WO2023132162A1 - Light source device, and anomaly determination system - Google Patents

Light source device, and anomaly determination system Download PDF

Info

Publication number
WO2023132162A1
WO2023132162A1 PCT/JP2022/044050 JP2022044050W WO2023132162A1 WO 2023132162 A1 WO2023132162 A1 WO 2023132162A1 JP 2022044050 W JP2022044050 W JP 2022044050W WO 2023132162 A1 WO2023132162 A1 WO 2023132162A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
wavelength
source device
conversion member
Prior art date
Application number
PCT/JP2022/044050
Other languages
French (fr)
Japanese (ja)
Inventor
省吾 茂手木
真太郎 林
史也 八木
俊明 竹中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023132162A1 publication Critical patent/WO2023132162A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light

Definitions

  • the present disclosure relates to a light source device and an abnormality determination system.
  • Patent Document 1 discloses a technique for detecting the presence or absence of an abnormality in each of two or more light source devices in a light source system having two or more light source devices.
  • the light source system includes a first excitation light source, a second excitation light source, a first phosphor unit, a second phosphor unit, a spectroscopic sensor, and a failure detector.
  • the first excitation light emitted from the first excitation light source is guided to the first phosphor unit, and the first phosphor unit converts the wavelength of part of the first excitation light into first fluorescence together with the first excitation light. inject.
  • the second excitation light emitted from the second excitation light source is guided to the second phosphor unit, and the second phosphor unit emits second fluorescence obtained by wavelength-converting part of the second excitation light together with the second excitation light. inject.
  • the spectroscopic sensor receives first excitation light and first fluorescence emitted from the first phosphor unit, and second excitation light and second fluorescence emitted from the second phosphor unit.
  • the spectroscopic sensor outputs the light intensity of each of the first excitation light, the first fluorescence, the second excitation light, and the second fluorescence to the failure detector.
  • the failure detection unit identifies which of the first excitation light source, the second excitation light source, the first phosphor unit, and the second phosphor unit has a failure based on the input from the spectroscopic sensor.
  • Patent Document 1 an abnormality in a wavelength conversion member such as a phosphor unit is determined.
  • An object of the present disclosure is to provide a light source device and an abnormality determination system capable of improving the accuracy of abnormality determination of wavelength conversion members.
  • a light source device includes a first light source, a wavelength conversion member, a second light source, and an optical sensor.
  • the first light source emits first light.
  • the wavelength conversion member has a first surface on which the first light is incident, and a second surface from which the first light and mixed-color light including wavelength-converted light obtained by wavelength-converting the first light are emitted.
  • a said 2nd light source emits the 2nd light of the wavelength for a detection different from the excitation wavelength and fluorescence wavelength of the said wavelength conversion member.
  • the photosensor has a peak sensitivity at the detection wavelength.
  • the optical sensor receives the second light reflected by the wavelength conversion member or the second light transmitted through the wavelength conversion member.
  • An abnormality determination system includes the light source device described above and an abnormality determination unit that determines an abnormality of the wavelength conversion member based on the amount of the second light received by the optical sensor.
  • FIG. 1 is a block diagram showing a lighting system including a light source device and an abnormality determination system according to an embodiment.
  • FIG. 2 is a configuration diagram showing the light source device of the same.
  • FIG. 3 is a graph showing the optical spectrum of the phosphor of the light source device;
  • FIG. 4 is a configuration diagram showing a light source device of a first modified example of the same.
  • FIG. 5 is a configuration diagram showing a light source device of a second modified example of the same.
  • FIG. 6 is a configuration diagram showing a light source device according to a third modified example of the same.
  • FIG. 7 is a configuration diagram showing a light source device according to a fourth modified example of the same.
  • FIG. 8 is a configuration diagram showing a light source device of a fifth modified example of the same.
  • FIG. 9 is a block diagram showing a light source device according to a sixth modification of the same.
  • FIG. 10 is a graph showing an optical spectrum of another phosphor of the light source device
  • the following embodiments generally relate to light source devices and abnormality determination systems. More specifically, the present disclosure relates to a light source device including a wavelength conversion member and an abnormality determination system.
  • FIG. 1 A light source device and an abnormality determination system according to an embodiment will be described in detail below with reference to FIGS. 1 to 10.
  • FIG. 1 each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio.
  • the light source device and the abnormality determination system according to the embodiment are used in a lighting system.
  • the lighting system is used, for example, in an endoscope for observing the inside of a human body, or an industrial microscope for observing metals, cells, and the like.
  • the application of the lighting system is not limited to a specific application, and may be used for applications other than endoscopes and industrial microscopes.
  • FIG. 1 shows a block configuration of the lighting system 1.
  • the lighting system 1 includes a control circuit 2 , a first power supply device 31 , a second power supply device 32 , and a light source device 4 .
  • the light source device 4 includes a first light source 41 , a second light source 42 , a wavelength conversion member 43 and an optical sensor 44 .
  • the first light source 41 is lit by being supplied with the first lighting power from the first power supply device 31 .
  • the second light source 42 is lit by being supplied with the second lighting power from the second power supply device 32 .
  • the control circuit 2 controls lighting, extinguishing, and dimming of the first light source 41 and the second light source 42 by controlling the first power supply device 31 and the second power supply device 32 .
  • Each part of the light source device 4 is configured as shown in FIG.
  • the first light source 41 emits the first light L11.
  • the wavelength conversion member 43 has a first surface 431 and a second surface 432 .
  • the first light L ⁇ b>11 is incident on the first surface 431 .
  • Mixed-color light L10 is emitted from the second surface 432 .
  • the mixed-color light L10 includes a first light L11 and a wavelength-converted light L12 obtained by subjecting the first light L11 to wavelength conversion processing.
  • the second light source 42 emits the second light L2.
  • the detection wavelength ⁇ 2 which is the wavelength of the second light L2, differs from the excitation wavelength ⁇ 3 and fluorescence wavelength ⁇ 4 of the wavelength conversion member 43 .
  • the optical sensor 44 has a peak sensitivity at the detection wavelength ⁇ 2. Then, the optical sensor 44 receives the second light L2 reflected by the wavelength conversion member 43 or the second light L2 transmitted through the wavelength conversion member 43 (the optical sensor 44 in FIG. receive the second light L2).
  • the light source device 4 having the above configuration can improve the accuracy of abnormality determination of the wavelength conversion member 43 .
  • the control circuit 2 includes an abnormality determination section 22.
  • the light source device 4 and the abnormality determination section 22 are included in the abnormality determination system 5 . That is, the abnormality determination system 5 includes the light source device 4 and the abnormality determination section 22 .
  • the abnormality determination system 5 having such a configuration can improve the accuracy of abnormality determination of the wavelength conversion member 43 .
  • the wavelength conversion member 43 is provided with a substrate 43a and a phosphor 43b. It has a laminated structure.
  • the outer surface 430 of the wavelength conversion member 43 includes a first surface 431 and a second surface 432 facing each other in the thickness direction of the wavelength conversion member 43 .
  • Each of the first surface 431 and the second surface 432 is a plane.
  • the substrate 43a has a plate shape.
  • one of the pair of surfaces facing each other in the thickness direction of the substrate 43 a is the first surface 431 and the other is the second surface 432 .
  • the phosphor 43b is a phosphor layer positioned between the first surface 431 and the second surface 432 inside the substrate 43a. In FIG. 2, the phosphor 43b is formed in layers at a position closer to the second surface 432 than the first surface 431 is.
  • the phosphor 43b is a YAG (Yttrium/Aluminum/Garnet) phosphor, a CASN (Cousin) phosphor, a LuAG (lutetium/Aluminum/Garnet) phosphor, or a Garnet phosphor.
  • a YAG phosphor is a yellow phosphor
  • a CASN phosphor is a red phosphor
  • a LuAG phosphor and a garnet phosphor are green phosphors.
  • the excitation wavelength of the phosphor 43b is ⁇ 3, and the fluorescence wavelength of the phosphor 43b is ⁇ 4.
  • the fluorescence wavelength ⁇ 4 is longer than the excitation wavelength ⁇ 3. That is, when the phosphor 43b is irradiated with incident light containing a component of the excitation wavelength ⁇ 3, it absorbs part of the incident light and generates wavelength-converted light with a fluorescence wavelength ⁇ 4 longer than that of the incident light. Then, the phosphor 43b emits mixed-color light in which part of the incident light not absorbed by the phosphor 43b is mixed with the wavelength-converted light.
  • FIG. 3 shows an optical spectrum SP1 as an example of the optical spectrum (intensity distribution) of the phosphor 43b.
  • FIG. 3 shows an optical spectrum when the phosphor 43b is excited by incident light of the excitation wavelength ⁇ 3.
  • the wavelength at which the intensity reaches the maximum value is the fluorescence wavelength ⁇ 4.
  • the first light source 41 includes a first laser element such as a laser diode.
  • the number of first laser elements included in the first light source 41 is one or more.
  • the electrical connection relationship of the plurality of first laser elements may be any of series connection, parallel connection, and combination of series connection and parallel connection.
  • the first light source 41 lights up when the first lighting power is supplied from the first power supply device 31, and emits laser light as the first light L11. Assuming that the wavelength of the first light L11 is an illumination wavelength ⁇ 1, the illumination wavelength ⁇ 1 is set equal to or near the excitation wavelength ⁇ 3 (see FIG. 3). The illumination wavelength ⁇ 1 is the peak wavelength in the optical spectrum of the first light L11.
  • the first light source 41 is arranged on the side of the first surface 431 with respect to the wavelength conversion member 43 and faces the first surface 431 .
  • the optical axis of the first light source 41 extends along the normal line of the first surface 431 . Therefore, the first light L11 emitted by the first light source 41 enters the first surface 431 from the normal direction of the first surface 431 .
  • the area on the first surface 431 where the first light L11 is incident is referred to as an incident area W1. Note that the irradiation range of the first light L11 can be adjusted by scanning the optical axis of the first light source 41 .
  • the first light L11 incident on the first surface 431 passes through the substrate 43a and irradiates the phosphor 43b.
  • the phosphor 43b absorbs part of the irradiated first light L11 and generates wavelength-converted light L12 of fluorescence wavelength ⁇ 4.
  • a part of the first light L11 that is not absorbed by the phosphor 43b and the wavelength-converted light L12 reach the second surface 432 through the substrate 43a.
  • the second surface 432 emits mixed-color light L10 in which a portion of the first light L11 that has not been absorbed by the phosphor 43b and the wavelength-converted light L12 are mixed.
  • the mixed color light L10 is white light.
  • the area from which the mixed color light L10 is emitted on the second surface 432 will be referred to as an emission area W2.
  • the second light source 42 includes a second laser element such as a laser diode.
  • the number of second laser elements provided in the second light source 42 is one or plural.
  • the electrical connection relationship of the plurality of second laser elements may be any of serial connection, parallel connection, and connection combining serial connection and parallel connection.
  • the second light source 42 lights up when the second lighting power is supplied from the second power supply device 32, and emits laser light as the second light L2.
  • the detection wavelength ⁇ 2 is different from the excitation wavelength ⁇ 3 and the fluorescence wavelength ⁇ 4.
  • the detection wavelength ⁇ 2 is the peak wavelength in the optical spectrum of the second light L2. Further, the detection wavelength ⁇ 2 is preferably different from not only the excitation wavelength ⁇ 3 and the fluorescence wavelength ⁇ 4, but also the illumination wavelength ⁇ 1.
  • FIG. 3 shows a detection wavelength ⁇ 21 or a detection wavelength ⁇ 22 as a specific example of the detection wavelength ⁇ 2.
  • the detection wavelength ⁇ 2 may be either the detection wavelength ⁇ 21 or ⁇ 22.
  • the detection wavelength ⁇ 21 is longer than the excitation wavelength ⁇ 3 (illumination wavelength ⁇ 1) and shorter than the fluorescence wavelength ⁇ 4. That is, the detection wavelength ⁇ 21 is the wavelength of the valley (the valley between the excitation wavelength ⁇ 3 and the fluorescence wavelength ⁇ 4) that is lower than the intensity of each of the excitation wavelength ⁇ 3 and the fluorescence wavelength ⁇ 4 in the optical spectrum SP1 of the phosphor 43b. is.
  • the detection wavelength ⁇ 22 is longer than the excitation wavelength ⁇ 3 (illumination wavelength ⁇ 1) and fluorescence wavelength ⁇ 4.
  • the detection wavelength ⁇ 22 is preferably an infrared wavelength longer than 1000 nm and shorter than 1 mm.
  • the detection wavelength ⁇ 22 is a wavelength of infrared light that has lower intensity than the intensity of each of the excitation wavelength ⁇ 3 and the fluorescence wavelength ⁇ 4 in the optical spectrum SP1 of the phosphor 43b.
  • the second light source 42 is arranged on the side of the first surface 431 with respect to the wavelength conversion member 43 and faces the first surface 431 .
  • the optical axis of the second light source 42 extends in a direction intersecting the normal line of the first surface 431 so as to pass through the incident area W1 of the first surface 431 . Therefore, the second light L2 emitted by the second light source 42 obliquely enters the first surface 431 (incidence area W1). Part of the second light L2 obliquely incident on the first surface 431 (incident area W1) is reflected by the first surface 431 (incident area W1). Note that the irradiation range of the second light L2 can be adjusted by scanning the optical axis of the second light source 42 .
  • the photosensor 44 includes a light-receiving element such as a photodiode, a phototransistor, a solar cell, or a CdS cell, and has peak sensitivity at the detection wavelength ⁇ 2.
  • the optical sensor 44 is arranged on the side of the first surface 431 with respect to the wavelength conversion member 43.
  • the optical sensor 44 receives the reflected second light L2.
  • the optical sensor 44 outputs a detection signal to the control circuit 2 according to the received amount of the second light L2.
  • the light source device 4 can determine abnormality in the vicinity of the first surface 431 (incidence region W1) of the wavelength conversion member 43 .
  • the optical sensor 44 can minimize the amount of the second light L2 directly reaching the optical sensor 44 from the second light source 42 and can increase the amount of the second light L2 reflected by the wavelength conversion member 43 as much as possible. It should preferably be placed in a position where it can be
  • the first power supply device 31 can adjust lighting, extinguishing, and dimming of the first light source 41 by adjusting the first lighting power supplied to the first light source 41 .
  • the first power supply device 31 adjusts at least one of current and voltage supplied to the first light source 41 .
  • the second power supply device 32 can adjust the lighting, extinguishing, and dimming of the second light source 42 by adjusting the second lighting power supplied to the second light source 42 .
  • the second power supply 32 adjusts at least one of current and voltage supplied to the second light source 42 .
  • the control circuit 2 preferably comprises a computer system. That is, in the control circuit 2, a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit) reads out and executes a program stored in a memory, thereby performing part or all of the functions of the control circuit 2. is realized.
  • the control circuit 2 has a processor that operates according to a program as a main hardware configuration.
  • the processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration). Here, they are called ICs and LSIs, but the names change depending on the degree of integration, and may be called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration).
  • ICs and LSIs the names change depending on the degree of integration, and may be called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration).
  • a field programmable gate array (FPGA) which is programmed after the LSI is manufactured, or a reconfigurable logic device capable of reconfiguring the connection relationships inside the LSI or setting up circuit partitions inside the LSI for the same purpose. can be done.
  • a plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. A plurality of chips may be collectively arranged or distributed
  • the control circuit 2 includes a lighting control section 21 and an abnormality determination section 22, as shown in FIG.
  • the lighting control unit 21 controls lighting, extinguishing, and dimming of the first light source 41 and the second light source 42 by controlling the first power supply device 31 and the second power supply device 32 .
  • the abnormality determination unit 22 receives the detection signal output by the optical sensor 44 .
  • the detection signal is a signal corresponding to the amount of the second light L2 received by the optical sensor 44 , and the abnormality determination unit 22 can detect the amount of the second light L2 received by the optical sensor 44 . Then, the abnormality determination unit 22 determines abnormality of the wavelength conversion member 43 based on the amount of the second light L2 received by the optical sensor 44 .
  • the light source device 4 particularly determines an abnormality on the first surface 431 side as the abnormality of the wavelength conversion member 43 .
  • the lighting control unit 21 turns on the first light source 41 to generate the mixed color light L10.
  • the mixed color light L10 is applied to an illumination target.
  • the illumination target is the inside of the human body.
  • the object to be illuminated is a metal, a cell, or the like, which is an object to be observed.
  • the lighting control unit 21 controls the second power supply device 32 to light the second light source 42 when receiving an inspection instruction from the user or periodically.
  • the second light source 42 When the second light source 42 is turned on, the second light source 42 emits the second light L2.
  • the second light L2 emitted by the second light source 42 is incident on the first surface 431 (incidence area W1), and part of the second light L2 incident on the first surface 431 (incidence area W1) is the first surface 431 (incident area W1). It is reflected at the incident area W1).
  • the amount of the second light L2 reflected by the first surface 431 (incidence area W1) varies depending on the state of the wavelength conversion member 43.
  • the temperature of the incident region W1 of the wavelength conversion member 43 and its periphery rises excessively.
  • stress is generated in the substrate 43a due to the thermal load in the vicinity of the incident region W1, which may cause an abnormality such as cracking or deformation of the substrate 43a.
  • cracking or deformation abnormality
  • the amount of reflection of the second light L2 in the incident region W1 decreases compared to normal (when the substrate 43a is neither cracked nor deformed).
  • the amount of the first light L11 emitted by the first light source 41 becomes excessive, the temperature near the incident region W1 of the wavelength conversion member 43 rises excessively. As a result, there is a possibility that blackening (abnormality) occurs in which the substrate 43a near the incident region W1 is discolored black. In the blackened area of the substrate 43a, the amount of reflection of the second light L2 in the incident area W1 is smaller than in the normal state (when the substrate 43a is not blackened).
  • the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and if the amount of received light is less than the threshold value, the wavelength conversion member 43 is "abnormal". I judge. Further, the abnormality determination unit 22 determines that the wavelength conversion member 43 is “no abnormality” if the amount of received light is equal to or greater than the threshold value. In this embodiment, the abnormality determination unit 22 can particularly determine an abnormality near the incident region W1 of the wavelength conversion member 43 .
  • the lighting control unit 21 adjusts the first lighting power supplied to the first light source 41 by controlling the first power supply device 31 based on the determination result of the abnormality determination unit 22 . For example, the lighting control unit 21 sets the first lighting power to zero and turns off the first light source 41 if the determination result is “abnormal”. Further, if the determination result is “abnormal”, the lighting control section 21 may reduce the first lighting power to reduce the amount of the first light L11 emitted by the first light source 41 . If the determination result is "no abnormality", the lighting control unit 21 sets the first lighting power to the steady state value, and causes the first light source 41 to light steadily. The steady value of the first lighting power may be either a fixed value or a variable value according to the user's operation.
  • the optical sensor 44 has peak sensitivity at the detection wavelength ⁇ 2 of the second light L2. Also, the detection wavelength ⁇ 2 is different from the excitation wavelength ⁇ 3 and the fluorescence wavelength ⁇ 4. Therefore, the optical sensor 44 can efficiently receive the second light L2 reflected by the wavelength converting member 43, and can suppress receiving other light (eg, the first light L11 and the mixed color light L10). As a result, the light source device 4 can improve the accuracy of abnormality determination of the wavelength conversion member 43 .
  • the second light L2 received by the optical sensor 44 contains the temperature (heat) of the incident region W1 of the first surface 431. Contains information.
  • the abnormality determination unit 22 detects the temperature of the incident area W1 based on the detection signal output from the optical sensor 44, and can determine that there is an "abnormality" when the detected temperature is higher than the upper limit temperature. Further, if the detected temperature is equal to or lower than the upper limit temperature, the abnormality determination unit 22 can determine that there is no abnormality. That is, the light source device 4 can determine temperature abnormality such as overheating of the wavelength conversion member 43 .
  • FIG. 4 shows a light source device 4A as a first modification of the light source device.
  • symbol is attached
  • the light source device 4A is obtained by providing an incident side optical film (thin film) 43c and an emission side optical film (thin film) 43d to the light source device 4 (see FIG. 2) of the above embodiment. That is, in addition to the configuration of the light source device 4, the light source device 4A further includes an incident side optical film 43c and an exit side optical film 43d.
  • the incident-side optical film 43c is formed on one of a pair of surfaces facing each other in the thickness direction of the substrate 43a.
  • the exit-side optical film 43d is formed on the other of a pair of surfaces facing each other in the thickness direction of the substrate 43a.
  • the surface of the incident-side optical film 43c constitutes the first surface 431
  • the surface of the output-side optical film 43d constitutes the second surface 432.
  • the incident-side optical film 43c is a dielectric multilayer film such as TiO 2 , Ta 2 O 3 , SiO 2 , or MgF 2 , and has a function of transmitting the first light L11 and reflecting the second light L2.
  • the incident-side optical film 43c preferably has a function of reflecting light of the detection wavelength ⁇ 2, which is the peak wavelength of the second light L2.
  • the exit-side optical film 43d is a dielectric multilayer film such as TiO 2 , Ta 2 O 3 , SiO 2 , or MgF 2 , and has a function of transmitting the first light L11 and reflecting the second light L2. Furthermore, the output-side optical film 43d also transmits the wavelength-converted light L12. That is, the exit-side optical film 43d transmits the mixed-color light L10.
  • the exit-side optical film 43d preferably has a function of reflecting light of the detection wavelength ⁇ 2, which is the peak wavelength of the second light L2.
  • the first light L11 emitted by the first light source 41 passes through the incident-side optical film 43c and the substrate 43a, and is irradiated onto the phosphor 43b.
  • Mixed-color light L10 generated by irradiating the phosphor 43b with the first light L11 passes through the substrate 43a and the exit-side optical film 43d and is irradiated from the second surface 432 onto the illumination target.
  • the second light L2 emitted by the second light source 42 is reflected by the incident-side optical film 43c that constitutes the first surface 431 .
  • the amount of second light L2 reflected by the incident-side optical film 43c is greater than the amount of reflection by the substrate 43a (see FIG. 2). That is, the amount of the second light L2 received by the optical sensor 44 of the light source device 4A is greater than the amount of the second light L2 received by the optical sensor 44 of the light source device 4 (see FIG. 2). Therefore, since the sensitivity of abnormality detection by the abnormality determination unit 22 is improved, the accuracy of abnormality determination is improved.
  • part of the second light L2 emitted by the second light source 42 passes through the incident-side optical film 43c and enters the substrate 43a.
  • the second light L2 that has entered the substrate 43a passes through the substrate 43a and the phosphor 43b and reaches the emission-side optical film 43d.
  • the second light L2 that has reached the output-side optical film 43d is reflected by the output-side optical film 43d, and is less likely to be irradiated from the second surface 432 onto the illumination target. Therefore, it is possible to suppress the amount of the second light L2 that irradiates the illumination target while ensuring the amount of the mixed color light L10 that illuminates the illumination target. That is, it is possible to improve the lighting environment in the lighting target.
  • FIG. 5 shows a light source device 4B as a second modification of the light source device.
  • the light source device 4B particularly determines an abnormality on the second surface 432 side as the abnormality of the wavelength conversion member 43 .
  • symbol is attached
  • the second light source 42 is arranged on the second surface 432 side with respect to the wavelength conversion member 43 and faces the second surface 432 .
  • the optical axis of the second light source 42 extends in a direction intersecting the normal line of the second surface 432 so as to pass through the emission region W2 of the second surface 432 . Therefore, the second light L2 emitted by the second light source 42 obliquely enters the second surface 432 (the emission area W2). Part of the second light L2 obliquely incident on the second surface 432 (the emission area W2) is reflected by the second surface 432 (the emission area W2).
  • the optical sensor 44 is arranged on the side of the second surface 432 with respect to the wavelength conversion member 43, and detects at least the second light L2 reflected by the emission region W2 among the second light L2 reflected by the second surface 432. receive light.
  • the optical sensor 44 outputs a detection signal to the control circuit 2 according to the received amount of the second light L2.
  • the light source device 4B can determine abnormality in the vicinity of the second surface 432 (the emission area W2) of the wavelength conversion member 43 .
  • the optical sensor 44 can minimize the amount of the second light L2 directly reaching the optical sensor 44 from the second light source 42 and can increase the amount of the second light L2 reflected by the wavelength conversion member 43 as much as possible. It should preferably be placed in a position where it can be
  • the amount of the second light L2 reflected by the second surface 432 (the emission area W2) varies depending on the state of the wavelength conversion member 43.
  • the temperature of the emission region W2 of the wavelength conversion member 43 and its surroundings rises excessively.
  • stress is generated in the substrate 43a due to the thermal load in the vicinity of the emission region W2, and there is a possibility that the substrate 43a may crack or deform.
  • cracking or deformation abnormality
  • the amount of reflection of the second light L2 in the emission region W2 is reduced compared to normal (when the substrate 43a is neither cracked nor deformed).
  • the amount of the first light L11 emitted by the first light source 41 becomes excessive, the temperature in the vicinity of the emission region W2 of the wavelength conversion member 43 rises excessively. As a result, blackening (abnormality) in which the substrate 43a near the emission region W2 is discolored black may occur. In the blackened area of the substrate 43a, the amount of reflection of the second light L2 in the emission area W2 is smaller than in the normal state (when the substrate 43a is not blackened).
  • the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and if the amount of received light is less than the threshold value, the wavelength conversion member 43 is "abnormal". I judge. Further, the abnormality determination unit 22 determines that the wavelength conversion member 43 is "abnormal” if the amount of received light is equal to or greater than the threshold. In this embodiment, the abnormality determination unit 22 can particularly determine an abnormality near the emission region W2 of the wavelength conversion member 43 .
  • the light source device 4 can determine whether the wavelength conversion member 43 is abnormal.
  • FIG. 6 shows a light source device 4C as a third modification of the light source device.
  • symbol is attached
  • a light source device 4C is obtained by providing an exit-side optical film 43d in the light source device 4B (see FIG. 5) of the second modification described above. That is, the light source device 4C further includes an exit-side optical film 43d in addition to the configuration of the light source device 4B.
  • One of the pair of surfaces facing the thickness direction of the substrate 43a constitutes the first surface 431, and the exit-side optical film 43d is formed on the other of the pair of surfaces facing the thickness direction of the substrate 43a. In this case, the surface of the exit-side optical film 43 d forms the second surface 432 .
  • the exit-side optical film 43d is a dielectric multilayer film such as TiO 2 , Ta 2 O 3 , SiO 2 , or MgF 2 , and has a function of transmitting the first light L11 and reflecting the second light L2. Furthermore, the output-side optical film 43d also transmits the wavelength-converted light L12. That is, the exit-side optical film 43d transmits the mixed-color light L10.
  • the exit-side optical film 43d preferably has a function of reflecting light of the detection wavelength ⁇ 2, which is the peak wavelength of the second light L2.
  • the first light L11 emitted by the first light source 41 passes through the substrate 43a and irradiates the phosphor 43b.
  • Mixed-color light L10 generated by irradiating the phosphor 43b with the first light L11 passes through the substrate 43a and the exit-side optical film 43d and is irradiated from the second surface 432 onto the illumination target.
  • the second light L2 emitted by the second light source 42 is reflected by the output-side optical film 43d forming the second surface 432 .
  • the amount of second light L2 reflected by the output-side optical film 43d is greater than the amount of reflection by the substrate 43a (see FIG. 5). That is, the amount of the second light L2 received by the optical sensor 44 of the light source device 4C is greater than the amount of the second light L2 received by the optical sensor 44 of the light source device 4B (see FIG. 5). Therefore, since the sensitivity of abnormality detection by the abnormality determination unit 22 is improved, the accuracy of abnormality determination is improved.
  • FIG. 7 shows a light source device 4D as a fourth modification of the light source device.
  • the light source device 4 ⁇ /b>D particularly determines an abnormality on the second surface 432 side as the abnormality of the wavelength conversion member 43 .
  • symbol is attached
  • the optical sensor 44 is configured to receive the second light L2 transmitted through the region of the wavelength conversion member 43 through which the first light L11 passes.
  • the second light source 42 is arranged on the second surface 432 side with respect to the wavelength conversion member 43 and faces the second surface 432 .
  • the optical axis of the second light source 42 extends in a direction intersecting the normal line of the second surface 432 so as to pass through the emission region W2 of the second surface 432 . Therefore, the second light L2 emitted by the second light source 42 obliquely enters the second surface 432 (the emission area W2).
  • the second light L2 obliquely incident on the second surface 432 enters the substrate 43a from the second surface 432 (output region W2).
  • the second light L2 incident on the substrate 43a from the second surface 432 passes through the phosphor 43b and the substrate 43a and is emitted from the first surface 431.
  • the optical sensor 44 is arranged on the first surface 431 side with respect to the wavelength conversion member 43 and receives the second light L2 transmitted through the wavelength conversion member 43 .
  • the optical sensor 44 outputs a detection signal to the control circuit 2 according to the received amount of the second light L2.
  • the light source device 4 ⁇ /b>D can determine abnormality inside the wavelength conversion member 43 as well as the second surface 432 (the emission area W ⁇ b>2 ) of the wavelength conversion member 43 . It is preferable that the optical sensor 44 be arranged at a position where the received amount of the second light L2 transmitted through the wavelength conversion member 43 can be maximized.
  • the lighting control unit 21 controls the second power supply device 32 to light the second light source 42 when receiving an inspection instruction from the user or periodically.
  • the second light source 42 When the second light source 42 is turned on, the second light source 42 emits the second light L2.
  • the second light L2 emitted by the second light source 42 is incident on the second surface 432 (output area W2), and the second light L2 incident on the second surface 432 (output area W2) enters the substrate 43a.
  • the amount of the second light L ⁇ b>2 passing through the substrate 43 a and emitted from the first surface 431 varies depending on the state of the wavelength conversion member 43 .
  • the output amount of the second light L2 from the first surface 431 is normal (when the wavelength conversion member 43 does not have an abnormality). Therefore, when an abnormality occurs in the wavelength conversion member 43, the amount of the second light L2 received by the optical sensor 44 is also reduced from that in the normal state.
  • the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and if the amount of received light is less than the threshold value, the wavelength conversion member 43 is "abnormal". I judge. Further, if the amount of received light is equal to or greater than the threshold value, the abnormality determination unit 22 determines that the wavelength conversion member 43 is “no abnormality”.
  • the lighting control unit 21 adjusts the first lighting power supplied to the first light source 41 by controlling the first power supply device 31 based on the determination result of the abnormality determination unit 22 . For example, the lighting control unit 21 sets the first lighting power to zero and turns off the first light source 41 if the determination result is “abnormal”. Further, if the determination result is “abnormal”, the lighting control section 21 may reduce the first lighting power to reduce the amount of the first light L11 emitted by the first light source 41 . If the determination result is "no abnormality", the lighting control unit 21 sets the first lighting power to the steady state value, and causes the first light source 41 to light steadily. The steady value of the first lighting power may be either a fixed value or a variable value according to the user's operation.
  • FIG. 8 shows a light source device 4E as a fifth modification of the light source device.
  • symbol is attached
  • the light source device 4E is obtained by providing a silicone film 43e to the light source device 4D (see FIG. 7) of the above-described fourth modification. That is, the light source device 4E further includes a silicone film (thin film) 43e in addition to the configuration of the light source device 4D.
  • a silicone film (thin film) 43e in addition to the configuration of the light source device 4D.
  • One of the pair of surfaces facing the thickness direction of the substrate 43a constitutes the first surface 431, and the silicone film 43e is formed on the other of the pair of surfaces facing the thickness direction of the substrate 43a.
  • the surface of the silicone film 43 e constitutes the second surface 432 .
  • the optical transmittance of the silicone film 43e changes depending on the temperature of the silicone film 43e. Specifically, the higher the temperature of the silicone film 43e, the lower the optical transmittance of the silicone film 43e. For example, as the amount of the first light L11 emitted by the first light source 41 becomes excessive and the temperature in the vicinity of the incident region W1 rises, the optical transmittance of the silicone film 43e further decreases. Therefore, the abnormality determination unit 22 of the light source device 4E can determine temperature abnormality such as overheating near the emission region W2 of the wavelength conversion member 43 based on the detection signal of the optical sensor 44.
  • the light source device 4E may include a liquid crystal film (thin film) instead of the silicone film 43e.
  • the optical transmittance of the liquid crystal film decreases as the temperature increases. Therefore, the abnormality determination unit 22 of the light source device 4E can determine temperature abnormality such as overheating near the emission region W2 of the wavelength conversion member 43 based on the detection signal of the optical sensor 44.
  • FIG. 9 shows a light source device 4F as a sixth modification of the light source device.
  • the light traveling toward the optical sensor 44 may include not only the second light L2 but also ambient light other than the second light L2 (illumination light, sunlight, first light L11, mixed color light L10, etc.).
  • the optical sensor 44 receives ambient light, there is a possibility that the accuracy of the abnormality determination by the abnormality determination unit 22 will decrease. Therefore, the light source device 4 ⁇ /b>F further includes an optical filter 45 .
  • the optical filter 45 is arranged in the light receiving portion of the optical sensor 44 and has a function of causing the optical sensor 44 to receive light in which a specific wavelength range that does not include the detection wavelength ⁇ 2 is attenuated.
  • the optical filter 45 has a function of transmitting the second light L2 as light to be received by the optical sensor 44 and attenuating disturbance light.
  • the optical filter 45 receives light that travels toward the optical sensor 44 and emits light that has a specific wavelength attenuated from the incident light toward the optical sensor 44 .
  • the second light L2 reflected by the first surface 431 (incidence area W1) in FIG. 2 enters the optical sensor 44 after passing through the optical filter 45 .
  • ambient light such as illumination light, sunlight, first light L11, and mixed light L10 also passes through the optical filter 45 before reaching the optical sensor 44, so the ambient light reaches the optical sensor 44. decay forward. Therefore, the light source device 4F can suppress deterioration in accuracy of abnormality determination due to ambient light.
  • the optical filter 45 is made of glass or a dielectric multilayer film.
  • the dielectric multilayer film is made of TiO 2 , Ta 2 O 3 , SiO 2 , MgF 2 or the like, for example.
  • the optical filter 45 is added to the light source device 4 (see FIG. 1) of the above embodiment, but the optical filter 45 is added to the light source devices 4A to 4E of the above first to fifth modifications. may be added.
  • the optical spectrum of the phosphor 43b may be other than the optical spectrum SP1 in FIG.
  • the optical spectrum of the phosphor 43b may be any one of optical spectra SP2 to SP5 shown in FIG. 10, for example.
  • the fluorescence wavelength ⁇ 4 is the wavelength at which the intensity reaches the maximum value in each of the optical spectra SP2 to SP5.
  • the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and determines the abnormality of the wavelength conversion member 43 based on the amount of change in the amount of received light. good too. For example, the abnormality determination unit 22 determines that the wavelength conversion member 43 is “abnormal” when the amount of change in the amount of received light per unit time is equal to or more than a predetermined value or less than or equal to a predetermined value. The abnormality determination unit 22 may determine abnormality of the wavelength conversion member 43 based on parameters (parameters related to the amount of received light) other than the magnitude of the amount of received light and the amount of change in the amount of received light.
  • the first light source 41 is not limited to a configuration including a laser element (first laser element).
  • the first light source 41 may have a solid-state light-emitting device such as a laser device, an LED (Light Emitting Diode), or an organic EL (Organic Electro Luminescence, OEL).
  • the second light source 42 is not limited to a configuration including a laser element (second laser element).
  • the second light source 42 may be configured to include a solid light emitting device such as a laser device, LED, or organic EL.
  • the solid-state light-emitting elements included in the first light source 41 and the solid-state light-emitting elements included in the second light source 42 may be of the same type or of different types.
  • the light color of the first light L11 may be other than blue, and is not limited to a specific light color.
  • the light color of the mixed color light L10 may be other than white, and is not limited to a specific light color.
  • the circuit configuration of the first power supply device 31 is not limited to a specific circuit configuration as long as it can supply the first lighting power to the first light source 41 .
  • the circuit configuration of the second power supply device 32 is not limited to a specific circuit configuration as long as it can supply the second lighting power to the second light source 42 .
  • Abnormalities of the wavelength conversion member 43 include breakage, chipping, peeling, detachment, etc. of the wavelength conversion member 43 in addition to cracking, deformation, and blackening of the substrate 43a.
  • the light source device (4, 4A to 4F) of the first aspect includes a first light source (41), a wavelength conversion member (43), a second light source (42), an optical sensor (44) and A first light source (41) emits a first light (L11).
  • the wavelength converting member (43) has a first surface (431) on which the first light (L11) is incident, the first light (L11), and the wavelength-converted light (L12 ) for emitting mixed-color light (L10).
  • a second light source (42) emits a second light (L2) having a detection wavelength ( ⁇ 2) different from the excitation wavelength ( ⁇ 3) and fluorescence wavelength ( ⁇ 4) of the wavelength conversion member (43).
  • the optical sensor (44) has a peak sensitivity at the wavelength for detection ( ⁇ 2).
  • the optical sensor (44) receives the second light (L2) reflected by the wavelength conversion member (43) or the second light (L2) transmitted through the wavelength conversion member (43).
  • the light source devices (4, 4A to 4F) described above can improve the accuracy of abnormality determination of the wavelength conversion member (43).
  • the detection wavelength ( ⁇ 22) is preferably longer than 1000 nm.
  • the light source devices (4, 4A to 4F) described above can determine temperature abnormalities such as overheating of the wavelength conversion member (43).
  • the optical sensor (44) reflects off the outer surface (430) of the wavelength conversion member (43) It is preferable to receive the second light (L2).
  • the light source devices (4, 4A to 4C) described above can determine abnormality in the vicinity of the outer surface (430) of the wavelength conversion member (43).
  • the optical sensor (44) is configured such that the first light (L11) is incident on the first surface (431). It is preferable to receive the second light (L2) reflected by the region (W1) or the emission region (W2) from which the mixed color light (L10) is emitted on the second surface (432).
  • the light source devices (4, 4A to 4C) described above can determine abnormality in the vicinity of the incident region (W1) or the exit region (W2) of the wavelength conversion member (43).
  • the second surface (432) transmits the first light (L11) and transmits the second light (L2 ) is preferably formed of an exit-side optical film (43d) that reflects the light.
  • the above-described light source devices (4A, 4C) improve the sensitivity of abnormality detection, thereby improving the accuracy of abnormality determination. Furthermore, the light source devices (4A, 4C) can also improve the lighting environment in the lighting target.
  • the optical sensor (44) detects the second light ( L2).
  • the first surface (431) is preferably formed of an incident side optical film (43c) that transmits the first light (L11) and reflects the second light (L2).
  • the light source device (4A) described above improves the sensitivity of abnormality detection, thereby improving the accuracy of abnormality determination. Furthermore, the light source device (4A) can also improve the lighting environment in the lighting target.
  • the optical sensor (44) of the wavelength conversion member (43) passes the first light (L11). It is preferable to receive the second light (L2) transmitted through the region.
  • the light source devices (4D, 4E) described above can determine an abnormality not only on the outer surface (430) of the wavelength conversion member (43) but also on the inside of the wavelength conversion member (43).
  • the second surface (432) is preferably made of a silicone film (43e) or a liquid crystal film.
  • the light source device (4E) described above can determine a temperature abnormality such as overheating of the wavelength conversion member (43).
  • a light source device (4F) in any one of the first to eighth aspects, emits light in which a specific wavelength range not including the detection wavelength ( ⁇ 2) is attenuated. It is preferred to further comprise an optical filter (45) that allows the sensor (44) to receive light.
  • the light source device (4F) described above can suppress deterioration in the accuracy of abnormality determination due to ambient light.
  • the first light (L11) is preferably laser light.
  • the light source device (4) described above has a suitable configuration for an endoscope, an industrial microscope, or the like.
  • An abnormality determination system (5) includes a light source device (4) according to any one of the first to tenth aspects, and an optical sensor (44) for receiving a second light (L2). and an abnormality determination unit (22) that determines abnormality of the wavelength conversion member (43) based on the quantity.
  • the abnormality determination system (5) described above can improve the accuracy of abnormality determination of the wavelength conversion member (43).

Abstract

The present disclosure addresses the problem of providing: a light source device capable of improving the accuracy in determining anomaly in a wavelength conversion member; and an anomaly determination system. This light source device (4) comprises: a first light source (41); a wavelength conversion member (43); a second light source (42); and an optical sensor (44). The first light source (41) emits first light (L11). The wavelength conversion member (43) has: a first surface (431) through which the first light (L11) enters; and a second surface (432) that emits mixed light (L10) including the first light (L11) and wavelength-converted light (L12) obtained by subjecting the first light (L11) to a wavelength conversion process. The second light source (42) emits second light (L2) having a detection wavelength that is different from the excitation wavelength and fluorescent wavelength of the wavelength conversion member (43). The optical sensor (44) has a peak sensitivity at the detection wavelength. The optical sensor (44) also receives the second light (L2) reflected from the wavelength conversion member (43).

Description

光源装置、及び異常判定システムLight source device and abnormality determination system
 本開示は、光源装置、及び異常判定システムに関する。 The present disclosure relates to a light source device and an abnormality determination system.
 特許文献1は、2組以上の光源装置を有する光源システムにおいて、2組以上の光源装置の各々について異常の有無を検知する技術を開示している。 Patent Document 1 discloses a technique for detecting the presence or absence of an abnormality in each of two or more light source devices in a light source system having two or more light source devices.
 具体的に、光源システムは、第1励起光源と、第2励起光源と、第1蛍光体ユニットと、第2蛍光体ユニットと、分光センサと、故障検出部とを備える。 Specifically, the light source system includes a first excitation light source, a second excitation light source, a first phosphor unit, a second phosphor unit, a spectroscopic sensor, and a failure detector.
 第1励起光源から射出された第1励起光は、第1蛍光体ユニットに導かれ、第1蛍光体ユニットは、第1励起光の一部を波長変換した第1蛍光を第1励起光とともに射出する。第2励起光源から射出された第2励起光は、第2蛍光体ユニットに導かれ、第2蛍光体ユニットは、第2励起光の一部を波長変換した第2蛍光を第2励起光とともに射出する。 The first excitation light emitted from the first excitation light source is guided to the first phosphor unit, and the first phosphor unit converts the wavelength of part of the first excitation light into first fluorescence together with the first excitation light. inject. The second excitation light emitted from the second excitation light source is guided to the second phosphor unit, and the second phosphor unit emits second fluorescence obtained by wavelength-converting part of the second excitation light together with the second excitation light. inject.
 分光センサは、第1蛍光体ユニットから射出した第1励起光及び第1蛍光と、第2蛍光体ユニットから射出した第2励起光及び第2蛍光とを受光する。分光センサは、第1励起光、第1蛍光、第2励起光、及び第2蛍光のそれぞれについて、光強度を故障検出部に出力する。 The spectroscopic sensor receives first excitation light and first fluorescence emitted from the first phosphor unit, and second excitation light and second fluorescence emitted from the second phosphor unit. The spectroscopic sensor outputs the light intensity of each of the first excitation light, the first fluorescence, the second excitation light, and the second fluorescence to the failure detector.
 故障検出部は、分光センサからの入力に基づいて、第1励起光源、第2の励起光源、第1蛍光体ユニット、及び第2蛍光体ユニットのいずれに故障があるか否かを特定する。 The failure detection unit identifies which of the first excitation light source, the second excitation light source, the first phosphor unit, and the second phosphor unit has a failure based on the input from the spectroscopic sensor.
 特許文献1では、蛍光体ユニットのような波長変換部材の異常を判定している。 In Patent Document 1, an abnormality in a wavelength conversion member such as a phosphor unit is determined.
特開2013-197033号公報JP 2013-197033 A
 本開示の目的は、波長変換部材の異常判定の精度を向上させることができる光源装置、及び異常判定システムを提供することにある。 An object of the present disclosure is to provide a light source device and an abnormality determination system capable of improving the accuracy of abnormality determination of wavelength conversion members.
 本開示の一態様に係る光源装置は、第1光源と、波長変換部材と、第2光源と、光センサと、を備える。前記第1光源は、第1光を発する。前記波長変換部材は、前記第1光が入射する第1面、並びに前記第1光及び前記第1光に波長変換処理を施した波長変換光を含む混色光を出射する第2面を有する。前記第2光源は、前記波長変換部材の励起波長及び蛍光波長と異なる検出用波長の第2光を発する。前記光センサは、前記検出用波長にピーク感度を有する。前記光センサは、前記波長変換部材で反射した前記第2光、又は前記波長変換部材を透過した前記第2光を受光する。 A light source device according to an aspect of the present disclosure includes a first light source, a wavelength conversion member, a second light source, and an optical sensor. The first light source emits first light. The wavelength conversion member has a first surface on which the first light is incident, and a second surface from which the first light and mixed-color light including wavelength-converted light obtained by wavelength-converting the first light are emitted. A said 2nd light source emits the 2nd light of the wavelength for a detection different from the excitation wavelength and fluorescence wavelength of the said wavelength conversion member. The photosensor has a peak sensitivity at the detection wavelength. The optical sensor receives the second light reflected by the wavelength conversion member or the second light transmitted through the wavelength conversion member.
 本開示の一態様に係る異常判定システムは、上述の光源装置と、前記光センサにおける前記第2光の受光量に基づいて、前記波長変換部材の異常を判定する異常判定部と、を備える。 An abnormality determination system according to an aspect of the present disclosure includes the light source device described above and an abnormality determination unit that determines an abnormality of the wavelength conversion member based on the amount of the second light received by the optical sensor.
図1は、実施形態に係る光源装置及び異常判定システムを備える点灯システムを示すブロック図である。FIG. 1 is a block diagram showing a lighting system including a light source device and an abnormality determination system according to an embodiment. 図2は、同上の光源装置を示す構成図である。FIG. 2 is a configuration diagram showing the light source device of the same. 図3は、同上の光源装置の蛍光体の光スペクトルを示すグラフである。FIG. 3 is a graph showing the optical spectrum of the phosphor of the light source device; 図4は、同上の第1変形例の光源装置を示す構成図である。FIG. 4 is a configuration diagram showing a light source device of a first modified example of the same. 図5は、同上の第2変形例の光源装置を示す構成図である。FIG. 5 is a configuration diagram showing a light source device of a second modified example of the same. 図6は、同上の第3変形例の光源装置を示す構成図である。FIG. 6 is a configuration diagram showing a light source device according to a third modified example of the same. 図7は、同上の第4変形例の光源装置を示す構成図である。FIG. 7 is a configuration diagram showing a light source device according to a fourth modified example of the same. 図8は、同上の第5変形例の光源装置を示す構成図である。FIG. 8 is a configuration diagram showing a light source device of a fifth modified example of the same. 図9は、同上の第6変形例の光源装置を示すブロック図である。FIG. 9 is a block diagram showing a light source device according to a sixth modification of the same. 図10は、同上の光源装置の別の蛍光体の光スペクトルを示すグラフである。FIG. 10 is a graph showing an optical spectrum of another phosphor of the light source device;
 以下の実施形態は、一般に光源装置、及び異常判定システムに関する。より詳細には、本開示は、波長変換部材を備える光源装置、及び異常判定システムに関する。 The following embodiments generally relate to light source devices and abnormality determination systems. More specifically, the present disclosure relates to a light source device including a wavelength conversion member and an abnormality determination system.
 以下、実施形態に係る光源装置、及び異常判定システムについて、図1~図10を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさや厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。 A light source device and an abnormality determination system according to an embodiment will be described in detail below with reference to FIGS. 1 to 10. FIG. However, each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio. Note that the configurations described in the following embodiments are merely examples of the present disclosure. The present disclosure is not limited to the following embodiments, and various modifications can be made according to design and the like as long as the effects of the present disclosure can be achieved.
 (実施形態)
 (1)点灯システムの概略
 実施形態に係る光源装置及び異常判定システムは、点灯システムに用いられる。点灯システムは、例えば人体の内部を観察するための内視鏡、又は金属、細胞などを観察するための産業用顕微鏡などに用いられる。但し、点灯システムの用途は、特定の用途に限定されず、内視鏡及び産業用顕微鏡以外の用途に用いられてもよい。
(embodiment)
(1) Outline of Lighting System The light source device and the abnormality determination system according to the embodiment are used in a lighting system. The lighting system is used, for example, in an endoscope for observing the inside of a human body, or an industrial microscope for observing metals, cells, and the like. However, the application of the lighting system is not limited to a specific application, and may be used for applications other than endoscopes and industrial microscopes.
 図1は、点灯システム1のブロック構成を示す。点灯システム1は、制御回路2、第1電源装置31、第2電源装置32、及び光源装置4を備える。光源装置4は、第1光源41、第2光源42、波長変換部材43、及び光センサ44を備える。第1光源41は、第1電源装置31から第1点灯電力を供給されることで点灯する。第2光源42は、第2電源装置32から第2点灯電力を供給されることで点灯する。制御回路2は、第1電源装置31及び第2電源装置32を制御することで、第1光源41及び第2光源42の点灯、消灯、及び調光を制御する。 FIG. 1 shows a block configuration of the lighting system 1. The lighting system 1 includes a control circuit 2 , a first power supply device 31 , a second power supply device 32 , and a light source device 4 . The light source device 4 includes a first light source 41 , a second light source 42 , a wavelength conversion member 43 and an optical sensor 44 . The first light source 41 is lit by being supplied with the first lighting power from the first power supply device 31 . The second light source 42 is lit by being supplied with the second lighting power from the second power supply device 32 . The control circuit 2 controls lighting, extinguishing, and dimming of the first light source 41 and the second light source 42 by controlling the first power supply device 31 and the second power supply device 32 .
 そして、光源装置4の各部は、図2のように構成されている。 Each part of the light source device 4 is configured as shown in FIG.
 第1光源41は、第1光L11を発する。波長変換部材43は、第1面431、及び第2面432を有する。第1面431には、第1光L11が入射する。第2面432からは、混色光L10が出射する。混色光L10は、第1光L11、及び第1光L11に波長変換処理を施した波長変換光L12を含む。 The first light source 41 emits the first light L11. The wavelength conversion member 43 has a first surface 431 and a second surface 432 . The first light L<b>11 is incident on the first surface 431 . Mixed-color light L10 is emitted from the second surface 432 . The mixed-color light L10 includes a first light L11 and a wavelength-converted light L12 obtained by subjecting the first light L11 to wavelength conversion processing.
 第2光源42は、第2光L2を発する。第2光L2の波長である検出用波長λ2は、波長変換部材43の励起波長λ3及び蛍光波長λ4と異なる。 The second light source 42 emits the second light L2. The detection wavelength λ2, which is the wavelength of the second light L2, differs from the excitation wavelength λ3 and fluorescence wavelength λ4 of the wavelength conversion member 43 .
 光センサ44は、検出用波長λ2にピーク感度を有する。そして、光センサ44は、波長変換部材43で反射した第2光L2、又は波長変換部材43を透過した第2光L2を受光する(図2の光センサ44は、波長変換部材43で反射した第2光L2を受光する)。 The optical sensor 44 has a peak sensitivity at the detection wavelength λ2. Then, the optical sensor 44 receives the second light L2 reflected by the wavelength conversion member 43 or the second light L2 transmitted through the wavelength conversion member 43 (the optical sensor 44 in FIG. receive the second light L2).
 上述の構成を備える光源装置4は、波長変換部材43の異常判定の精度を向上させることができる。 The light source device 4 having the above configuration can improve the accuracy of abnormality determination of the wavelength conversion member 43 .
 また、図1に示すように、制御回路2は異常判定部22を備える。そして、光源装置4及び異常判定部22は、異常判定システム5に含まれる。すなわち、異常判定システム5は、光源装置4と、異常判定部22とを備える。このような構成を備える異常判定システム5は、波長変換部材43の異常判定の精度を向上させることができる。 In addition, as shown in FIG. 1, the control circuit 2 includes an abnormality determination section 22. The light source device 4 and the abnormality determination section 22 are included in the abnormality determination system 5 . That is, the abnormality determination system 5 includes the light source device 4 and the abnormality determination section 22 . The abnormality determination system 5 having such a configuration can improve the accuracy of abnormality determination of the wavelength conversion member 43 .
 (2)詳細
 (2.1)波長変換部材
 波長変換部材43は、図2に示すように、基板43a及び蛍光体43bを備えて、基板43aの内部に蛍光体43bの層を有する板形状の積層構造である。波長変換部材43の外面430は、波長変換部材43の厚み方向に対向する第1面431及び第2面432を含む。第1面431及び第2面432のそれぞれは、平面である。
(2) Details (2.1) Wavelength Conversion Member As shown in FIG. 2, the wavelength conversion member 43 is provided with a substrate 43a and a phosphor 43b. It has a laminated structure. The outer surface 430 of the wavelength conversion member 43 includes a first surface 431 and a second surface 432 facing each other in the thickness direction of the wavelength conversion member 43 . Each of the first surface 431 and the second surface 432 is a plane.
 基板43aは、板形状である。図2の波長変換部材43では、基板43aの厚み方向に対向する一対の面のうち、一方が第1面431であり、他方が第2面432である。 The substrate 43a has a plate shape. In the wavelength conversion member 43 of FIG. 2 , one of the pair of surfaces facing each other in the thickness direction of the substrate 43 a is the first surface 431 and the other is the second surface 432 .
 蛍光体43bは、基板43aの内部において、第1面431と第2面432との間に位置する蛍光体層である。図2では、蛍光体43bは、第1面431よりも第2面432に近い位置に層状に形成されている。蛍光体43bは、YAG(Yttrium・Aluminum・Garnet)系蛍光体、CASN(カズン)蛍光体、LuAG(lutetium・Aluminum・Garnet)系蛍光体、又はガーネット(Garnet)系蛍光体などである。例えば、YAG系蛍光体は黄色蛍光体であり、CASN蛍光体は赤色蛍光体であり、LuAG系蛍光体及びガーネット系蛍光体は緑色蛍光体である。 The phosphor 43b is a phosphor layer positioned between the first surface 431 and the second surface 432 inside the substrate 43a. In FIG. 2, the phosphor 43b is formed in layers at a position closer to the second surface 432 than the first surface 431 is. The phosphor 43b is a YAG (Yttrium/Aluminum/Garnet) phosphor, a CASN (Cousin) phosphor, a LuAG (lutetium/Aluminum/Garnet) phosphor, or a Garnet phosphor. For example, a YAG phosphor is a yellow phosphor, a CASN phosphor is a red phosphor, and a LuAG phosphor and a garnet phosphor are green phosphors.
 蛍光体43bの励起波長はλ3であり、蛍光体43bの蛍光波長はλ4である。蛍光波長λ4は、励起波長λ3より長い。すなわち、蛍光体43bは、励起波長λ3の成分を含む入射光を照射されると、入射光の一部を吸収し、入射光より波長が長い蛍光波長λ4の波長変換光を生成する。そして、蛍光体43bは、蛍光体43bで吸収されなかった入射光の一部と波長変換光とが混ざった混色光を出射する。 The excitation wavelength of the phosphor 43b is λ3, and the fluorescence wavelength of the phosphor 43b is λ4. The fluorescence wavelength λ4 is longer than the excitation wavelength λ3. That is, when the phosphor 43b is irradiated with incident light containing a component of the excitation wavelength λ3, it absorbs part of the incident light and generates wavelength-converted light with a fluorescence wavelength λ4 longer than that of the incident light. Then, the phosphor 43b emits mixed-color light in which part of the incident light not absorbed by the phosphor 43b is mixed with the wavelength-converted light.
 図3は、蛍光体43bの光スペクトル(強度分布)の一例として、光スペクトルSP1を示す。図3は、励起波長λ3の入射光で蛍光体43bが励起したときの光スペクトルである。この光スペクトルSP1において、強度が最大値となるときの波長が蛍光波長λ4である。 FIG. 3 shows an optical spectrum SP1 as an example of the optical spectrum (intensity distribution) of the phosphor 43b. FIG. 3 shows an optical spectrum when the phosphor 43b is excited by incident light of the excitation wavelength λ3. In this optical spectrum SP1, the wavelength at which the intensity reaches the maximum value is the fluorescence wavelength λ4.
 (2.2)第1光源
 第1光源41は、レーザダイオード(Laser Diode)などの第1レーザ素子を備える。第1光源41が備える第1レーザ素子は1つ又は複数である。複数の第1レーザ素子の電気的な接続関係は直列接続、並列接続、及び直列接続と並列接続とを組み合わせた接続、のいずれであってもよい。
(2.2) First Light Source The first light source 41 includes a first laser element such as a laser diode. The number of first laser elements included in the first light source 41 is one or more. The electrical connection relationship of the plurality of first laser elements may be any of series connection, parallel connection, and combination of series connection and parallel connection.
 第1光源41は、第1電源装置31から第1点灯電力を供給されると点灯し、第1光L11としてレーザ光を発する。第1光L11の波長を照明用波長λ1とすると、照明用波長λ1は、励起波長λ3に等しい、又は励起波長λ3の近傍に設定されている(図3参照)。なお、照明用波長λ1は、第1光L11の光スペクトルにおいてピークの波長である。 The first light source 41 lights up when the first lighting power is supplied from the first power supply device 31, and emits laser light as the first light L11. Assuming that the wavelength of the first light L11 is an illumination wavelength λ1, the illumination wavelength λ1 is set equal to or near the excitation wavelength λ3 (see FIG. 3). The illumination wavelength λ1 is the peak wavelength in the optical spectrum of the first light L11.
 図2に示すように、第1光源41は、波長変換部材43に対して第1面431の側に配置されて、第1面431に対向している。そして、第1光源41の光軸は、第1面431の法線に沿う方向に延びている。したがって、第1光源41が発した第1光L11は、第1面431に対して、第1面431の法線方向から入射する。以降では、第1面431において、第1光L11が入射する領域を入射領域W1とする。なお、第1光L11の照射範囲は、第1光源41の光軸をスキャンすることで調整できる。 As shown in FIG. 2, the first light source 41 is arranged on the side of the first surface 431 with respect to the wavelength conversion member 43 and faces the first surface 431 . The optical axis of the first light source 41 extends along the normal line of the first surface 431 . Therefore, the first light L11 emitted by the first light source 41 enters the first surface 431 from the normal direction of the first surface 431 . Hereinafter, the area on the first surface 431 where the first light L11 is incident is referred to as an incident area W1. Note that the irradiation range of the first light L11 can be adjusted by scanning the optical axis of the first light source 41 .
 第1面431に入射した第1光L11は、基板43aを通って蛍光体43bに照射される。蛍光体43bは、照射された第1光L11の一部を吸収し、蛍光波長λ4の波長変換光L12を生成する。そして、蛍光体43bで吸収されなかった第1光L11の一部と波長変換光L12とは、基板43aを通って第2面432に達する。第2面432は、蛍光体43bで吸収されなかった第1光L11の一部と波長変換光L12とが混ざった混色光L10を出射する。例えば、第1光L11が青色のレーザ光であり、蛍光体43bが黄色蛍光体であれば、混色光L10は白色光となる。以降では、第2面432において、混色光L10が出射する領域を出射領域W2とする。 The first light L11 incident on the first surface 431 passes through the substrate 43a and irradiates the phosphor 43b. The phosphor 43b absorbs part of the irradiated first light L11 and generates wavelength-converted light L12 of fluorescence wavelength λ4. A part of the first light L11 that is not absorbed by the phosphor 43b and the wavelength-converted light L12 reach the second surface 432 through the substrate 43a. The second surface 432 emits mixed-color light L10 in which a portion of the first light L11 that has not been absorbed by the phosphor 43b and the wavelength-converted light L12 are mixed. For example, if the first light L11 is blue laser light and the phosphor 43b is a yellow phosphor, the mixed color light L10 is white light. Hereinafter, the area from which the mixed color light L10 is emitted on the second surface 432 will be referred to as an emission area W2.
 (2.3)第2光源
 第2光源42は、レーザダイオードなどの第2レーザ素子を備える。第2光源42が備える第2レーザ素子は1つ又は複数である。複数の第2レーザ素子の電気的な接続関係は直列接続、並列接続、及び直列接続と並列接続とを組み合わせた接続、のいずれであってもよい。
(2.3) Second Light Source The second light source 42 includes a second laser element such as a laser diode. The number of second laser elements provided in the second light source 42 is one or plural. The electrical connection relationship of the plurality of second laser elements may be any of serial connection, parallel connection, and connection combining serial connection and parallel connection.
 第2光源42は、第2電源装置32から第2点灯電力を供給されると点灯し、第2光L2としてレーザ光を発する。第2光L2の波長を検出用波長λ2とすると、検出用波長λ2は、励起波長λ3及び蛍光波長λ4と異なる。検出用波長λ2は、第2光L2の光スペクトルにおいてピークの波長である。また、検出用波長λ2は、励起波長λ3及び蛍光波長λ4だけでなく、照明用波長λ1とも異なることが好ましい。 The second light source 42 lights up when the second lighting power is supplied from the second power supply device 32, and emits laser light as the second light L2. Assuming that the wavelength of the second light L2 is the detection wavelength λ2, the detection wavelength λ2 is different from the excitation wavelength λ3 and the fluorescence wavelength λ4. The detection wavelength λ2 is the peak wavelength in the optical spectrum of the second light L2. Further, the detection wavelength λ2 is preferably different from not only the excitation wavelength λ3 and the fluorescence wavelength λ4, but also the illumination wavelength λ1.
 図3では、検出用波長λ2の具体例として、検出用波長λ21、又は検出用波長λ22を示す。検出用波長λ2は、検出用波長λ21、λ22のいずれであってもよい。 FIG. 3 shows a detection wavelength λ21 or a detection wavelength λ22 as a specific example of the detection wavelength λ2. The detection wavelength λ2 may be either the detection wavelength λ21 or λ22.
 検出用波長λ21は、励起波長λ3(照明用波長λ1)より長く、蛍光波長λ4より短い。すなわち、検出用波長λ21は、蛍光体43bの光スペクトルSP1において、励起波長λ3と蛍光波長λ4の各強度に比べて低い谷部(励起波長λ3と蛍光波長λ4との間の谷部)の波長である。 The detection wavelength λ21 is longer than the excitation wavelength λ3 (illumination wavelength λ1) and shorter than the fluorescence wavelength λ4. That is, the detection wavelength λ21 is the wavelength of the valley (the valley between the excitation wavelength λ3 and the fluorescence wavelength λ4) that is lower than the intensity of each of the excitation wavelength λ3 and the fluorescence wavelength λ4 in the optical spectrum SP1 of the phosphor 43b. is.
 検出用波長λ22は、励起波長λ3(照明用波長λ1)、及び蛍光波長λ4より長い。具体的に、検出用波長λ22は、1000nmより長く、かつ、1mmより短い赤外線の波長であることが好ましい。この場合、検出用波長λ22は、蛍光体43bの光スペクトルSP1において、励起波長λ3及び蛍光波長λ4の各強度に比べて低い強度となる赤外線の波長である。 The detection wavelength λ22 is longer than the excitation wavelength λ3 (illumination wavelength λ1) and fluorescence wavelength λ4. Specifically, the detection wavelength λ22 is preferably an infrared wavelength longer than 1000 nm and shorter than 1 mm. In this case, the detection wavelength λ22 is a wavelength of infrared light that has lower intensity than the intensity of each of the excitation wavelength λ3 and the fluorescence wavelength λ4 in the optical spectrum SP1 of the phosphor 43b.
 図2に示すように、第2光源42は、波長変換部材43に対して第1面431の側に配置されて、第1面431に対向している。そして、第2光源42の光軸は、第1面431の入射領域W1を通るように、第1面431の法線に交差する方向に延びている。したがって、第2光源42が発した第2光L2は、第1面431(入射領域W1)に対して斜めに入射する。第1面431(入射領域W1)に斜めに入射した第2光L2の一部は、第1面431(入射領域W1)で反射する。なお、第2光L2の照射範囲は、第2光源42の光軸をスキャンすることで調整できる。 As shown in FIG. 2, the second light source 42 is arranged on the side of the first surface 431 with respect to the wavelength conversion member 43 and faces the first surface 431 . The optical axis of the second light source 42 extends in a direction intersecting the normal line of the first surface 431 so as to pass through the incident area W1 of the first surface 431 . Therefore, the second light L2 emitted by the second light source 42 obliquely enters the first surface 431 (incidence area W1). Part of the second light L2 obliquely incident on the first surface 431 (incident area W1) is reflected by the first surface 431 (incident area W1). Note that the irradiation range of the second light L2 can be adjusted by scanning the optical axis of the second light source 42 .
 (2.4)光センサ
 光センサ44は、フォトダイオード、フォトトランジスタ、太陽電池又はCdSセルなどの受光素子を備え、検出用波長λ2にピーク感度を有する。
(2.4) Photosensor The photosensor 44 includes a light-receiving element such as a photodiode, a phototransistor, a solar cell, or a CdS cell, and has peak sensitivity at the detection wavelength λ2.
 図2に示すように、光センサ44は、波長変換部材43に対して第1面431の側に配置されており、第1面431で反射した第2光L2のうち、少なくとも入射領域W1で反射した第2光L2を受光する。光センサ44は、第2光L2の受光量に応じた検出信号を制御回路2へ出力する。この場合、光源装置4は、波長変換部材43の第1面431(入射領域W1)近傍での異常を判定できる。なお、光センサ44は、第2光源42から光センサ44に直接到達する第2光L2の受光量をできるだけ少なくでき、かつ、波長変換部材43で反射した第2光L2の受光量をできるだけ多くできる位置に配置されることが好ましい。 As shown in FIG. 2, the optical sensor 44 is arranged on the side of the first surface 431 with respect to the wavelength conversion member 43. Among the second light L2 reflected by the first surface 431, at least in the incident region W1 It receives the reflected second light L2. The optical sensor 44 outputs a detection signal to the control circuit 2 according to the received amount of the second light L2. In this case, the light source device 4 can determine abnormality in the vicinity of the first surface 431 (incidence region W1) of the wavelength conversion member 43 . The optical sensor 44 can minimize the amount of the second light L2 directly reaching the optical sensor 44 from the second light source 42 and can increase the amount of the second light L2 reflected by the wavelength conversion member 43 as much as possible. It should preferably be placed in a position where it can be
 (2.5)電源装置
 第1電源装置31は、第1光源41に供給する第1点灯電力を調整することで、第1光源41の点灯、消灯、及び調光を調整できる。例えば、第1電源装置31は、第1光源41に供給する電流及び電圧の少なくとも一方を調整する。
(2.5) Power Supply Device The first power supply device 31 can adjust lighting, extinguishing, and dimming of the first light source 41 by adjusting the first lighting power supplied to the first light source 41 . For example, the first power supply device 31 adjusts at least one of current and voltage supplied to the first light source 41 .
 第2電源装置32は、第2光源42に供給する第2点灯電力を調整することで、第2光源42の点灯、消灯、及び調光を調整できる。例えば、第2電源装置32は、第2光源42に供給する電流及び電圧の少なくとも一方を調整する。 The second power supply device 32 can adjust the lighting, extinguishing, and dimming of the second light source 42 by adjusting the second lighting power supplied to the second light source 42 . For example, the second power supply 32 adjusts at least one of current and voltage supplied to the second light source 42 .
 (2.6)制御回路
 制御回路2は、コンピュータシステムを備えることが好ましい。すなわち、制御回路2では、CPU(Central Processing Unit)、又はMPU(Micro Processing Unit)などのプロセッサがメモリに記憶されているプログラムを読み出して実行することによって、制御回路2の一部又は全部の機能が実現される。そして、制御回路2は、プログラムに従って動作するプロセッサを主なハードウェア構成として備える。
(2.6) Control Circuit The control circuit 2 preferably comprises a computer system. That is, in the control circuit 2, a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit) reads out and executes a program stored in a memory, thereby performing part or all of the functions of the control circuit 2. is realized. The control circuit 2 has a processor that operates according to a program as a main hardware configuration.
 プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路で構成される。ここでは、ICやLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができる再構成可能な論理デバイスも同じ目的で使うことができる。複数の電子回路は、一つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは集約して配置されてもよいし、分散して配置されてもよい。 Any type of processor does not matter as long as it can implement functions by executing programs. The processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration). Here, they are called ICs and LSIs, but the names change depending on the degree of integration, and may be called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration). A field programmable gate array (FPGA), which is programmed after the LSI is manufactured, or a reconfigurable logic device capable of reconfiguring the connection relationships inside the LSI or setting up circuit partitions inside the LSI for the same purpose. can be done. A plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. A plurality of chips may be collectively arranged or distributed.
 制御回路2は、図1に示すように、点灯制御部21と、異常判定部22とを備える。 The control circuit 2 includes a lighting control section 21 and an abnormality determination section 22, as shown in FIG.
 点灯制御部21は、第1電源装置31及び第2電源装置32を制御することで、第1光源41及び第2光源42の点灯、消灯、及び調光を制御する。 The lighting control unit 21 controls lighting, extinguishing, and dimming of the first light source 41 and the second light source 42 by controlling the first power supply device 31 and the second power supply device 32 .
 異常判定部22は、光センサ44が出力した検出信号を受信する。検出信号は、光センサ44における第2光L2の受光量に応じた信号であり、異常判定部22は、光センサ44における第2光L2の受光量を検出できる。そして、異常判定部22は、光センサ44における第2光L2の受光量に基づいて、波長変換部材43の異常を判定する。 The abnormality determination unit 22 receives the detection signal output by the optical sensor 44 . The detection signal is a signal corresponding to the amount of the second light L2 received by the optical sensor 44 , and the abnormality determination unit 22 can detect the amount of the second light L2 received by the optical sensor 44 . Then, the abnormality determination unit 22 determines abnormality of the wavelength conversion member 43 based on the amount of the second light L2 received by the optical sensor 44 .
 (2.7)異常判定処理
 以下、点灯システム1における異常判定処理について説明する。光源装置4は、波長変換部材43の異常として、特に第1面431側の異常を判定する。
(2.7) Abnormality determination processing Abnormality determination processing in the lighting system 1 will be described below. The light source device 4 particularly determines an abnormality on the first surface 431 side as the abnormality of the wavelength conversion member 43 .
 点灯制御部21は、第1光源41を点灯させることで混色光L10を生成する。混色光L10は、照明対象に照射される。点灯システム1が内視鏡に用いられる場合、照明対象は人体の内部である。点灯システム1が産業用顕微鏡に用いられる場合、照明対象は観察対象である金属、細胞などである。 The lighting control unit 21 turns on the first light source 41 to generate the mixed color light L10. The mixed color light L10 is applied to an illumination target. When the lighting system 1 is used in an endoscope, the illumination target is the inside of the human body. When the lighting system 1 is used in an industrial microscope, the object to be illuminated is a metal, a cell, or the like, which is an object to be observed.
 そして、点灯制御部21は、ユーザからの点検指示があったとき、又は周期的に、第2電源装置32を制御して、第2光源42を点灯させる。第2光源42が点灯すると、第2光源42は第2光L2を発する。第2光源42が発した第2光L2は第1面431(入射領域W1)に入射し、第1面431(入射領域W1)に入射した第2光L2の一部は第1面431(入射領域W1)で反射する。このとき、第1面431(入射領域W1)で反射する第2光L2の量は、波長変換部材43の状態によって変動する。 Then, the lighting control unit 21 controls the second power supply device 32 to light the second light source 42 when receiving an inspection instruction from the user or periodically. When the second light source 42 is turned on, the second light source 42 emits the second light L2. The second light L2 emitted by the second light source 42 is incident on the first surface 431 (incidence area W1), and part of the second light L2 incident on the first surface 431 (incidence area W1) is the first surface 431 (incident area W1). It is reflected at the incident area W1). At this time, the amount of the second light L2 reflected by the first surface 431 (incidence area W1) varies depending on the state of the wavelength conversion member 43. FIG.
 例えば、第1光源41が発する第1光L11の量が過大になると、波長変換部材43の入射領域W1及びその周辺(以降、入射領域W1近傍と称す)の温度が過剰に上昇する。この結果、入射領域W1近傍では、熱負荷によって基板43aに応力が発生することで、基板43aが割れたり、変形したりする異常が発生する可能性がある。入射領域W1近傍で割れ、又は変形(異常)が発生すると、入射領域W1における第2光L2の反射量が、正常時(基板43aの割れ及び変形が発生していないとき)よりも減少する。 For example, if the amount of the first light L11 emitted by the first light source 41 becomes excessive, the temperature of the incident region W1 of the wavelength conversion member 43 and its periphery (hereinafter referred to as the vicinity of the incident region W1) rises excessively. As a result, stress is generated in the substrate 43a due to the thermal load in the vicinity of the incident region W1, which may cause an abnormality such as cracking or deformation of the substrate 43a. When cracking or deformation (abnormality) occurs in the vicinity of the incident region W1, the amount of reflection of the second light L2 in the incident region W1 decreases compared to normal (when the substrate 43a is neither cracked nor deformed).
 また、第1光源41が発する第1光L11の量が過大になると、波長変換部材43の入射領域W1近傍の温度が過剰に上昇する。この結果、基板43aの入射領域W1近傍が黒く変色する黒化(異常)が発生する可能性がある。基板43aの黒化領域では、入射領域W1における第2光L2の反射量が、正常時(基板43aの黒化が発生していないとき)よりも減少する。 Also, when the amount of the first light L11 emitted by the first light source 41 becomes excessive, the temperature near the incident region W1 of the wavelength conversion member 43 rises excessively. As a result, there is a possibility that blackening (abnormality) occurs in which the substrate 43a near the incident region W1 is discolored black. In the blackened area of the substrate 43a, the amount of reflection of the second light L2 in the incident area W1 is smaller than in the normal state (when the substrate 43a is not blackened).
 したがって、入射領域W1近傍で割れ、変形、及び黒化などの異常が発生すると、光センサ44における第2光L2の受光量は正常時より減少する。 Therefore, when an abnormality such as cracking, deformation, and blackening occurs in the vicinity of the incident area W1, the amount of the second light L2 received by the optical sensor 44 is reduced from that in normal times.
 そこで、異常判定部22は、光センサ44の検出信号に基づいて、光センサ44における第2光L2の受光量を監視し、受光量が閾値未満になれば波長変換部材43の「異常あり」と判定する。また、異常判定部22は、受光量が閾値以上であれば波長変換部材43の「異常なし」と判定する。本実施形態では、異常判定部22は、特に波長変換部材43の入射領域W1近傍の異常を判定することができる。 Therefore, the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and if the amount of received light is less than the threshold value, the wavelength conversion member 43 is "abnormal". I judge. Further, the abnormality determination unit 22 determines that the wavelength conversion member 43 is “no abnormality” if the amount of received light is equal to or greater than the threshold value. In this embodiment, the abnormality determination unit 22 can particularly determine an abnormality near the incident region W1 of the wavelength conversion member 43 .
 点灯制御部21は、異常判定部22の判定結果に基づいて第1電源装置31を制御することで、第1光源41へ供給する第1点灯電力を調整する。例えば、点灯制御部21は、判定結果が「異常あり」であれば、第1点灯電力をゼロにして第1光源41を消灯する。また、点灯制御部21は、判定結果が「異常あり」であれば、第1点灯電力を減少させて、第1光源41が発する第1光L11の量を減少させてもよい。点灯制御部21は、判定結果が「異常なし」であれば、第1点灯電力を定常値にして第1光源41を定常点灯させる。なお、第1点灯電力の定常値は、固定値、及びユーザの操作に応じた可変値のいずれでもよい。 The lighting control unit 21 adjusts the first lighting power supplied to the first light source 41 by controlling the first power supply device 31 based on the determination result of the abnormality determination unit 22 . For example, the lighting control unit 21 sets the first lighting power to zero and turns off the first light source 41 if the determination result is “abnormal”. Further, if the determination result is “abnormal”, the lighting control section 21 may reduce the first lighting power to reduce the amount of the first light L11 emitted by the first light source 41 . If the determination result is "no abnormality", the lighting control unit 21 sets the first lighting power to the steady state value, and causes the first light source 41 to light steadily. The steady value of the first lighting power may be either a fixed value or a variable value according to the user's operation.
 (2.8)利点
 光センサ44は、第2光L2の検出用波長λ2にピーク感度を有する。また、検出用波長λ2は、励起波長λ3、及び蛍光波長λ4と異なる。したがって、光センサ44は、波長変換部材43で反射した第2光L2を効率よく受光でき、他の光(例えば第1光L11、及び混色光L10など)を受光することを抑制できる。この結果、光源装置4は、波長変換部材43の異常判定の精度を向上させることができる。
(2.8) Advantages The optical sensor 44 has peak sensitivity at the detection wavelength λ2 of the second light L2. Also, the detection wavelength λ2 is different from the excitation wavelength λ3 and the fluorescence wavelength λ4. Therefore, the optical sensor 44 can efficiently receive the second light L2 reflected by the wavelength converting member 43, and can suppress receiving other light (eg, the first light L11 and the mixed color light L10). As a result, the light source device 4 can improve the accuracy of abnormality determination of the wavelength conversion member 43 .
 また、検出用波長λ2を赤外線波長である検出用波長λ22(図3参照)とすると、光センサ44が受光する第2光L2には、第1面431の入射領域W1の温度(熱)の情報が含まれる。この場合、異常判定部22は、光センサ44が出力する検出信号に基づいて、入射領域W1の温度を検出し、検出した温度が上限温度より高くなると、「異常あり」と判定できる。また、異常判定部22は、検出した温度が上限温度以下であれば「異常なし」と判定できる。すなわち、光源装置4は、波長変換部材43の過熱などの温度異常を判定できる。 Further, if the detection wavelength λ2 is the detection wavelength λ22 (see FIG. 3), which is an infrared wavelength, the second light L2 received by the optical sensor 44 contains the temperature (heat) of the incident region W1 of the first surface 431. Contains information. In this case, the abnormality determination unit 22 detects the temperature of the incident area W1 based on the detection signal output from the optical sensor 44, and can determine that there is an "abnormality" when the detected temperature is higher than the upper limit temperature. Further, if the detected temperature is equal to or lower than the upper limit temperature, the abnormality determination unit 22 can determine that there is no abnormality. That is, the light source device 4 can determine temperature abnormality such as overheating of the wavelength conversion member 43 .
 (3)第1変形例
 図4は、光源装置の第1変形例として、光源装置4Aを示す。なお、図2に示す光源装置4と同様の構成には同一の符号を付して、説明を省略する。
(3) First Modification FIG. 4 shows a light source device 4A as a first modification of the light source device. In addition, the same code|symbol is attached|subjected to the structure similar to the light source device 4 shown in FIG. 2, and description is abbreviate|omitted.
 光源装置4Aは、上述の実施形態の光源装置4(図2参照)に、入射側光学膜(薄膜)43c及び出射側光学膜(薄膜)43dを設けたものである。すなわち、光源装置4Aは、光源装置4の構成に加えて、入射側光学膜43c及び出射側光学膜43dを更に備える。入射側光学膜43cは、基板43aの厚み方向に対向する一対の面のうち一方に形成されている。出射側光学膜43dは、基板43aの厚み方向に対向する一対の面のうち他方に形成されている。この場合、入射側光学膜43cの表面が第1面431を構成し、出射側光学膜43dの表面が第2面432を構成する。 The light source device 4A is obtained by providing an incident side optical film (thin film) 43c and an emission side optical film (thin film) 43d to the light source device 4 (see FIG. 2) of the above embodiment. That is, in addition to the configuration of the light source device 4, the light source device 4A further includes an incident side optical film 43c and an exit side optical film 43d. The incident-side optical film 43c is formed on one of a pair of surfaces facing each other in the thickness direction of the substrate 43a. The exit-side optical film 43d is formed on the other of a pair of surfaces facing each other in the thickness direction of the substrate 43a. In this case, the surface of the incident-side optical film 43c constitutes the first surface 431, and the surface of the output-side optical film 43d constitutes the second surface 432. FIG.
 入射側光学膜43cは、TiO、Ta、SiO、又はMgFなどの誘電体多層膜であり、第1光L11を透過させ、第2光L2を反射する機能を有する。この入射側光学膜43cは、特に、第2光L2のピークの波長である検出用波長λ2の光を反射する機能を有することが好ましい。 The incident-side optical film 43c is a dielectric multilayer film such as TiO 2 , Ta 2 O 3 , SiO 2 , or MgF 2 , and has a function of transmitting the first light L11 and reflecting the second light L2. The incident-side optical film 43c preferably has a function of reflecting light of the detection wavelength λ2, which is the peak wavelength of the second light L2.
 出射側光学膜43dは、TiO、Ta、SiO、又はMgFなどの誘電体多層膜であり、第1光L11を透過させ、第2光L2を反射する機能を有する。さらに、出射側光学膜43dは、波長変換光L12も透過させる。すなわち、出射側光学膜43dは、混色光L10を透過させる。この出射側光学膜43dは、特に、第2光L2のピークの波長である検出用波長λ2の光を反射する機能を有することが好ましい。 The exit-side optical film 43d is a dielectric multilayer film such as TiO 2 , Ta 2 O 3 , SiO 2 , or MgF 2 , and has a function of transmitting the first light L11 and reflecting the second light L2. Furthermore, the output-side optical film 43d also transmits the wavelength-converted light L12. That is, the exit-side optical film 43d transmits the mixed-color light L10. The exit-side optical film 43d preferably has a function of reflecting light of the detection wavelength λ2, which is the peak wavelength of the second light L2.
 第1光源41が発した第1光L11は、入射側光学膜43c及び基板43aを透過して、蛍光体43bに照射される。そして、第1光L11が蛍光体43bに照射されることで生成される混色光L10は、基板43a及び出射側光学膜43dを透過して、第2面432から照明対象に照射される。 The first light L11 emitted by the first light source 41 passes through the incident-side optical film 43c and the substrate 43a, and is irradiated onto the phosphor 43b. Mixed-color light L10 generated by irradiating the phosphor 43b with the first light L11 passes through the substrate 43a and the exit-side optical film 43d and is irradiated from the second surface 432 onto the illumination target.
 また、第2光源42が発した第2光L2は、第1面431を構成する入射側光学膜43cで反射される。入射側光学膜43cによる第2光L2の反射量は、基板43aによる反射量(図2参照)に比べて多くなる。すなわち、光源装置4Aの光センサ44における第2光L2の受光量は、光源装置4の光センサ44における第2光L2の受光量(図2参照)に比べて多くなる。したがって、異常判定部22による異常検出の感度が向上するので、異常判定の精度が向上する。 Also, the second light L2 emitted by the second light source 42 is reflected by the incident-side optical film 43c that constitutes the first surface 431 . The amount of second light L2 reflected by the incident-side optical film 43c is greater than the amount of reflection by the substrate 43a (see FIG. 2). That is, the amount of the second light L2 received by the optical sensor 44 of the light source device 4A is greater than the amount of the second light L2 received by the optical sensor 44 of the light source device 4 (see FIG. 2). Therefore, since the sensitivity of abnormality detection by the abnormality determination unit 22 is improved, the accuracy of abnormality determination is improved.
 また、第2光源42が発した第2光L2の一部は、入射側光学膜43cを透過して、基板43a内に進入する。基板43a内に進入した第2光L2は、基板43a及び蛍光体43bを通って、出射側光学膜43dに到達する。出射側光学膜43dに到達した第2光L2は、出射側光学膜43dで反射し、第2面432から照明対象に照射されにくくなる。したがって、照明対象に照射される混色光L10の量を確保しながら、照明対象に照射される第2光L2の量を抑制することができる。すなわち、照明対象における照明環境を向上させることができる。 Also, part of the second light L2 emitted by the second light source 42 passes through the incident-side optical film 43c and enters the substrate 43a. The second light L2 that has entered the substrate 43a passes through the substrate 43a and the phosphor 43b and reaches the emission-side optical film 43d. The second light L2 that has reached the output-side optical film 43d is reflected by the output-side optical film 43d, and is less likely to be irradiated from the second surface 432 onto the illumination target. Therefore, it is possible to suppress the amount of the second light L2 that irradiates the illumination target while ensuring the amount of the mixed color light L10 that illuminates the illumination target. That is, it is possible to improve the lighting environment in the lighting target.
 (4)第2変形例
 図5は、光源装置の第2変形例として、光源装置4Bを示す。光源装置4Bは、波長変換部材43の異常として、特に第2面432側の異常を判定する。なお、図2に示す光源装置4と同様の構成には同一の符号を付して、説明を省略する。
(4) Second Modification FIG. 5 shows a light source device 4B as a second modification of the light source device. The light source device 4B particularly determines an abnormality on the second surface 432 side as the abnormality of the wavelength conversion member 43 . In addition, the same code|symbol is attached|subjected to the structure similar to the light source device 4 shown in FIG. 2, and description is abbreviate|omitted.
 光源装置4Bでは、第2光源42は、波長変換部材43に対して第2面432の側に配置されて、第2面432に対向している。そして、第2光源42の光軸は、第2面432の出射領域W2を通るように、第2面432の法線に交差する方向に延びている。したがって、第2光源42が発した第2光L2は、第2面432(出射領域W2)に対して斜めに入射する。第2面432(出射領域W2)に斜めに入射した第2光L2の一部は、第2面432(出射領域W2)で反射する。 In the light source device 4B, the second light source 42 is arranged on the second surface 432 side with respect to the wavelength conversion member 43 and faces the second surface 432 . The optical axis of the second light source 42 extends in a direction intersecting the normal line of the second surface 432 so as to pass through the emission region W2 of the second surface 432 . Therefore, the second light L2 emitted by the second light source 42 obliquely enters the second surface 432 (the emission area W2). Part of the second light L2 obliquely incident on the second surface 432 (the emission area W2) is reflected by the second surface 432 (the emission area W2).
 光センサ44は、波長変換部材43に対して第2面432の側に配置されており、第2面432で反射した第2光L2のうち、少なくとも出射領域W2で反射した第2光L2を受光する。光センサ44は、第2光L2の受光量に応じた検出信号を制御回路2へ出力する。この場合、光源装置4Bは、波長変換部材43の第2面432(出射領域W2)近傍での異常を判定できる。なお、光センサ44は、第2光源42から光センサ44に直接到達する第2光L2の受光量をできるだけ少なくでき、かつ、波長変換部材43で反射した第2光L2の受光量をできるだけ多くできる位置に配置されることが好ましい。 The optical sensor 44 is arranged on the side of the second surface 432 with respect to the wavelength conversion member 43, and detects at least the second light L2 reflected by the emission region W2 among the second light L2 reflected by the second surface 432. receive light. The optical sensor 44 outputs a detection signal to the control circuit 2 according to the received amount of the second light L2. In this case, the light source device 4B can determine abnormality in the vicinity of the second surface 432 (the emission area W2) of the wavelength conversion member 43 . The optical sensor 44 can minimize the amount of the second light L2 directly reaching the optical sensor 44 from the second light source 42 and can increase the amount of the second light L2 reflected by the wavelength conversion member 43 as much as possible. It should preferably be placed in a position where it can be
 そして、第2面432(出射領域W2)で反射する第2光L2の量は、波長変換部材43の状態によって変動する。 The amount of the second light L2 reflected by the second surface 432 (the emission area W2) varies depending on the state of the wavelength conversion member 43.
 例えば、第1光源41が発する第1光L11の量が過大になると、波長変換部材43の出射領域W2及びその周辺(以降、出射領域W2近傍と称す)の温度が過剰に上昇する。この結果、出射領域W2近傍では、熱負荷によって基板43aに応力が発生することで、基板43aが割れたり、変形したりする異常が発生する可能性がある。出射領域W2近傍で割れ、又は変形(異常)が発生すると、出射領域W2における第2光L2の反射量が、正常時(基板43aの割れ及び変形が発生していないとき)よりも減少する。 For example, when the amount of the first light L11 emitted by the first light source 41 becomes excessive, the temperature of the emission region W2 of the wavelength conversion member 43 and its surroundings (hereinafter referred to as the vicinity of the emission region W2) rises excessively. As a result, stress is generated in the substrate 43a due to the thermal load in the vicinity of the emission region W2, and there is a possibility that the substrate 43a may crack or deform. When cracking or deformation (abnormality) occurs in the vicinity of the emission region W2, the amount of reflection of the second light L2 in the emission region W2 is reduced compared to normal (when the substrate 43a is neither cracked nor deformed).
 また、第1光源41が発する第1光L11の量が過大になると、波長変換部材43の出射領域W2近傍の温度が過剰に上昇する。この結果、基板43aの出射領域W2近傍が黒く変色する黒化(異常)が発生する可能性がある。基板43aの黒化領域では、出射領域W2における第2光L2の反射量が、正常時(基板43aの黒化が発生していないとき)よりも減少する。 Also, when the amount of the first light L11 emitted by the first light source 41 becomes excessive, the temperature in the vicinity of the emission region W2 of the wavelength conversion member 43 rises excessively. As a result, blackening (abnormality) in which the substrate 43a near the emission region W2 is discolored black may occur. In the blackened area of the substrate 43a, the amount of reflection of the second light L2 in the emission area W2 is smaller than in the normal state (when the substrate 43a is not blackened).
 したがって、出射領域W2近傍で割れ、変形、及び黒化などの異常が発生すると、光センサ44における第2光L2の受光量は正常時より減少する。 Therefore, when an abnormality such as cracking, deformation, and blackening occurs in the vicinity of the emission area W2, the amount of the second light L2 received by the optical sensor 44 is reduced from that in the normal state.
 そこで、異常判定部22は、光センサ44の検出信号に基づいて、光センサ44における第2光L2の受光量を監視し、受光量が閾値未満になれば波長変換部材43の「異常あり」と判定する。また、異常判定部22は、受光量が閾値以上であれば波長変換部材43は「異常なし」と判定する。本実施形態では、異常判定部22は、特に波長変換部材43の出射領域W2近傍の異常を判定することができる。 Therefore, the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and if the amount of received light is less than the threshold value, the wavelength conversion member 43 is "abnormal". I judge. Further, the abnormality determination unit 22 determines that the wavelength conversion member 43 is "abnormal" if the amount of received light is equal to or greater than the threshold. In this embodiment, the abnormality determination unit 22 can particularly determine an abnormality near the emission region W2 of the wavelength conversion member 43 .
 すなわち、光源装置4は、波長変換部材43の異常を判定できる。 That is, the light source device 4 can determine whether the wavelength conversion member 43 is abnormal.
 (5)第3変形例
 図6は、光源装置の第3変形例として、光源装置4Cを示す。なお、図5に示す光源装置4Bと同様の構成には同一の符号を付して、説明を省略する。
(5) Third Modification FIG. 6 shows a light source device 4C as a third modification of the light source device. In addition, the same code|symbol is attached|subjected to the structure similar to the light source device 4B shown in FIG. 5, and description is abbreviate|omitted.
 光源装置4Cは、上述の第2変形例の光源装置4B(図5参照)に、出射側光学膜43dを設けたものである。すなわち、光源装置4Cは、光源装置4Bの構成に加えて、出射側光学膜43dを更に備える。基板43aの厚み方向に対向する一対の面のうち一方が第1面431を構成し、出射側光学膜43dは、基板43aの厚み方向に対向する一対の面のうち他方に形成されている。この場合、出射側光学膜43dの表面が第2面432を構成する。 A light source device 4C is obtained by providing an exit-side optical film 43d in the light source device 4B (see FIG. 5) of the second modification described above. That is, the light source device 4C further includes an exit-side optical film 43d in addition to the configuration of the light source device 4B. One of the pair of surfaces facing the thickness direction of the substrate 43a constitutes the first surface 431, and the exit-side optical film 43d is formed on the other of the pair of surfaces facing the thickness direction of the substrate 43a. In this case, the surface of the exit-side optical film 43 d forms the second surface 432 .
 出射側光学膜43dは、TiO、Ta、SiO、又はMgFなどの誘電体多層膜であり、第1光L11を透過させ、第2光L2を反射する機能を有する。さらに、出射側光学膜43dは、波長変換光L12も透過させる。すなわち、出射側光学膜43dは、混色光L10を透過させる。この出射側光学膜43dは、特に、第2光L2のピークの波長である検出用波長λ2の光を反射する機能を有することが好ましい。 The exit-side optical film 43d is a dielectric multilayer film such as TiO 2 , Ta 2 O 3 , SiO 2 , or MgF 2 , and has a function of transmitting the first light L11 and reflecting the second light L2. Furthermore, the output-side optical film 43d also transmits the wavelength-converted light L12. That is, the exit-side optical film 43d transmits the mixed-color light L10. The exit-side optical film 43d preferably has a function of reflecting light of the detection wavelength λ2, which is the peak wavelength of the second light L2.
 第1光源41が発した第1光L11は、基板43aを透過して、蛍光体43bに照射される。そして、第1光L11が蛍光体43bに照射されることで生成される混色光L10は、基板43a及び出射側光学膜43dを透過して、第2面432から照明対象に照射される。 The first light L11 emitted by the first light source 41 passes through the substrate 43a and irradiates the phosphor 43b. Mixed-color light L10 generated by irradiating the phosphor 43b with the first light L11 passes through the substrate 43a and the exit-side optical film 43d and is irradiated from the second surface 432 onto the illumination target.
 また、第2光源42が発した第2光L2は、第2面432を構成する出射側光学膜43dで反射される。出射側光学膜43dによる第2光L2の反射量は、基板43aによる反射量(図5参照)に比べて多くなる。すなわち、光源装置4Cの光センサ44における第2光L2の受光量は、光源装置4Bの光センサ44における第2光L2の受光量(図5参照)に比べて多くなる。したがって、異常判定部22による異常検出の感度が向上するので、異常判定の精度が向上する。 In addition, the second light L2 emitted by the second light source 42 is reflected by the output-side optical film 43d forming the second surface 432 . The amount of second light L2 reflected by the output-side optical film 43d is greater than the amount of reflection by the substrate 43a (see FIG. 5). That is, the amount of the second light L2 received by the optical sensor 44 of the light source device 4C is greater than the amount of the second light L2 received by the optical sensor 44 of the light source device 4B (see FIG. 5). Therefore, since the sensitivity of abnormality detection by the abnormality determination unit 22 is improved, the accuracy of abnormality determination is improved.
 (6)第4変形例
 図7は、光源装置の第4変形例として、光源装置4Dを示す。光源装置4Dは、波長変換部材43の異常として、特に第2面432側の異常を判定する。なお、図2に示す光源装置4と同様の構成には同一の符号を付して、説明を省略する。
(6) Fourth Modification FIG. 7 shows a light source device 4D as a fourth modification of the light source device. The light source device 4</b>D particularly determines an abnormality on the second surface 432 side as the abnormality of the wavelength conversion member 43 . In addition, the same code|symbol is attached|subjected to the structure similar to the light source device 4 shown in FIG. 2, and description is abbreviate|omitted.
 例えば、第1光源41が発する第1光L11の量が過大になると、基板43aの出射領域W2近傍で割れ又は変形(異常)が発生したり、出射領域W2近傍が黒く変色する黒化(異常)が発生したりする。 For example, if the amount of the first light L11 emitted by the first light source 41 becomes excessive, cracking or deformation (abnormality) occurs in the vicinity of the emission region W2 of the substrate 43a, or blackening (abnormality) occurs in the vicinity of the emission region W2. ) occurs.
 そこで、光源装置4Dでは、光センサ44は、波長変換部材43のうち第1光L11が通る領域を透過した第2光L2を受光するように構成されている。具体的に、光源装置4Dでは、第2光源42は、波長変換部材43に対して第2面432の側に配置されて、第2面432に対向している。そして、第2光源42の光軸は、第2面432の出射領域W2を通るように、第2面432の法線に交差する方向に延びている。したがって、第2光源42が発した第2光L2は、第2面432(出射領域W2)に対して斜めに入射する。第2面432(出射領域W2)に斜めに入射した第2光L2は、第2面432(出射領域W2)から基板43aに入射する。第2面432(出射領域W2)から基板43aに入射した第2光L2は、蛍光体43b及び基板43aを透過して、第1面431から出射する。 Therefore, in the light source device 4D, the optical sensor 44 is configured to receive the second light L2 transmitted through the region of the wavelength conversion member 43 through which the first light L11 passes. Specifically, in the light source device 4</b>D, the second light source 42 is arranged on the second surface 432 side with respect to the wavelength conversion member 43 and faces the second surface 432 . The optical axis of the second light source 42 extends in a direction intersecting the normal line of the second surface 432 so as to pass through the emission region W2 of the second surface 432 . Therefore, the second light L2 emitted by the second light source 42 obliquely enters the second surface 432 (the emission area W2). The second light L2 obliquely incident on the second surface 432 (output region W2) enters the substrate 43a from the second surface 432 (output region W2). The second light L2 incident on the substrate 43a from the second surface 432 (the emission area W2) passes through the phosphor 43b and the substrate 43a and is emitted from the first surface 431. FIG.
 光センサ44は、波長変換部材43に対して第1面431の側に配置されており、波長変換部材43を透過した第2光L2を受光する。光センサ44は、第2光L2の受光量に応じた検出信号を制御回路2へ出力する。この場合、光源装置4Dは、波長変換部材43の第2面432(出射領域W2)だけでなく、波長変換部材43の内部の異常を判定できる。なお、光センサ44は、波長変換部材43を透過した第2光L2の受光量をできるだけ多くできる位置に配置されることが好ましい。 The optical sensor 44 is arranged on the first surface 431 side with respect to the wavelength conversion member 43 and receives the second light L2 transmitted through the wavelength conversion member 43 . The optical sensor 44 outputs a detection signal to the control circuit 2 according to the received amount of the second light L2. In this case, the light source device 4</b>D can determine abnormality inside the wavelength conversion member 43 as well as the second surface 432 (the emission area W<b>2 ) of the wavelength conversion member 43 . It is preferable that the optical sensor 44 be arranged at a position where the received amount of the second light L2 transmitted through the wavelength conversion member 43 can be maximized.
 そして、点灯制御部21は、ユーザからの点検指示があったとき、又は周期的に、第2電源装置32を制御して、第2光源42を点灯させる。第2光源42が点灯すると、第2光源42は第2光L2を発する。第2光源42が発した第2光L2は第2面432(出射領域W2)に入射し、第2面432(出射領域W2)に入射した第2光L2は基板43a内に進入する。このとき、基板43a内を通って第1面431から出射する第2光L2の量は、波長変換部材43の状態によって変動する。 Then, the lighting control unit 21 controls the second power supply device 32 to light the second light source 42 when receiving an inspection instruction from the user or periodically. When the second light source 42 is turned on, the second light source 42 emits the second light L2. The second light L2 emitted by the second light source 42 is incident on the second surface 432 (output area W2), and the second light L2 incident on the second surface 432 (output area W2) enters the substrate 43a. At this time, the amount of the second light L<b>2 passing through the substrate 43 a and emitted from the first surface 431 varies depending on the state of the wavelength conversion member 43 .
 波長変換部材43の異常(割れ、変形、及び黒化など)が発生すると、第1面431からの第2光L2の出射量が、正常時(波長変換部材43の異常が発生していないとき)よりも減少する。したがって、波長変換部材43の異常が発生すると、光センサ44における第2光L2の受光量も正常時より減少する。 When an abnormality (cracking, deformation, blackening, etc.) occurs in the wavelength conversion member 43, the output amount of the second light L2 from the first surface 431 is normal (when the wavelength conversion member 43 does not have an abnormality). ). Therefore, when an abnormality occurs in the wavelength conversion member 43, the amount of the second light L2 received by the optical sensor 44 is also reduced from that in the normal state.
 そこで、異常判定部22は、光センサ44の検出信号に基づいて、光センサ44における第2光L2の受光量を監視し、受光量が閾値未満になれば波長変換部材43の「異常あり」と判定する。また、異常判定部22は、受光量が閾値以上であれば波長変換部材43「異常なし」と判定する。 Therefore, the abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and if the amount of received light is less than the threshold value, the wavelength conversion member 43 is "abnormal". I judge. Further, if the amount of received light is equal to or greater than the threshold value, the abnormality determination unit 22 determines that the wavelength conversion member 43 is “no abnormality”.
 点灯制御部21は、異常判定部22の判定結果に基づいて第1電源装置31を制御することで、第1光源41へ供給する第1点灯電力を調整する。例えば、点灯制御部21は、判定結果が「異常あり」であれば、第1点灯電力をゼロにして第1光源41を消灯する。また、点灯制御部21は、判定結果が「異常あり」であれば、第1点灯電力を減少させて、第1光源41が発する第1光L11の量を減少させてもよい。点灯制御部21は、判定結果が「異常なし」であれば、第1点灯電力を定常値にして第1光源41を定常点灯させる。なお、第1点灯電力の定常値は、固定値、及びユーザの操作に応じた可変値のいずれでもよい。 The lighting control unit 21 adjusts the first lighting power supplied to the first light source 41 by controlling the first power supply device 31 based on the determination result of the abnormality determination unit 22 . For example, the lighting control unit 21 sets the first lighting power to zero and turns off the first light source 41 if the determination result is “abnormal”. Further, if the determination result is “abnormal”, the lighting control section 21 may reduce the first lighting power to reduce the amount of the first light L11 emitted by the first light source 41 . If the determination result is "no abnormality", the lighting control unit 21 sets the first lighting power to the steady state value, and causes the first light source 41 to light steadily. The steady value of the first lighting power may be either a fixed value or a variable value according to the user's operation.
 (7)第5変形例
 図8は、光源装置の第5変形例として、光源装置4Eを示す。なお、図7に示す光源装置4Dと同様の構成には同一の符号を付して、説明を省略する。
(7) Fifth Modification FIG. 8 shows a light source device 4E as a fifth modification of the light source device. In addition, the same code|symbol is attached|subjected to the structure similar to the light source device 4D shown in FIG. 7, and description is abbreviate|omitted.
 光源装置4Eは、上述の第4変形例の光源装置4D(図7参照)に、シリコーン膜43eを設けたものである。すなわち、光源装置4Eは、光源装置4Dの構成に加えて、シリコーン膜(薄膜)43eを更に備える。基板43aの厚み方向に対向する一対の面のうち一方が第1面431を構成し、シリコーン膜43eは、基板43aの厚み方向に対向する一対の面のうち他方に形成されている。この場合、シリコーン膜43eの表面が第2面432を構成する。 The light source device 4E is obtained by providing a silicone film 43e to the light source device 4D (see FIG. 7) of the above-described fourth modification. That is, the light source device 4E further includes a silicone film (thin film) 43e in addition to the configuration of the light source device 4D. One of the pair of surfaces facing the thickness direction of the substrate 43a constitutes the first surface 431, and the silicone film 43e is formed on the other of the pair of surfaces facing the thickness direction of the substrate 43a. In this case, the surface of the silicone film 43 e constitutes the second surface 432 .
 シリコーン膜43eの光学透過率は、シリコーン膜43eの温度によって変化する。具体的に、シリコーン膜43eの温度が高い程、シリコーン膜43eの光学透過率は減少する。例えば、第1光源41が発する第1光L11の量が過大になって、入射領域W1近傍の温度が上昇する程、シリコーン膜43eの光学透過率はより減少する。したがって、光源装置4Eの異常判定部22は、光センサ44の検出信号に基づいて、波長変換部材43の出射領域W2近傍の過熱などの温度異常を判定することができる。 The optical transmittance of the silicone film 43e changes depending on the temperature of the silicone film 43e. Specifically, the higher the temperature of the silicone film 43e, the lower the optical transmittance of the silicone film 43e. For example, as the amount of the first light L11 emitted by the first light source 41 becomes excessive and the temperature in the vicinity of the incident region W1 rises, the optical transmittance of the silicone film 43e further decreases. Therefore, the abnormality determination unit 22 of the light source device 4E can determine temperature abnormality such as overheating near the emission region W2 of the wavelength conversion member 43 based on the detection signal of the optical sensor 44. FIG.
 なお、光源装置4Eは、シリコーン膜43eの代わりに液晶膜(薄膜)を備えていてもよい。液晶膜の光学透過率は、シリコーン膜43eと同様に、温度が高い程、減少する。したがって、光源装置4Eの異常判定部22は、光センサ44の検出信号に基づいて、波長変換部材43の出射領域W2近傍の過熱などの温度異常を判定することができる。 Note that the light source device 4E may include a liquid crystal film (thin film) instead of the silicone film 43e. As with the silicone film 43e, the optical transmittance of the liquid crystal film decreases as the temperature increases. Therefore, the abnormality determination unit 22 of the light source device 4E can determine temperature abnormality such as overheating near the emission region W2 of the wavelength conversion member 43 based on the detection signal of the optical sensor 44. FIG.
 (8)第6変形例
 図9は、光源装置の第6変形例として、光源装置4Fを示す。
(8) Sixth Modification FIG. 9 shows a light source device 4F as a sixth modification of the light source device.
 光センサ44に向かって進む光は、第2光L2だけでなく、第2光L2以外の外乱光(照明光、太陽光、第1光L11、及び混色光L10など)を含むことがある。しかし、光センサ44が外乱光を受光すると、異常判定部22による異常判定の精度が低下する可能性がある。そこで、光源装置4Fは、光学フィルタ45を更に備える。 The light traveling toward the optical sensor 44 may include not only the second light L2 but also ambient light other than the second light L2 (illumination light, sunlight, first light L11, mixed color light L10, etc.). However, when the optical sensor 44 receives ambient light, there is a possibility that the accuracy of the abnormality determination by the abnormality determination unit 22 will decrease. Therefore, the light source device 4</b>F further includes an optical filter 45 .
 光学フィルタ45は、光センサ44の受光部に配置されており、検出用波長λ2を含まない特定の波長範囲を減衰させた光を光センサ44に受光させる機能を有する。言い換えると、光学フィルタ45は、光センサ44に受光させる光として第2光L2を透過させ、外乱光を減衰させる機能を有する。 The optical filter 45 is arranged in the light receiving portion of the optical sensor 44 and has a function of causing the optical sensor 44 to receive light in which a specific wavelength range that does not include the detection wavelength λ2 is attenuated. In other words, the optical filter 45 has a function of transmitting the second light L2 as light to be received by the optical sensor 44 and attenuating disturbance light.
 具体的に、光学フィルタ45は、光センサ44に向かって進む光が入射し、入射した光から特定の波長を減衰させた光を光センサ44に向かって出射する。例えば図2の第1面431(入射領域W1)で反射した第2光L2は、光学フィルタ45を透過した後に、光センサ44に入射する。このとき、照明光、太陽光、第1光L11、及び混色光L10などの外乱光も、光センサ44に到達する前に光学フィルタ45を透過するので、外乱光は、光センサ44に到達する前に減衰する。したがって、光源装置4Fは、外乱光によって異常判定の精度が低下することを抑制できる。 Specifically, the optical filter 45 receives light that travels toward the optical sensor 44 and emits light that has a specific wavelength attenuated from the incident light toward the optical sensor 44 . For example, the second light L2 reflected by the first surface 431 (incidence area W1) in FIG. 2 enters the optical sensor 44 after passing through the optical filter 45 . At this time, ambient light such as illumination light, sunlight, first light L11, and mixed light L10 also passes through the optical filter 45 before reaching the optical sensor 44, so the ambient light reaches the optical sensor 44. decay forward. Therefore, the light source device 4F can suppress deterioration in accuracy of abnormality determination due to ambient light.
 例えば、光学フィルタ45は、ガラス、又は誘電体多層膜で構成されている。誘電体多層膜は、例えばTiO、Ta、SiO、又はMgFなどで形成される。 For example, the optical filter 45 is made of glass or a dielectric multilayer film. The dielectric multilayer film is made of TiO 2 , Ta 2 O 3 , SiO 2 , MgF 2 or the like, for example.
 なお、図9では、上述の実施形態の光源装置4(図1参照)に光学フィルタ45を追加しているが、上述の第1~第5変形例の光源装置4A~4Eに光学フィルタ45を追加してもよい。 In FIG. 9, the optical filter 45 is added to the light source device 4 (see FIG. 1) of the above embodiment, but the optical filter 45 is added to the light source devices 4A to 4E of the above first to fifth modifications. may be added.
 (9)他の変形例
 蛍光体43bの光スペクトルは、図3の光スペクトルSP1以外であってもよい。蛍光体43bの光スペクトルは、例えば図10に示す光スペクトルSP2~SP5のいずれかであってもよい。この場合、光スペクトルSP2~SP5のそれぞれにおいて、強度が最大値となるときの波長が蛍光波長λ4となる。
(9) Other Modifications The optical spectrum of the phosphor 43b may be other than the optical spectrum SP1 in FIG. The optical spectrum of the phosphor 43b may be any one of optical spectra SP2 to SP5 shown in FIG. 10, for example. In this case, the fluorescence wavelength λ4 is the wavelength at which the intensity reaches the maximum value in each of the optical spectra SP2 to SP5.
 異常判定部22は、光センサ44の検出信号に基づいて、光センサ44における第2光L2の受光量を監視し、受光量の変化量に基づいて、波長変換部材43の異常を判定してもよい。例えば、異常判定部22は、受光量の単位時間当たりの変化量が所定値以上又は所定値以下であるときに、波長変換部材43の「異常あり」と判定する。なお、異常判定部22は、受光量の大きさ及び受光量の変化量以外のパラメータ(受光量に関するパラメータ)に基づいて、波長変換部材43の異常を判定してもよい。 The abnormality determination unit 22 monitors the amount of the second light L2 received by the optical sensor 44 based on the detection signal of the optical sensor 44, and determines the abnormality of the wavelength conversion member 43 based on the amount of change in the amount of received light. good too. For example, the abnormality determination unit 22 determines that the wavelength conversion member 43 is “abnormal” when the amount of change in the amount of received light per unit time is equal to or more than a predetermined value or less than or equal to a predetermined value. The abnormality determination unit 22 may determine abnormality of the wavelength conversion member 43 based on parameters (parameters related to the amount of received light) other than the magnitude of the amount of received light and the amount of change in the amount of received light.
 第1光源41は、レーザ素子(第1レーザ素子)を備える構成に限定されない。第1光源41は、レーザ素子、LED(Light Emitting Diode)、又は有機EL(Organic Electro Luminescence、OEL)などの固体発光素子を備える構成であればよい。 The first light source 41 is not limited to a configuration including a laser element (first laser element). The first light source 41 may have a solid-state light-emitting device such as a laser device, an LED (Light Emitting Diode), or an organic EL (Organic Electro Luminescence, OEL).
 第2光源42は、レーザ素子(第2レーザ素子)を備える構成に限定されない。第2光源42は、レーザ素子、LED、又は有機ELなどの固体発光素子を備える構成であればよい。 The second light source 42 is not limited to a configuration including a laser element (second laser element). The second light source 42 may be configured to include a solid light emitting device such as a laser device, LED, or organic EL.
 第1光源41が備える固体発光素子と、第2光源42が備える固体発光素子と、は同一種類、及び異なる種類のいずれであってもよい。 The solid-state light-emitting elements included in the first light source 41 and the solid-state light-emitting elements included in the second light source 42 may be of the same type or of different types.
 第1光L11の光色は、青色以外であってもよく、特定の光色に限定されない。また、混色光L10の光色は、白色以外であってもよく、特定の光色に限定されない。 The light color of the first light L11 may be other than blue, and is not limited to a specific light color. Moreover, the light color of the mixed color light L10 may be other than white, and is not limited to a specific light color.
 第1電源装置31は、第1光源41に第1点灯電力を供給可能であれば、その回路構成は特定の回路構成に限定されない。第2電源装置32は、第2光源42に第2点灯電力を供給可能であれば、その回路構成は特定の回路構成に限定されない。 The circuit configuration of the first power supply device 31 is not limited to a specific circuit configuration as long as it can supply the first lighting power to the first light source 41 . The circuit configuration of the second power supply device 32 is not limited to a specific circuit configuration as long as it can supply the second lighting power to the second light source 42 .
 波長変換部材43の異常は、基板43aの割れ、変形、及び黒化以外に、波長変換部材43の破損、欠損、剥がれ、及び脱落などを含む。 Abnormalities of the wavelength conversion member 43 include breakage, chipping, peeling, detachment, etc. of the wavelength conversion member 43 in addition to cracking, deformation, and blackening of the substrate 43a.
 上述の実施形態及び各変形例のそれぞれの構成の少なくとも一部を適宜組み合わせることは可能である。 It is possible to appropriately combine at least part of the respective configurations of the above-described embodiment and modifications.
 (10)まとめ
 実施形態に係る第1の態様の光源装置(4、4A~4F)は、第1光源(41)と、波長変換部材(43)と、第2光源(42)と、光センサ(44)と、を備える。第1光源(41)は、第1光(L11)を発する。波長変換部材(43)は、第1光(L11)が入射する第1面(431)、並びに第1光(L11)及び第1光(L11)に波長変換処理を施した波長変換光(L12)を含む混色光(L10)を出射する第2面(432)を有する。第2光源(42)は、波長変換部材(43)の励起波長(λ3)及び蛍光波長(λ4)と異なる検出用波長(λ2)の第2光(L2)を発する。光センサ(44)は、検出用波長(λ2)にピーク感度を有する。そして、光センサ(44)は、波長変換部材(43)で反射した第2光(L2)、又は波長変換部材(43)を透過した第2光(L2)を受光する。
(10) Summary The light source device (4, 4A to 4F) of the first aspect according to the embodiment includes a first light source (41), a wavelength conversion member (43), a second light source (42), an optical sensor (44) and A first light source (41) emits a first light (L11). The wavelength converting member (43) has a first surface (431) on which the first light (L11) is incident, the first light (L11), and the wavelength-converted light (L12 ) for emitting mixed-color light (L10). A second light source (42) emits a second light (L2) having a detection wavelength (λ2) different from the excitation wavelength (λ3) and fluorescence wavelength (λ4) of the wavelength conversion member (43). The optical sensor (44) has a peak sensitivity at the wavelength for detection (λ2). The optical sensor (44) receives the second light (L2) reflected by the wavelength conversion member (43) or the second light (L2) transmitted through the wavelength conversion member (43).
 上述の光源装置(4、4A~4F)は、波長変換部材(43)の異常判定の精度を向上させることができる。 The light source devices (4, 4A to 4F) described above can improve the accuracy of abnormality determination of the wavelength conversion member (43).
 実施形態に係る第2の態様の光源装置(4、4A~4F)では、第1の態様において、検出用波長(λ22)は、1000nmより長いことが好ましい。 In the light source device (4, 4A to 4F) of the second aspect according to the embodiment, in the first aspect, the detection wavelength (λ22) is preferably longer than 1000 nm.
 上述の光源装置(4、4A~4F)は、波長変換部材(43)の過熱などの温度異常を判定できる。 The light source devices (4, 4A to 4F) described above can determine temperature abnormalities such as overheating of the wavelength conversion member (43).
 実施形態に係る第3の態様の光源装置(4、4A~4C)では、第1又は第2の態様において、光センサ(44)は、波長変換部材(43)の外面(430)で反射した第2光(L2)を受光することが好ましい。 In the light source device (4, 4A to 4C) of the third aspect according to the embodiment, in the first or second aspect, the optical sensor (44) reflects off the outer surface (430) of the wavelength conversion member (43) It is preferable to receive the second light (L2).
 上述の光源装置(4、4A~4C)は、波長変換部材(43)の外面(430)近傍での異常を判定できる。 The light source devices (4, 4A to 4C) described above can determine abnormality in the vicinity of the outer surface (430) of the wavelength conversion member (43).
 実施形態に係る第4の態様の光源装置(4、4A~4C)では、第3の態様において、光センサ(44)は、第1面(431)において第1光(L11)が入射する入射領域(W1)、又は第2面(432)において混色光(L10)が出射する出射領域(W2)、で反射した第2光(L2)を受光することが好ましい。 In the light source device (4, 4A to 4C) of the fourth aspect according to the embodiment, in the third aspect, the optical sensor (44) is configured such that the first light (L11) is incident on the first surface (431). It is preferable to receive the second light (L2) reflected by the region (W1) or the emission region (W2) from which the mixed color light (L10) is emitted on the second surface (432).
 上述の光源装置(4、4A~4C)は、波長変換部材(43)の入射領域(W1)近傍又は出射領域(W2)近傍での異常を判定できる。 The light source devices (4, 4A to 4C) described above can determine abnormality in the vicinity of the incident region (W1) or the exit region (W2) of the wavelength conversion member (43).
 実施形態に係る第5の態様の光源装置(4A、4C)では、第3又は第4の態様において、第2面(432)は、第1光(L11)を透過させ、第2光(L2)を反射する出射側光学膜(43d)で形成されていることが好ましい。 In the light source device (4A, 4C) of the fifth aspect according to the embodiment, in the third or fourth aspect, the second surface (432) transmits the first light (L11) and transmits the second light (L2 ) is preferably formed of an exit-side optical film (43d) that reflects the light.
 上述の光源装置(4A、4C)は、異常検出の感度が向上するので、異常判定の精度が向上する。さらに、光源装置(4A、4C)は、照明対象における照明環境を向上させることも可能となる。 The above-described light source devices (4A, 4C) improve the sensitivity of abnormality detection, thereby improving the accuracy of abnormality determination. Furthermore, the light source devices (4A, 4C) can also improve the lighting environment in the lighting target.
 実施形態に係る第6の態様の光源装置(4A)では、第3乃至第5の態様のいずれか1つにおいて、光センサ(44)は、第1面(431)で反射した第2光(L2)を受光する。そして、第1面(431)は、第1光(L11)を透過させ、第2光(L2)を反射する入射側光学膜(43c)で形成されていることが好ましい。 In the light source device (4A) of the sixth aspect according to the embodiment, in any one of the third to fifth aspects, the optical sensor (44) detects the second light ( L2). The first surface (431) is preferably formed of an incident side optical film (43c) that transmits the first light (L11) and reflects the second light (L2).
 上述の光源装置(4A)は、異常検出の感度が向上するので、異常判定の精度が向上する。さらに、光源装置(4A)は、照明対象における照明環境を向上させることも可能となる。 The light source device (4A) described above improves the sensitivity of abnormality detection, thereby improving the accuracy of abnormality determination. Furthermore, the light source device (4A) can also improve the lighting environment in the lighting target.
 実施形態に係る第7の態様の光源装置(4D、4E)では、第1又は第2の態様において、光センサ(44)は、波長変換部材(43)のうち第1光(L11)が通る領域を透過した第2光(L2)を受光することが好ましい。 In the light source device (4D, 4E) of the seventh aspect according to the embodiment, in the first or second aspect, the optical sensor (44) of the wavelength conversion member (43) passes the first light (L11). It is preferable to receive the second light (L2) transmitted through the region.
 上述の光源装置(4D、4E)は、波長変換部材(43)の外面(430)だけでなく、波長変換部材(43)の内部の異常を判定できる。 The light source devices (4D, 4E) described above can determine an abnormality not only on the outer surface (430) of the wavelength conversion member (43) but also on the inside of the wavelength conversion member (43).
 実施形態に係る第8の態様の光源装置(4E)では、第7の態様において、第2面(432)は、シリコーン膜(43e)又は液晶膜で形成されていることが好ましい。 In the light source device (4E) of the eighth aspect according to the embodiment, in the seventh aspect, the second surface (432) is preferably made of a silicone film (43e) or a liquid crystal film.
 上述の光源装置(4E)は、波長変換部材(43)の過熱などの温度異常を判定することができる。 The light source device (4E) described above can determine a temperature abnormality such as overheating of the wavelength conversion member (43).
 実施形態に係る第9の態様の光源装置(4F)は、第1乃至第8の態様のいずれか1つにおいて、検出用波長(λ2)を含まない特定の波長範囲を減衰させた光を光センサ(44)に受光させる光学フィルタ(45)を更に備えることが好ましい。 A light source device (4F) according to a ninth aspect according to the embodiment, in any one of the first to eighth aspects, emits light in which a specific wavelength range not including the detection wavelength (λ2) is attenuated. It is preferred to further comprise an optical filter (45) that allows the sensor (44) to receive light.
 上述の光源装置(4F)は、外乱光によって異常判定の精度が低下することを抑制できる。 The light source device (4F) described above can suppress deterioration in the accuracy of abnormality determination due to ambient light.
 実施形態に係る第10の態様の光源装置(4)は、第1乃至第9の態様のいずれか1つにおいて、第1光(L11)はレーザ光であることが好ましい。 In any one of the first to ninth aspects of the light source device (4) of the tenth aspect according to the embodiment, the first light (L11) is preferably laser light.
 上述の光源装置(4)は、内視鏡、又は産業用顕微鏡などに好適な構成となる。 The light source device (4) described above has a suitable configuration for an endoscope, an industrial microscope, or the like.
 実施形態に係る第11の態様の異常判定システム(5)は、第1乃至第10の態様のいずれか1つの光源装置(4)と、光センサ(44)における第2光(L2)の受光量に基づいて、波長変換部材(43)の異常を判定する異常判定部(22)と、を備える。 An abnormality determination system (5) according to an eleventh aspect of the embodiment includes a light source device (4) according to any one of the first to tenth aspects, and an optical sensor (44) for receiving a second light (L2). and an abnormality determination unit (22) that determines abnormality of the wavelength conversion member (43) based on the quantity.
 上述の異常判定システム(5)は、波長変換部材(43)の異常判定の精度を向上させることができる。 The abnormality determination system (5) described above can improve the accuracy of abnormality determination of the wavelength conversion member (43).
 4、4A~4F 光源装置
 41 第1光源
 42 第2光源
 43 波長変換部材
 430 外面
 431 第1面
 432 第2面
 43c 入射側光学膜
 43d 出射側光学膜
 43e シリコーン膜
 44 光センサ
 45 光学フィルタ
 5 異常判定システム
 22 異常判定部
 L11 第1光
 L12 波長変換光
 L10 混色光
 λ2(λ21、λ22) 検出用波長
 λ3 励起波長
 λ4 蛍光波長
 W1 入射領域
 W2 出射領域
4, 4A to 4F light source device 41 first light source 42 second light source 43 wavelength conversion member 430 outer surface 431 first surface 432 second surface 43c incident side optical film 43d exit side optical film 43e silicone film 44 optical sensor 45 optical filter 5 abnormality Determination system 22 Abnormality determination unit L11 First light L12 Wavelength-converted light L10 Mixed color light λ2 (λ21, λ22) Wavelength for detection λ3 Excitation wavelength λ4 Fluorescence wavelength W1 Incidence area W2 Output area

Claims (11)

  1.  第1光を発する第1光源と、
     前記第1光が入射する第1面、並びに前記第1光及び前記第1光に波長変換処理を施した波長変換光を含む混色光を出射する第2面を有する波長変換部材と、
     前記波長変換部材の励起波長及び蛍光波長と異なる検出用波長の第2光を発する第2光源と、
     前記検出用波長にピーク感度を有する光センサと、を備え、
     前記光センサは、前記波長変換部材で反射した前記第2光、又は前記波長変換部材を透過した前記第2光を受光する
     光源装置。
    a first light source that emits a first light;
    a wavelength conversion member having a first surface on which the first light is incident and a second surface from which mixed color light including the first light and wavelength-converted light obtained by subjecting the first light to wavelength conversion processing is emitted;
    a second light source that emits a second light having a detection wavelength different from the excitation wavelength and fluorescence wavelength of the wavelength conversion member;
    an optical sensor having a peak sensitivity at the detection wavelength;
    The light source device, wherein the optical sensor receives the second light reflected by the wavelength conversion member or the second light transmitted through the wavelength conversion member.
  2.  前記検出用波長は、1000nmより長い
     請求項1の光源装置。
    The light source device according to claim 1, wherein the detection wavelength is longer than 1000 nm.
  3.  前記光センサは、前記波長変換部材の外面で反射した前記第2光を受光する
     請求項1又は2の光源装置。
    3. The light source device according to claim 1, wherein the optical sensor receives the second light reflected by the outer surface of the wavelength conversion member.
  4.  前記光センサは、前記第1面において前記第1光が入射する入射領域、又は前記第2面において前記混色光が出射する出射領域、で反射した前記第2光を受光する
     請求項3の光源装置。
    4. The light source according to claim 3, wherein the optical sensor receives the second light reflected by an incident area where the first light is incident on the first surface or an exit area where the mixed color light is emitted on the second surface. Device.
  5.  前記第2面は、前記第1光を透過させ、前記第2光を反射する出射側光学膜で形成されている
     請求項3又は4の光源装置。
    5 . The light source device according to claim 3 , wherein the second surface is formed of an exit-side optical film that transmits the first light and reflects the second light.
  6.  前記光センサは、前記第1面で反射した前記第2光を受光し、
     前記第1面は、前記第1光を透過させ、前記第2光を反射する入射側光学膜で形成されている
     請求項3乃至5のいずれか1つの光源装置。
    The optical sensor receives the second light reflected by the first surface,
    The light source device according to any one of claims 3 to 5, wherein the first surface is formed of an incident side optical film that transmits the first light and reflects the second light.
  7.  前記光センサは、前記波長変換部材のうち前記第1光が通る領域を透過した前記第2光を受光する
     請求項1又は2の光源装置。
    3. The light source device according to claim 1, wherein the optical sensor receives the second light transmitted through a region of the wavelength conversion member through which the first light passes.
  8.  前記第2面は、シリコーン膜又は液晶膜で形成されている
     請求項7の光源装置。
    The light source device according to Claim 7, wherein the second surface is formed of a silicone film or a liquid crystal film.
  9.  前記検出用波長を含まない特定の波長範囲を減衰させた光を前記光センサに受光させる光学フィルタを更に備える
     請求項1乃至8のいずれか1つの光源装置。
    9. The light source device according to any one of claims 1 to 8, further comprising an optical filter that causes the optical sensor to receive light in which a specific wavelength range that does not include the detection wavelength is attenuated.
  10.  前記第1光はレーザ光である
     請求項1乃至9のいずれか1つの光源装置。
    The light source device according to any one of claims 1 to 9, wherein the first light is laser light.
  11.  請求項1乃至10のいずれか1つの光源装置と、
     前記光センサにおける前記第2光の受光量に基づいて、前記波長変換部材の異常を判定する異常判定部と、を備える
     異常判定システム。
    A light source device according to any one of claims 1 to 10;
    An abnormality determination system, comprising: an abnormality determination unit that determines an abnormality of the wavelength conversion member based on the amount of the second light received by the optical sensor.
PCT/JP2022/044050 2022-01-06 2022-11-29 Light source device, and anomaly determination system WO2023132162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022001323A JP2023100558A (en) 2022-01-06 2022-01-06 Light source device and abnormality determination system
JP2022-001323 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132162A1 true WO2023132162A1 (en) 2023-07-13

Family

ID=87073451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044050 WO2023132162A1 (en) 2022-01-06 2022-11-29 Light source device, and anomaly determination system

Country Status (2)

Country Link
JP (1) JP2023100558A (en)
WO (1) WO2023132162A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181913A1 (en) * 2014-05-28 2015-12-03 Necディスプレイソリューションズ株式会社 Light source device, projection display device, and light source control method
WO2017138412A1 (en) * 2016-02-09 2017-08-17 パナソニックIpマネジメント株式会社 Light source device and projection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181913A1 (en) * 2014-05-28 2015-12-03 Necディスプレイソリューションズ株式会社 Light source device, projection display device, and light source control method
WO2017138412A1 (en) * 2016-02-09 2017-08-17 パナソニックIpマネジメント株式会社 Light source device and projection device

Also Published As

Publication number Publication date
JP2023100558A (en) 2023-07-19

Similar Documents

Publication Publication Date Title
US10612762B2 (en) Wavelength conversion member, manufacturing method therefor, and light-emitting device
JP5380052B2 (en) LED lighting device
JP6604598B2 (en) Wavelength conversion device and illumination device
WO2006011571A1 (en) Light source and endoscope equipped with this light source
CN111133343B (en) Optical wavelength conversion device and optical multiplexing device
US10508801B2 (en) Wavelength conversion member and light-emitting device
JP2008108553A (en) Light-emitting device
JP2011176045A (en) Laminated type semiconductor light-emitting element
JP2004031843A (en) Light-emitting diode
JP2017526192A (en) Light emitting device
JP2010054377A (en) Infrared inspection device
WO2023132162A1 (en) Light source device, and anomaly determination system
WO2012022241A1 (en) High brightness luminous light source
JP5900628B2 (en) Solar cell inspection equipment
JP7266241B2 (en) Light detection device, lighting device, and lighting system
JP3716303B2 (en) Method and apparatus for measuring luminous efficiency of photosensitive light emitting device
JP2010176966A (en) Inspection and repair device of organic el display panel
Zhuo et al. Effect of particle sizes and mass ratios of a phosphor on light color performance of a green phosphor thin film and a laminated white light-emitting diode
JP2019062081A (en) Fluorescent light source device
JP7085758B2 (en) Optical measuring device, light source device
EP2652805B1 (en) Illumination system with light source, radiation converting element and filter
TW202002337A (en) Color conversion element and illumination device
WO2022201653A1 (en) Light source device
KR101180833B1 (en) IR Illuminating Tester Using LED
EP4006404A1 (en) Light source system and illumination apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918749

Country of ref document: EP

Kind code of ref document: A1