WO2023132214A1 - Curable composition and cured product - Google Patents

Curable composition and cured product Download PDF

Info

Publication number
WO2023132214A1
WO2023132214A1 PCT/JP2022/046642 JP2022046642W WO2023132214A1 WO 2023132214 A1 WO2023132214 A1 WO 2023132214A1 JP 2022046642 W JP2022046642 W JP 2022046642W WO 2023132214 A1 WO2023132214 A1 WO 2023132214A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
curable composition
group
meth
crosslinkable functional
Prior art date
Application number
PCT/JP2022/046642
Other languages
French (fr)
Japanese (ja)
Inventor
仁 玉井
秀典 田中
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023132214A1 publication Critical patent/WO2023132214A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances

Definitions

  • the present invention relates to curable compositions and cured products.
  • polyacetylene, polyaniline, polythiophene, etc. have been typical examples of polymer materials with electrical conductivity.
  • Patent Document 1 discloses an ion-conductive curable composition and a cured product containing an ionic liquid having a polymerizable group and a cross-linking agent having a multifunctional group that undergoes a cross-linking reaction with the polymerizable group. It is
  • An object of one aspect of the present invention is to provide a low resistance curable composition having good elongation and breaking strength, and uses thereof.
  • the curable composition according to one aspect of the present invention is Component (A), which is a polymer having a crosslinkable functional group at or near the terminal, Component (B), which is an ionic liquid having a crosslinkable functional group; (C) component, which is a curing catalyst or initiator; including.
  • a simple means of reducing the resistance of electrodes is to replace PVDF resin and SBR resin, which are conventionally used as binders, with conductive polymers (polyacetylene, polyaniline, polythiophene, etc.).
  • conductive polymers polyacetylene, polyaniline, polythiophene, etc.
  • these conductive polymers have weak mechanical properties and poor dispersibility of the conductive filler.
  • the resulting cured products are often hard and brittle, and there is room for improvement in that the applications are limited.
  • the curable composition is a polymer having a crosslinkable functional group at or near the terminal, and a crosslinkable functional group. It has been found that a cured product having good elongation and breaking strength and low resistance (high ionic conductivity) can be obtained by including an ionic liquid and a curing catalyst or initiator.
  • the electrolyte can be introduced into the terminal (and the vicinity of the terminal) of the polymer. Moreover, since the main chain of the polymer can be a rubber-based polymer, the resulting cured product can be softened. Moreover, since it is possible to introduce the electrolyte only at one end of the polymer, the hardness of the resulting cured product can be adjusted.
  • the electrolyte can be present only at the terminal portion of the polymer, so it is thought that deterioration and destruction of the polymer due to voltage application can be suppressed.
  • the amount of solvent used can be reduced by appropriately adjusting the crosslink density of the polymer.
  • the ionic liquid into the vicinity of the terminal of the polymer, the resistance of the obtained cured product becomes low, and it is thought that it becomes possible to conduct electricity efficiently. Therefore, even when the curable composition contains a solid electrolyte, the amount of the electrolyte can be reduced.
  • the curable composition is a component (A) that is a polymer having a crosslinkable functional group at or near the terminal, and a component (B) that is an ionic liquid having a crosslinkable functional group. and the (C) component, which is a curing catalyst or initiator.
  • the curable composition may optionally contain a solid electrolyte (D) component, a carbonate-based solvent (E) component, and other additives. Each component will be described in detail below.
  • the curable composition contains, as component (A), a polymer having a crosslinkable functional group at or near the terminal.
  • the main chain of the polymer is not particularly limited, and the polymer may be, for example, a vinyl-based polymer, a polyolefin-based polymer, or a polyoxyalkylene-based polymer.
  • the number average molecular weight of component (A) is not particularly limited, but is preferably in the range of 500 to 1,000,000, more preferably 1,000 to 100,000, when measured by gel permeation chromatography (GPC). Preferably, 5,000 to 80,000 is more preferable, and 8,000 to 50,000 is even more preferable. If the molecular weight is too low, the elongation and flexibility of the cured product tend to be difficult to develop. Too high a molecular weight tends to make handling difficult. When the number average molecular weight of component (A) is within the above range, a curable composition having low viscosity, easy handling, sufficient elongation and excellent flexibility can be obtained.
  • molecular weight distribution of component (A) is not particularly limited, it is preferably less than 1.8, more preferably 1.7 or less, even more preferably 1.6 or less, and even more preferably 1.5. or less, particularly preferably 1.4 or less, and most preferably 1.3 or less.
  • molecular weight distribution means the ratio (Mw/Mn) of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by GPC. If the molecular weight distribution is too large, for example, if the weight average molecular weight is excessively higher than the number average molecular weight, it is presumed that the proportion of high molecular weight components is increasing. In this case, the viscosity tends to increase and handling becomes difficult. If the molecular weight distribution of component (A) is within the above range, a curable composition with low viscosity and good workability can be obtained.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) can be measured by GPC.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • chloroform is used as a mobile phase, and the measurement can be performed using a polystyrene gel column.
  • these molecular weights can be calculated
  • the monomer constituting the main chain of component (A) is not particularly limited.
  • the component (A) is a vinyl-based polymer
  • vinyl-based monomers include (meth)acrylic acid; methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, ( meth) isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, ( meth)cyclohexyl acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate
  • component (A) is a polyolefin polymer
  • examples of olefin monomers include alkenes such as ethylene, propylene, and isobutylene.
  • specific examples of the repeating unit include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 )O-, -CH 2 CH(C 2 H 5 )O—, —CH 2 C(CH 3 ) 2 O—, —CH 2 CH 2 CH 2 CH 2 O—.
  • (meth)acrylic acid represents acrylic acid and/or methacrylic acid.
  • Component (A) is preferably a vinyl polymer, preferably a (meth)acrylic acid ester polymer, from the viewpoint of the product having excellent physical properties such as flexibility and viscosity at low temperature and elongation. more preferred.
  • the main chain is preferably produced mainly by polymerizing (meth)acrylic acid ester-based monomers, and more preferably produced by mainly polymerizing acrylic acid ester-based monomers.
  • "mainly” means that 50 mol% or more of the monomer units constituting component (A) are (meth)acrylic acid ester monomers, preferably 70 mol% or more.
  • acrylic acid ester monomers include acrylic acid alkyl ester monomers, specifically ethyl acrylate, 2-methoxyethyl acrylate, stearyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acrylic acid. 2-Methoxybutyl may be mentioned. These preferred monomers may be used after being copolymerized with other monomers, or even block-copolymerized.
  • the component (A) has an X block and a Y block, and may contain an XY diblock structure or an XYX triblock structure in the molecule.
  • the X block is a block having a relatively large content of crosslinkable functional groups.
  • a Y block is a Y block having a relatively low crosslinkable functional group content.
  • Such polymers are referred to herein as polymers (A1).
  • the repeating unit having a crosslinkable functional group is localized in the vicinity of the terminal.
  • the structure of the entire molecule of polymer (A1) may be, for example, an XYXY tetrablock structure.
  • the (A) component vinyl polymer can be obtained by various polymerization methods.
  • the polymerization method is not particularly limited, radical polymerization is preferred in terms of versatility of monomers, ease of control, etc.
  • controlled radical polymerization is more preferred.
  • This controlled radical polymerization method can be classified into a "chain transfer agent method” and a "living radical polymerization method".
  • the living radical polymerization method is preferred because it is easy to control the molecular weight and molecular weight distribution of the resulting vinyl polymer.
  • living radical polymerization methods include atom transfer radical polymerization, one-electron transfer polymerization, reversible transfer catalyst polymerization, reversible addition-fragmentation chain transfer polymerization (RAFT polymerization), nitroxy radical method (NMP method), and organic tellurium compounds.
  • TMP method nitroxy radical method
  • organic tellurium compounds examples include organic tellurium compounds.
  • SBRP method polymerization method using an organic antimony compound
  • SBRP organic bismuth compound
  • BIRP organic bismuth compound
  • BIRP organic bismuth compound
  • BIRP organic bismuth compound
  • iodine transfer polymerization method iodine transfer polymerization method.
  • atom transfer radical polymerization is preferred because of the availability of raw materials and the ease with which functional groups can be introduced to the ends of the polymer.
  • atom transfer radical polymerization is briefly described below.
  • organic halides especially those with a highly reactive carbon-halogen bond (e.g., carbonyl compounds with a halogen at the ⁇ -position, or compounds with a halogen at the benzylic position), or sulfonyl halides
  • a compound or the like is preferably used as the initiator.
  • the vinyl-based monomer used in atom transfer radical polymerization is not particularly limited, and all of the above-mentioned vinyl-based monomers can be suitably used.
  • the transition metal complex used as a polymerization catalyst is not particularly limited, but a metal complex having an element of Groups 7, 8, 9, 10, or 11 of the periodic table as the central metal is preferable, and zerovalent copper, A transition metal complex having monovalent copper, divalent ruthenium, divalent iron, or divalent nickel as a central metal is more preferable, and a copper complex is particularly preferable.
  • monovalent copper compounds used to form copper complexes include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, Cuprous perchlorate and the like can be mentioned.
  • a ligand may be added to enhance catalytic activity.
  • Ligands include 2,2′-bipyridyl or derivatives thereof, 1,10-phenanthroline or derivatives thereof, or tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltriethylenetetraamine, or hexamethyltris(2-aminoethyl ) and polyamines such as amines.
  • the polymerization reaction can be carried out without using a solvent, it may be carried out using a solvent.
  • the type of solvent is not particularly limited, and for example, the solvent described in paragraph [0067] of Japanese Patent Application Laid-Open No. 2005-232419 can be used. These may use only one type, and may use two or more types together.
  • the polymerization can also be carried out in an emulsion system or a system mediated by supercritical fluid CO2 .
  • the polymerization temperature is not particularly limited, it can be carried out in the range of 0 to 200°C, preferably in the range of room temperature to 150°C.
  • the method for producing the polyolefin polymer is also not particularly limited, and known methods can be applied. For the reason that the availability and productivity of raw materials are high and can be suitably used industrially, for example, WO2013/047314, Japanese Patent Laid-Open No. 2013-216782, and WO2017/099043, etc.
  • a manufacturing method can be preferably used.
  • the production method uses, for example, a monofunctional polymerization initiator (eg, cumyl chloride, tert-butyl chloride, and 2-chloro-2,4,4-trimethylpentane, etc.) and a Lewis acid catalyst (eg, TiCl.sub.4 , etc.).
  • an electron donor component such as a nitrogen-containing compound (e.g., 2-methylpyridine, 2,6-dimethylpyridine, triethylamine, etc.)
  • living cationic polymerization of an olefinic monomer is performed to form the main chain of a polyolefinic polymer.
  • an electron donor component such as a nitrogen-containing compound (e.g., 2-methylpyridine, 2,6-dimethylpyridine, triethylamine, etc.)
  • living cationic polymerization of an olefinic monomer is performed to form the main chain of a polyolefinic polymer.
  • an electron donor component such as a nitrogen-containing compound
  • a nitrogen-containing compound e.g., 2-methylpyridine, 2,6-dimethylpyridine, triethylamine, etc.
  • living cationic polymerization of an olefinic monomer is performed to form the main chain of a polyolefinic polymer.
  • a method for producing a polyoxyalkylene-based polymer includes a method for polymerizing an epoxy compound.
  • epoxy compounds include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether.
  • propylene oxide is preferred.
  • Component (A) according to one embodiment of the present invention has a crosslinkable functional group at or near one end of the molecule, preferably at or near both ends of the molecule.
  • the molecular weight between cross-linking points which greatly affects rubber elasticity, can be increased.
  • at least one of the crosslinkable functional groups is preferably at the terminal of the molecular chain, and more preferably all the crosslinkable functional groups are at the terminal of the molecular chain.
  • the crosslinkable functional group of component (A) is not particularly limited.
  • the crosslinkable functional group of component (A) is at least one of a hydrolyzable silyl group and a radically crosslinkable functional group, from the viewpoint of excellent storage stability and properties of the cured product after crosslinking. is preferred.
  • the hydrolyzable silyl group is represented by general formula (1) below. —[Si(R 1 ) 2-b (Y) b O] m —Si(R 2 ) 3-a (Y) a (1)
  • R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R') 3 SiO— (At this time, R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's present may be the same or different).
  • the structures of the R 1 or R 2 may be the same or different.
  • Y is a hydroxyl group or a hydrolyzable group.
  • the Y may be the same or different.
  • a is 0, 1, 2, or 3, preferably 2 or 3 from the viewpoint of the curability of the composition and the physical properties of the resulting cured product.
  • b is 0, 1, or 2;
  • One to three hydroxyl groups and hydrolyzable groups can be bonded to one silicon atom. Therefore, (a+ ⁇ b) is preferably in the range of 1-5.
  • the hydrolyzable groups or hydroxyl groups may be the same or different.
  • m is an integer from 0 to 19; However, it satisfies the relationship a+mb ⁇ 1.
  • hydrolyzable groups include hydrogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amido groups, aminooxy groups, mercapto groups, and alkenyloxy groups.
  • An alkoxy group, an amido group, and an aminooxy group are preferred, and an alkoxy group is particularly preferred because of its mild hydrolyzability and ease of handling.
  • alkoxy groups with fewer carbon atoms have higher reactivity. That is, the reactivity decreases in the order of methoxy group, ethoxy group, propoxy group, and so on. These can be selected according to the purpose and application.
  • a hydrolyzable silyl group represented by the following general formula (2) is preferable from the viewpoint of easy availability.
  • a is an integer from 1 to 3;
  • the hydrolyzable silyl group contains one or more silicon atoms, but in the case of silicon atoms linked by siloxane bonds or the like, it preferably contains 20 or less silicon atoms.
  • a polymer having a hydrolyzable silyl group in which two hydrolyzable groups are bonded per silicon atom is often used.
  • the curing speed may not be sufficient, especially when very high curing speeds are required.
  • a lower crosslink density may cause stickiness (surface tack).
  • those with a of 3 cure faster than those with a of 2 (eg, dimethoxy functional group).
  • a compound having a of 2 (eg, dimethoxy functional group) and a compound having a of 3 (eg, trimethoxy functional group) may be used in combination.
  • the lower limit of the number of hydrolyzable silyl groups in the molecule of component (A) is, on average, 1.0 or more per molecule. , more preferably 1.1 or more, and even more preferably 1.2 or more.
  • the upper limit of the number of hydrolyzable silyl groups is preferably 4.0 or less, more preferably 3.5 or less per molecule on average. If the number of hydrolyzable silyl groups is within the above range, the polymers are sufficiently crosslinked by the catalyst and the initiator, and a cured product with sufficient strength can be obtained.
  • hydrolyzable silyl groups include dimethoxysilyl group, trimethoxysilyl group, diethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, dimethoxymethylsilyl group, diethoxymethylsilyl group, diisopropoxy A methylsilyl group is mentioned.
  • dimethoxymethylsilyl group, dimethoxymethylsilyl group, trimethoxysilyl group, triethoxysilyl group and the like are preferable, and dimethoxymethylsilyl group is particularly preferable.
  • a known method can be used to introduce a hydrolyzable silyl group into the polymer.
  • the method described in paragraphs [0083] to [0117] of Japanese Patent Application Laid-Open No. 2007-302749 can be mentioned.
  • a method of adding a hydrosilane compound having a hydrolyzable silyl group to a polymer having at least one alkenyl group in the presence of a hydrosilylation catalyst is preferred.
  • a method for introducing a hydrosilylation-reactive alkenyl group into the obtained polymer a known method can be used.
  • Preferable examples include a method of reacting a diene compound having at least two alkenyl groups with low polymerizability at the end of the polymerization reaction or after the completion of the reaction of a predetermined monomer when synthesizing a polymer by living radical polymerization. This method makes it easier to control alkenyl introduction. A specific method will be briefly described below.
  • R is hydrogen or an organic group having 1 to 20 carbon atoms. is preferred. Among these, hydrogen or a methyl group is particularly preferable as R.
  • the monovalent or divalent organic group having 1 to 20 carbon atoms for R' includes a monovalent or divalent alkyl group having 1 to 20 carbon atoms, a monovalent or divalent aryl group having 6 to 20 carbon atoms, A monovalent or divalent aralkyl group having 7 to 20 carbon atoms is preferred.
  • R' is particularly preferably a methylene group, an ethylene group, or an isopropylene group. At least two alkenyl groups of the diene compound may be the same or different, and among the alkenyl groups of the diene compound, at least two alkenyl groups may be conjugated.
  • diene compounds include isoprene, piperylene, butadiene, myrcene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, 4-vinyl-1-cyclohexene, and the like. 5-hexadiene, 1,7-octadiene and 1,9-decadiene are preferred.
  • the isolated polymer and a diene compound are radically reacted to obtain a desired polymer having an alkenyl group at its end. It is also possible to obtain However, the method of adding the diene compound to the polymerization reaction system at the end of the polymerization reaction or after the completion of the reaction of a predetermined monomer is more convenient and more preferable.
  • the amount of the diene compound to be added may be about an equivalent amount or a small excess amount relative to the growing terminal of the polymer.
  • the amount of the diene compound to be added is preferably an excess amount relative to the growing terminal of the polymer, specifically 1 0.5 times or more is preferable, 3 times or more is more preferable, and 5 times or more is even more preferable.
  • the hydrosilane compound having a hydrolyzable silyl group is not particularly limited.
  • a representative example is the compound represented by the general formula (3).
  • R 3 and R 4 are both an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R') 3 SiO— It is a triorganosiloxy group (at this time, R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's present may be the same or different).
  • the structures of the R 3 or R 4 may be the same or different.
  • Y is a hydroxyl group or a hydrolyzable group. When two or more Y are present in one hydrolyzable silyl group, the Y may be the same or different.
  • a is 0, 1, 2, or 3;
  • b is 0, 1, or 2;
  • m is an integer from 0 to 19; However, it satisfies the relationship a+mb ⁇ 1.
  • hydrosilane compounds compounds represented by the following general formula (4) are preferable from the standpoint of easy availability.
  • a transition metal catalyst is usually used when the above hydrosilane compound having a hydrolyzable silyl group is added to an alkenyl group.
  • Transition metal catalysts include, for example, pure platinum, alumina, silica, a carrier such as carbon black with platinum solid dispersed therein, chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, etc., and platinum-olefins. complexes, platinum(0)-divinyltetramethyldisiloxane complexes.
  • catalysts other than platinum compounds include RhCl( PPh3 ) 3 , RhCl3 , RuCl3 , IrCl3 , FeCl3 , AlCl3 , PdCl2.H2O , NiCl2 , TiCl4, and the like.
  • a method for producing a vinyl polymer having a crosslinkable silyl group at the molecular chain end, especially a (meth)acrylic polymer is disclosed in JP-B-3-14068, JP-B-4-55444, JP-B-4-55444. This is disclosed in Japanese Patent Application Laid-Open No. 6-211922.
  • the resulting polymer has a relatively high ratio of crosslinkable silyl groups at the molecular chain ends, while the Mw/Mn
  • the value of the molecular weight distribution represented by is generally as large as 2 or more, and the viscosity at the same molecular weight between cross-linking points increases, making handling difficult in some cases. Therefore, when obtaining a vinyl polymer having a narrow molecular weight distribution, a low viscosity, and a crosslinkable silyl group at the molecular chain end in a high proportion, the above-mentioned "living radical polymerization method" is used. is preferred.
  • one embodiment of the present invention is not limited to polymers with narrow molecular weight distributions.
  • any of the following methods may be employed: (a) step (1a) of polymerizing a mixture containing a relatively large amount of a monomer having a hydrolyzable silyl group by living radical polymerization; and (2a) polymerizing the relatively lean mixture; (b) step (1b) of polymerizing a mixture containing a relatively small amount of a monomer having a hydrolyzable silyl group by living radical polymerization; and (2b) polymerizing the relatively rich mixture.
  • radical crosslinkable functional group Although the radical functional group of (A) is not particularly limited, examples thereof include a vinyl group and a (meth)acryloyl group.
  • the crosslinkable functional group of component (A) is a radical crosslinkable functional group
  • the lower limit of the number of radical crosslinkable functional groups in the molecule of component (A) is 1.0 or more on average per molecule. is preferably , more preferably 1.2 or more, and even more preferably 1.4 or more.
  • the upper limit of the number of radical crosslinkable functional groups is preferably 2 or less per molecule on average. If the number of radical crosslinkable functional groups is within the above range, the polymers are sufficiently crosslinked by the catalyst and the initiator, and a cured product with sufficient strength can be obtained.
  • R 5 is a hydrogen atom or a hydrocarbon group having 1-20 carbon atoms.
  • the hydrocarbon group may optionally be substituted with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, fluorine, chlorine, bromine and iodine atoms.
  • Specific examples of R 5 include H, CH 3 , CH 2 CH 3 , (CH 2 ) n CH 3 (n is an integer of 2 to 19), C 6 H 5 , CH 2 OH, CN and the like. From the viewpoint of the reactivity of component (A), R5 is preferably H or CH3 .
  • Component (A) may be used alone or in combination with other resins.
  • Other resins to be used in combination are not particularly limited, but for example, urethane-based resins, polyvinyl acetal resins, epoxy resins, and the like can be used.
  • Urethane resins include urethane resins, urethane-modified polyester resins, and urethane-modified epoxy resins.
  • Polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol and aldehydes.
  • Polyvinyl acetal resins include polyvinyl formal resin, polyvinyl acetoacetal resin, polyvinyl alkyl acetal resin, polyvinyl propional resin, polyvinyl butyral resin, polyvinyl hexalal resin and the like.
  • Epoxy resins include bisphenol-type epoxy resins produced by glycidylating various bisphenols, hydrogenated products of the bisphenol-type epoxy resins, phenol novolak resins, and novolak-type epoxy resins obtained by reacting cresol novolak resins with haloepoxides. , biphenyl-type epoxy resins, amino group-containing epoxy resins, and the like. Among the above epoxy resins, amino group-containing epoxy resins are preferably used from the viewpoint of improving adhesion to the surfaces of electronic substrates, solar cells, and the like.
  • the method for synthesizing the amino group-containing epoxy resin is not particularly limited, but the epoxy resin (a1), the amine compound (a2), and, if necessary, the modifier are blended and reacted to obtain the amino group-containing epoxy resin. can be done.
  • the amino group-containing epoxy resin is specifically described below.
  • amino group-containing epoxy resins include (1) adducts of epoxy resins with primary amine compounds, secondary amine compounds, or mixed primary and secondary amine compounds (e.g., U.S. Pat. No. 3,984; (2) an adduct of an epoxy resin and a secondary amine compound in which the primary amine compound is ketiminated (see, for example, U.S. Pat. No. 4,017,438); (3) A reaction product obtained by etherification of an epoxy resin and a ketiminized hydroxyl compound having a primary amino group (see, for example, JP-A-59-43013).
  • Epoxy resin (a1) The epoxy resin (a1) used for producing the amino group-containing epoxy resin is a compound having at least one, preferably two or more epoxy groups in one molecule.
  • the number average molecular weight of the epoxy resin is in the range of 400-4,000, preferably 800-2,500.
  • the epoxy equivalent weight of the epoxy resin is in the range of 180-2,500, preferably 400-1,500.
  • Particularly preferred is an epoxy resin obtained by reacting a polyphenol compound with epihalohydrin.
  • Examples of polyphenol compounds used for forming the epoxy resin (a1) include bis(4-hydroxyphenyl)-2,2-propane [bisphenol A] and bis(4-hydroxyphenyl)methane [bisphenol F]. , bis(4-hydroxycyclohexyl)methane [hydrogenated bisphenol F], 2,2-bis(4-hydroxycyclohexyl)propane [hydrogenated bisphenol A], 4,4′-dihydroxybenzophenone, bis(4-hydroxyphenyl) -1,1-ethane, bis(4-hydroxyphenyl)-1,1-isobutane, bis(4-hydroxy-3-tert-butyl-phenyl)-2,2-propane, bis(2-hydroxynaphthyl)methane , tetra(4-hydroxyphenyl)-1,1,2,2-ethane, 4,4'-dihydroxydiphenylsulfone, phenol novolak, cresol novolak and the like.
  • epoxy resin (a1) obtained by the reaction of the polyphenol compound and epichlorohydrin a resin derived from bisphenol A represented by the following formula is suitable.
  • n 0-8.
  • the epoxy resin (a1) include, for example, jER828EL, jER1001, jER1002, jER1004, and jER1007 manufactured by Mitsubishi Chemical Corporation.
  • the epoxy resin (a1) is, for example, a resin obtained by condensing epichlorohydrin and bisphenol to a high molecular weight in the presence of a catalyst such as an alkali catalyst if necessary, epichlorohydrin and bisphenol in the presence of a catalyst such as an alkali catalyst if necessary.
  • a catalyst such as an alkali catalyst if necessary
  • epichlorohydrin and bisphenol in the presence of a catalyst such as an alkali catalyst if necessary.
  • Amine compound (a2) The amine compound (a2) used for producing the amino group-containing epoxy resin includes, for example, mono- or di-methylamine such as monomethylamine, dimethylamine, monoethylamine, diethylamine, monoisopropylamine, diisopropylamine, monobutylamine and dibutylamine.
  • -alkylamine monoethanolamine, diethanolamine, mono(2-hydroxypropyl)amine, di(2-hydroxypropyl)amine, monomethylaminoethanol, N-(2-hydroxypropyl)ethylenediamine, 3-methylamine-1,2 -Alkanolamines such as propanediol, 3-tert-butylamino-1,2-propanediol, N-methylglucamine, N-octylglucamine; ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, dipropylene Alkylenepolyamines such as triamine, bis(hexamethylene)triamine, and triethylenetetramine; polyamines having heterocyclic rings such as 3-pyrrolidinol, 3-piperidinol, and 4-pyrrolidinol; monoethanolamine, mono(2-hydroxypropyl)amine , N-(2-hydroxypropyl)ethylenediamine, diethylenetriamine, diprop
  • the amino group-containing epoxy resin if necessary, one that has undergone internal modification by reacting with a modifying agent (a3) may be used.
  • the modifier (a3) is not particularly limited as long as it is a resin or compound having reactivity with the epoxy resin, and examples thereof include diols, polyols, polyether polyols, polyester polyols, polyamidoamines, polycarboxylic acids, fatty acids, and polyisocyanates. compounds, lactone compounds such as ⁇ -caprolactone, compounds obtained by reacting lactone compounds such as ⁇ -caprolactone with polyisocyanate compounds, compounds obtained by polymerization reaction of acrylic monomers, xylene formaldehyde compounds, and the like.
  • the usage ratio of the modifier (a3) is not particularly limited, and can be changed as appropriate according to the application of the composition.
  • the ratio of modifier (a3) used is in the range of 0 to 50% by mass, preferably 5 to 30% by mass, based on the solid content mass of the amino group-containing epoxy resin, from the viewpoint of improving finish and anticorrosion properties. Appropriate.
  • the epoxy resin (a1), the amine compound (b2), and optionally the modifier (a3) are generally reacted in a suitable organic solvent at about 80 to about 170°C, preferably about It is carried out at a temperature of 90 to about 150° C. for about 1 to 6 hours, preferably about 1 to 5 hours.
  • organic solvent examples include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, and methyl amyl ketone.
  • ketone solvents such as; dimethylformamide, amide solvents such as dimethylacetamide; alcohol solvents such as methanol, ethanol, n-propanol and iso-propanol; ether alcohol compounds such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether; Alternatively, a mixture of these organic solvents can be used.
  • the amine value of the amino group-containing epoxy resin obtained as described above is preferably 40 to 80 mgKOH/g resin solid content, and from the viewpoint of resistance to uneven drying and corrosion resistance of the resin component, 45 to 65 mgKOH/ g resin solid content is more preferred.
  • the number average molecular weight of the amino group-containing epoxy resin is preferably 1,500 to 5,000, more preferably 2,000 to 4,000 from the viewpoint of throwing power and corrosion resistance.
  • the curable composition contains an ionic liquid having a crosslinkable functional group as the component (B).
  • the ionic liquid is not particularly limited, but includes ionic liquids containing organic onium ions as cations.
  • Organic onium ions include ammonium ions, guanidinium ions, phosphonium ions, oxonium ions, sulfonium ions, pyridinium ions, and imidazolium ions. Ammonium ions, phosphonium ions, sulfonium ions, pyridinium ions and imidazolium ions are preferred, and ammonium ions, phosphonium ions and pyridinium ions are more preferred.
  • Only one type of organic onium ion may be used, or two or more types may be used in combination.
  • two or more kinds of organic onium ions it is possible to further lower the melting point of the ionic liquid and further lower the viscosity.
  • fluorine-based anions such as phosphoric acid, sulfuric acid, and carboxylic acid, or fluorine-based ions can be used as the anion of the ionic liquid.
  • fluorine-based anions include tetrafluoroborate (BF 4 ⁇ ), hexafluoroborate (BF 6 ⁇ ), hexafluorophosphate (PF 6 ⁇ ), hexafluoroarsenate (AsF 6 ⁇ ), trifluoromethanesulfonate ( CF 3 SO 3 ⁇ ), bis(fluorosulfonyl)imide ((FSO 2 ) 2 N ⁇ ), bis(trifluoromethanesulfonyl) imide ((CF 3 SO 2 ) 2 N ⁇ ), bis(trifluoroethanesulfonyl) imide ((CF 3 CF 2 SO 2 ) 2 N ⁇ ), tris(trifluoromethanesulfonylmethide)
  • the ionic liquid contains at least one selected from the group consisting of ammonium ions, phosphonium ions, and pyridinium ions and bis( A salt with trifluoromethanesulfonyl)imide is preferred.
  • Crosslinkable functional group of component (B) Component (B) according to one embodiment of the present invention has a crosslinkable functional group.
  • the crosslinkable functional group of component (B) is not particularly limited, but examples thereof include radical crosslinkable functional groups, hydrolyzable silyl groups, isocyanate groups, and oxirane groups. From the viewpoint of reactivity, the crosslinkable functional group is preferably at least one of a hydrolyzable silyl group and a radical crosslinkable functional group.
  • the radical crosslinkable functional group of component (B) is not particularly limited, but includes, for example, a vinyl group and a (meth)acryloyl group.
  • ionic liquids having both a radical crosslinkable functional group and a hydrolyzable silyl group include 1-vinyl-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-vinyl-3-(3- triethoxysilylpropyl) imidazole chloride, 1-vinyl-3-(3-trimethoxysilylpropyl) imidazole tetrafluoroborate, 1-vinyl-3-(3-triethoxysilylpropyl) imidazole tetrafluoroborate, 1-(meth ) acryloyloxy-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-(meth)acryloyloxy-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-(meth)acryloyloxy-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-(meth)acryl
  • the curable composition contains a curing catalyst or initiator as component (C).
  • component (A) is a polymer having a hydrolyzable silyl group
  • the curable composition preferably contains a curing catalyst as component (C).
  • Curing catalysts act as condensation catalysts. In this case, the curable composition cures, for example, by reacting with moisture or by light irradiation or heating.
  • the curable composition preferably contains an initiator as the component (C). In this case, the curable composition is cured, for example, by light irradiation or heating.
  • the (C) component curing catalysts include, for example, tin-based curing catalysts, other metal compounds, amines, and phosphate esters. Among these, amines and phosphate esters are preferred from the viewpoint of storage stability of the curable composition.
  • tin-based curing catalysts include dialkyltin carboxylates (dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diethylhexanolate, dibutyltin dioctate, dibutyltin dimethylmalate, dibutyltin diethylmalate, dibutyltin dibutyl Malate, dibutyltin diisooctyl malate, dibutyltin ditridecyl malate, dibutyltin dibenzyl malate, dibutyltin maleate, dioctyltin diacetate, dioctyltin distearate, dioctyltin dilaurate, dioctyltin diethylmalate, dioctyltin diisooctyl maleate, etc.); dialkyltin oxides (dibutyltin
  • Examples of other metal compounds include titanates (tetrabutyl titanate, tetrapropyl titanate, tetra(2-ethylhexyl) titanate, isopropoxytitanium bis(ethylacetoacetate), etc.); organoaluminum compounds (aluminum trisacetylacetoate); aluminum trisethylacetoacetate, di-isopropoxyaluminum ethylacetoacetate, etc.); metal salts of carboxylic acids (2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, naphthenic acid, etc.), such as bismuth carboxylate , iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, cerium carboxylate, nickel carboxylate, cobalt carboxylate, carboxy
  • amines include aliphatic primary amines (methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine, pentadecylamine, cetylamine, stearylamine, cyclohexylamine, etc.); aliphatic secondary amines (dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di(2-ethylhexyl)amine, didecylamine, dilaurylamine , dicetylamine, distearylamine, methylstearylamine, ethylstearylamine, butylstearylamine, etc.); aliphatic tertiary amine
  • the curing catalyst of the component (C) is preferably a compound with thermal latency or a UV (ultraviolet) reactive compound.
  • examples of such compounds include acid anhydrides, hydrazine compounds, boron trifluoride complexes, cyanamide compounds, imidazole compounds, photoacid generators, photobase generators, and the like.
  • acid anhydrides, hydrazine compounds, imidazole compounds, photoacid generators, and photobase generators are preferred.
  • Acid anhydrides include, for example, propionic anhydride, butyric anhydride, octyl anhydride, 2-ethylhexanoic anhydride, maleic anhydride, fumaric anhydride, acetic anhydride, phthalic anhydride, 1,2,3,6-tetrahydro Phthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, 4-methylhexahydrophthalic anhydride, methylbicyclo[2.2.1]heptane-2,3- Dicarboxylic anhydride, ethylene glycol bis-anhydro trimellitate, ethylene glycol bis-anhydro trimellitate, ethylene glycol bis-anhydro trimellitate, ethylene glycol bis-anhydro trimellitate, glycerin bis-anhydro trimellitate monoacetate succinic anhydride, tetrapropenyl succinic anhydride
  • hydrazine compounds include hydrazine monohydrochloride, hydrazine dihydrochloride, hydrazine monohydrobromide, hydrazine carbonate, dihydrazide adipate, dihydrazide sebacate, dodecanediohydrazide, dihydrazide isophthalate, hydrazide propionate, hydrazide salicylate, hydroxy- 2-naphthoic hydrazide, benzophenone hydrazone, 3-hydroxy-2-naphthoic hydrazide, polyacrylamide type aqueous cross-linking agents and the like.
  • Boron trifluoride complexes include, for example, boron trifluoride ethyl ether complex, boron trifluoride methyl ether complex, boron trifluoride ethyl methyl ether complex, boron trifluoride butyl ether complex, boron trifluoride phenol complex , boron trifluoride alkylamine complex, boron trifluoride ammonia complex, boron trifluoride piperidine complex, boron trifluoride triethanolamine complex, boron trifluoride alcohol complex, boron trifluoride ketone complex, trifluoride A boron trifluoride aldehyde complex, a boron trifluoride ester complex, a trifluoroboric anhydride complex, a trifluoroboric acid complex, and the like can be mentioned.
  • cyanamide compounds include monomethylcyanamide, monoethylcyanamide, monopropylcyanamide, monobutylcyanamide, dimethylcyanamide, diethylcyanamide, diproprucyanamide, dibutylcyanamide, hexamethylenedicyanamide, heptamethylenedicyanamide, octamethylenedicyanamide, nonamethylene dicyanamide, decamethylene dicyanamide, and the like.
  • imidazole compounds include imidazole, 1-methylimidazole, 2-methylimidazole, 3-methylimidazole, 4-methylimidazole, 5-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 3-ethylimidazole, 4 -ethylimidazole, 5-ethylimidazole, 1-n-propylimidazole, 2-n-propylimidazole, 1-isopropylimidazole, 2-isopropylimidazole, 1-n-butylimidazole, 2-n-butylimidazole, 1-isobutyl imidazole, 2-isobutylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 1,3-dimethylimidazole, 2,4-dimethylimidazole, 2-ethyl
  • photoacid generators include [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium tris(pentafluoroethyl) trifluorophosphate, [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium tetrakis(pentafluorophenyl ) borate, [4-(4-acetyl)phenylthio]phenyldiphenylsulfonium tris(trifluoromethanesulfonyl)methide, [4-(4-acetyl)phenylthio]phenyldiphenylsulfonium hexafluoroantimonate, [4-(4- Acetyl)phenylthio]phenyl diphenylsulfonium hexafluorophosphate, [4-(4-acetyl)phenylthio]phenyl
  • photobase generators include ⁇ -aminoacetophenone compounds; oxime ester compounds; acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzylcarbamate groups, or alkoxybenzyl
  • tertiary amines such as compounds having a substituent such as carbamate group; carboxylates, borates and carbamates of amidine or guanidine; and amide compounds.
  • photobase generators include 2-methyl-1-(-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl) -butanone, 2,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 1,2-octanedione, 1- [4-(Phenylthio)-,2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O- acetyloxime), (2E)-2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]octan-1-one, di-N-(p-formylamino)diphenylmethane, di-N-(
  • a photoradical polymerization initiator can be used as the initiator for the (C) component.
  • a radical photopolymerization initiator By using a radical photopolymerization initiator, the curable composition is cured by light irradiation (such as UV irradiation).
  • Photoradical polymerization initiators include, for example, acetophenone, propiophenone, benzophenone, xanthol, fluoresin, benzaldehyde, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-methylacetophenone, 3-pentylacetophenone, 2 , 2-diethoxyacetophenone, 4-methoxyacetophenone, 3-bromoacetophenone, 4-allylacetophenone, p-diacetylbenzene, 3-methoxybenzophenone, 4-methylbenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone , 4-chloro-4′-benzylbenzophenone, 3-chloroxanthone, 3,9-dichloroxanthone, 3-chloro-8-nonylxanthone, benzoyl, benzoin methyl ether, benzoin butyl ether, bis(4-
  • photoradical polymerization initiators include acylphosphine oxide photopolymerization initiators.
  • Acylphosphine oxide-based photopolymerization initiators are preferred from the viewpoint of excellent deep-part curability upon UV irradiation.
  • acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2, 6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,6-dimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-isobutylphosphine oxide, bis( 2,6-dimethoxybenzoyl)-isobutylphosphine oxide, bis(2,6-dimethoxybenzoyl)-phenylphosphine oxide.
  • the curable composition contains both an acylphosphine oxide and a phenylketone-based compound.
  • a radical initiator that initiates decomposition and polymerization by heat can also be used as the initiator for component (C).
  • initiators generally used for radical polymerization such as peroxides and azo compounds, can be used. Specific examples include azo compounds such as azobisisobutyronitrile and dimethylazobisisobutyrate, and organic peroxides such as lauroyl peroxide, diisopropylbenzene hydroperoxide, and di-tert-butyl peroxide.
  • organic peroxides include Perbutyl D (trade name of NOF Corporation), Perbutyl O (trade name of NOF Corporation), Pertetra A (trade name of NOF Corporation), and the like. is mentioned.
  • the curable composition according to one embodiment of the present invention may contain component (D), which is a solid electrolyte. If the curable composition contains the (D) component, the electrical conductivity can be enhanced.
  • Component (D) includes lithium bis(trifluoromethanesulfonyl)imide, lithium bis(pentafluoroethanesulfonyl)imide, lithium bis(fluoromethanesulfonyl)amide, lithium tetrafluoroborate, lithium hexafluorophosphate, 1 -ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and the like.
  • the curable composition according to one embodiment of the present invention may contain component (E), which is a carbonate-based solvent.
  • component carbonate solvents include ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
  • the curable composition may contain a coupling agent as an adhesion imparting agent to the target substrate.
  • a coupling agent include silane coupling agents, titanium coupling agents, zirconium coupling agents, and aluminum coupling agents. Only one type of adhesiveness imparting agent may be used, or two or more types may be used in combination.
  • the silane coupling agent has, for example, an organic group having carbon atoms, hydrogen atoms, and other atoms in the molecule, and a crosslinkable silyl group.
  • organic groups include epoxy groups, isocyanate groups, isocyanurate groups, carbamate groups, amino groups, mercapto groups, carboxyl groups, halogen groups, and (meth)acryl groups.
  • silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyl Trimethoxysilane,
  • methyltrimethoxysilane and methyltrimethoxysilane exhibit stable performance. It is preferable to use triethoxysilane, dimethyltriethoxysilane, or the like.
  • titanium coupling agents include tetraisopropyl titanate, tetra-normal butyl titanate, butyl titanate dimer, tetra(2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl
  • acetoacetate, titanium octanediolate, titanium lactate, titanium triethanolamine, and polyhydroxytitanium stearate provides a balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability.
  • tetraisopropyl titanate tetra-normal-butyl titanate, titanium lactate, etc., which exhibit stable performance, from the viewpoint of stabilizing the adhesion to the substrate.
  • zirconium coupling agents include zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, and zirconium acetylacetonate.
  • Bisethylacetoacetate, zirconium acetate, and zirconium monostearate are preferably used.
  • zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, and zirconium bisacetylacetonate which exhibit stable performance, from the viewpoint of stabilizing the adhesion to the substrate.
  • Zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, and zirconium acetate are preferably used from the viewpoint of the balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability.
  • aluminum coupling agents include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butylate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, aluminum tris(ethylacetoacetate), Alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum tris(acetylacetonate), aluminum monoisopropoxy monooleoxyethyl acetoacetate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide octylate , and cyclic aluminum oxide stearate are preferably used from the viewpoint of the balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability.
  • ethylacetoacetate aluminum diisopropylate, aluminum tris(ethylacetoacetate), alkylacetoacetate aluminum diisopropylate, and aluminum monoacetylacetate exhibit stable performance from the viewpoint of stabilizing the adhesion to the substrate. It is preferable to use either tris(ethylacetoacetate) or aluminum tris(acetylacetonate).
  • the curable composition may contain a leveling agent in order to adjust surface unevenness upon curing. By adding a leveling agent, smoothness of the coating film can be secured and breakage can be prevented when the conductive paste containing the curable composition is coated on an adherend.
  • Leveling agents generally include fluorine-based, silicone-based, acrylic, ether-based, and ester-based agents, and the curable composition according to one embodiment of the present invention may contain any of the leveling agents. good.
  • the curable composition may contain fillers to ensure a certain strength.
  • the filler is not particularly limited, but crystalline silica, fused silica, dolomite, carbon black, calcium carbonate, titanium oxide, talc, or the like is preferable from the viewpoint that the filling rate can be improved with a small amount. From the viewpoint of obtaining a hardened product with high strength, crystalline silica, fused silica, silicic anhydride, hydrated silicic acid, carbon black, surface-treated fine calcium carbonate, calcined clay, clay, or active zinc white are preferred. .
  • the curable composition may contain a thixotropic agent (anti-sagging agent) to prevent sagging and improve workability.
  • a thixotropic agent anti-sagging agent
  • examples of the thixotropic agent include, but are not limited to, polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. Only one type of thixotropic agent may be used, or two or more types may be used in combination.
  • the curable composition may contain a plasticizer to adjust viscosity, slump, or mechanical properties such as hardness, tensile strength, or elongation when cured.
  • the plasticizer is not particularly limited, for example, dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; 2-ethylhexyl)-1,4-benzenedicarboxylate and other terephthalic acid ester compounds (EASTMAN168 (manufactured by EASTMAN CHEMICAL)); )); Aliphatic polycarboxylic acid ester compounds such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate,
  • composition of curable composition The content of component (A) in 100% by weight of the curable composition is preferably 50% by weight or more and less than 100% by weight. If the blending amount of component (A) is 50% by weight or more, the strength of the cured product can be increased.
  • the blending amount of component (B) is preferably 0.01 to 50 parts by weight, more preferably 0.01 to 30 parts by weight, per 100 parts by weight of component (A). If the amount of component (B) to be blended is 0.01 parts by weight or more, the resistivity can be lowered. If the blending amount of the component (B) is 50 parts by weight or less, the hardness of the resulting cured product can be moderately suppressed.
  • the blending amount of component (C) is preferably 0.01 to 10 parts by weight per 100 parts by weight of component (A). If the blending amount of component (C) is 0.01 part by weight or less, a cured product with a sufficient crosslink density can be obtained. If the amount of component (C) to be blended is 10 parts by weight or less, storage stability can be improved.
  • the amount of component (D) is preferably 0.1 to 20 parts by weight per 100 parts by weight of component (A).
  • the amount of component (E) is preferably 10 to 200 parts by weight per 100 parts by weight of component (A).
  • the amount of the adhesion imparting agent to be added is, from the viewpoint of the balance between dispersibility and conductivity, relative to a total of 100 parts by weight of components (A) to (E), It is preferably 0.01 to 5.0 parts by weight, more preferably 0.02 to 3.0 parts by weight, even more preferably 0.03 to 2.0 parts by weight.
  • the amount of the thixotropy-imparting agent to be added is, from the viewpoint of suppressing an increase in volume resistivity of the curable composition, components (A) to (E). It is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight in total.
  • the (A) component and the (B) component are kneaded using a device.
  • the curable composition can be obtained by adding and kneading the component (C) while controlling the temperature so as not to rise.
  • Apparatus used for kneading includes a disper, a planetary mixer, a planetary stirring and defoaming apparatus, and the like.
  • One type of device may be used, or two or more types may be used in combination.
  • the temperature during kneading is preferably 0 to 80°C, more preferably 5 to 60°C, and even more preferably 10 to 50°C, from the viewpoint of the balance between stability and conductive powder dispersion by kneading.
  • the curable composition according to one embodiment of the present invention can be applied to various storage battery electrode binders, conductive gel materials, actuator materials, conductive paste binders, and the like.
  • storage batteries are expected to contribute to improved stability and electromotive force during charge and discharge, actuators to improved power generation efficiency, and conductive pastes to reduced current loss.
  • a conductive paste according to one embodiment of the present invention includes the curable composition described above.
  • the conductive paste can be used as an electrode material for touch panels, flat panel displays (FPDs), solar cells and the like.
  • the conductive paste may further contain a diluent and/or conductive powder.
  • Diluents include, for example, non-reactive solvents and reactive diluents.
  • non-reactive solvents include ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, alicyclic solvents, aromatic solvents, alcohol solvents, and water.
  • Reactive diluents include low molecular weight isocyanates, epoxy monomers, and the like. These may use one type, and may use two or more types together.
  • Examples of conductive powder include silver powder, silver oxide powder, silver carbonate powder, silver acetate powder, silver-coated powder, silver-containing alloy powder, nickel powder, copper powder, and aluminum powder.
  • the conductive powder may be surface-treated from the viewpoint of improving dispersibility.
  • the curable composition described above has a low resistance, it is possible to reduce the blending amount of the conductive powder in the conductive paste.
  • the conductive powder may be blended in an amount of 500 to 900 parts by weight with respect to a total of 100 parts by weight of components (A) to (E).
  • a cured product according to one embodiment of the present invention is obtained by curing the curable composition described above.
  • the cured product is an electrolyte gel.
  • the electrolyte gel preferably contains components (D) and (E) in addition to the components (A) to (C) described above.
  • Methods of curing the curable composition include irradiation with light, heat and contact with moisture.
  • Light rays and electron beams can be used for curing by light irradiation.
  • Examples of light and/or electron beam sources include high-pressure mercury lamps, low-pressure mercury lamps, electron beam irradiation devices, halogen lamps, light-emitting diodes, semiconductor lasers, and metal halides.
  • the temperature for curing by light irradiation is preferably 0 to 150.degree. C., more preferably 5 to 120.degree.
  • the temperature for curing by heating is preferably 50 to 200.degree. C., more preferably 80 to 150.degree.
  • the relative humidity during curing by contact with moisture is preferably 5-95%, more preferably 10-80%.
  • One embodiment of the invention includes the following aspects.
  • Component (A) which is a polymer having a crosslinkable functional group at or near the terminal,
  • Component (B) which is an ionic liquid having a crosslinkable functional group;
  • component (C) component which is a curing catalyst or initiator;
  • a curable composition comprising: ⁇ 2> The curable composition according to ⁇ 1>, wherein the crosslinkable functional group of component (A) is at least one of a hydrolyzable silyl group and a radically crosslinkable functional group.
  • ⁇ 3> The curable composition according to ⁇ 1> or ⁇ 2>, wherein the component (A) is a (meth)acrylate polymer.
  • ⁇ 4> Any one of ⁇ 1> to ⁇ 3>, wherein the component (B) is a salt of at least one selected from the group consisting of ammonium ions, phosphonium ions, and pyridinium ions and bis(trifluoromethanesulfonyl)imide.
  • the component (B) is a salt of at least one selected from the group consisting of ammonium ions, phosphonium ions, and pyridinium ions and bis(trifluoromethanesulfonyl)imide.
  • the crosslinkable functional group of component (B) is at least one of a hydrolyzable silyl group and a radical crosslinkable functional group. sex composition.
  • ⁇ 6> The curable composition according to any one of ⁇ 1> to ⁇ 5>, further comprising a component (D) that is a solid electrolyte.
  • ⁇ 7> The curable composition according to any one of ⁇ 1> to ⁇ 6>, further comprising component (E) which is a carbonate solvent.
  • ⁇ 8> A conductive paste comprising the curable composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A cured product obtained by curing the curable composition according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> The cured product according to ⁇ 9>, wherein the cured product is an electrolyte gel.
  • RC-100C corresponds to a (meth)acrylic acid ester polymer having a radical crosslinkable functional group
  • SA-100S corresponds to a (meth)acrylic acid ester polymer having a hydrolyzable silyl group
  • IL-MA3 corresponds to an ionic liquid having a radical crosslinkable functional group
  • IL-S8 corresponds to an ionic liquid having a hydrolyzable silyl group.
  • dumbbell properties of cured product A No. 3 dumbbell-shaped test piece defined in JIS K 7113 was punched out from the obtained sheet-like cured product. This test piece was subjected to a tensile test to measure mechanical properties. Specifically, the stress at 10% elongation, the stress at break, and the elongation at break (elongation relative to the distance between chucks) were measured. Table 1 shows the results. For the measurement, an autograph (AG-2000A, manufactured by Shimadzu Corporation) was used at a measurement temperature of 23° C. and a tensile speed of 200 mm/min.
  • test piece ( ⁇ 100 ⁇ t12 mm size) was obtained from the sheet-like cured product described above.
  • R8340 Using an ULTRA HIGH RESISTANCE METER (manufactured by ADVANTEST), the surface resistivity and volume resistivity of the test piece were measured at 23° C., 55R. H. % conditions.
  • Example 1 (A) component, (B) component, and (C) component are kneaded with the composition shown in Table 1 using a planetary stirring and degassing device (Awatori Mixer ARE-310, manufactured by Thinky Co., Ltd.), A curable composition was obtained by defoaming (stirring conditions: 1600 rpm for 1.5 minutes, defoaming conditions: 2200 rpm for 3 minutes). Surface resistivity and volume resistivity were measured by the methods described above.
  • Example 2 A curable composition was prepared in the same manner as in Example 1, except that the amount of component (B) used in Example 1 was 3 g, and the surface resistivity and volume resistivity were measured.
  • Example 3 A curable composition was prepared in the same manner as in Example 1, except that the amount of component (B) used in Example 1 was 5 g, and the surface resistivity and volume resistivity were measured.
  • Example 4 A curable composition was prepared in the same manner as in Example 1, except that the components (A), (B), and (C) used in Example 1 were changed to have the composition shown in Table 1. were prepared and the surface resistivity and volume resistivity were measured.
  • Example 1 A curable composition was prepared in the same manner as in Example 1, except that component (B) was not added, and the surface resistivity and volume resistivity were measured.
  • Example 2 A curable composition was prepared in the same manner as in Example 4, except that component (B) was not added, and the surface resistivity and volume resistivity were measured.
  • Example 3 A curable composition was prepared in the same manner as in Example 1, except that 1 g of lithium bis(trifluoromethanesulfonyl)imide was used instead of the component (B), and the surface resistivity and volume resistivity were measured. bottom.
  • Example 4 A curable composition was prepared in the same manner as in Example 4, except that 5 g of lithium bis(trifluoromethanesulfonyl)imide was used instead of the component (B), and the surface resistivity and volume resistivity were measured. bottom.
  • Example 5 A curable composition was prepared in the same manner as in Example 4, except that 5 g of isostearyl acrylate was used instead of component (B), and the surface resistivity and volume resistivity were measured.
  • the difference between the cured products according to Examples 1 to 3 and the cured product according to Comparative Example 1 is whether or not the component (B) was added. From the results of the dumbbell physical properties of the cured products, the cured products according to Examples 1 to 3 have the same or higher stress at 10% elongation than the cured product according to Comparative Example 1, and the stress at break is higher. It can be said that the strength is high because the elongation of the steel is also high. In addition, it was confirmed that the cured products of Examples 1 to 3 had lower surface resistivity and volume specific resistivity and higher ionic conductivity than the cured product of Comparative Example 1. A similar tendency was also observed when Example 4 and Comparative Example 2 were compared. Since each example has a low resistance, it is expected to have excellent initial performance and durability as a binder for electrodes of high-performance storage batteries and a binder for conductive pastes.
  • Comparative Example 3 the ionic liquid of Example 1 is replaced with the same amount of electrolyte compound.
  • Example 1 using an ionic liquid compared to Comparative Example 3 using an electrolyte compound, the stress at 10% elongation was higher, so it was confirmed that the strength of the cured product was high.
  • Comparative Example 4 in which the amount of the electrolyte compound was increased compared to Comparative Example 3, a cured product could not be obtained.
  • Comparative Example 5 in which the ionic liquid of Example 3 was replaced with the same amount of acrylic monomer, had a higher resistivity.
  • the curable composition according to one aspect of the present invention can be used for various storage battery electrode binders, conductive gel materials, actuator materials, conductive paste binders, and the like.

Abstract

Provided are a low-resistance curable composition having excellent elongation and breaking strength, and the use of the curable composition. A curable composition according to one embodiment of the present invention contains a component (A) that is a polymer having crosslinkable functional groups at or near the ends, a component (B) that is an ionic liquid having crosslinkable functional groups, and a component (C) that is a curing catalyst or an initiator.

Description

硬化性組成物および硬化物Curable composition and cured product
 本発明は、硬化性組成物および硬化物に関する。 The present invention relates to curable compositions and cured products.
 従来、導電性性能を有する高分子材料としては、ポリアセチレン、ポリアニリン、ポリチオフェン等が代表的である。 Conventionally, polyacetylene, polyaniline, polythiophene, etc. have been typical examples of polymer materials with electrical conductivity.
 例えば、特許文献1には、重合性基を有するイオン液体と、前記重合性基に架橋反応する多官能基を有する架橋剤とを含有しているイオン伝導性硬化性組成物および硬化物が開示されている。 For example, Patent Document 1 discloses an ion-conductive curable composition and a cured product containing an ionic liquid having a polymerizable group and a cross-linking agent having a multifunctional group that undergoes a cross-linking reaction with the polymerizable group. It is
日本国特開2011-213862号公報Japanese Patent Application Laid-Open No. 2011-213862
 しかしながら、上述のような従来技術は、硬化物が固く、脆い場合が多く、用途が限られているという点で改善の余地があった。 However, the conventional techniques described above have room for improvement in that the cured products are often hard and brittle, and their applications are limited.
 本発明の一態様は、伸びおよび破断強度も良好な、低抵抗の硬化性組成物およびその用途を提供することを目的とする。 An object of one aspect of the present invention is to provide a low resistance curable composition having good elongation and breaking strength, and uses thereof.
 上記の課題を解決するために、本発明の一態様に係る硬化性組成物は、
 末端または末端近傍に架橋性官能基を有する重合体である(A)成分と、
 架橋性官能基を有するイオン性液体である(B)成分と、
 硬化触媒または開始剤である(C)成分と、
を含む。
In order to solve the above problems, the curable composition according to one aspect of the present invention is
Component (A), which is a polymer having a crosslinkable functional group at or near the terminal,
Component (B), which is an ionic liquid having a crosslinkable functional group;
(C) component, which is a curing catalyst or initiator;
including.
 本発明の一態様によれば、伸びおよび破断強度も良好な、低抵抗の硬化性組成物およびその用途を提供することできる。 According to one aspect of the present invention, it is possible to provide a curable composition with good elongation and breaking strength, low resistance, and uses thereof.
 以下、本発明の実施の形態の一例について詳細に説明するが、本発明はこれらに限定されない。 Examples of embodiments of the present invention will be described in detail below, but the present invention is not limited to these.
 本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。 Unless otherwise specified in this specification, "A to B" representing a numerical range means "A or more and B or less". Also, all of the documents mentioned in this specification are incorporated herein by reference.
 〔1.本発明の概要〕
 電極の低抵抗化については、従来、バインダーとして使用されているPVDF樹脂、SBR樹脂を導電性ポリマー(ポリアセチレン、ポリアニリン、ポリチオフェン等)で置き換えることが簡単な手段である。しかし、これらの導電性ポリマーは機械物性が脆弱な上、導電性フィラーの分散性能にも乏しかった。また、得られる硬化物が固く、脆い場合が多く、用途が限られているという点で改善の余地があった。
[1. Overview of the present invention]
A simple means of reducing the resistance of electrodes is to replace PVDF resin and SBR resin, which are conventionally used as binders, with conductive polymers (polyacetylene, polyaniline, polythiophene, etc.). However, these conductive polymers have weak mechanical properties and poor dispersibility of the conductive filler. In addition, the resulting cured products are often hard and brittle, and there is room for improvement in that the applications are limited.
 そこで、本発明者らは、上記課題を解決し得る手段について鋭意検討を行った結果、硬化性組成物が、末端または末端近傍に架橋性官能基を有する重合体と、架橋性官能基を有するイオン性液体と、硬化触媒または開始剤と、を含むことにより、伸びおよび破断強度が良好であり、低抵抗性(高イオン伝導性)である硬化物が得られることを見出した。 Therefore, the present inventors have made intensive studies on means for solving the above problems, and as a result, the curable composition is a polymer having a crosslinkable functional group at or near the terminal, and a crosslinkable functional group. It has been found that a cured product having good elongation and breaking strength and low resistance (high ionic conductivity) can be obtained by including an ionic liquid and a curing catalyst or initiator.
 本発明の一実施形態に係る硬化性組成物によれば、重合体の末端(および末端近傍)に電解質を導入できる。また、重合体の主鎖をゴム系ポリマーとすることができるため、得られる硬化物を柔らかくすることもできる。また、重合体の片末端のみに電解質を導入することも可能なため、得られる硬化物の硬さを調整することができる。 According to the curable composition according to one embodiment of the present invention, the electrolyte can be introduced into the terminal (and the vicinity of the terminal) of the polymer. Moreover, since the main chain of the polymer can be a rubber-based polymer, the resulting cured product can be softened. Moreover, since it is possible to introduce the electrolyte only at one end of the polymer, the hardness of the resulting cured product can be adjusted.
 本発明の一実施形態に係る硬化性組成物によれば、重合体の末端部位のみに電解質を存在させることもできるため、電圧印加による重合体の劣化および破壊が抑制され得ると考えられる。また、重合体の架橋密度を適切に調整することにより、溶剤の使用量を低減することができる。さらに、重合体の末端近傍へイオン性液体を導入(共架橋)させることにより、得られる硬化物は低抵抗になり、効率的に通電させることが可能になると考えられる。それゆえ、硬化性組成物が固体状の電解質を含む場合にも、当該電解質の配合量を低減することができる。 According to the curable composition according to one embodiment of the present invention, the electrolyte can be present only at the terminal portion of the polymer, so it is thought that deterioration and destruction of the polymer due to voltage application can be suppressed. In addition, the amount of solvent used can be reduced by appropriately adjusting the crosslink density of the polymer. Furthermore, by introducing (co-crosslinking) the ionic liquid into the vicinity of the terminal of the polymer, the resistance of the obtained cured product becomes low, and it is thought that it becomes possible to conduct electricity efficiently. Therefore, even when the curable composition contains a solid electrolyte, the amount of the electrolyte can be reduced.
 〔2.硬化性組成物〕
 本発明の一実施形態に係る硬化性組成物は、末端または末端近傍に架橋性官能基を有する重合体である(A)成分と、架橋性官能基を有するイオン性液体である(B)成分と、硬化触媒または開始剤である(C)成分と、を含む。硬化性組成物は、任意成分として固体状の電解質である(D)成分、カーボネート系溶剤である(E)成分、およびその他の添加物を含有していてもよい。以下、各成分について詳述する。
[2. Curable composition]
The curable composition according to one embodiment of the present invention is a component (A) that is a polymer having a crosslinkable functional group at or near the terminal, and a component (B) that is an ionic liquid having a crosslinkable functional group. and the (C) component, which is a curing catalyst or initiator. The curable composition may optionally contain a solid electrolyte (D) component, a carbonate-based solvent (E) component, and other additives. Each component will be described in detail below.
 <(A)成分>
 前記硬化性組成物は、(A)成分として、末端または末端近傍に架橋性官能基を有する重合体を含む。当該重合体の主鎖は特に限定されず、例えば当該重合体は、ビニル系重合体、ポリオレフィン系重合体、またはポリオキシアルキレン系重合体であってもよい。
<(A) Component>
The curable composition contains, as component (A), a polymer having a crosslinkable functional group at or near the terminal. The main chain of the polymer is not particularly limited, and the polymer may be, for example, a vinyl-based polymer, a polyolefin-based polymer, or a polyoxyalkylene-based polymer.
 (A)成分の数平均分子量は特に制限はないが、ゲルパーミエーションクロマトグラフィー(GPC)で測定した場合に、500~1,000,000の範囲が好ましく、1,000~100,000がより好ましく、5,000~80,000がさらに好ましく、8,000~50,000がなおさら好ましい。分子量が低くなりすぎると、硬化物の伸びおよび柔軟性が発現されにくい傾向がある。分子量が高くなりすぎると、取扱いが困難になる傾向がある。(A)成分の数平均分子量が前記範囲内であれば、低粘度で取扱いが容易であり、かつ、伸びが十分で柔軟性に優れる硬化性組成物を得ることができる。 The number average molecular weight of component (A) is not particularly limited, but is preferably in the range of 500 to 1,000,000, more preferably 1,000 to 100,000, when measured by gel permeation chromatography (GPC). Preferably, 5,000 to 80,000 is more preferable, and 8,000 to 50,000 is even more preferable. If the molecular weight is too low, the elongation and flexibility of the cured product tend to be difficult to develop. Too high a molecular weight tends to make handling difficult. When the number average molecular weight of component (A) is within the above range, a curable composition having low viscosity, easy handling, sufficient elongation and excellent flexibility can be obtained.
 (A)成分の分子量分布は、特に限定されないが、好ましくは1.8未満であり、より好ましくは1.7以下であり、さらに好ましくは1.6以下であり、よりさらに好ましくは1.5以下であり、特に好ましくは1.4以下であり、最も好ましくは1.3以下である。ここで、分子量分布は、GPCで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)を意味する。分子量分布が大きすぎる場合、例えば数平均分子量に対して重量平均分子量が過度に上昇している場合、高分子量成分比率が増大していることが推定される。この場合、粘度が増大し、取り扱いが困難になる傾向にある。(A)成分の分子量分布が上記の範囲内ならば、低粘度で作業性の良好な硬化性組成物が得られる。 Although the molecular weight distribution of component (A) is not particularly limited, it is preferably less than 1.8, more preferably 1.7 or less, even more preferably 1.6 or less, and even more preferably 1.5. or less, particularly preferably 1.4 or less, and most preferably 1.3 or less. Here, molecular weight distribution means the ratio (Mw/Mn) of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by GPC. If the molecular weight distribution is too large, for example, if the weight average molecular weight is excessively higher than the number average molecular weight, it is presumed that the proportion of high molecular weight components is increasing. In this case, the viscosity tends to increase and handling becomes difficult. If the molecular weight distribution of component (A) is within the above range, a curable composition with low viscosity and good workability can be obtained.
 重量平均分子量(Mw)および数平均分子量(Mn)は、GPCにより測定できる。GPC測定には、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにて行うことができる。また、これらの分子量は、ポリスチレン換算で求めることができる。 The weight average molecular weight (Mw) and number average molecular weight (Mn) can be measured by GPC. For GPC measurement, chloroform is used as a mobile phase, and the measurement can be performed using a polystyrene gel column. Moreover, these molecular weights can be calculated|required by polystyrene conversion.
 ((A)成分の主鎖)
 本発明の一実施形態において、(A)成分の主鎖を構成するモノマーは特に限定されない。(A)成分がビニル系重合体である場合、ビニル系モノマーとしては例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸エステル系モノマー;スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等挙げることができる。(A)成分がポリオレフィン系重合体である場合、オレフィン系モノマーとしては例えば、エチレン、プロピレン、イソブチレン等のアルケン類が挙げられる。(A)成分がポリオキシアルキレン系重合体である場合、繰り返し単位の具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-が挙げられる。
(Main Chain of Component (A))
In one embodiment of the present invention, the monomer constituting the main chain of component (A) is not particularly limited. When the component (A) is a vinyl-based polymer, examples of vinyl-based monomers include (meth)acrylic acid; methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, ( meth) isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, ( meth)cyclohexyl acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, (meth)acrylate dodecyl acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxypropyl (meth)acrylate, (meth)acrylic acid 2-hydroxyethyl, 2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate, glycidyl (meth)acrylate, 2-aminoethyl (meth)acrylate, γ-(methacryloyloxypropyl)trimethoxysilane, Ethylene oxide adduct of (meth)acrylic acid, trifluoromethylmethyl (meth)acrylate, 2-trifluoromethylethyl (meth)acrylate, 2-perfluoroethylethyl (meth)acrylate, (meth)acrylic acid 2-perfluoroethyl 2-perfluorobutylethyl, 2-perfluoroethyl (meth)acrylate, perfluoromethyl (meth)acrylate, diperfluoromethylmethyl (meth)acrylate, 2-(meth)acrylate Perfluoromethyl 2-perfluoroethylmethyl, 2-perfluorohexylethyl (meth)acrylate, 2-perfluorodecylethyl (meth)acrylate, 2-perfluorohexadecylethyl (meth)acrylate (meth) ) acrylic acid ester-based monomers; styrene-based monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid and salts thereof; fluorine-containing vinyl-based monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride vinyltrimethoxysilane, vinyltriethoxysilane and other silicon-containing vinyl monomers; maleic anhydride, maleic acid, maleic acid monoalkyl esters and dialkyl esters; fumaric acid, fumaric acid monoalkyl esters and dialkyl esters; maleimide, Maleimide-based monomers such as methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, and cyclohexylmaleimide; nitrile group-containing vinyl-based monomers such as acrylonitrile and methacrylonitrile; acrylamide , amide group-containing vinyl monomers such as methacrylamide; vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate and vinyl cinnamate; alkenes such as ethylene and propylene; conjugation such as butadiene and isoprene Dienes: vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol, and the like. When component (A) is a polyolefin polymer, examples of olefin monomers include alkenes such as ethylene, propylene, and isobutylene. When the component (A) is a polyoxyalkylene polymer, specific examples of the repeating unit include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 )O-, -CH 2 CH(C 2 H 5 )O—, —CH 2 C(CH 3 ) 2 O—, —CH 2 CH 2 CH 2 CH 2 O—.
 これらは、単独で用いてもよく、複数を共重合させて用いてもよい。ここで、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸を表す。 These may be used alone, or may be used by copolymerizing a plurality of them. Here, (meth)acrylic acid represents acrylic acid and/or methacrylic acid.
 生成物の低温での柔軟性および粘度、ならびに伸び等の物性に優れるという観点から、(A)成分は、ビニル系重合体であることが好ましく、(メタ)アクリル酸エステル重合体であることがより好ましい。この場合、主鎖は、(メタ)アクリル酸エステル系モノマーを主として重合して製造されるものであることが好ましく、アクリル酸エステル系モノマーを主として重合して製造されるものであることがより好ましい。ここで「主として」とは、(A)成分を構成するモノマー単位のうち、50モル%以上が(メタ)アクリル酸エステル系モノマーであることを意味し、好ましくは70モル%以上である。 Component (A) is preferably a vinyl polymer, preferably a (meth)acrylic acid ester polymer, from the viewpoint of the product having excellent physical properties such as flexibility and viscosity at low temperature and elongation. more preferred. In this case, the main chain is preferably produced mainly by polymerizing (meth)acrylic acid ester-based monomers, and more preferably produced by mainly polymerizing acrylic acid ester-based monomers. . Here, "mainly" means that 50 mol% or more of the monomer units constituting component (A) are (meth)acrylic acid ester monomers, preferably 70 mol% or more.
 特に好ましいアクリル酸エステルモノマーとしては、アクリル酸アルキルエステルモノマーが挙げられ、具体的には、アクリル酸エチル、アクリル酸2-メトキシエチル、アクリル酸ステアリル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-メトキシブチルが挙げられる。これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させて用いてもよい。 Particularly preferred acrylic acid ester monomers include acrylic acid alkyl ester monomers, specifically ethyl acrylate, 2-methoxyethyl acrylate, stearyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acrylic acid. 2-Methoxybutyl may be mentioned. These preferred monomers may be used after being copolymerized with other monomers, or even block-copolymerized.
 (A)成分は、XブロックおよびYブロックを有し、分子中にXYジブロック構造またはXYXトリブロック構造を含んでいてもよい。Xブロックとは、架橋性官能基の含有量が相対的に多いブロックである。Yブロックとは、架橋性官能基の含有量が相対的に少ないYブロックである。このような重合体を、本明細書では、重合体(A1)と称する。重合体(A1)において、架橋性官能基を有する繰り返し単位は末端近傍に局在していると言える。なお、重合体(A1)の分子全体の構造は、例えば、XYXYテトラブロック構造であってもよい。 The component (A) has an X block and a Y block, and may contain an XY diblock structure or an XYX triblock structure in the molecule. The X block is a block having a relatively large content of crosslinkable functional groups. A Y block is a Y block having a relatively low crosslinkable functional group content. Such polymers are referred to herein as polymers (A1). In the polymer (A1), it can be said that the repeating unit having a crosslinkable functional group is localized in the vicinity of the terminal. The structure of the entire molecule of polymer (A1) may be, for example, an XYXY tetrablock structure.
 (重合体の製造方法)
 (A)成分のビニル系重合体は、種々の重合法により得ることができる。重合法は特に限定されないが、モノマーの汎用性、制御の容易性等の点からラジカル重合法が好ましく、ラジカル重合法の中でも制御ラジカル重合法がより好ましい。この制御ラジカル重合法は「連鎖移動剤法」と「リビングラジカル重合法」とに分類することができる。得られるビニル系重合体の分子量および分子量分布の制御が容易であることから、制御ラジカル重合法の中では、リビングラジカル重合法が好ましい。リビングラジカル重合法の例としては、原子移動ラジカル重合、一電子移動重合、可逆移動触媒重合、可逆的付加-開裂連鎖移動重合法(RAFT重合)、ニトロキシラジカル法(NMP法)、有機テルル化合物を用いる重合法(TERP)法、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP)、有機ビスマス化合物を用いる重合法(BIRP)、ヨウ素移動重合法が挙げられる。原料の入手性、重合体末端への官能基導入が容易であることから、リビングラジカル重合法の中では、原子移動ラジカル重合が好ましい。これら各重合法については、例えば、日本国特開2005-232419公報、日本国特開2006-291073公報などの記載を参照できる。一例として原子移動ラジカル重合について以下に簡単に説明する。
(Method for producing polymer)
The (A) component vinyl polymer can be obtained by various polymerization methods. Although the polymerization method is not particularly limited, radical polymerization is preferred in terms of versatility of monomers, ease of control, etc. Among radical polymerization methods, controlled radical polymerization is more preferred. This controlled radical polymerization method can be classified into a "chain transfer agent method" and a "living radical polymerization method". Of the controlled radical polymerization methods, the living radical polymerization method is preferred because it is easy to control the molecular weight and molecular weight distribution of the resulting vinyl polymer. Examples of living radical polymerization methods include atom transfer radical polymerization, one-electron transfer polymerization, reversible transfer catalyst polymerization, reversible addition-fragmentation chain transfer polymerization (RAFT polymerization), nitroxy radical method (NMP method), and organic tellurium compounds. (TERP) method, polymerization method using an organic antimony compound (SBRP method), polymerization method using an organic bismuth compound (BIRP), polymerization method using an organic bismuth compound (BIRP), and iodine transfer polymerization method. . Among living radical polymerization methods, atom transfer radical polymerization is preferred because of the availability of raw materials and the ease with which functional groups can be introduced to the ends of the polymer. For each of these polymerization methods, reference can be made to, for example, JP-A-2005-232419 and JP-A-2006-291073. As an example, atom transfer radical polymerization is briefly described below.
 原子移動ラジカル重合では、有機ハロゲン化物、特に反応性の高い炭素-ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物、またはベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられることが好ましい。 In atom transfer radical polymerization, organic halides, especially those with a highly reactive carbon-halogen bond (e.g., carbonyl compounds with a halogen at the α-position, or compounds with a halogen at the benzylic position), or sulfonyl halides A compound or the like is preferably used as the initiator.
 ヒドロシリル化反応可能なアルケニル基を1分子内に2つ以上有するビニル系重合体を得るためには、2つ以上の開始点を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤として用いるのが好ましい。 In order to obtain a vinyl polymer having two or more hydrosilylation-reactive alkenyl groups in one molecule, it is preferable to use an organic halide or a sulfonyl halide compound having two or more initiation points as an initiator. preferable.
 原子移動ラジカル重合において用いられるビニル系モノマーとしては特に制約はなく、上記のビニル系モノマーをすべて好適に用いることができる。 The vinyl-based monomer used in atom transfer radical polymerization is not particularly limited, and all of the above-mentioned vinyl-based monomers can be suitably used.
 重合触媒として用いられる遷移金属錯体としては特に限定されないが、周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体が好ましく、0価の銅、1価の銅、2価のルテニウム、2価の鉄、または2価のニッケルを中心金属とする遷移金属錯体がより好ましく、銅の錯体が特に好ましい。 The transition metal complex used as a polymerization catalyst is not particularly limited, but a metal complex having an element of Groups 7, 8, 9, 10, or 11 of the periodic table as the central metal is preferable, and zerovalent copper, A transition metal complex having monovalent copper, divalent ruthenium, divalent iron, or divalent nickel as a central metal is more preferable, and a copper complex is particularly preferable.
 銅の錯体を形成するために使用される1価の銅化合物の具体例としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等が挙げられる。銅化合物を用いる場合、触媒活性を高めるために配位子を添加してもよい。配位子としては、2,2’-ビピリジルもしくはその誘導体、1,10-フェナントロリンもしくはその誘導体、またはテトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリエチレンテトラアミン、もしくはヘキサメチルトリス(2-アミノエチル)アミン等のポリアミン等が挙げられる。 Specific examples of monovalent copper compounds used to form copper complexes include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, Cuprous perchlorate and the like can be mentioned. When using a copper compound, a ligand may be added to enhance catalytic activity. Ligands include 2,2′-bipyridyl or derivatives thereof, 1,10-phenanthroline or derivatives thereof, or tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltriethylenetetraamine, or hexamethyltris(2-aminoethyl ) and polyamines such as amines.
 重合反応は、溶媒を用いない条件でも実施可能であるが、溶媒を用いて行ってもよい。溶媒の種類としては特に限定されず、例えば、日本国特開2005-232419号公報の段落[0067]記載の溶媒を用いることができる。これらは、1種類のみを使用してもよく、2種類以上を併用してもよい。また、エマルジョン系もしくは超臨界流体COを媒体とする系においても重合を行うことができる。 Although the polymerization reaction can be carried out without using a solvent, it may be carried out using a solvent. The type of solvent is not particularly limited, and for example, the solvent described in paragraph [0067] of Japanese Patent Application Laid-Open No. 2005-232419 can be used. These may use only one type, and may use two or more types together. The polymerization can also be carried out in an emulsion system or a system mediated by supercritical fluid CO2 .
 重合温度は、特に限定はされないが、0~200℃の範囲で行うことができ、室温~150℃の範囲で行うことが好ましい。 Although the polymerization temperature is not particularly limited, it can be carried out in the range of 0 to 200°C, preferably in the range of room temperature to 150°C.
 ポリオレフィン系重合体の製造方法も特に限定されず、公知の方法を適用できる。原料の入手性および生産性が高く、工業的にも好適に使用できるという理由から、例えば、WO2013/047314号公報、日本国特開2013-216782号公報、およびWO2017/099043号公報等に記載の製造方法を好適に用いることができる。当該製造方法は例えば、一官能性重合開始剤(例えば、クミルクロリド、tert-ブチルクロリド、および2-クロロ-2,4,4-トリメチルペンタン等)およびルイス酸触媒(例えば、TiCl等)を用い、含窒素化合物等の電子供与体成分(例えば、2-メチルピリジン、2,6-ジメチルピリジン、トリエチルアミン等)の共存下で、オレフィン系モノマーのリビングカチオン重合を行い、ポリオレフィン系重合体の主鎖を製造する工程を含む。当該方法において、溶媒としては、入手性、原料および重合体の溶解性、および経済性の点から、塩化メチル、塩化ブチル、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、およびトルエン等を用いることが特に好ましい。また、当該方法において、反応は、低温(例えば-70℃等)で行われることが好ましい。 The method for producing the polyolefin polymer is also not particularly limited, and known methods can be applied. For the reason that the availability and productivity of raw materials are high and can be suitably used industrially, for example, WO2013/047314, Japanese Patent Laid-Open No. 2013-216782, and WO2017/099043, etc. A manufacturing method can be preferably used. The production method uses, for example, a monofunctional polymerization initiator (eg, cumyl chloride, tert-butyl chloride, and 2-chloro-2,4,4-trimethylpentane, etc.) and a Lewis acid catalyst (eg, TiCl.sub.4 , etc.). , in the presence of an electron donor component such as a nitrogen-containing compound (e.g., 2-methylpyridine, 2,6-dimethylpyridine, triethylamine, etc.), living cationic polymerization of an olefinic monomer is performed to form the main chain of a polyolefinic polymer. including the step of manufacturing In the method, it is particularly preferable to use methyl chloride, butyl chloride, hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, toluene, and the like as the solvent from the viewpoints of availability, solubility of raw materials and polymers, and economy. preferable. Moreover, in the method, the reaction is preferably carried out at a low temperature (eg, -70°C).
 ポリオキシアルキレン系重合体の製造方法としては、エポキシ化合物を重合させる方法が挙げられる。エポキシ化合物としては、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド類、メチルグリシジルエーテル、アリルグリシジルエーテル、等のグリシジルエーテル類等が挙げられる。この中でもプロピレンオキサイドが好ましい。 A method for producing a polyoxyalkylene-based polymer includes a method for polymerizing an epoxy compound. Examples of epoxy compounds include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether. Among these, propylene oxide is preferred.
 ((A)成分の架橋性官能基)
 本発明の一実施形態に係る(A)成分は、架橋性官能基を分子の少なくとも一方の末端または末端近傍に有し、好ましくは分子の両末端または両末端近傍に有する。
(Crosslinkable functional group of component (A))
Component (A) according to one embodiment of the present invention has a crosslinkable functional group at or near one end of the molecule, preferably at or near both ends of the molecule.
 本発明の一実施形態に係る硬化性組成物を硬化させてなる硬化物にゴム的な性質が特に要求される場合には、ゴム弾性に大きな影響を与える架橋点間分子量を大きくすることができる点から、架橋性官能基の少なくとも1個は分子鎖の末端にあることが好ましく、全ての架橋性官能基が分子鎖末端にあることがより好ましい。 When the cured product obtained by curing the curable composition according to one embodiment of the present invention is particularly required to have rubber-like properties, the molecular weight between cross-linking points, which greatly affects rubber elasticity, can be increased. From this point of view, at least one of the crosslinkable functional groups is preferably at the terminal of the molecular chain, and more preferably all the crosslinkable functional groups are at the terminal of the molecular chain.
 本発明の一実施形態において、(A)成分の架橋性官能基は特に限定されない。貯蔵安定性および架橋後の硬化物の特性に優れるという観点から、(A)成分の架橋性官能基が、加水分解性シリル基およびラジカル架橋性官能基のうちの少なくともいずれか1種類であることが好ましい。 In one embodiment of the present invention, the crosslinkable functional group of component (A) is not particularly limited. The crosslinkable functional group of component (A) is at least one of a hydrolyzable silyl group and a radically crosslinkable functional group, from the viewpoint of excellent storage stability and properties of the cured product after crosslinking. is preferred.
 (加水分解性シリル基)
 一実施形態において、加水分解性シリル基は、下記一般式(1)により表される。
-[Si(R2-b(Y)O]-Si(R3-a(Y) (1)
 式中、RおよびRは独立して、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または(R’)SiO-で示されるトリオルガノシロキシ基である(このとき、R’は炭素数1~20の1価の炭化水素基であり、3個存在するR’は同一であってもよく、異なっていてもよい)。1個の加水分解性シリル基の中にRまたはRが2個以上存在するとき、当該RまたはRの構造は、同一であってもよく、異なっていてもよい。
(Hydrolyzable silyl group)
In one embodiment, the hydrolyzable silyl group is represented by general formula (1) below.
—[Si(R 1 ) 2-b (Y) b O] m —Si(R 2 ) 3-a (Y) a (1)
In the formula, R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R') 3 SiO— (At this time, R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's present may be the same or different). When two or more R 1 or R 2 are present in one hydrolyzable silyl group, the structures of the R 1 or R 2 may be the same or different.
 Yは水酸基または加水分解性基である。1個の加水分解性シリル基の中にYが2個以上存在するとき、当該Yは同一であってもよく、異なっていてもよい。aは、0、1、2、または3であり、組成物の硬化性および得られた硬化物の物性の観点から2または3であることが好ましい。bは、0、1、または2である。水酸基および加水分解性基は、1個のケイ素原子につき1~3個の範囲で結合することができる。そのため、(a+Σb)は1~5の範囲が好ましい。1個の加水分解性シリル基の中に加水分解性基または水酸基が2個以上存在するとき、当該加水分解性基または水酸基は、同一であってもよく、異なっていてもよい。mは、0~19の整数である。ただし、a+mb≧1の関係を満たしている。 Y is a hydroxyl group or a hydrolyzable group. When two or more Y are present in one hydrolyzable silyl group, the Y may be the same or different. a is 0, 1, 2, or 3, preferably 2 or 3 from the viewpoint of the curability of the composition and the physical properties of the resulting cured product. b is 0, 1, or 2; One to three hydroxyl groups and hydrolyzable groups can be bonded to one silicon atom. Therefore, (a+Σb) is preferably in the range of 1-5. When two or more hydrolyzable groups or hydroxyl groups are present in one hydrolyzable silyl group, the hydrolyzable groups or hydroxyl groups may be the same or different. m is an integer from 0 to 19; However, it satisfies the relationship a+mb≧1.
 加水分解性基としては、例えば、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。アルコキシ基、アミド基、アミノオキシ基が好ましく、加水分解性がマイルドで取り扱い易いという点から、アルコキシ基が特に好ましい。一般に、アルコキシ基は、炭素数が少ない方が反応性は高い。すなわち、メトキシ基、エトキシ基、プロポキシ基・・・の順に反応性が低くなる。これらは目的および用途に応じて選択できる。 Examples of hydrolyzable groups include hydrogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amido groups, aminooxy groups, mercapto groups, and alkenyloxy groups. An alkoxy group, an amido group, and an aminooxy group are preferred, and an alkoxy group is particularly preferred because of its mild hydrolyzability and ease of handling. In general, alkoxy groups with fewer carbon atoms have higher reactivity. That is, the reactivity decreases in the order of methoxy group, ethoxy group, propoxy group, and so on. These can be selected according to the purpose and application.
 本発明の一実施形態において、下記一般式(2)で表される加水分解性シリル基が、入手が容易である点から好ましい。
-Si(R3-a(Y) (2)
 式中、RおよびYの定義は上述の通りである。aは1~3の整数である。
In one embodiment of the present invention, a hydrolyzable silyl group represented by the following general formula (2) is preferable from the viewpoint of easy availability.
—Si(R 2 ) 3-a (Y) a (2)
wherein R 2 and Y are defined as above. a is an integer from 1 to 3;
 加水分解性シリル基は、ケイ素原子を1個以上含むが、シロキサン結合などにより連結されたケイ素原子の場合には、含まれるケイ素原子が20個以下であることが好ましい。 The hydrolyzable silyl group contains one or more silicon atoms, but in the case of silicon atoms linked by siloxane bonds or the like, it preferably contains 20 or less silicon atoms.
 上記のような加水分解性シリル基を有する重合体としては、ケイ素原子1つあたり2つの加水分解性基が結合してなる加水分解性シリル基を有する重合体を用いることが多い。しかし、低温で使用する場合、特に非常に速い硬化速度を必要とする場合、その硬化速度は充分ではない場合がある。また、硬化後の柔軟性を出したい場合には、架橋密度を低下させる必要があるが、架橋密度を低下させることにより、べたつき(表面タック)が生じる場合がある。この場合、aが3のもの(例えばトリメトキシ官能基)を用いることが好ましい。 As the polymer having a hydrolyzable silyl group as described above, a polymer having a hydrolyzable silyl group in which two hydrolyzable groups are bonded per silicon atom is often used. However, when used at low temperatures, the curing speed may not be sufficient, especially when very high curing speeds are required. Further, in order to obtain flexibility after curing, it is necessary to lower the crosslink density, but a lower crosslink density may cause stickiness (surface tack). In this case, it is preferable to use one in which a is 3 (for example, a trimethoxy functional group).
 また、aが3のもの(例えば、トリメトキシ官能基)は2のもの(例えば、ジメトキシ官能基)よりも硬化が速い。一方で、貯蔵安定性および力学物性(伸び等)に関しては、aが2のものの方が、aが3のものより優れている場合がある。したがって、硬化性と物性とのバランスをとるために、aが2のもの(例えば、ジメトキシ官能基)とaが3のもの(例えば、トリメトキシ官能基)を併用してもよい。 Also, those with a of 3 (eg, trimethoxy functional group) cure faster than those with a of 2 (eg, dimethoxy functional group). On the other hand, with respect to storage stability and mechanical properties (elongation, etc.), there are cases in which a of 2 is superior to a of 3. Therefore, in order to balance the curability and physical properties, a compound having a of 2 (eg, dimethoxy functional group) and a compound having a of 3 (eg, trimethoxy functional group) may be used in combination.
 式(1)および(2)中、Yが同一の場合、aが多いほどYの反応性が高くなる。Yとaを種々選択することにより硬化性および硬化物の機械物性等を制御することが可能であり、目的および用途に応じて選択できる。また、aが1のものは鎖延長剤として架橋性シリル基を有する重合体、具体的にはポリシロキサン系、ポリオキシプロピレン系、ポリイソブチレン系からなる少なくとも1種の重合体と混合して使用できる。硬化前に低粘度、硬化後に高い破断時伸び性、低ブリード性、表面低汚染性を有する組成物とすることが可能である。 In formulas (1) and (2), when Y is the same, the greater the value of a, the higher the reactivity of Y. It is possible to control the curability and the mechanical properties of the cured product by selecting various values of Y and a, which can be selected according to the purpose and application. In addition, when a is 1, it is used by mixing with a polymer having a crosslinkable silyl group as a chain extender, specifically at least one type of polysiloxane-based, polyoxypropylene-based, or polyisobutylene-based polymer. can. It is possible to obtain a composition having low viscosity before curing and high elongation at break, low bleeding, and low surface staining after curing.
 (A)成分の架橋性官能基が加水分解性シリル基である場合、(A)成分が分子中に有する加水分解性シリル基の数の下限は、1分子当たり平均して1.0個以上であることが好ましく、1.1個以上であることがより好ましく、1.2個以上であることがさらに好ましい。加水分解性シリル基の数の上限は、1分子当たり平均して4.0以下であることが好ましく、3.5個以下であることがより好ましい。加水分解性シリル基の数が上記の範囲内であれば、触媒および開始剤により、重合体同士が充分に架橋され、充分な強度の硬化物を得ることができる。 When the crosslinkable functional group of component (A) is a hydrolyzable silyl group, the lower limit of the number of hydrolyzable silyl groups in the molecule of component (A) is, on average, 1.0 or more per molecule. , more preferably 1.1 or more, and even more preferably 1.2 or more. The upper limit of the number of hydrolyzable silyl groups is preferably 4.0 or less, more preferably 3.5 or less per molecule on average. If the number of hydrolyzable silyl groups is within the above range, the polymers are sufficiently crosslinked by the catalyst and the initiator, and a cured product with sufficient strength can be obtained.
 加水分解性シリル基の具体例としては、ジメトキシシリル基、トリメトキシシリル基、ジエトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基が挙げられる。中でも硬化性組成物の硬化性の観点からは、ジメトキシメチルシリル基、ジメトキシメチルシリル基、トリメトキシシリル基、トリエトキシシリル基等が好ましく、特にジメトキシメチルシリル基が好ましい。 Specific examples of hydrolyzable silyl groups include dimethoxysilyl group, trimethoxysilyl group, diethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, dimethoxymethylsilyl group, diethoxymethylsilyl group, diisopropoxy A methylsilyl group is mentioned. Among them, from the viewpoint of curability of the curable composition, dimethoxymethylsilyl group, dimethoxymethylsilyl group, trimethoxysilyl group, triethoxysilyl group and the like are preferable, and dimethoxymethylsilyl group is particularly preferable.
 重合体に加水分解性シリル基を導入する方法としては、公知の方法を利用することができる。例えば、日本国特開2007-302749号公報の段落[0083]~[0117]に記載の方法が挙げられる。制御がより容易である点から、アルケニル基を少なくとも1個有する重合体に、加水分解性シリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下で付加させる方法が好ましい。 A known method can be used to introduce a hydrolyzable silyl group into the polymer. For example, the method described in paragraphs [0083] to [0117] of Japanese Patent Application Laid-Open No. 2007-302749 can be mentioned. From the viewpoint of easier control, a method of adding a hydrosilane compound having a hydrolyzable silyl group to a polymer having at least one alkenyl group in the presence of a hydrosilylation catalyst is preferred.
 得られた重合体へ、ヒドロシリル化反応可能なアルケニル基を導入する方法としては、公知の方法を利用することができる。好ましくは、リビングラジカル重合により重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、重合性の低いアルケニル基を少なくとも2個有するジエン化合物を反応させる方法が挙げられる。この方法によれば、アルケニル基導入の制御がより容易である。具体的な方法を、以下に簡単に説明する。 As a method for introducing a hydrosilylation-reactive alkenyl group into the obtained polymer, a known method can be used. Preferable examples include a method of reacting a diene compound having at least two alkenyl groups with low polymerizability at the end of the polymerization reaction or after the completion of the reaction of a predetermined monomer when synthesizing a polymer by living radical polymerization. This method makes it easier to control alkenyl introduction. A specific method will be briefly described below.
 ジエン化合物が有するアルケニル基としては、末端アルケニル基[CH=C(R)-R’](Rは水素または炭素数1~20の有機基、R’は炭素数1~20の一価または二価の有機基であり、RとR’は互いに結合して環状構造を有していてもよい。)、または内部アルケニル基[R’-C(R)=C(R)-R’](Rは水素または炭素数1~20の有機基、R’は炭素数1~20の一価または二価の有機基であり、二つのRまたは二つのR’は互いに同一であってもよく異なっていてもよい。二つのRと二つのR’のうちいずれか二つが互いに結合して環状構造を有していてもよい。)のいずれでもよいが、末端アルケニル基がより好ましい。Rは水素または炭素数1~20の有機基であるが、炭素数1~20の有機基としては、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が好ましい。これらの中でも、Rとしては水素またはメチル基が特に好ましい。R’の炭素数1~20の一価または二価の有機基としては、炭素数1~20の一価または二価のアルキル基、炭素数6~20の一価または二価のアリール基、炭素数7~20の一価または二価のアラルキル基が好ましい。これらの中でもR’としてはメチレン基、エチレン基、イソプロピレン基が特に好ましい。ジエン化合物の少なくとも2つのアルケニル基は互いに同一または異なっていてもよく、ジエン化合物のアルケニル基のうち、少なくとも2つのアルケニル基は共役していてもよい。 The alkenyl group possessed by the diene compound includes a terminal alkenyl group [CH 2 =C(R)-R'] (R is hydrogen or an organic group having 1 to 20 carbon atoms, R' is a monovalent or is a divalent organic group, and R and R' may be bonded together to form a cyclic structure.), or an internal alkenyl group [R'-C(R)=C(R)-R'] (R is hydrogen or an organic group having 1 to 20 carbon atoms, R' is a monovalent or divalent organic group having 1 to 20 carbon atoms, and two R or two R' may be the same Any two of the two R and the two R' may be bonded to each other to form a cyclic structure.), but a terminal alkenyl group is more preferred. R is hydrogen or an organic group having 1 to 20 carbon atoms. is preferred. Among these, hydrogen or a methyl group is particularly preferable as R. The monovalent or divalent organic group having 1 to 20 carbon atoms for R' includes a monovalent or divalent alkyl group having 1 to 20 carbon atoms, a monovalent or divalent aryl group having 6 to 20 carbon atoms, A monovalent or divalent aralkyl group having 7 to 20 carbon atoms is preferred. Among these, R' is particularly preferably a methylene group, an ethylene group, or an isopropylene group. At least two alkenyl groups of the diene compound may be the same or different, and among the alkenyl groups of the diene compound, at least two alkenyl groups may be conjugated.
 ジエン化合物の具体例としては例えば、イソプレン、ピペリレン、ブタジエン、ミルセン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン、4-ビニル-1-シクロヘキセン等が挙げられるが、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエンが好ましい。 Specific examples of diene compounds include isoprene, piperylene, butadiene, myrcene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, 4-vinyl-1-cyclohexene, and the like. 5-hexadiene, 1,7-octadiene and 1,9-decadiene are preferred.
 所定のモノマーのリビングラジカル重合を行い、得られた重合体を重合系より単離した後、単離した重合体とジエン化合物をラジカル反応させることにより、目的とする末端にアルケニル基を有する重合体を得ることも可能である。しかし、重合反応の終期あるいは所定のモノマーの反応終了後にジエン化合物を重合反応系中に添加する方法が簡便であるのでより好ましい。 After carrying out living radical polymerization of a predetermined monomer and isolating the obtained polymer from the polymerization system, the isolated polymer and a diene compound are radically reacted to obtain a desired polymer having an alkenyl group at its end. It is also possible to obtain However, the method of adding the diene compound to the polymerization reaction system at the end of the polymerization reaction or after the completion of the reaction of a predetermined monomer is more convenient and more preferable.
 ジエン化合物の添加量は、2つのアルケニル基の反応性に大きな差があるジエン化合物を使用する場合、重合体成長末端に対して当量または小過剰量程度であればよい。一方、2つのアルケニル基の反応性が等しいまたはあまり差がないジエン化合物を使用する場合、ジエン化合物の添加量は、重合体成長末端に対して過剰量であることが好ましく、具体的には1.5倍以上が好ましく、3倍以上がより好ましく、5倍以上がさらに好ましい。 When using a diene compound having a large difference in reactivity between two alkenyl groups, the amount of the diene compound to be added may be about an equivalent amount or a small excess amount relative to the growing terminal of the polymer. On the other hand, when using a diene compound in which two alkenyl groups have the same reactivity or little difference in reactivity, the amount of the diene compound to be added is preferably an excess amount relative to the growing terminal of the polymer, specifically 1 0.5 times or more is preferable, 3 times or more is more preferable, and 5 times or more is even more preferable.
 また、加水分解性シリル基を有するヒドロシラン化合物としては、特に限定されない。代表例としては、一般式(3)で示される化合物が例示される。
H-[Si(R2-b(Y)O]-Si(R3-a(Y) (3)
 式中、R、Rは、いずれも炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または(R’)SiO-で示されるトリオルガノシロキシ基である(このとき、R’は炭素数1~20の1価の炭化水素基であり、3個存在するR’は同一であってもよく、異なっていてもよい)。1個の加水分解性シリル基の中にRまたはRが2個以上存在するとき、当該RまたはRの構造は、同一であってもよく、異なっていてもよい。
Moreover, the hydrosilane compound having a hydrolyzable silyl group is not particularly limited. A representative example is the compound represented by the general formula (3).
H—[Si(R 3 ) 2-b (Y) b O] m —Si(R 4 ) 3-a (Y) a (3)
In the formula, R 3 and R 4 are both an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R') 3 SiO— It is a triorganosiloxy group (at this time, R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's present may be the same or different). When two or more R 3 or R 4 are present in one hydrolyzable silyl group, the structures of the R 3 or R 4 may be the same or different.
 Yは水酸基または加水分解性基である。1個の加水分解性シリル基の中にYが2個以上存在するとき、当該Yは同一であってもよく、異なっていてもよい。aは、0、1、2、または3であり、bは、0、1、または2である。mは0~19の整数である。ただし、a+mb≧1の関係を満たしている。 Y is a hydroxyl group or a hydrolyzable group. When two or more Y are present in one hydrolyzable silyl group, the Y may be the same or different. a is 0, 1, 2, or 3; b is 0, 1, or 2; m is an integer from 0 to 19; However, it satisfies the relationship a+mb≧1.
 これらヒドロシラン化合物の中でも、下記一般式(4)で表される化合物が、入手容易な点から好ましい。
H-Si(R3-a(Y) (4)
 式中、RおよびYの定義は上述の通りであり、aは1~3の整数である。
Among these hydrosilane compounds, compounds represented by the following general formula (4) are preferable from the standpoint of easy availability.
H—Si(R 4 ) 3-a (Y) a (4)
wherein R 4 and Y are defined as above, and a is an integer of 1-3.
 上記の加水分解性シリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、遷移金属触媒が通常用いられる。遷移金属触媒としては、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体、白金(0)-ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl(PPh、RhCl、RuCl、IrCl、FeCl、AlCl、PdCl・HO、NiCl、TiCl等が挙げられる。 A transition metal catalyst is usually used when the above hydrosilane compound having a hydrolyzable silyl group is added to an alkenyl group. Transition metal catalysts include, for example, pure platinum, alumina, silica, a carrier such as carbon black with platinum solid dispersed therein, chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, etc., and platinum-olefins. complexes, platinum(0)-divinyltetramethyldisiloxane complexes. Examples of catalysts other than platinum compounds include RhCl( PPh3 ) 3 , RhCl3 , RuCl3 , IrCl3 , FeCl3 , AlCl3 , PdCl2.H2O , NiCl2 , TiCl4, and the like.
 架橋性シリル基を分子鎖末端に有するビニル系重合体、中でも(メタ)アクリル系重合体を製造する方法は、日本国特公平3-14068号公報、日本国特公平4-55444号公報、日本国特開平6-211922号公報等に開示されている。しかしながらこれらの方法は上記「連鎖移動剤法」を用いたフリーラジカル重合法であるので、得られる重合体は、架橋性シリル基を比較的高い割合で分子鎖末端に有する一方で、Mw/Mnで表される分子量分布の値が一般に2以上と大きく、同一架橋点間分子量における粘度が増大し、取り扱いが困難になる場合がある。従って、分子量分布が狭く、粘度の低いビニル系重合体であって、高い割合で分子鎖末端に架橋性シリル基を有するビニル系重合体を得る場合には、上記「リビングラジカル重合法」を用いることが好ましい。ただし、本発明の一実施形態は、分子量分布の狭い重合体に限定されない。 A method for producing a vinyl polymer having a crosslinkable silyl group at the molecular chain end, especially a (meth)acrylic polymer, is disclosed in JP-B-3-14068, JP-B-4-55444, JP-B-4-55444. This is disclosed in Japanese Patent Application Laid-Open No. 6-211922. However, since these methods are free radical polymerization methods using the above-mentioned "chain transfer agent method", the resulting polymer has a relatively high ratio of crosslinkable silyl groups at the molecular chain ends, while the Mw/Mn The value of the molecular weight distribution represented by is generally as large as 2 or more, and the viscosity at the same molecular weight between cross-linking points increases, making handling difficult in some cases. Therefore, when obtaining a vinyl polymer having a narrow molecular weight distribution, a low viscosity, and a crosslinkable silyl group at the molecular chain end in a high proportion, the above-mentioned "living radical polymerization method" is used. is preferred. However, one embodiment of the present invention is not limited to polymers with narrow molecular weight distributions.
 加水分解性シリル基を末端近傍に有する重合体を製造する場合、例えば下記のいずれかの方法を採用してもよい:
 (a)リビングラジカル重合によって、加水分解性シリル基を有するモノマーを相対的に多く含む混合物を重合させる工程(1a)と、工程(1a)後の反応系に加水分解性シリル基を有するモノマーを相対的に少なく含む混合物を重合させる工程(2a)とを含む方法;
 (b)リビングラジカル重合によって、加水分解性シリル基を有するモノマーを相対的に少なく含む混合物を重合させる工程(1b)と、工程(1b)後の反応系に加水分解性シリル基を有するモノマーを相対的に多く含む混合物を重合させる工程(2b)とを含む方法。
When producing a polymer having near-terminal hydrolyzable silyl groups, for example, any of the following methods may be employed:
(a) step (1a) of polymerizing a mixture containing a relatively large amount of a monomer having a hydrolyzable silyl group by living radical polymerization; and (2a) polymerizing the relatively lean mixture;
(b) step (1b) of polymerizing a mixture containing a relatively small amount of a monomer having a hydrolyzable silyl group by living radical polymerization; and (2b) polymerizing the relatively rich mixture.
 (ラジカル架橋性官能基)
 (A)のラジカル性官能基としては特に限定されないが、例えば、ビニル基、(メタ)アクリロイル基等が挙げられる。(A)成分の架橋性官能基がラジカル架橋性官能基である場合、(A)成分が分子中に有するラジカル架橋性官能基の数の下限は、1分子当たり平均して1.0個以上であることが好ましく、1.2個以上であることがより好ましく、1.4個以上であることがさらに好ましい。ラジカル架橋性官能基の数の上限は、1分子当たり平均して2個以下であることが好ましい。ラジカル架橋性官能基の数が上記の範囲内であれば、触媒および開始剤により、重合体同士が充分に架橋され、充分な強度の硬化物を得ることができる。
(Radical crosslinkable functional group)
Although the radical functional group of (A) is not particularly limited, examples thereof include a vinyl group and a (meth)acryloyl group. When the crosslinkable functional group of component (A) is a radical crosslinkable functional group, the lower limit of the number of radical crosslinkable functional groups in the molecule of component (A) is 1.0 or more on average per molecule. is preferably , more preferably 1.2 or more, and even more preferably 1.4 or more. The upper limit of the number of radical crosslinkable functional groups is preferably 2 or less per molecule on average. If the number of radical crosslinkable functional groups is within the above range, the polymers are sufficiently crosslinked by the catalyst and the initiator, and a cured product with sufficient strength can be obtained.
 ((メタ)アクリロイル基)
 一実施形態において、(メタ)アクリロイル基は下記一般式(5)により表される。
-OC(O)C(R)=CH (5)
 式中、Rは、水素原子または炭素数1~20の炭化水素基である。炭化水素基は、任意で、酸素原子、窒素原子、硫黄原子、フッ素原子、塩素原子、臭素原子およびヨウ素原子からなる群より選択される1種類以上のヘテロ原子により置換されていてもよい。Rの具体例としては、H、CH、CHCH、(CHCH(nは2~19の整数)、C、CHOH、CN等が挙げられる。(A)成分の反応性の観点からは、Rは、HまたはCHが好ましい。
((meth)acryloyl group)
In one embodiment, the (meth)acryloyl group is represented by general formula (5) below.
-OC(O)C( R5 )= CH2 (5)
In the formula, R 5 is a hydrogen atom or a hydrocarbon group having 1-20 carbon atoms. The hydrocarbon group may optionally be substituted with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, fluorine, chlorine, bromine and iodine atoms. Specific examples of R 5 include H, CH 3 , CH 2 CH 3 , (CH 2 ) n CH 3 (n is an integer of 2 to 19), C 6 H 5 , CH 2 OH, CN and the like. From the viewpoint of the reactivity of component (A), R5 is preferably H or CH3 .
 重合体に(メタ)アクリロイル基を導入する方法としては、公知の方法を利用することができる。例えば、日本国特許第5536383号公報の段落[0081]~[0090]に記載の方法が挙げられる。 As a method for introducing a (meth)acryloyl group into a polymer, a known method can be used. For example, the method described in paragraphs [0081] to [0090] of Japanese Patent No. 5536383 can be mentioned.
 (その他の樹脂)
 (A)成分は、単独で使用してもよく、他の樹脂と併用してもよい。併用する他の樹脂は特に限定されないが、例えば、ウレタン系樹脂、ポリビニルアセタール樹脂、エポキシ樹脂等を使用することができる。
(Other resins)
Component (A) may be used alone or in combination with other resins. Other resins to be used in combination are not particularly limited, but for example, urethane-based resins, polyvinyl acetal resins, epoxy resins, and the like can be used.
 ウレタン系樹脂としては、ウレタン樹脂、ウレタン変性ポリエステル樹脂、ウレタン変性エポキシ樹脂が挙げられる。 Urethane resins include urethane resins, urethane-modified polyester resins, and urethane-modified epoxy resins.
 ポリビニルアセタール樹脂は、ポリビニルアルコールとアルデヒド類とをアセタール化反応させることによって得られる。ポリビニルアセタール樹脂としては、ポリビニルホルマール樹脂、ポリビニルアセトアセタール樹脂、ポリビニルアルキルアセタール樹脂、ポリビニルプロピオナール樹脂、ポリビニルブチラール樹脂、ポリビニルヘキシラール樹脂等が挙げられる。 Polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol and aldehydes. Polyvinyl acetal resins include polyvinyl formal resin, polyvinyl acetoacetal resin, polyvinyl alkyl acetal resin, polyvinyl propional resin, polyvinyl butyral resin, polyvinyl hexalal resin and the like.
 エポキシ樹脂としては、各種ビスフェノール類をグリシジル化して生成されるビスフェノール型エポキシ樹脂、当該ビスフェノール型エポキシ樹脂の水添物、フェノールノボラック樹脂、クレゾールノボラック樹脂にハロエポキシドを反応させて得られるノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アミノ基含有エポキシ樹脂等が挙げられる。上記のようなエポキシ樹脂の中でも、電子基盤、太陽電池セル等表面への密着性を向上させるという観点から、アミノ基含有エポキシ樹脂を用いることが好ましい。 Epoxy resins include bisphenol-type epoxy resins produced by glycidylating various bisphenols, hydrogenated products of the bisphenol-type epoxy resins, phenol novolak resins, and novolak-type epoxy resins obtained by reacting cresol novolak resins with haloepoxides. , biphenyl-type epoxy resins, amino group-containing epoxy resins, and the like. Among the above epoxy resins, amino group-containing epoxy resins are preferably used from the viewpoint of improving adhesion to the surfaces of electronic substrates, solar cells, and the like.
 アミノ基含有エポキシ樹脂の合成方法は特に限定されないが、エポキシ樹脂(a1)、アミン化合物(a2)、および必要に応じて変性剤を配合し、これらを反応させてアミノ基含有エポキシ樹脂を得ることができる。以下に、アミノ基含有エポキシ樹脂について具体的に説明する。 The method for synthesizing the amino group-containing epoxy resin is not particularly limited, but the epoxy resin (a1), the amine compound (a2), and, if necessary, the modifier are blended and reacted to obtain the amino group-containing epoxy resin. can be done. The amino group-containing epoxy resin is specifically described below.
 アミノ基含有エポキシ樹脂としては、例えば、(1)エポキシ樹脂と第1級アミン化合物、第2級アミン化合物、または第1、2級混合アミン化合物との付加物(例えば、米国特許第3,984,299号明細書参照);(2)エポキシ樹脂と第1級アミン化合物がケチミン化された第2級アミン化合物との付加物(例えば、米国特許第4,017,438号明細書参照);(3)エポキシ樹脂とケチミン化された第1級アミノ基を有するヒドロキシ化合物とのエーテル化により得られる反応物(例えば、日本国特開昭59-43013号公報参照)等を挙げることができる。 Examples of amino group-containing epoxy resins include (1) adducts of epoxy resins with primary amine compounds, secondary amine compounds, or mixed primary and secondary amine compounds (e.g., U.S. Pat. No. 3,984; (2) an adduct of an epoxy resin and a secondary amine compound in which the primary amine compound is ketiminated (see, for example, U.S. Pat. No. 4,017,438); (3) A reaction product obtained by etherification of an epoxy resin and a ketiminized hydroxyl compound having a primary amino group (see, for example, JP-A-59-43013).
 エポキシ樹脂(a1):
 アミノ基含有エポキシ樹脂の製造に使用されるエポキシ樹脂(a1)は、1分子中にエポキシ基を少なくとも1個、好ましくは2個以上有する化合物である。エポキシ樹脂の数平均分子量は400~4,000、好ましくは800~2,500の範囲内である。エポキシ樹脂のエポキシ当量は180~2,500、好ましくは400~1,500の範囲内である。特に、ポリフェノール化合物とエピハロヒドリンとの反応によって得られるエポキシ樹脂が好ましい。
Epoxy resin (a1):
The epoxy resin (a1) used for producing the amino group-containing epoxy resin is a compound having at least one, preferably two or more epoxy groups in one molecule. The number average molecular weight of the epoxy resin is in the range of 400-4,000, preferably 800-2,500. The epoxy equivalent weight of the epoxy resin is in the range of 180-2,500, preferably 400-1,500. Particularly preferred is an epoxy resin obtained by reacting a polyphenol compound with epihalohydrin.
 当該エポキシ樹脂(a1)の形成のために用いられるポリフェノール化合物としては、例えば、ビス(4-ヒドロキシフェニル)-2,2-プロパン[ビスフェノールA]、ビス(4-ヒドロキシフェニル)メタン[ビスフェノールF]、ビス(4-ヒドロキシシクロヘキシル)メタン[水添ビスフェノールF]、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン[水添ビスフェノールA]、4,4’-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)-1,1-エタン、ビス(4-ヒドロキシフェニル)-1,1-イソブタン、ビス(4-ヒドロキシ-3-tert-ブチル-フェニル)-2,2-プロパン、ビス(2-ヒドロキシナフチル)メタン、テトラ(4-ヒドロキシフェニル)-1,1,2,2-エタン、4,4’-ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどが挙げられる。 Examples of polyphenol compounds used for forming the epoxy resin (a1) include bis(4-hydroxyphenyl)-2,2-propane [bisphenol A] and bis(4-hydroxyphenyl)methane [bisphenol F]. , bis(4-hydroxycyclohexyl)methane [hydrogenated bisphenol F], 2,2-bis(4-hydroxycyclohexyl)propane [hydrogenated bisphenol A], 4,4′-dihydroxybenzophenone, bis(4-hydroxyphenyl) -1,1-ethane, bis(4-hydroxyphenyl)-1,1-isobutane, bis(4-hydroxy-3-tert-butyl-phenyl)-2,2-propane, bis(2-hydroxynaphthyl)methane , tetra(4-hydroxyphenyl)-1,1,2,2-ethane, 4,4'-dihydroxydiphenylsulfone, phenol novolak, cresol novolak and the like.
 また、ポリフェノール化合物とエピクロルヒドリンとの反応によって得られるエポキシ樹脂(a1)としては、下記式で表される、ビスフェノールAから誘導される樹脂が好適である。 Also, as the epoxy resin (a1) obtained by the reaction of the polyphenol compound and epichlorohydrin, a resin derived from bisphenol A represented by the following formula is suitable.
Figure JPOXMLDOC01-appb-C000001
 ここで、好ましくはn=0~8である。
Figure JPOXMLDOC01-appb-C000001
Here, preferably n=0-8.
 エポキシ樹脂(a1)の市販品としては、例えば、三菱化学(株)製の、jER828EL、jER1001、jER1002、jER1004、jER1007等が挙げられる。 Commercial products of the epoxy resin (a1) include, for example, jER828EL, jER1001, jER1002, jER1004, and jER1007 manufactured by Mitsubishi Chemical Corporation.
 エポキシ樹脂(a1)は、例えば、エピクロルヒドリンとビスフェノールとを必要に応じてアルカリ触媒などの触媒の存在下で高分子量まで縮合させてなる樹脂、エピクロルヒドリンとビスフェノールとを必要に応じてアルカリ触媒などの触媒の存在下で縮合させて低分子量のエポキシ樹脂とし、この低分子量エポキシ樹脂とビスフェノールとを重付加反応させることにより得られた樹脂のいずれであってもよい。 The epoxy resin (a1) is, for example, a resin obtained by condensing epichlorohydrin and bisphenol to a high molecular weight in the presence of a catalyst such as an alkali catalyst if necessary, epichlorohydrin and bisphenol in the presence of a catalyst such as an alkali catalyst if necessary. may be any resin obtained by condensing in the presence of to form a low-molecular-weight epoxy resin and subjecting the low-molecular-weight epoxy resin and bisphenol to a polyaddition reaction.
 アミン化合物(a2):
 アミノ基含有エポキシ樹脂の製造に使用されるアミン化合物(a2)としては、例えば、モノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジブチルアミンなどのモノ-もしくはジ-アルキルアミン;モノエタノールアミン、ジエタノールアミン、モノ(2-ヒドロキシプロピル)アミン、ジ(2-ヒドロキシプロピル)アミン、モノメチルアミノエタノール、N-(2-ヒドロキシプロピル)エチレンジアミン、3-メチルアミン-1,2-プロパンジオール、3-tert-ブチルアミノ-1,2-プロパンジオール、N-メチルグルカミン、N-オクチルグルカミンなどのアルカノールアミン;エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミンなどのアルキレンポリアミン;3-ピロリジノール、3-ピぺリジノール、4-ピロリジノールなどの複素環を有するポリアミン;モノエタノールアミン、モノ(2-ヒドロキシプロピル)アミン、N-(2-ヒドロキシプロピル)エチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミンなどのアミン化合物にメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン化合物を反応させたケチミン化アミン化合物等が挙げられる。
Amine compound (a2):
The amine compound (a2) used for producing the amino group-containing epoxy resin includes, for example, mono- or di-methylamine such as monomethylamine, dimethylamine, monoethylamine, diethylamine, monoisopropylamine, diisopropylamine, monobutylamine and dibutylamine. -alkylamine; monoethanolamine, diethanolamine, mono(2-hydroxypropyl)amine, di(2-hydroxypropyl)amine, monomethylaminoethanol, N-(2-hydroxypropyl)ethylenediamine, 3-methylamine-1,2 -Alkanolamines such as propanediol, 3-tert-butylamino-1,2-propanediol, N-methylglucamine, N-octylglucamine; ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, dipropylene Alkylenepolyamines such as triamine, bis(hexamethylene)triamine, and triethylenetetramine; polyamines having heterocyclic rings such as 3-pyrrolidinol, 3-piperidinol, and 4-pyrrolidinol; monoethanolamine, mono(2-hydroxypropyl)amine , N-(2-hydroxypropyl)ethylenediamine, diethylenetriamine, dipropylenetriamine, bis(hexamethylene)triamine, triethylenetetramine, etc., with ketone compounds such as methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, etc. compounds and the like.
 アミノ基含有エポキシ樹脂としては、必要に応じて、変性剤(a3)を反応させることによって内部変性を図ったものを用いてもよい。変性剤(a3)は、エポキシ樹脂との反応性を有する樹脂または化合物であれば特に限定されず、例えば、ジオール、ポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリアミドアミン、ポリカルボン酸、脂肪酸、ポリイソシアネート化合物、ε-カプロラクトン等のラクトン化合物、ε-カプロラクトン等のラクトン化合物とポリイソシアネート化合物とを反応させた化合物、アクリルモノマーを重合反応させた化合物、キシレンホルムアルデヒド化合物等が挙げられる。 As the amino group-containing epoxy resin, if necessary, one that has undergone internal modification by reacting with a modifying agent (a3) may be used. The modifier (a3) is not particularly limited as long as it is a resin or compound having reactivity with the epoxy resin, and examples thereof include diols, polyols, polyether polyols, polyester polyols, polyamidoamines, polycarboxylic acids, fatty acids, and polyisocyanates. compounds, lactone compounds such as ε-caprolactone, compounds obtained by reacting lactone compounds such as ε-caprolactone with polyisocyanate compounds, compounds obtained by polymerization reaction of acrylic monomers, xylene formaldehyde compounds, and the like.
 変性剤(a3)の使用割合は、特に限定されず、組成物の用途等に応じて適宜変えることができる。変性剤(a3)の使用割合は、仕上り性および防食性向上の観点から、アミノ基含有エポキシ樹脂の固形分質量を基準にして0~50質量%、好ましくは5~30質量%の範囲内が適当である。 The usage ratio of the modifier (a3) is not particularly limited, and can be changed as appropriate according to the application of the composition. The ratio of modifier (a3) used is in the range of 0 to 50% by mass, preferably 5 to 30% by mass, based on the solid content mass of the amino group-containing epoxy resin, from the viewpoint of improving finish and anticorrosion properties. Appropriate.
 上記のエポキシ樹脂(a1)、アミン化合物(b2)、さらに必要に応じて用いられる変性剤(a3)との反応は、通常、適当な有機溶媒中で、約80~約170℃、好ましくは約90~約150℃の温度で、1~6時間程度、好ましくは1~5時間程度で行なう。 The epoxy resin (a1), the amine compound (b2), and optionally the modifier (a3) are generally reacted in a suitable organic solvent at about 80 to about 170°C, preferably about It is carried out at a temperature of 90 to about 150° C. for about 1 to 6 hours, preferably about 1 to 5 hours.
 上記の有機溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、n-ヘキサン等の炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン等のケトン系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;メタノール、エタノール、n-プロパノール、iso-プロパノールなどのアルコール系溶媒;エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテルアルコール系化合物;あるいはこれらの有機溶媒の混合物が挙げられる。 Examples of the organic solvent include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, and methyl amyl ketone. ketone solvents such as; dimethylformamide, amide solvents such as dimethylacetamide; alcohol solvents such as methanol, ethanol, n-propanol and iso-propanol; ether alcohol compounds such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether; Alternatively, a mixture of these organic solvents can be used.
 上記のようにして得られたアミノ基含有エポキシ樹脂のアミン価は、40~80mgKOH/g樹脂固形分であることが好ましく、樹脂成分の耐乾きムラ性および防食性の観点から、45~65mgKOH/g樹脂固形分であることがより好ましい。アミノ基含有エポキシ樹脂の数平均分子量は、1,500~5,000であることが好ましく、つきまわり性および防食性の観点から、2,000~4,000であることがより好ましい。 The amine value of the amino group-containing epoxy resin obtained as described above is preferably 40 to 80 mgKOH/g resin solid content, and from the viewpoint of resistance to uneven drying and corrosion resistance of the resin component, 45 to 65 mgKOH/ g resin solid content is more preferred. The number average molecular weight of the amino group-containing epoxy resin is preferably 1,500 to 5,000, more preferably 2,000 to 4,000 from the viewpoint of throwing power and corrosion resistance.
 <(B)成分>
 前記硬化性組成物は、(B)成分として、架橋性官能基を有するイオン性液体を含む。イオン性液体としては特に限定されないが、カチオンとして有機オニウムイオンを含むイオン性液体が挙げられる。有機オニウムイオンとしては、アンモニウムイオン、グアニジニウムイオン、ホスホニウムイオン、オキソニウムイオン、スルホニウムイオン、ピリジニウムイオン、イミダゾリウムイオンが挙げられる。好ましくは、アンモニウムイオン、ホスホニウムイオン、スルホニウムイオン、ピリジニウムイオン、イミダゾリウムイオンであり、より好ましくは、アンモニウムイオン、ホスホニウムイオン、ピリジニウムイオンである。
<(B) Component>
The curable composition contains an ionic liquid having a crosslinkable functional group as the component (B). The ionic liquid is not particularly limited, but includes ionic liquids containing organic onium ions as cations. Organic onium ions include ammonium ions, guanidinium ions, phosphonium ions, oxonium ions, sulfonium ions, pyridinium ions, and imidazolium ions. Ammonium ions, phosphonium ions, sulfonium ions, pyridinium ions and imidazolium ions are preferred, and ammonium ions, phosphonium ions and pyridinium ions are more preferred.
 有機オニウムイオンとしては1種類のみを使用してもよく、2種類以上を併用してもよい。2種類以上の有機オニウムイオンを併用することにより、イオン性液体の融点をさらに低下させ、粘度をさらに下げることが可能である。 Only one type of organic onium ion may be used, or two or more types may be used in combination. By using two or more kinds of organic onium ions in combination, it is possible to further lower the melting point of the ionic liquid and further lower the viscosity.
 また、イオン性液体のアニオンとしては、リン酸、硫酸、カルボン酸等の無機酸系イオン、またはフッ素系イオン等を使用できる。ここで、フッ素系アニオンとしては、テトラフルオロボレート(BF )、ヘキサフルオロボレート(BF )、ヘキサフルオロホスフェート(PF )、ヘキサフルオロアルセネート(AsF )、トリフルオロメタンスルホネート(CFSO )、ビス(フルオロスルホニル)イミド((FSO)、ビス(トリフルオロメタンスルホニル)イミド((CFSO)、ビス(トリフルオロエタンスルホニル)イミド((CFCFSO)、トリス(トリフルオロメタンスルホニルメチド)((CFSO)が挙げられる。 Inorganic acid-based ions such as phosphoric acid, sulfuric acid, and carboxylic acid, or fluorine-based ions can be used as the anion of the ionic liquid. Here, fluorine-based anions include tetrafluoroborate (BF 4 ), hexafluoroborate (BF 6 ), hexafluorophosphate (PF 6 ), hexafluoroarsenate (AsF 6 ), trifluoromethanesulfonate ( CF 3 SO 3 ), bis(fluorosulfonyl)imide ((FSO 2 ) 2 N ), bis(trifluoromethanesulfonyl) imide ((CF 3 SO 2 ) 2 N ), bis(trifluoroethanesulfonyl) imide ((CF 3 CF 2 SO 2 ) 2 N ), tris(trifluoromethanesulfonylmethide) ((CF 3 SO 2 ) 3 C ).
 イオン性液体におけるカチオンとアニオンの組み合わせについては様々な組み合わせが可能である。導電性ペーストに添加した場合に、粘度保持と導電性向上のバランスに優れるという観点から、イオン性液体は、アンモニウムイオン、ホスホニウムイオン、およびピリジニウムイオンからなる群より選択される少なくとも1種類とビス(トリフルオロメタンスルホニル)イミドとの塩であることが好ましい。 Various combinations of cations and anions in ionic liquids are possible. From the viewpoint of having an excellent balance between maintaining viscosity and improving conductivity when added to a conductive paste, the ionic liquid contains at least one selected from the group consisting of ammonium ions, phosphonium ions, and pyridinium ions and bis( A salt with trifluoromethanesulfonyl)imide is preferred.
 ((B)成分の架橋性官能基)
 本発明の一実施形態に係る(B)成分は、架橋性官能基を有する。(B)成分の架橋性官能基は特に限定されないが、例えば、ラジカル架橋性官能基、加水分解性シリル基、イソシアナート基、オキシラン基等が挙げられる。反応性の観点から、架橋性官能基は、加水分解性シリル基およびラジカル架橋性官能基のうちの少なくともいずれか1種類であることが好ましい。
(Crosslinkable functional group of component (B))
Component (B) according to one embodiment of the present invention has a crosslinkable functional group. The crosslinkable functional group of component (B) is not particularly limited, but examples thereof include radical crosslinkable functional groups, hydrolyzable silyl groups, isocyanate groups, and oxirane groups. From the viewpoint of reactivity, the crosslinkable functional group is preferably at least one of a hydrolyzable silyl group and a radical crosslinkable functional group.
 (B)成分のラジカル架橋性官能基としては、特に限定されないが、例えば、ビニル基、(メタ)アクリロイル基が挙げられる。(メタ)アクリロイル基を有するイオン性液体の具体例としては、(2-ヒドロキシ-3-メタクリロイルオキシプロピル)トリメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド、(2-アクリロイルオキシエチル)トリメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド、(2-メタクリロイルオキシエチル)トリメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド、2-ヒドロキシ-3-メタクリロイルオキシプロピルイミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド、(2-アクリロイルオキシエチル)イミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド、(2-メタクリロイルオキシエチル)イミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド等が挙げられる。 The radical crosslinkable functional group of component (B) is not particularly limited, but includes, for example, a vinyl group and a (meth)acryloyl group. Specific examples of ionic liquids having a (meth)acryloyl group include (2-hydroxy-3-methacryloyloxypropyl)trimethylammonium=bis(trifluoromethanesulfonyl)imide, (2-acryloyloxyethyl)trimethylammonium=bis( trifluoromethanesulfonyl)imide, (2-methacryloyloxyethyl)trimethylammonium = bis(trifluoromethanesulfonyl)imide, 2-hydroxy-3-methacryloyloxypropylimidazolium = bis(trifluoromethanesulfonyl)imide, (2-acryloyloxyethyl) ) imidazolium=bis(trifluoromethanesulfonyl)imide, (2-methacryloyloxyethyl)imidazolium=bis(trifluoromethanesulfonyl)imide and the like.
 加水分解性シリル基を有するイオン性液体の具体例としては、トリメトキシシリルプロピルトリメトキシアンモニウム=ビス(トリフルオロメタンスルホニル)イミド、トリエトキシシリルプロピルトリメトキシアンモニウム=ビス(トリフルオロメタンスルホニル)イミド、トリメトキシシリルプロピルイミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド、トリエトキシシリルプロピルイミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド等が挙げられる。 Specific examples of ionic liquids having a hydrolyzable silyl group include trimethoxysilylpropyltrimethoxyammonium=bis(trifluoromethanesulfonyl)imide, triethoxysilylpropyltrimethoxyammonium=bis(trifluoromethanesulfonyl)imide, trimethoxy silylpropylimidazolium=bis(trifluoromethanesulfonyl)imide, triethoxysilylpropylimidazolium=bis(trifluoromethanesulfonyl)imide and the like.
 ラジカル架橋性官能基と加水分解性シリル基とを両方有するイオン性液体の具体例としては、1-ビニル-3-(3-トリメトキシシリルプロピル)イミダゾールクロライド、1-ビニル-3-(3-トリエトキシシリルプロピル)イミダゾールクロライド、1-ビニル-3-(3-トリメトキシシリルプロピル)イミダゾールテトラフルオロボレート、1-ビニル-3-(3-トリエトキシシリルプロピル)イミダゾールテトラフルオロボレート、1-(メタ)アクリロイルオキシ-3-(3-トリメトキシシリルプロピル)イミダゾールクロライド、1-(メタ)アクリロイルオキシ3-(3-トリメトキシシリルプロピル)イミダゾールクロライド、1-(メタ)アクリロイルオキシ3-(3-トリメトキシシリルプロピル)イミダゾールボレート、1-(メタ)アクリロイルオキシ3-(3-トリエトキシシリルプロピル)イミダゾールボレート等が挙げられる。 Specific examples of ionic liquids having both a radical crosslinkable functional group and a hydrolyzable silyl group include 1-vinyl-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-vinyl-3-(3- triethoxysilylpropyl) imidazole chloride, 1-vinyl-3-(3-trimethoxysilylpropyl) imidazole tetrafluoroborate, 1-vinyl-3-(3-triethoxysilylpropyl) imidazole tetrafluoroborate, 1-(meth ) acryloyloxy-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-(meth)acryloyloxy-3-(3-trimethoxysilylpropyl)imidazole chloride, 1-(meth)acryloyloxy-3-(3-tri methoxysilylpropyl)imidazole borate, 1-(meth)acryloyloxy 3-(3-triethoxysilylpropyl)imidazole borate and the like.
 <1-3.(C)成分>
 前記硬化性組成物は、(C)成分として硬化触媒または開始剤を含む。(A)成分が加水分解性シリル基を有する重合体である場合、前記硬化性組成物は(C)成分として硬化触媒を含むことが好ましい。硬化触媒は、縮合触媒として作用する。この場合、硬化性組成物は例えば、湿分と反応して硬化するか、または光照射もしくは加熱によって硬化する。(A)成分がラジカル架橋性官能基を有する重合体である場合、前記硬化性組成物は(C)成分として開始剤を含むことが好ましい。この場合、硬化性組成物は、例えば光照射または加熱によって硬化する。
<1-3. (C) Component>
The curable composition contains a curing catalyst or initiator as component (C). When component (A) is a polymer having a hydrolyzable silyl group, the curable composition preferably contains a curing catalyst as component (C). Curing catalysts act as condensation catalysts. In this case, the curable composition cures, for example, by reacting with moisture or by light irradiation or heating. When the component (A) is a polymer having a radical crosslinkable functional group, the curable composition preferably contains an initiator as the component (C). In this case, the curable composition is cured, for example, by light irradiation or heating.
 (C)成分である硬化触媒としては、例えば、錫系硬化触媒、その他の金属化合物、アミン、リン酸エステルが挙げられる。この中でも、硬化性組成物の貯蔵安定性の観点から、アミンおよびリン酸エステルが好ましい。 The (C) component curing catalysts include, for example, tin-based curing catalysts, other metal compounds, amines, and phosphate esters. Among these, amines and phosphate esters are preferred from the viewpoint of storage stability of the curable composition.
 錫系硬化触媒の具体例としては、ジアルキル錫カルボン酸塩類(ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジエチルヘキサノレート、ジブチル錫ジオクテート、ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレートなど);ジアルキル錫オキサイド類(ジブチル錫オキサイド、ジオクチル錫オキサイド、ジブチル錫オキサイドとフタル酸エステルとの混合物など);4価錫化合物(ジアルキル錫オキサイド、ジアルキル錫ジアセテートなど)とアルコキシシリル基を有する低分子ケイ素化合物(テトラエトキシシラン、メチルトリエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシランなど)との反応物;2価の錫化合物類(オクチル酸錫、ナフテン酸錫、ステアリン酸錫など);モノアルキル錫類(モノブチル錫化合物(モノブチル錫トリスオクトエート、モノブチル錫トリイソプロポキシドなど)、モノオクチル錫化合物など);アミン系化合物と有機錫化合物との反応物または混合物(ラウリルアミンとオクチル酸錫の反応物または混合物など);キレート化合物(ジブチル錫ビスアセチルアセトナート、ジオクチル錫ビスアセチルセトナート、ジブチル錫ビスエチルアセトナート、ジオクチル錫ビスエチルアセトナートなど);錫アルコラート類(ジブチル錫ジメチラート、ジブチル錫ジエチラート、ジオクチル錫ジメチラート、ジオクチル錫ジエチラートなど)が挙げられる。 Specific examples of tin-based curing catalysts include dialkyltin carboxylates (dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diethylhexanolate, dibutyltin dioctate, dibutyltin dimethylmalate, dibutyltin diethylmalate, dibutyltin dibutyl Malate, dibutyltin diisooctyl malate, dibutyltin ditridecyl malate, dibutyltin dibenzyl malate, dibutyltin maleate, dioctyltin diacetate, dioctyltin distearate, dioctyltin dilaurate, dioctyltin diethylmalate, dioctyltin diisooctyl maleate, etc.); dialkyltin oxides (dibutyltin oxide, dioctyltin oxide, a mixture of dibutyltin oxide and a phthalate, etc.); tetravalent tin compounds (dialkyltin oxide, dialkyltin diacetate, etc.); Reaction products with low-molecular-weight silicon compounds having alkoxysilyl groups (tetraethoxysilane, methyltriethoxysilane, diphenyldimethoxysilane, phenyltrimethoxysilane, etc.); divalent tin compounds (tin octylate, tin naphthenate, stearin tin acid, etc.); monoalkyltins (monobutyltin compounds (monobutyltin trisoctoate, monobutyltin triisopropoxide, etc.), monooctyltin compounds, etc.); reaction products or mixtures of amine compounds and organic tin compounds ( chelate compounds (dibutyltin bisacetylacetonate, dioctyltin bisacetylacetonate, dibutyltin bisethylacetonate, dioctyltin bisethylacetonate, etc.); tin alcoholates (dibutyltin dimethylate, dibutyltin diethylate, dioctyltin dimethylate, dioctyltin diethylate, etc.).
 その他の金属化合物の例としては、チタン酸エステル類(テトラブチルチタネート、テトラプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)など);有機アルミニウム化合物類(アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジ-イソプロポキシアルミニウムエチルアセトアセテートなど);カルボン酸(2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸など)の金属塩、例えば、カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム;カルボン酸の金属塩とアミン系化合物(ラウリルアミンなど)との反応物または混合物;キレート化合物類(ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、チタンテトラアセチルアセトナートなど);が挙げられる。 Examples of other metal compounds include titanates (tetrabutyl titanate, tetrapropyl titanate, tetra(2-ethylhexyl) titanate, isopropoxytitanium bis(ethylacetoacetate), etc.); organoaluminum compounds (aluminum trisacetylacetoate); aluminum trisethylacetoacetate, di-isopropoxyaluminum ethylacetoacetate, etc.); metal salts of carboxylic acids (2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, naphthenic acid, etc.), such as bismuth carboxylate , iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, cerium carboxylate, nickel carboxylate, cobalt carboxylate, carboxylate zinc acid, aluminum carboxylate; reactants or mixtures of metal salts of carboxylic acids and amine compounds (laurylamine, etc.); chelate compounds (zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, dibutoxyzirconium diacetylaceto phosphate, zirconium acetylacetonate bis(ethylacetoacetate), titanium tetraacetylacetonate, etc.);
 アミンの例としては、脂肪族第一アミン類(メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミンなど);脂肪族第二アミン類(ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミンなど);脂肪族第三アミン類(トリアミルアミン、トリヘキシルアミン、トリオクチルアミンなど);脂肪族不飽和アミン類(トリアリルアミン、オレイルアミンなど);芳香族アミン類(ラウリルアニリン、ステアリルアニリン、トリフェニルアミンなど);その他のアミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、モルホリン、N-メチルモルホリン、2-エチル-4-メチルイミダゾール、1,8-ジアザビシクロ(5,4,0)ウンデセン-7(DBU)など);アミン系化合物の塩(カルボン酸塩など);アミン系化合物と有機錫化合物との反応物または混合物(ラウリルアミンとオクチル酸錫の反応物または混合物など);過剰のポリアミンおよび多塩基酸から得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物;が挙げられる。 Examples of amines include aliphatic primary amines (methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine, pentadecylamine, cetylamine, stearylamine, cyclohexylamine, etc.); aliphatic secondary amines (dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di(2-ethylhexyl)amine, didecylamine, dilaurylamine , dicetylamine, distearylamine, methylstearylamine, ethylstearylamine, butylstearylamine, etc.); aliphatic tertiary amines (triamylamine, trihexylamine, trioctylamine, etc.); aliphatic unsaturated amines (tri allylamine, oleylamine, etc.); aromatic amines (laurylaniline, stearylaniline, triphenylamine, etc.); other amines (monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzyl Amines, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine, triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris(dimethylaminomethyl)phenol, morpholine, N-methylmorpholine, 2-ethyl-4 -methylimidazole, 1,8-diazabicyclo(5,4,0)undecene-7 (DBU), etc.); salts of amine compounds (carboxylates, etc.); reactants or mixtures of amine compounds and organic tin compounds (such as reactants or mixtures of laurylamine and tin octoate); low molecular weight polyamide resins obtained from excess polyamines and polybasic acids; reaction products of excess polyamines and epoxy compounds;
 リン酸エステルの例としては、(CHO)-P(=O)(-OH)、(CHO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、[(CHOH)(CHOH)O]-P(=O)(-OH)、[(CHOH)(CHOH)O]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)が挙げられる。例えば(C17O)-P(=O)(-OH)、(C17O)-P(=O)(-OH)は、2-エチルヘキシルアシッドホスフェートとも称される。 Examples of phosphate esters include (CH 3 O) 2 —P(=O)(—OH), (CH 3 O)—P(=O)(—OH) 2 , (C 2 H 5 O) 2 -P(=O)(-OH), ( C2H5O ) -P (=O)(-OH) 2 , (C3H7O) 2- P(=O)(- OH ), ( C 3 H 7 O)-P(=O)(-OH) 2 , (C 4 H 9 O) 2 -P(=O)(-OH), (C 4 H 9 O)-P(=O) (—OH) 2 , (C 8 H 17 O) 2 —P(=O)(—OH), (C 8 H 17 O)—P(=O)(—OH) 2 , (C 10 H 21 O ) 2 -P(=O)(-OH), (C10H21O)-P(=O)(-OH) 2 , ( C13H27O ) 2- P (=O)(-OH ) , (C 13 H 27 O)—P(=O)(—OH) 2 , (C 16 H 33 O) 2 —P(=O)(—OH), (C 16 H 33 O)—P(= O)(—OH) 2 , (HO—C 6 H 12 O) 2 —P(=O)(—OH), (HO—C 6 H 12 O)—P(=O)(—OH) 2 , (HO--C 8 H 16 O)--P(=O)(--OH), (HO--C 8 H 16 O)--P(=O)(--OH) 2 , [(CH 2 OH)(CHOH) O] 2 -P(=O)(-OH), [(CH 2 OH)(CHOH)O]-P(=O)(-OH) 2 , [(CH 2 OH)(CHOH)C 2 H 4 O] 2 -P(=O)(-OH), [(CH 2 OH)(CHOH)C 2 H 4 O]-P(=O)(-OH) 2 . For example, (C 8 H 17 O) 2 -P(=O)(-OH), (C 8 H 17 O)-P(=O)(-OH) 2 is also called 2-ethylhexyl acid phosphate.
 (A)成分が加水分解性シリル基を有する場合は、(C)成分の硬化触媒が、熱潜在性を有する化合物またはUV(紫外光)反応性の化合物であることが好ましい。当該化合物として、例えば、酸無水物、ヒドラジン化合物、三フッ化ホウ素錯体、シアナミド化合物、イミダゾール化合物、光酸発生剤、光塩基発生剤等が挙げられる。この中でも、酸無水物、ヒドラジン化合物、イミダゾール化合物、光酸発生剤、または光塩基発生剤が好ましい。 When the component (A) has a hydrolyzable silyl group, the curing catalyst of the component (C) is preferably a compound with thermal latency or a UV (ultraviolet) reactive compound. Examples of such compounds include acid anhydrides, hydrazine compounds, boron trifluoride complexes, cyanamide compounds, imidazole compounds, photoacid generators, photobase generators, and the like. Among these, acid anhydrides, hydrazine compounds, imidazole compounds, photoacid generators, and photobase generators are preferred.
 酸無水物としては、例えば、無水プロピオン酸、無水酪酸、無水オクチル酸、無水2-エチルヘキサン酸、無水マレイン酸、無水フマル酸、無水酢酸、無水フタル酸、1,2,3,6-テトラヒドロ無水フタル酸、3,4,5,6-テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸、4-メチルヘキサヒドロ無水フタル酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、エチレングリコール ビスアンヒドロトリメリテート、エチレングリコール ビスアンヒドロトリメリテート、エチレングリコール ビスアンヒドロトリメリテート、エチレングリコール ビスアンヒドロトリメリテート、グリセリンビスアンヒドロトリメリテート モノアセテ-ト、無水コハク酸、テトラプロペニル無水コハク酸(3-ドデシル無水コハク酸)、オクテニルこはく酸無水物等が挙げられる。 Acid anhydrides include, for example, propionic anhydride, butyric anhydride, octyl anhydride, 2-ethylhexanoic anhydride, maleic anhydride, fumaric anhydride, acetic anhydride, phthalic anhydride, 1,2,3,6-tetrahydro Phthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, 4-methylhexahydrophthalic anhydride, methylbicyclo[2.2.1]heptane-2,3- Dicarboxylic anhydride, ethylene glycol bis-anhydro trimellitate, ethylene glycol bis-anhydro trimellitate, ethylene glycol bis-anhydro trimellitate, ethylene glycol bis-anhydro trimellitate, glycerin bis-anhydro trimellitate monoacetate succinic anhydride, tetrapropenyl succinic anhydride (3-dodecyl succinic anhydride), octenyl succinic anhydride and the like.
 ヒドラジン化合物としては、例えば、モノ塩酸ヒドラジン、ジ塩酸ヒドラジン、モノ臭化水素酸ヒドラジン、炭酸ヒドラジン、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカンジオヒドラジド、イソフタル酸ジヒドラジド、プロピオン酸ヒドラジド、サリチル酸ヒドラジド、ヒドロキシ-2-ナフトエ酸ヒドラジド、ベンゾフェノンヒドラゾン、3-ヒドロキシ-2-ナフトエ酸ヒドラジド、ポリアクリルアミド型水系架橋剤等が挙げられる。 Examples of hydrazine compounds include hydrazine monohydrochloride, hydrazine dihydrochloride, hydrazine monohydrobromide, hydrazine carbonate, dihydrazide adipate, dihydrazide sebacate, dodecanediohydrazide, dihydrazide isophthalate, hydrazide propionate, hydrazide salicylate, hydroxy- 2-naphthoic hydrazide, benzophenone hydrazone, 3-hydroxy-2-naphthoic hydrazide, polyacrylamide type aqueous cross-linking agents and the like.
 三フッ化ホウ素錯体としては、例えば、三フッ化ホウ素エチルエーテル錯体、三フッ化ホウ素メチルエーテル錯体、三フッ化ホウ素エチルメチルエーテル錯体、三フッ化ホウ素ブチルエーテル錯体、三フッ化ホウ素フェノ-ル錯体、三フッ化ホウ素アルキルアミン錯体、三フッ化ホウ素アンモニア錯体、三フッ化ホウ素ピペリジン錯体、三フッ化ホウ素トリエタノ-ルアミン錯体、三フッ化ホウ素アルコ-ル錯体、三フッ化ホウ素ケトン錯体、三フッ化ホウ素アルデヒド錯体、三フッ化ホウ素エステル錯体、三フッ化ホウ素酸無水物錯体、または、三フッ化ホウ素酸錯体等が挙げられる。 Boron trifluoride complexes include, for example, boron trifluoride ethyl ether complex, boron trifluoride methyl ether complex, boron trifluoride ethyl methyl ether complex, boron trifluoride butyl ether complex, boron trifluoride phenol complex , boron trifluoride alkylamine complex, boron trifluoride ammonia complex, boron trifluoride piperidine complex, boron trifluoride triethanolamine complex, boron trifluoride alcohol complex, boron trifluoride ketone complex, trifluoride A boron trifluoride aldehyde complex, a boron trifluoride ester complex, a trifluoroboric anhydride complex, a trifluoroboric acid complex, and the like can be mentioned.
 シアナミド化合物としては、例えば、モノメチルシアナミド、モノエチルシアナミド、モノプロピルシアナミド、モノブチルシアナミド、ジメチルシアナミド、ジエチルシアナミド、ジプロプルシアナミド、ジブチルシアナミド、ヘキサメチレンジシアナミド、ヘプタメチレンジシアナミド、オクタメチレンジシアナミド、ノナメチレンジシアナミド、デカメチレンジシアナミド等が挙げられる。 Examples of cyanamide compounds include monomethylcyanamide, monoethylcyanamide, monopropylcyanamide, monobutylcyanamide, dimethylcyanamide, diethylcyanamide, diproprucyanamide, dibutylcyanamide, hexamethylenedicyanamide, heptamethylenedicyanamide, octamethylenedicyanamide, nonamethylene dicyanamide, decamethylene dicyanamide, and the like.
 イミダゾール化合物としては、例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、3-メチルイミダゾール、4-メチルイミダゾール、5-メチルイミダゾール、1-エチルイミダゾール、2-エチルイミダゾール、3-エチルイミダゾール、4-エチルイミダゾール、5-エチルイミダゾール、1-n-プロピルイミダゾール、2-n-プロピルイミダゾール、1-イソプロピルイミダゾール、2-イソプロピルイミダゾール、1-n-ブチルイミダゾール、2-n-ブチルイミダゾール、1-イソブチルイミダゾール、2-イソブチルイミダゾール、2-ウンデシル-1H-イミダゾール、2-ヘプタデシル-1H-イミダゾール、1,2-ジメチルイミダゾール、1,3-ジメチルイミダゾール、2,4-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-フェニルイミダゾール、2-フェニル-1H-イミダゾール、4-メチル-2-フェニル-1H-イミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール等が挙げられる。 Examples of imidazole compounds include imidazole, 1-methylimidazole, 2-methylimidazole, 3-methylimidazole, 4-methylimidazole, 5-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 3-ethylimidazole, 4 -ethylimidazole, 5-ethylimidazole, 1-n-propylimidazole, 2-n-propylimidazole, 1-isopropylimidazole, 2-isopropylimidazole, 1-n-butylimidazole, 2-n-butylimidazole, 1-isobutyl imidazole, 2-isobutylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 1,3-dimethylimidazole, 2,4-dimethylimidazole, 2-ethyl-4- methylimidazole, 1-phenylimidazole, 2-phenyl-1H-imidazole, 4-methyl-2-phenyl-1H-imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl- 2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl- 4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-phenyl-4,5-di(2-cyanoethoxy)methylimidazole and the like.
 光酸発生剤としては、例えば、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム トリス(トリフルオロメタンスルホニル)メチド、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム ヘキサフルオロアンチモネ-ト、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム ヘキサフルオロホスフェート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム トリフルオロメタンスルホネート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム ノナフルオロブタンスルホネート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム メタンスルホネート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム ブタンスルホネート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム カンファースルホネート、[4-(4-アセチル)フェニルチオ]フェニル ジフェニルスルホニウム p-トルエンスルホネートおよび、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム トリス(トリフルオロメタンスルホニル)メチド、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム ヘキサフルオロアンチモネ-ト、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム ヘキサフルオロホスフェート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム トリフルオロメタンスルホネート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム ノナフルオロブタンスルホネート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム メタンスルホネート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム ブタンスルホネート、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム カンファースルホネート、または、[4-(4-ベンゾイル)フェニルチオ]フェニル ジフェニルスルホニウム p-トルエンスルホネート等が挙げられる。 Examples of photoacid generators include [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium tris(pentafluoroethyl) trifluorophosphate, [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium tetrakis(pentafluorophenyl ) borate, [4-(4-acetyl)phenylthio]phenyldiphenylsulfonium tris(trifluoromethanesulfonyl)methide, [4-(4-acetyl)phenylthio]phenyldiphenylsulfonium hexafluoroantimonate, [4-(4- Acetyl)phenylthio]phenyl diphenylsulfonium hexafluorophosphate, [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium trifluoromethanesulfonate, [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium nonafluorobutanesulfonate, [4-( 4-acetyl)phenylthio]phenyl diphenylsulfonium methanesulfonate, [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium butanesulfonate, [4-(4-acetyl)phenylthio]phenyl diphenylsulfonium camphorsulfonate, [4-(4- Acetyl)phenylthio]phenyl diphenylsulfonium p-toluenesulfonate and [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium tris(pentafluoroethyl) trifluorophosphate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium tetrakis (pentafluorophenyl) borate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium tris(trifluoromethanesulfonyl) methide, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium hexafluoroantimonate, [4 -(4-benzoyl)phenylthio]phenyl diphenylsulfonium hexafluorophosphate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium trifluoromethanesulfonate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium nonafluorobutanesulfonate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium methanesulfonate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium butanesulfonate, [4-(4-benzoyl)phenylthio]phenyl diphenylsulfonium camphorsulfonate, or [4-(4-benzoyl)phenylthio]phenyldiphenylsulfonium p-toluenesulfonate and the like.
 光塩基発生剤としては、例えば、α-アミノアセトフェノン化合物;オキシムエステル化合物;アシルオキシイミノ基、N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメート基、もしくはアルコオキシベンジルカーバメート基等の置換基を有する化合物等の3級アミン;アミジンまたはグアニジンのカルボン酸塩、ボレート、カルバメ-ト;アミド系化合物等が挙げられる。 Examples of photobase generators include α-aminoacetophenone compounds; oxime ester compounds; acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzylcarbamate groups, or alkoxybenzyl Examples include tertiary amines such as compounds having a substituent such as carbamate group; carboxylates, borates and carbamates of amidine or guanidine; and amide compounds.
 光塩基発生剤の具体例としては、2-メチル-1-(-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、2,2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、1,2-オクタンジオン、1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール3-イル]-,1-(O-アセチルオキシム)、(2E)-2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]オクタン-1-オン、ジ-N-(p-ホルミルアミノ)ジフェニルメタン、ジ-N-(p-ベンゾアミド)ジフェニルメタン、4-ホルミルアミノトルイレン、4-アセチルアミノトルイレン、2,4-ジホルミルアミノトルイレン、1-ホルミルアミノナフタレン、1-アセチルアミノナフタレン、1,5-ジホルミルアミノナフタレン、1-ホルミルアミノアントラセン、1,4-ジホルミルアミノアントラセン、1-アセチルアミノアントラセン、1,4-ジホルミルアミノアントラキノン、1,5-ジホルミルアミノアントラキノン、3,3’-ジメチル-4,4’-ジホルミルアミノビフェニル、4,4’-ジホルミルアミノベンゾフェノン、ビス{{(2-ニトロベンジル)オキシ}カルボニル}ジアミノジフェニルメタン、2,4-ジ{(2-ニトロベンジル)オキシ}トルイレン、ビス{(2-ニトロベンジルオキシ)カルボニル}ヘキサン-1,6-ジアミン、m-キシリジン{(2-ニトロ-4-クロロベンジル)オキシ}アミド}、9-アンスリメチルN,N-ジメチルカルバメ-ト、(E)-1-ピペリジノ-3-(2-ヒドロキシフェニル)-2-プロペン-1-オン、1-(アントラキノン-2-イル)エチルイミダゾールカルボキシレ-ト、(2-ニトロフェニル)メチル4-[2-メチルアクリロキシル]ピペリジン-1-カルボキシレ-ト、1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジウム2-(3-ベンゾイルフェニル)プロピオネ-ト、または、1,2ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジニウムn-ブチルトリフェニルボレートが挙げられる。 Specific examples of photobase generators include 2-methyl-1-(-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl) -butanone, 2,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 1,2-octanedione, 1- [4-(Phenylthio)-,2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O- acetyloxime), (2E)-2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]octan-1-one, di-N-(p-formylamino)diphenylmethane, di-N-(p -benzoamido)diphenylmethane, 4-formylaminotoluylene, 4-acetylaminotoluylene, 2,4-diformylaminotoluylene, 1-formylaminonaphthalene, 1-acetylaminonaphthalene, 1,5-diformylaminonaphthalene, 1-formylaminoanthracene, 1,4-diformylaminoanthracene, 1-acetylaminoanthracene, 1,4-diformylaminoanthraquinone, 1,5-diformylaminoanthraquinone, 3,3′-dimethyl-4,4′ -diformylaminobiphenyl, 4,4'-diformylaminobenzophenone, bis{{(2-nitrobenzyl)oxy}carbonyl}diaminodiphenylmethane, 2,4-di{(2-nitrobenzyl)oxy}toluylene, bis{ (2-nitrobenzyloxy)carbonyl}hexane-1,6-diamine, m-xylidine {(2-nitro-4-chlorobenzyl)oxy}amide}, 9-anthrimethyl N,N-dimethylcarbamate, ( E) -1-piperidino-3-(2-hydroxyphenyl)-2-propen-1-one, 1-(anthraquinon-2-yl)ethylimidazole carboxylate, (2-nitrophenyl)methyl 4-[ 2-methylacryloxyl]piperidine-1-carboxylate, 1,2-diisopropyl-3-[bis(dimethylamino)methylene]guanidinium 2-(3-benzoylphenyl)propionate, or 1,2 dicyclohexyl-4,4,5,5-tetramethylbiguanidinium n-butyltriphenylborate.
 (A)成分が(メタ)アクリロイル基を有する場合、(C)成分の開始剤として、光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤を用いることにより、硬化性組成物は、光照射(UV照射など)により硬化する。 When the (A) component has a (meth)acryloyl group, a photoradical polymerization initiator can be used as the initiator for the (C) component. By using a radical photopolymerization initiator, the curable composition is cured by light irradiation (such as UV irradiation).
 光ラジカル重合開始剤としては、例えば、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-メチルアセトフェノン、3-ペンチルアセトフェノン、2,2-ジエトキシアセトフェノン、4-メトキシアセトフェン、3-ブロモアセトフェノン、4-アリルアセトフェノン、p-ジアセチルベンゼン、3-メトキシベンゾフェノン、4-メチルベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4-クロロ-4’-ベンジルベンゾフェノン、3-クロロキサントーン、3,9-ジクロロキサントーン、3-クロロ-8-ノニルキサントーン、ベンゾイル、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4-ジメチルアミノフェニル)ケトン、ベンジルメトキシケタール、2-クロロチオキサントーン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1が挙げられる。 Photoradical polymerization initiators include, for example, acetophenone, propiophenone, benzophenone, xanthol, fluoresin, benzaldehyde, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-methylacetophenone, 3-pentylacetophenone, 2 , 2-diethoxyacetophenone, 4-methoxyacetophenone, 3-bromoacetophenone, 4-allylacetophenone, p-diacetylbenzene, 3-methoxybenzophenone, 4-methylbenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone , 4-chloro-4′-benzylbenzophenone, 3-chloroxanthone, 3,9-dichloroxanthone, 3-chloro-8-nonylxanthone, benzoyl, benzoin methyl ether, benzoin butyl ether, bis(4-dimethylamino phenyl)ketone, benzylmethoxyketal, 2-chlorothioxanthone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl- 1-phenyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpho linophenyl)-butanone-1.
 光ラジカル重合開始剤のさらなる例としては、アシルホスフィンオキサイド系光重合開始剤が挙げられる。UV照射時の深部硬化性に優れるという観点から、アシルホスフィンオキサイド系光重合開始剤が好ましい。アシルホスフィンオキサイド系光重合開始剤の具体例としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-イソブチルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-イソブチルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-フェニルホスフィンオキサイドが挙げられる。これらの中では、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、およびビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイドが挙げられる。 Further examples of photoradical polymerization initiators include acylphosphine oxide photopolymerization initiators. Acylphosphine oxide-based photopolymerization initiators are preferred from the viewpoint of excellent deep-part curability upon UV irradiation. Specific examples of acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2, 6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,6-dimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-isobutylphosphine oxide, bis( 2,6-dimethoxybenzoyl)-isobutylphosphine oxide, bis(2,6-dimethoxybenzoyl)-phenylphosphine oxide. Among these are 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(2,6-dimethoxybenzoyl)-2,4, 4-trimethyl-pentylphosphine oxide.
 上述した光ラジカル重合開始剤の中でも、反応性が高いという観点から、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドが好ましい。一実施形態において、硬化性組成物は、アシルホスフィンオキサイドおよびフェニルケトン系化合物の両方を含有している。 Among the photoradical polymerization initiators described above, from the viewpoint of high reactivity, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2- Dimethoxy-1,2-diphenylethan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide are preferred. In one embodiment, the curable composition contains both an acylphosphine oxide and a phenylketone-based compound.
 (C)成分の開始剤としては、熱により分解、重合を開始するラジカル開始剤も使用することができる。ラジカル重合開始剤としては、過酸化物、アゾ化合物等、一般にラジカル重合に用いられる開始剤を使用することができる。具体的には、アゾビスイソブチロニトリル、ジメチルアゾビスイソブチレート等のアゾ系化合物、ラウロイルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド等の有機過酸化物が挙げられる。市販の有機過酸化物としてはパーブチルD(日本油脂(株)製の商品名)、パーブチルO(日本油脂(株)製の商品名)、パーテトラA(日本油脂(株)製の商品名)等が挙げられる。 A radical initiator that initiates decomposition and polymerization by heat can also be used as the initiator for component (C). As the radical polymerization initiator, initiators generally used for radical polymerization, such as peroxides and azo compounds, can be used. Specific examples include azo compounds such as azobisisobutyronitrile and dimethylazobisisobutyrate, and organic peroxides such as lauroyl peroxide, diisopropylbenzene hydroperoxide, and di-tert-butyl peroxide. . Commercially available organic peroxides include Perbutyl D (trade name of NOF Corporation), Perbutyl O (trade name of NOF Corporation), Pertetra A (trade name of NOF Corporation), and the like. is mentioned.
 <(D)成分>
 本発明の一実施形態に係る硬化性組成物は、固体状の電解質である(D)成分を含んでいてもよい。硬化性組成物が(D)成分を含んでいれば、導電性を高めることができる。(D)成分としては、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド、リチウムビス(フルオロメタンスルホニル)アミド、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド等が挙げられる。
<(D) Component>
The curable composition according to one embodiment of the present invention may contain component (D), which is a solid electrolyte. If the curable composition contains the (D) component, the electrical conductivity can be enhanced. Component (D) includes lithium bis(trifluoromethanesulfonyl)imide, lithium bis(pentafluoroethanesulfonyl)imide, lithium bis(fluoromethanesulfonyl)amide, lithium tetrafluoroborate, lithium hexafluorophosphate, 1 -ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and the like.
 <カーボネート系溶剤である(E)成分>
 本発明の一実施形態に係る硬化性組成物は、カーボネート系溶剤である(E)成分を含んでいてもよい。(E)成分であるカーボネート溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられる。
<Component (E) which is a carbonate-based solvent>
The curable composition according to one embodiment of the present invention may contain component (E), which is a carbonate-based solvent. (E) component carbonate solvents include ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
 <その他の添加成分>
 (接着性付与剤)
 本発明の一実施形態において、硬化性組成物は、対象基材への接着性付与剤としてカップリング剤を含んでいてもよい。カップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等が挙げられる。接着性付与剤は、1種類のみを使用してもよいし、2種類以上を併用してもよい。
<Other additive ingredients>
(Adhesion imparting agent)
In one embodiment of the present invention, the curable composition may contain a coupling agent as an adhesion imparting agent to the target substrate. Examples of coupling agents include silane coupling agents, titanium coupling agents, zirconium coupling agents, and aluminum coupling agents. Only one type of adhesiveness imparting agent may be used, or two or more types may be used in combination.
 一実施形態において、シランカップリング剤は例えば、分子中に、炭素原子および水素原子とそれら以外の原子とを有する有機基と、架橋性シリル基とを併せ持つ。このような有機基としては例えば、エポキシ基、イソシアネート基、イソシアヌレート基、カルバメート基、アミノ基、メルカプト基、カルボキシル基、ハロゲン基、(メタ)アクリル基等が挙げられる。シランカップリング剤としては、具体的には、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、またはデシルトリメトキシシランのうちのいずれかを用いることが、導電性粉の分散安定性の観点から、好ましい。中でも、基板への密着性の安定化を図るという観点、および導電性粉への分散剤成分の密着性と分散安定性とのバランスの観点から、安定した性能を発揮するメチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン等を用いることが好ましい。 In one embodiment, the silane coupling agent has, for example, an organic group having carbon atoms, hydrogen atoms, and other atoms in the molecule, and a crosslinkable silyl group. Examples of such organic groups include epoxy groups, isocyanate groups, isocyanurate groups, carbamate groups, amino groups, mercapto groups, carboxyl groups, halogen groups, and (meth)acryl groups. Specific examples of silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyl Trimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminotriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene ) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyl trimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane , methyltriethoxysilane, dimethyltriethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, or decyltrimethoxysilane from the viewpoint of the dispersion stability of the conductive powder. Therefore, it is preferable. Among them, from the viewpoint of stabilizing the adhesion to the substrate, and from the viewpoint of the balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability, methyltrimethoxysilane and methyltrimethoxysilane exhibit stable performance. It is preferable to use triethoxysilane, dimethyltriethoxysilane, or the like.
 チタンカップリング剤としては、具体的には、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレートのうちのいずれかを用いることが、導電性粉への分散剤成分の密着性と分散安定性とのバランスの観点から好ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を発揮するテトライソプロピルチタネート、テトラノルマルブチルチタネート、チタンラクテート等を用いることが好ましい。 Specific examples of titanium coupling agents include tetraisopropyl titanate, tetra-normal butyl titanate, butyl titanate dimer, tetra(2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl The use of any one of acetoacetate, titanium octanediolate, titanium lactate, titanium triethanolamine, and polyhydroxytitanium stearate provides a balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability. is preferable from the viewpoint of Among them, it is preferable to use tetraisopropyl titanate, tetra-normal-butyl titanate, titanium lactate, etc., which exhibit stable performance, from the viewpoint of stabilizing the adhesion to the substrate.
 ジルコニウムカップリング剤としては、具体的には、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレートのうちのいずれかを用いることが好ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を発揮するジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテートのうちのいずれかを用いることが、導電性粉への分散剤成分の密着性と分散安定性とのバランスの観点から好ましい。 Specific examples of zirconium coupling agents include zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, and zirconium acetylacetonate. Bisethylacetoacetate, zirconium acetate, and zirconium monostearate are preferably used. Among them, zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, and zirconium bisacetylacetonate, which exhibit stable performance, from the viewpoint of stabilizing the adhesion to the substrate. Zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, and zirconium acetate are preferably used from the viewpoint of the balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability.
 アルミニウムカップリング剤としては、具体的には、アルミニウムイソプロピレート、モノsec-ブトキシアルミニウムジイソプロピレート、アルミニウムsec-ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノイソプロポキシモノオレオキシエチルアセトアセテート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドステアレートのうちのいずれかを用いることが、導電性粉への分散剤成分の密着性と分散安定性とのバランスの観点から好ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を発揮するエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)のうちのいずれかを用いることが好ましい。 Specific examples of aluminum coupling agents include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butylate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, aluminum tris(ethylacetoacetate), Alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum tris(acetylacetonate), aluminum monoisopropoxy monooleoxyethyl acetoacetate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide octylate , and cyclic aluminum oxide stearate are preferably used from the viewpoint of the balance between the adhesion of the dispersant component to the conductive powder and the dispersion stability. Among them, ethylacetoacetate aluminum diisopropylate, aluminum tris(ethylacetoacetate), alkylacetoacetate aluminum diisopropylate, and aluminum monoacetylacetate exhibit stable performance from the viewpoint of stabilizing the adhesion to the substrate. It is preferable to use either tris(ethylacetoacetate) or aluminum tris(acetylacetonate).
 (レベリング剤)
 本発明の一実施形態において、硬化性組成物は、硬化した際の表面凹凸の調整のために、レベリング剤を含んでいてもよい。レベリング剤を添加することにより、当該硬化性組成物を含む導電性ペーストを被着体にコートする際に、塗膜の平滑性確保、および折損を防止することができる。レベリング剤としては、一般的に、フッ素系、シリコーン系、アクリル系、エーテル系、エステル系が挙げられ、本発明の一実施形態に係る硬化性組成物は前記レベリング剤のいずれを含んでいてもよい。
(leveling agent)
In one embodiment of the present invention, the curable composition may contain a leveling agent in order to adjust surface unevenness upon curing. By adding a leveling agent, smoothness of the coating film can be secured and breakage can be prevented when the conductive paste containing the curable composition is coated on an adherend. Leveling agents generally include fluorine-based, silicone-based, acrylic, ether-based, and ester-based agents, and the curable composition according to one embodiment of the present invention may contain any of the leveling agents. good.
 (充填剤)
 本発明の一実施形態において、硬化性組成物は、一定の強度を担保するために、充填剤を含んでいてもよい。充填材は特に限定されないが、少量で充填率を改善できるという観点から、結晶性シリカ、溶融シリカ、ドロマイト、カーボンブラック、炭酸カルシウム、酸化チタン、またはタルク等が好ましい。強度の高い硬化物を得るという観点からは、主に結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、または活性亜鉛華等が好ましい。
(filler)
In one embodiment of the present invention, the curable composition may contain fillers to ensure a certain strength. The filler is not particularly limited, but crystalline silica, fused silica, dolomite, carbon black, calcium carbonate, titanium oxide, talc, or the like is preferable from the viewpoint that the filling rate can be improved with a small amount. From the viewpoint of obtaining a hardened product with high strength, crystalline silica, fused silica, silicic anhydride, hydrated silicic acid, carbon black, surface-treated fine calcium carbonate, calcined clay, clay, or active zinc white are preferred. .
 (チクソ性付与剤)
 本発明の一実施形態において、硬化性組成物は、垂れを防止して作業性を高めるために、チクソ性付与剤(垂れ防止剤)を含んでいてもよい。チクソ性付与剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。チクソ性付与剤は、1種類のみを使用してもよいし、2種類以上を併用してもよい。
(thixotropic agent)
In one embodiment of the present invention, the curable composition may contain a thixotropic agent (anti-sagging agent) to prevent sagging and improve workability. Examples of the thixotropic agent include, but are not limited to, polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. Only one type of thixotropic agent may be used, or two or more types may be used in combination.
 (可塑剤)
 本発明の一実施形態において、硬化性組成物は、粘度、スランプ性、または硬化した場合の硬度、引張り強度、もしくは伸び等機械特性の調整のために、可塑剤を含んでいてもよい。可塑剤としては特に限定されないが、例えば、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレート等のフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレート等のテレフタル酸エステル化合物(EASTMAN168(EASTMAN CHEMICAL製));1,2-シクロヘキサンジカルボン酸ジイソノニルエステル等の非フタル酸エステル化合物(Hexamoll DINCH(BASF製));アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチル等の脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチル等の不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル(Mesamoll(LANXESS製));トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤等が挙げられる。
(Plasticizer)
In one embodiment of the present invention, the curable composition may contain a plasticizer to adjust viscosity, slump, or mechanical properties such as hardness, tensile strength, or elongation when cured. Although the plasticizer is not particularly limited, for example, dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; 2-ethylhexyl)-1,4-benzenedicarboxylate and other terephthalic acid ester compounds (EASTMAN168 (manufactured by EASTMAN CHEMICAL)); )); Aliphatic polycarboxylic acid ester compounds such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, and tributyl acetylcitrate; Unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; Alkyl sulfonic acid phenyl ester (Mesamoll (manufactured by LANXESS)); phosphate ester compounds such as tricresyl phosphate and tributyl phosphate; trimellitic acid ester compounds; chlorinated paraffins; oils; process oils; epoxy plasticizers such as epoxidized soybean oil and benzyl epoxy stearate;
 <硬化性組成物の組成>
 硬化性組成物100重量%中の(A)成分の配合量は、50重量%以上100重量%未満であることが好ましい。(A)成分の配合量が50重量%以上であれば、硬化物の強度を高めることができる。
<Composition of curable composition>
The content of component (A) in 100% by weight of the curable composition is preferably 50% by weight or more and less than 100% by weight. If the blending amount of component (A) is 50% by weight or more, the strength of the cured product can be increased.
 (B)成分の配合量は、(A)成分100重量部に対して、0.01~50重量部であることが好ましく、0.01~30重量部であることがより好ましい。(B)成分の配合量が0.01重量部以上であれば、抵抗率を低くすることができる。(B)成分の配合量が50重量部以下であれば、得られる硬化物の硬度を適度に抑えることができる。 The blending amount of component (B) is preferably 0.01 to 50 parts by weight, more preferably 0.01 to 30 parts by weight, per 100 parts by weight of component (A). If the amount of component (B) to be blended is 0.01 parts by weight or more, the resistivity can be lowered. If the blending amount of the component (B) is 50 parts by weight or less, the hardness of the resulting cured product can be moderately suppressed.
 (C)成分の配合量は、(A)成分100重量部に対して、0.01~10重量部であることが好ましい。(C)成分の配合量が0.01重量部以下であれば、十分な架橋密度の硬化物を得ることができる。(C)成分の配合量が10重量部以下であれば、貯蔵安定性を改善することができる。 The blending amount of component (C) is preferably 0.01 to 10 parts by weight per 100 parts by weight of component (A). If the blending amount of component (C) is 0.01 part by weight or less, a cured product with a sufficient crosslink density can be obtained. If the amount of component (C) to be blended is 10 parts by weight or less, storage stability can be improved.
 硬化性組成物が(D)成分を含む場合、(D)成分の配合量は、(A)成分100重量部に対して、0.1~20重量部であることが好ましい。また、硬化性組成物が(E)成分を含む場合、(E)成分の配合量は、(A)成分100重量部に対して、10~200重量部であることが好ましい。 When the curable composition contains component (D), the amount of component (D) is preferably 0.1 to 20 parts by weight per 100 parts by weight of component (A). When the curable composition contains component (E), the amount of component (E) is preferably 10 to 200 parts by weight per 100 parts by weight of component (A).
 硬化性組成物が接着性付与剤を含む場合、接着性付与剤の添加量は、分散性と導電性のバランスの観点から、(A)~(E)成分の合計100重量部に対して、0.01~5.0重量部であることが好ましく、0.02~3.0重量部であることがより好ましく、0.03~2.0重量部であることがさらに好ましい。 When the curable composition contains an adhesion imparting agent, the amount of the adhesion imparting agent to be added is, from the viewpoint of the balance between dispersibility and conductivity, relative to a total of 100 parts by weight of components (A) to (E), It is preferably 0.01 to 5.0 parts by weight, more preferably 0.02 to 3.0 parts by weight, even more preferably 0.03 to 2.0 parts by weight.
 硬化性組成物がチクソ性付与剤を含む場合、チクソ性付与剤の添加量は、硬化性組成物の体積固有抵抗率の上昇を抑制するという観点から、(A)成分~(E)成分の合計100重量部に対して、0.1~20重量部であることが好ましい。 When the curable composition contains a thixotropy-imparting agent, the amount of the thixotropy-imparting agent to be added is, from the viewpoint of suppressing an increase in volume resistivity of the curable composition, components (A) to (E). It is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight in total.
 <硬化性組成物の製造方法>
 (A)成分および(B)成分を、装置を用いて混練する。(A)成分および(B)成分の混練後、温度が上昇しないように管理したうえで、(C)成分を添加、混練することにより硬化性組成物を得ることができる。混練に使用する装置としては、ディスパー、プラネタリーミキサー、遊星式攪拌脱泡装置等が挙げられる。装置は、1種類を使用してもよく、2種類以上を併用することもできる。混練する際、混練時の発熱により、(A)成分が架橋反応しないように留意する。混練時の温度は、安定性と混練による導電性粉分散とのバランスの観点から、0~80℃が好ましく、5~60℃がより好ましく、10~50℃がさらに好ましい。
<Method for producing curable composition>
The (A) component and the (B) component are kneaded using a device. After the components (A) and (B) have been kneaded, the curable composition can be obtained by adding and kneading the component (C) while controlling the temperature so as not to rise. Apparatus used for kneading includes a disper, a planetary mixer, a planetary stirring and defoaming apparatus, and the like. One type of device may be used, or two or more types may be used in combination. During kneading, care should be taken so that component (A) does not undergo a cross-linking reaction due to heat generated during kneading. The temperature during kneading is preferably 0 to 80°C, more preferably 5 to 60°C, and even more preferably 10 to 50°C, from the viewpoint of the balance between stability and conductive powder dispersion by kneading.
 <硬化性組成物の用途>
 本発明の一実施形態に係る硬化性組成物は、各種蓄電池電極用バインダー、導電性ゲル材料、アクチュエーター用材料、導電性ペースト用バインダー等に適用することができる。例えば、蓄電池であれば充放電時の安定性および起電力向上、アクチュエーターであれば発電効率の向上、導電性ペーストであれば電流損失低減等への寄与が期待される。
<Application of curable composition>
The curable composition according to one embodiment of the present invention can be applied to various storage battery electrode binders, conductive gel materials, actuator materials, conductive paste binders, and the like. For example, storage batteries are expected to contribute to improved stability and electromotive force during charge and discharge, actuators to improved power generation efficiency, and conductive pastes to reduced current loss.
 〔2.導電性ペースト〕
 本発明の一実施形態に係る導電性ペーストは、上述の硬化性組成物を含む。当該導電性ペーストは、タッチパネル、フラットパネルディスプレイ(FPD)、太陽電池等の電極材料として使用できる。導電性ペーストは、希釈剤および/または導電性粉をさらに含んでいてもよい。
[2. Conductive paste]
A conductive paste according to one embodiment of the present invention includes the curable composition described above. The conductive paste can be used as an electrode material for touch panels, flat panel displays (FPDs), solar cells and the like. The conductive paste may further contain a diluent and/or conductive powder.
 希釈剤としては、例えば非反応性の溶剤および反応性の希釈剤が挙げられる。非反応性の溶剤としては、例えば、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、脂環族系溶剤、芳香族系溶剤、アルコール系溶剤、水等が挙げられる。反応性の希釈剤としては、低分子量イソシアネート、エポキシモノマー等が挙げられる。これらは1種類を使用してもよく、2種類以上を併用してもよい。 Diluents include, for example, non-reactive solvents and reactive diluents. Examples of non-reactive solvents include ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, alicyclic solvents, aromatic solvents, alcohol solvents, and water. Reactive diluents include low molecular weight isocyanates, epoxy monomers, and the like. These may use one type, and may use two or more types together.
 導電性粉としては、例えば、銀粉末、酸化銀粉末、炭酸銀粉末、酢酸銀粉末、銀コ-ト粉末、銀含有合金粉末、ニッケル粉末、銅粉末、アルミ粉末等が挙げられる。導電性粉は、分散性向上の観点から表面処理されていてもよい。なお、上述の硬化性組成物は低抵抗であるため、導電性ペーストにおいて導電性粉の配合量を低減することができる。例えば、(A)~(E)成分の合計100重量部に対して、導電性粉の配合量は500~900重量部であってもよい。 Examples of conductive powder include silver powder, silver oxide powder, silver carbonate powder, silver acetate powder, silver-coated powder, silver-containing alloy powder, nickel powder, copper powder, and aluminum powder. The conductive powder may be surface-treated from the viewpoint of improving dispersibility. In addition, since the curable composition described above has a low resistance, it is possible to reduce the blending amount of the conductive powder in the conductive paste. For example, the conductive powder may be blended in an amount of 500 to 900 parts by weight with respect to a total of 100 parts by weight of components (A) to (E).
 〔3.硬化物〕
 本発明の一実施形態に係る硬化物は、上述の硬化性組成物を硬化させてなる。一実施形態において、硬化物は電解質ゲルである。電解質ゲルは、特に上述の(A)~(C)成分に加え、(D)成分および(E)成分を含むことが好ましい。硬化性組成物を硬化させる方法には、光照射、加熱および湿分との接触が挙げられる。
[3. Cured material]
A cured product according to one embodiment of the present invention is obtained by curing the curable composition described above. In one embodiment, the cured product is an electrolyte gel. The electrolyte gel preferably contains components (D) and (E) in addition to the components (A) to (C) described above. Methods of curing the curable composition include irradiation with light, heat and contact with moisture.
 光照射による硬化には、光線および電子線が利用できる。光線および/または電子線の発生源の例としては、高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザー、メタルハライドが挙げられる。光照射による硬化の際の温度は、0~150℃が好ましく、5~120℃がより好ましい。加熱による硬化の際の温度は、50~200℃が好ましく、80~150℃がより好ましい。湿分との接触による硬化の際の相対湿度は、5~95%が好ましく、10~80%がより好ましい。 Light rays and electron beams can be used for curing by light irradiation. Examples of light and/or electron beam sources include high-pressure mercury lamps, low-pressure mercury lamps, electron beam irradiation devices, halogen lamps, light-emitting diodes, semiconductor lasers, and metal halides. The temperature for curing by light irradiation is preferably 0 to 150.degree. C., more preferably 5 to 120.degree. The temperature for curing by heating is preferably 50 to 200.degree. C., more preferably 80 to 150.degree. The relative humidity during curing by contact with moisture is preferably 5-95%, more preferably 10-80%.
 〔4.まとめ〕
 本発明の一実施形態には、以下の態様が含まれる。
<1>
 末端または末端近傍に架橋性官能基を有する重合体である(A)成分と、
 架橋性官能基を有するイオン性液体である(B)成分と、
 硬化触媒または開始剤である(C)成分と、
を含む、硬化性組成物。
<2>
 前記(A)成分の架橋性官能基が、加水分解性シリル基およびラジカル架橋性官能基のうちの少なくともいずれか1種類である、<1>に記載の硬化性組成物。
<3>
 前記(A)成分が、(メタ)アクリル酸エステル重合体である、<1>または<2>に記載の硬化性組成物。
<4>
 前記(B)成分が、アンモニウムイオン、ホスホニウムイオン、およびピリジニウムイオンからなる群より選択される少なくとも1種類とビス(トリフルオロメタンスルホニル)イミドとの塩である、<1>~<3>のいずれか1つに記載の硬化性組成物。
<5>
 前記(B)成分の架橋性官能基が、加水分解性シリル基およびラジカル架橋性官能基のうちの少なくともいずれか1種類である、<1>~<4>のいずれか1つに記載の硬化性組成物。
<6>
 固体状の電解質である(D)成分をさらに含む、<1>~<5>のいずれか1つに記載の硬化性組成物。
<7>
 カーボネート系溶剤である(E)成分をさらに含む、<1>~<6>のいずれか1つに記載の硬化性組成物。
<8>
 <1>~<7>のいずれか1つに記載の硬化性組成物を含む、導電性ペースト。
<9>
 <1>~<8>のいずれか1つに記載の硬化性組成物を硬化させてなる、硬化物。
<10>
 前記硬化物が、電解質ゲルである、<9>に記載の硬化物。
[4. summary〕
One embodiment of the invention includes the following aspects.
<1>
Component (A), which is a polymer having a crosslinkable functional group at or near the terminal,
Component (B), which is an ionic liquid having a crosslinkable functional group;
(C) component, which is a curing catalyst or initiator;
A curable composition comprising:
<2>
The curable composition according to <1>, wherein the crosslinkable functional group of component (A) is at least one of a hydrolyzable silyl group and a radically crosslinkable functional group.
<3>
The curable composition according to <1> or <2>, wherein the component (A) is a (meth)acrylate polymer.
<4>
Any one of <1> to <3>, wherein the component (B) is a salt of at least one selected from the group consisting of ammonium ions, phosphonium ions, and pyridinium ions and bis(trifluoromethanesulfonyl)imide. 1. A curable composition according to one.
<5>
Curing according to any one of <1> to <4>, wherein the crosslinkable functional group of component (B) is at least one of a hydrolyzable silyl group and a radical crosslinkable functional group. sex composition.
<6>
The curable composition according to any one of <1> to <5>, further comprising a component (D) that is a solid electrolyte.
<7>
The curable composition according to any one of <1> to <6>, further comprising component (E) which is a carbonate solvent.
<8>
A conductive paste comprising the curable composition according to any one of <1> to <7>.
<9>
A cured product obtained by curing the curable composition according to any one of <1> to <8>.
<10>
The cured product according to <9>, wherein the cured product is an electrolyte gel.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. That is, the technical scope of the present invention also includes embodiments obtained by combining technical means appropriately modified within the scope of the claims.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 〔実施例および比較例で使用した材料〕
 以下の実施例および比較例で使用した材料は、以下の通りである。なお、RC-100Cは、ラジカル架橋性官能基を有する(メタ)アクリル酸エステル重合体、SA-100Sは、加水分解性シリル基を有する(メタ)アクリル酸エステル重合体に該当する。IL-MA3は、ラジカル架橋性官能基を有するイオン性液体、IL-S8は、加水分解性シリル基を有するイオン性液体に該当する。
[Materials used in Examples and Comparative Examples]
Materials used in the following examples and comparative examples are as follows. RC-100C corresponds to a (meth)acrylic acid ester polymer having a radical crosslinkable functional group, and SA-100S corresponds to a (meth)acrylic acid ester polymer having a hydrolyzable silyl group. IL-MA3 corresponds to an ionic liquid having a radical crosslinkable functional group, and IL-S8 corresponds to an ionic liquid having a hydrolyzable silyl group.
 <(A)成分>
・ラジカル硬化型テレケリックポリアクリレート((株)カネカ製、商品名:RC-100C)
・湿部硬化型テレケリックポリアクリレート((株)カネカ製、商品名:SA-100S)
 <(B)成分>
・ラジカル硬化型3級アミンタイプイオン性液体(広栄化学(株)製、商品名:IL-MA3)
・加水分解性シリル基含有3級アミンタイプイオン性液体(広栄化学(株)製、商品名:IL-S8)
 <(C)成分>
 (開始剤)
・2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(IGM Resins B.V.製、商品名:Omnirad1173)
・ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(IGM
 Resins B.V.製、商品名:Omnirad819)
 (硬化触媒)
・2-エチルヘキシルアシッドホスフェート(大八化学工業(株)製、商品名:AP-8)
・1,8-ジアザビシクロ(5,4,0)ウンデセン-7(東京化成(株)製)
 <その他>
 (アクリルモノマー)
・イソステアリルアクリレート(大阪有機化学工業(株)製)
 (電解質化合物)
・リチウムビス(トリフルオロメタンスルホニル)イミド(東京化成(株)製)
 (測定サンプルの作製)
 得られた硬化性組成物を150mm×100mm×t1mmサイズの型枠に流し込み、レベリングおよび脱泡後、UV照射装置(フュージョンUVシステム製、機種:LIGHT HAMMER 6、ピーク照度:250mW/cm、積算光量:2000mJ/cm)にてUV照射を行い、シート状硬化物を得た。
<(A) Component>
・Radical-curable telechelic polyacrylate (manufactured by Kaneka Corporation, trade name: RC-100C)
・ Wet-curing telechelic polyacrylate (manufactured by Kaneka Corporation, product name: SA-100S)
<(B) Component>
・Radical curable tertiary amine type ionic liquid (manufactured by Koei Chemical Co., Ltd., trade name: IL-MA3)
・ Hydrolyzable silyl group-containing tertiary amine type ionic liquid (manufactured by Koei Chemical Co., Ltd., trade name: IL-S8)
<(C) Component>
(initiator)
· 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by IGM Resins B.V., trade name: Omnirad 1173)
・Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (IGM)
Resins B. V. Product name: Omnirad819)
(Curing catalyst)
・2-Ethylhexyl acid phosphate (manufactured by Daihachi Chemical Industry Co., Ltd., trade name: AP-8)
・ 1,8-diazabicyclo (5,4,0) undecene-7 (manufactured by Tokyo Kasei Co., Ltd.)
<Others>
(acrylic monomer)
・Isostearyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
(Electrolyte compound)
・ Lithium bis (trifluoromethanesulfonyl) imide (manufactured by Tokyo Kasei Co., Ltd.)
(Preparation of measurement sample)
The obtained curable composition was poured into a formwork of 150 mm × 100 mm × t1 mm size, and after leveling and defoaming, a UV irradiation device (manufactured by Fusion UV System, model: LIGHT HAMMER 6, peak illuminance: 250 mW / cm 2 , cumulative UV irradiation was performed at a light intensity of 2000 mJ/cm 2 ) to obtain a sheet-like cured product.
 (硬化物のダンベル物性)
 得られたシート状硬化物から、JIS K 7113に規定されている3号形ダンベル型試験片を打抜いた。この試験片を引張試験に供して、機械物性を測定した。具体的には、10%伸張時の応力、破断時の応力、および破断時の伸び(チャック間距離に対する伸び)を測定した。結果を表1に示す。なお、測定にはオートグラフ(AG-2000A、島津製作所製)を使用し、測定温度:23℃、引張速度:200mm/minとした。
(Dumbbell properties of cured product)
A No. 3 dumbbell-shaped test piece defined in JIS K 7113 was punched out from the obtained sheet-like cured product. This test piece was subjected to a tensile test to measure mechanical properties. Specifically, the stress at 10% elongation, the stress at break, and the elongation at break (elongation relative to the distance between chucks) were measured. Table 1 shows the results. For the measurement, an autograph (AG-2000A, manufactured by Shimadzu Corporation) was used at a measurement temperature of 23° C. and a tensile speed of 200 mm/min.
 (硬化物の抵抗率)
 上述のシート状硬化物から試験片(Φ100×t12mmサイズ)を得た。R8340
 ULTRA HIGH RESISTANCE METER(アドバンテスト製)を用いて、JISK6911に準拠して、当該試験片の表面抵抗率および体積固有抵抗率を、23℃、55R.H.%条件下で測定した。
(Resistance of cured product)
A test piece (φ100×t12 mm size) was obtained from the sheet-like cured product described above. R8340
Using an ULTRA HIGH RESISTANCE METER (manufactured by ADVANTEST), the surface resistivity and volume resistivity of the test piece were measured at 23° C., 55R. H. % conditions.
 〔実施例1〕
 (A)成分、(B)成分、および(C)成分を表1の組成にて、遊星式攪拌脱泡装置(シンキー(株)製、あわとり練太郎ARE-310)を用いて混錬、脱泡し、硬化性組成物を得た(攪拌条件:1600rpm×1.5分間、脱泡条件:2200rpm×3分間)。上述の方法により表面抵抗率および体積固有抵抗率を測定した。
[Example 1]
(A) component, (B) component, and (C) component are kneaded with the composition shown in Table 1 using a planetary stirring and degassing device (Awatori Mixer ARE-310, manufactured by Thinky Co., Ltd.), A curable composition was obtained by defoaming (stirring conditions: 1600 rpm for 1.5 minutes, defoaming conditions: 2200 rpm for 3 minutes). Surface resistivity and volume resistivity were measured by the methods described above.
 〔実施例2〕
 実施例1で用いた(B)成分の添加量を3gとしたこと以外は、実施例1と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Example 2]
A curable composition was prepared in the same manner as in Example 1, except that the amount of component (B) used in Example 1 was 3 g, and the surface resistivity and volume resistivity were measured.
 〔実施例3〕
 実施例1で用いた(B)成分の添加量を5gとしたこと以外は、実施例1と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Example 3]
A curable composition was prepared in the same manner as in Example 1, except that the amount of component (B) used in Example 1 was 5 g, and the surface resistivity and volume resistivity were measured.
 〔実施例4〕
 実施例1で用いた(A)成分、(B)成分、および(C)成分を表1の組成となるように変更したこと以外は、実施例1と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Example 4]
A curable composition was prepared in the same manner as in Example 1, except that the components (A), (B), and (C) used in Example 1 were changed to have the composition shown in Table 1. were prepared and the surface resistivity and volume resistivity were measured.
 〔比較例1〕
 (B)成分を添加しなかったこと以外は、実施例1と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Comparative Example 1]
A curable composition was prepared in the same manner as in Example 1, except that component (B) was not added, and the surface resistivity and volume resistivity were measured.
 〔比較例2〕
 (B)成分を添加しなかったこと以外は、実施例4と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Comparative Example 2]
A curable composition was prepared in the same manner as in Example 4, except that component (B) was not added, and the surface resistivity and volume resistivity were measured.
 〔比較例3〕
 (B)成分の代わりにリチウムビス(トリフルオロメタンスルホニル)イミドを1g使用したこと以外は、実施例1と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Comparative Example 3]
A curable composition was prepared in the same manner as in Example 1, except that 1 g of lithium bis(trifluoromethanesulfonyl)imide was used instead of the component (B), and the surface resistivity and volume resistivity were measured. bottom.
 〔比較例4〕
 (B)成分の代わりにリチウムビス(トリフルオロメタンスルホニル)イミドを5g使用したこと以外は、実施例4と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Comparative Example 4]
A curable composition was prepared in the same manner as in Example 4, except that 5 g of lithium bis(trifluoromethanesulfonyl)imide was used instead of the component (B), and the surface resistivity and volume resistivity were measured. bottom.
 〔比較例5〕
 (B)成分の代わりにイソステアリルアクリレートを5g使用したこと以外は、実施例4と同様の方法で、硬化性組成物を調製し、表面抵抗率および体積固有抵抗率を測定した。
[Comparative Example 5]
A curable composition was prepared in the same manner as in Example 4, except that 5 g of isostearyl acrylate was used instead of component (B), and the surface resistivity and volume resistivity were measured.
Figure JPOXMLDOC01-appb-T000002
 〔結果〕
 実施例1~3に係る硬化物と比較例1に係る硬化物との差は、(B)成分を添加したか否かである。硬化物のダンベル物性の結果から、実施例1~3に係る硬化物は、比較例1に係る硬化物よりも、10%伸張時の応力が同等または高く、破断時の応力が高く、破断時の伸びも高いことから、高強度であると言える。また、実施例1~3に係る硬化物は、比較例1に係る硬化物よりも、表面抵抗率および体積固有抵抗率が低く、イオン電導性が高いことが確認された。また、実施例4と比較例2とを比較した場合にも同様の傾向が見られた。いずれの実施例も低抵抗であることから、高性能蓄電池の電極用バインダー、導電性ペースト用バインダーとして優れた初期性能、耐久性が期待される。
Figure JPOXMLDOC01-appb-T000002
〔result〕
The difference between the cured products according to Examples 1 to 3 and the cured product according to Comparative Example 1 is whether or not the component (B) was added. From the results of the dumbbell physical properties of the cured products, the cured products according to Examples 1 to 3 have the same or higher stress at 10% elongation than the cured product according to Comparative Example 1, and the stress at break is higher. It can be said that the strength is high because the elongation of the steel is also high. In addition, it was confirmed that the cured products of Examples 1 to 3 had lower surface resistivity and volume specific resistivity and higher ionic conductivity than the cured product of Comparative Example 1. A similar tendency was also observed when Example 4 and Comparative Example 2 were compared. Since each example has a low resistance, it is expected to have excellent initial performance and durability as a binder for electrodes of high-performance storage batteries and a binder for conductive pastes.
 比較例3では、実施例1のイオン性液体を同量の電解質化合物に置き換えている。イオン性液体を用いた実施例1は、電解質化合物を用いた比較例3と比較して、10%伸張時の応力が高くなっていることから硬化物の強度が高いことが確認された。なお、比較例3に比べて電解質化合物を増量した比較例4では硬化物を得ることができなかった。実施例3のイオン性液体を同量のアクリルモノマーに置き換えた比較例5では、抵抗率が高かった。 In Comparative Example 3, the ionic liquid of Example 1 is replaced with the same amount of electrolyte compound. In Example 1 using an ionic liquid, compared to Comparative Example 3 using an electrolyte compound, the stress at 10% elongation was higher, so it was confirmed that the strength of the cured product was high. In addition, in Comparative Example 4 in which the amount of the electrolyte compound was increased compared to Comparative Example 3, a cured product could not be obtained. Comparative Example 5, in which the ionic liquid of Example 3 was replaced with the same amount of acrylic monomer, had a higher resistivity.
 本発明の一態様に係る硬化性組成物は、各種蓄電池電極用バインダー、導電性ゲル材料、アクチュエーター用材料、導電性ペースト用バインダー等に利用できる。 The curable composition according to one aspect of the present invention can be used for various storage battery electrode binders, conductive gel materials, actuator materials, conductive paste binders, and the like.

Claims (10)

  1.  末端または末端近傍に架橋性官能基を有する重合体である(A)成分と、
     架橋性官能基を有するイオン性液体である(B)成分と、
     硬化触媒または開始剤である(C)成分と、
    を含む、硬化性組成物。
    Component (A), which is a polymer having a crosslinkable functional group at or near the terminal,
    Component (B), which is an ionic liquid having a crosslinkable functional group;
    (C) component, which is a curing catalyst or initiator;
    A curable composition comprising:
  2.  前記(A)成分の架橋性官能基が、加水分解性シリル基およびラジカル架橋性官能基のうちの少なくともいずれか1種類である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the crosslinkable functional group of component (A) is at least one of a hydrolyzable silyl group and a radically crosslinkable functional group.
  3.  前記(A)成分が、(メタ)アクリル酸エステル重合体である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the component (A) is a (meth)acrylate polymer.
  4.  前記(B)成分が、アンモニウムイオン、ホスホニウムイオン、およびピリジニウムイオンからなる群より選択される少なくとも1種類とビス(トリフルオロメタンスルホニル)イミドとの塩である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the component (B) is a salt of at least one selected from the group consisting of ammonium ions, phosphonium ions, and pyridinium ions and bis(trifluoromethanesulfonyl)imide. .
  5.  前記(B)成分の架橋性官能基が、加水分解性シリル基およびラジカル架橋性官能基のうちの少なくともいずれか1種類である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the crosslinkable functional group of component (B) is at least one of a hydrolyzable silyl group and a radically crosslinkable functional group.
  6.  固体状の電解質である(D)成分をさらに含む、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising component (D), which is a solid electrolyte.
  7.  カーボネート系溶剤である(E)成分をさらに含む、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising component (E), which is a carbonate-based solvent.
  8.  請求項1~7に記載の硬化性組成物を含む、導電性ペースト。 A conductive paste containing the curable composition according to claims 1 to 7.
  9.  請求項1~7に記載の硬化性組成物を硬化させてなる、硬化物。 A cured product obtained by curing the curable composition according to claims 1 to 7.
  10.  前記硬化物が、電解質ゲルである、請求項9に記載の硬化物。 The cured product according to claim 9, wherein the cured product is an electrolyte gel.
PCT/JP2022/046642 2022-01-07 2022-12-19 Curable composition and cured product WO2023132214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001811 2022-01-07
JP2022001811 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023132214A1 true WO2023132214A1 (en) 2023-07-13

Family

ID=87073561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046642 WO2023132214A1 (en) 2022-01-07 2022-12-19 Curable composition and cured product

Country Status (1)

Country Link
WO (1) WO2023132214A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204682A (en) * 2006-02-03 2007-08-16 Daikin Ind Ltd Actuator element
JP2013506008A (en) * 2009-08-28 2013-02-21 スリーエム イノベイティブ プロパティズ カンパニー Polymerizable ionic liquids and antistatic coatings containing polyfunctional cations
JP2016062895A (en) * 2014-09-19 2016-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. Electrolyte, method of preparing the same, and lithium secondary battery comprising the same
WO2018048479A1 (en) * 2016-09-12 2018-03-15 Lopez Barron Carlos R Stretchable iono-elastomers with mechano-electrical response, devices incorporating iono-elastomers, and methods of making thereof
JP2018178078A (en) * 2017-04-14 2018-11-15 協立化学産業株式会社 Photocurable adhesive composition
US20190106579A1 (en) * 2017-10-10 2019-04-11 Ppg Industries Ohio, Inc. Ionic liquids for anti-icing applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204682A (en) * 2006-02-03 2007-08-16 Daikin Ind Ltd Actuator element
JP2013506008A (en) * 2009-08-28 2013-02-21 スリーエム イノベイティブ プロパティズ カンパニー Polymerizable ionic liquids and antistatic coatings containing polyfunctional cations
JP2016062895A (en) * 2014-09-19 2016-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. Electrolyte, method of preparing the same, and lithium secondary battery comprising the same
WO2018048479A1 (en) * 2016-09-12 2018-03-15 Lopez Barron Carlos R Stretchable iono-elastomers with mechano-electrical response, devices incorporating iono-elastomers, and methods of making thereof
JP2018178078A (en) * 2017-04-14 2018-11-15 協立化学産業株式会社 Photocurable adhesive composition
US20190106579A1 (en) * 2017-10-10 2019-04-11 Ppg Industries Ohio, Inc. Ionic liquids for anti-icing applications

Similar Documents

Publication Publication Date Title
JP5346047B2 (en) Curable composition
JP4723052B2 (en) Curable composition
JP5067482B2 (en) Adhesive composition
JP6088790B2 (en) Curable composition and cured product thereof
JP6290785B2 (en) Moisture curable composition
JP2011241390A (en) Curable composition having improved storage stability and adhesion property
JP5185530B2 (en) Sealing material
JP2010106159A (en) Adhesive composition for asphalt waterproof sheet
WO2022203065A1 (en) Curable composition and cured product thereof
JP2011026393A (en) Curable composition
JP5146529B2 (en) Sealant composition
WO2022009933A1 (en) (meth)acrylic acid ester-based copolymer and curable composition thereof
JP5230907B2 (en) Primer composition
JP2009280772A (en) Primer composition
WO2023132214A1 (en) Curable composition and cured product
JP2003313302A (en) Curable composition
JP2003313397A (en) Curable composition
JP6667125B2 (en) Curable composition with excellent thixotropic properties
JP6052061B2 (en) Curable composition and curing catalyst
JP2003082192A (en) Curable composition
JP6667124B2 (en) Curable composition with excellent storage stability
JP5397036B2 (en) Curable resin composition
JP5564170B2 (en) Adhesive composition for asphalt tarpaulin
JP2013001852A (en) Curable composition and adhesive using the same
JP2007182590A (en) Curable compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918799

Country of ref document: EP

Kind code of ref document: A1