平缓区域111的压强较大,且面积可以通过平缓区域111的设置获得保证,因此可以在确定范围内得到更小的平均介面材料厚度δ,也就获得了平均更小的接触热阻,同时由于凸起的平缓区域111所对应的是CPU表面的高热流密度区域,因此可以获得更好的散热效果。
本发明的优点和性能表现主要从两个维度呈现:
1、能够在某一种或某几种表面形态的CPU上获得比现有技术更一致且更稳定的性能表现;
2、能够在某一种或某几种表面形态的CPU上获得比现有技术更好 的综合性能表现。
本发明上述优点和性能将通过以下某一具体实施例测试分析来说明:
(1)三种顶面形态的CPU样本:X是某型号CPU,超频功耗可达280w。本发明随机选定11块该规格CPU,经检测发现其表面形态为微凹、平面度较高、微凸的分别是3块、1块、7块;从其中各取一块作为该测试中所用的CPU;
(2)样品更换不同底部形态的底座:该验证中共有6个热管鳍片组,分为两个样本组,分别记为#1、#2、#3热管鳍片组,以及#4、#5、#6热管鳍片组;每次更换散热器底座时热管鳍片组不做任何变化。各个热管鳍片组及其所配底座的组合如表2所示:
表2:六个热管鳍片组及其所配铜底的搭配组合
表中,A
stp是指本发明所述底座凸起结构11的平缓区域111的投影面积。
以#1热管鳍片组为例,初始为焊接平面底,测试完成后,把平面底退焊,焊接A
stp=177mm
2的底座;重复上述动作更换A
stp=113mm
2底座和A
stp=254mm
2底座;其它五个样品也按照这个方法进行更换底座操作并测试,得到代表不同平缓区域111面积的样品及测试数据;
(3)测试条件:每次得到不同底座的样品后,对其在三种表面形态的CPU上进行测试,测试设备自始至终都保持严格的统一的设置,实验 环境温度控制在23~25℃;测试采用统一规格的导热硅脂、热导管、散热鳍片组、底座材质和一致的加工组装工艺,且保证扣具压力值一致。
下面结合测试数据和图表,来说明本发明的优点。
首先,本发明是在开创性地研究CPU表面形态和散热器底座底部适配关系的基础上取得的,因此,对比现有技术,它的应用能使散热器在适配不同表面形态的CPU时,获得更稳定且一致性更高的散热性能,因此可以极大提升产品的可靠性。
表3是三个样本组在微凹表面CPU上的性能表现,三个样本组分别是平面底样本组、锥凸底样本组、本发明A
stp=50mm
2的样本组;每个样本组都有3个样品,平均性能为这三个样品测试性能的平均值,用标准差和极差两个指标来表征样本组内样品的离散特征和性能一致性。由数据可知,本发明A
stp=50mm
2的样本组,在适配微凹表面CPU的性能测试中获得了更稳定且一致性更高的散热性能,同时从平均性能表现来看,本发明A
stp=50mm
2的样本组也优于两种现有技术。
表3:三个样本组在微凹CPU上的性能表现(测试使用B硅脂)
表4是三个样本组在平面度较高CPU上的性能表现,由数据可知,本发明A
stp=50mm
2的样本组,在适配平面度较高CPU的性能测试中获得了更稳定且一致性更高的散热性能,同时从平均性能表现来看,本发明A
stp=50mm
2的样本组也优于两种现有技术。
表4:三个样本组在平面度较高CPU上的性能表现(测试使用B硅脂)
表5是三个样本组在微凸表面CPU上的性能表现,由数据可知,本发明A
stp=50mm
2的样本组,在适配微凸表面CPU的性能测试中获得了更稳定且一致性更高的散热性能,同时从平均性能表现来看,本发明A
stp=50mm
2的样本组也优于两种现有技术。
表5:三个样本组在微凸表面CPU上的性能表现(测试使用B硅脂)
综合表3、表4、表5的内容,由数据可知,本发明A
stp=50mm
2的样本组,在适配微凹表面CPU、平面度较高CPU、微凸表面CPU的性能测试中都获得了更稳定且一致性更高的散热性能,同时从平均性能表现来看,本发明A
stp=50mm
2的样本组也优于两种现有技术。
表6是三个样本组在三种CPU上的性能表现,由数据可知,本发明A
stp=50mm
2的样本组,在适配三种不同表面形态CPU的性能测试中获得了更稳定且一致性更高的散热性能,同时从样本组在三种表面形态CPU上的平均性能表现来看,本发明A
stp=50mm
2的样本组也优于两种现有技术。
表6:三个样本组在三种CPU上的性能表现汇总(测试使用B硅脂)
其次,本发明考虑到了CPU的多核、多线程、高性能、CPU发热带(DIE)更高的功率密度这样一个发展趋势,开创性地对CPU核心发热带(DIE)对应的散热器底座底部区域进行针对性地设计,因而也可 以获得更低的热阻和更好的散热效能。
图12是#2热管鳍片组配四种底,在微凹表面CPU上的性能测试数据,这四种底分别是:平面底座、本发明A
stp=254mm
2的底座、本发明A
stp=177mm
2的底座、本发明A
stp=113mm
2的底座;由数据可知,在微凹表面CPU上,本发明的三种具有平缓区域111的凸起结构11的底座,都获得了比现有技术平面底更好的散热效能。
图13是#2热管鳍片组配四种底座,在平面度较好的CPU上的性能表现;由数据可知,在平面度较好的CPU,本发明的三种具有平缓区域111的凸起结构11的底座,也都获得了比现有技术平面底更好的散热效能。
图14是#2热管鳍片组配四种底座,在微凸表面CPU上的性能表现;由数据可知,在微凸表面CPU上,本发明A
stp=254mm
2的底获得了比现有技术平面底更好的散热效能。
与上面类似,图15、图16、图17分别是#4模组配四种底座,在微凹表面CPU、平面度较好的CPU、微凸表面CPU上的性能表现,这四种底分别是:锥凸底座、本发明A
stp=79mm
2的底座、本发明A
stp=50mm
2的底座、本发明A
stp=20mm
2的底座;由测试数据可知,在这三种表面形态的CPU上,本发明的三种具有平缓区域111的凸起结构11的底座也都获得了比现有技术锥凸底更好的散热效能。
综上,本发明的底座本体1底部具有至少一个凸起结构11,且凸起结构11包括凸起的平缓区域111和坡度区域112,整体与CPU表面相抵接,凸起结构11的平缓区域111与坡度区域112相比,具有相对高的压强且压强相对稳定,且本发明并不限定凸起结构的数量。
并且在电子设备散热行业内或其他行业内,只要是涉及散热问题,都可以使用本发明所限定的底座本体1的结构对设备进行散热,从而极大地提升散热效率和产品性能的一致性及可靠性。
总之,本发明的散热器底座及散热器,结构简单合理,可以更好地适配不同表面形态的CPU,减少接触热阻,能够将CPU产生的热量进行高效散热,提高了散热效率,且可以获得更稳定且一致性更高的散热性能,极大地提升了产品的可靠性。
前述对本发明的具体示例性实施方案的描述是为了说明和例证。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。
Claims (25)
- 一种散热器底座,包括底座本体,所述底座本体的底部具有至少一个凸起结构,且所述底座本体的底部与CPU的顶部相抵接,其特征在于,每个所述凸起结构均包括具有凸起的平缓区域和位于凸起的平缓区域外围的坡度区域;所述凸起结构的平缓区域与所述CPU的顶部高热流密度区域相抵接,与所述坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域位于所述凸起结构的内部区域,且所述坡度区域投影位于所述平缓区域投影的两侧、三侧或四周。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的所述平缓区域的几何中心点高度大于或等于该区域边缘的高度,且通过该几何中心点任一剖面的水平方向任意一侧轮廓线上,所述平缓区域内任一局部范围单位水平距离所对应的垂直高度差值的绝对值小于相应所述坡度区域任一局部范围单位水平距离所对应的垂直高度差值的绝对值。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域中心与所述CPU的顶部高热流密度区域中心相抵接,与所述坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域中心与所述CPU的顶部高热流密度区域中心的相近位置相抵接,与所述坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域的投影面积小于所述CPU的顶部面积。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的 平缓区域的投影形态包括:圆形、椭圆形或多边形。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域部分的剖面轮廓线包括:直线、弧线或折线。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至254mm 2。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至177mm 2。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至113mm 2。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至79mm 2。
- 如权利要求1所述的散热器底座,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至50mm 2。
- 一种散热器,用以对CPU进行散热,所述散热器包括底座本体,所述底座本体的底部具有至少一个凸起结构,且所述底座本体的底部与CPU的顶部相抵接,其特征在于,每个所述凸起结构均包括具有凸起的平缓区域和位于凸起的平缓区域外围的坡度区域;所述凸起结构的平缓区域与所述CPU的顶部高热流密度区域相抵接,与所述坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
- 如权利要求14所述的散热器,其特征在于,所述凸起结构的所述平缓区域位于所述凸起结构的内部区域,坡度区域投影位于平缓区域投影的两侧、三侧或四周。
- 如权利要求14所述的散热器,其特征在于,所述凸起结构的所述平缓区域的几何中心点高度大于或等于该区域边缘的高度,且通过该 几何中心点任一剖面的水平方向任意一侧轮廓线上,所述平缓区域内任一局部范围单位水平距离所对应的垂直高度差值的绝对值小于相应所述坡度区域任一局部范围单位水平距离所对应的垂直高度差值的绝对值。
- 如权利要求14所述的散热器,其特征在于,所述凸起结构的平缓区域中心与所述CPU的顶部高热流密度区域中心相抵接,与所述坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
- 如权利要求14所述的散热器,其特征在于,所述凸起结构的平缓区域中心与所述CPU的顶部高热流密度区域中心的相近位置相抵接,与所述坡度区域相比,形成具有相对高压强且压强相对稳定的区域。
- 如权利要求14所述散热器,其特征在于,所述凸起结构的平缓区域的投影形态包括:圆形、椭圆形或多边形。
- 如权利要求14所述散热器,其特征在于,所述凸起结构的平缓区域的剖面轮廓线包括:直线、弧线或折线。
- 如权利要求14所述的散热器,其特征在于,所述凸起结构的平缓区域的投影面积小于所述CPU的顶部面积。
- 如权利要求14所述散热器,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至254mm 2。
- 如权利要求14所述散热器,其特征在于,所述凸起结构的平缓区域的面积为20mm 2至50mm 2。
- 如权利要求14所述的散热器,其特征在于,还包括:散热鳍片组,设置于远离所述底座本体的一端;热管组,包括至少一根热管,所述热管包括吸热段和散热段,所述吸热段设置于所述底座本体上,且所述散热段设置于所述散热鳍片组中;以及固定组件,用以将所述底座本体固定于所述CPU的上方。
- 如权利要求14所述的散热器,其特征在于,还包括:散热部,所述散热部上设有进水口和出水口;吸热部,所述吸热部上设有进水口和出水口,所述吸热部的内部设有水泵,且所述吸热部设置于所述底座本体一端;以及管道部,所述管道部包括第一管道和第二管道,所述第一管道和所述第二管道的一端分别连接所述散热部的进水口和出水口,且所述第一管道和所述第二管道的另一端分别连接所述吸热部的出水口和进水口,在所述水泵的作用下,冷却液在所述散热部、所述管道部和所述吸热部之间循环流动。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE212022000363.2U DE212022000363U1 (de) | 2022-01-13 | 2022-01-24 | Kühlersockel und Kühler |
US18/184,795 US20230292462A1 (en) | 2022-01-13 | 2023-03-16 | Heat sink base and heat sink |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210039348.6A CN114327002A (zh) | 2022-01-13 | 2022-01-13 | 一种散热器底座及散热器 |
CN202210039348.6 | 2022-01-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/184,795 Continuation US20230292462A1 (en) | 2022-01-13 | 2023-03-16 | Heat sink base and heat sink |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023133930A1 true WO2023133930A1 (zh) | 2023-07-20 |
Family
ID=81025894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/073384 WO2023133930A1 (zh) | 2022-01-13 | 2022-01-24 | 一种散热器底座及散热器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230292462A1 (zh) |
CN (1) | CN114327002A (zh) |
DE (1) | DE212022000363U1 (zh) |
WO (1) | WO2023133930A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201364894Y (zh) * | 2008-10-16 | 2009-12-16 | 国格金属科技股份有限公司 | 散热模块底板 |
US20150243570A1 (en) * | 2014-02-25 | 2015-08-27 | International Business Machines Corporation | Tim strain mitigation in electronic modules |
CN105764302A (zh) * | 2014-12-18 | 2016-07-13 | 中兴通讯股份有限公司 | 一种导热垫、散热器和散热组件 |
CN209514528U (zh) * | 2019-02-18 | 2019-10-18 | 东莞市立潮信息科技有限公司 | 一种提升散热性能的改良式散热器 |
CN111403361A (zh) * | 2020-03-19 | 2020-07-10 | 珠海格力电器股份有限公司 | 散热片、控制器、空调器 |
US20200303279A1 (en) * | 2019-03-18 | 2020-09-24 | International Business Machines Corporation | Optimized weight heat spreader for an electronic package |
-
2022
- 2022-01-13 CN CN202210039348.6A patent/CN114327002A/zh active Pending
- 2022-01-24 WO PCT/CN2022/073384 patent/WO2023133930A1/zh active Application Filing
- 2022-01-24 DE DE212022000363.2U patent/DE212022000363U1/de active Active
-
2023
- 2023-03-16 US US18/184,795 patent/US20230292462A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201364894Y (zh) * | 2008-10-16 | 2009-12-16 | 国格金属科技股份有限公司 | 散热模块底板 |
US20150243570A1 (en) * | 2014-02-25 | 2015-08-27 | International Business Machines Corporation | Tim strain mitigation in electronic modules |
CN105764302A (zh) * | 2014-12-18 | 2016-07-13 | 中兴通讯股份有限公司 | 一种导热垫、散热器和散热组件 |
CN209514528U (zh) * | 2019-02-18 | 2019-10-18 | 东莞市立潮信息科技有限公司 | 一种提升散热性能的改良式散热器 |
US20200303279A1 (en) * | 2019-03-18 | 2020-09-24 | International Business Machines Corporation | Optimized weight heat spreader for an electronic package |
CN111403361A (zh) * | 2020-03-19 | 2020-07-10 | 珠海格力电器股份有限公司 | 散热片、控制器、空调器 |
Also Published As
Publication number | Publication date |
---|---|
CN114327002A (zh) | 2022-04-12 |
DE212022000363U1 (de) | 2024-09-16 |
US20230292462A1 (en) | 2023-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8564955B2 (en) | Coupling heat sink to integrated circuit chip with thermal interface material | |
CN107615479B (zh) | 液冷冷却器中的散热翅片的制造方法 | |
US9713284B2 (en) | Locally enhanced direct liquid cooling system for high power applications | |
TWI786445B (zh) | 散熱性能得到提升的複合針翅散熱片 | |
JP2006100293A (ja) | 冷却フィン及び冷却構造 | |
US10378836B2 (en) | Water-cooling radiator assembly | |
US11988467B2 (en) | Liquid-cooling heat dissipation plate with pin-fins and enclosed liquid cooler having the same | |
US20080011452A1 (en) | Heat sink | |
WO2023133930A1 (zh) | 一种散热器底座及散热器 | |
CN216697193U (zh) | 一种散热器底座及散热器 | |
CN115334834A (zh) | 散热器、电子设备及散热器的制作方法 | |
TWI805433B (zh) | 具有針柱式鰭片的水冷散熱板、以及具有其的封閉式水冷散熱器 | |
TWI811045B (zh) | 具有不等表面積鰭片組的車用水冷散熱板、以及具有其的封閉式車用水冷散熱器 | |
TWM594724U (zh) | 具有分層結構的散熱裝置 | |
CN213403927U (zh) | 一种抗氧化铝型材散热器 | |
TWI812374B (zh) | 具有不等間距鰭片組的車用水冷散熱板、以及具有其的封閉式車用水冷散熱器 | |
US20240116356A1 (en) | Vehicle water-cooling heat sink plate having fin sets with different fin pitch distances | |
TWI829381B (zh) | 散熱裝置及其製造方法 | |
TWM630490U (zh) | 散熱模組 | |
CN216795614U (zh) | 一种翅片散热器 | |
TWI820884B (zh) | 具有不等高的針柱式鰭片的水冷散熱板、以及具有其的封閉式水冷散熱器 | |
TWI839247B (zh) | 液冷板及伺服器 | |
TWI831707B (zh) | 液冷板組件及伺服器 | |
TWI785938B (zh) | 液冷式散熱結構 | |
CN219418102U (zh) | 底部具有凸台的cpu散热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22919576 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 212022000363 Country of ref document: DE |