WO2023132171A1 - Method for producing plated component - Google Patents

Method for producing plated component Download PDF

Info

Publication number
WO2023132171A1
WO2023132171A1 PCT/JP2022/044808 JP2022044808W WO2023132171A1 WO 2023132171 A1 WO2023132171 A1 WO 2023132171A1 JP 2022044808 W JP2022044808 W JP 2022044808W WO 2023132171 A1 WO2023132171 A1 WO 2023132171A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
manufacturing
plated
plating
target region
Prior art date
Application number
PCT/JP2022/044808
Other languages
French (fr)
Japanese (ja)
Inventor
勇輝 櫻木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023132171A1 publication Critical patent/WO2023132171A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins

Definitions

  • This technology relates to a method for manufacturing plated parts in which plating is formed on the surface of a resin base material.
  • MIDs Three-dimensional circuit-molded parts with electric circuits formed on the surface of injection-molded products are called MIDs (Molded Interconnect Devices), and their range of applications is rapidly expanding. Since MID can form a circuit on the surface of a small and complicated shaped molded body, it is in line with the trend of lightness, thinness, shortness and smallness of electronic parts.
  • the LDS (Laser Direct Structuring) method has been put into practical use.
  • a copper complex is kneaded into a thermoplastic resin and injection-molded, and laser drawing is performed on the surface of a molded body containing the copper complex.
  • the copper complex is metallized by laser irradiation, and the catalytic activity of electroless copper plating is expressed, making it possible to plate the laser-drawn area.
  • the LDS method can form a circuit even on the surface of an injection-molded article having a complicated shape.
  • Patent Documents 1 and 2 disclose methods of forming MIDs using catalyst deactivators.
  • the catalyst deactivator is applied to the surface of the resin substrate and then partially removed by laser irradiation.
  • the plating activity of the catalyst is deactivated by the catalyst deactivator, so that the plating activity occurs only in the regions from which the catalyst deactivator has been removed. Thereby, plating can be formed only on the regions from which the catalyst deactivator has been removed.
  • the LDS method requires a resin base material kneaded with a copper complex, which limits the applicable resin materials.
  • the methods described in Patent Documents 1 and 2 are difficult to apply to some resin materials because the plating depositability depends on the properties of the resin itself.
  • the LDS method and the methods described in Patent Documents 1 and 2 cannot increase the contrast of plating deposition, that is, the difference in plating catalyst activity between the part where plating is to be formed and the part where plating is not to be formed. Thinning is difficult.
  • the purpose of the present technology is to provide a method of manufacturing plated parts that is less restricted to resin materials that can be plated and that is capable of increasing the contrast of plating deposition.
  • a method for manufacturing a plated component includes: embedding a first substance in the target region on the surface of the resin base; After embedding the first substance, a plating catalyst solution containing a second substance that adsorbs to the first substance is supplied to the surface to cause the target region to support the second substance, After supplying the plating catalyst solution, a plating solution containing a third substance that precipitates using the second substance as a catalyst is supplied to the surface to form a plating layer made of the third substance on the target region.
  • the first substance comprises a first element
  • a layer containing the first element is formed on the surface, and a portion of the layer on the target region is locally heated to bury the first substance in the target.
  • the region may be implanted and the layer removed.
  • the layer may be irradiated with a laser to locally heat the portion.
  • the layer may be irradiated with light to locally heat the portion.
  • the portion may be locally heated by bringing a heated object into contact with the layer.
  • the layer may be made of an organic compound containing the first element.
  • the first substance comprises a first element
  • the surface is exposed to an atmosphere containing the first element;
  • the target area may be locally heated to embed the first material in the target area.
  • the first substance comprises a first element
  • the target area may be embedded with the first material by irradiating the target area with a flame containing the first element.
  • the first substance comprises a first element;
  • a layer containing the first element may be embedded in the surface, and portions of the layer other than the target region may be removed.
  • the first substance comprises a first element;
  • the first element may be Si, Ti, Al or Zr.
  • the second substance comprises a second element; the second element is Pd, the third substance comprises a third element;
  • the third element may be one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn.
  • the first element is Si, Ti, Al or Zr;
  • the organic compound may be a coupling agent containing the first element.
  • the first element is Si
  • the first substance is silane
  • the organic compound may be a silane coupling agent.
  • the resin base material may be made of a hydrophobic resin.
  • the resin base material may be made of PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone).
  • FIG. 6 is a flow chart showing a method for manufacturing a plated component according to an embodiment of the present technology
  • FIG. 4 is a schematic diagram of a resin base material on which plating is formed in the method for manufacturing the plated component.
  • FIG. 3 is a schematic diagram showing a pattern of target regions on the surface of a resin base material. It is a schematic diagram of a resin base material and a first element-containing layer.
  • FIG. 2 is a schematic diagram of a resin base material with embedded portions and a first element-containing layer; It is a schematic diagram of the resin base material which formed the embedded part.
  • FIG. 3 is a schematic diagram showing a pattern of embedded portions on the surface of a resin base material;
  • FIG. 4 is a schematic diagram of a resin base material on which plating is formed in the method for manufacturing the plated component.
  • FIG. 3 is a schematic diagram showing a pattern of target regions on the surface of a resin base material. It is a schematic diagram of a resin base material and a first
  • FIG. 2 is a schematic diagram of the resin base material on which a catalyst-carrying portion is formed; It is a schematic diagram of the said resin base material which formed the plating layer.
  • FIG. 3 is a schematic diagram showing the pattern of the plating layer on the surface of the resin substrate. It is a schematic diagram of a resin base material and a first element-containing layer. It is a schematic diagram which shows laser irradiation with respect to a 1st element containing layer.
  • FIG. 4 is a schematic diagram showing embedded portions in a target region; FIG. 4 is a schematic diagram showing a catalyst-carrying portion in a target region; It is a schematic diagram which shows the plating layer in object Ryoirei.
  • FIG. 1 is a schematic diagram showing a conventional LDS (Laser Direct Structuring) method; FIG. It is a schematic diagram which shows the said LDS method. It is a graph which shows the metal-plating catalyst activity of a laser irradiation part and an unprocessed part in the said LDS method. It is a schematic diagram which shows the catalyst deactivation method (good affinity of a resin base material) which is a prior art. It is a graph which shows the metal-plating catalyst activity of the laser irradiation part and an unprocessed part in the said catalyst deactivation method. It is a schematic diagram which shows the catalyst deactivation method (poor compatibility of a resin base material) which is a prior art.
  • LDS Laser Direct Structuring
  • 2 is a graph showing plating catalyst activity in a target region and a region other than the target region in a method for manufacturing a plated component according to an embodiment of the present technology;
  • It is a flow chart which shows a manufacturing method of a plating part concerning a modification of this art.
  • 4 is a chemical formula of a silane coupling agent, which is an example of an organic compound that constitutes the first element-containing layer.
  • FIG. 1 is a flow chart showing the method for manufacturing a plated component according to this embodiment
  • FIGS. 2 to 10 are schematic diagrams showing the method for manufacturing a plated component according to this embodiment.
  • a first material embedding step St101, a plating catalyst supply step St102, and a plating solution supply step St103 are sequentially performed.
  • FIG. 2 is a schematic diagram of a resin base material 151 on which plating is formed by the method of manufacturing a plated component according to this embodiment.
  • the resin base material 151 is a base material made of synthetic resin.
  • the resin base material 151 is preferably made of a hydrophobic resin, specifically PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone).
  • PC polycarbonate
  • ABS Acrylonitrile Butadiene Styrene copolymer
  • PEEK Poly Ether Ether Ketone
  • the resin base material 151 does not contain an inorganic filler such as a glass filler or a mineral filler.
  • the shape of the resin base material 151 is arbitrary and not particularly limited.
  • FIG. 3 is a schematic diagram showing the surface of the resin base material 151
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • a part of the surface of the resin base material 151 is defined as a target area S.
  • the planar shape (hereinafter referred to as pattern) of the target region S shown in FIG. 3 is an example, and the pattern of the target region S is arbitrary.
  • the first substance embedding step St101 is a step of embedding the first substance in the target region S.
  • the first substance is a substance to which the second substance, which will be described later, is adsorbed, and can be a single substance composed of the first element or a compound of the first element.
  • the first element is Si, Ti, Al or Zr, and the first substance can be Si, Si compounds, Ti, Ti compounds, Al, Al compounds, Zr and Zr compounds.
  • the first material embedding step St101 includes a first element-containing layer forming step St111, a local heating step St112, and a first element-containing layer removing step St113, as shown in FIG.
  • the first element-containing layer forming step is a step of forming a “first element-containing layer” on the surface of the resin base material 151 .
  • FIG. 4 is a schematic diagram of a resin base material 151 on which a first element-containing layer 152 is formed. As shown in the figure, the first element-containing layer 152 is uniformly formed on the surface of the resin base material 151 .
  • the first element-containing layer 152 is a layer containing the above-described first element.
  • the first element-containing layer 152 can be made of an organic compound containing the first element, and can be made of an organic Si compound, an organic Ti compound, an organic Al compound, or an organic Zr compound. can. More specifically, the first element-containing layer 152 can be a silane coupling agent, an organic Ti coupling agent, an organic Al coupling agent, or an organic Zr coupling agent.
  • the thickness of the first element-containing layer 152 is preferably about ⁇ m.
  • the first element-containing layer 152 can be formed on the surface of the resin base material 151 by atmospheric vapor deposition or dipping.
  • the local heating step St112 is a step of locally heating a portion of the first element-containing layer 152 above the target region S.
  • the laser can be scanned along the pattern of the target region S to locally heat the above portion by laser irradiation.
  • the region other than the target region S may be shielded from light by a mask, and the entire surface of the resin base material 151 may be irradiated with light to locally heat the above portion.
  • a heated object having a convex portion having the same shape as the target region S may be pressed against the first element-containing layer 152 to locally heat the above portion.
  • laser irradiation is preferable because of the ease of operation and the excellent selectivity of the heated portion, and the ease with which the shape of the heated portion can be changed and the size of the heated portion can be reduced.
  • FIG. 5 is a schematic diagram showing an embedded portion 153, which is a portion of the resin base material 151 in which the first substance is embedded. As shown in the figure, the first element-containing layer 152 in the target region S is decomposed by heating.
  • the first element-containing layer removing step St113 is a step of removing the first element-containing layer 152 .
  • a cleaning liquid is supplied to the surface of the resin base material 151 to remove the first element containing layer 152.
  • FIG. FIG. 6 is a schematic diagram showing the resin base material 151 from which the first element-containing layer 152 has been removed.
  • the cleaning liquid is a liquid that decomposes the first element-containing layer 152 and does not affect the resin substrate 151, and can be, for example, an acid, a base, or both.
  • the first element-containing layer 152 may be removed by a method other than supplying the cleaning liquid.
  • the first material is embedded in the resin base material 151 to form the embedded portion 153 as described above.
  • FIG. 7 is a schematic diagram showing the pattern of the embedded portion 153 on the surface of the resin base material 151
  • FIG. 6 is a cross-sectional view taken along line BB in FIG.
  • the target region S (see FIG. 3) is implanted with the first substance to form the embedded portion 153.
  • the embedded portion 153 has the same pattern as the target area S (see FIG. 3).
  • the plating catalyst supply step St102 (see FIG. 1) is a step of supplying a plating catalyst solution containing a second substance to the surface of the resin base material 151 in which the embedded portion 153 is formed.
  • the second substance is a substance that adsorbs to the first substance and has catalytic activity for electroless plating.
  • the second substance contains a second element, for example ions and metals consisting of the second element.
  • the second element is Pd, for example.
  • FIG. 8 is a schematic diagram showing the resin base material 151 supplied with the plating catalyst liquid.
  • the second substance is adsorbed on the first substance of the embedded portion 153, and as shown in FIG. It is formed.
  • a plating catalyst solution containing Pd ions is supplied to the surface of the resin base material 151, the Pd ions are adsorbed to the first substance to form metal Pd particles, and the target area S carries the metal Pd particles.
  • the plating solution supply step St103 is a step of supplying an electroless plating solution containing a third substance to the surface of the resin base material 151 on which the catalyst carrying portion 154 is formed.
  • the third substance is a substance that precipitates using the second substance as a catalyst.
  • the third substance contains ions and metals composed of a third element which is a metallic element, and the third element is any one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn. be.
  • the third substance may further include any one or more of P, B, S, V, Cr, Mn, Fe, Zn, Mo, Cd, W, Re and Tl co-precipitating with the third element.
  • the electroless plating solution is preferably an electroless copper plating solution, an electroless nickel plating solution, an electroless nickel phosphorous plating solution, or an electroless copper-nickel plating solution because the solution has high catalytic activity and is stable.
  • FIG. 9 is a cross-sectional view showing the resin base material 151 supplied with the plating solution. Since the third substance is deposited using the second substance as a catalyst, a plated layer 155 made of the third substance is formed on the catalyst carrying portion 154 as shown in FIG.
  • FIG. 10 is a schematic diagram showing the pattern of the plating layer 155 on the surface of the resin base material 151
  • FIG. 9 is a sectional view taken along line CC of FIG.
  • plating layer 155 has the same pattern as embedded portion 153 (see FIG. 7), ie, the same pattern as target area S (see FIG. 3).
  • the method of manufacturing a plated component according to the present embodiment can manufacture a plated component in which the plating layer 155 is formed on the target region S of the resin base material 151 as described above.
  • FIG. 11 is a schematic diagram showing the surface of the resin base material 151 on which the first element-containing layer 152 is formed by the first element-containing layer forming step St111, and is an enlarged view of FIG.
  • FIG. 12 is a schematic diagram showing local heating by laser irradiation.
  • the first element-containing layer 152 on the target region S is irradiated with the laser L to heat the first element-containing layer 152 locally.
  • local heating may be performed by a method other than laser irradiation.
  • FIG. 13 is a schematic diagram showing the resin base material 151 and the first element-containing layer 152 after local heating, and is an enlarged view of FIG.
  • the local heating decomposes and alters both the portion near the surface of the resin base material 151 and the first element-containing layer 152 , and the particulate first substance 171 is generated in the resin base material 151 .
  • FIG. 13 is a schematic diagram showing the resin base material 151 and the first element-containing layer 152 after local heating, and is an enlarged view of FIG.
  • the local heating decomposes and alters both the portion near the surface of the resin base material 151 and the first element-containing layer 152 , and the particulate first substance 171 is generated in the resin base material 151 .
  • Embedded. Thereby, the buried portion 153 is formed in the target region S.
  • FIG. 14 is a schematic diagram showing the resin base material 151 after the plating catalyst solution is supplied, and is an enlarged view of FIG.
  • the second substance 172 contained in the plating catalyst solution is adsorbed to the first substance 171 and supported on the resin substrate 151 in the target region S as shown in FIG. Since the first substance 171 is not embedded in regions other than the target region S, the second substance 172 is carried on the resin base material 151 only in the target region S. Thereby, the catalyst carrying portion 154 is formed in the target region S. As shown in FIG.
  • FIG. 15 is a schematic diagram showing the resin base material 151 after the electroless plating catalyst solution has been supplied, and is an enlarged view of FIG.
  • the third substance contained in the electroless plating solution is deposited using the second substance 172 as a catalyst, forming a plating layer 155 as shown in FIG.
  • the first substance is embedded in the target region S of the resin base material 151 as described above, and the plating layer 155 is formed using the second substance that is adsorbed to the first substance as a plating catalyst. .
  • the target region S can be locally imparted with plating deposition properties. Since the contrast of plating deposition (difference in plating catalyst activity) is obtained by the distribution of the second substance, the resin material constituting the resin base material 151 is less limited, and the manufacturing method according to the present embodiment can be applied to a wide range of resin materials. Applicable.
  • electroless plating is performed using a second substance such as Pd ions as an electroless plating catalyst.
  • Pd ions are reduced while being adsorbed on the resin substrate.
  • metal ions such as Pd ions are difficult to adsorb to the surface of the resin base material. difficult to absorb.
  • the second substance is adsorbed to the target region S. becomes easier.
  • the second substance can be carried in the target region S and the second substance can be prevented from being carried in regions other than the target region S, and the contrast between the target region S and the other regions can be increased. It is possible to If the contrast of plating deposition is small, the plating protrudes from the target area S, making it difficult to thin the wiring. It is possible.
  • FIG. 16 and 17 are schematic diagrams showing the conventional LDS (Laser Direct Structuring) method.
  • copper complex 312 is kneaded into resin base material 311 .
  • the resin base material 311 is irradiated with a laser to form the laser-irradiated portion P
  • the copper complex positioned near the surface of the laser-irradiated portion P is metallized to form metallic copper 313 .
  • an electroless plating solution is supplied to the resin base material 311, a plating layer 314 is formed using metallic copper 313 as a catalyst, as shown in FIG.
  • FIG. 18 is a graph showing the plating catalytic activity of the untreated portion not irradiated with laser and the laser irradiated portion on the surface of the resin base material 311 .
  • high plating catalytic activity is caused by the metallic copper 313 in the laser-irradiated portion, but some plating catalytic activity is caused by the copper complex 312 even in the untreated portion. Therefore, the difference D1 in plating catalyst activity between the untreated portion and the laser-irradiated portion is small, and an unnecessary precipitate 315 may be formed in portions other than the laser-irradiated portion P as shown in FIG.
  • the contrast of plating deposition is small, and the plating line is formed thicker than the line drawn by irradiation, or unnecessary plating deposition may occur. is considered difficult.
  • FIG. 19 is a schematic diagram showing a conventional catalyst deactivation method.
  • a catalyst deactivator 322 is carried on the surface of the resin base material 321 .
  • the catalyst deactivator 322 is removed by the laser.
  • the plating catalyst is supplied to the resin base material 321
  • the plating catalyst 323 is supported on the resin base material 321 at the laser irradiation portion P as shown in FIG.
  • a plating catalyst 324 deactivated by a catalyst deactivator is supported on the portion other than the laser-irradiated portion P.
  • an electroless plating solution is supplied to the resin base material 321, a plating layer is formed using the plating catalyst 323 as a catalyst.
  • FIG. 20 is a graph showing the plating catalytic activity of the untreated portion not irradiated with laser and the laser irradiated portion on the surface of the resin base material 321 .
  • the plating catalyst 323 causes high plating catalytic activity as described above
  • the deactivated plating catalyst 324 causes low plating catalytic activity. Therefore, the difference D2 in plating catalyst activity between the untreated portion and the laser-irradiated portion increases.
  • the resin material forming the resin base material 321 is a hydrophilic resin such as nylon, which has good compatibility with the catalyst deactivator 322 and the plating catalyst 323 .
  • FIG. 21 is a schematic diagram showing a catalyst deactivation method when the resin material constituting the resin base material 321 and the catalyst deactivator 322 and the plating catalyst 323 are not compatible with each other.
  • a small amount of catalyst deactivator 322 is supported on the surface of resin base material 321 .
  • the plating catalyst is supplied to the resin base material 321
  • a small amount of the plating catalyst 323 is supported on the resin base material 321 at the laser irradiation portion P as shown in FIG.
  • the catalyst deactivator 322 is insufficient in portions other than the laser irradiation portion P, and the plating catalyst 323 that is not deactivated is supported.
  • an electroless plating solution is supplied to the resin base material 321, a plating layer is formed using the plating catalyst 323 as a catalyst.
  • FIG. 22 is a graph showing the plating catalytic activity of the untreated portion and the laser-irradiated portion in this case. Since the plating catalyst 323 is insufficient in the laser-irradiated portion, the plating catalyst activity is small, and in the untreated portion, the plating catalyst 323 that is not deactivated causes some plating catalyst activity. Therefore, the difference D3 in plating catalyst activity between the untreated portion and the laser-irradiated portion becomes small. Therefore, even in the catalyst deactivation method, the contrast of the plating deposition becomes small with a resin having poor compatibility between the material of the resin base material, the catalyst deactivator, and the plating catalyst. This poorly compatible resin is a hydrophobic resin, common resins such as PC, ABS and PEEK. Therefore, the catalyst deactivation method limits applicable resin materials.
  • This poorly compatible resin is a hydrophobic resin, common resins such as PC, ABS and PEEK. Therefore, the catalyst deactivation method limits applicable resin materials.
  • FIG. 23 is a graph showing the plating catalytic activity of the target region S and regions other than the target region S in the method of manufacturing a plated component according to the present embodiment.
  • the method of manufacturing a plated component according to the present embodiment by embedding the first substance in the target region S, only the target region S can carry the second substance, which is a plating catalyst. Therefore, if the material of the resin base material 151 does not easily support the plating catalyst, the difference D4 in the plating catalyst activity increases, and the contrast of the plating deposition can be increased.
  • the method for producing a plated part according to the present embodiment unlike the LSD method, it is not necessary to knead a copper complex into the resin base material, and compatibility with a catalyst deactivator is also a problem as in the catalyst deactivation method. Therefore, it can be applied to a wide range of resin materials.
  • a resin material that easily supports a plating catalyst can increase the contrast of plating precipitation (see FIG. 20), but in the method according to the present embodiment, on the contrary, a resin material that does not easily support a plating catalyst. can increase the contrast of plating deposition. Therefore, in this respect as well, the present invention can be applied to a wide range of resin materials.
  • the first material embedding step St101 includes the first element-containing layer forming step St111, the local heating step St112, and the first element-containing layer removing step St113 (see FIG. 1), but is not limited to this.
  • . 24 to 26 are flowcharts showing a method of manufacturing a plated component including another first material embedding step St101.
  • the first material embedding step St101 may include an atmospheric local heating step St121.
  • the atmospheric local heating step St121 is a step of exposing the surface of the resin base material 151 to an atmosphere containing the first substance to locally heat the target region S (see FIG. 3). Local heating can be performed by irradiating the target region S with a laser and scanning the laser along the shape of the target region S. FIG. Alternatively, the target region S may be locally heated by shielding the region other than the target region S from light with a mask and irradiating the entire surface of the resin base material 151 with light.
  • the target region S is filled with the first substance to form a buried portion 153 (see FIG. 6). This method eliminates the step of forming and removing the first element-containing layer.
  • the first material embedding step St101 may include a flame irradiation step St131.
  • the flame irradiation step St131 is a step of irradiating the target region S (see FIG. 3) with a flame containing the first substance.
  • the target region S is embedded with the first substance to form the embedded portion 153 (see FIG. 6). This method also eliminates the step of forming and removing the first element-containing layer.
  • the first substance embedding step St101 may include a first element containing layer embedding step St141 and a first element containing layer removing step St142.
  • the first element containing layer embedding step St ⁇ b>141 is a step of embedding the first element containing layer 152 (see FIG. 4 ) in the entire surface of the resin base material 151 .
  • the first element-containing layer 152 can be embedded in the surface of the resin base material 151 by coating and heating.
  • the first element-containing layer removing step St142 is a step of removing the first element-containing layer 152 other than the target region S.
  • the first element-containing layer removing step St142 can be performed by irradiating the first element-containing layer 152 other than the target region S with light or mechanical processing.
  • the first element-containing layer embedding step St141 and the first element-containing layer removing step St142 embed the first substance in the target region S to form the embedded portion 153 (see FIG. 6).
  • the first substance embedding process St101 can be various processes capable of forming the embedding portion 153 in the target region S of the resin base material 151 in addition to the processes shown here.
  • the first element-containing layer 152 (see FIG. 4) made of a silane coupling agent is formed, and silane (SiH 4 ) as the first substance is embedded in the resin base material 151 .
  • the second material is Pd and the third material is Cu and Ni.
  • FIG. 27 is the chemical formula of the silane coupling agent that constitutes the first element-containing layer 152.
  • "X" is an organic functional group such as a vinyl group, an epoxy group and an amino group
  • "OR” is an alkoxy group such as a methoxy group and an ethoxy group.
  • [Table 1] and [Table 2] below are tables showing each step carried out in this specific example. Each step St1 to St19 shown in this specific example corresponds to each step (see FIG. 1) described above as shown in these tables.
  • the resin base material 151 (see FIG. 2) is subjected to alkali treatment (St1) and water washing (St2).
  • Asahi Cleaner C4000 (manufactured by Uemura Kogyo Co., Ltd.) is used for alkali treatment.
  • the first element-containing layer forming step (St111) is performed. Specifically, a dipping method is used to apply a Si-containing layer made of a silane coupling agent to the surface of the resin base material 151 (St3).
  • the Si-containing layer corresponds to the first element-containing layer 152 (see FIG. 4).
  • the resin base material 151 is immersed in a mixed solution of IPA (Isopropanol) (95%) and KBE-903 (manufactured by Shin-Etsu Silicone Co., Ltd.) (5%), which is an aminosilane coupling agent. Subsequently, the resin base material 151 is taken out and dried (St4). By drying at 80° C. for 5 minutes, the Si-containing layer is adsorbed to the surface of the resin base material 151 to form a Si-containing layer having a maximum thickness of 10 ⁇ m.
  • IPA Isopropanol
  • KBE-903 manufactured by Shin-Etsu Silicone Co., Ltd.
  • the local heating step (St112) is performed. Specifically, the target region S (see FIG. 3) on the surface of the resin base material 151 is irradiated with a laser (St5). The vicinity of the surface of the resin base material 151 and the Si-containing layer are decomposed and altered by laser irradiation, and silane is embedded in the resin base material 151 .
  • the laser is a UV laser (MD-U1000C manufactured by Keyence) with an output of 15-25% and a frequency of 46-65 kHz.
  • the first element-containing layer removing step (St113) is performed. Specifically, the surface of the resin base material 151 is washed with a washing liquid that dissolves the Si-containing layer (St6 to St9).
  • a washing liquid that dissolves the Si-containing layer (St6 to St9).
  • the Si-containing layer is composed of a silane coupling agent
  • hydrolysis reversibly restores the state before condensation, so pickling and base washing are performed.
  • Pickling can be performed by ultrasonic cleaning with HCl (0.03 M) at room temperature for 3 minutes.
  • Base washing can be carried out by ultrasonic cleaning at 50° C. for 3 minutes using Asahi Cleaner C4000 (manufactured by Uemura Kogyo Co., Ltd., 10% solution). Also, either pickling or basic washing may be carried out.
  • a cleaning liquid that does not attack the resin base material 151 is used.
  • the first material embedding step (St111 to St113) is performed to form the embedded
  • the plating catalyst solution supply step (St102) is carried out. Specifically, various processing liquids are supplied to the surface of the resin base material 151 (St10 to St17). Asahi Cleaner C4000 (manufactured by Uemura & Co., Ltd.) is used for alkali treatment (St10). In the conditioner supplying process (St12), PB-102 (manufactured by JCU, 100 ml/L) and EC-B (manufactured by JCU, 2 ml/L) are supplied to the surface of the resin substrate 151, and the catalyst (Pd ions) is embedded in the portion 153. of silane.
  • Asahi Cleaner C4000 manufactured by Uemura & Co., Ltd.
  • PB-102 manufactured by JCU, 100 ml/L
  • EC-B manufactured by JCU, 2 ml/L
  • the plating solution supply step (St103) is performed. Specifically, AISL-570 (manufactured by JCU), PC-BA (manufactured by JCU, 13 g / L), AISL-570B (manufactured by JCU, 70 ml / L), AISL-570C (manufactured by JCU, 24 ml/L) and AISL-570MU (manufactured by JCU, 50 ml/L).
  • the pH is adjusted to 9.0 ⁇ 0.2.
  • Cu and Ni are deposited using the metal Pd of the catalyst carrying portion 154 as a catalyst, and a plating layer 155 (see FIG. 9) is formed on the target region S.
  • water washing (St19) is carried out to produce a plated part.
  • This technology can also be configured as follows.
  • the first substance comprises a first element; In the step of embedding the first substance, a layer containing the first element is formed on the surface, and a portion of the layer on the target region is locally heated to bury the first substance in the target. A method of manufacturing a plated part by embedding the region and removing the layer.
  • a method for manufacturing a plated component according to (2) above The method of manufacturing a plated component, wherein in the step of embedding the first substance, the layer is irradiated with light to locally heat the portion.
  • a method for manufacturing a plated component according to (2) above The method of manufacturing a plated component, wherein in the step of embedding the first substance, the portion is locally heated by bringing a heated object into contact with the layer.
  • (6) A method for manufacturing a plated component according to any one of (2) to (5) above, The method of manufacturing a plated component, wherein the layer is made of an organic compound containing the first element.
  • a method for manufacturing a plated component according to (1) above the first substance comprises a first element; In the step of embedding the first substance, the surface is exposed to an atmosphere containing the first element; A method of manufacturing a plated component, comprising: locally heating the target area to embed the first material in the target area.
  • a method for manufacturing a plated component according to (1) above A method for manufacturing a plated part according to claim 1, the first substance comprises a first element; The method of manufacturing a plated component, wherein the step of embedding the first substance includes irradiating the target region with a flame containing the first element to embed the first substance in the target region.
  • the first substance comprises a first element; In the step of embedding the first substance, the layer containing the first element is embedded in the surface, and a portion of the layer other than the target region is removed.
  • the first substance comprises a first element; The first element is Si, Ti, Al or Zr.
  • the second substance comprises a second element; the second element is Pd, the third substance comprises a third element; The third element is any one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn.
  • a method for manufacturing a plated component (12) A method for manufacturing a plated component according to (6) above, the first element is Si, Ti, Al or Zr; The method for manufacturing a plated part, wherein the organic compound is a coupling agent containing the first element. (13) The method for manufacturing a plated component according to (12) above, the first element is Si, the first substance is silane; The method for producing a plated part, wherein the organic compound is a silane coupling agent. (14) A method for manufacturing a plated component according to any one of (1) to (13) above, A method for manufacturing a plated part, wherein the resin base material is made of a hydrophobic resin.
  • a method for manufacturing a plated component according to (14) above A method for manufacturing a plated part, wherein the resin base material is made of PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone).
  • PC polycarbonate
  • ABS Acrylonitrile Butadiene Styrene copolymer
  • PEEK Poly Ether Ether Ketone

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

[Problem] The present invention addresses the problem of providing a method for producing a plated component, the method having fewer restrictions on resin materials to be plated, while being capable of increasing the contrast of plating deposition. [Solution] In a method for producing a plated component according to the present technology, a first substance is embedded in a target region in the surface of a resin base material; after the embedment of the first substance, a plating catalyst solution containing a second substance that adsorbs to the first substance is supplied to the surface, thereby loading the target region with the second substance; after the supply of the plating catalyst solution, a plating solution containing a third substance that deposits using the second substance as a catalyst is supplied to the surface, thereby forming a plating layer, which is formed of the third substance, on the target region.

Description

めっき部品の製造方法Method for manufacturing plated parts
 本技術は、樹脂基材の表面にめっきを形成しためっき部品の製造方法に関する。 This technology relates to a method for manufacturing plated parts in which plating is formed on the surface of a resin base material.
 近年、射出成形体等の表面に電気回路を形成した立体回路成形部品は、MID(Molded Interconnect Device)と呼称され、その応用範囲が急速に広まっている。MIDは、小型で複雑な形状の成形体の表面に回路を形成できるため、電子部品の軽薄短小のトレンドに合致している。 In recent years, three-dimensional circuit-molded parts with electric circuits formed on the surface of injection-molded products are called MIDs (Molded Interconnect Devices), and their range of applications is rapidly expanding. Since MID can form a circuit on the surface of a small and complicated shaped molded body, it is in line with the trend of lightness, thinness, shortness and smallness of electronic parts.
 MIDの形成方法としては、LDS(Laser Direct Structuring)法が実用化されている。LDS法では、まず、銅錯体を熱可塑性樹脂に練り込んで射出成形し、該銅錯体を含有した成形体表面にレーザー描画を行う。レーザー照射により銅錯体が金属化して無電解銅めっきの触媒活性が発現し、レーザー描画部のめっきが可能となる。LDS法は、複雑な形状の射出成形体の表面にも回路を形成することができる。 As a method for forming MIDs, the LDS (Laser Direct Structuring) method has been put into practical use. In the LDS method, first, a copper complex is kneaded into a thermoplastic resin and injection-molded, and laser drawing is performed on the surface of a molded body containing the copper complex. The copper complex is metallized by laser irradiation, and the catalytic activity of electroless copper plating is expressed, making it possible to plate the laser-drawn area. The LDS method can form a circuit even on the surface of an injection-molded article having a complicated shape.
 また、LDS法以外のMID形成方法も報告されている。例えば特許文献1及び2には触媒失活剤を用いたMIDの形成方法が開示されている。この方法では樹脂基材の表面に触媒失活剤を塗布した後、レーザー照射により触媒失活剤を部分的に除去する。次にめっき触媒を供給すると、触媒失活剤によって触媒のめっき活性が失活するため、触媒失活剤を除去した領域にのみめっき活性が生じる。これにより、触媒失活剤を除去した領域にのみめっきを形成することができる。 In addition, MID formation methods other than the LDS method have also been reported. For example, Patent Documents 1 and 2 disclose methods of forming MIDs using catalyst deactivators. In this method, the catalyst deactivator is applied to the surface of the resin substrate and then partially removed by laser irradiation. Next, when the plating catalyst is supplied, the plating activity of the catalyst is deactivated by the catalyst deactivator, so that the plating activity occurs only in the regions from which the catalyst deactivator has been removed. Thereby, plating can be formed only on the regions from which the catalyst deactivator has been removed.
特開2020-147789号公報JP 2020-147789 A 特開2017-226890号公報JP 2017-226890 A
 しかしながら、LDS法では銅錯体を練り込んだ樹脂基材が必要となり、適用可能な樹脂材料が制限される。また、特許文献1及び2に記載の方法では、めっき析出性が樹脂自体の特性に依存するため、適用困難な樹脂材料がある。さらに、LDS法や特許文献1及び2に記載の方法ではめっき析出性のコントラスト、即ちめっきを形成したい部分としたくない部分のめっき触媒活性の差異を大きくすることができず、めっきを一定以上に細線化することが困難である。 However, the LDS method requires a resin base material kneaded with a copper complex, which limits the applicable resin materials. In addition, the methods described in Patent Documents 1 and 2 are difficult to apply to some resin materials because the plating depositability depends on the properties of the resin itself. Furthermore, the LDS method and the methods described in Patent Documents 1 and 2 cannot increase the contrast of plating deposition, that is, the difference in plating catalyst activity between the part where plating is to be formed and the part where plating is not to be formed. Thinning is difficult.
 以上のような事情に鑑み、本技術の目的は、めっきを形成可能な樹脂材料の制限が小さく、めっき析出性のコントラストを大きくすることが可能なめっき部品の製造方法を提供することにある。 In view of the circumstances described above, the purpose of the present technology is to provide a method of manufacturing plated parts that is less restricted to resin materials that can be plated and that is capable of increasing the contrast of plating deposition.
 上記目的を達成するため、本技術の一形態に係るめっき部品の製造方法は、
 樹脂基材の表面のうち対象領域に第1の物質を埋め込み、
 上記第1の物質を埋め込んだ後、上記第1の物質に吸着する第2の物質を含むめっき触媒液を上記表面に供給して上記対象領域に上記第2の物質を担持させ、
 上記めっき触媒液の供給後、上記第2の物質を触媒として析出する第3の物質を含むめっき液を上記表面に供給し、上記対象領域に上記第3の物質からなるめっき層を形成する。
In order to achieve the above object, a method for manufacturing a plated component according to one embodiment of the present technology includes:
embedding a first substance in the target region on the surface of the resin base;
After embedding the first substance, a plating catalyst solution containing a second substance that adsorbs to the first substance is supplied to the surface to cause the target region to support the second substance,
After supplying the plating catalyst solution, a plating solution containing a third substance that precipitates using the second substance as a catalyst is supplied to the surface to form a plating layer made of the third substance on the target region.
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記表面に上記第1の元素を含む層を形成し、上記層のうち上記対象領域上の部分を局所的に加熱して上記第1の物質を上記対象領域に埋め込み、上記層を除去してもよい。
the first substance comprises a first element;
In the step of embedding the first substance, a layer containing the first element is formed on the surface, and a portion of the layer on the target region is locally heated to bury the first substance in the target. The region may be implanted and the layer removed.
 上記第1の物質を埋め込む工程では、上記層にレーザーを照射して上記部分を局所的に加熱してもよい。 In the step of embedding the first substance, the layer may be irradiated with a laser to locally heat the portion.
 上記第1の物質を埋め込む工程では、上記層に光を照射して上記部分を局所的に加熱してもよい。 In the step of embedding the first substance, the layer may be irradiated with light to locally heat the portion.
 上記第1の物質を埋め込む工程では、上記層に加熱された物体を接触させて上記部分を局所的に加熱してもよい。 In the step of embedding the first substance, the portion may be locally heated by bringing a heated object into contact with the layer.
 上記層は上記第1の元素を含む有機化合物からなるものであってもよい。 The layer may be made of an organic compound containing the first element.
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記表面を上記第1の元素を含む雰囲気に曝し、
 上記対象領域を局所的に加熱して上記第1の物質を上記対象領域に埋め込んでもよい。
the first substance comprises a first element;
In the step of embedding the first substance, the surface is exposed to an atmosphere containing the first element;
The target area may be locally heated to embed the first material in the target area.
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記第1の元素を含む炎を上記対象領域に照射して上記第1の物質を上記対象領域に埋め込んでもよい。
the first substance comprises a first element;
In the step of embedding the first material, the target area may be embedded with the first material by irradiating the target area with a flame containing the first element.
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記表面に上記第1の元素を含む層を埋め込み、上記層のうち上記対象領域上以外の部分を除去してもよい。
the first substance comprises a first element;
In the step of embedding the first substance, a layer containing the first element may be embedded in the surface, and portions of the layer other than the target region may be removed.
 上記第1の物質は第1の元素を含み、
 上記第1の元素はSi、Ti、Al又はZrであってもよい。
the first substance comprises a first element;
The first element may be Si, Ti, Al or Zr.
 上記第2の物質は第2の元素を含み、
 上記第2の元素はPdであり、
 上記第3の物質は第3の元素を含み、
 上記第3の元素はCu、Ni、Co、Au、Ag、Pd、Rh、Pt、In及びSnのいずれか1つ又は複数であってもよい。
the second substance comprises a second element;
the second element is Pd,
the third substance comprises a third element;
The third element may be one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn.
 上記第1の元素はSi、Ti、Al又はZrであり、
 上記有機化合物は、上記第1の元素を含むカップリング剤であってもよい。
the first element is Si, Ti, Al or Zr;
The organic compound may be a coupling agent containing the first element.
 上記第1の元素はSiであり、
 上記第1の物質はシランであり、
 上記有機化合物はシランカップリング剤であってもよい。
the first element is Si,
the first substance is silane;
The organic compound may be a silane coupling agent.
 上記樹脂基材は疎水性樹脂からなるものであってもよい。 The resin base material may be made of a hydrophobic resin.
 上記樹脂基材はPC(polycarbonate)、ABS(Acrylonitrile Butadiene Styrene共重合体)又はPEEK(Poly Ether Ether Ketone)からなるものであってもよい。 The resin base material may be made of PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone).
本技術の実施形態に係るめっき部品の製造方法を示すフローチャートである。6 is a flow chart showing a method for manufacturing a plated component according to an embodiment of the present technology; 上記めっき部品の製造方法においてめっきを形成する樹脂基材の模式図である。FIG. 4 is a schematic diagram of a resin base material on which plating is formed in the method for manufacturing the plated component. 樹脂基材の表面における対象領域のパターンを示す模式図である。FIG. 3 is a schematic diagram showing a pattern of target regions on the surface of a resin base material. 樹脂基材と第1元素含有層の模式図である。It is a schematic diagram of a resin base material and a first element-containing layer. 埋め込み部分を形成した樹脂基材と第1元素含有層の模式図である。FIG. 2 is a schematic diagram of a resin base material with embedded portions and a first element-containing layer; 埋め込み部分を形成した樹脂基材の模式図である。It is a schematic diagram of the resin base material which formed the embedded part. 樹脂基材の表面における埋め込み部分のパターンを示す模式図である。FIG. 3 is a schematic diagram showing a pattern of embedded portions on the surface of a resin base material; 触媒担持部分を形成した上記樹脂基材の模式図である。FIG. 2 is a schematic diagram of the resin base material on which a catalyst-carrying portion is formed; めっき層を形成した上記樹脂基材の模式図である。It is a schematic diagram of the said resin base material which formed the plating layer. 樹脂基材の表面におけるめっき層のパターンを示す模式図である。FIG. 3 is a schematic diagram showing the pattern of the plating layer on the surface of the resin substrate. 樹脂基材と第1元素含有層の模式図である。It is a schematic diagram of a resin base material and a first element-containing layer. 第1元素含有層に対するレーザー照射を示す模式図である。It is a schematic diagram which shows laser irradiation with respect to a 1st element containing layer. 対象領域における埋め込み部分を示す模式図である。FIG. 4 is a schematic diagram showing embedded portions in a target region; 対象領域における触媒担持部分を示す模式図である。FIG. 4 is a schematic diagram showing a catalyst-carrying portion in a target region; 対象了以威におけるめっき層を示す模式図である。It is a schematic diagram which shows the plating layer in object Ryoirei. 従来技術であるLDS(Laser Direct Structuring)法を示す模式図である。1 is a schematic diagram showing a conventional LDS (Laser Direct Structuring) method; FIG. 上記LDS法を示す模式図である。It is a schematic diagram which shows the said LDS method. 上記LDS法におけるレーザー照射部と未処理部のめっき触媒活性を示すグラフである。It is a graph which shows the metal-plating catalyst activity of a laser irradiation part and an unprocessed part in the said LDS method. 従来技術である触媒失活法(樹脂基材の相性良好)を示す模式図である。It is a schematic diagram which shows the catalyst deactivation method (good affinity of a resin base material) which is a prior art. 上記触媒失活法におけるレーザー照射部と未処理部のめっき触媒活性を示すグラフである。It is a graph which shows the metal-plating catalyst activity of the laser irradiation part and an unprocessed part in the said catalyst deactivation method. 従来技術である触媒失活法(樹脂基材の相性不良)を示す模式図である。It is a schematic diagram which shows the catalyst deactivation method (poor compatibility of a resin base material) which is a prior art. 上記触媒失活法におけるレーザー照射部と未処理部のめっき触媒活性を示すグラフである。It is a graph which shows the metal-plating catalyst activity of the laser irradiation part and an unprocessed part in the said catalyst deactivation method. 本技術の実施形態に係るめっき部品の製造方法における対象領域と対象領域以外のめっき触媒活性を示すグラフである。2 is a graph showing plating catalyst activity in a target region and a region other than the target region in a method for manufacturing a plated component according to an embodiment of the present technology; 本技術の変形例に係るめっき部品の製造方法を示すフローチャートである。It is a flow chart which shows a manufacturing method of a plating part concerning a modification of this art. 本技術の変形例に係るめっき部品の製造方法を示すフローチャートである。It is a flow chart which shows a manufacturing method of a plating part concerning a modification of this art. 本技術の変形例に係るめっき部品の製造方法を示すフローチャートである。It is a flow chart which shows a manufacturing method of a plating part concerning a modification of this art. 第1元素含有層を構成する有機化合物の例であるシランカップリング剤の化学式である。4 is a chemical formula of a silane coupling agent, which is an example of an organic compound that constitutes the first element-containing layer.
 本技術の実施形態に係るめっき部品の製造方法について説明する。 A method for manufacturing a plated part according to an embodiment of this technology will be explained.
 [めっき部品の製造方法]
 図1は本実施形態に係るめっき部品の製造方法を示すフローチャートであり、図2乃至図10は本実施形態に係るめっき部品の製造方法を示す模式である。図1に示すように、本実施形態に係るめっき部品の製造方法では、第1物質埋め込み工程St101、めっき触媒供給工程St102及びめっき液供給工程St103を順に実行する。
[Manufacturing method of plated parts]
FIG. 1 is a flow chart showing the method for manufacturing a plated component according to this embodiment, and FIGS. 2 to 10 are schematic diagrams showing the method for manufacturing a plated component according to this embodiment. As shown in FIG. 1, in the method of manufacturing a plated component according to the present embodiment, a first material embedding step St101, a plating catalyst supply step St102, and a plating solution supply step St103 are sequentially performed.
 図2は、本実施形態に係るめっき部品の製造方法によりめっきを形成する樹脂基材151の模式図である。樹脂基材151は、合成樹脂からなる基材である。樹脂基材151は疎水性樹脂からなるものが好適であり、具体的にはPC(polycarbonate)、ABS(Acrylonitrile Butadiene Styrene共重合体)又はPEEK(Poly Ether Ether Ketone)からなるものが好適である。また、樹脂基材151はガラスフィラーやミネラルフィラー等の無機フィラーを含まないものが好適である。樹脂基材151の形状は任意であり特に限定されない。 FIG. 2 is a schematic diagram of a resin base material 151 on which plating is formed by the method of manufacturing a plated component according to this embodiment. The resin base material 151 is a base material made of synthetic resin. The resin base material 151 is preferably made of a hydrophobic resin, specifically PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone). Moreover, it is preferable that the resin base material 151 does not contain an inorganic filler such as a glass filler or a mineral filler. The shape of the resin base material 151 is arbitrary and not particularly limited.
 本実施形態に係るめっき部品の製造方法では、樹脂基材151の表面のうち特定の領域にめっきを形成する。以下、この特定の領域を「対象領域」とする。図3は樹脂基材151の表面を示す模式図であり、図2は図3のA-A線での断面図である。図2及び図3に示すように、樹脂基材151の表面の一部を対象領域Sとする。なお、図3に示す対象領域Sの平面形状(以下、パターン)は一例であり、対象領域Sのパターンは任意である。 In the method of manufacturing a plated component according to this embodiment, plating is formed on a specific region of the surface of the resin base material 151 . Hereinafter, this specific area will be referred to as a "target area". FIG. 3 is a schematic diagram showing the surface of the resin base material 151, and FIG. 2 is a cross-sectional view taken along the line AA of FIG. As shown in FIGS. 2 and 3, a part of the surface of the resin base material 151 is defined as a target area S. As shown in FIG. Note that the planar shape (hereinafter referred to as pattern) of the target region S shown in FIG. 3 is an example, and the pattern of the target region S is arbitrary.
 第1物質埋め込み工程St101は、対象領域Sに第1物質を埋め込む工程である。第1物質は後述する第2物質が吸着する物質であり、第1元素からなる単体又は第1元素の化合物とすることができる。第1元素はSi、Ti、Al又はZrであり、第1物質はSi、Si化合物、Ti、Ti化合物、Al、Al化合物、Zr及びZr化合物のいずれかとすることができる。 The first substance embedding step St101 is a step of embedding the first substance in the target region S. The first substance is a substance to which the second substance, which will be described later, is adsorbed, and can be a single substance composed of the first element or a compound of the first element. The first element is Si, Ti, Al or Zr, and the first substance can be Si, Si compounds, Ti, Ti compounds, Al, Al compounds, Zr and Zr compounds.
 具体的には第1物質埋め込み工程St101は、図1に示すように第1元素含有層形成工程St111、局所加熱工程St112及び第1元素含有層除去工程St113を含む。第1元素含有層形成工程は、樹脂基材151の表面に「第1元素含有層」を形成する工程である。図4は第1元素含有層152を表面に形成した樹脂基材151の模式図である。同図に示すように第1元素含有層152は樹脂基材151の表面に一様に形成されている。 Specifically, the first material embedding step St101 includes a first element-containing layer forming step St111, a local heating step St112, and a first element-containing layer removing step St113, as shown in FIG. The first element-containing layer forming step is a step of forming a “first element-containing layer” on the surface of the resin base material 151 . FIG. 4 is a schematic diagram of a resin base material 151 on which a first element-containing layer 152 is formed. As shown in the figure, the first element-containing layer 152 is uniformly formed on the surface of the resin base material 151 .
 第1元素含有層152は上述した第1元素を含む層である。具体的には第1元素含有層152は、第1元素を含む有機化合物からなるものとすることができ、有機Si化合物、有機Ti化合物、有機Al化合物又は有機Zr化合物からなるものとすることができる。より具体的には第1元素含有層152はシランカップリング剤、有機Tiカップリング剤、有機Alカップリング剤又は有機Zrカップリング剤とすることができる。第1元素含有層152の厚みはμm程度の厚みが好適である。第1元素含有層形成工程St111では、大気圧蒸着又はディップにより樹脂基材151の表面に第1元素含有層152を形成することができる。 The first element-containing layer 152 is a layer containing the above-described first element. Specifically, the first element-containing layer 152 can be made of an organic compound containing the first element, and can be made of an organic Si compound, an organic Ti compound, an organic Al compound, or an organic Zr compound. can. More specifically, the first element-containing layer 152 can be a silane coupling agent, an organic Ti coupling agent, an organic Al coupling agent, or an organic Zr coupling agent. The thickness of the first element-containing layer 152 is preferably about μm. In the first element-containing layer forming step St111, the first element-containing layer 152 can be formed on the surface of the resin base material 151 by atmospheric vapor deposition or dipping.
 局所加熱工程St112は、第1元素含有層152のうち対象領域S上の部分を局所的に加熱する工程である。局所加熱工程St112では対象領域Sのパターンに沿ってレーザーを走査させ、レーザー照射により上記部分を局所的に加熱することができる。また、局所加熱工程St112では対象領域S以外の領域をマスクにより遮光し、樹脂基材151の表面全体に光を照射することにより上記部分を局所的に加熱してもよい。さらに、局所加熱工程St112では対象領域Sと同一形状の凸部を有する加熱された物体を第1元素含有層152に押圧し、上記部分を局所的に加熱してもよい。このうちレーザー照射は作業の簡便性及び加熱部分の選択性に優れていること、さらに、加熱部分の形状変更及び微細化が容易であることから好適である。 The local heating step St112 is a step of locally heating a portion of the first element-containing layer 152 above the target region S. In the local heating step St112, the laser can be scanned along the pattern of the target region S to locally heat the above portion by laser irradiation. Further, in the local heating step St112, the region other than the target region S may be shielded from light by a mask, and the entire surface of the resin base material 151 may be irradiated with light to locally heat the above portion. Furthermore, in the local heating step St112, a heated object having a convex portion having the same shape as the target region S may be pressed against the first element-containing layer 152 to locally heat the above portion. Of these, laser irradiation is preferable because of the ease of operation and the excellent selectivity of the heated portion, and the ease with which the shape of the heated portion can be changed and the size of the heated portion can be reduced.
 この加熱により、対象領域Sにおいて樹脂基材151の表面近傍の部分及び第1元素含有層152の双方が分解等して変質し、第1物質が樹脂基材151中に埋め込まれる。図5は樹脂基材151のうち第1物質が埋め込まれた部分である埋め込み部分153を示す模式図である。同図に示すように対象領域Sにおいて第1元素含有層152は、加熱により分解されている。 Due to this heating, both the portion near the surface of the resin base material 151 and the first element-containing layer 152 in the target region S are decomposed and changed in quality, and the first substance is embedded in the resin base material 151 . FIG. 5 is a schematic diagram showing an embedded portion 153, which is a portion of the resin base material 151 in which the first substance is embedded. As shown in the figure, the first element-containing layer 152 in the target region S is decomposed by heating.
 第1元素含有層除去工程St113は、第1元素含有層152を除去する工程である。第1元素含有層除去工程St113では洗浄液を樹脂基材151の表面に供給し、第1元素含有層152を除去する。図6は、第1元素含有層152を除去した樹脂基材151を示す模式図である。同図に示すように、第1元素含有層除去工程St113では埋め込み部分153は残存し、第1元素含有層152は除去される。洗浄液は第1元素含有層152を分解し、樹脂基材151に影響しない液体であり、例えば酸、塩基又はその両方とすることができる。また、第1元素含有層除去工程St113では洗浄液の供給以外の方法で第1元素含有層152を除去してもよい。 The first element-containing layer removing step St113 is a step of removing the first element-containing layer 152 . In the first element containing layer removing step St113, a cleaning liquid is supplied to the surface of the resin base material 151 to remove the first element containing layer 152. FIG. FIG. 6 is a schematic diagram showing the resin base material 151 from which the first element-containing layer 152 has been removed. As shown in the figure, in the first element-containing layer removing step St113, the embedded portion 153 remains and the first element-containing layer 152 is removed. The cleaning liquid is a liquid that decomposes the first element-containing layer 152 and does not affect the resin substrate 151, and can be, for example, an acid, a base, or both. Further, in the first element-containing layer removing step St113, the first element-containing layer 152 may be removed by a method other than supplying the cleaning liquid.
 第1物質埋め込み工程St101では以上のようにして樹脂基材151に第1物質を埋埋め込み、埋め込み部分153を形成する。図7は、樹脂基材151の表面における埋め込み部分153のパターンを示す模式図であり、図6は図7のB-B線での断面図である。図7に示すように、第1物質埋め込み工程St101では対象領域S(図3参照)に第1物質を埋め込み、埋め込み部分153を形成する。埋め込み部分153は、対象領域S(図3参照)と同一のパターンを有する。 In the first material embedding step St101, the first material is embedded in the resin base material 151 to form the embedded portion 153 as described above. FIG. 7 is a schematic diagram showing the pattern of the embedded portion 153 on the surface of the resin base material 151, and FIG. 6 is a cross-sectional view taken along line BB in FIG. As shown in FIG. 7, in the first substance embedding step St101, the target region S (see FIG. 3) is implanted with the first substance to form the embedded portion 153. As shown in FIG. The embedded portion 153 has the same pattern as the target area S (see FIG. 3).
 めっき触媒供給工程St102(図1参照)は、埋め込み部分153を形成した樹脂基材151の表面に第2物質を含むめっき触媒液を供給する工程である。第2物質は第1物質に吸着し、無電解めっきの触媒活性を有する物質である。第2物質は第2元素を含み、例えば第2元素からなるイオン及び金属である。第2元素は例えばPdである。 The plating catalyst supply step St102 (see FIG. 1) is a step of supplying a plating catalyst solution containing a second substance to the surface of the resin base material 151 in which the embedded portion 153 is formed. The second substance is a substance that adsorbs to the first substance and has catalytic activity for electroless plating. The second substance contains a second element, for example ions and metals consisting of the second element. The second element is Pd, for example.
 図8はめっき触媒液を供給した樹脂基材151を示す模式図である。めっき触媒液を供給すると埋め込み部分153の第1物質に第2物質が吸着し、図8に示すように樹脂基材151には、対象領域Sに第2物質が担持された触媒担持部分154が形成される。例えばPdイオンを含むめっき触媒液を樹脂基材151の表面に供給すると、Pdイオンが第1物質に吸着して金属Pdの粒子を形成し、対象領域Sに金属Pdの粒子が担持される。 FIG. 8 is a schematic diagram showing the resin base material 151 supplied with the plating catalyst liquid. When the plating catalyst solution is supplied, the second substance is adsorbed on the first substance of the embedded portion 153, and as shown in FIG. It is formed. For example, when a plating catalyst solution containing Pd ions is supplied to the surface of the resin base material 151, the Pd ions are adsorbed to the first substance to form metal Pd particles, and the target area S carries the metal Pd particles.
 めっき液供給工程St103(図1参照)は、触媒担持部分154が形成された樹脂基材151の表面に第3物質を含む無電解めっき液を供給する工程である。第3物質は上記第2物質を触媒として析出する物質である。第3物質は金属元素である第3元素からなるイオン及び金属を含み、第3元素はCu、Ni、Co、Au、Ag、Pd、Rh、Pt、In及びSnのいずれか一つの又は複数である。また、第3物質は第3元素と共析するP、B、S、V、Cr、Mn、Fe、Zn、Mo、Cd、W、Re及びTlのいずれか一つ又は複数をさらに含んでもよい The plating solution supply step St103 (see FIG. 1) is a step of supplying an electroless plating solution containing a third substance to the surface of the resin base material 151 on which the catalyst carrying portion 154 is formed. The third substance is a substance that precipitates using the second substance as a catalyst. The third substance contains ions and metals composed of a third element which is a metallic element, and the third element is any one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn. be. In addition, the third substance may further include any one or more of P, B, S, V, Cr, Mn, Fe, Zn, Mo, Cd, W, Re and Tl co-precipitating with the third element.
 具体的には無電解めっき液は、無電解銅めっき液、無電解ニッケルめっき液、無電解ニッケルリンめっき液及び無電解銅ニッケルめっき液が、触媒活性が高く液が安定であるという点から好ましいが、この他のめっき液を利用することも可能である。 Specifically, the electroless plating solution is preferably an electroless copper plating solution, an electroless nickel plating solution, an electroless nickel phosphorous plating solution, or an electroless copper-nickel plating solution because the solution has high catalytic activity and is stable. However, it is also possible to use other plating solutions.
 図9はめっき液を供給した樹脂基材151を示す断面図である。第3物質は第2物質を触媒として析出するため、図9に示すように触媒担持部分154上に第3物質からなるめっき層155が形成される。図10は、樹脂基材151の表面におけるめっき層155のパターンを示す模式図であり、図9は図10のC-C線での断面図である。図10に示すように、めっき層155は埋め込み部分153(図7参照)と同一のパターンを有し、即ち対象領域S(図3参照)と同一のパターンを有する。本実施形態に係るめっき部品の製造方法は以上のようにして、樹脂基材151の対象領域S上にめっき層155を形成しためっき部品を製造することが可能である。 FIG. 9 is a cross-sectional view showing the resin base material 151 supplied with the plating solution. Since the third substance is deposited using the second substance as a catalyst, a plated layer 155 made of the third substance is formed on the catalyst carrying portion 154 as shown in FIG. FIG. 10 is a schematic diagram showing the pattern of the plating layer 155 on the surface of the resin base material 151, and FIG. 9 is a sectional view taken along line CC of FIG. As shown in FIG. 10, plating layer 155 has the same pattern as embedded portion 153 (see FIG. 7), ie, the same pattern as target area S (see FIG. 3). The method of manufacturing a plated component according to the present embodiment can manufacture a plated component in which the plating layer 155 is formed on the target region S of the resin base material 151 as described above.
 [樹脂基材表面の詳細について]
 上記めっき部品の製造方法における、樹脂基材151の表面の詳細について説明する。図11乃至図15は樹脂基材151の表面を示す模式図である。図11は第1元素含有層形成工程St111により第1元素含有層152を形成した樹脂基材151の表面を示す模式図であり、図4の拡大図である。
[Details of resin substrate surface]
The details of the surface of the resin base material 151 in the method for manufacturing the plated component will be described. 11 to 15 are schematic diagrams showing the surface of the resin base material 151. FIG. FIG. 11 is a schematic diagram showing the surface of the resin base material 151 on which the first element-containing layer 152 is formed by the first element-containing layer forming step St111, and is an enlarged view of FIG.
 この第1元素含有層152の、対象領域S(図3参照)上の部分に対して局所加熱工程St112により局所加熱を行う。図12は、レーザー照射による局所加熱を示す模式図である。同図に示すように、局所加熱工程St112では対象領域S上の第1元素含有層152にレーザーLを照射し、第1元素含有層152を局所的に加熱する。なお、局所加熱工程St112ではレーザー照射以外の方法によって局所加熱を行ってもよい。 A portion of the first element-containing layer 152 above the target region S (see FIG. 3) is locally heated by the local heating step St112. FIG. 12 is a schematic diagram showing local heating by laser irradiation. As shown in the figure, in the local heating step St112, the first element-containing layer 152 on the target region S is irradiated with the laser L to heat the first element-containing layer 152 locally. In addition, in the local heating step St112, local heating may be performed by a method other than laser irradiation.
 図13は局所加熱後の樹脂基材151及び第1元素含有層152を示す模式図であり、図5の拡大図である。図13に示すように、局所加熱により樹脂基材151の表面近傍の部分及び第1元素含有層152の双方が分解等して変質し、粒子状の第1物質171が樹脂基材151中に埋め込まれる。これにより、対象領域Sにおいて埋め込み部分153が形成される。 FIG. 13 is a schematic diagram showing the resin base material 151 and the first element-containing layer 152 after local heating, and is an enlarged view of FIG. As shown in FIG. 13 , the local heating decomposes and alters both the portion near the surface of the resin base material 151 and the first element-containing layer 152 , and the particulate first substance 171 is generated in the resin base material 151 . Embedded. Thereby, the buried portion 153 is formed in the target region S. FIG.
 続いて、第1元素含有層除去工程St113により第1元素含有層152を除去し、めっき触媒供給工程St102によりめっき触媒液を樹脂基材151の表面に供給する。図14はめっき触媒液供給後の樹脂基材151を示す模式図であり、図8の拡大図である。めっき触媒液を供給すると、図14に示すようにめっき触媒液に含まれる第2物質172が第1物質171に吸着し、対象領域Sにおいて樹脂基材151に担持される。対象領域S以外の領域には第1物質171が埋め込まれていないため、第2物質172は対象領域Sのみにおいて樹脂基材151に担持される。これにより、対象領域Sにおいて触媒担持部分154が形成される。 Subsequently, the first element-containing layer 152 is removed by the first element-containing layer removing step St113, and the plating catalyst liquid is supplied to the surface of the resin base material 151 by the plating catalyst supplying step St102. FIG. 14 is a schematic diagram showing the resin base material 151 after the plating catalyst solution is supplied, and is an enlarged view of FIG. When the plating catalyst solution is supplied, the second substance 172 contained in the plating catalyst solution is adsorbed to the first substance 171 and supported on the resin substrate 151 in the target region S as shown in FIG. Since the first substance 171 is not embedded in regions other than the target region S, the second substance 172 is carried on the resin base material 151 only in the target region S. Thereby, the catalyst carrying portion 154 is formed in the target region S. As shown in FIG.
 続いてめっき液供給工程St103より樹脂基材151の表面に無電解めっき液を供給する。図15は、無電解めっき触媒液供給後の樹脂基材151を示す模式図であり、図9の拡大図である。無電解めっき液を供給すると、無電解めっき液に含まれる第3物質が第2物質172を触媒として析出し、図15に示すようにめっき層155が形成される。 Subsequently, the electroless plating solution is supplied to the surface of the resin base material 151 from the plating solution supply step St103. FIG. 15 is a schematic diagram showing the resin base material 151 after the electroless plating catalyst solution has been supplied, and is an enlarged view of FIG. When the electroless plating solution is supplied, the third substance contained in the electroless plating solution is deposited using the second substance 172 as a catalyst, forming a plating layer 155 as shown in FIG.
 [めっき部品の製造方法による効果]
 本実施形態に係るめっき部品の製造方法による効果について説明する。本実施形態に係るめっき部品の製造方法では、上記のように樹脂基材151の対象領域Sに第1物質を埋め込み、第1物質に吸着する第2物質をめっき触媒としてめっき層155を形成する。これにより対象領域Sに局所的にめっき析出性を付与することが可能となる。めっき析出性のコントラスト(めっき触媒活性の差異)は、第2物質の分布によって得られるため、樹脂基材151を構成する樹脂材料の制限は小さく、本実施形態に係る製造方法は幅広い樹脂材料に適用可能である。
[Effects of manufacturing method of plated parts]
Effects of the method for manufacturing a plated component according to the present embodiment will be described. In the method of manufacturing a plated component according to the present embodiment, the first substance is embedded in the target region S of the resin base material 151 as described above, and the plating layer 155 is formed using the second substance that is adsorbed to the first substance as a plating catalyst. . As a result, the target region S can be locally imparted with plating deposition properties. Since the contrast of plating deposition (difference in plating catalyst activity) is obtained by the distribution of the second substance, the resin material constituting the resin base material 151 is less limited, and the manufacturing method according to the present embodiment can be applied to a wide range of resin materials. Applicable.
 さらに、本実施形態に係るめっき部品の製造方法では、Pdイオン等の第2物質を無電解めっき触媒として無電解めっきを行うが、無電解めっき触媒は通常、酸化数0の金属状態において触媒活性を示す。このため、既存の無電解めっき触媒付与方法であるセンシタイザー・アクチベーティング法及びキャタリスト・アクセレレータ法のどちらの方法においても、Pdイオンを樹脂基材に吸着させつつ還元する。しかしPdイオン等の金属イオンは、樹脂基材表面に吸着し難く、特に、PC(polycarbonate)、ABS(Acrylonitrile Butadiene Styrene共重合体)又はPEEK(Poly Ether Ether Ketone)等の表面エネルギーが低い樹脂表面には吸着しにくい。 Furthermore, in the method for manufacturing a plated component according to the present embodiment, electroless plating is performed using a second substance such as Pd ions as an electroless plating catalyst. indicates Therefore, in both the sensitizer-activating method and the catalyst-accelerator method, which are existing electroless plating catalyst imparting methods, the Pd ions are reduced while being adsorbed on the resin substrate. However, metal ions such as Pd ions are difficult to adsorb to the surface of the resin base material. difficult to absorb.
 しかしながら、本実施形態に係るめっき部品の製造方法では、第2物質が吸着しやすい第1物質を樹脂基材151の対象領域Sに埋め込んでおくことにより、第2物質が対象領域Sに吸着し易くなる。これにより、対象領域Sに第2物質が担持され、対象領域S以外の領域に第2物質が担持されないようにすることができ、対象領域Sとそれ以外の領域のめっき析出性のコントラストを大きくすることが可能である。めっき析出性のコントラストが小さいと対象領域Sからめっきがはみ出し、細線化が困難となるが、本実施形態に係るめっき部品の製造方法ではめっき析出性のコントラストが大きく、めっき配線の細線化が実現可能である。 However, in the method for manufacturing a plated component according to the present embodiment, by embedding the first substance to which the second substance is likely to be adsorbed in the target region S of the resin base material 151, the second substance is adsorbed to the target region S. becomes easier. As a result, the second substance can be carried in the target region S and the second substance can be prevented from being carried in regions other than the target region S, and the contrast between the target region S and the other regions can be increased. It is possible to If the contrast of plating deposition is small, the plating protrudes from the target area S, making it difficult to thin the wiring. It is possible.
 [従来技術との比較]
 本実施形態に係るめっき部品の製造方法による効果を、従来技術に係るめっき部品の製造方法との比較の上で説明する。
[Comparison with conventional technology]
The effect of the method for manufacturing a plated component according to the present embodiment will be described in comparison with the method for manufacturing a plated component according to the prior art.
 図16及び図17は従来技術であるLDS(Laser Direct Structuring)法を示す模式図である。図16に示すように樹脂基材311には銅錯体312が練り込まれている。樹脂基材311にレーザーを照射し、レーザー照射部Pを形成すると、レーザー照射部Pの表面近傍に位置する銅錯体が金属化し、金属銅313が形成される。この樹脂基材311に無電解めっき液を供給すると、図17に示すように金属銅313を触媒としてめっき層314が形成される。  Figures 16 and 17 are schematic diagrams showing the conventional LDS (Laser Direct Structuring) method. As shown in FIG. 16, copper complex 312 is kneaded into resin base material 311 . When the resin base material 311 is irradiated with a laser to form the laser-irradiated portion P, the copper complex positioned near the surface of the laser-irradiated portion P is metallized to form metallic copper 313 . When an electroless plating solution is supplied to the resin base material 311, a plating layer 314 is formed using metallic copper 313 as a catalyst, as shown in FIG.
 図18は、樹脂基材311の表面においてレーザーを照射していない未処理部とレーザー照射部のめっき触媒活性を示すグラフである。レーザー照射部では上記のように金属銅313による高いめっき触媒活性が生じるが、未処理部においても銅錯体312により多少のめっき触媒活性が生じる。このため、未処理部とレーザー照射部のめっき触媒活性の差異D1は小さく、図17に示すようにレーザー照射部P以外の部分に不要析出315が形成されるおそれがある。 FIG. 18 is a graph showing the plating catalytic activity of the untreated portion not irradiated with laser and the laser irradiated portion on the surface of the resin base material 311 . As described above, high plating catalytic activity is caused by the metallic copper 313 in the laser-irradiated portion, but some plating catalytic activity is caused by the copper complex 312 even in the untreated portion. Therefore, the difference D1 in plating catalyst activity between the untreated portion and the laser-irradiated portion is small, and an unnecessary precipitate 315 may be formed in portions other than the laser-irradiated portion P as shown in FIG.
 このようにLDS法では、めっき析出性のコントラストが小さく、照射により描画した線よりもめっきの線が太く形成され、あるいは不要なめっき析出が生じるおそれがあり、配線幅200μm以下のめっき配線を行うのは難しいと考えられる。 As described above, in the LDS method, the contrast of plating deposition is small, and the plating line is formed thicker than the line drawn by irradiation, or unnecessary plating deposition may occur. is considered difficult.
 図19は従来技術である触媒失活法を示す模式図である。図19に示すように樹脂基材321の表面には触媒失活剤322が担持されている。樹脂基材321にレーザーを照射し、レーザー照射部Pを形成すると、レーザーにより触媒失活剤322が除去される。この樹脂基材321にめっき触媒を供給すると、図19に示すようにレーザー照射部Pにおいて樹脂基材321にめっき触媒323が担持される。レーザー照射部P以外の部分では触媒失活剤により失活しためっき触媒324が担持される。この樹脂基材321に無電解めっき液を供給すると、めっき触媒323を触媒としてめっき層が形成される。 FIG. 19 is a schematic diagram showing a conventional catalyst deactivation method. As shown in FIG. 19, a catalyst deactivator 322 is carried on the surface of the resin base material 321 . When the resin base material 321 is irradiated with a laser to form the laser-irradiated portion P, the catalyst deactivator 322 is removed by the laser. When the plating catalyst is supplied to the resin base material 321, the plating catalyst 323 is supported on the resin base material 321 at the laser irradiation portion P as shown in FIG. A plating catalyst 324 deactivated by a catalyst deactivator is supported on the portion other than the laser-irradiated portion P. When an electroless plating solution is supplied to the resin base material 321, a plating layer is formed using the plating catalyst 323 as a catalyst.
 図20は、樹脂基材321の表面においてレーザーを照射していない未処理部とレーザー照射部のめっき触媒活性を示すグラフである。レーザー照射部では上記のようにめっき触媒323による高いめっき触媒活性が生じ、未処理部では失活しためっき触媒324により低いめっき触媒活性が生じる。このため、未処理部とレーザー照射部のめっき触媒活性の差異D2は大きくなる。一方、これは樹脂基材321を構成する樹脂材料がナイロン等の親水性樹脂であり、触媒失活剤322及びめっき触媒323との相性がよい場合である。 FIG. 20 is a graph showing the plating catalytic activity of the untreated portion not irradiated with laser and the laser irradiated portion on the surface of the resin base material 321 . In the laser-irradiated portion, the plating catalyst 323 causes high plating catalytic activity as described above, and in the untreated portion, the deactivated plating catalyst 324 causes low plating catalytic activity. Therefore, the difference D2 in plating catalyst activity between the untreated portion and the laser-irradiated portion increases. On the other hand, this is the case where the resin material forming the resin base material 321 is a hydrophilic resin such as nylon, which has good compatibility with the catalyst deactivator 322 and the plating catalyst 323 .
 図21は樹脂基材321を構成する樹脂材料と触媒失活剤322及びめっき触媒323の相性が悪い場合の触媒失活法を示す模式図である。図21に示すように樹脂基材321の表面には少量の触媒失活剤322が担持されている。この樹脂基材321にめっき触媒を供給すると、図21に示すようにレーザー照射部Pにおいて樹脂基材321に少量のめっき触媒323が担持される。また、レーザー照射部P以外の部分でも触媒失活剤322が不足し、失活していないめっき触媒323が担持されている。この樹脂基材321に無電解めっき液を供給すると、めっき触媒323を触媒としてめっき層が形成される。 FIG. 21 is a schematic diagram showing a catalyst deactivation method when the resin material constituting the resin base material 321 and the catalyst deactivator 322 and the plating catalyst 323 are not compatible with each other. As shown in FIG. 21, a small amount of catalyst deactivator 322 is supported on the surface of resin base material 321 . When the plating catalyst is supplied to the resin base material 321, a small amount of the plating catalyst 323 is supported on the resin base material 321 at the laser irradiation portion P as shown in FIG. Also, the catalyst deactivator 322 is insufficient in portions other than the laser irradiation portion P, and the plating catalyst 323 that is not deactivated is supported. When an electroless plating solution is supplied to the resin base material 321, a plating layer is formed using the plating catalyst 323 as a catalyst.
 図22は、この場合の未処理部とレーザー照射部のめっき触媒活性を示すグラフである。レーザー照射部ではめっき触媒323が不足するためにめっき触媒活性が小さく、未処理部では失活していないめっき触媒323により多少のめっき触媒活性が生じる。このため、未処理部とレーザー照射部のめっき触媒活性の差異D3は小さくなる。したがって、触媒失活法においても樹脂基材の材料と触媒失活剤及びめっき触媒の相性が悪い樹脂ではめっき析出性のコントラストが小さくなる。この相性が悪い樹脂は疎水性樹脂であり、PC、ABS及びPEEKといった一般的な樹脂である。したがって触媒失活法では適用可能な樹脂材料が限定される。 FIG. 22 is a graph showing the plating catalytic activity of the untreated portion and the laser-irradiated portion in this case. Since the plating catalyst 323 is insufficient in the laser-irradiated portion, the plating catalyst activity is small, and in the untreated portion, the plating catalyst 323 that is not deactivated causes some plating catalyst activity. Therefore, the difference D3 in plating catalyst activity between the untreated portion and the laser-irradiated portion becomes small. Therefore, even in the catalyst deactivation method, the contrast of the plating deposition becomes small with a resin having poor compatibility between the material of the resin base material, the catalyst deactivator, and the plating catalyst. This poorly compatible resin is a hydrophobic resin, common resins such as PC, ABS and PEEK. Therefore, the catalyst deactivation method limits applicable resin materials.
 これに対し、図23は本実施形態に係るめっき部品の製造方法における、対象領域Sと対象領域S以外の領域のめっき触媒活性を示すグラフである。本実施形態にかかるめっき部品の製造方法では第1物質を対象領域Sに埋め込んでおくことにより、対象領域Sにのみめっき触媒である第2物質を担持させることができる。このため、樹脂基材151の材料がめっき触媒を担持しにくいものであれば、めっき触媒活性の差異D4が大きくなり、めっき析出性のコントラストを大きくすることができる。 On the other hand, FIG. 23 is a graph showing the plating catalytic activity of the target region S and regions other than the target region S in the method of manufacturing a plated component according to the present embodiment. In the method of manufacturing a plated component according to the present embodiment, by embedding the first substance in the target region S, only the target region S can carry the second substance, which is a plating catalyst. Therefore, if the material of the resin base material 151 does not easily support the plating catalyst, the difference D4 in the plating catalyst activity increases, and the contrast of the plating deposition can be increased.
 さらに、本実施形態に係るめっき部品の製造方法ではLSD法のように樹脂基材に銅錯体を練り込んでおく必要もなく、触媒失活法のように触媒失活剤との相性も問題とならないため、広汎な樹脂材料に適用可能である。なお、触媒失活法ではめっき触媒を担持しやすい樹脂材料の方がめっき析出性のコントラストを大きくできる(図20参照)が、本実施形態に係る方法では反対にめっき触媒を担持しにくい樹脂材料の方がめっき析出性のコントラストを大きくできる。したがって、この点でも広汎な樹脂材料に適用可能である。 Furthermore, in the method for producing a plated part according to the present embodiment, unlike the LSD method, it is not necessary to knead a copper complex into the resin base material, and compatibility with a catalyst deactivator is also a problem as in the catalyst deactivation method. Therefore, it can be applied to a wide range of resin materials. In the catalyst deactivation method, a resin material that easily supports a plating catalyst can increase the contrast of plating precipitation (see FIG. 20), but in the method according to the present embodiment, on the contrary, a resin material that does not easily support a plating catalyst. can increase the contrast of plating deposition. Therefore, in this respect as well, the present invention can be applied to a wide range of resin materials.
 [変形例]
 上記説明では、第1物質埋め込み工程St101は第1元素含有層形成工程St111、局所加熱工程St112及び第1元素含有層除去工程St113を含む(図1参照)ものとしたが、これに限られない。図24乃至図26は、他の第1物質埋め込み工程St101を含むめっき部品の製造方法を示すフローチャートである。
[Variation]
In the above description, the first material embedding step St101 includes the first element-containing layer forming step St111, the local heating step St112, and the first element-containing layer removing step St113 (see FIG. 1), but is not limited to this. . 24 to 26 are flowcharts showing a method of manufacturing a plated component including another first material embedding step St101.
 図24に示すように、第1物質埋め込み工程St101は雰囲気中局所加熱工程St121を含むものであってもよい。雰囲気中局所加熱工程St121は、樹脂基材151の表面を第1物質を含む雰囲気に曝し、対象領域S(図3参照)を局所的に加熱する工程である。局所的な加熱は、対象領域Sにレーザーを照射し、対象領域Sの形状に沿ってレーザーを走査させて行うことができる。また、対象領域S以外の領域をマスクにより遮光し、樹脂基材151の表面全体に光を照射することにより対象領域Sを局所的に加熱してもよい。樹脂基材151の表面を第1物質を含む雰囲気に曝し、局所的に加熱することで対象領域Sに第1物質が埋め込まれ、埋め込み部分153(図6参照)が形成される。この方法では第1元素含有層の形成とその除去工程が不要となる。 As shown in FIG. 24, the first material embedding step St101 may include an atmospheric local heating step St121. The atmospheric local heating step St121 is a step of exposing the surface of the resin base material 151 to an atmosphere containing the first substance to locally heat the target region S (see FIG. 3). Local heating can be performed by irradiating the target region S with a laser and scanning the laser along the shape of the target region S. FIG. Alternatively, the target region S may be locally heated by shielding the region other than the target region S from light with a mask and irradiating the entire surface of the resin base material 151 with light. By exposing the surface of the resin base material 151 to an atmosphere containing the first substance and locally heating it, the target region S is filled with the first substance to form a buried portion 153 (see FIG. 6). This method eliminates the step of forming and removing the first element-containing layer.
 また、図25に示すように、第1物質埋め込み工程St101は炎照射工程St131を含むものであってもよい。炎照射工程St131は、対象領域S(図3参照)に第1物質を含む炎を照射する工程である。第1物質を含む炎を照射することにより対象領域Sに第1物質が埋め込まれ、埋め込み部分153(図6参照)が形成される。この方法でも第1元素含有層の形成とその除去工程が不要となる。 Also, as shown in FIG. 25, the first material embedding step St101 may include a flame irradiation step St131. The flame irradiation step St131 is a step of irradiating the target region S (see FIG. 3) with a flame containing the first substance. By irradiating the flame containing the first substance, the target region S is embedded with the first substance to form the embedded portion 153 (see FIG. 6). This method also eliminates the step of forming and removing the first element-containing layer.
 さらに、図26に示すように、第1物質埋め込み工程St101は第1元素含有層埋め込み工程St141及び第1元素含有層除去工程St142を含むものであってもよい。第1元素含有層埋め込み工程St141は、樹脂基材151の表面全体に第1元素含有層152(図4参照)を埋め込む工程である。第1元素含有層152は塗布及び加熱により樹脂基材151の表面に埋め込むことができる。第1元素含有層除去工程St142は対象領域S上以外の第1元素含有層152を除去する工程である。第1元素含有層除去工程St142は対象領域S上以外の第1元素含有層152に対する光照射や機械的加工によって行うことができる。第1元素含有層埋め込み工程St141及び第1元素含有層除去工程St142により対象領域Sに第1物質が埋め込まれ、埋め込み部分153(図6参照)が形成される。 Furthermore, as shown in FIG. 26, the first substance embedding step St101 may include a first element containing layer embedding step St141 and a first element containing layer removing step St142. The first element containing layer embedding step St<b>141 is a step of embedding the first element containing layer 152 (see FIG. 4 ) in the entire surface of the resin base material 151 . The first element-containing layer 152 can be embedded in the surface of the resin base material 151 by coating and heating. The first element-containing layer removing step St142 is a step of removing the first element-containing layer 152 other than the target region S. FIG. The first element-containing layer removing step St142 can be performed by irradiating the first element-containing layer 152 other than the target region S with light or mechanical processing. The first element-containing layer embedding step St141 and the first element-containing layer removing step St142 embed the first substance in the target region S to form the embedded portion 153 (see FIG. 6).
 第1物質埋め込み工程St101はここに示す工程以外にも、樹脂基材151の対象領域Sに埋め込み部分153を形成可能な各種工程とすることが可能である。 The first substance embedding process St101 can be various processes capable of forming the embedding portion 153 in the target region S of the resin base material 151 in addition to the processes shown here.
 [めっき部品の製造方法の具体例]
 以下、本実施形態に係るめっき部品の製造方法の具体例について説明する。この具体例ではシランカップリング剤からなる第1元素含有層152(図4参照)を形成し、第1物質としてシラン(SiH)を樹脂基材151に埋め込むものである。第2物質はPdとし、第3物質はCu及びNiとする。
[Specific example of manufacturing method of plated parts]
A specific example of the method for manufacturing a plated component according to this embodiment will be described below. In this specific example, the first element-containing layer 152 (see FIG. 4) made of a silane coupling agent is formed, and silane (SiH 4 ) as the first substance is embedded in the resin base material 151 . The second material is Pd and the third material is Cu and Ni.
 図27は第1元素含有層152を構成するシランカップリング剤の化学式である。同図において「X」はビニル基、エポキシ基及びアミノ基等の有機官能基であり、「OR」はメトキシ基本及びエトキシ基等のアルコキシ基である。下記、[表1]及び[表2]は、本具体例において実施する各工程を示す表である。この具体例で示す各ステップSt1~St19は、これらの表に示すように上述した各ステップ(図1参照)に対応する。 FIG. 27 is the chemical formula of the silane coupling agent that constitutes the first element-containing layer 152. FIG. In the figure, "X" is an organic functional group such as a vinyl group, an epoxy group and an amino group, and "OR" is an alkoxy group such as a methoxy group and an ethoxy group. [Table 1] and [Table 2] below are tables showing each step carried out in this specific example. Each step St1 to St19 shown in this specific example corresponds to each step (see FIG. 1) described above as shown in these tables.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、樹脂基材151(図2参照)に対してアルカリ処理(St1)及び水洗(St2)を実施する。アルカリ処理はアサヒクリーナーC4000(上村工業製)を用いる。続いて、第1元素含有層形成工程(St111)を実施する。具体的にはディップ法により、シランカップリング剤からなるSi含有層を樹脂基材151の表面に塗布する(St3)。Si含有層は第1元素含有層152(図4参照)に該当する。この工程では、IPA(Isopropanol)(95%)とアミノシランカップリング剤であるKBE-903(信越シリコーン社製)(5%)を混合した溶液に樹脂基材151を浸漬させる。続いて、樹脂基材151を取り出し、乾燥させる(St4)。80℃で5分間乾燥させることによりSi含有層を樹脂基材151の表面に吸着させ、最大10μmの厚みを有するSi含有層を形成させる。 First, the resin base material 151 (see FIG. 2) is subjected to alkali treatment (St1) and water washing (St2). Asahi Cleaner C4000 (manufactured by Uemura Kogyo Co., Ltd.) is used for alkali treatment. Subsequently, the first element-containing layer forming step (St111) is performed. Specifically, a dipping method is used to apply a Si-containing layer made of a silane coupling agent to the surface of the resin base material 151 (St3). The Si-containing layer corresponds to the first element-containing layer 152 (see FIG. 4). In this step, the resin base material 151 is immersed in a mixed solution of IPA (Isopropanol) (95%) and KBE-903 (manufactured by Shin-Etsu Silicone Co., Ltd.) (5%), which is an aminosilane coupling agent. Subsequently, the resin base material 151 is taken out and dried (St4). By drying at 80° C. for 5 minutes, the Si-containing layer is adsorbed to the surface of the resin base material 151 to form a Si-containing layer having a maximum thickness of 10 μm.
 続いて、局所加熱工程(St112)を実施する。具体的には、樹脂基材151表面の対象領域S(図3参照)に対してレーザー照射(St5)を実行する。レーザー照射により樹脂基材151の表面近傍及びSi含有層が分解等して変質し、シランが樹脂基材151中に埋め込まれる。レーザーはUVレーザー(Keyence社製MD-U1000C)、出力15~25%、周波数46~65kHzである。 Then, the local heating step (St112) is performed. Specifically, the target region S (see FIG. 3) on the surface of the resin base material 151 is irradiated with a laser (St5). The vicinity of the surface of the resin base material 151 and the Si-containing layer are decomposed and altered by laser irradiation, and silane is embedded in the resin base material 151 . The laser is a UV laser (MD-U1000C manufactured by Keyence) with an output of 15-25% and a frequency of 46-65 kHz.
 続いて、第1元素含有層除去工程(St113)を実施する。具体的にはSi含有層を溶解する洗浄液により樹脂基材151の表面を洗浄する(St6~St9)。Si含有層がシランカップリング剤からなる場合、加水分解をすれば可逆的に縮合前に戻るので、酸洗及び塩基洗を行う。酸洗はHCl(0.03M)を用い、室温で3分間の超音波洗浄により行うことができる。塩基洗はアサヒクリーナーC4000(上村工業製、10%溶液)を用い、50℃で3分間の超音波洗浄により行うことができる。また、酸洗と塩基洗のいずれか一方を行ってもよい。洗浄液は樹脂基材151をアタックしない程度のものを利用する。以上のようにして、第1物質埋め込み工程(St111~St113)を実施し、対象領域Sに埋め込み部分153(図6参照)を形成する。 Subsequently, the first element-containing layer removing step (St113) is performed. Specifically, the surface of the resin base material 151 is washed with a washing liquid that dissolves the Si-containing layer (St6 to St9). When the Si-containing layer is composed of a silane coupling agent, hydrolysis reversibly restores the state before condensation, so pickling and base washing are performed. Pickling can be performed by ultrasonic cleaning with HCl (0.03 M) at room temperature for 3 minutes. Base washing can be carried out by ultrasonic cleaning at 50° C. for 3 minutes using Asahi Cleaner C4000 (manufactured by Uemura Kogyo Co., Ltd., 10% solution). Also, either pickling or basic washing may be carried out. A cleaning liquid that does not attack the resin base material 151 is used. As described above, the first material embedding step (St111 to St113) is performed to form the embedded portion 153 (see FIG. 6) in the target region S. FIG.
 続いて、めっき触媒液供給工程(St102)を実施する。具体的には樹脂基材151の表面に対して各種処理液を供給する(St10~St17)。アルカリ処理(St10)はアサヒクリーナーC4000(上村工業製)を用いる。コンディショナー供給処理(St12)はPB-102(JCU製、100ml/L)及びEC-B(JCU製、2ml/L)を樹脂基材151の表面に供給し、触媒(Pdイオン)が埋め込み部分153のシランに吸着しやすくする。 Subsequently, the plating catalyst solution supply step (St102) is carried out. Specifically, various processing liquids are supplied to the surface of the resin base material 151 (St10 to St17). Asahi Cleaner C4000 (manufactured by Uemura & Co., Ltd.) is used for alkali treatment (St10). In the conditioner supplying process (St12), PB-102 (manufactured by JCU, 100 ml/L) and EC-B (manufactured by JCU, 2 ml/L) are supplied to the surface of the resin substrate 151, and the catalyst (Pd ions) is embedded in the portion 153. of silane.
 アクチベーター供給処理(St14)はAISL-ACT(JCU製、100ml/L)及びHCl(35%、2ml/L)を樹脂基材151の表面に供給し、埋め込み部分153のシランに触媒(Pdイオン)を吸着させる。アクセラレーター供給処理(St16)はPC-66H(JCU製、10ml/L)及びPC-BA(5g/L)を樹脂基材151の表面に供給し、触媒(金属Pd)を活性化させる。めっき触媒液供給工程(St102)ではこのようにして、樹脂基材151の表面に金属Pdが担持された触媒担持部分154(図8参照)が形成される。 In the activator supply process (St14), AISL-ACT (manufactured by JCU, 100 ml/L) and HCl (35%, 2 ml/L) are supplied to the surface of the resin base material 151, and catalyst (Pd ion ) is adsorbed. In the accelerator supply treatment (St16), PC-66H (manufactured by JCU, 10 ml/L) and PC-BA (5 g/L) are supplied to the surface of the resin substrate 151 to activate the catalyst (metallic Pd). In the plating catalyst liquid supply step (St102), the catalyst supporting portion 154 (see FIG. 8) in which the metal Pd is supported on the surface of the resin base material 151 is thus formed.
 続いて、めっき液供給工程(St103)を実施する。具体的には樹脂基材151の表面にAISL-570(JCU製)、PC-BA(JCU製、13g/L)、AISL-570B(JCU製、70ml/L)、AISL-570C(JCU製、24ml/L)、AISL-570MU(JCU製、50ml/L)を供給する。pHは9.0±0.2に調整する。これにより、触媒担持部分154の金属Pdを触媒としてCu及びNiが析出し、対象領域Sにめっき層155(図9参照)が形成される。最後に水洗(St19)を実施し、めっき部品が製造される。 Subsequently, the plating solution supply step (St103) is performed. Specifically, AISL-570 (manufactured by JCU), PC-BA (manufactured by JCU, 13 g / L), AISL-570B (manufactured by JCU, 70 ml / L), AISL-570C (manufactured by JCU, 24 ml/L) and AISL-570MU (manufactured by JCU, 50 ml/L). The pH is adjusted to 9.0±0.2. As a result, Cu and Ni are deposited using the metal Pd of the catalyst carrying portion 154 as a catalyst, and a plating layer 155 (see FIG. 9) is formed on the target region S. Finally, water washing (St19) is carried out to produce a plated part.
 [本開示について]
 本開示中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。上記の複数の効果の記載は、それらの効果が必ずしも同時に発揮されるということを意味しているのではない。条件等により、少なくとも上記した効果のいずれかが得られることを意味しており、本開示中に記載されていない効果が発揮される可能性もある。また、本開示において説明した特徴部分のうち、少なくとも2つの特徴部分を任意に組み合わせることも可能である。
[About this disclosure]
The effects described in this disclosure are merely exemplary and not limiting, and other effects may also occur. The description of a plurality of effects above does not mean that those effects are necessarily exhibited at the same time. It means that at least one of the effects described above can be obtained depending on the conditions and the like, and effects not described in the present disclosure may be exhibited. It is also possible to arbitrarily combine at least two of the features described in this disclosure.
 なお、本技術は以下のような構成もとることができる。 This technology can also be configured as follows.
 (1)
 樹脂基材の表面のうち対象領域に第1の物質を埋め込み、
 上記第1の物質を埋め込んだ後、上記第1の物質に吸着する第2の物質を含むめっき触媒液を上記表面に供給して上記対象領域に上記第2の物質を担持させ、
 上記めっき触媒液の供給後、上記第2の物質を触媒として析出する第3の物質を含むめっき液を上記表面に供給し、上記対象領域に上記第3の物質からなるめっき層を形成する
 めっき部品の製造方法。
 (2)
 上記(1)に記載のめっき部品の製造方法であって、
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記表面に上記第1の元素を含む層を形成し、上記層のうち上記対象領域上の部分を局所的に加熱して上記第1の物質を上記対象領域に埋め込み、上記層を除去する
 めっき部品の製造方法。
 (3)
 上記(2)に記載のめっき部品の製造方法であって、
 上記第1の物質を埋め込む工程では、上記層にレーザーを照射して上記部分を局所的に加熱する
 めっき部品の製造方法。
 (4)
 上記(2)に記載のめっき部品の製造方法であって、
 上記第1の物質を埋め込む工程では、上記層に光を照射して上記部分を局所的に加熱する
 めっき部品の製造方法。
 (5)
 上記(2)に記載のめっき部品の製造方法であって、
 上記第1の物質を埋め込む工程では、上記層に加熱された物体を接触させて上記部分を局所的に加熱する
 めっき部品の製造方法。
 (6)
 上記(2)から(5)のうちいずれか1つに記載のめっき部品の製造方法であって、
 上記層は上記第1の元素を含む有機化合物からなる
 めっき部品の製造方法。
 (7)
 上記(1)に記載のめっき部品の製造方法であって、
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記表面を上記第1の元素を含む雰囲気に曝し、
 上記対象領域を局所的に加熱して上記第1の物質を上記対象領域に埋め込む
 めっき部品の製造方法。
 (8)
 上記(1)に記載のめっき部品の製造方法であって、
 請求項1に記載のめっき部品の製造方法であって、
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記第1の元素を含む炎を上記対象領域に照射して上記第1の物質を上記対象領域に埋め込む
 めっき部品の製造方法。
 (9)
 上記(1)に記載のめっき部品の製造方法であって、
 上記第1の物質は第1の元素を含み、
 上記第1の物質を埋め込む工程では、上記表面に上記第1の元素を含む層を埋め込み、上記層のうち上記対象領域上以外の部分を除去する
 めっき部品の製造方法。
 (10)
 上記(1)から(9)のうちいずれか1つに記載のめっき部品の製造方法であって、
 上記第1の物質は第1の元素を含み、
 上記第1の元素はSi、Ti、Al又はZrである。
 めっき部品の製造方法。
 (11)
 上記(10)に記載のめっき部品の製造方法であって、
 上記第2の物質は第2の元素を含み、
 上記第2の元素はPdであり、
 上記第3の物質は第3の元素を含み、
 上記第3の元素はCu、Ni、Co、Au、Ag、Pd、Rh、Pt、In及びSnのいずれか1つ又は複数である
 めっき部品の製造方法。
 (12)
 上記(6)に記載のめっき部品の製造方法であって、
 上記第1の元素はSi、Ti、Al又はZrであり、
 上記有機化合物は、上記第1の元素を含むカップリング剤である
 めっき部品の製造方法。
 (13)
 上記(12)に記載のめっき部品の製造方法であって、
 上記第1の元素はSiであり、
 上記第1の物質はシランであり、
 上記有機化合物はシランカップリング剤である
 めっき部品の製造方法。
 (14)
 上記(1)から(13)のうちいずれか1つに記載のめっき部品の製造方法であって、
 上記樹脂基材は疎水性樹脂からなる
 めっき部品の製造方法。
 (15)
 上記(14)に記載のめっき部品の製造方法であって、
 上記樹脂基材はPC(polycarbonate)、ABS(Acrylonitrile Butadiene Styrene共重合体)又はPEEK(Poly Ether Ether Ketone)からなる
 めっき部品の製造方法。
(1)
embedding a first substance in the target region on the surface of the resin base;
After embedding the first substance, a plating catalyst solution containing a second substance that adsorbs to the first substance is supplied to the surface to cause the target region to support the second substance,
After the plating catalyst solution is supplied, a plating solution containing a third substance that precipitates using the second substance as a catalyst is supplied to the surface to form a plating layer made of the third substance on the target region. How the parts are made.
(2)
A method for manufacturing a plated component according to (1) above,
the first substance comprises a first element;
In the step of embedding the first substance, a layer containing the first element is formed on the surface, and a portion of the layer on the target region is locally heated to bury the first substance in the target. A method of manufacturing a plated part by embedding the region and removing the layer.
(3)
A method for manufacturing a plated component according to (2) above,
The method of manufacturing a plated component, wherein the step of embedding the first substance includes irradiating the layer with a laser to locally heat the portion.
(4)
A method for manufacturing a plated component according to (2) above,
The method of manufacturing a plated component, wherein in the step of embedding the first substance, the layer is irradiated with light to locally heat the portion.
(5)
A method for manufacturing a plated component according to (2) above,
The method of manufacturing a plated component, wherein in the step of embedding the first substance, the portion is locally heated by bringing a heated object into contact with the layer.
(6)
A method for manufacturing a plated component according to any one of (2) to (5) above,
The method of manufacturing a plated component, wherein the layer is made of an organic compound containing the first element.
(7)
A method for manufacturing a plated component according to (1) above,
the first substance comprises a first element;
In the step of embedding the first substance, the surface is exposed to an atmosphere containing the first element;
A method of manufacturing a plated component, comprising: locally heating the target area to embed the first material in the target area.
(8)
A method for manufacturing a plated component according to (1) above,
A method for manufacturing a plated part according to claim 1,
the first substance comprises a first element;
The method of manufacturing a plated component, wherein the step of embedding the first substance includes irradiating the target region with a flame containing the first element to embed the first substance in the target region.
(9)
A method for manufacturing a plated component according to (1) above,
the first substance comprises a first element;
In the step of embedding the first substance, the layer containing the first element is embedded in the surface, and a portion of the layer other than the target region is removed.
(10)
A method for manufacturing a plated component according to any one of (1) to (9) above,
the first substance comprises a first element;
The first element is Si, Ti, Al or Zr.
A method for manufacturing plated parts.
(11)
The method for manufacturing a plated component according to (10) above,
the second substance comprises a second element;
the second element is Pd,
the third substance comprises a third element;
The third element is any one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn. A method for manufacturing a plated component.
(12)
A method for manufacturing a plated component according to (6) above,
the first element is Si, Ti, Al or Zr;
The method for manufacturing a plated part, wherein the organic compound is a coupling agent containing the first element.
(13)
The method for manufacturing a plated component according to (12) above,
the first element is Si,
the first substance is silane;
The method for producing a plated part, wherein the organic compound is a silane coupling agent.
(14)
A method for manufacturing a plated component according to any one of (1) to (13) above,
A method for manufacturing a plated part, wherein the resin base material is made of a hydrophobic resin.
(15)
A method for manufacturing a plated component according to (14) above,
A method for manufacturing a plated part, wherein the resin base material is made of PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone).
 St101…込み工程
 St102…触媒供給工程
 St103…液供給工程
 St111…元素含有層形成工程
 St112…局所加熱工程
 St113…元素含有層除去工程
 151…樹脂基材
 152…第1元素含有層
 153…埋め込み部分
 154…触媒担持部分
 155…めっき層
 171…第1物質
 172…第2物質
St101... Loading step St102... Catalyst supply step St103... Liquid supply step St111... Element-containing layer forming step St112... Local heating step St113... Element-containing layer removing step 151... Resin substrate 152... First element-containing layer 153... Buried portion 154 Catalyst-carrying portion 155 Plating layer 171 First substance 172 Second substance

Claims (15)

  1.  樹脂基材の表面のうち対象領域に第1の物質を埋め込み、
     前記第1の物質を埋め込んだ後、前記第1の物質に吸着する第2の物質を含むめっき触媒液を前記表面に供給して前記対象領域に前記第2の物質を担持させ、
     前記めっき触媒液の供給後、前記第2の物質を触媒として析出する第3の物質を含むめっき液を前記表面に供給し、前記対象領域に前記第3の物質からなるめっき層を形成する
     めっき部品の製造方法。
    embedding a first substance in the target region on the surface of the resin base;
    After embedding the first substance, a plating catalyst solution containing a second substance that adsorbs to the first substance is supplied to the surface to support the second substance on the target region;
    After the plating catalyst solution is supplied, a plating solution containing a third substance that precipitates using the second substance as a catalyst is supplied to the surface to form a plating layer made of the third substance on the target region. How the parts are made.
  2.  請求項1に記載のめっき部品の製造方法であって、
     前記第1の物質は第1の元素を含み、
     前記第1の物質を埋め込む工程では、前記表面に前記第1の元素を含む層を形成し、前記層のうち前記対象領域上の部分を局所的に加熱して前記第1の物質を前記対象領域に埋め込み、前記層を除去する
     めっき部品の製造方法。
    A method for manufacturing a plated part according to claim 1,
    the first substance comprises a first element;
    In the step of embedding the first substance, a layer containing the first element is formed on the surface, and a portion of the layer on the target region is locally heated to remove the first substance from the target. A method of manufacturing a plated component, comprising embedding a region and removing said layer.
  3.  請求項2に記載のめっき部品の製造方法であって、
     前記第1の物質を埋め込む工程では、前記層にレーザーを照射して前記部分を局所的に加熱する
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 2,
    The method of manufacturing a plated component, wherein the step of embedding the first substance includes irradiating the layer with a laser to locally heat the portion.
  4.  請求項2に記載のめっき部品の製造方法であって、
     前記第1の物質を埋め込む工程では、前記層に光を照射して前記部分を局所的に加熱する
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 2,
    The method of manufacturing a plated component, wherein in the step of embedding the first substance, the layer is irradiated with light to locally heat the portion.
  5.  請求項2に記載のめっき部品の製造方法であって、
     前記第1の物質を埋め込む工程では、前記層に加熱された物体を接触させて前記部分を局所的に加熱する
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 2,
    The method of manufacturing a plated component, wherein the step of embedding the first substance includes bringing a heated object into contact with the layer to locally heat the portion.
  6.  請求項2に記載のめっき部品の製造方法であって、
     前記層は前記第1の元素を含む有機化合物からなる
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 2,
    The method of manufacturing a plated component, wherein the layer is made of an organic compound containing the first element.
  7.  請求項1に記載のめっき部品の製造方法であって、
     前記第1の物質は第1の元素を含み、
     前記第1の物質を埋め込む工程では、前記表面を前記第1の元素を含む雰囲気に曝し、
     前記対象領域を局所的に加熱して前記第1の物質を前記対象領域に埋め込む
     めっき部品の製造方法。
    A method for manufacturing a plated part according to claim 1,
    the first substance comprises a first element;
    In the step of embedding the first substance, the surface is exposed to an atmosphere containing the first element;
    A method of manufacturing a plated component, comprising: locally heating the target region to embed the first substance in the target region.
  8.  請求項1に記載のめっき部品の製造方法であって、
     前記第1の物質は第1の元素を含み、
     前記第1の物質を埋め込む工程では、前記第1の元素を含む炎を前記対象領域に照射して前記第1の物質を前記対象領域に埋め込む
     めっき部品の製造方法。
    A method for manufacturing a plated part according to claim 1,
    the first substance comprises a first element;
    The method of manufacturing a plated component, wherein the step of embedding the first substance includes irradiating the target region with a flame containing the first element to embed the first substance in the target region.
  9.  請求項1に記載のめっき部品の製造方法であって、
     前記第1の物質は第1の元素を含み、
     前記第1の物質を埋め込む工程では、前記表面に前記第1の元素を含む層を埋め込み、前記層のうち前記対象領域上以外の部分を除去する
     めっき部品の製造方法。
    A method for manufacturing a plated part according to claim 1,
    the first substance comprises a first element;
    In the step of embedding the first substance, the layer containing the first element is embedded in the surface, and a portion of the layer other than the target region is removed.
  10.  請求項1に記載のめっき部品の製造方法であって、
     前記第1の物質は第1の元素を含み、
     前記第1の元素はSi、Ti、Al又はZrである。
     めっき部品の製造方法。
    A method for manufacturing a plated part according to claim 1,
    the first substance comprises a first element;
    The first element is Si, Ti, Al or Zr.
    A method for manufacturing plated parts.
  11.  請求項10に記載のめっき部品の製造方法であって、
     前記第2の物質は第2の元素を含み、
     前記第2の元素はPdであり、
     前記第3の物質は第3の元素を含み、
     前記第3の元素はCu、Ni、Co、Au、Ag、Pd、Rh、Pt、In及びSnのいずれか1つ又は複数である
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 10,
    the second substance comprises a second element;
    the second element is Pd,
    the third substance comprises a third element;
    The third element is any one or more of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In and Sn. A method for manufacturing a plated component.
  12.  請求項6に記載のめっき部品の製造方法であって、
     前記第1の元素はSi、Ti、Al又はZrであり、
     前記有機化合物は、前記第1の元素を含むカップリング剤である
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 6,
    the first element is Si, Ti, Al or Zr;
    The method for manufacturing a plated component, wherein the organic compound is a coupling agent containing the first element.
  13.  請求項12に記載のめっき部品の製造方法であって、
     前記第1の元素はSiであり、
     前記第1の物質はシランであり、
     前記有機化合物はシランカップリング剤である
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 12,
    the first element is Si,
    the first substance is silane;
    The method for manufacturing a plated part, wherein the organic compound is a silane coupling agent.
  14.  請求項1に記載のめっき部品の製造方法であって、
     前記樹脂基材は疎水性樹脂からなる
     めっき部品の製造方法。
    A method for manufacturing a plated part according to claim 1,
    The method for manufacturing a plated component, wherein the resin base material is made of a hydrophobic resin.
  15.  請求項14に記載のめっき部品の製造方法であって、
     前記樹脂基材はPC(polycarbonate)、ABS(Acrylonitrile Butadiene Styrene共重合体)又はPEEK(Poly Ether Ether Ketone)からなる
     めっき部品の製造方法。
    A method for manufacturing a plated component according to claim 14,
    The method for manufacturing a plated part, wherein the resin base material is made of PC (polycarbonate), ABS (Acrylonitrile Butadiene Styrene copolymer) or PEEK (Poly Ether Ether Ketone).
PCT/JP2022/044808 2022-01-06 2022-12-06 Method for producing plated component WO2023132171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001064 2022-01-06
JP2022001064 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132171A1 true WO2023132171A1 (en) 2023-07-13

Family

ID=87073486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044808 WO2023132171A1 (en) 2022-01-06 2022-12-06 Method for producing plated component

Country Status (1)

Country Link
WO (1) WO2023132171A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289177A (en) * 1990-12-03 1992-10-14 Xerox Corp Method of electroless plating on plastic by catalyst
WO2004108986A1 (en) * 2003-06-09 2004-12-16 Nikko Materials Co., Ltd. Method for electroless plating and metal-plated article
JP2005260171A (en) * 2004-03-15 2005-09-22 Yamato Denki Kogyo Kk Conductive film forming method and manufacturing method of wiring board
JP2017106063A (en) * 2015-12-08 2017-06-15 キヤノン・コンポーネンツ株式会社 Resin product with plating film and method for manufacturing resin product
JP2017226890A (en) * 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component
US20210262094A1 (en) * 2019-01-08 2021-08-26 Imtechnology.Co.,Ltd Coating method for preventing degassing of aerospace part made of resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289177A (en) * 1990-12-03 1992-10-14 Xerox Corp Method of electroless plating on plastic by catalyst
WO2004108986A1 (en) * 2003-06-09 2004-12-16 Nikko Materials Co., Ltd. Method for electroless plating and metal-plated article
JP2005260171A (en) * 2004-03-15 2005-09-22 Yamato Denki Kogyo Kk Conductive film forming method and manufacturing method of wiring board
JP2017106063A (en) * 2015-12-08 2017-06-15 キヤノン・コンポーネンツ株式会社 Resin product with plating film and method for manufacturing resin product
JP2017226890A (en) * 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component
US20210262094A1 (en) * 2019-01-08 2021-08-26 Imtechnology.Co.,Ltd Coating method for preventing degassing of aerospace part made of resin

Similar Documents

Publication Publication Date Title
CN100338259C (en) Metallization of non-conductive surfaces with silver catalyst and electroless metal compositions
JP3741688B2 (en) Method of plating metal film on polymer surface
JP5731215B2 (en) Manufacturing method of molded circuit components
JPH05202484A (en) Controlled electroless plating
JP6317090B2 (en) Method for electroless plating and solution used therefor
EP1644555A2 (en) Resin substrate having a resin-metal composite layer and method for manufacturing thereof
CN101026078B (en) Ion injection device
WO2001049898A1 (en) Method for metal plating, pre-treating agent, and semiconductor wafer and semiconductor device using the same
JP2001020077A (en) Electroless plating method and electroless plating liquid
US20210262095A1 (en) Electroless nickel plating of silicone rubber
WO2023132171A1 (en) Method for producing plated component
CN1551246A (en) Method for forming metal pattern and electromagnetic interference filter using metal pattern
US7338686B2 (en) Method for producing conductive particles
US20130052366A1 (en) Nano-seeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization
JP4940512B2 (en) Method for forming electroless plating film of resin
JP4565181B2 (en) Metal coating method
JP2008091686A (en) Element substrate, and its production process
JP6066484B2 (en) Metal part manufacturing method and mold and release film used therefor
JP5956553B2 (en) Resin product with plating film and manufacturing method thereof
JP6130331B2 (en) Manufacturing method of resin product with metal film
JP2004006790A (en) Metal oxide pattern forming method, metal wiring pattern forming method, and wiring substrate
TWI594690B (en) Preparation method of conductive sponge possessing electromagnetic interference shielding effectiveness
TWI629375B (en) Flexible conductive substrate with high transmittancy and method for preparing the same
JP2005008954A (en) Electroless plating method
JPWO2014017291A1 (en) Method for making silicone resin conductive and silicone resin with metal film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918758

Country of ref document: EP

Kind code of ref document: A1