JP3716303B2 - Method and apparatus for measuring luminous efficiency of photosensitive light emitting device - Google Patents

Method and apparatus for measuring luminous efficiency of photosensitive light emitting device Download PDF

Info

Publication number
JP3716303B2
JP3716303B2 JP2002015941A JP2002015941A JP3716303B2 JP 3716303 B2 JP3716303 B2 JP 3716303B2 JP 2002015941 A JP2002015941 A JP 2002015941A JP 2002015941 A JP2002015941 A JP 2002015941A JP 3716303 B2 JP3716303 B2 JP 3716303B2
Authority
JP
Japan
Prior art keywords
light
emitting element
integrating sphere
input
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002015941A
Other languages
Japanese (ja)
Other versions
JP2003214946A (en
Inventor
善朗 市野
一朗 齊藤
洋司 蔀
清志 八瀬
徳幸 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002015941A priority Critical patent/JP3716303B2/en
Publication of JP2003214946A publication Critical patent/JP2003214946A/en
Application granted granted Critical
Publication of JP3716303B2 publication Critical patent/JP3716303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、空間光変調素子、光演論理算素子および省電力ディスプレイパネル等に用いられる、光感応型発光素子の外部量子効率および外部エネルギー効率(両者を併せて「発光効率」という。)を測定する方法及びそれに用いる測定装置に関する。ここで、光感応型発光素子とは、電界発光素子であり、かつ、入射光に感応して発光のスイッチング、波長変換、もしくは発光強度の制御を行なう素子をいう。
【0002】
【従来の技術】
発光素子の性能表記に関しては、輝度または光度で行われる場合が通例であるが、発光素子8の全放射束に関る外部量子効率を実験的に正しく求めることは、発光素子8の材料および構造の最適化においても、また発光のメカニズムに関する基礎的知見を得る上でも非常に重要である。また、発光素子の外部エネルギー効率を実験的に正しく求めることは、発光素子8の省電力特性を評価する上で非常に重要である。
【0003】
発光素子の外部量子効率とは、下記のように定義される。
【数1】

Figure 0003716303
電界発光素子に関しては、外部量子効率の測定方法および測定装置が、例えば特許公開2001-250675に提案されている。
【0004】
また、発光素子の外部エネルギー効率とは、下記のように定義される。
【数2】
Figure 0003716303
通常の電界発光素子においては、入力エネルギーを電力(W)、発光エネルギーを全光束(lm)で与えることにより、外部エネルギー効率を(lm/W)の形で求めることが多い。一方、発光エネルギーを全放射束(W)で与えた場合、太陽電池のエネルギー効率の表記と同様、「エネルギー変換効率」(100を乗じることにより%で表せる)となる。
【0005】
一方、入射光に感応して発光のスイッチング、波長変換又は発光強度の制御が可能な「光感応型」発光素子が注目を集めている。例えば、特許公開平6-275864(光―光変換素子)又は下記の文献に提案されている発光素子である。
“Organic Light-Emitting Diode with TiOPc Layer - A New Multifunctional Optoelectronic Device” J.P. Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, N. Takada, K. Yase, Jpn. J. Appl. Phys. 40 (2001) L948
【0006】
本素子の特徴は、有機エレクトロルミネッセンス(EL)素子としての発光層の他に、光電変換層を有していることであり、DC電源と太陽電池とを併用した発光素子ということも出来る。
【0007】
本発光素子は、従来の発光素子にない特徴を有することから、発光素子8の基本的性能の指標である外部量子効率及び外部エネルギー効率を評価することが非常に重要である。
【0008】
【発明が解決しようとする課題】
定義(数1)および(数2)に基づいて光感応型発光素子の発光効率を評価する際には、発光の全放射束の評価に加えて、入射光に関する定量評価も同時に行なう必要がある。
【0009】
しかし、従来の発光素子の量子効率評価装置、例えば特許公開2001―250675に提案されているような装置においては、積分球外からの入射光を定量評価する手段がないため、入射光強度のうち実際に光電変換層に吸収された割合を決めることができない。
【0010】
一方、従来の固体の蛍光量子効率測定装置、例えば特許公開平9―292281に提案されているような装置においては、入射光の定量評価は可能だが、発光素子用の電極、電源および電流測定装置(エレクトロメータ)を装備していないため、発光素子としての評価を行なうことが出来ない。即ち、従来の量子効率測定装置においては、光感応型発光素子の発光効率を評価することは出来ない。
【0011】
【課題を解決するための手段】
本願発明においては、光感応型発光素子の発光効率を評価できる測定方法および測定装置を提供する。即ち、入射光を導入することができ、入射光強度を定量評価することができ、入射光強度のうち実際に光電変換層に吸収された割合を定量評価することができ、かつ発光全放射束を定量評価できる測定方法および測定装置を提供する。
本願発明における測定装置は、入射ポート、アタッチメント付きポート及びファイバー出射ポートを備えた積分球、ファイバーバンドル、分光器、光検出器、光検出器用コントローラ、制御用コンピュータ、発光素子用DC電源及びエレクトロメータ、光電変換用光源、校正用分光放射照度標準電球および標準電球用電源により構成される。DC電源及びエレクトロメータは、ソースメジャーユニット(例えばケースレー社モデル2400など)1台で置換えることもできる。光検出器はフォトダイオードであっても、光電子増倍管であっても、CCDマルチチャンネル検出器であっても構わないが、測定時間の短縮および簡便さの観点からCCDマルチチャンネル検出器が望ましく、さらには検出感度の観点から液体窒素冷却もしくは電子冷却タイプのCCD検出器が望ましい。光電変換用光源は、発光スペクトルと分離することが可能ならば、単色光源でなくても良い。また、レーザー光源でも、良くコリメートされたインコヒーレント光源(例えばハロゲンランプや発光ダイオードや太陽光)でも構わない。また、分光放射照度標準電球については、国家標準にトレーサブルなものとしてウシオ電機社製品(100V, 500W)を用いることが望ましい。
【0012】
【本願発明の実施例】
以下、図1を用いて、本願発明の実施例について説明する。1は積分球、2はファイバーバンドル用出射ポート、3,5は入射ポート、4はアタッチメント取り付け用ポート、9はバッフルである。ファイバーバンドル用出射ポート2にはファイバーバンドル18が装着できる。入射ポート3には開口面積の校正値のついたアパーチャ−6が装着できる。アパーチャ−6の開口面積は入力用光源16からの入射光のビームサイズよりわずかに大きいことが望ましい。7は発光素子8を取り付けるためのアタッチメントであり、電流端子(+)(-)を備える。19は発光素子8の為のDC電源と電流測定とを兼ねたソースメジャーユニットである。発光素子8は、発光素子8からの発光が、直接、出射ポート2から出射しないように配置しなければならない。バッフル9は、出射口2に対し、発光素子8からの発光の直入射光、および分光放射照度標準電球10もしくは入力用光源16からの積分球壁面への入射光の一次反射光を遮光することができれば、積分球内の取り付け位置は問わない。分光放射照度標準電球10は、入射ポート3からちょうど50cm離れた位置に設置する。このとき入射ポート3から標準電球10までの距離は厳密に測ることが必要である。11は標準電球10のためのDC電源である。12は分光器であり、入射ポート5を装着できる。分光器12で分光された光は光検出器13に入射する。光検出器13はコントローラ14を介して、分光器12とともにコンピュータ15により制御される。16は積分球内に入射させる入力光用光源であり、17は減光装置である。
【0013】
測定は下記の手順により行われる。
最初に、積分球1、ファイバーバンドル18、分光器12及び光検出器13の全てを含む装置全体の絶対分光感度の校正を行なう。入射ポート3にアパーチャー6を装着し、標準電球10を指示通りの方法で点灯させ、光検出器13によりスペクトルC(λ)を測定する。標準電球10からの光は、積分球1による一次反射光がアパーチャー6から戻って行かないように、垂直入射に対して角度θをつけて入射させる。このとき、波長λ(nm)における装置全体の絶対分光感度G(λ) (counts・W-1・ nm-1)は下記の式で与えられる。
【数3】
Figure 0003716303
上記(数3)において、S (m2)はアパーチャー6の開口面積、E(λ) (W・m-2・ nm-1)は標準電球10につけられた分光放射照度校正値である。
【0014】
次に、標準電球10は点灯させたままで遮光し、さらに光源16を(図2)(a)にあるように、光感応型発光素子8が積分球内に存在しない状態において、光源16からの入力光を入射ポート3より入射させる。光源16からの入力光路は、標準電球10からの光路と一致させる。このとき、(図3)(a)にあるような入力光源のみのスペクトルが測定され、これをLa(λ)とする。
【0015】
次に、標準電球10の遮光を解除し、光源16を遮光する。素子8をアタッチメント7に標準電球10からの入射光が直接あたらないような位置に固定し、標準電球10からの入射光によるスペクトルC’(λ)を測定し、下記の補正係数を求める。
【数4】
Figure 0003716303
【0016】
次に、標準電球10を消灯させ、(図2)(b)にあるように、発光素子8を積分球内において直接光源16からの入力光が当たらない位置に固定して点灯させ、さらに入力光を導入すると、(図3)(b)にあるようなスペクトルが測定される。入力光部分をLb(λ)とし、発光素子8からの発光成分をRb(λ)とする。この場合、発光素子8をかすめて直接積分球壁面にあたって拡散反射した入力光が全方位から発光素子8に均等入射し、その一部を発光素子8の光電変換層が吸収する。このとき均等入力光の発光素子8による吸収率をμとすると、Lb(λ)は
【数5】
Figure 0003716303
と表せるので、吸収率μは
【数6】
Figure 0003716303
と表せる。このとき、入力光のうち、発光素子8に吸収された成分はμLa(λ)と表せる。
【0017】
(数4)で求めたように、発光素子8が積分球内に存在することによって装置全体の絶対分光感度が変化するが、(数5)は、励起波長における絶対分光感度の変化を示している。一方、蛍光スペクトルR b(λ)については、次式により補正することができる。
【数7】
Figure 0003716303
ここで、発光素子による再吸収、及び再吸収による発光の増大もしくは蛍光の発生が無視できると仮定すれば、(数7)は、発光素子8の存在による積分球全体の分光拡散反射率の変化に対する補正を与える。
【0018】
次に、(図2)(c)にあるように、光源16および減光装置17をそれぞれ16’および17’の位置に移動させ、発光素子8に直接光源16からの光を入射させる。発光素子8からの反射光が、標準電球からの光の入射位置と一致するように、発光素子8にはθ2の傾斜角が付けられて設置される。このとき、(図3)(c)にあるようなスペクトルが測定される。入力光成分をLc(λ)とし、発光素子8からの発光成分をRc(λ)とする。Lc(λ)は、直入射光の発光素子8による吸収率Aを用いて
【数8】
Figure 0003716303
と表せるので、吸収率Aは、
【数9】
Figure 0003716303
と表せる。(数6)および(数9)を用いて、測定値であるLa(λ)、Lb(λ)およびLc(λ)から、吸収率μとAとがそれぞれ求められる。
【0019】
また、このとき入力光のうち発光素子8の光電変換層に吸収された成分は
【数10】
Figure 0003716303
と表せる。(数10)において第1項は、直入力光成分であり、第2項は、積分球壁面からの拡散反射による均等入力光成分である。
また、(数7)と同様に、Rc(l)について下記の補正を行なう。
【数11】
Figure 0003716303
【0020】
次に、(図2)(c)の配置は変えずに、光源の強度のみ A / {A+(1-A)m} 倍に減光して、スペクトル測定を行なうと、(図3)(d)にあるようなスペクトルが得られる。ここで、入力光成分をLd(l)とし、発光成分をRd(l)とする。このとき(数10)より、入力光のうち発光素子8に吸収された成分はALa(l)となる。これは(数10)の第1項に等しい。即ち、このときの発光成分Rd(l)は、入力光La(l)に対して、球壁面からの拡散反射光による均等入力の寄与を取り除いた真の発光成分である。ただし、下記の補正が必要である。
【数12】
Figure 0003716303
【0021】
入力光の減光装置17の一例を(図4)に示す。ここで20は可変減光板、21はペリクル、22は光検出器である。ペリクル21に関しては、絶対値が校正されている必要はないが、入力光に対して十分直線性を示すものでなければならない。
【0022】
最後に、(図2)(c)の配置は変えずに、光源16を消灯させ、入射光がない状態でスペクトル測定を行なう。このときのスペクトルをRe(λ)とする。ただし、下記の補正が必要である。
【数13】
Figure 0003716303
【0023】
外部量子効率は、入力光の有無に関らず(数1)に従うので、下記の式により、(数3)で得られたG(λ)とRd(λ)、Re(λ)を用いて表すことができる。
【数14】
Figure 0003716303
ここでhはプランク定数、cは光速、eは素電荷である。(数14)のηφは、i=d の場合は、入力光があるときの外部量子効率を与え、i=e の場合は、入力光がないときの外部量子効率を与える。また電流測定値については、入力光がある場合をId、および入力光がない場合をIeとする。また、入力光のパワーΦL (W)は下記により与えられる。
【数15】
Figure 0003716303
【0024】
外部エネルギー効率については、下記のとおり定義する。
【数16】
Figure 0003716303
(数16)の定義に従い、外部エネルギー効率は下記のように求められる。
【数17】
Figure 0003716303
ここで、
【数18】
Figure 0003716303
であり、入力光があるときは i=d 、入力光がないときは i=e かつ φL=0 である。
【0025】
【発明の効果】
本願発明によれば、光感応型発光素子に関して、発光および入力光の双方を定量評価することにより、外部量子効率および外部エネルギー効率を正確に求めることができる。
対象素子としては、有機光電変換層を有する有機エレクトロルミネッセンス(EL)素子を主たる対象とするが、入力光に対して感応する電界発光素子であれば、有機・無機を問わない。また、素子の構造も問わない。
本測定装置を用いて、入力光を伴わない通常の発光素子(有機EL素子、無機EL素子、発光ダイオード)の量子効率およびエネルギー効率も求めることができ、
固体試料の絶対蛍光量子効率も求めることができる。
【図面の簡単な説明】
【図1】本願発明による光感応型発光素子の発光効率測定装置の構成図
【図2】本願発明による積分球内の発光素子の配置図
【図3】本願発明による測定スペクトルの例
【図4】本願発明による減光装置の一例
【符号の説明】
1 積分球
2 バンドルファイバー用出射ポート
3 入射ポート
4 アタッチメント取り付け用ポート
5 入射ポート
6 アパーチャー
7 アタッチメント
8 発光素子
9 バッフル
10 分光放射照度標準電球
11 DC電源
12 分光器
13 光検出器
14 コントローラ
15 コンピュータ
16 入力光用光源
17 減光装置
18 ファイバーバンドル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the external quantum efficiency and external energy efficiency (collectively referred to as “luminescence efficiency”) of a light-sensitive light-emitting element used for a spatial light modulation element, a photonic logic element, a power-saving display panel, and the like. The present invention relates to a measuring method and a measuring apparatus used therefor. Here, the light-sensitive light-emitting element refers to an electroluminescent element that performs light emission switching, wavelength conversion, or light emission intensity control in response to incident light.
[0002]
[Prior art]
Regarding the performance notation of the light-emitting element, it is usually performed in luminance or luminous intensity. However, it is necessary to experimentally correctly determine the external quantum efficiency related to the total radiant flux of the light-emitting element 8. It is also very important in optimizing the light emission and obtaining basic knowledge about the mechanism of light emission. Also, it is very important to correctly determine the external energy efficiency of the light emitting element experimentally in evaluating the power saving characteristics of the light emitting element 8.
[0003]
The external quantum efficiency of the light emitting element is defined as follows.
[Expression 1]
Figure 0003716303
As for the electroluminescent device, a method and apparatus for measuring external quantum efficiency have been proposed in, for example, Japanese Patent Publication No. 2001-250675.
[0004]
Further, the external energy efficiency of the light emitting element is defined as follows.
[Expression 2]
Figure 0003716303
In an ordinary electroluminescence device, external energy efficiency is often obtained in the form of (lm / W) by giving input energy as electric power (W) and emission energy as total luminous flux (lm). On the other hand, when the emission energy is given by the total radiant flux (W), it is “energy conversion efficiency” (expressed in% by multiplying by 100), as in the case of the solar cell energy efficiency.
[0005]
On the other hand, “light-sensitive” light-emitting elements capable of switching emission, wavelength conversion, or controlling emission intensity in response to incident light have attracted attention. For example, it is a light-emitting element proposed in Japanese Patent Publication No. 6-75864 (light-light conversion element) or the following document.
“Organic Light-Emitting Diode with TiOPc Layer-A New Multifunctional Optoelectronic Device” JP Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, N. Takada, K. Yase, Jpn. J. Appl. Phys .40 (2001) L948
[0006]
A feature of this element is that it has a photoelectric conversion layer in addition to a light emitting layer as an organic electroluminescence (EL) element, and can also be said to be a light emitting element using a DC power source and a solar cell in combination.
[0007]
Since this light-emitting element has characteristics that are not found in conventional light-emitting elements, it is very important to evaluate external quantum efficiency and external energy efficiency, which are indicators of basic performance of the light-emitting element 8.
[0008]
[Problems to be solved by the invention]
When evaluating the luminous efficiency of light-sensitive light-emitting elements based on the definitions (Equation 1) and (Equation 2), in addition to evaluating the total radiant flux of light emission, it is necessary to perform quantitative evaluation of incident light at the same time. .
[0009]
However, conventional quantum efficiency evaluation devices for light-emitting elements, such as those proposed in Patent Publication 2001-250675, have no means for quantitatively evaluating incident light from outside the integrating sphere. The ratio actually absorbed in the photoelectric conversion layer cannot be determined.
[0010]
On the other hand, in a conventional solid-state fluorescence quantum efficiency measurement device, for example, a device as proposed in Japanese Patent Application Laid-Open No. 9-292281, it is possible to quantitatively evaluate incident light, but an electrode for a light emitting element, a power source, and a current measurement device. Since it is not equipped with an (electrometer), it cannot be evaluated as a light emitting element. That is, in the conventional quantum efficiency measuring device, it is not possible to evaluate the light emission efficiency of the photosensitive light emitting element.
[0011]
[Means for Solving the Problems]
In this invention, the measuring method and measuring apparatus which can evaluate the luminous efficiency of a photosensitive light emitting element are provided. That is, the incident light can be introduced, the incident light intensity can be quantitatively evaluated, the proportion of the incident light intensity actually absorbed by the photoelectric conversion layer can be quantitatively evaluated, and the total radiant flux A measurement method and a measurement apparatus capable of quantitatively evaluating the above are provided.
The measuring apparatus according to the present invention includes an integrating sphere having an incident port, an attachment port, and a fiber exit port, a fiber bundle, a spectroscope, a photodetector, a photodetector controller, a control computer, a DC power source for light emitting elements, and an electrometer. , A photoelectric conversion light source, a calibration spectral irradiance standard light bulb, and a power supply for a standard light bulb. The DC power supply and electrometer can be replaced with a single source measure unit (eg Keithley Model 2400). The photodetector may be a photodiode, a photomultiplier tube, or a CCD multichannel detector, but a CCD multichannel detector is desirable from the viewpoint of shortening measurement time and simplicity. Furthermore, from the viewpoint of detection sensitivity, a liquid nitrogen cooled or electronically cooled CCD detector is desirable. The photoelectric conversion light source may not be a monochromatic light source as long as it can be separated from the emission spectrum. Further, a laser light source or a well collimated incoherent light source (for example, a halogen lamp, a light emitting diode, or sunlight) may be used. For standard irradiance light bulbs, it is desirable to use Ushio Electric products (100V, 500W) that are traceable to national standards.
[0012]
[Embodiment of the present invention]
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 is an integrating sphere, 2 is a fiber bundle exit port, 3 and 5 are entrance ports, 4 is an attachment mounting port, and 9 is a baffle. A fiber bundle 18 can be attached to the output port 2 for the fiber bundle. An aperture 6 with an aperture area calibration value can be attached to the incident port 3. It is desirable that the aperture area of the aperture 6 is slightly larger than the beam size of the incident light from the input light source 16. Reference numeral 7 denotes an attachment for attaching the light emitting element 8 and includes current terminals (+) (−). Reference numeral 19 denotes a source measure unit that serves both as a DC power source and current measurement for the light emitting element 8. The light emitting element 8 must be arranged so that light emitted from the light emitting element 8 does not directly exit from the emission port 2. The baffle 9 can block the direct incident light of light emitted from the light emitting element 8 and the primary reflected light from the standard irradiance light bulb 10 or the input light source 16 to the integrating sphere wall surface from the light emission element 2 to the exit port 2. If possible, the mounting position in the integrating sphere is not limited. The spectral irradiance standard light bulb 10 is installed at a position just 50 cm away from the incident port 3. At this time, it is necessary to precisely measure the distance from the incident port 3 to the standard bulb 10. 11 is a DC power supply for the standard bulb 10. Reference numeral 12 denotes a spectroscope, to which an incident port 5 can be attached. The light separated by the spectroscope 12 enters the photodetector 13. The photodetector 13 is controlled by the computer 15 together with the spectroscope 12 via the controller 14. Reference numeral 16 denotes a light source for input light that enters the integrating sphere, and reference numeral 17 denotes a dimmer.
[0013]
The measurement is performed according to the following procedure.
First, the absolute spectral sensitivity of the entire apparatus including the integrating sphere 1, the fiber bundle 18, the spectroscope 12, and the photodetector 13 is calibrated. The aperture 6 is attached to the incident port 3, the standard bulb 10 is turned on according to the instruction, and the spectrum C (λ) is measured by the photodetector 13. The light from the standard bulb 10 is incident at an angle θ with respect to the vertical incidence so that the primary reflected light from the integrating sphere 1 does not return from the aperture 6. At this time, the absolute spectral sensitivity G (λ) (counts · W −1 · nm −1 ) of the entire apparatus at the wavelength λ (nm) is given by the following equation.
[Equation 3]
Figure 0003716303
In the above (Equation 3), S (m 2 ) is the aperture area of the aperture 6, and E (λ) (W · m −2 · nm −1 ) is the spectral irradiance calibration value attached to the standard bulb 10.
[0014]
Next, the standard bulb 10 is kept lit and shielded, and the light source 16 from the light source 16 in the state where the light-sensitive light emitting element 8 does not exist in the integrating sphere as shown in FIG. Input light is incident from the incident port 3. The input optical path from the light source 16 is matched with the optical path from the standard bulb 10. At this time, the spectrum of only the input light source as shown in (a) of FIG. 3 is measured, and this is defined as La (λ).
[0015]
Next, the light shielding of the standard bulb 10 is canceled and the light source 16 is shielded. The element 8 is fixed to the attachment 7 at a position where the incident light from the standard bulb 10 is not directly applied, the spectrum C ′ (λ) due to the incident light from the standard bulb 10 is measured, and the following correction coefficient is obtained.
[Expression 4]
Figure 0003716303
[0016]
Next, the standard light bulb 10 is turned off, and the light emitting element 8 is fixed and turned on at a position where the input light from the light source 16 does not directly hit in the integrating sphere as shown in (b) of FIG. When light is introduced, a spectrum as shown in Fig. 3 (b) is measured. The input light portion is L b (λ), and the light emission component from the light emitting element 8 is R b (λ). In this case, the input light diffused and reflected directly on the integrating sphere wall surface by grazing the light emitting element 8 is uniformly incident on the light emitting element 8 from all directions, and a part of the input light is absorbed by the photoelectric conversion layer of the light emitting element 8. At this time, if the absorptance of the uniform input light by the light emitting element 8 is μ, L b (λ) is given by
Figure 0003716303
Since the absorption rate μ can be expressed as
Figure 0003716303
It can be expressed. At this time, the component of the input light absorbed by the light emitting element 8 can be expressed as μL a (λ).
[0017]
As calculated in (Equation 4), the absolute spectral sensitivity of the entire apparatus changes due to the presence of the light emitting element 8 in the integrating sphere. (Equation 5 ) shows the change in the absolute spectral sensitivity at the excitation wavelength. Yes. On the other hand, the fluorescence spectrum R b (λ) can be corrected by the following equation.
[Expression 7]
Figure 0003716303
Here, assuming that re-absorption by the light-emitting element and increase in light emission or generation of fluorescence due to re-absorption are negligible, (Equation 7) is the change in the spectral diffuse reflectance of the entire integrating sphere due to the presence of the light-emitting element 8. Give a correction for.
[0018]
Next, as shown in FIG. 2 (c), the light source 16 and the dimming device 17 are moved to the positions 16 ′ and 17 ′, respectively, and the light from the light source 16 is directly incident on the light emitting element 8. The light emitting element 8 is installed with an inclination angle of θ 2 so that the reflected light from the light emitting element 8 matches the incident position of the light from the standard bulb. At this time, a spectrum as shown in (c) of FIG. 3 is measured. The input light component is L c (λ), and the light emission component from the light emitting element 8 is R c (λ). L c (λ) is obtained by using the absorptance A by the light emitting element 8 of the direct incident light.
Figure 0003716303
The absorption rate A is
[Equation 9]
Figure 0003716303
It can be expressed. Using (Equation 6) and (Equation 9), the absorption ratios μ and A are obtained from the measured values L a (λ), L b (λ), and L c (λ), respectively.
[0019]
At this time, the component absorbed in the photoelectric conversion layer of the light emitting element 8 in the input light is
Figure 0003716303
It can be expressed. In (Equation 10 ), the first term is a direct input light component, and the second term is a uniform input light component due to diffuse reflection from the integrating sphere wall surface.
Further, as in (Expression 7), the following correction is performed for R c (l).
[Expression 11]
Figure 0003716303
[0020]
Next, (Fig. 2) (c) without changing the arrangement, only the intensity of the light source was attenuated by A / {A + (1-A) m} times, and the spectrum was measured (Fig. 3) ( A spectrum as in d) is obtained. Here, the input light component is L d (l), and the light emission component is R d (l). At this time, from (Equation 10 ), the component of the input light absorbed by the light emitting element 8 is AL a (l). This is equal to the first term of (Equation 10 ). That is, the light emission component R d (l) at this time is a true light emission component obtained by removing the contribution of equal input due to diffuse reflection light from the spherical wall surface with respect to the input light L a (l). However, the following correction is required.
[Expression 12]
Figure 0003716303
[0021]
An example of the input light dimming device 17 is shown in FIG. Here, 20 is a variable dimming plate, 21 is a pellicle, and 22 is a photodetector. Regarding the pellicle 21, the absolute value does not need to be calibrated, but must be sufficiently linear with respect to the input light.
[0022]
Finally, without changing the arrangement of FIG. 2 (c), the light source 16 is turned off, and spectrum measurement is performed in the absence of incident light. The spectrum of this time is R e (λ). However, the following correction is required.
[Formula 13]
Figure 0003716303
[0023]
Since the external quantum efficiency follows (Equation 1) regardless of the presence or absence of input light, G (λ), R d (λ), and R e (λ) obtained in (Equation 3) are Can be used.
[Expression 14]
Figure 0003716303
Here, h is the Planck constant, c is the speed of light, and e is the elementary charge. Η φ in (Equation 14) gives the external quantum efficiency when there is input light when i = d, and gives the external quantum efficiency when there is no input light when i = e. As for the current measurement value, I d when there is input light and I e when there is no input light. The power Φ L (W) of the input light is given by
[Expression 15]
Figure 0003716303
[0024]
External energy efficiency is defined as follows.
[Expression 16]
Figure 0003716303
According to the definition of (Equation 16), the external energy efficiency is calculated as follows.
[Expression 17]
Figure 0003716303
here,
[Expression 18]
Figure 0003716303
I = d when there is input light, i = e and φ L = 0 when there is no input light.
[0025]
【The invention's effect】
According to the present invention, the external quantum efficiency and the external energy efficiency can be accurately obtained by quantitatively evaluating both light emission and input light with respect to the light-sensitive light-emitting element.
The target element is mainly an organic electroluminescence (EL) element having an organic photoelectric conversion layer, but any organic or inorganic element can be used as long as it is an electroluminescent element sensitive to input light. Further, the structure of the element is not limited.
Using this measuring device, the quantum efficiency and energy efficiency of ordinary light emitting elements (organic EL elements, inorganic EL elements, light emitting diodes) that do not involve input light can be obtained,
The absolute fluorescence quantum efficiency of the solid sample can also be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a light-emitting efficiency measuring device for a light-sensitive light-emitting element according to the present invention. FIG. 2 is a layout diagram of light-emitting elements in an integrating sphere according to the present invention. Example of dimming device according to the present invention
DESCRIPTION OF SYMBOLS 1 Integrating sphere 2 Outlet port for bundle fiber 3 Incident port 4 Attachment mounting port 5 Incident port 6 Aperture 7 Attachment 8 Light emitting element 9 Baffle 10 Spectral irradiance standard bulb 11 DC power source 12 Spectrometer 13 Photo detector 14 Controller 15 Computer 16 Light source for input light 17 Dimming device 18 Fiber bundle

Claims (7)

光感応型発光素子の発光効率測定方法であり、積分球に分光放射照度標準電球からの光を入射させ、該電球からの入射光に基づく光を測定することにより装置全体の分光感度を求め、該電球からの光は遮断した状態において、該積分球に該発光素子へ発光のスイッチング、波長変換又は発光強度の制御を行なう入力光を入射させ、該入力光に起因する積分球壁面による拡散反射光を測定することにより、該入力光のみによるスペクトルを求め、次に、該発光素子を該積分球内に設置し、該発光素子に該入力光を照射し、該入力光の照射に基づく光のスペクトルを測定することにより発光素子の発光効率を求めることを特徴とする光感応型発光素子の発光効率測定方法。This is a method for measuring the luminous efficiency of a light-sensitive light-emitting element, in which light from a standard irradiance bulb is made incident on an integrating sphere, and the spectral sensitivity of the entire apparatus is obtained by measuring light based on the incident light from the bulb, In the state where the light from the bulb is cut off, input light for switching light emission, wavelength conversion or control of light emission intensity is made incident on the integrating sphere, and diffuse reflection by the integrating sphere wall surface caused by the input light By measuring light, a spectrum based only on the input light is obtained, and then the light emitting element is placed in the integrating sphere, the light emitting element is irradiated with the input light, and light based on the irradiation of the input light luminous efficiency measuring method of light-sensitive light emitting device and obtains the luminous efficiency of the light emitting element by measuring the spectrum of the. 請求項1記載の光感応型発光素子の発光効率測定方法において、上記分光感度を求めるに際し、上記積分球内に発光素子を設置せずに、上記標準電球からの光は、積分球による一次反射光が入射口より戻らないように、垂直入射に対して角度を設けて入射し、該標準電球からの光に基づくスペクトルを求め、次に、該発光素子を積分球内に導入し、該標準電球からの入射光が直接当たらない位置に設置して、該標準電球からの光に基づく光を測定することによりスペクトルの補正を行うことを特徴とする光感応型発光素子の発光効率測定方法。In the light emission efficiency measuring method of the photosensitive light-emitting device according to claim 1, wherein, when obtaining the spectral sensitivity, without installing the light-emitting element in the integrating sphere, the light from the standard light bulb, primary by integrating sphere as the reflected light does not return from the entrance, the angle incident provided for normal incidence, calculated spectra based on light from said standard light bulbs, then introducing the light emitting element in the integrating sphere, Luminous efficiency measurement of a light-sensitive light-emitting element, characterized in that it is installed at a position where the incident light from the standard bulb does not directly hit and the spectrum is corrected by measuring light based on the light from the standard bulb Method. 請求項1記載の発光効率測定方法において、上記入力光のみによるスペクトルを求めるに際し、上記積分球内に上記発光素子を設置せずに、該入力光は、積分球による一次反射光が入射口より戻らないように、垂直入射に対して角度を設けて入射し、入力光に起因する積分球内の拡散反射光によるスペクトルを求め、次に、該発光素子を積分球内に導入し、該入力光が直接当たらない位置に設置して、該入力光に起因する積分球内の拡散反射光及び素子の発光を測定することによりスペクトルの補正を行うことを特徴とする光感応型発光素子の発光効率測定方法。In the light emission efficiency measuring method according to claim 1, wherein, when obtaining the spectrum due to only the input light, without installing the light emitting device in the integrating sphere, the input light, the primary light reflected by the integrating sphere entrance as no more return, incident provided an angle to normal incidence, calculated spectrum by diffuse reflection light within the integrating sphere due to the input light, then, introducing the light emitting element into said integrating sphere and, installed at a position where the input light is not irradiated directly, photosensitive, characterized in that the correction of the spectrum by measuring the emission of diffuse reflected light and the element in the integrating sphere due to the input light Method for measuring luminous efficiency of a light-emitting element. 上記請求項1記載の光感応型発光素子の発光効率測定方法において、上記装置全体の分光感度を求めるための上記入射光及び上記入力光のみによるスペクトルを求めるための該入力光は、上記積分球に設けられた第1の入射ポートを通して該積分球に導入し、発光素子への照射に基づく光のスペクトルを測定するための該入力光の照射は、積分球に設けられた第2の入射ポートを通して行うことを特徴とする光感応型発光素子の発光効率測定方法。The light-emitting efficiency measuring method for a light-sensitive light-emitting element according to claim 1, wherein the input light for obtaining a spectrum of only the incident light and the input light for obtaining the spectral sensitivity of the entire apparatus is the integrating sphere. introduced into the integrating sphere through a first input port provided on the irradiation of the input light for measuring the spectrum of the light based on the irradiation of the light emitting element, a second provided said integrating sphere A method for measuring luminous efficiency of a light-sensitive light-emitting element, which is performed through an incident port. 光感応型発光素子の発光効率測定装置であり、積分球、該積分球に取り付けられる開口面積が校正されており、分光放射照度標準電球からの光又は該発光素子に対する発光のスイッチング、波長変換又は発光強度の制御を行なう入力光を入射させる入射ポート、該発光素子を支持するアタッチメント用のポート、該積分球の外部に設けられた分光放射照度標準電球、入力光用光源及び光検出器を有することを特徴とする光感応型発光素子の発光効率測定装置。Luminous efficiency measuring device for light-sensitive light-emitting element, integrating sphere, aperture area attached to the integrating sphere is calibrated , switching light from a standard irradiance light bulb or light emission to the light-emitting element , wavelength conversion or entrance port for entering the input light for controlling the emission intensity, ports for attachment to support the light emitting element, the integrating sphere spectral irradiance standard light bulbs provided outside, the input light source and a light detector A light-emitting efficiency measuring device for a light-sensitive light-emitting element, comprising: 上記請求項5記載の光感応型発光素子の発光効率測定装置において、上記入力用光源は、減光装置を有することを特徴とする光感応型発光素子の発光効率測定装置。  6. The light-emitting efficiency measuring device for light-sensitive light-emitting elements according to claim 5, wherein the light source for input has a dimming device. 上記請求項5又は6記載の光感応型発光素子の発光効率測定装置において、上記入射ポートは、二つ設けられていることを特徴とする光感応型発光素子の発光効率測定装置。  7. The light-emitting efficiency measuring device for a light-sensitive light-emitting element according to claim 5 or 6, wherein two incident ports are provided.
JP2002015941A 2002-01-24 2002-01-24 Method and apparatus for measuring luminous efficiency of photosensitive light emitting device Expired - Lifetime JP3716303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015941A JP3716303B2 (en) 2002-01-24 2002-01-24 Method and apparatus for measuring luminous efficiency of photosensitive light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015941A JP3716303B2 (en) 2002-01-24 2002-01-24 Method and apparatus for measuring luminous efficiency of photosensitive light emitting device

Publications (2)

Publication Number Publication Date
JP2003214946A JP2003214946A (en) 2003-07-30
JP3716303B2 true JP3716303B2 (en) 2005-11-16

Family

ID=27652155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015941A Expired - Lifetime JP3716303B2 (en) 2002-01-24 2002-01-24 Method and apparatus for measuring luminous efficiency of photosensitive light emitting device

Country Status (1)

Country Link
JP (1) JP3716303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175428A (en) * 2011-01-10 2011-09-07 杭州远方光电信息股份有限公司 Device and method for measuring internal quantum efficiency of light emitting diode (LED)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721149B1 (en) * 2005-12-09 2007-05-22 삼성전기주식회사 Apparatus for measuring light intensity of light emitting device
CN100590350C (en) * 2008-03-05 2010-02-17 中国科学院安徽光学精密机械研究所 LED based spectrum distribution adjustable illuminating source system
JP5203854B2 (en) * 2008-08-28 2013-06-05 株式会社東芝 Information processing apparatus, image display apparatus and method
KR100980837B1 (en) 2010-03-23 2010-09-10 디아이티 주식회사 Apparatus for inspecting a characteristic of light device
JP5985629B2 (en) 2012-06-15 2016-09-06 パイオニア株式会社 Photometric device
CN104797912B (en) 2012-09-10 2018-09-18 蓝光分析股份有限公司 Measure the device and method of light
CN105866084A (en) * 2016-04-13 2016-08-17 厦门大学 Mobile mechanism-based luminescent material performance testing apparatus
US11079823B1 (en) * 2020-01-22 2021-08-03 Gulfstream Aerospace Corporation Method and apparatus for auxiliary port function distinction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175428A (en) * 2011-01-10 2011-09-07 杭州远方光电信息股份有限公司 Device and method for measuring internal quantum efficiency of light emitting diode (LED)
CN102175428B (en) * 2011-01-10 2013-08-21 杭州远方光电信息股份有限公司 Device and method for measuring internal quantum efficiency of light emitting diode (LED)

Also Published As

Publication number Publication date
JP2003214946A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP3682528B2 (en) Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample
JP4452737B2 (en) Luminometer and measuring method
JP5608919B2 (en) Optical measuring device
US20060226336A1 (en) Apparatus and method for collecting and detecting light emitted by a lighting apparatus
KR100978246B1 (en) Instrument and method for measuring total luminous flux of luminous elements
US11723127B2 (en) Solid state lighting systems and associated methods of operation and manufacture
TW202018276A (en) Optical Characteristic Measurement System and Calibration Method for Optical Characteristic Measurement System
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
JP5859527B2 (en) Increased dynamic range for photometry
JP5090837B2 (en) Spectrometer, spectroscopic method, and spectroscopic program
JP3716303B2 (en) Method and apparatus for measuring luminous efficiency of photosensitive light emitting device
CA2615706A1 (en) Apparatus and method for collecting and detecting light emitted by a lighting apparatus
US20130069687A1 (en) Solar simulator and solar cell inspection device
JP6041691B2 (en) Measuring apparatus and measuring method
US20180018940A1 (en) Method of adapting emitted radiation from light-emitting diodes in pixels of a display apparatus, and display apparatus
JP2012242276A (en) Spectrophotometer
WO2009104125A1 (en) Optical feedback system
WO2020230757A1 (en) Light source device and optical device
JP5588485B2 (en) Spectrometer, spectroscopic method, and spectroscopic program
JP4336775B2 (en) Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus
CN211504398U (en) Luminous flux measuring system
Zhang et al. Experimental research on ammonia concentration detection with white light-emitting diodes
Mikhailov Problems of spectroradiometric measurements
Askola Advances in LED Photometry and Ageing Procedures of LED Luminaires
Askola Characterization of an integrating sphere setup for measurements of organic LEDs

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Ref document number: 3716303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term