WO2023132314A1 - Nutrient solution discharge device used in plant cultivation system - Google Patents

Nutrient solution discharge device used in plant cultivation system Download PDF

Info

Publication number
WO2023132314A1
WO2023132314A1 PCT/JP2022/048463 JP2022048463W WO2023132314A1 WO 2023132314 A1 WO2023132314 A1 WO 2023132314A1 JP 2022048463 W JP2022048463 W JP 2022048463W WO 2023132314 A1 WO2023132314 A1 WO 2023132314A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
drainage
cultivation tank
cultivation
port
Prior art date
Application number
PCT/JP2022/048463
Other languages
French (fr)
Japanese (ja)
Inventor
基広 山根
Original Assignee
株式会社Gac
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gac filed Critical 株式会社Gac
Publication of WO2023132314A1 publication Critical patent/WO2023132314A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to the artificial cultivation of plants, and more specifically, to a discharge device that discharges the nutrient solution flowing in a cultivation tank for hydroponic cultivation of plants from the cultivation tank.
  • Plants, including vegetables and flowers, are generally produced by outdoor or indoor soil cultivation methods (open, semi-closed, or completely closed soil cultivation methods).
  • the soil cultivation method has problems such as the fact that the harvest is dependent on the season and weather, the occurrence of continuous crop failure, and the risk of diseases caused by pests.
  • an indoor artificial cultivation method has been put into practical use, in which plants are cultivated indoors using hydroponics.
  • the thin-film type hydroponics method is a method in which a nutrient solution, in which nutrients necessary for plant growth are dissolved in water, is thinly poured down on a flat surface with a gentle slope, and plants are cultivated using the nutrient solution.
  • the thin-film type hydroponics system hinders root elongation, which may cause problems in plant growth.
  • the submerged hydroponics method is a method in which a nutrient solution is supplied to a cultivation tank where plants are grown so that the plant roots are immersed in the nutrient solution.
  • the submerged hydroponics method uses a large amount of nutrient solution, so the water depth is deep, root growth is not hindered, and changes in nutrient concentration and liquid temperature are gentle. Therefore, it has the characteristics of being easy to manage.
  • the present invention relates to the latter, the submerged hydroponic system, and hereinafter, hydroponic culture refers to submerged hydroponic culture.
  • the inventor of the present application has proposed a flood-type hydroponic culture in Patent Document 1.
  • Patent Document 1 proposes a plant cultivation system for performing submerged hydroponics.
  • a nutrient solution S for cultivating plants is supplied from a nutrient solution supply path 45 to the cultivation tank 10 and allowed to flow in one direction. , is discharged from the drain port 16 .
  • the drainage port 16 consists of a first drainage port 16a and a second drainage port 16b.
  • the first drainage port 16 a is an opening provided so as to be positioned on the same plane as the bottom surface of the cultivation tank 10 .
  • the second drainage port 16b is provided so that the outflow port of the nutrient solution S is positioned near the water surface of the nutrient solution S. As shown in FIG.
  • Patent Document 2 proposes a water level control mechanism used in aquaculture/cultivation equipment.
  • This water level adjustment mechanism consists of a water level adjustment pipe and a rack that covers the outside of the pipe, and the water is drained from the opening provided below the rack, so that the organic matter in the lower part of the water tank can be sucked up and discharged by the water flow. It is said to be possible.
  • JP 2015-84750 A Japanese Patent No. 3069847
  • the drainage method proposed in Patent Document 1 has the following problems. If the drainage port 16a, which is a mere opening, is arranged on the bottom surface of the cultivation tank 10, the nutrient solution S near the drainage port 16a is preferentially drained, and the nutrient solution S is drained from the drainage port 16a in the cultivation tank 10. The nutrient solution S in a distant place may stay. If the nutrient solution S stays in this manner, the plant will not grow and may wither because the nutrient solution S in the stagnant portion will rot. In addition, since the amount of the nutrient solution S discharged from the drainage port 16b is reduced, the upper layer of the nutrient solution S in the cultivation tank 10 is not discharged smoothly and stays there, and the roots of the plants may rot.
  • the cultivation tank is discharged from the drainage port 16a arranged on the bottom surface of the cultivation tank 10. All of the nutrient solution S in 10 is discharged and the nutrient solution S falls below the required liquid level. Then, the plants cultivated in the cultivation tank 10 may wither. If a nutrient solution control system using, for example, a solenoid valve is adopted so that the supply of the nutrient solution S and the discharge of the nutrient solution S can be stopped automatically in the event of a power failure or malfunction, such a problem can be solved. can be used, but the introduction cost increases.
  • the present invention provides a plant cultivation system for cultivating plants in a cultivation tank containing a nutrient solution, in which the entire nutrient solution flowing in the cultivation tank can be discharged uniformly without stagnation. It is an object of the present invention to provide a nutrient solution discharge device capable of
  • the present invention provides a nutrient solution discharge device for discharging the nutrient solution flowing in the cultivation tank.
  • the device comprises a set of a first drain and a second drain.
  • the first drainage part has a first drainage port at a required liquid level of a nutrient solution required for plant cultivation.
  • the second drainage part has a second drainage port at a height that is lower than the required liquid level and that can maintain at least the minimum liquid level necessary for plant survival even when the supply of the nutrient solution is stopped.
  • the second drainage part has a drainage tube having a second drainage port and a sheath tube covering the drainage tube.
  • the sheath pipe is at least partially in contact with one end located above the second drainage port and the bottom surface of the cultivation tank, and is provided with one or more openings for taking in the nutrient solution in the cultivation tank. and the other end of the connector. One end is positioned higher than the first drainage port.
  • one or more spacers are provided between the outer surface of the drainage tube and the inner surface of the sheath tube. Also, the one or more spacers are preferably attached to the outer surface of the drain.
  • the total opening area of one or more openings of the sheath tube is smaller than the opening area of the second drainage port.
  • first drainage part and the second drainage part are preferably arranged side by side in a direction transverse to the direction of flow of the nutrient solution downstream of the flow of the nutrient solution.
  • first drain and the second drain are juxtaposed downstream of the flow of the nutrient solution and in the same direction as the direction of flow of the nutrient solution, the second drain It is preferably arranged downstream of the drainage part of the.
  • the nutrient solution discharge device According to the nutrient solution discharge device according to the present invention, it is possible to uniformly discharge the entire nutrient solution without causing partial stagnation of the nutrient solution in the cultivation tank, and to properly discharge the nutrient solution in the event of a power failure or malfunction. Even when an adequate supply is impossible, the liquid level of the nutrient solution in the cultivation tank does not drop below the liquid level necessary for the survival of the plants, and these functions can be realized at low cost. .
  • FIG. 1 is a schematic general view of a plant cultivation system using a drainage device according to an embodiment of the present invention
  • FIG. 1 is a schematic side cross-sectional view of a cultivation tank of a plant cultivation system using a drainage device according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a first drainage part (overflow pipe) of the drainage device according to one embodiment of the present invention
  • FIG. FIG. 4 is an exploded perspective view of a second drainage part (drainage tube) of the drainage device according to one embodiment of the present invention
  • 1 is a plan view of a cultivation tank showing an arrangement example of a first drainage part and a second drainage part of a drainage device according to an embodiment of the present invention
  • FIG. 1 shows a schematic diagram of a plant cultivation system 1 in which a nutrient solution discharge device according to one embodiment of the present invention is used.
  • the plant cultivation system 1 includes a house 60, one or a plurality of cultivation tanks 10 housed in the house 60 for cultivating plants, and a modified air production means 20 for producing the modified air RA.
  • the reformed air RA produced is air that has been reformed to have a higher oxygen content.
  • the reformed air producing means 20 is provided outside the house 60, but it may be provided inside the house 60.
  • FIG. 1 shows a schematic diagram of a plant cultivation system 1 in which a nutrient solution discharge device according to one embodiment of the present invention is used.
  • the plant cultivation system 1 includes a house 60, one or a plurality of cultivation tanks 10 housed in the house 60 for cultivating plants, and a modified air production means 20 for producing the modified air RA.
  • the reformed air RA produced is air that has been reformed to have a higher oxygen content.
  • the cultivation tank 10 single or multi-item plants are supported by supports (floats), and a nutrient solution S containing nutrients for growing the plants flows inside.
  • the cultivation tank 10 is supported by a support frame 19, for example.
  • a variety of plants are cultivated, it is preferable to have a multi-stage configuration so as to be able to cope with the types of plants and the time until harvest.
  • Roots of plants to be cultivated are immersed in the nutrient solution S in the cultivation tank 10 .
  • the nutrient solution S is supplied with reformed air RA.
  • Facilities such as a nutrient solution tank 41 are buried in the underground portion of the house 60 .
  • leafy vegetables such as spinach and leaf lettuce
  • fruit vegetables such as tomatoes, eggplants and cucumbers
  • head vegetables such as Chinese cabbage, cabbage and lettuce
  • Flowers and the like can be cultivated throughout the year as a single item or multiple items.
  • the plant cultivation system 1 is configured such that the nutrient solution S, in which the same nutrients are mixed so as to be homogeneous throughout, is constantly circulated in a constant state between all the cultivation tanks 10 .
  • the nutrient solution S As the nutrient solution S, the nutrient solution S with the same components is continuously used regardless of the type of plant, the stage of growth, and the time of cultivation, and water and/or nutrients are replenished by the amount reduced by evaporation and absorption by the plant.
  • the components contained in the nutrient solution S are not particularly limited, and any nutrient solution used in general hydroponics can be used.
  • the nutrient solution S contains, for example, ammonia nitrogen, water-soluble phosphoric acid, nitrate nitrogen, water-soluble potassium, calcium nitrate, water-soluble magnesium, water-soluble manganese, water-soluble boron, water-soluble iron, water-soluble copper, It may contain water-soluble molybdenum and water-soluble zinc.
  • the state of the nutrient solution S that is, at least the values of parameters such as dissolved oxygen concentration (DO), electrical conductivity (EC), temperature Ts, hydrogen ion concentration exponent (pH), and oxidation-reduction potential (ORP) are generally constant. managed to be maintained.
  • FIG. 2 is a schematic side view showing an example of the cultivation tank 10 and peripheral equipment using the nutrient solution discharge device 16 according to one embodiment of the present invention.
  • the cultivation tank 10 has a bottom surface 10a and side surfaces 10b and 10c, and is configured such that the nutrient solution S flows in one direction at a predetermined speed.
  • a support substrate 11 is floated on the liquid surface of the nutrient solution S, and the support substrate 11 is provided with a plurality of openings 12 .
  • a cultivation pot 13 containing a culture medium 14 is placed in the opening 12 .
  • the types and shapes of the supporting substrate 11, the openings 12, and the cultivation pots 13 can be appropriately selected according to the type of plant to be cultivated, and are not limited to those shown in FIG.
  • the length, width and depth of the cultivation tank 10 are determined according to the type and amount of plants cultivated in each cultivation tank 10 and the scale of the cultivation facility. roots and stems can maintain their original growth shape.
  • the cultivation tank 10 has a width of about 1000 mm and a depth of about 200 mm for leaf vegetables, and a width and depth of about 300 mm for fruit vegetables such as eggplants and tomatoes. , and headed vegetables such as lettuce, those having a width and depth of about 200 mm are used.
  • the length of the cultivation tank 10 is appropriately set according to the scale of the greenhouse 60 for any plant, and may be about 50 cm for a short one and about 100 m for a long one, for example.
  • a nutrient solution S is supplied to the cultivation tank 10 from a supply route 45 .
  • the nutrient solution S supplied from the supply port 45a flows in the cultivation tank 10 in the direction of the arrow in FIG.
  • An air pipe 34 and an air supply unit 36 are provided inside the cultivation tank 10 .
  • the reformed air RA is supplied to the air supply section 36 through the air pipe 34 , and the reformed air RA is supplied to the nutrient solution S from the air supply section 36 .
  • the air supply part 36 is not limited, it is preferably a hollow cylindrical porous body obtained by firing ceramics at a high temperature.
  • a nutrient solution discharge device 16 is provided in the cultivation tank 10 , and the nutrient solution S that has flowed through the cultivation tank 10 is discharged from the discharge device 16 .
  • the drain device 16 consists of two drains 16A, 16B.
  • the first drainage part 16A is provided so that the outlet for the nutrient solution S is positioned at the same height as the liquid surface of the nutrient solution S.
  • the second drainage part 16B is provided with an outlet for the nutrient solution S at a position slightly lower than the outlet of the first drainage part 16A. The details of the ejection device 16 will be described later.
  • the nutrient solution S discharged from the cultivation tank 10 passes through the discharge paths 46a and 46b and preferably enters the discharge side tank 41 buried in the ground.
  • the nutrient solution S in the discharge side tank 41 is supplied to a supply side tank 44 preferably buried in the ground through a pipe 43 by a circulation pump (not shown).
  • the nutrient solution S in the supply-side tank 44 is supplied to the cultivation tank 10 from the supply port 45a through the supply path 45 by a supply pump (not shown).
  • the supply path 45 may be provided with a valve (not shown) for opening and closing the path, if necessary, so that the supply amount of the nutrient solution S can be controlled more precisely.
  • FIG. 3 is an exploded perspective view of the first drainage part 16A
  • FIG. 4 is an exploded perspective view of the second drainage part 16B.
  • the first drainage part 16A has a nutrient solution S overflow function. That is, the first drainage part 16A is configured so that the nutrient solution S supplied to the cultivation tank 10 from the supply port 45a of the supply path 45 is at a liquid level of the nutrient solution S necessary for cultivating the plant in the cultivation tank 10, In other words, the "required liquid level" can be maintained.
  • the first drainage part 16A includes a hollow pipe socket 16A1 that fits into an opening provided in the bottom surface 10a of the cultivation tank 10, and an overflow pipe 16A2 that is inserted into the socket 16A1 from above.
  • the socket 16A1 is connected to the discharge path 46a.
  • the overflow pipe 16A2 is a hollow pipe, and has a drainage port A21 (first drainage port) at its upper end.
  • the height of the drainage port A21 is set to be the same as the required liquid level of the nutrient solution S.
  • the height of the drainage port A21 (that is, the required liquid level) varies depending on the plant to be cultivated, but for example, it is about 3 mm to 5 mm below the boundary between the root and stem of the plant cultivated in the cultivation tank 10. preferable.
  • the lower end of the overflow pipe 16A2 is inserted into the socket 16A1.
  • the upper end of the discharge path 46a is inserted into the socket 16A1 from below. Therefore, the nutrient solution S that has entered the overflow pipe 16A2 through the drain port A21 is discharged to the nutrient solution tank 41 via the discharge path 46a.
  • the second drainage part 16B has a function of moving mainly the lower layer portion of the nutrient solution S in the cultivation tank 10 in its own direction and discharging it. In addition, even when the supply of the nutrient solution S is stopped due to a power failure or the like, the second drainage part 16B has a function of maintaining at least the liquid level of the nutrient solution S necessary for the survival of the plant, that is, the "minimum liquid level". have.
  • the lowest liquid level varies depending on the type of plant to be cultivated, but for example, it is preferably the liquid level at which about half of the roots of the plants cultivated in the cultivation tank 10 are immersed in the nutrient solution S, and the liquid level is higher than that. If it drops, the roots may dry out.
  • the second drainage part 16B includes a socket 16B1 that fits into an opening provided in the bottom surface 10a of the cultivation tank 10, and a drainage pipe 16B2 that is inserted into the socket 16B1 from above.
  • the socket 16B1 is connected to the discharge path 46b.
  • the drain pipe 16B2 is a hollow pipe, and has a drain port B21 (second drain port) at its upper end.
  • the height of the drainage port B21 is set to be lower than the required liquid level. Moreover, the height of the drainage port B21 is such that the minimum liquid level can be maintained even when the supply of the nutrient solution S to the cultivation tank 10 is stopped.
  • the height of the drain port B21 is not limited, it is preferably arranged at a position 20 mm to 30 mm lower than the required liquid level and the drain port A21.
  • the nutrient solution S entering from the notch B34 of the sheath tube 16B3 described later becomes difficult to rise to the drainage port B21. Discharge of the liquid S may be hindered. If the height of the drainage port B21 is lower than the required liquid level and the position 30 mm lower than the drainage port A21, the liquid level may drop too much in the event of a power failure or malfunction, making it impossible to maintain the life of the plant.
  • the drainage pipe 16B2 is covered with a sheath pipe 16B3.
  • the sheath tube 16B3 is a hollow pipe with one end B31 and the other end B33 both open.
  • One end B31 is located above the drainage port B21 and is set to be higher than the drainage port A21 of the overflow pipe 16A2.
  • the nutrient solution S discharged from the end portion B31 at a position higher than the notch B34 of the sheath tube 16B3 described later is discharged through the notch B34.
  • the amount of nutrient solution S passing through the notch B34 decreases, so the force that draws the nutrient solution S in the lower layer of the cultivation tank 10 weakens.
  • one or more openings B34 are formed in the circumferential direction of the side surface B32.
  • the openings are formed as three notches B34. Since the three notches B34 are formed in the other end B33, at the other end B33, part of the end surface contacts the bottom surface 10a of the cultivation tank 10, and the part with the notch B34 contacts the bottom surface 10a. It becomes an opening without opening.
  • the shape of the notch B34 is not limited to a quadrangle as shown in FIG. 4, and may be a polygon or a part of a circle. Moreover, the number of notches B34 is not limited to three, and may be two or less, or may be four or more.
  • the nutrient solution S in the cultivation tank 10 is discharged from the second drainage part 16B by being pumped. Specifically, the nutrient solution S enters the inside of the sheath tube 16B3 through the notch B34 arranged adjacent to the bottom surface 10a of the cultivation tank 10. As shown in FIG. The nutrient solution S that has entered the sheath tube 16B3 rises between the inner surface of the sheath tube 16B3 and the outer surface of the side surface B22 of the drainage tube 16B2, and is discharged from the drainage port B21. The nutrient solution S flows downward inside the drainage pipe 16B2 and is discharged to the nutrient solution tank 41 via the discharge path 46b. A valve 47 (see FIG. 2) is preferably provided in the discharge path 46b. The valve 47 can be used to appropriately set the amount of the nutrient solution S discharged from the drain pipe 16B2.
  • the three cutouts B34 are determined so that the total opening area thereof is smaller than the opening area of the drainage port B21. Therefore, the flow velocity of the nutrient solution S when passing through the notch B34 is faster than the flow velocity when passing through the drain port B21. Therefore, compared with the drainage method used in Patent Document 1, even the nutrient solution S far from the second drainage part 16B can be drawn and drained. It is possible to prevent stagnation.
  • the size of the notch B34 is not limited, but if it is too small, the notch B34 may be clogged with foreign matter and obstruct drainage. The nutrient solution S in the lower layer in the cultivation tank 10 becomes difficult to move.
  • the one or more openings formed in the other end B33 of the sheath tube 16B3 are limited to notches formed in the height direction from the end surface of the end B33 as shown in FIG. not.
  • it may be an opening formed in the side surface B32 at a position slightly separated from the end surface in the height direction of the sheath tube 16B3.
  • the shape of the opening at this time is also not limited, and may be square or circular, for example.
  • spacers B23 are erected on the outer surface of the side surface B22 of the drainage pipe 16B2.
  • the spacer B23 is provided to maintain an appropriate distance between the drainage tube 16B2 and the sheath tube 16B3 and prevent movement of the sheath tube 16B3 during drainage.
  • the positions and number of spacers B23 are not limited. In FIG. 4, four spacers B23 are provided at approximately the center in the height direction of the outer surface of the side surface B22 at regular intervals in the circumferential direction. For example, three or five or more spacers B23 may be provided in the circumferential direction of the drain pipe 16B2, and two or more rows may be provided in the height direction.
  • the spacer B23 is provided on the outer surface of the side surface B22 in FIG. 4, it is not limited to this, and may be provided on the inner surface of the sheath tube 16B3, for example. Also, the size of the spacer B23 is not limited. For example, the height (vertical length) of the spacer B23 may be the same as the height of the side surface B22 of the drainage pipe 16B2, and the width of the spacer B23 (that is, the length of protrusion from the outer surface of the side surface B22) It is sufficient if the gap between the liquid tube 16B2 and the sheath tube 16B3 can be properly maintained to prevent unnecessary movement of the sheath tube 16B3 during liquid discharge.
  • Materials for the first drainage part 16A and the second drainage part 16B are not particularly limited. Resin is preferred.
  • FIG. 5 shows an example of the position where the discharging device 16 is arranged in the cultivation tank 10.
  • FIG. 5(a) shows an arrangement example of the discharging device 16 in a typical cultivation tank 10 (about 1000 mm wide and about 200 mm deep) used for cultivating leaf vegetables.
  • the discharge device 16 is arranged near the side surface 10c of the cultivation tank 10 downstream in the flow direction of the nutrient solution S.
  • the first drainage part 16A and the second drainage part 16B are arranged side by side in a direction crossing the direction in which the nutrient solution S flows.
  • the first drainage part 16A and the second drainage part 16B are arranged such that the centers of the respective drainage ports A21 and B21 are about 180 mm from the side surface 10b and about 250 mm from the side surface 10c.
  • the inner diameter of the overflow pipe 16A2 that constitutes the first drainage portion 16A is 100 mm.
  • the inner diameter of the drainage tube 16B2 that constitutes the second drainage part 16B is 100 mm, and the inner diameter of the sheath tube 16B3 is 200 mm.
  • FIG. 5(b) shows an arrangement example of the discharging device 16 in a typical cultivation tank 10 (about 300 mm in width and depth) used for cultivating fruit vegetables such as eggplants and tomatoes.
  • the discharge device 16 is arranged near the side surface 10c of the cultivation tank 10 downstream in the flow direction of the nutrient solution S.
  • the first drainage part 16A and the second drainage part 16B are arranged side by side in the same direction as the direction in which the nutrient solution S flows. 16A downstream.
  • the distance between the first drainage part 16A and the second drainage part 16B and the distance between the second drainage part 16B and the side surface 10c are both preferably about 250 mm.
  • the inner diameter of the overflow pipe 16A2 that constitutes the first drainage portion 16A is 100 mm.
  • the inner diameter of the drainage tube 16B2 that constitutes the second drainage part 16B is 100 mm, and the inner diameter of the sheath tube 16B3 is 200 mm.
  • FIG. 5(c) shows an arrangement example of the discharging device 16 in a typical cultivation tank 10 (about 200 mm in width and depth) used for head cultivation such as lettuce.
  • the discharge device 16 is arranged near the side surface 10c of the cultivation tank 10 downstream in the flow direction of the nutrient solution S.
  • the first drainage part 16A and the second drainage part 16B are arranged side by side in the same direction as the direction in which the nutrient solution S flows.
  • the liquid section 16B is arranged downstream of the first drainage section 16A.
  • first drainage part 16A and the second drainage part 16B are preferably arranged in a direction that intersects the flow of the nutrient solution S as shown in FIG. 5(a). Furthermore, it is more preferable that both are arranged as far apart as possible. In the case of the cultivation tank 10 having a narrow width as shown in FIGS. However, in this case, it is preferable that the second drainage section 16B, which draws the nutrient solution S with a stronger force, be arranged downstream of the first drainage section 16A.
  • the distance between the first drainage part 16A and the second drainage part 16B and the distance between the second drainage part 16B and the side surface 10c are both preferably about 180 mm. Also, the inner diameter of the overflow pipe 16A2 of the first drainage portion 16A is 50 mm. The inner diameter of the drainage tube 16B2 of the second drainage part 16B is 50 mm, and the inner diameter of the sheath tube 16B3 is 100 mm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

Provided is a nutrient solution discharge device for discharging a nutrient solution flowing in a cultivation tank without staying in a plant cultivation system for cultivating a plant in the cultivation tank containing the nutrient solution. This device includes a set of a first drainage part and a second drainage part. The first drainage part has a first drainage port at a height of the required liquid level of the nutrient solution necessary for plant cultivation. The second drainage part has a second drainage port at a height that is lower than the required liquid level and that can maintain at least the minimum liquid level necessary for plant survival even when the supply of nutrient solution is stopped. The second drainage part has a drainage pipe having the second drainage port and a sheath pipe covering the drainage pipe. The sheath pipe has one end located above the second drainage port and the other end at least a part of which is in contact with the bottom surface of the cultivation tank and in which one or more openings are provided for taking the nutrient solution in the cultivation tank into the interior, and the aforesaid one end is placed at a position higher than the first drainage port.

Description

植物栽培システムに用いられる養液排出装置Nutrient discharge device used in plant cultivation system
 本発明は、植物の人工栽培に関し、より具体的には、植物の水耕栽培のための栽培槽に流れる養液を栽培槽から排出する排出装置に関する。 The present invention relates to the artificial cultivation of plants, and more specifically, to a discharge device that discharges the nutrient solution flowing in a cultivation tank for hydroponic cultivation of plants from the cultivation tank.
 野菜、花卉等を含む植物は、一般に、屋外又は屋内における土耕栽培方式(開放型、半閉鎖型、又は完全閉鎖型の土耕栽培方式)によって生産される。しかし、土耕栽培方式には、収穫が季節や天候に左右されること、連作障害が発生すること、害虫などによる病気の恐れがあることなどといった課題がある。こうした土耕栽培方式に対して、近年、養液栽培を利用して植物を屋内で栽培する屋内型人工栽培方式が実用化されている。 Plants, including vegetables and flowers, are generally produced by outdoor or indoor soil cultivation methods (open, semi-closed, or completely closed soil cultivation methods). However, the soil cultivation method has problems such as the fact that the harvest is dependent on the season and weather, the occurrence of continuous crop failure, and the risk of diseases caused by pests. In contrast to such soil cultivation methods, in recent years, an indoor artificial cultivation method has been put into practical use, in which plants are cultivated indoors using hydroponics.
 養液栽培には種々の方式があるが、主に用いられている方式は、流動する養液を用いて植物の根に養分を供給するものであり、この方式は、大きく薄膜型養液栽培方式と湛液型養液栽培方式とに分けられる。薄膜型養液栽培方式は、植物の生長に必要な養分を水に溶解させた養液を、緩やかな傾斜を持つ平面上に薄く流下させ、その養液によって植物を栽培する方式である。薄膜型養液栽培方式は、根の伸長が妨げられるため、植物の生長に問題が生じる場合がある。 There are various methods of hydroponic culture, but the most commonly used method uses a flowing nutrient solution to supply nutrients to the roots of plants. It is divided into a method and a submerged type hydroponics method. The thin-film type hydroponics method is a method in which a nutrient solution, in which nutrients necessary for plant growth are dissolved in water, is thinly poured down on a flat surface with a gentle slope, and plants are cultivated using the nutrient solution. The thin-film type hydroponics system hinders root elongation, which may cause problems in plant growth.
 一方、湛液型養液栽培方式は、植物の生育が行われる栽培槽に、植物の根が養液に浸漬するように養液を供給する方式である。湛液型養液栽培方式は、薄膜型養液栽培方式と比べて、養液の量が多いため水深が深く、根の生長が妨げられないこと、養分濃度や液温の変化がゆるやかであるため管理が容易であることなどといった特徴がある。本発明は、後者の湛液型養液栽培方式に関するものであり、以下において養液栽培というときは、湛液型養液栽培をいう。本出願の発明者は、特許文献1において湛液型養液栽培に関する提案を行っている。 On the other hand, the submerged hydroponics method is a method in which a nutrient solution is supplied to a cultivation tank where plants are grown so that the plant roots are immersed in the nutrient solution. Compared to the thin film type hydroponics method, the submerged hydroponics method uses a large amount of nutrient solution, so the water depth is deep, root growth is not hindered, and changes in nutrient concentration and liquid temperature are gentle. Therefore, it has the characteristics of being easy to manage. The present invention relates to the latter, the submerged hydroponic system, and hereinafter, hydroponic culture refers to submerged hydroponic culture. The inventor of the present application has proposed a flood-type hydroponic culture in Patent Document 1.
 特許文献1においては、湛液型養液栽培を行うための植物栽培システムが提案されている。この植物栽培システムでは、特許文献1の図3及び図4に示されるように、植物を栽培するための養液Sが養液供給経路45から栽培槽10に供給され、一方向に流されて、排液口16から排出される。排液口16は、第1の排液口16a及び第2の排液口16bからなる。第1の排液口16aは、栽培槽10の底面と同一の面に位置するように設けられた開口である。第2の排液口16bは、養液Sの流出口が養液Sの水面に近い場所に位置するように設けられている。 Patent Document 1 proposes a plant cultivation system for performing submerged hydroponics. In this plant cultivation system, as shown in FIGS. 3 and 4 of Patent Document 1, a nutrient solution S for cultivating plants is supplied from a nutrient solution supply path 45 to the cultivation tank 10 and allowed to flow in one direction. , is discharged from the drain port 16 . The drainage port 16 consists of a first drainage port 16a and a second drainage port 16b. The first drainage port 16 a is an opening provided so as to be positioned on the same plane as the bottom surface of the cultivation tank 10 . The second drainage port 16b is provided so that the outflow port of the nutrient solution S is positioned near the water surface of the nutrient solution S. As shown in FIG.
 特許文献2には、養殖・栽培装置に利用される水位調節機構が提案されている。この水位調節機構は、水位調節管とその外側にかぶせるワクとで構成され、ワクの下方に設けられた開口から水が排水されることによって、水槽下部の有機物を水流で吸い上げて排出することができるとされている。 Patent Document 2 proposes a water level control mechanism used in aquaculture/cultivation equipment. This water level adjustment mechanism consists of a water level adjustment pipe and a rack that covers the outside of the pipe, and the water is drained from the opening provided below the rack, so that the organic matter in the lower part of the water tank can be sucked up and discharged by the water flow. It is said to be possible.
特開2015-84750号公報JP 2015-84750 A 特許第3069847号公報Japanese Patent No. 3069847
 特許文献1に提案されている排液方法には、次のような問題がある。
 栽培槽10の底面に、単なる開口である排液口16aが配置されていると、排液口16aの近くの養液Sが優先的に排液され、栽培槽10内において排液口16aから離れた場所の養液Sが滞留することがある。このように養液Sが滞留すると、滞留した箇所の養液Sが腐敗するため、植物が成長せず、枯れる恐れがある。また、排液口16bから排出される養液Sの量が少なくなるため、栽培槽10内の養液Sの上層がスムーズに排出されず滞留し、植物の根が腐ることがある。
The drainage method proposed in Patent Document 1 has the following problems.
If the drainage port 16a, which is a mere opening, is arranged on the bottom surface of the cultivation tank 10, the nutrient solution S near the drainage port 16a is preferentially drained, and the nutrient solution S is drained from the drainage port 16a in the cultivation tank 10. The nutrient solution S in a distant place may stay. If the nutrient solution S stays in this manner, the plant will not grow and may wither because the nutrient solution S in the stagnant portion will rot. In addition, since the amount of the nutrient solution S discharged from the drainage port 16b is reduced, the upper layer of the nutrient solution S in the cultivation tank 10 is not discharged smoothly and stays there, and the roots of the plants may rot.
 また、停電や故障等によって植物栽培システムへの電力供給が停止し、養液Sが栽培槽10に適切に供給されなくなったときには、栽培槽10の底面に配置された排液口16aから栽培槽10内の養液Sがすべて排出され、養液Sが必要な液位を下回る。そうすると、栽培槽10で栽培されている植物が枯れるおそれがある。停電や故障の際に自動的に養液Sの供給を停止したり、養液Sの排出を停止したりできるように、例えば電磁弁などによる養液制御システムを採用すれば、このような問題に対応可能であるが、導入コストが大きくなる。 In addition, when the power supply to the plant cultivation system is stopped due to a power outage, a failure, or the like, and the nutrient solution S is no longer properly supplied to the cultivation tank 10, the cultivation tank is discharged from the drainage port 16a arranged on the bottom surface of the cultivation tank 10. All of the nutrient solution S in 10 is discharged and the nutrient solution S falls below the required liquid level. Then, the plants cultivated in the cultivation tank 10 may wither. If a nutrient solution control system using, for example, a solenoid valve is adopted so that the supply of the nutrient solution S and the discharge of the nutrient solution S can be stopped automatically in the event of a power failure or malfunction, such a problem can be solved. can be used, but the introduction cost increases.
 特許文献2に提案される水位調節装置は、これを単独で植物栽培システムに用いた場合には、ワクの下部に設けられた開口からしか養液Sが排出されないため、栽培槽10内の上層の養液Sに滞留が生じて、養液S全体の一様な排出に問題が生じるおそれがある。特許文献1の場合と同様に、栽培槽10内の養液Sの上層が滞留することによって、養液Sが腐敗し、植物の根が腐ることがある。 When the water level adjusting device proposed in Patent Document 2 is used alone in a plant cultivation system, the nutrient solution S is discharged only from the opening provided at the bottom of the plant, so the upper layer in the cultivation tank 10 stagnation of the nutrient solution S may occur, causing a problem in uniform discharge of the entire nutrient solution S. As in the case of Patent Document 1, when the upper layer of the nutrient solution S stays in the cultivation tank 10, the nutrient solution S may rot and the roots of the plants may rot.
 本発明は、上記の課題を解決するため、養液が収容された栽培槽で植物を栽培する植物栽培システムにおいて、栽培槽内を流れる養液全体を滞留させることなく一様に排出することができる養液排出装置を提供することを目的とする。 In order to solve the above problems, the present invention provides a plant cultivation system for cultivating plants in a cultivation tank containing a nutrient solution, in which the entire nutrient solution flowing in the cultivation tank can be discharged uniformly without stagnation. It is an object of the present invention to provide a nutrient solution discharge device capable of
 本発明は、栽培槽内を流れる養液を排出するための養液排出装置を提供する。本装置は、第1の排液部と第2の排液部とのセットを備える。第1の排液部は、植物の栽培に必要な養液の必要液位の高さに第1の排液口を有する。第2の排液部は、必要液位より低く、かつ、養液の供給が停止したときでも少なくとも植物の生存に必要な最低液位を維持できる高さに第2の排液口を有する。第2の排液部は、第2の排液口を有する排液管と、排液管を覆うさや管とを有する。さや管は、第2の排液口の上方に位置する一方の端部と、栽培槽の底面に少なくとも一部が接し、栽培槽内の養液を内部に取り入れる1つ又は複数の開口が設けられた他方の端部とを有する。一方の端部は、第1の排液口より高い位置ある。 The present invention provides a nutrient solution discharge device for discharging the nutrient solution flowing in the cultivation tank. The device comprises a set of a first drain and a second drain. The first drainage part has a first drainage port at a required liquid level of a nutrient solution required for plant cultivation. The second drainage part has a second drainage port at a height that is lower than the required liquid level and that can maintain at least the minimum liquid level necessary for plant survival even when the supply of the nutrient solution is stopped. The second drainage part has a drainage tube having a second drainage port and a sheath tube covering the drainage tube. The sheath pipe is at least partially in contact with one end located above the second drainage port and the bottom surface of the cultivation tank, and is provided with one or more openings for taking in the nutrient solution in the cultivation tank. and the other end of the connector. One end is positioned higher than the first drainage port.
 排液管の外面とさや管の内面との間には、1つ又は複数のスペーサが設けられることが好ましい。また、1つ又は複数のスペーサは、排液管の外面に取り付けられていることが好ましい。 It is preferable that one or more spacers are provided between the outer surface of the drainage tube and the inner surface of the sheath tube. Also, the one or more spacers are preferably attached to the outer surface of the drain.
  さや管の1つ又は複数の開口は、それらの開口面積の合計が、第2の排液口の開口面積より小さいことが好ましい。 It is preferable that the total opening area of one or more openings of the sheath tube is smaller than the opening area of the second drainage port.
 一実施形態では、第1の排液部及び第2の排液部は、養液の流れの下流において、養液の流れる方向を横切る方向に並置されていることが好ましい。別の実施形態では、第1の排液部及び第2の排液部は、養液の流れの下流において、養液の流れる方向と同じ方向に並置され、第2の排液部が第1の排液部の下流側に配置されていることが好ましい。 In one embodiment, the first drainage part and the second drainage part are preferably arranged side by side in a direction transverse to the direction of flow of the nutrient solution downstream of the flow of the nutrient solution. In another embodiment, the first drain and the second drain are juxtaposed downstream of the flow of the nutrient solution and in the same direction as the direction of flow of the nutrient solution, the second drain It is preferably arranged downstream of the drainage part of the.
 本発明にかかる養液排出装置によれば、栽培槽内の養液の部分的な滞留を生じさせることなく、全体を一様に排出させることができるとともに、停電や故障などで養液の適切な供給が不可能なときであっても植物の生存に必要な液位以下に栽培槽内の養液の液位が低下することがなく、かつ、これらの機能を低コストで実現可能である。 According to the nutrient solution discharge device according to the present invention, it is possible to uniformly discharge the entire nutrient solution without causing partial stagnation of the nutrient solution in the cultivation tank, and to properly discharge the nutrient solution in the event of a power failure or malfunction. Even when an adequate supply is impossible, the liquid level of the nutrient solution in the cultivation tank does not drop below the liquid level necessary for the survival of the plants, and these functions can be realized at low cost. .
本発明の一実施形態に係る排液装置が用いられる植物栽培システムの概略的な全体図である。1 is a schematic general view of a plant cultivation system using a drainage device according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る排液装置が用いられた植物栽培システムの栽培槽の概略的な側断面図である。1 is a schematic side cross-sectional view of a cultivation tank of a plant cultivation system using a drainage device according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る排液装置の第1の排液部(オーバーフロー管)の分解斜視図である。4 is an exploded perspective view of a first drainage part (overflow pipe) of the drainage device according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る排液装置の第2の排液部(排液管)の分解斜視図である。FIG. 4 is an exploded perspective view of a second drainage part (drainage tube) of the drainage device according to one embodiment of the present invention; 本発明の一実施形態に係る排液装置の第1の排液部及び第2の排液部の配置例を示す、栽培槽の平面図である。1 is a plan view of a cultivation tank showing an arrangement example of a first drainage part and a second drainage part of a drainage device according to an embodiment of the present invention; FIG.
(植物栽培システムの概要)
 図1は、本発明の一実施形態に係る養液排出装置が用いられる植物栽培システム1の概略図を示す。植物栽培システム1は、ハウス60と、ハウス60内に収容され、植物を栽培する1つ又は複数の栽培槽10と、改質空気RAを製造するための改質空気製造手段20とを含む。製造される改質空気RAは、酸素含有量が高くなるように空気を改質したものである。図1においては、改質空気製造手段20は、ハウス60の外部に設けられているが、ハウス60の内部に設けてもよい。
(Overview of plant cultivation system)
FIG. 1 shows a schematic diagram of a plant cultivation system 1 in which a nutrient solution discharge device according to one embodiment of the present invention is used. The plant cultivation system 1 includes a house 60, one or a plurality of cultivation tanks 10 housed in the house 60 for cultivating plants, and a modified air production means 20 for producing the modified air RA. The reformed air RA produced is air that has been reformed to have a higher oxygen content. In FIG. 1, the reformed air producing means 20 is provided outside the house 60, but it may be provided inside the house 60. FIG.
 栽培槽10は、単品目又は多品目の植物が支持体(フロート)で支持されるとともに、植物を生長させるための養分が含まれる養液Sが内部を流れるようになっている。栽培槽10は、例えば支持フレーム19によって支持される。多品目の植物が栽培される場合には、植物の種類や収穫までの時間に対応可能となるように多段式に構成されることが好ましい。栽培槽10の養液Sには、栽培される植物の根が浸漬する。養液Sには、改質空気RAが供給される。ハウス60の地下部分には、養液タンク41などの設備が埋設される。 In the cultivation tank 10, single or multi-item plants are supported by supports (floats), and a nutrient solution S containing nutrients for growing the plants flows inside. The cultivation tank 10 is supported by a support frame 19, for example. When a variety of plants are cultivated, it is preferable to have a multi-stage configuration so as to be able to cope with the types of plants and the time until harvest. Roots of plants to be cultivated are immersed in the nutrient solution S in the cultivation tank 10 . The nutrient solution S is supplied with reformed air RA. Facilities such as a nutrient solution tank 41 are buried in the underground portion of the house 60 .
 植物栽培システム1では、ホウレンソウ、リーフレタスなどの葉野菜、トマト、ナス、キュウリなどの果菜、白菜、キャベツ、レタスなどの結球野菜、エンドウ、ソラマメ、落花生などの豆類、いちご、メロンなどの果物、花卉などを、単品目又は多品目で、年間を通して栽培することができる。また、植物栽培システム1において多品目の植物を栽培する場合には、発芽直後から収穫までにわたって、生長段階の異なる植物を混在させながら、同時に栽培することができる。 In the plant cultivation system 1, leafy vegetables such as spinach and leaf lettuce; fruit vegetables such as tomatoes, eggplants and cucumbers; head vegetables such as Chinese cabbage, cabbage and lettuce; Flowers and the like can be cultivated throughout the year as a single item or multiple items. In addition, when cultivating a variety of plants in the plant cultivation system 1, it is possible to simultaneously cultivate plants of different growth stages from immediately after germination to harvest.
 植物栽培システム1においては、すべての栽培槽10間で、同一の養分が全体的に均質になるように混合された養液Sが一定の状態で常に循環するように構成されている。養液Sは、植物の品目、生長段階及び栽培時期に関わらず、同一成分の養液Sが連続的に用いられ、蒸発及び植物による吸収によって減少した分だけ、水及び/又は養分を補充するだけでよい。 The plant cultivation system 1 is configured such that the nutrient solution S, in which the same nutrients are mixed so as to be homogeneous throughout, is constantly circulated in a constant state between all the cultivation tanks 10 . As the nutrient solution S, the nutrient solution S with the same components is continuously used regardless of the type of plant, the stage of growth, and the time of cultivation, and water and/or nutrients are replenished by the amount reduced by evaporation and absorption by the plant. Just
 養液Sに含まれる成分は特に限定されるものではなく、一般的な養液栽培において使用される養液を用いることができる。養液Sは、成分として、例えば、アンモニア性窒素、水溶性リン酸、硝酸性窒素、水溶性カリウム、硝酸カルシウム、水溶性マグネシウム、水溶性マンガン、水溶性ホウ素、水溶性鉄、水溶性銅、水溶性モリブデン、水溶性亜鉛を含むものとすることができる。養液Sは、その状態すなわち、少なくとも溶存酸素濃度(DO)、電気伝導度(EC)、温度Ts、水素イオン濃度指数(pH)及び酸化還元電位(ORP)といったパラメータの値が、概ね一定に維持されるように管理される。 The components contained in the nutrient solution S are not particularly limited, and any nutrient solution used in general hydroponics can be used. The nutrient solution S contains, for example, ammonia nitrogen, water-soluble phosphoric acid, nitrate nitrogen, water-soluble potassium, calcium nitrate, water-soluble magnesium, water-soluble manganese, water-soluble boron, water-soluble iron, water-soluble copper, It may contain water-soluble molybdenum and water-soluble zinc. The state of the nutrient solution S, that is, at least the values of parameters such as dissolved oxygen concentration (DO), electrical conductivity (EC), temperature Ts, hydrogen ion concentration exponent (pH), and oxidation-reduction potential (ORP) are generally constant. managed to be maintained.
 図2は、本発明の一実施形態に係る養液排出装置16が用いられた栽培槽10及び周辺設備の一例を示す概略的な側面図である。栽培槽10は、底面10a及び側面10b、10cを有し、内部において養液Sが一方向に所定速度で流れるように構成された槽である。養液Sの液面には支持基材11が浮かべられ、支持基材11には複数の開口部12が設けられている。開口部12には、培地14が入った栽培ポット13が配置される。支持基材11、開口部12、及び栽培ポット13の種類や形状等は、栽培される植物の種類に応じて適宜選択することができ、図2に示されるものには限定されない。 FIG. 2 is a schematic side view showing an example of the cultivation tank 10 and peripheral equipment using the nutrient solution discharge device 16 according to one embodiment of the present invention. The cultivation tank 10 has a bottom surface 10a and side surfaces 10b and 10c, and is configured such that the nutrient solution S flows in one direction at a predetermined speed. A support substrate 11 is floated on the liquid surface of the nutrient solution S, and the support substrate 11 is provided with a plurality of openings 12 . A cultivation pot 13 containing a culture medium 14 is placed in the opening 12 . The types and shapes of the supporting substrate 11, the openings 12, and the cultivation pots 13 can be appropriately selected according to the type of plant to be cultivated, and are not limited to those shown in FIG.
 栽培槽10の長さ、幅及び深さは、それぞれの栽培槽10で栽培される植物の種類、量及び栽培施設の規模などに応じて決められ、特に幅及び深さは、栽培される植物の根や茎がその本来の生長形状を維持することができるように決定される。栽培槽10は、例えば、葉野菜の場合であれば、幅が約1000mm、深さが約200mmのものが用いられ、ナスやトマトなどの果菜の場合であれば、幅及び深さが約300mm、レタスなどの結球野菜であれば、幅及び深さが約200mmのものが用いられる。栽培槽10の長さは、いずれの植物の場合でもハウス60の規模によって適宜設定され、例えば、短いもので約50cm、長いものでは約100mの場合もある。 The length, width and depth of the cultivation tank 10 are determined according to the type and amount of plants cultivated in each cultivation tank 10 and the scale of the cultivation facility. roots and stems can maintain their original growth shape. The cultivation tank 10 has a width of about 1000 mm and a depth of about 200 mm for leaf vegetables, and a width and depth of about 300 mm for fruit vegetables such as eggplants and tomatoes. , and headed vegetables such as lettuce, those having a width and depth of about 200 mm are used. The length of the cultivation tank 10 is appropriately set according to the scale of the greenhouse 60 for any plant, and may be about 50 cm for a short one and about 100 m for a long one, for example.
 栽培槽10には、供給経路45から養液Sが供給される。供給口45aから供給された養液Sは、栽培槽10内を、図2の矢印の方向に流れる。 A nutrient solution S is supplied to the cultivation tank 10 from a supply route 45 . The nutrient solution S supplied from the supply port 45a flows in the cultivation tank 10 in the direction of the arrow in FIG.
 栽培槽10内部には、空気配管34と空気供給部36とが設けられる。改質空気RAは、空気配管34を通して空気供給部36に供給され、空気供給部36から養液Sに改質空気RAが供給される。空気供給部36は、限定されるものではないが、セラミックスを高温で焼成した中空筒状の多孔質体であることが好ましい。 An air pipe 34 and an air supply unit 36 are provided inside the cultivation tank 10 . The reformed air RA is supplied to the air supply section 36 through the air pipe 34 , and the reformed air RA is supplied to the nutrient solution S from the air supply section 36 . Although the air supply part 36 is not limited, it is preferably a hollow cylindrical porous body obtained by firing ceramics at a high temperature.
 栽培槽10には、養液の排出装置16が設けられており、栽培槽10内を流れてきた養液Sは、この排出装置16から排出される。排出装置16は、2つの排液部16A、16Bからなる。第1の排液部16Aは、養液Sの排出口が養液Sの液面と同じ高さに位置するように設けられている。第2の排液部16Bは、養液Sの排出口が第1の排液部16Aの排出口より少し低い位置に設けられている。排出装置16の詳細は、後述する。 A nutrient solution discharge device 16 is provided in the cultivation tank 10 , and the nutrient solution S that has flowed through the cultivation tank 10 is discharged from the discharge device 16 . The drain device 16 consists of two drains 16A, 16B. The first drainage part 16A is provided so that the outlet for the nutrient solution S is positioned at the same height as the liquid surface of the nutrient solution S. As shown in FIG. The second drainage part 16B is provided with an outlet for the nutrient solution S at a position slightly lower than the outlet of the first drainage part 16A. The details of the ejection device 16 will be described later.
 栽培槽10から排出された養液Sは、排出経路46a、46bを通り、好ましくは地中に埋設された排出側タンク41内に入る。排出側タンク41の養液Sは、循環ポンプ(図示せず)によって、配管43を通り、好ましくは地中に埋設された供給側タンク44に供給される。供給側タンク44内の養液Sは、供給ポンプ(図示せず)によって、供給経路45を通って、供給口45aから栽培槽10に供給される。供給経路45には、養液Sの供給量をより精密に制御することができるように、必要に応じて、経路を開閉するバルブ(図示せず)を設けてもよい。 The nutrient solution S discharged from the cultivation tank 10 passes through the discharge paths 46a and 46b and preferably enters the discharge side tank 41 buried in the ground. The nutrient solution S in the discharge side tank 41 is supplied to a supply side tank 44 preferably buried in the ground through a pipe 43 by a circulation pump (not shown). The nutrient solution S in the supply-side tank 44 is supplied to the cultivation tank 10 from the supply port 45a through the supply path 45 by a supply pump (not shown). The supply path 45 may be provided with a valve (not shown) for opening and closing the path, if necessary, so that the supply amount of the nutrient solution S can be controlled more precisely.
(養液排出装置)
 図3及び図4は、本発明に係る養液の排出装置16を示す。図3は第1の排液部16Aの分解斜視図であり、図4は第2の排液部16Bの分解斜視図である。
(Nourishing solution discharge device)
3 and 4 show a nutrient solution discharge device 16 according to the present invention. FIG. 3 is an exploded perspective view of the first drainage part 16A, and FIG. 4 is an exploded perspective view of the second drainage part 16B.
 第1の排液部16Aは、養液Sのオーバーフロー機能を有する。すなわち、第1の排液部16Aは、供給経路45の供給口45aから栽培槽10に供給された養液Sが、栽培槽10内で、植物の栽培に必要な養液Sの液位、すなわち「必要液位」を維持することができるようにする。 The first drainage part 16A has a nutrient solution S overflow function. That is, the first drainage part 16A is configured so that the nutrient solution S supplied to the cultivation tank 10 from the supply port 45a of the supply path 45 is at a liquid level of the nutrient solution S necessary for cultivating the plant in the cultivation tank 10, In other words, the "required liquid level" can be maintained.
 第1の排液部16Aは、栽培槽10の底面10aに設けられた開口に嵌合する中空パイプのソケット16A1と、上方からソケット16A1に挿入されるオーバーフロー管16A2とを備える。ソケット16A1は、排出経路46aに連結される。 The first drainage part 16A includes a hollow pipe socket 16A1 that fits into an opening provided in the bottom surface 10a of the cultivation tank 10, and an overflow pipe 16A2 that is inserted into the socket 16A1 from above. The socket 16A1 is connected to the discharge path 46a.
 オーバーフロー管16A2は、中空パイプであり、その上端には排液口A21(第1の排液口)がある。排液口A21の高さは、養液Sの必要液位と同じ高さになるように設定される。排液口A21の高さ(すなわち必要液位)は、栽培する植物に応じて異なるが、例えば、栽培槽10において栽培される植物の根と茎の境目の3mm~5mm程度下方であることが好ましい。オーバーフロー管16A2から養液Sが排出されるようにすることで、栽培槽10内の養液Sの主に上層(植物の根の密な部分が位置する高さを流れる養液)を滞留させることなくスムーズに排出させることができる。 The overflow pipe 16A2 is a hollow pipe, and has a drainage port A21 (first drainage port) at its upper end. The height of the drainage port A21 is set to be the same as the required liquid level of the nutrient solution S. The height of the drainage port A21 (that is, the required liquid level) varies depending on the plant to be cultivated, but for example, it is about 3 mm to 5 mm below the boundary between the root and stem of the plant cultivated in the cultivation tank 10. preferable. By discharging the nutrient solution S from the overflow pipe 16A2, mainly the upper layer of the nutrient solution S in the cultivation tank 10 (the nutrient solution flowing at the height where the dense part of the roots of the plant is located) is retained. It can be discharged smoothly.
 オーバーフロー管16A2の下端は、ソケット16A1に挿入される。ソケット16A1には、その下方から排出経路46aの上端が挿入される。したがって、排液口A21からオーバーフロー管16A2に入った養液Sは、排出経路46aを介して、養液タンク41に排出される。 The lower end of the overflow pipe 16A2 is inserted into the socket 16A1. The upper end of the discharge path 46a is inserted into the socket 16A1 from below. Therefore, the nutrient solution S that has entered the overflow pipe 16A2 through the drain port A21 is discharged to the nutrient solution tank 41 via the discharge path 46a.
 第2の排液部16Bは、栽培槽10内の養液Sの主に下層の部分を自らの方向に移動させて排出する機能を有する。また、第2の排液部16Bによって、停電などで養液Sの供給が停止したときでも、少なくとも植物の生存に必要な養液Sの液位、すなわち「最低液位」を維持する機能を有する。最低液位は、栽培する植物の種類に応じて異なるが、例えば、栽培槽10において栽培される植物の根の半分程度が養液Sに浸る液位であることが好ましく、それより液位が低下すると根が乾くおそれがある。 The second drainage part 16B has a function of moving mainly the lower layer portion of the nutrient solution S in the cultivation tank 10 in its own direction and discharging it. In addition, even when the supply of the nutrient solution S is stopped due to a power failure or the like, the second drainage part 16B has a function of maintaining at least the liquid level of the nutrient solution S necessary for the survival of the plant, that is, the "minimum liquid level". have. The lowest liquid level varies depending on the type of plant to be cultivated, but for example, it is preferably the liquid level at which about half of the roots of the plants cultivated in the cultivation tank 10 are immersed in the nutrient solution S, and the liquid level is higher than that. If it drops, the roots may dry out.
 第2の排液部16Bは、栽培槽10の底面10aに設けられた開口に嵌合するソケット16B1と、上方からソケット16B1に挿入される排液管16B2とを備える。ソケット16B1は、排出経路46bに連結される。 The second drainage part 16B includes a socket 16B1 that fits into an opening provided in the bottom surface 10a of the cultivation tank 10, and a drainage pipe 16B2 that is inserted into the socket 16B1 from above. The socket 16B1 is connected to the discharge path 46b.
 排液管16B2は、中空パイプであり、その上端には排液口B21(第2の排液口)がある。排液口B21の高さは、必要液位より低くなるように設定される。また、排液口B21の高さは、栽培槽10への養液Sの供給が停止したときでも最低液位を維持できる高さである。排液口B21の高さは、限定されるものではないが、必要液位及び排液口A21から20mm~30mm低い位置に配置されることが好ましい。排液口B21の高さが必要液位及び排液口A21から20mm低い位置より高くなると、後述されるさや管16B3の切欠B34から入った養液Sが排液口B21まで上がりづらくなり、養液Sの排出に支障が生じる可能性がある。排液口B21の高さが必要液位及び排液口A21から30mm低い位置より低くなると、停電や故障の際に液位が下がりすぎて、植物の生命が維持できなくなるおそれがある。 The drain pipe 16B2 is a hollow pipe, and has a drain port B21 (second drain port) at its upper end. The height of the drainage port B21 is set to be lower than the required liquid level. Moreover, the height of the drainage port B21 is such that the minimum liquid level can be maintained even when the supply of the nutrient solution S to the cultivation tank 10 is stopped. Although the height of the drain port B21 is not limited, it is preferably arranged at a position 20 mm to 30 mm lower than the required liquid level and the drain port A21. When the height of the drainage port B21 is higher than the required liquid level and the position 20 mm lower than the drainage port A21, the nutrient solution S entering from the notch B34 of the sheath tube 16B3 described later becomes difficult to rise to the drainage port B21. Discharge of the liquid S may be hindered. If the height of the drainage port B21 is lower than the required liquid level and the position 30 mm lower than the drainage port A21, the liquid level may drop too much in the event of a power failure or malfunction, making it impossible to maintain the life of the plant.
 排液管16B2は、さや管16B3によって覆われる。さや管16B3は、一方の端部B31及び他方の端部B33がいずれも開放された中空パイプである。一方の端部B31は、排液口B21の上方に位置し、オーバーフロー管16A2の排液口A21より高い位置になるように設定されている。端部B31が排液口A21より低い位置にあると、後述されるさや管16B3の切欠B34より高い位置にある端部B31から排出される養液Sが、切欠B34を通って排出される養液より多くなり、必要液位が維持できないだけでなく、切欠B34を通る養液Sが少なくなるため栽培槽10の下層の養液Sを引く力が弱くなる。 The drainage pipe 16B2 is covered with a sheath pipe 16B3. The sheath tube 16B3 is a hollow pipe with one end B31 and the other end B33 both open. One end B31 is located above the drainage port B21 and is set to be higher than the drainage port A21 of the overflow pipe 16A2. When the end portion B31 is at a position lower than the drain port A21, the nutrient solution S discharged from the end portion B31 at a position higher than the notch B34 of the sheath tube 16B3 described later is discharged through the notch B34. Not only does it become impossible to maintain the required liquid level, but the amount of nutrient solution S passing through the notch B34 decreases, so the force that draws the nutrient solution S in the lower layer of the cultivation tank 10 weakens.
 さや管16B3の他方の端部B33には、側面B32の周方向に1つ又は複数の開口B34が形成される。図4の実施形態では、開口は3つの切欠B34として形成されている。3つの切欠B34が他方の端部B33に形成されているので、他方の端部B33においては、端面の一部が栽培槽10の底面10aに接し、切欠B34がある部分は底面10aに接することなく開口となる。切欠B34の形状は、図4に示されるような四角形に限定されず、多角形でも円の一部であってもよい。また、切欠B34の数は、3つに限定されるものではなく、2つ以下でもよく、4つ以上でもよい。 At the other end B33 of the sheath tube 16B3, one or more openings B34 are formed in the circumferential direction of the side surface B32. In the embodiment of FIG. 4 the openings are formed as three notches B34. Since the three notches B34 are formed in the other end B33, at the other end B33, part of the end surface contacts the bottom surface 10a of the cultivation tank 10, and the part with the notch B34 contacts the bottom surface 10a. It becomes an opening without opening. The shape of the notch B34 is not limited to a quadrangle as shown in FIG. 4, and may be a polygon or a part of a circle. Moreover, the number of notches B34 is not limited to three, and may be two or less, or may be four or more.
 栽培槽10の養液Sは、ポンプで引かれることによって第2の排液部16Bから排出される。具体的には、養液Sは、栽培槽10の底面10aに隣接して配置される切欠B34からさや管16B3の内部に入る。さや管16B3に入った養液Sは、さや管16B3の内面と排液管16B2の側面B22の外面との間を上昇し、排液口B21から排出される。養液Sは、排液管16B2の内部を下方に流れ、排出経路46bを介して、養液タンク41に排出される。なお、排出経路46bにはバルブ47(図2参照)が設けられることが好ましい。バルブ47を用いて、排液管16B2からの養液Sの排液量を適切に設定することができる。 The nutrient solution S in the cultivation tank 10 is discharged from the second drainage part 16B by being pumped. Specifically, the nutrient solution S enters the inside of the sheath tube 16B3 through the notch B34 arranged adjacent to the bottom surface 10a of the cultivation tank 10. As shown in FIG. The nutrient solution S that has entered the sheath tube 16B3 rises between the inner surface of the sheath tube 16B3 and the outer surface of the side surface B22 of the drainage tube 16B2, and is discharged from the drainage port B21. The nutrient solution S flows downward inside the drainage pipe 16B2 and is discharged to the nutrient solution tank 41 via the discharge path 46b. A valve 47 (see FIG. 2) is preferably provided in the discharge path 46b. The valve 47 can be used to appropriately set the amount of the nutrient solution S discharged from the drain pipe 16B2.
 3つの切欠B34は、それらの開口面積の合計が排液口B21の開口面積より小さくなるように定められている。そのため、切欠B34を通るときの養液Sの流速は、排液口B21を通るときの流速より速くなる。したがって、特許文献1で用いられている排液方法と比較して、第2の排液部16Bから遠い養液Sも引いて排液することができるため、栽培槽10内で養液Sが滞留するのを防止することができる。切欠B34の大きさは、限定されるものではないが、小さすぎると切欠B34に異物が詰まり排液の障害になるおそれがあり、大きすぎると切欠B34を通る養液Sの流速が低下し、栽培槽10内の下層の養液Sが動きにくくなる。 The three cutouts B34 are determined so that the total opening area thereof is smaller than the opening area of the drainage port B21. Therefore, the flow velocity of the nutrient solution S when passing through the notch B34 is faster than the flow velocity when passing through the drain port B21. Therefore, compared with the drainage method used in Patent Document 1, even the nutrient solution S far from the second drainage part 16B can be drawn and drained. It is possible to prevent stagnation. The size of the notch B34 is not limited, but if it is too small, the notch B34 may be clogged with foreign matter and obstruct drainage. The nutrient solution S in the lower layer in the cultivation tank 10 becomes difficult to move.
 さや管16B3の他方の端部B33に形成される1つ又は複数の開口は、図4に示されるような端部B33の端面から高さ方向に向かって形成された切欠であることには限定されない。例えば、端面からさや管16B3の高さ方向に少し離れた位置において側面B32に形成された開口であってもよい。このときの開口の形状もまた、限定されるものではなく、例えば四角形や円形でもあってもよい。 The one or more openings formed in the other end B33 of the sheath tube 16B3 are limited to notches formed in the height direction from the end surface of the end B33 as shown in FIG. not. For example, it may be an opening formed in the side surface B32 at a position slightly separated from the end surface in the height direction of the sheath tube 16B3. The shape of the opening at this time is also not limited, and may be square or circular, for example.
 排液管16B2の側面B22の外面には、1つ又は複数のスペーサB23が立設されている。スペーサB23は、排液管16B2とさや管16B3との間隔を適切に保持し、排液時におけるさや管16B3の動きを防止するために設けられる。スペーサB23が形成される位置及びその数は、限定されるものではない。図4においては、スペーサB23は、側面B22の外面の高さ方向概ね中央部に、周方向に等間隔で4つ設けられている。スペーサB23は、例えば、排液管16B2の周方向に3つ又は5つ以上設けてもよく、高さ方向に2列以上設けてもよい。 One or more spacers B23 are erected on the outer surface of the side surface B22 of the drainage pipe 16B2. The spacer B23 is provided to maintain an appropriate distance between the drainage tube 16B2 and the sheath tube 16B3 and prevent movement of the sheath tube 16B3 during drainage. The positions and number of spacers B23 are not limited. In FIG. 4, four spacers B23 are provided at approximately the center in the height direction of the outer surface of the side surface B22 at regular intervals in the circumferential direction. For example, three or five or more spacers B23 may be provided in the circumferential direction of the drain pipe 16B2, and two or more rows may be provided in the height direction.
 図4においては、スペーサB23は、側面B22の外面に設けられているが、これに限定されるものではなく、例えば、さや管16B3の内面に設けられてもよい。また、スペーサB23のサイズも、限定されるものではない。例えば、スペーサB23の高さ(上下方向の長さ)は、排液管16B2の側面B22の高さと同じでもよく、スペーサB23の幅(すなわち、側面B22の外面からの突出長さ)は、排液管16B2とさや管16B3との間隔を適切に保持して排液時におけるさや管16B3の不要な動きを防止することができるものであればよい。 Although the spacer B23 is provided on the outer surface of the side surface B22 in FIG. 4, it is not limited to this, and may be provided on the inner surface of the sheath tube 16B3, for example. Also, the size of the spacer B23 is not limited. For example, the height (vertical length) of the spacer B23 may be the same as the height of the side surface B22 of the drainage pipe 16B2, and the width of the spacer B23 (that is, the length of protrusion from the outer surface of the side surface B22) It is sufficient if the gap between the liquid tube 16B2 and the sheath tube 16B3 can be properly maintained to prevent unnecessary movement of the sheath tube 16B3 during liquid discharge.
 第1の排液部16A及び第2の排液部16Bの材料は、いずれも特に限定されるものではないが、軽量で耐蝕性、耐薬品性が高く、安価であることから、ポリ塩化ビニル樹脂であることが好ましい。 Materials for the first drainage part 16A and the second drainage part 16B are not particularly limited. Resin is preferred.
(養液排出装置の配置及びサイズの例)
 図5は、排出装置16が栽培槽10に配置される位置の例を示す。
 図5(a)は、葉野菜の栽培に用いられる典型的な栽培槽10(幅が約1000mm、深さが約200mm)における排出装置16の配置例を示す。排出装置16は、養液Sの流れ方向の下流において、栽培槽10の側面10cの近くに配置される。この例では、第1の排液部16Aと第2の排液部16Bとは、養液Sの流れる方向を横切る方向に並置されている。
(Example of layout and size of nutrient solution discharge device)
FIG. 5 shows an example of the position where the discharging device 16 is arranged in the cultivation tank 10. As shown in FIG.
FIG. 5(a) shows an arrangement example of the discharging device 16 in a typical cultivation tank 10 (about 1000 mm wide and about 200 mm deep) used for cultivating leaf vegetables. The discharge device 16 is arranged near the side surface 10c of the cultivation tank 10 downstream in the flow direction of the nutrient solution S. In this example, the first drainage part 16A and the second drainage part 16B are arranged side by side in a direction crossing the direction in which the nutrient solution S flows.
 第1の排液部16A及び第2の排液部16Bは、それぞれの排液口A21、B21の中心の位置が側面10bから約180mm、側面10cから約250mmの位置に配置される。また、第1の排液部16Aを構成するオーバーフロー管16A2の内径は100mmである。第2の排液部16Bを構成する排液管16B2の内径は100mmであり、さや管16B3の内径は200mmである。 The first drainage part 16A and the second drainage part 16B are arranged such that the centers of the respective drainage ports A21 and B21 are about 180 mm from the side surface 10b and about 250 mm from the side surface 10c. The inner diameter of the overflow pipe 16A2 that constitutes the first drainage portion 16A is 100 mm. The inner diameter of the drainage tube 16B2 that constitutes the second drainage part 16B is 100 mm, and the inner diameter of the sheath tube 16B3 is 200 mm.
 図5(b)は、ナスやトマトなどの果菜の栽培に用いられる典型的な栽培槽10(幅及び深さが約300mm)における排出装置16の配置例を示す。排出装置16は、養液Sの流れ方向の下流において、栽培槽10の側面10cの近くに配置される。この例では、第1の排液部16Aと第2の排液部16Bとは、養液Sの流れる方向と同じ方向に並置され、第2の排液部16Bは、第1の排液部16Aの下流側に配置されている。 FIG. 5(b) shows an arrangement example of the discharging device 16 in a typical cultivation tank 10 (about 300 mm in width and depth) used for cultivating fruit vegetables such as eggplants and tomatoes. The discharge device 16 is arranged near the side surface 10c of the cultivation tank 10 downstream in the flow direction of the nutrient solution S. In this example, the first drainage part 16A and the second drainage part 16B are arranged side by side in the same direction as the direction in which the nutrient solution S flows. 16A downstream.
 第1の排液部16A及び第2の排液部16Bは、それぞれの間隔と、第2の排液部16Bと側面10cとの間隔が、いずれも約250mmであることが好ましい。また、第1の排液部16Aを構成するオーバーフロー管16A2の内径は100mmである。第2の排液部16Bを構成する排液管16B2の内径は100mmであり、さや管16B3の内径は200mmである。 The distance between the first drainage part 16A and the second drainage part 16B and the distance between the second drainage part 16B and the side surface 10c are both preferably about 250 mm. The inner diameter of the overflow pipe 16A2 that constitutes the first drainage portion 16A is 100 mm. The inner diameter of the drainage tube 16B2 that constitutes the second drainage part 16B is 100 mm, and the inner diameter of the sheath tube 16B3 is 200 mm.
 図5(c)は、レタスなどの結球栽培に用いられる典型的な栽培槽10(幅及び深さが約200mm)における排出装置16の配置例を示す。排出装置16は、養液Sの流れ方向の下流において、栽培槽10の側面10cの近くに配置される。この例では、図5(b)の例と同様に、第1の排液部16Aと第2の排液部16Bとは、養液Sの流れる方向と同じ方向に並置され、第2の排液部16Bは、第1の排液部16Aの下流側に配置されている。 FIG. 5(c) shows an arrangement example of the discharging device 16 in a typical cultivation tank 10 (about 200 mm in width and depth) used for head cultivation such as lettuce. The discharge device 16 is arranged near the side surface 10c of the cultivation tank 10 downstream in the flow direction of the nutrient solution S. In this example, as in the example of FIG. 5B, the first drainage part 16A and the second drainage part 16B are arranged side by side in the same direction as the direction in which the nutrient solution S flows. The liquid section 16B is arranged downstream of the first drainage section 16A.
なお、第1の排液部16Aと第2の排液部16Bとは、本来であれば、図5(a)に示されるように養液Sの流れを横切る方向に配置されることが好ましく、さらに、両者はできるだけ離して配置されることがより好ましい。図5(b)及び図5(c)のように幅が狭い栽培槽10の場合は、第1の排液部16Aと第2の排液部16Bとは、養液Sの流れる方向と同じ方向に並置せざるを得ないが、この場合には、養液Sを引く力がより強い第2の排液部16Bが第1の排液部16Aの下流側に配置されることが好ましい。 It should be noted that the first drainage part 16A and the second drainage part 16B are preferably arranged in a direction that intersects the flow of the nutrient solution S as shown in FIG. 5(a). Furthermore, it is more preferable that both are arranged as far apart as possible. In the case of the cultivation tank 10 having a narrow width as shown in FIGS. However, in this case, it is preferable that the second drainage section 16B, which draws the nutrient solution S with a stronger force, be arranged downstream of the first drainage section 16A.
 第1の排液部16A及び第2の排液部16Bは、それぞれの間隔と、第2の排液部16Bと側面10cとの間隔が、いずれも約180mmであることが好ましい。また、第1の排液部16Aのオーバーフロー管16A2の内径は50mmである。第2の排液部16Bの排液管16B2の内径は50mmであり、さや管16B3の内径は100mmである。 The distance between the first drainage part 16A and the second drainage part 16B and the distance between the second drainage part 16B and the side surface 10c are both preferably about 180 mm. Also, the inner diameter of the overflow pipe 16A2 of the first drainage portion 16A is 50 mm. The inner diameter of the drainage tube 16B2 of the second drainage part 16B is 50 mm, and the inner diameter of the sheath tube 16B3 is 100 mm.
1 植物栽培システム
10 栽培槽
 11 支持体
 12 開口部
 13 ポット
 14 培地
16 排出装置
 16A 第1の排出部
  16A1 ソケット
  16A2 オーバーフロー管
   A21 排液口(第1の排液口)
 16B 第2の排出部
  16B1 ソケット
  16B2 排液管
   B21 排液口(第2の排液口)
   B22 側面
   B23 スペーサ
  16B3 さや管
   B31 閉塞端(一方の端部)
   B32 側面
   B33 解放端(他方の端部)
   B34 切欠(開口)
20 改質空気製造手段
30 改質空気供給手段
 34 空気配管
 36 空気供給部
40 養液循環手段
 41 排出側タンク
  41a、41b 受液口
  41c 送液口
 43 配管
 44 供給側タンク
 45 供給経路
 46a、46b 排出経路
 47 バルブ
60 ハウス
RA 改質空気
S 養液
 

 
1 plant cultivation system 10 cultivation tank 11 support 12 opening 13 pot 14 culture medium 16 discharge device 16A first discharge part 16A1 socket 16A2 overflow pipe A21 drain port (first drain port)
16B second discharge part 16B1 socket 16B2 drain pipe B21 drain port (second drain port)
B22 Side B23 Spacer 16B3 Sheath tube B31 Closed end (one end)
B32 side surface B33 open end (other end)
B34 notch (opening)
20 reformed air production means 30 reformed air supply means 34 air pipe 36 air supply section 40 nutrient solution circulation means 41 discharge side tank 41a, 41b liquid receiving port 41c liquid transfer port 43 pipe 44 supply side tank 45 supply path 46a, 46b Discharge path 47 Valve 60 House RA Reformed air S Nutrient solution

Claims (6)

  1.  養液が収容された栽培槽で植物を栽培する植物栽培システムにおいて、栽培槽内を流れる養液を排出するための養液排出装置であって、
     植物の栽培に必要な養液の必要液位の高さに第1の排液口を有する第1の排液部と、
     必要液位より低く、かつ、養液の供給が停止したときでも少なくとも植物の生存に必要な最低液位を維持できる高さに第2の排液口を有する、第2の排液部と
    を備え、
     前記第2の排液部は、
      前記第2の排液口を有する排液管と、
      前記第2の排液口の上方において前記第1の排液口より高い位置にある一方の端部と、栽培槽の底面に少なくとも一部が接し、栽培槽内の養液を内部に取り入れる1つ又は複数の開口が設けられた他方の端部とを有する、前記排液管を覆うさや管と
    を有する、養液排出装置。
    In a plant cultivation system for cultivating plants in a cultivation tank containing a nutrient solution, a nutrient solution discharge device for discharging the nutrient solution flowing in the cultivation tank,
    a first drainage part having a first drainage port at a required liquid level of a nutrient solution required for plant cultivation;
    a second drainage part having a second drainage port at a height that is lower than the required liquid level and that can maintain at least the minimum liquid level necessary for the survival of the plant even when the supply of the nutrient solution is stopped; prepared,
    The second drainage part is
    a drainage pipe having the second drainage port;
    At least a part of the bottom surface of the cultivation tank is in contact with one end located above the second drainage port and higher than the first drainage port, and the nutrient solution in the cultivation tank is taken into the inside (1). and a sheath tube covering said drain tube, the other end being provided with one or more openings.
  2.  前記排液管の外面と前記さや管の内面との間に、1つ又は複数のスペーサが設けられた、請求項1に記載の養液排出装置。 The nutrient solution discharge device according to claim 1, wherein one or more spacers are provided between the outer surface of the drain pipe and the inner surface of the sheath pipe.
  3.  前記1つ又は複数のスペーサは、前記排液管の外面に取り付けられている、請求項2に記載の養液排出装置。 The nutrient solution discharge device according to claim 2, wherein the one or more spacers are attached to the outer surface of the drain pipe.
  4.  前記1つ又は複数の開口は、それらの開口面積の合計が、前記第2の排液口の開口面積より小さい、請求項1から請求項3までのいずれか1項に記載の養液排出装置。 The nutrient solution draining device according to any one of claims 1 to 3, wherein the one or more openings have a total opening area smaller than the opening area of the second drainage port. .
  5.  前記第1の排液部及び前記第2の排液部は、養液の流れの下流において、養液の流れる方向を横切る方向に並置されている、
    請求項1から請求項4までのいずれか1項に記載の養液排出装置。
    The first drainage part and the second drainage part are arranged downstream of the flow of the nutrient solution in a direction transverse to the direction of flow of the nutrient solution,
    The nutrient solution discharge device according to any one of claims 1 to 4.
  6.  前記第1の排液部及び前記第2の排液部は、養液の流れの下流において、養液の流れる方向と同じ方向に並置され、
     前記第2の排液部が前記第1の排液部の下流側に配置されている、
    請求項1から請求項4までのいずれか1項に記載の養液排出装置。

     
    The first drainage part and the second drainage part are arranged downstream of the flow of the nutrient solution in the same direction as the direction of flow of the nutrient solution,
    wherein the second drain is arranged downstream of the first drain;
    The nutrient solution discharge device according to any one of claims 1 to 4.

PCT/JP2022/048463 2022-01-07 2022-12-28 Nutrient solution discharge device used in plant cultivation system WO2023132314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001446 2022-01-07
JP2022001446A JP7062323B1 (en) 2022-01-07 2022-01-07 Nutrient solution discharge device used in plant cultivation system

Publications (1)

Publication Number Publication Date
WO2023132314A1 true WO2023132314A1 (en) 2023-07-13

Family

ID=81456256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048463 WO2023132314A1 (en) 2022-01-07 2022-12-28 Nutrient solution discharge device used in plant cultivation system

Country Status (2)

Country Link
JP (1) JP7062323B1 (en)
WO (1) WO2023132314A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162445U (en) * 1984-04-06 1985-10-29 スイコ−プラント株式会社 Adjustment device for liquid fertilizer height, flow rate, and air mixing amount in a hydroponic cultivation tank
JP2007043945A (en) * 2005-08-09 2007-02-22 Nishizawa Gakuen Aquarium, and partition member of overflow pipe of aquarium
CN102077782A (en) * 2010-12-07 2011-06-01 福建省农业科学院农业生态研究所 Circulating culture water overflow device
JP2011250782A (en) * 2011-03-25 2011-12-15 Shuyu Kato Organism growing aquarium
JP2014033673A (en) * 2012-08-08 2014-02-24 Plant Robin Hydroponic system
JP2016086767A (en) * 2014-11-07 2016-05-23 鹿島建設株式会社 Hydroponic cultivation system and hydroponic cultivation method
CN206350415U (en) * 2016-11-08 2017-07-25 陈俊谷 Fish and vegetable symbiotic
KR101871795B1 (en) * 2017-03-13 2018-06-27 주식회사 퓨리 Water treatment apparatus using the apparatus capable of improving generation of siphon effect

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162445U (en) * 1984-04-06 1985-10-29 スイコ−プラント株式会社 Adjustment device for liquid fertilizer height, flow rate, and air mixing amount in a hydroponic cultivation tank
JP2007043945A (en) * 2005-08-09 2007-02-22 Nishizawa Gakuen Aquarium, and partition member of overflow pipe of aquarium
CN102077782A (en) * 2010-12-07 2011-06-01 福建省农业科学院农业生态研究所 Circulating culture water overflow device
JP2011250782A (en) * 2011-03-25 2011-12-15 Shuyu Kato Organism growing aquarium
JP2014033673A (en) * 2012-08-08 2014-02-24 Plant Robin Hydroponic system
JP2016086767A (en) * 2014-11-07 2016-05-23 鹿島建設株式会社 Hydroponic cultivation system and hydroponic cultivation method
CN206350415U (en) * 2016-11-08 2017-07-25 陈俊谷 Fish and vegetable symbiotic
KR101871795B1 (en) * 2017-03-13 2018-06-27 주식회사 퓨리 Water treatment apparatus using the apparatus capable of improving generation of siphon effect

Also Published As

Publication number Publication date
JP2023101083A (en) 2023-07-20
JP7062323B1 (en) 2022-05-06

Similar Documents

Publication Publication Date Title
US9357714B2 (en) Method for cultivating plants as well as a floating carrier
Santamaria et al. Subirrigation vs drip-irrigation: effects on yield and quality of soilless grown cherry tomato
US5097627A (en) Method and apparatus for hydroponic gardening
KR101873374B1 (en) Device for hydroponics
WO1989011217A1 (en) Method and apparatus for hydroponic gardening
RU2635396C1 (en) Method for hydroponic non-substrate plant growing and device for its implementation (versions)
Dubey et al. Hydroponic—the future of farming
Buwalda et al. A soilless ebb-and-flow system for all-year-round chrysanthemums
JP2007082414A (en) Hydroponic cultivation method and hydroponic cultivation device
WO2023132314A1 (en) Nutrient solution discharge device used in plant cultivation system
US20050000159A1 (en) Hydroponic pot with a root prune window
KR101248356B1 (en) Assembly Bed for solution culture
Maiti et al. Understanding hydroponics and its scope in India
JP7494574B2 (en) Hydroponic cultivation method
KR102601685B1 (en) Accelerated cultivation device for edible shoots of a fatsia
JP7171104B1 (en) Cultivation pot used for plant cultivation system
CN110366989B (en) Strawberry seedling plug tray
Bhullar et al. DESIGN AND EVALUATION OF WICK TYPE AND RECIRCULATION TYPE SUBSTRATE HYDROPONIC SYSTEMS FOR GREENHOUSE TOMATOES.
JPH0494624A (en) Apparatus for plant culture
KR20190007621A (en) An improved device for hydroponics
Vlădutoiu et al. New technologies for growing vegetables in artificial environments with microclimate monitored and controlled through current intelligent systems.
CN215223631U (en) Tide type irrigation cultivation system
JPH0410757Y2 (en)
US20220071111A1 (en) Vertical Farming Apparatus And A Method Of Vertical Farming
FI110156B (en) Liquid growth device for plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918897

Country of ref document: EP

Kind code of ref document: A1