WO2023132584A1 - 방사성폐기물 유리섬유 처리방법 - Google Patents

방사성폐기물 유리섬유 처리방법 Download PDF

Info

Publication number
WO2023132584A1
WO2023132584A1 PCT/KR2023/000032 KR2023000032W WO2023132584A1 WO 2023132584 A1 WO2023132584 A1 WO 2023132584A1 KR 2023000032 W KR2023000032 W KR 2023000032W WO 2023132584 A1 WO2023132584 A1 WO 2023132584A1
Authority
WO
WIPO (PCT)
Prior art keywords
canister
radioactive waste
waste glass
glass fibers
lower canister
Prior art date
Application number
PCT/KR2023/000032
Other languages
English (en)
French (fr)
Inventor
황영환
이미현
김천우
윤지수
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Publication of WO2023132584A1 publication Critical patent/WO2023132584A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the present invention relates to a method for treating radioactive waste glass fibers.
  • glass fiber-based insulation materials are used to insulate major pipes, high-temperature devices, and to protect workers.
  • a large amount of glass fiber insulation is used to insulate and block piping and equipment around the steam generator.
  • These glass fibers are currently prepared for disposal by loading them into drums (eg, 200L, etc.) and compressing them by hand. In this process, the glass fiber is broken into small grains and meets the requirements for dispersibility, resulting in unsuitable disposal, which requires additional processing.
  • the problem to be solved by the present invention is to increase the ease of disposal in consideration of the fact that glass fiber insulation is bulky compared to mass and has an insignificant degree of contamination, so most of it can be classified as extremely low level or self-disposal waste.
  • a radioactive waste glass fiber treatment method for achieving the above object is a radioactive waste glass fiber treatment method, comprising the steps of preparing a radioactive waste glass fiber; loading the radioactive waste glass fibers into a canister; heat-treating the canister under set conditions through a heat-treatment unit; and transferring the dead waste glass fiber, the volume of which has been reduced through the heat treatment, while being reduced.
  • the canister includes a first lower canister at a lower part and a first upper canister capable of being attached to and detached from the first lower canister, and receives the radioactive waste glass fiber repeatedly based on the attachment and detachment.
  • the heat treatment may be repeatedly performed.
  • the glass fiber having a reduced volume is accommodated in a transfer unit for external transport while being accommodated on the first lower canister, and the first lower canister includes a second lower canister separate from the first lower canister, the The first lower canister and a separate third lower canister are disposed adjacent to each other inside the transfer unit.
  • first lower canister, the second lower canister, and the third lower canister are stacked with each other in a horizontal direction or a vertical direction, and the first to third lower canisters are at the top or bottom.
  • a protruding structure is formed, and a fitting portion corresponding to the protruding structure is formed at an upper or lower portion to be mounted and fixed to each other.
  • the degree of volume reduction of the radioactive waste glass fibers by the heat treatment on the canister is determined through a laser level measurement module, and when the degree of volume reduction meets a predetermined criterion, the first lower canister is moved to the first lower canister. Separate it from the upper canister.
  • the temperature state of the canister of the radioactive waste glass fibers is grasped through a thermocouple, and when the temperature state satisfies a predetermined criterion together with the degree of volume reduction, the first lower canister is transferred to the first upper canister. Keep it separate from the canister.
  • first lower canister and the first upper canister are provided to be mounted and separated, so that the input and discharge of the radioactive waste glass fiber is possible.
  • the canister and the heat treatment unit are located in a space where an air conditioner is installed, the heat treatment of the radioactive waste is performed in the space, and the product through the heat treatment is discharged through the air conditioner.
  • the present invention can increase the ease of disposal in consideration of the fact that the glass fiber insulation is bulky compared to its mass and its contamination is insignificant, so it can be classified as ultra-low-level or self-disposal waste.
  • FIG. 1 is a flowchart sequentially illustrating a method for treating glass fibers of radioactive waste according to an embodiment of the present invention.
  • FIG. 2 to 4 are diagrams illustrating configurations according to FIG. 1 .
  • 5 to 12 are pictures showing states according to the processing of the glass fiber according to FIG.
  • the radioactive waste glass fibers (O) are prepared.
  • the radioactive waste glass fibers O are loaded into the canister 110 .
  • heat treatment is performed on the canister 110 under set conditions through a heat treatment unit.
  • the radioactive waste glass fibers (O) are transported with their volume reduced.
  • the canister 110 includes a first lower canister 112 and a first upper canister 111 .
  • the first upper canister 111 of the canister 110 can be attached to and separated from the first lower canister 112 .
  • the first lower canister 112 and the first upper canister 111 receive the radioactive waste glass fibers O repeatedly based on the installation and separation, and the heat treatment is repeatedly performed.
  • the glass fiber O whose volume is reduced in this way is accommodated in the transfer unit 60 for external transfer while being accommodated on the first lower canister 112 .
  • the first lower canister 112, together with the second lower canister 212 separate from the first lower canister 112, are disposed adjacent to each other inside the transfer unit 60.
  • first lower canister 112 includes a second lower canister 212 separate from the first lower canister 112 and a third lower canister 312 separate from the first lower canister 112. It is possible to be disposed inside the transfer unit 60 adjacent to each other.
  • first lower canister 112 to the third lower canister 312 have been disclosed as being disposed together, this is an example and it is possible to further provide a plurality of them within the limit that can be provided.
  • the first lower canister 112, the second lower canister 212, and the third lower canister 312 are stacked horizontally or vertically with each other.
  • the first lower canister 112 to the third lower canister 312 have protruding structures 1121 , 2121 , and 3121 formed at upper or lower portions.
  • the first lower canister 112 to the third lower canister 312 have fitting parts 1122, 2122, and 3122 corresponding to the protruding structure parts 1121, 2121, and 3121 formed at the top or bottom thereof, so that they are mutually compatible with each other. Mounting is possible.
  • the degree of volume reduction of the radioactive waste glass fibers O by the heat treatment on the canister 110 through a laser level measuring module is determined.
  • the degree of volume reduction satisfies a predetermined criterion, the first lower canister 112 is separated from the first upper canister 111 .
  • the temperature state of the canister 110 of the radioactive waste glass fiber O is determined through a thermocouple (not shown).
  • the radioactive waste glass fiber (O) separates the first lower canister 112 from the first upper canister 111 when the volume reduction degree and the temperature state satisfy a preset standard.
  • the first lower canister 112 and the first upper canister 111 described above are provided to be mounted and detached so that the radioactive waste glass fibers O can be inputted and discharged.
  • the canister 110 and the heat treatment unit are located in a space where an air conditioner is installed.
  • the heat treatment of the radioactive waste is performed in the space.
  • products generated through the heat treatment are discharged through the air conditioner.
  • the glass fiber (O) was subjected to heat treatment under the conditions shown in Table 1 below.
  • Example 1 it can be confirmed that the glass fibers (O) before processing and the glass fibers (O) after processing were changed from processing transfer 5 to the state shown in FIG. 6 after processing.
  • Example 2 it can be seen that the glass fibers O before processing and the glass fibers O after processing were changed from FIG. 7 before processing to FIG. 8 after processing.
  • Example 3 glass fibers before processing ( It can be seen that O) and the glass fiber (O) after processing changed from FIG. 9 before processing to FIG. 10 after processing.
  • Example 4 it can be confirmed that the glass fibers O before processing and the glass fibers O after processing changed from FIG. 11 before processing to FIG. 12 after processing.
  • the glass fiber (O) has a large volume to mass ratio, the volume can be reduced through the above-described processing, the ease of disposal can be increased, and regulations related to radioactive waste disposal can be released. In addition, the cost of reducing the volume increases, so that the cost of radioactive waste disposal can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

방사성폐기물 유리섬유 처리방법을 제공한다. 방사성폐기물 유리섬유 처리방법은 방사성폐기물 유리섬유가 준비되는 단계; 상기 방사성폐기물 유리섬유가 캐니스터에 적재되는 단계; 상기 캐니스터가 열처리유닛을 통해 설정조건으로 열처리되는 단계; 및 상기 열처리를 통해 상기 방사성폐기물 유리섬유는 부피가 감소된 채 이송되는 단계를 포함한다.

Description

방사성폐기물 유리섬유 처리방법
본 발명은 방사성폐기물 유리섬유 처리방법에 관한 것이다.
원자력발전소에서는 주요 배관, 고온기기 등 단열 및 작업자 보호를 위한 유리섬유 기반의 단열재를 사용한다. 특히 증기발생기 주변 배관과 기기의 단열 및 차단을 위해 다량의 유리섬유 단열재가 사용된다. 이러한 유리섬유는 현재 유리섬유를 드럼(예: 200L 등)에 장입하고 인력으로 압축해 처분 준비를 한다. 이러한 과정에서 유리섬유는 작은 알갱이로 부서져 분산성에 요건에 해당되어 처분의 부적합이 발생되며 이로 인해 추가적인 가공이 필요한 문제점이 있다.
본 발명이 해결하고자 하는 과제는 유리섬유 단열재가 질량에 비해 부피가 크고 오염도는 미미해 대부분 극저준위 또는 자체처분 대상 폐기물로 분류될 수 있는 점을 고려하여 그 처분의 용이성을 높일 수 있도록 하는 것이다.
특히, 유리섬유 단열재에 대한 열처리 공정 및 후속 처리 공정을 통해 방사성폐기물의 처분 또는 규제해제 등에 크게 기여할 수 있도록 하는 것이다.
또한, 이러한 유리섬유 단열재의 부피 감용비를 절감시킬 수 있어 종국적으로 방사성폐기물 처분비용 절감이 가능하도록 하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 일 면(aspect)에 따른 방사성폐기물 유리섬유 처리방법은 방사성폐기물 유리섬유 처리방법으로서, 방사성폐기물 유리섬유가 준비되는 단계; 상기 방사성폐기물 유리섬유가 캐니스터에 적재되는 단계; 상기 캐니스터가 열처리유닛을 통해 설정조건으로 열처리되는 단계; 및 상기 열처리를 통해 부피가 감소된 상기 사성폐기물 유리섬유가 감소된 채 이송되는 단계를 포함한다.
또한, 상기 캐니스터는 하부의 제1하부캐니스터와, 상기 제1하부캐니스터에 장착과 분리가 가능한 제1상부캐니스터를 포함하며, 상기 장착과 상기 분리를 기반으로 상기 방사성폐기물 유리섬유를 반복적으로 투입받아 상기 열처리가 반복수행 가능하다.
또한, 부피가 감소된 상기 유리섬유는 상기 제1하부캐니스터상에 수용된 채로 외부 이송을 위한 이송유닛에 수용되며, 상기 제1하부캐니스터는, 상기 제1하부캐니스터와 별도인 제2하부캐니스터, 상기 제1하부캐니스터와 별도인 제3하부캐니스터와 함께 상호간에 이웃하여 상기 이송유닛의 내부에 배치된다.
또한, 상기 제1하부캐니스터, 상기 제2하부캐니스터 및 상기 제3하부캐니스터는 상호간에 가로방향 또는 세로방향으로 적층되어 구비되며, 상기 제1하부캐니스터 내지 상기 제3하부캐니스터는, 상부 또는 하부에 돌출구조부가 형성되며, 상부 또는 하부에 상기 돌출구조부에 대응하는 끼움부가 형성되어 상호간에 장착 고정된다.
또한, 상기 방사성폐기물 유리섬유는, 레이저수위측정모듈을 통해 상기 캐니스터상에서 상기 열처리에 의한 부피감소정도가 파악되며, 상기 부피감소정도가 기 설정된 기준을 만족하는 경우 상기 제1하부캐니스터를 상기 제1상부캐니스터와 분리되도록 한다.
또한, 상기 방사성폐기물 유리섬유는, 써모커플을 통해 상기 캐니스터에 대한 온도상태가 파악되며, 상기 부피감소정도와 함께 상기 온도상태가 기 설정된 기준을 만족하는 경우 상기 제1하부캐니스터를 상기 제1상부캐니스터와 분리되도록 한다.
또한, 상기 제1하부캐니스터와 상기 제1상부캐니스터는 장착과 분리가 가능하도록 구비되어, 상기 방사성폐기물 유리섬유의 투입과 배출이 가능하다.
또한, 상기 캐니스터와 상기 열처리유닛은 공기조화기 설치되는 공간부에 위치되며, 상기 방사성폐기물의 상기 열처리는 상기 공간부에서 이루어지며, 상기 열처리를 통한 상기 생성물은 상기 공기조화기를 통해 배출된다.
상기와 같은 본 발명의 방사성폐기물 유리섬유 처리방법에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.
본 발명은 유리섬유 단열재가 질량에 비해 부피가 크고 오염도는 미미해 대부분 극저준위 또는 자체처분 대상 폐기물로 분류될 수 있는 점을 고려하여 그 처분의 용이성을 높일 수 있다.
특히, 유리섬유 단열재에 대한 열처리 공정 및 후속 처리 공정을 통해 방사성폐기물의 처분 또는 규제해제 등에 크게 기여할 수 있다.
또한, 이러한 유리섬유 단열재의 부피 감용비를 절감시킬 수 있어 종국적으로 방사성폐기물 처분비용 절감이 가능하다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 방사성폐기물 유리섬유 처리방법을 순차적으로 도시한 흐름도이다.
도 2 내지 도 4는 도 1에 따른 구성들을 도시한 도면들이다.
도 5 내지 12는 도 1에 따른 유리섬유의 가공에 따른 상태를 도시한 그림들이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도 1을 참조하면 본 발명의 일 실시예에 따른 방사성폐기물 유리섬유(O) 처리방법은 방사성폐기물 유리섬유(O) 처리방법은, 먼저 방사성폐기물 유리섬유(O)가 준비된다. 아울러 상기 방사성폐기물 유리섬유(O)가 캐니스터(110)에 적재된다.
여기서 상기 캐니스터(110)가 열처리유닛을 통해 설정조건으로 열처리가 수행된다. 상기 열처리를 통해 상기 방사성폐기물 유리섬유(O)는 부피가 감소된 채 이송된다.
도 2 내지 도 4를 참조하면 상기 캐니스터(110)는 제1하부캐니스터(112), 제1상부캐니스터(111)를 포함한다. 상기 캐니스터(110)의 상기 제1상부캐니스터(111)는 상기 제1하부캐니스터(112)에 장착과 분리가 가능하다.
상기 제1하부캐니스터(112)와 상기 제1상부캐니스터(111)는 상기 장착과 상기 분리를 기반으로 상기 방사성폐기물 유리섬유(O)를 반복적으로 투입받아 상기 열처리가 반복수행 된다.
이렇게 부피가 감소된 상기 유리섬유(O)는 상기 제1하부캐니스터(112)상에 수용된 채로 외부 이송을 위한 이송유닛(60)에 수용된다. 상기 제1하부캐니스터(112)는, 상기 제1하부캐니스터(112)와 별도인 제2하부캐니스터(212)와 함께 상호간에 이웃하여 상기 이송유닛(60)의 내부에 배치된다.
아울러 상기 제1하부캐니스터(112)는 상기 제1하부캐니스터(112)와 별도인 제2하부캐니스터(212)와, 상기 제1하부캐니스터(112)와 별도인 제3하부캐니스터(312)와 함께 상호간에 이웃하여 상기 이송유닛(60)의 내부에 배치되는 것이 가능하다.
즉 함께 배치되는 형태를 제1하부캐니스터(112) 내지 제3하부캐니스터(312)로 개시하였으나, 이는 예시적인 것으로 그 수량은 구비 가능한 한도에서 다수로 더 구비되는 것도 가능하다.
상기 제1하부캐니스터(112), 상기 제2하부캐니스터(212) 및 상기 제3하부캐니스터(312)는 상호간에 가로방향 또는 세로방향으로 적층되어 구비된다. 상기 제1하부캐니스터(112) 내지 상기 제3하부캐니스터(312)는 상부 또는 하부에 돌출구조부(1121, 2121, 3121)가 형성된다.
여기서 상기 제1하부캐니스터(112) 내지 상기 제3하부캐니스터(312)는 상부 또는 하부에 상기 돌출구조부(1121, 2121, 3121)에 대응하는 끼움부(1122, 2122, 3122)가 형성되어 상호간에 장착 고정이 가능하다.
상기 방사성폐기물 유리섬유(O)는 레이저수위측정모듈(미도시)을 통해 상기 캐니스터(110)상에서 상기 열처리에 의한 부피감소정도가 파악된다. 상기 부피감소정도가 기 설정된 기준을 만족하는 경우 상기 제1하부캐니스터(112)를 상기 제1상부캐니스터(111)와 분리되도록 한다.
아울러 상기 방사성폐기물 유리섬유(O)는 써모커플(미도시)을 통해 상기 캐니스터(110)에 대한 온도상태가 파악된다. 상기 방사성폐기물 유리섬유(O)는 상기 부피감소정도와 함께 상기 온도상태가 기 설정된 기준을 만족하는 경우 상기 제1하부캐니스터(112)를 상기 제1상부캐니스터(111)와 분리되도록 한다.
기본적으로 전술한 상기 제1하부캐니스터(112)와 상기 제1상부캐니스터(111)는 장착과 분리가 가능하도록 구비되어 상기 방사성폐기물 유리섬유(O)의 투입과 배출이 가능하도록 한다.
상기 캐니스터(110)와 상기 열처리유닛은 공기조화기가 설치되는 공간부에 위치된다. 상기 캐니스터(110)와 상기 열처리유닛은 상기 방사성폐기물의 상기 열처리는 상기 공간부에서 이루어진다. 아울러 상기 열처리를 통한 생성되는 생성물은 상기 공기조화기를 통해 배출된다.
상기 유리섬유(O)는 하기 표 1과 같은 조건으로 열처리를 수행하였다.
구분 가공 전
무게(g)
가공 전
부피정도
가공온도(℃) 가공 후
무게(g)
가공 후
부피정도
실시예 1 312.2 800 12.1
실시예 2 339.1 900 38.8
실시예 3 318.5 700 18.2
실시예 4 289.5. 1,200 89.5
실시예 1에 따르면 가공 전 유리섬유(O)와 가공 후 유리섬유(O)는 가공 전도 5에서 가공 후 도 6과 같은 상태로 변화되었음을 확인할 수 있다. 실시예 2에 따르면 가공 전 유리섬유(O)와 가공 후 유리섬유(O)는 가공 전 도 7에서 가공 후 도 8과 같은 상태로 변화되었음을 확인할 수 있다.실시예 3에 따르면 가공 전 유리섬유(O)와 가공 후 유리섬유(O)는 가공 전 도 9에서 가공 후 도 10과 같은 상태로 변화되었음을 확인할 수 있다. 실시예 4에 따르면 가공 전 유리섬유(O)와 가공 후 유리섬유(O)는 가공 전 도 11에서 가공 후 도 12와 같은 상태로 변화되었음을 확인할 수 있다.
상기 유리섬유(O)는 질량 대비 부피가 큰 특징을 가짐에도 이러한 전술한 가공을 통해 부피를 감소시키고 처분의 용이성을 높이고, 방사성 폐기물 처리에 관련된 규제의 해제를 도모할 수 있다. 아울러 부피 감용비가 커지게 되어 방사성 폐기물 처분비용을 절감시킬 수 있게 된다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (8)

  1. 방사성폐기물 유리섬유 처리방법으로서,
    방사성폐기물 유리섬유가 준비되는 단계;
    상기 방사성폐기물 유리섬유가 캐니스터에 적재되는 단계;
    상기 캐니스터가 열처리유닛을 통해 설정조건으로 열처리되는 단계; 및
    상기 열처리를 통해 상기 방사성폐기물 유리섬유는 부피가 감소된 채 이송되는 단계를 포함하는, 방사성폐기물 유리섬유 처리방법.
  2. 제1항에 있어서,
    상기 캐니스터는,
    하부의 제1하부캐니스터와, 상기 제1하부캐니스터에 장착과 분리가 가능한 제1상부캐니스터를 포함하며,
    상기 장착과 상기 분리를 기반으로 상기 방사성폐기물 유리섬유를 반복적으로 투입받아 상기 열처리가 반복수행 가능한, 방사성폐기물 유리섬유 처리방법.
  3. 제2항에 있어서,
    부피가 감소된 상기 유리섬유는 상기 제1하부캐니스터상에 수용된 채로 외부 이송을 위한 이송유닛에 수용되며,
    상기 제1하부캐니스터는,
    상기 제1하부캐니스터와 별도인 제2하부캐니스터, 상기 제1하부캐니스터와 별도인 제3하부캐니스터와 함께 상호간에 이웃하여 상기 이송유닛의 내부에 배치되는, 방사성폐기물 유리섬유 처리방법.
  4. 제3항에 있어서,
    상기 제1하부캐니스터, 상기 제2하부캐니스터 및 상기 제3하부캐니스터는 상호간에 가로방향 또는 세로방향으로 적층되어 구비되며,
    상기 제1하부캐니스터 내지 상기 제3하부캐니스터는,
    상부 또는 하부에 돌출구조부가 형성되며, 상부 또는 하부에 상기 돌출구조부에 대응하는 끼움부가 형성되어 상호간에 장착 고정되는, 방사성폐기물 유리섬유 처리방법.
  5. 제2항에 있어서,
    상기 방사성폐기물 유리섬유는,
    레이저수위측정모듈을 통해 상기 캐니스터상에서 상기 열처리에 의한 부피감소정도가 파악되며,
    상기 부피감소정도가 기 설정된 기준을 만족하는 경우 상기 제1하부캐니스터를 상기 제1상부캐니스터와 분리되도록 하는, 방사성폐기물 유리섬유 처리방법.
  6. 제5항에 있어서,
    상기 방사성폐기물 유리섬유는,
    써모커플을 통해 상기 캐니스터에 대한 온도상태가 파악되며,
    상기 부피감소정도와 함께 상기 온도상태가 기 설정된 기준을 만족하는 경우 상기 제1하부캐니스터를 상기 제1상부캐니스터와 분리되도록 하는, 방사성폐기물 유리섬유 처리방법.
  7. 제2항에 있어서,
    상기 제1하부캐니스터와 상기 제1상부캐니스터는 장착과 분리가 가능하도록 구비되어, 상기 방사성폐기물 유리섬유의 투입과 배출이 가능한, 방사성폐기물 유리섬유 처리방법.
  8. 제1항에 있어서,
    상기 캐니스터와 상기 열처리유닛은 공기조화기 설치되는 공간부에 위치되며,
    상기 방사성폐기물의 상기 열처리는 상기 공간부에서 이루어지며, 상기 열처리를 통한 생성물은 상기 공기조화기를 통해 배출되는, 방사성폐기물 유리섬유 처리방법.
PCT/KR2023/000032 2022-01-04 2023-01-02 방사성폐기물 유리섬유 처리방법 WO2023132584A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0000760 2022-01-04
KR1020220000760A KR20230105413A (ko) 2022-01-04 2022-01-04 방사성폐기물 유리섬유 처리방법

Publications (1)

Publication Number Publication Date
WO2023132584A1 true WO2023132584A1 (ko) 2023-07-13

Family

ID=87073811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000032 WO2023132584A1 (ko) 2022-01-04 2023-01-02 방사성폐기물 유리섬유 처리방법

Country Status (2)

Country Link
KR (1) KR20230105413A (ko)
WO (1) WO2023132584A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058158A (ja) * 2004-08-20 2006-03-02 Ngk Insulators Ltd 溶融用キャニスタ
JP2009192099A (ja) * 2008-02-12 2009-08-27 Japan Atomic Energy Agency 放射性廃棄物処理装置
KR20130038227A (ko) * 2010-03-09 2013-04-17 쿠리온, 인크. 방사성 폐기물의 열분해 및 유리화를 위한 마이크로파-증진 시스템
JP2014142331A (ja) * 2012-12-27 2014-08-07 Ngk Insulators Ltd 放射性樹脂廃棄物の処理方法及び処理装置
JP2020060375A (ja) * 2018-10-05 2020-04-16 Jfeエンジニアリング株式会社 クリアランス金属の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042277B1 (ko) 2018-04-12 2019-11-08 한국원자력연구원 방사능 측정장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058158A (ja) * 2004-08-20 2006-03-02 Ngk Insulators Ltd 溶融用キャニスタ
JP2009192099A (ja) * 2008-02-12 2009-08-27 Japan Atomic Energy Agency 放射性廃棄物処理装置
KR20130038227A (ko) * 2010-03-09 2013-04-17 쿠리온, 인크. 방사성 폐기물의 열분해 및 유리화를 위한 마이크로파-증진 시스템
JP2014142331A (ja) * 2012-12-27 2014-08-07 Ngk Insulators Ltd 放射性樹脂廃棄物の処理方法及び処理装置
JP2020060375A (ja) * 2018-10-05 2020-04-16 Jfeエンジニアリング株式会社 クリアランス金属の製造方法

Also Published As

Publication number Publication date
KR20230105413A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2023132584A1 (ko) 방사성폐기물 유리섬유 처리방법
WO2017073858A1 (ko) 액화가스 저장 탱크 및 그 제조 방법
WO2012169760A2 (ko) 진공정련을 이용하여 저알파 방사선을 방출하는 주석 제조방법
WO2012161391A1 (ko) 오토클레이브의 개폐장치 및 오토클레이브
WO2017026558A1 (ko) 방사성 물질 여과 장치
WO2012165841A2 (en) Method of manufacturing silicon carbide-containing heat storage material from waste silicon sludge
WO2022055233A1 (ko) 텅스텐 와이어를 이용하여 제작한 격자구조 섬유를 복층으로 압착하여 만든 방사선 차폐패드 및 그 제조방법
WO2012039521A1 (ko) 농축폐액 건조물의 펠렛화 장치 및 방법과 이를 이용한 유리조성개발 방법
WO2011083898A1 (en) Insulation device of single crystal growth device and single crystal growth device including the same
WO2020004922A1 (en) Automatic sorting system for small size goods
US4900247A (en) High-temperature heating furnace
EP0028442A2 (en) Storage arrangements for nuclear fuel elements
WO2023172097A1 (ko) 소형원자로 냉각시스템 및 냉각방법
CN207887325U (zh) 一种玻璃制品生产用原料加工装置
WO2023282709A1 (ko) 수동형 고조파 제거 장치 및 그 제조 방법
SE8801593L (sv) Foerfarande och anordning foer att bilda paket eller buntar av staalstaenger
CN220096395U (zh) 一种具有边角防护机构的搬运装置
US4348176A (en) Material handling apparatus for insulators
GB2096937A (en) Storage arrangements for nuclear fuel
WO2022019501A1 (ko) 저산소 타이타늄 분말 제조를 위한 상압 분위기 제어에 의한 탈산 방법
WO2022145568A1 (ko) 유도 가열시 고 자속 밀도를 갖는 그라파이트 구조체 및 그의 배열 방법
AU644263B2 (en) Process and apparatus for the heat treatment of minerals in the form of powders
WO2018012654A1 (ko) 실리콘 반도체 잉곳 제조용 투입장치 및 도핑방법
WO1995026556A1 (en) Drying wet radioactive, toxic or other hazardous waste
EP2990130B1 (en) Method for heating an asbestos-containing waste product and apparatus for removing the resulting safe product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737332

Country of ref document: EP

Kind code of ref document: A1