WO2023132103A1 - Medicinal solution administration device, control method thereof, and medicinal solution administration system - Google Patents

Medicinal solution administration device, control method thereof, and medicinal solution administration system Download PDF

Info

Publication number
WO2023132103A1
WO2023132103A1 PCT/JP2022/034105 JP2022034105W WO2023132103A1 WO 2023132103 A1 WO2023132103 A1 WO 2023132103A1 JP 2022034105 W JP2022034105 W JP 2022034105W WO 2023132103 A1 WO2023132103 A1 WO 2023132103A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
administration device
control unit
drug
solution administration
Prior art date
Application number
PCT/JP2022/034105
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 薬師寺
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023132103A1 publication Critical patent/WO2023132103A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps

Definitions

  • the present disclosure relates to a medical solution administration device, its control method, and a medical solution administration system.
  • Patent Literature 1 describes a therapeutic drug injection device that transmits an indication of the current battery level to a handset (paragraph [0017]).
  • the drug solution administration device consists of a disposable cartridge (disposable part) having a structure to be filled with a drug solution and a reusable device main body (reusable part), and is driven by the power of a battery provided in the device main body. It is conceivable to let In the conventional medical-solution administration device, there is room for improvement in the measurement accuracy of the number of times the cartridge can be replaced and operated without charging the battery.
  • An object of the present disclosure is to provide a drug-solution administration device, a control method thereof, and a drug-solution administration system capable of measuring with higher accuracy than the number of times the cartridge can be replaced.
  • a medical-solution administration device is a medical-solution administration device that administers a medical solution filled in a reservoir into a living body by a pressing action of a plunger, and is provided in a disposable cartridge that is detachably connected.
  • a reservoir filled with the chemical a flow path connected to the reservoir and leading the chemical to the outside of the reservoir, and the plunger movable in the longitudinal direction of the reservoir, and moving in a movable region.
  • a movable portion capable of pressing the plunger toward the tip of the reservoir, a driving portion moving the movable portion within the movable region, and a battery supplying electric power for driving the driving portion.
  • a priming power amount which is the amount of power required to move the movable part until the flow path of the medical-solution administration device is filled with the medical solution
  • a charging power to the reservoir a priming power amount
  • the number of exchangeable times which is the number of times the cartridge can be exchanged, based on the amount of electric power required for administering the liquid medicine and the amount of electric power remaining in the battery. is calculated, and the calculated number of possible exchanges is presented to the user.
  • the driving section moves the movable section by transmitting a driving force based on the rotation of a motor
  • the control section controls the flow path of the medical-solution administration device until the liquid medicine is filled with the liquid medicine.
  • the priming power amount and the liquid feeding power amount are estimated based on the number of rotations of the motor that is rotated to move the movable portion.
  • control unit calculates the number of exchangeable times by dividing the amount of power remaining in the battery by the total value of the priming power amount and the liquid feeding power amount.
  • control unit causes the display device to display the calculated number of possible exchanges.
  • a medical-solution administration system includes the medical-solution administration device described above and a remote control for a user to operate the medical-solution administration device.
  • a control method for a medical-solution administration device includes: a reservoir filled with a medical solution provided in a detachably connected disposable cartridge; a plunger movable in the longitudinal direction of the reservoir; a movable portion capable of pressing the plunger toward the distal end side of the reservoir by moving in the movable region; a driving unit for moving the unit in the movable area, a battery for supplying electric power for driving the driving unit, and a control unit, and the chemical liquid filled in the reservoir is generated by the pressing action of the plunger.
  • a control method for a liquid medicine administration device for administering into the body comprising: a priming power amount that is the amount of power required for the control unit to move the movable part until the flow path is filled with the liquid medicine; Replacement, which is the number of times that the cartridge can be replaced based on the amount of power required to administer the drug solution filled in the cartridge and the amount of power remaining in the battery. calculating a possible number of times; and presenting the calculated possible number of exchanges to a user.
  • FIG. 4 is a diagram showing an example of an exploded perspective view of the pump body of FIG. 3;
  • FIG. 10 is a diagram showing an example of a cartridge in which the nut portion is in the non-contact position;
  • FIG. 10 is a diagram showing an example of a cartridge with a nut portion in a predetermined position;
  • FIG. 4 is a diagram showing an example of an exploded perspective view of the pump body of FIG. 3;
  • FIG. 10 is a diagram showing an example of a cartridge in which the nut portion is in the non-contact position;
  • FIG. 10 is a diagram showing an example of a cartridge with a nut portion in a predetermined position;
  • FIG. 2 is a block diagram showing an example of a configuration related to control of the drug-solution administration device of FIG. 1;
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the remote control shown in FIG. 1;
  • FIG. 2 is a flow chart showing an operation procedure of the drug-solution administration device of FIG. 1;
  • FIG. 10 is a flow chart showing the procedure of the rotational speed measurement process of FIG. 9;
  • FIG. 1 is a diagram showing an example of a drug-solution administration system 100 according to one embodiment.
  • the drug solution administration system 100 administers a drug solution such as insulin into the patient's body.
  • a drug-solution administration system 100 includes a drug-solution administration device 1 and a remote controller 90 .
  • the drug solution administration device 1 is a device that continuously or intermittently administers a drug solution filled in a reservoir (syringe) 18 into a living body by the pressing action of a plunger 20, as will be described later with reference to FIG.
  • the drug-solution administration device 1 may be, for example, a portable device that can be attached to the patient's abdomen (patch type).
  • the drug-solution administration device 1 is not limited to a patch type, and may be a tube type or the like.
  • a remote controller 90 is a device for a user such as a patient to operate the drug-solution administration device 1 .
  • the remote controller 90 notifies the user of information received from the medical-solution administration device 1 and accepts user's operations on the medical-solution administration device 1 .
  • the remote control 90 is realized by a dedicated device compatible with the drug-solution administration device 1, but may be realized by a general-purpose information processing device such as a smart phone or a tablet. Further, in this embodiment, an example in which the remote controller 90 serves as a user interface such as notifying the user of information and receiving information input from the user will be described. The function may be provided in the drug-solution administration device 1 .
  • the medicinal-solution administration device 1 and the remote controller 90 are communicably connected to each other via a wireless communication line, a wired communication line, or a combination thereof.
  • a wireless communication line a wireless communication line
  • a wired communication line a wired communication line
  • FIG. 2 is a diagram showing an example of a perspective view of the medicinal-solution administration device 1 of FIG.
  • FIG. 3 is a diagram showing an example of a perspective view when the medicinal-solution administration device 1 of FIG. 1 is separated.
  • the drug-solution administration device 1 has a pump body 10 , a cradle device 11 to which the pump body 10 is detachably attached, and a connection port 106 attached to the cradle device 11 .
  • the pump body 10 and the cradle device 11 have a structure that can be repeatedly attached and detached by being engaged with each other.
  • the pump main body 10 includes a housing 111 that accommodates each component of the drug-solution administration device 1 such as the reservoir 18 and the plunger 20 .
  • the housing 111 may be formed in a flat, substantially rectangular parallelepiped shape with curved corners.
  • the upper surface portion 121 of the housing 111 is one surface of the pump body 10 located opposite to the side on which the cradle device 11 is mounted.
  • the upper surface portion 121 may be formed in a substantially rectangular shape with curved corners when viewed from above.
  • a front surface portion 123 and a rear surface portion 124 facing each other are substantially perpendicularly continuous to the end portion of the upper surface portion 121 in the first direction.
  • a side surface portion 126 continues substantially perpendicularly to the end portion of the upper surface portion 121 in the second direction.
  • the pump main body 10 may have an engaging structure in which the pump main body 10 and the cradle device 11 can be repeatedly attached and detached at the side portion 126 .
  • the engagement structure may have, for example, a hook mechanism. Specifically, a guide groove portion 137 and an engaging hook portion 138 may be formed on the side portion 126 .
  • the engaging hook portion 138 may be formed closer to the back surface portion 124 than the guide groove portion 137 .
  • the engagement hook portion 138 may be detachably engaged with an engagement receiving portion 162 of the cradle device 11, which will be described later.
  • the cradle device 11 is configured to be able to carry the pump body 10 . As shown in FIGS. 2 and 3, the cradle device 11 has a substantially flat mounting surface portion 141 and side wall portions 143 and 144 .
  • the mounting surface portion 141 is formed in a substantially rectangular shape with curved corners when viewed from above.
  • a detection rail 152 , a sliding rail 153 and a mounting portion 155 may be provided on one surface of the mounting surface portion 141 .
  • the connection port 106 may be attached to the attachment portion 155 .
  • the mounting portion 155 may be provided with an insertion hole through which the cannula of the connection port 106 is inserted.
  • the detection rail 152 is a ridge protruding from one surface of the mounting surface 141 .
  • the detection rail 152 is used by the pump body 10 to detect attachment of the cradle device 11 .
  • the detection rail 152 gradually increases in thickness from the mounting surface portion 141 toward the side wall portion 144 side.
  • the detection rail 152 extends for a predetermined length parallel to the side wall portion 143 .
  • the slide rail 153 extends parallel to the side wall portion 143 on one surface of the mounting surface portion 141 .
  • a slide groove (not shown) provided on the bottom surface of the pump body 10 is slidably fitted into the slide rail 153 .
  • a side wall portion 144 continues substantially perpendicularly to the end portion of the mounting surface portion 141 in the first direction.
  • Side wall portions 143 facing each other are substantially perpendicular to the end portions of the mounting surface portion 141 in the second direction.
  • the side wall portion 143 faces the side portion 126 of the housing 111 of the pump main body 10 .
  • the side wall portion 144 faces the front portion 123 of the housing 111 .
  • the side wall 144 of the cradle device 11 may have a fitting hole 154 that is an opening.
  • a fitting projection provided on the front portion 123 of the pump body 10 may be fitted into the fitting hole 154 .
  • the side wall portion 143 may be formed with a guide rail 151, a posture correction portion 156, and an engagement receiving portion 162.
  • the engagement receiving portion 162 may be an opening formed by cutting the side wall portion 143 into a substantially rectangular shape.
  • the engagement hook portion 138 may be detachably engaged with the engagement receiving portion 162 when the pump body 10 is attached to the cradle device 11 .
  • the guide rail 151 is a ridge formed on the side wall 143 .
  • the guide rail 151 does not necessarily have to extend continuously.
  • a notch 158 may be appropriately provided in the middle of the guide rail 151 .
  • the posture corrector 156 is a plate-shaped projection extending upward from the side wall 143. As shown in FIG. Posture correcting portion 156 may have a curved shape corresponding to the shape of the connecting portion (corner portion) between upper surface portion 121 and side surface portion 126 of housing 111 of pump body 10 .
  • the cradle device 11 may be provided with an adhesive sheet that is attached to the patient's skin.
  • the adhesive sheet may be attached to the other surface of the mounting surface portion 141 of the cradle device 11 opposite to the one surface.
  • the adhesive sheet may be formed with an opening (not shown) through which a cannula of the connection port 106 (to be described later) passes.
  • the patch sheet may be formed of a flexible member.
  • An adhesive layer that is attached to the patient's skin may be formed on the surface opposite to the mounting surface portion 141 of the patch sheet.
  • the adhesive layer of the patch sheet may be covered with a release paper before being attached to the patient's skin.
  • the connection port 106 may have a port body 181 capable of holding a cannula therein.
  • the port body 181 may have a tubular connecting portion. When the cannula is connected, the interior of the connection (bore), the port body 181, and the cannula communicate.
  • a cap 182 is attached to the tip of the connecting portion, and the other end of the connecting portion is connected to a port body 181 .
  • a cap 182 seals the distal end opening of the connecting portion. This isolates the inside of the connection port 106 from the external environment.
  • connection port 106 When the connection port 106 is attached to the attachment portion 155 of the cradle device 11 using a puncture mechanism (not shown), the cannula penetrates the mounting surface portion 141 together with the puncture needle, and the other surface of the mounting surface portion 141 (which is attached to the skin) surface). The cannula is then punctured into the living body together with the puncture needle. After that, the cannula is left in the living body by removing the puncture needle.
  • the connecting portion of the port body 181 may face the upstream side in the mounting direction.
  • a connecting needle tube exposed to the outside of the pump body 10 is fluidly connected to the lead-out tube 29 .
  • the connecting needle tube penetrates into the cylindrical hole.
  • the port body 181 and the outlet tube 29 (see FIG. 5, etc.) of the pump body 10 are connected, and the outlet tube 29 and the cannula are fluidly connected.
  • the drug solution stored in the reservoir 18 of the pump body 10 is delivered to the connection port 106 through the lead-out tube 29 and administered to the patient through the cannula by driving the drive unit 40 (see FIG. 5, etc.). be.
  • the lead-out tube 29 is connected to the reservoir 18 and acts as a channel for leading the drug solution out of the reservoir 18 .
  • the connecting needle tube is connected to the lead-out tube 29, the flow path of the drug-solution administration device 1 may include the lead-out tube 29 and the connecting needle tube.
  • FIG. 4 is a diagram showing an example of an exploded perspective view of the pump body 10 of FIG.
  • FIG. 5 shows an example of the cartridge 12 with the nut portion 24 at the non-contact position.
  • FIG. 6 shows an example of the cartridge 12 with the nut portion 24 at a predetermined position.
  • the pump body 10 includes a disposable cartridge 12 and a reusable device body 14.
  • the cartridge 12 has a flat box-shaped base portion 16 which is open on one side.
  • the base portion 16 has a substantially rectangular shape in plan view.
  • the base portion 16 may be provided detachably with respect to the cradle device 11 that can be adhered to the patient's skin.
  • the base portion 16 includes a reservoir 18 filled with a chemical solution, a plunger 20 provided in the reservoir 18, a feed screw shaft 22 provided coaxially with the plunger 20, and a feed screw shaft.
  • a nut portion (movable portion) 24 that is screwed onto 22 is provided.
  • the reservoir 18 extends cylindrically in the longitudinal direction of the base portion 16 .
  • the distal end portion of the reservoir 18 has an outer diameter and an inner diameter that decrease toward the distal end.
  • An introduction port 26 for introducing the chemical solution into the reservoir 18 and an outlet port 28 (see FIG. 5) for extracting the chemical solution from the reservoir 18 are formed at the tip of the reservoir 18. .
  • the lead-out port 28 communicates with a lead-out tube 29 that guides the drug solution in the reservoir 18 to the cannula.
  • the plunger 20 is integrally molded with a resin material or the like, and is provided in the reservoir 18 so as to be liquid-tight and slidable along the axial direction of the reservoir 18 .
  • the plunger 20 has a plunger main body 30 forming a tip side, and a pusher 32 provided on the plunger main body 30 and forming a rear end side.
  • a sealing member 34 slidable in the reservoir 18 is attached to the cylindrical rear end of the plunger body 30 .
  • the pusher 32 has a pair of extensions 36 extending rearward from the plunger body 30 to the outside of the reservoir 18 and a pair of claws 38 provided at the rear ends of the extensions 36 .
  • One end of the feed screw shaft 22 is rotatably supported by a bearing 39 and constitutes a drive section 40 that moves the nut section 24 .
  • the drive unit 40 includes a battery 42 as a power source, a motor 44 driven by the battery 42, a gearbox (power transmission mechanism) 46 that reduces the rotational driving force of the motor 44 and transmits it, and an output gear 48 of the gearbox 46. It further has a transmission shaft 52 to which a spur gear 50 meshing with is fixed and locked to the feed screw shaft 22 so as to be integrally rotatable.
  • the transmission shaft 52 is provided in the cartridge 12, and the battery 42, the motor 44, and the gear box 46 are provided in the apparatus main body 14.
  • the battery 42 may be a secondary battery.
  • the battery 42 is provided with terminals 54 electrically connected to the motor 44 .
  • the transmission shaft 52 is supported by a pair of bearings 56 provided on the base portion 16 while being coaxial with the feed screw shaft 22 .
  • the motor 44 When the motor 44 rotates, its rotational force is transmitted to the feed screw shaft 22 , and the rotation of the feed screw shaft 22 causes the nut portion 24 to move toward or away from the plunger 20 .
  • the rotation of the motor 44 for moving the nut portion 24 toward the plunger 20 will be referred to as forward rotation
  • the rotation of the motor 44 in the direction opposite to the forward rotation will be referred to as reverse rotation.
  • the motor 44 is configured to rotate both forward and reverse.
  • the motor 44 is configured so that when a certain force (torque) is applied to the forward or reverse rotation, the rotational driving force is not transmitted to the components below the gear box 46 .
  • a stepping motor for example, may be employed as the motor 44 .
  • a stepping motor when a certain amount of force is applied to forward or reverse rotation, the motor 44 will not be synchronized with the input pulse and will not transmit rotational driving force (step out). For example, if the motor 44 rotates in the opposite direction while the nut portion 24 is in contact with the rearmost end of the feed screw shaft 22 on the bearing 56 side, the motor 44, gear box 46, transmission shaft 52, and other mechanisms may malfunction due to step-out. It is possible to prevent damage due to excessive force.
  • a rotary encoder (not shown) is provided on the output shaft of the motor 44, and whether or not the motor 44 is out of synchronization with the input pulse (step out) can be determined by detecting the rotation of the motor 44 with the rotary encoder. The operating state of the motor 44 is transmitted to the control section 71 .
  • the nut portion 24 is integrally molded from a resin material and has a nut portion main body 58 formed in a substantially rectangular parallelepiped shape and a slide portion 60 provided on the nut portion main body 58 .
  • the nut main body 58 is formed with a threaded hole 62 into which the feed screw shaft 22 is screwed, and a pair of through holes 64 which are formed to sandwich the threaded hole 62 from both sides and through which the claws 38 are inserted.
  • a reinforcing cover 66 made of, for example, a metal material is attached to the outer surface of the nut body 58 .
  • the slide portion 60 slides on a guide wall 68 provided on the base portion 16 and extending along the axial direction of the plunger 20 . That is, before use, the nut portion 24 is in a non-contact position (see FIG. 5), and the nut portion 24 and the plunger 20 are moved from the non-contact position by the rotation of the feed screw shaft 22. It moves to the locked contact position (hereinafter referred to as "initial position"). After contacting the plunger 20, further rotation of the feed screw shaft 22 causes the nut portion 24 to press the plunger 20 to the distal end side (see FIG. 6).
  • the guide wall 68 may be provided with a regulating portion that serves as a stopper so that the slide portion 60 cannot retreat any further.
  • the device main body 14 includes a cover body detachably provided on the base portion 16 so as to close the opening of the base portion 16, a control portion 71, a storage portion 72, and a A communication unit 73 is provided.
  • the lid may be provided on the upper surface portion 121 of the housing 111 .
  • a battery 42, a motor 44, a storage unit 72, and a communication unit 73 are electrically connected to the control unit 71 via a bus 79 (see FIG. 7).
  • the control unit 71 controls each part of the medicinal-solution administration device 1 and executes processing related to the operation of the medicinal-solution administration device 1 . For example, the control unit 71 drives and controls the motor 44 based on information regarding drug solution administration transmitted from the remote controller 90 .
  • FIG. 7 is a block diagram showing an example of a configuration related to control of the medicinal-solution administration device 1 of FIG.
  • the battery 42 , the motor 44 , the storage unit 72 , and the communication unit 73 are electrically connected to the control unit 71 via the bus 79 .
  • the control unit 71 is one or more processors.
  • the control unit 71 is communicably connected to each component constituting the medicinal-solution administration device 1 and controls the operation of the medicinal-solution administration device 1 as a whole.
  • the processor is a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor specialized for specific processing.
  • the controller 71 may include one or more dedicated circuits, or one or more processors may be replaced with one or more dedicated circuits in the controller 71 .
  • the dedicated circuit is, for example, an FPGA (Field Programmable Gate Array).
  • the storage unit 72 is one or more semiconductor memories, one or more magnetic memories, one or more optical memories, or a combination of at least two of them.
  • the semiconductor memory is, for example, RAM (Random Access Memory) or ROM (Read Only Memory).
  • the storage unit 72 functions as, for example, a main memory device, an auxiliary memory device, or a cache memory.
  • the communication unit 73 is a communication interface for communicating with the remote control 90.
  • the communication unit 73 communicates with the remote controller 90 via Bluetooth (registered trademark), but is not limited to this, and communicates via other wireless communication paths such as a wireless LAN (Local Area Network) or a wired cable, for example. You may
  • Control of the medicinal-solution administration device 1 may be executed by executing a program by a processor included in the control unit 71 . That is, the control of the medicinal-solution administration device 1 may be realized by software.
  • the program causes the computer to execute the processing of steps included in the operation of the drug-solution administration device 1, thereby causing the computer to implement the functions corresponding to the processing of the steps.
  • part or all of the functions of the medicinal-solution administration device 1 may be implemented by a dedicated circuit included in the control section 71 . That is, part or all of the functions of the drug-solution administration device 1 may be realized by hardware.
  • FIG. 8 is a block diagram showing an example of the hardware configuration of the remote control 90 of FIG. 1. As shown in FIG.
  • the remote controller 90 includes a control section 91 , a storage section 92 , a communication section 93 , an input section 94 , an output section 95 and a bus 99 .
  • the control unit 91 is one or more processors.
  • the control unit 91 is communicably connected to each constituent unit of the remote controller 90 via a bus 99 and controls the operation of the remote controller 90 as a whole.
  • the processor is a general-purpose processor such as a CPU or GPU (Graphics Processing Unit), or a dedicated processor specialized for specific processing.
  • Control unit 91 may include one or more dedicated circuits, or one or more processors may be replaced by one or more dedicated circuits in control unit 91 .
  • a dedicated circuit is, for example, an FPGA.
  • the storage unit 92 is one or more semiconductor memories, one or more magnetic memories, one or more optical memories, or a combination of at least two of them.
  • a semiconductor memory is, for example, a RAM or a ROM.
  • RAM is, for example, SRAM (Static RAM) or DRAM (Dynamic RAM).
  • the ROM is, for example, an EEPROM (Electrically Erasable Programmable ROM).
  • the storage unit 92 functions, for example, as a main storage device, an auxiliary storage device, or a cache memory.
  • the communication unit 93 is a communication interface for communicating with the drug-solution administration device 1.
  • the communication unit 93 communicates with the medicinal-solution administration device 1 to transmit information input by the user to the medicinal-solution administration device 1 and receive information from the medicinal-solution administration device 1 .
  • the communication unit 93 communicates with the medicinal-solution administration device 1 via, for example, Bluetooth (registered trademark), but is not limited to this, and may communicate via other wireless communication paths such as wireless LAN or wired cables, for example.
  • the input unit 94 includes one or more input interfaces that receive user's input operations and acquire input information based on the user's operations.
  • the input unit 94 is, for example, a touch screen provided integrally with the display (display device) of the output unit 95, but is not limited to this, physical keys (eg, external numeric keypad), capacitance keys, pointing It may be a device or a microphone or the like that receives voice input.
  • the output unit 95 as a display unit outputs information to the user and includes one or more output interfaces for notifying the user.
  • the output unit 95 is a display that outputs information by image display, an LED (Light Emitting Diode), a speaker, a vibrator, or the like, but is not limited to these.
  • the functions of the remote control 90 may be realized by executing the program according to the present embodiment with a processor included in the control unit 91. That is, the functions of the remote control 90 may be realized by software. In this case, the program causes the computer to execute the processing of steps included in the operation of the remote control 90, thereby causing the computer to implement the functions corresponding to the processing of the steps.
  • some or all of the functions of remote controller 90 may be realized by a dedicated circuit included in control section 91 . That is, some or all of the functions of remote control 90 may be realized by hardware.
  • the user fills the reservoir 18 with an appropriate amount of medicinal solution from a medicinal solution container such as a vial in which the medicinal solution is hermetically stored using a filling device, syringe, or the like.
  • a medicinal solution container such as a vial in which the medicinal solution is hermetically stored using a filling device, syringe, or the like.
  • the plunger 20 is moved to a position corresponding to the initial filling amount.
  • the user mounts the device main body 14 on the cartridge 12 .
  • the power of the battery 42 of the device main body 14 is supplied to each component, and the output gear 48 of the gear box 46 of the device main body 14 meshes with the spur gear 50 of the cartridge 12 .
  • the control unit 71, the storage unit 72, and the like are activated by being supplied with power from the battery 42.
  • the user primes the medical-solution administration device 1.
  • Priming refers to an operation of filling the flow path of the drug-solution administration device 1, including the lead-out tube 29, the cannula, etc., with the drug solution.
  • the remote controller 90 is operated to rotate the motor 44 forward.
  • the rotational driving force of the motor 44 is transmitted to the feed screw shaft 22 via the gear box 46, the spur gear 50, and the transmission shaft 52, so that the feed screw shaft 22 rotates, and the nut portion 24 moves toward the guide wall. While sliding 68, it advances to the plunger 20 side.
  • the pair of claw portions 38 hits the wall surface forming the through hole 64 of the nut portion 24, and the pair of extension portions 36 are bent so as to approach each other.
  • the claw portion 38 passes through the through hole 64 , the claw portion 38 returns to its original position, thereby locking the nut portion 24 with respect to the plunger 20 .
  • the nut portion 24 can be pushed forward while holding the plunger 20 .
  • the chemical in the reservoir 18 is pressed by the plunger 20, and the inner hole of the lead-out tube 29 as a flow path is filled with the chemical, completing priming.
  • the user observes the tip of the connecting needle tube that continues to the outlet tube 29, confirms that the drug solution has flowed out from the tip of the connecting needle tube, and instructs the drug-solution administration device 1 to stop priming.
  • the remote controller 90 may display an image of a priming stop button on the display of the output unit 95 and notify the medical-solution administration device 1 to stop the motor 44 in response to the user selecting the priming stop button.
  • the user attaches the cradle device 11 to a predetermined position on the skin, uses the puncture mechanism to leave the cannula of the connection port 106 in the living body, and locks the connection port 106 to the cradle device 11 .
  • the lead-out tube 29 and the cannula are communicated, and the control unit 71 controls the rotation of the motor 44, whereby the drug solution in the reservoir 18 is continuously or continuously delivered to the living body. It will be administered intermittently.
  • the control unit 71 controls the rotation of the motor 44 in accordance with the drug solution administration schedule instructed from the remote controller 90, and administers the drug solution at various rates such as a basal rate or bolus according to the patient's condition.
  • the basal rate is the amount of drug solution per unit time corresponding to the basal secretion of insulin.
  • a bolus is an amount of drug solution corresponding to additional secretion of insulin in response to a meal or an increase in blood sugar level.
  • the reservoir 18 of the cartridge 12 is filled with the amount of drug solution to be administered in an administration cycle of a certain number of days. After the drug solution filled in the reservoir 18 is administered into the body over, for example, three days to one week, the cartridge 12 is replaced and discarded. The cartridge 12 is replaced with a new cartridge for each administration cycle. Each time the cartridge 12 is replaced, the chemical filling of the reservoir 18 of the cartridge 12, the connection between the cartridge 12 and the apparatus main body 14, and the priming operation are performed. Through such an operation, the medical-solution administration device 1 can estimate the amount of medical-solution to be administered, for example, based on the number of rotations of the motor 44 during priming and liquid-feeding. Since the drug-solution administration device 1 according to this embodiment includes the disposable cartridge 12 and the reusable device main body 14, it is possible to reduce the running cost.
  • the amount of drug solution filled in the reservoir 18 of the cartridge 12 varies depending on the patient's age and condition, etc., even if the length of the administration cycle is the same. For example, if the reservoir 18 is filled with three days' worth of liquid medicine, the cartridge 12 for adults will be filled with more liquid than the cartridge 12 for children.
  • the medical-solution administration device 1 moves the nut portion 24 from the non-contact position (see FIG. 5) to a position (initial position) where it contacts the plunger 20 corresponding to the initial filling amount. Further, the medicinal-solution administration device 1 pushes the nut portion 24 until the medicinal solution in the reservoir 18 is pressed by the plunger 20 and the insides of the lead-out tube 29 and the connecting needle tube are filled with the medicinal solution (priming completion position).
  • the priming operation may move the nut portion 24 at a faster speed than when administering the drug solution into the living body. That is, the rotation speed of the motor 44 during priming may be higher than the rotation speed of the motor during drug solution administration. Therefore, when the reservoir 18 is filled with a small amount of liquid medicine, the priming operation causes the nut portion 24 to travel a longer distance, and the administration operation in the administration cycle causes the nut portion 24 to travel a shorter distance. When the reservoir 18 is filled with more liquid, the priming operation will move the nut portion 24 a shorter distance, and the dosing action in the dosing cycle will move the nut portion 24 a longer distance.
  • the power consumption required to move the nut portion 24 in the priming operation is the power consumption required to move the nut portion 24 in the operation of injecting the drug solution into the living body. less than This is because the flow path of the drug-solution administration device 1 is not fluidly connected to the cannula placed in the living body during the priming operation, but the flow path of the drug-solution administration device 1 is connected to the cannula placed in the body in the administration operation. This is because the load on the motor 44 is higher than that during the priming operation because the drug solution needs to be administered against the living tissue at the tip of the connected and indwelling cannula.
  • the pulse width of the pulse applied to the motor 44 must be wider than that during the priming operation.
  • the pulse width of the pulse applied to the motor 44 during the priming operation and the administration operation is preliminarily determined based on the assumed load and rotation speed of the motor 44 so as to prevent step-out and to achieve low power consumption. Based on this, the control section 71 can change the pulse width of the pulse applied to the motor 44 during the priming operation and during the administration operation.
  • the amount of power consumed until the end of administration of the drug solution filled in the cartridge 12 is the initial amount of the drug solution filled in the reservoir 18. Varies depending on Therefore, without considering the initial amount of the liquid medicine in the cartridge 12 (that is, the filling amount), it is impossible to accurately calculate how many times the cartridge 12 can be replaced with respect to the power remaining in the battery 42 of the apparatus main body 14. .
  • the drug-solution administration device 1 calculates the number of times the cartridge 12 can be replaced based on the priming power amount, the liquid transfer power amount, and the power amount remaining in the battery 42 .
  • the priming electric energy is the electric energy required to move the nut portion 24 until the flow path of the medical-solution administration device 1 is filled with the medical solution (that is, priming).
  • the liquid feeding power amount is the power amount used from the start of liquid medicine administration to the end of liquid medicine administration after priming makes it possible to start liquid medicine administration.
  • the amount of power to send the liquid is the amount of power required to administer the drug solution filled in the reservoir 18 to the patient.
  • the priming power amount and the liquid feeding power amount are values corresponding to the filling amount of the chemical solution. Therefore, according to the drug-solution administration device 1 according to the present embodiment, it is possible to accurately measure the number of times the cartridge 12 can be replaced.
  • FIG. 9 is a flow chart showing the operating procedure of the medicinal-solution administration device 1 of FIG.
  • FIG. 10 is a flow chart showing the procedure of the rotational speed measurement process of FIG.
  • the operation of the medicinal-solution administration device 1 described with reference to FIGS. 9 and 10 can correspond to one control method of the medicinal-solution administration device 1 .
  • 9 and 10 can be executed under the control of the control unit 71 of the drug-solution administration device 1 or the control unit 91 of the remote control 90.
  • FIG. The following process may be executed, for example, after the cartridge 12 is replaced, the apparatus body 14 of the drug-solution administration apparatus 1 is connected to the cartridge 12, and the priming operation is instructed via the remote controller 90. .
  • step S ⁇ b>1 the control unit 71 of the medicinal-solution administration device 1 measures the remaining power of the battery 42 .
  • the control unit 71 may measure the remaining power level of the battery 42 by measuring the voltage or impedance of the battery 42 .
  • step S2 the control unit 71 of the medicinal-solution administration device 1 estimates the required power amount for one cycle from history information regarding past medicinal-solution administration. Specifically, when performing a priming operation and drug solution administration, the control unit 71 stores information on power consumption required for these operations in the storage unit 72 in advance. The control unit 71 may measure the power consumption based on the difference in the remaining power of the battery 42 measured before and after the operation. The storage unit 72 stores the measured power consumption required for the priming operation and the drug solution administration together with date and time information. In step S2, the control unit 71 refers to these pieces of information to estimate the required power amount for one administration cycle.
  • control unit 71 may estimate the same power consumption as the power consumption required for the priming operation and drug solution administration in the immediately preceding administration cycle as the required power amount for one administration cycle.
  • control unit 71 may estimate the average value of power consumption required for the priming operation and drug solution administration in the last fixed number of administration cycles as the required power amount for one administration cycle.
  • the amount of electric power for administering the amount of medicinal-solution previously input by the patient is reduced to one administration cycle. You may estimate as a required electric energy.
  • the amount of power required to dispense the maximum fillable amount of reservoir 18 may be the default value and the maximum amount of power required for one dosing cycle.
  • step S3 the control unit 71 of the medicinal-solution administration device 1 determines whether or not the current remaining battery level obtained in step S1 exceeds the required power amount for one administration cycle estimated in step S2. . If it exceeds (YES in step S3), the controller 71 proceeds to step S4, otherwise (NO in step S3), it proceeds to step S9. In step S3, the control unit 71 may proceed to step S4 even when the current remaining battery level obtained in step S1 is the same as the required power amount for one administration cycle estimated in step S2.
  • step S1 if the current remaining battery level value acquired in step S1 is less than a predetermined value (for example, 10% of the maximum chargeable power amount of the battery 42), the control unit 71 The process may proceed to step S9 irrespective of the amount of power required for each minute.
  • a predetermined value for example, 10% of the maximum chargeable power amount of the battery 42
  • step S4 the control unit 71 of the medicinal solution administration device 1 executes rotation speed measurement processing for measuring the rotation speed of the motor 44 in order to measure the position of the nut part 24 corresponding to the filling amount of the medicinal solution.
  • the nut portion 24 is in the non-contact position where it does not contact the plunger 20 .
  • the control unit 71 of the medicinal-solution administration device 1 starts rotating the motor 44 in the reverse direction. This causes the nut portion 24 to move away from the plunger 20 . At this time, the nut portion 24 rotates in the reverse direction to a predetermined position.
  • the predetermined position is, for example, a position where the slide portion 60 is restricted from retreating by a stopper provided on the guide wall 68 or a position at the rearmost end of the feed screw shaft 22 .
  • the motor 44 steps out.
  • step S12 the control unit 71 of the medicinal-solution administration device 1 determines whether or not the motor 44 has stepped out. If step-out occurs (YES in step S12), the control unit 71 proceeds to step S13. Otherwise (NO in step S12), the control unit 71 continues the reverse rotation of the motor 44 and performs the process of step S12 again.
  • the motor 44 is out of step, the nut portion 24 is at a predetermined position. Here, the nut portion 24 is aligned by moving the nut portion 24 to a predetermined position. As a result, even if the nut portion 24 moves unintentionally while the cartridge 12 is being prepared, it is possible to maintain the accuracy of estimating the number of exchanges of the cartridge 12, which will be described later.
  • step S13 the control unit 71 of the medicinal-solution administration device 1 saves in the storage unit 72 the number of reverse rotations of the motor 44 from the start of reverse rotation in step S11 until step-out.
  • step S14 the control unit 71 of the medicinal-solution administration device 1 starts rotating the motor 44 forward.
  • the nut portion 24 moves toward the plunger 20, and eventually the nut portion 24 and the plunger 20 are engaged with each other.
  • the plunger 20 is pushed by the nut portion 24 to apply pressure to the liquid medicine in the reservoir 18, and priming is performed in which the flow path of the liquid medicine administration device 1 is filled with the liquid medicine.
  • a user such as a patient observes the tip of the connecting needle tube, and when confirming that the drug solution has flowed out from the tip of the connecting needle tube, instructs the drug-solution administration device 1 to stop priming.
  • the user may instruct the drug-solution administration device 1 to stop priming by selecting the image of the priming stop button displayed on the display of the output unit 95 of the remote controller 90 .
  • step S15 the control unit 71 of the medicinal-solution administration device 1 determines whether or not the user has selected the priming stop button. If the priming stop button is selected (YES in step S15), the control unit 71 proceeds to step S16. I do.
  • step S16 the control unit 71 of the medicinal-solution administration device 1 stops the rotation of the motor 44.
  • step S17 the control unit 71 of the medicinal-solution administration device 1 stores in the storage unit 72 the number of forward rotations of the motor 44 from the start of forward rotation in step S14 until the rotation is stopped. Then, the control unit 71 ends the rotational speed measurement process, and proceeds to step S5 in FIG.
  • step S5 of FIG. 9 the control unit 71 of the drug-solution administration device 1 estimates the electric energy required for the priming operation (priming electric energy) based on the rotation speed of the motor 44 measured by the rotation speed measurement process in step S4. do.
  • the control unit 71 acquires the amount of electric power consumed by one rotation of the motor 44 stored in advance in the storage unit 72, and multiplies this value by the number of revolutions of the motor 44 to obtain the amount of power required for the priming operation.
  • the amount of power may be estimated.
  • the rotation speed of the motor 44 is the sum of the reverse rotation speed saved in step S13 of FIG. 10 and the forward rotation speed saved in step S17.
  • step S6 the control unit 71 of the medicinal-solution administration device 1 estimates the amount of power (liquid-feeding power) required to administer the medicinal solution based on the amount of medicinal solution filled in the reservoir 18 .
  • the control unit 71 may acquire the forward rotation speed saved in step S17 of FIG. 10, and acquire the filling amount of the chemical solution corresponding to the forward rotation speed.
  • the control unit 71 may acquire the liquid feeding power amount corresponding to the filling amount of the chemical liquid.
  • the control unit 71 stores in the storage unit 72 in advance a table indicating the correspondence relationship between the forward rotation speed, the amount of liquid medicine filled, and the amount of electric power for feeding the liquid. may be acquired.
  • step S7 the control unit 71 of the medicinal-solution administration device 1 measures the remaining power of the battery 42. Specifically, similarly to step S ⁇ b>1 , the controller 71 may measure the remaining power level of the battery 42 by measuring the voltage or impedance of the battery 42 .
  • step S8 the control unit 71 of the medicinal-solution administration device 1 controls the cartridge 12 (disposable unit ) can be exchanged. Specifically, the control unit 71 may calculate the number of replacement times by dividing the remaining battery level acquired in step S7 by the total value of the priming power amount and the liquid transfer power amount. The control unit 71 may calculate a value obtained by truncating the value calculated by the division to the first decimal place as the possible number of exchanges. The control unit 71 may display the calculated number of possible exchanges on the display of the output unit 95 of the remote controller 90 . Specifically, the control unit 71 may notify the remote controller 90 of the number of possible exchanges via the communication unit 73 . The control unit 91 of the remote controller 90 may display the value on the display of the output unit 95 in response to the notification of the number of possible exchanges. After completing the process of step S8, the control unit 71 ends the process of the flowchart.
  • step S9 the control unit 71 of the medical-solution administration device 1 notifies the user of the power shortage.
  • the power shortage may be notified to the remote controller 90 via the communication unit 73 .
  • the control unit 91 of the remote controller 90 may display an image indicating power shortage on the display of the output unit 95 in response to the notification from the medical-solution administration device 1 .
  • the control unit 91 may notify the user of the power shortage by outputting an audio signal, vibrating, or the like from the output unit 95 in addition to the image display or instead of this.
  • the drug-solution administration device 1 injects the medicinal solution filled in the reservoir 18 into the living body by the pressing action of the plunger 20 .
  • the drug-solution administration device 1 includes a reservoir 18 , a plunger 20 , a nut portion 24 , a drive portion 40 , a battery 42 and a control portion 71 .
  • a reservoir 18 is provided in the disposable cartridge 12 that is detachably connected, and is filled with a chemical solution.
  • a plunger 20 is provided within the reservoir 18 and is movable in the longitudinal direction of the reservoir 18 .
  • the nut portion 24 can press the plunger 20 toward the distal end of the reservoir 18 by moving in the movable region.
  • the driving part 40 moves the nut part 24 in the movable area.
  • a battery 42 supplies power for driving the drive unit 40 .
  • the control unit 71 calculates the number of exchangeable times, which is the number of times the cartridge 12 can be exchanged, based on the priming electric energy, the liquid feeding electric energy, and the electric energy remaining in the battery 42 .
  • the priming power amount is the amount of power required to move the nut portion 24 until the flow path of the drug solution administration device 1 is filled with the drug solution.
  • the liquid feeding power amount is the power amount required to administer the drug solution filled in the reservoir 18 .
  • the control unit 71 presents the calculated number of possible exchanges to the user.
  • the drug-solution administration device 1 calculates the number of times the cartridge 12 can be replaced based on the priming power amount, the liquid transfer power amount, and the power amount remaining in the battery 42. , it is possible to accurately measure the number of exchangeable times.
  • the reservoir 18, plunger 20, and nut portion 24 are provided in the cartridge 12, and the driving portion 40, control portion 71, and battery 42 are provided in the main body 14 of the device. configuration.
  • the nut portion 24 may be provided on the device main body 14 , or at least one of the driving portion 40 and the control portion 71 may be provided on the cartridge 12 .
  • the driving section 40 may move the nut section 24 by transmitting the driving force based on the rotation of the motor 44 .
  • the control unit 71 may estimate the priming power amount and the liquid feeding power amount based on the number of rotations of the motor 44 that is rotated to move the nut part 24 until the flow path of the liquid medicine administration device 1 is filled with the liquid medicine. .
  • the drug-solution administration device 1 estimates the priming power amount and the liquid feeding power amount based on the number of revolutions of the motor 44, and calculates the number of times the cartridge 12 can be replaced. It is possible to measure accurately.
  • control unit 71 may calculate the number of exchanges possible by dividing the amount of power remaining in the battery 42 by the total value of the priming power amount and the liquid feeding power amount. As described above, since the medicinal-solution administration device 1 according to the present embodiment calculates the allowable number of exchanges by simple calculation, it is possible to easily obtain the allowable number of exchanges.
  • control unit 71 may cause the display device to display the calculated number of possible exchanges. This allows the user to easily recognize the number of times the cartridge 12 can be replaced.
  • the medicinal-solution administration device 1 displays the remaining amount on the display of the output unit 95 of the remote control 90, but if the medicinal-solution administration device 1 itself has a display device, the remaining amount is displayed on the display device.
  • the medicinal-solution administration device 1 may notify and display the remaining amount of the medicinal solution on another device such as a smart phone, a smart watch, or a tablet, for example.
  • the medicinal-solution administration device 1 can accurately grasp the remaining battery level of the device body 14, which is a reusable part, as the number of times the cartridge 12 can be replaced. As a result, the user can take measures such as charging the apparatus body 14 in advance or replacing the battery 42 with a new one before the battery 42 runs out. Also, the remaining battery capacity of the device body 14 can be used efficiently.

Abstract

This medicinal solution administration device comprises: a reservoir; a flow path which is connected to the reservoir and guides the medicinal solution out of the reservoir; a plunger which can move in the longitudinal direction of the reservoir; a movable unit which moves and can thus press the plunger to the distal end side of the reservoir; a driving unit which moves the movable unit; a battery which supplies electric power; and a control unit. The reservoir is provided on a disposable cartridge which is removably connected to the medicinal solution administration device. The control unit calculates the number of replaceable times, which is the number of replaceable times of the cartridge, on the basis of a priming power amount which is a power amount required to move the movable unit until the flow path of the medicinal solution administration device is filled with a medicinal solution, a liquid feed power amount which is a power amount required to administer the medicinal solution filled in the reservoir, and a power amount remaining in the battery, and presents the calculated number of replaceable times to a user.

Description

薬液投与装置及びその制御方法、薬液投与システムMEDICINAL LIQUID ADMINISTRATION DEVICE AND CONTROL METHOD THEREOF, MEDICINAL LIQUID ADMINISTRATION SYSTEM
 本開示は、薬液投与装置及びその制御方法、薬液投与システムに関する。 The present disclosure relates to a medical solution administration device, its control method, and a medical solution administration system.
 インスリン等の薬液を患者の体内に投与する薬液投与装置が知られている。例えば、特許文献1には、現在の電池残量の表示をハンドセットに送信する治療薬注入デバイスが記載されている(段落[0017])。 A drug solution administration device that administers a drug solution such as insulin into a patient's body is known. For example, Patent Literature 1 describes a therapeutic drug injection device that transmits an indication of the current battery level to a handset (paragraph [0017]).
特表2017-504424号公報Japanese Patent Publication No. 2017-504424
 薬液投与装置を、薬液を充填する構造を有する使い捨てのカートリッジ(使い捨て部)と、再利用可能な装置本体(リユース部)とにより構成し、装置本体に設けられた電池(バッテリ)の電力によって駆動させることが考えられる。従来の薬液投与装置においては、電池を充電せずに、カートリッジを交換して動作させることが可能な回数の測定精度に改善の余地があった。 The drug solution administration device consists of a disposable cartridge (disposable part) having a structure to be filled with a drug solution and a reusable device main body (reusable part), and is driven by the power of a battery provided in the device main body. It is conceivable to let In the conventional medical-solution administration device, there is room for improvement in the measurement accuracy of the number of times the cartridge can be replaced and operated without charging the battery.
 本開示の目的は、カートリッジの交換可能回数より高い精度で測定することが可能な薬液投与装置及びその制御方法、薬液投与システムを提供することである。 An object of the present disclosure is to provide a drug-solution administration device, a control method thereof, and a drug-solution administration system capable of measuring with higher accuracy than the number of times the cartridge can be replaced.
 本開示の一実施形態に係る薬液投与装置は、リザーバ内に充填した薬液をプランジャの押圧作用により生体内に投与する薬液投与装置であって、着脱可能に接続される使い捨てのカートリッジに設けられた、前記薬液が充填される前記リザーバと、前記リザーバに接続するとともに、前記薬液を前記リザーバの外へ導出する流路と、前記リザーバの長手方向に移動可能な前記プランジャと、可動領域において移動することにより、前記プランジャを前記リザーバの先端側に押圧することが可能な可動部と、前記可動部を前記可動領域において移動させる駆動部と、前記駆動部を駆動するための電力を供給する電池と、制御部と、を備え、前記制御部は、前記薬液投与装置の流路が前記薬液で充たされるまで前記可動部を移動するために必要な電力量であるプライミング電力量と、前記リザーバに充填された前記薬液を投与するために必要な電力量である送液電力量と、前記電池に残存している電力量と、に基づき、前記カートリッジを交換することが可能な回数である交換可能回数を算出し、算出された前記交換可能回数をユーザに提示する。 A medical-solution administration device according to an embodiment of the present disclosure is a medical-solution administration device that administers a medical solution filled in a reservoir into a living body by a pressing action of a plunger, and is provided in a disposable cartridge that is detachably connected. a reservoir filled with the chemical, a flow path connected to the reservoir and leading the chemical to the outside of the reservoir, and the plunger movable in the longitudinal direction of the reservoir, and moving in a movable region. Thus, a movable portion capable of pressing the plunger toward the tip of the reservoir, a driving portion moving the movable portion within the movable region, and a battery supplying electric power for driving the driving portion. and a control unit, wherein the control unit controls a priming power amount, which is the amount of power required to move the movable part until the flow path of the medical-solution administration device is filled with the medical solution, and a charging power to the reservoir. The number of exchangeable times, which is the number of times the cartridge can be exchanged, based on the amount of electric power required for administering the liquid medicine and the amount of electric power remaining in the battery. is calculated, and the calculated number of possible exchanges is presented to the user.
 一実施形態として、前記駆動部は、モータの回転に基づく駆動力を伝達することにより、前記可動部を移動させ、前記制御部は、前記薬液投与装置の前記流路を前記薬液で充たすまで前記可動部を移動させるために回転させた前記モータの回転数に基づき、前記プライミング電力量及び前記送液電力量を推定する。 As one embodiment, the driving section moves the movable section by transmitting a driving force based on the rotation of a motor, and the control section controls the flow path of the medical-solution administration device until the liquid medicine is filled with the liquid medicine. The priming power amount and the liquid feeding power amount are estimated based on the number of rotations of the motor that is rotated to move the movable portion.
 一実施形態として、前記制御部は、前記電池に残存している電力量を、前記プライミング電力量及び前記送液電力量の合計値で除算することにより、前記交換可能回数を算出する。 As one embodiment, the control unit calculates the number of exchangeable times by dividing the amount of power remaining in the battery by the total value of the priming power amount and the liquid feeding power amount.
 一実施形態として、前記制御部は、前記算出された交換可能回数を表示装置に表示させる。 As one embodiment, the control unit causes the display device to display the calculated number of possible exchanges.
 本開示の一実施形態に係る薬液投与システムは、上記薬液投与装置と、ユーザが前記薬液投与装置を操作するためのリモコンと、を備える。 A medical-solution administration system according to an embodiment of the present disclosure includes the medical-solution administration device described above and a remote control for a user to operate the medical-solution administration device.
 本開示の一実施形態に係る薬液投与装置の制御方法は、着脱可能に接続される使い捨てのカートリッジに設けられた、薬液が充填されるリザーバと、前記リザーバに接続するとともに、前記薬液を前記リザーバの外へ導出する流路と、前記リザーバの長手方向に移動可能なプランジャと、可動領域において移動することにより、前記プランジャを前記リザーバの先端側に押圧することが可能な可動部と、前記可動部を前記可動領域において移動させる駆動部と、前記駆動部を駆動するための電力を供給する電池と、制御部と、を備え、前記リザーバ内に充填した前記薬液を前記プランジャの押圧作用により生体内に投与する薬液投与装置の制御方法であって、前記制御部が、前記流路が前記薬液で充たされるまで前記可動部を移動するために必要な電力量であるプライミング電力量と、前記リザーバに充填された前記薬液を投与するために必要な電力量である送液電力量と、前記電池に残存している電力量と、に基づき、前記カートリッジを交換することが可能な回数である交換可能回数を算出する工程と、算出された前記交換可能回数をユーザに提示する工程と、を含む。 A control method for a medical-solution administration device according to an embodiment of the present disclosure includes: a reservoir filled with a medical solution provided in a detachably connected disposable cartridge; a plunger movable in the longitudinal direction of the reservoir; a movable portion capable of pressing the plunger toward the distal end side of the reservoir by moving in the movable region; a driving unit for moving the unit in the movable area, a battery for supplying electric power for driving the driving unit, and a control unit, and the chemical liquid filled in the reservoir is generated by the pressing action of the plunger. A control method for a liquid medicine administration device for administering into the body, comprising: a priming power amount that is the amount of power required for the control unit to move the movable part until the flow path is filled with the liquid medicine; Replacement, which is the number of times that the cartridge can be replaced based on the amount of power required to administer the drug solution filled in the cartridge and the amount of power remaining in the battery. calculating a possible number of times; and presenting the calculated possible number of exchanges to a user.
 本開示の一実施形態によれば、カートリッジの交換可能回数より高い精度で測定することが可能となる。 According to one embodiment of the present disclosure, it is possible to measure with higher accuracy than the number of times the cartridge can be replaced.
一実施形態に係る薬液投与システムの一例を示す図である。It is a figure which shows an example of the medical-solution administration system which concerns on one Embodiment. 図1の薬液投与装置の斜視図の一例を示す図である。It is a figure which shows an example of the perspective view of the chemical|medical-solution administration apparatus of FIG. 図1の薬液投与装置が分離状態である斜視図の一例を示す図である。1. It is a figure which shows an example of the perspective view which the chemical|medical-solution administration apparatus of FIG. 1 is a separated state. 図3のポンプ本体の分解斜視図の一例を示す図である。FIG. 4 is a diagram showing an example of an exploded perspective view of the pump body of FIG. 3; ナット部が非接触位置にある状態のカートリッジの一例を示す図である。FIG. 10 is a diagram showing an example of a cartridge in which the nut portion is in the non-contact position; ナット部が所定位置にある状態のカートリッジの一例を示す図である。FIG. 10 is a diagram showing an example of a cartridge with a nut portion in a predetermined position; 図1の薬液投与装置の制御に関する構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a configuration related to control of the drug-solution administration device of FIG. 1; 図1のリモコンのハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of the remote control shown in FIG. 1; FIG. 図1の薬液投与装置の動作手順を示すフローチャートである。2 is a flow chart showing an operation procedure of the drug-solution administration device of FIG. 1; 図9の回転数測定処理の手順を示すフローチャートである。FIG. 10 is a flow chart showing the procedure of the rotational speed measurement process of FIG. 9; FIG.
 以下、本開示の一実施形態について、図面を参照して説明する。各図面中、同一の構成又は機能を有する部分には、同一の符号を付している。本実施形態の説明において、同一の部分については、重複する説明を適宜省略又は簡略化する場合がある。 An embodiment of the present disclosure will be described below with reference to the drawings. In each drawing, parts having the same configuration or function are given the same reference numerals. In the description of the present embodiment, overlapping descriptions of the same parts may be appropriately omitted or simplified.
 (薬液投与システムの構成)
 図1は、一実施形態に係る薬液投与システム100の一例を示す図である。薬液投与システム100は、インスリン等の薬液を患者の生体内に投与する。薬液投与システム100は、薬液投与装置1及びリモコン90を備える。
(Structure of drug solution administration system)
FIG. 1 is a diagram showing an example of a drug-solution administration system 100 according to one embodiment. The drug solution administration system 100 administers a drug solution such as insulin into the patient's body. A drug-solution administration system 100 includes a drug-solution administration device 1 and a remote controller 90 .
 薬液投与装置1は、図4等で後述するように、リザーバ(シリンジ)18内に充填した薬液をプランジャ20の押圧作用により生体内に持続的又は間欠的に投与する装置である。薬液投与装置1は、例えば、患者の腹部等に貼り付け可能(パッチ式)な携帯型の装置としてもよい。ただし、薬液投与装置1は、パッチ式に限定されず、チューブ式等であってもよい。 The drug solution administration device 1 is a device that continuously or intermittently administers a drug solution filled in a reservoir (syringe) 18 into a living body by the pressing action of a plunger 20, as will be described later with reference to FIG. The drug-solution administration device 1 may be, for example, a portable device that can be attached to the patient's abdomen (patch type). However, the drug-solution administration device 1 is not limited to a patch type, and may be a tube type or the like.
 リモコン90は、患者等のユーザが薬液投与装置1を操作するための装置である。リモコン90は、薬液投与装置1から受け取った情報をユーザに通知したり、薬液投与装置1に対するユーザの操作を受け付けたりする。本実施形態では、リモコン90は薬液投与装置1に対応した専用の装置により実現されるが、スマートフォン又はタブレット等の汎用の情報処理装置により実現してもよい。また、本実施形態では、リモコン90がユーザへの情報通知及びユーザからの情報入力の受け付け等のユーザインタフェースを担う場合の例を説明するが、これに代えて、ユーザインタフェースの全部又は一部の機能を薬液投与装置1が備えるようにしてもよい。 A remote controller 90 is a device for a user such as a patient to operate the drug-solution administration device 1 . The remote controller 90 notifies the user of information received from the medical-solution administration device 1 and accepts user's operations on the medical-solution administration device 1 . In this embodiment, the remote control 90 is realized by a dedicated device compatible with the drug-solution administration device 1, but may be realized by a general-purpose information processing device such as a smart phone or a tablet. Further, in this embodiment, an example in which the remote controller 90 serves as a user interface such as notifying the user of information and receiving information input from the user will be described. The function may be provided in the drug-solution administration device 1 .
 薬液投与装置1及びリモコン90は、無線通信回線、有線通信回線、又はこれらの組合せにより互いに通信可能に接続されている。以下、薬液投与装置1及びリモコン90がBluetooth(登録商標)により通信可能に接続されている例を説明する。 The medicinal-solution administration device 1 and the remote controller 90 are communicably connected to each other via a wireless communication line, a wired communication line, or a combination thereof. An example in which the drug-solution administration device 1 and the remote controller 90 are communicably connected via Bluetooth (registered trademark) will be described below.
 (薬液投与装置の構成)
 図2は、図1の薬液投与装置1の斜視図の一例を示す図である。図3は、図1の薬液投与装置1が分離された場合の斜視図の一例を示す図である。薬液投与装置1は、ポンプ本体10、ポンプ本体10が着脱可能に装着されるクレードル装置11、及びクレードル装置11に装着される接続ポート106を有する。ポンプ本体10及びクレードル装置11は、互いに係合して繰り返し脱着可能な構造を有する。
(Structure of drug-solution administration device)
FIG. 2 is a diagram showing an example of a perspective view of the medicinal-solution administration device 1 of FIG. FIG. 3 is a diagram showing an example of a perspective view when the medicinal-solution administration device 1 of FIG. 1 is separated. The drug-solution administration device 1 has a pump body 10 , a cradle device 11 to which the pump body 10 is detachably attached, and a connection port 106 attached to the cradle device 11 . The pump body 10 and the cradle device 11 have a structure that can be repeatedly attached and detached by being engaged with each other.
 ポンプ本体10は、リザーバ18及びプランジャ20等の薬液投与装置1の各構成要素を収容する筐体111を備える。図1及び図2等に例示するように、筐体111は、角部が湾曲した扁平状の略直方体状に形成されてもよい。筐体111の上面部121は、ポンプ本体10において、クレードル装置11に装着される側と反対に位置する一面である。上面部121は、上面視において、角部が湾曲した略矩形状に形成されてもよい。上面部121の第1の方向の端部には、互いに対向する正面部123と背面部124が略垂直に連続している。上面部121の第2の方向の端部には、側面部126が略垂直に連続している。 The pump main body 10 includes a housing 111 that accommodates each component of the drug-solution administration device 1 such as the reservoir 18 and the plunger 20 . As illustrated in FIGS. 1 and 2 and the like, the housing 111 may be formed in a flat, substantially rectangular parallelepiped shape with curved corners. The upper surface portion 121 of the housing 111 is one surface of the pump body 10 located opposite to the side on which the cradle device 11 is mounted. The upper surface portion 121 may be formed in a substantially rectangular shape with curved corners when viewed from above. A front surface portion 123 and a rear surface portion 124 facing each other are substantially perpendicularly continuous to the end portion of the upper surface portion 121 in the first direction. A side surface portion 126 continues substantially perpendicularly to the end portion of the upper surface portion 121 in the second direction.
 図3に示すように、ポンプ本体10は、側面部126において、ポンプ本体10とクレードル装置11とが、繰り返し脱着可能な係合構造を有してもよい。係合構造は、例えば、フック機構を有してもよい。具体的には、側面部126には、ガイド溝部137、及び、係合フック部138が形成されてもよい。係合フック部138は、ガイド溝部137よりも、背面部124に近い側に形成されてもよい。係合フック部138は、後述するクレードル装置11の係合受け部162に着脱可能に係合してもよい。 As shown in FIG. 3, the pump main body 10 may have an engaging structure in which the pump main body 10 and the cradle device 11 can be repeatedly attached and detached at the side portion 126 . The engagement structure may have, for example, a hook mechanism. Specifically, a guide groove portion 137 and an engaging hook portion 138 may be formed on the side portion 126 . The engaging hook portion 138 may be formed closer to the back surface portion 124 than the guide groove portion 137 . The engagement hook portion 138 may be detachably engaged with an engagement receiving portion 162 of the cradle device 11, which will be described later.
 クレードル装置11は、ポンプ本体10を担持可能に構成される。図2及び図3に示すように、クレードル装置11は、略平板状の載置面部141、及び側壁部143,144を有する。載置面部141は、上面視で角部が湾曲した略矩形状に形成されている。クレードル装置11にポンプ本体10が装着されると、載置面部141には、ポンプ本体10の筐体111の底面部が載置される。 The cradle device 11 is configured to be able to carry the pump body 10 . As shown in FIGS. 2 and 3, the cradle device 11 has a substantially flat mounting surface portion 141 and side wall portions 143 and 144 . The mounting surface portion 141 is formed in a substantially rectangular shape with curved corners when viewed from above. When the pump main body 10 is attached to the cradle device 11 , the bottom surface portion of the housing 111 of the pump main body 10 is placed on the mounting surface portion 141 .
 載置面部141の一面には、検出レール152、摺動レール153、及び装着部155が設けられてもよい。装着部155には、接続ポート106が装着されてもよい。装着部155には、接続ポート106のカニューレが挿通する挿通孔が設けられてもよい。 A detection rail 152 , a sliding rail 153 and a mounting portion 155 may be provided on one surface of the mounting surface portion 141 . The connection port 106 may be attached to the attachment portion 155 . The mounting portion 155 may be provided with an insertion hole through which the cannula of the connection port 106 is inserted.
 検出レール152は、載置面部141の一面から突出する突条部である。検出レール152は、ポンプ本体10が、クレードル装置11の装着を検出するために用いられる。検出レール152は、側壁部144側に向かうにつれて、載置面部141からの厚みが漸増している。検出レール152は、側壁部143に平行に所定の長さだけ延在している。クレードル装置11にポンプ本体10を装着した際、検出レール152は、ポンプ本体10に設けられた検出用溝部に入り込んで、不図示の装着検出スイッチを押圧する。ポンプ本体10は、装着検出スイッチが押圧されたことに基づき、クレードル装置11の装着を検出する。 The detection rail 152 is a ridge protruding from one surface of the mounting surface 141 . The detection rail 152 is used by the pump body 10 to detect attachment of the cradle device 11 . The detection rail 152 gradually increases in thickness from the mounting surface portion 141 toward the side wall portion 144 side. The detection rail 152 extends for a predetermined length parallel to the side wall portion 143 . When the pump body 10 is attached to the cradle device 11, the detection rail 152 enters a detection groove provided in the pump body 10 and presses an attachment detection switch (not shown). The pump body 10 detects attachment of the cradle device 11 based on pressing of the attachment detection switch.
 摺動レール153は、載置面部141の一面において側壁部143に平行に延在する。ポンプ本体10をクレードル装置11に装着する際に、摺動レール153には、ポンプ本体10の底面部に設けた不図示の摺動溝部が、摺動可能に嵌り込む。 The slide rail 153 extends parallel to the side wall portion 143 on one surface of the mounting surface portion 141 . When the pump body 10 is attached to the cradle device 11 , a slide groove (not shown) provided on the bottom surface of the pump body 10 is slidably fitted into the slide rail 153 .
 載置面部141の第1の方向の端部には、側壁部144が略垂直に連続している。載置面部141の第2の方向の端部には、互いに対向する側壁部143が略垂直に連続している。ポンプ本体10をクレードル装置11に装着した状態において、側壁部143は、ポンプ本体10における筐体111の側面部126と対向する。側壁部144は、筐体111の正面部123と対向する。 A side wall portion 144 continues substantially perpendicularly to the end portion of the mounting surface portion 141 in the first direction. Side wall portions 143 facing each other are substantially perpendicular to the end portions of the mounting surface portion 141 in the second direction. When the pump main body 10 is attached to the cradle device 11 , the side wall portion 143 faces the side portion 126 of the housing 111 of the pump main body 10 . The side wall portion 144 faces the front portion 123 of the housing 111 .
 図3に示すように、クレードル装置11は、側壁部144において、開口部である嵌合孔154を有してもよい。ポンプ本体10をクレードル装置11に装着した際、嵌合孔154には、ポンプ本体10の正面部123に設けられた嵌合突起が嵌り込んでもよい。 As shown in FIG. 3, the side wall 144 of the cradle device 11 may have a fitting hole 154 that is an opening. When the pump body 10 is attached to the cradle device 11 , a fitting projection provided on the front portion 123 of the pump body 10 may be fitted into the fitting hole 154 .
 側壁部143には、ガイドレール151、姿勢矯正部156、及び係合受け部162が形成されてもよい。係合受け部162は、側壁部143を略矩形状に切り欠いた開口部としてもよい。ポンプ本体10をクレードル装置11に装着した際に、係合受け部162には、係合フック部138が着脱可能に係合してもよい。 The side wall portion 143 may be formed with a guide rail 151, a posture correction portion 156, and an engagement receiving portion 162. The engagement receiving portion 162 may be an opening formed by cutting the side wall portion 143 into a substantially rectangular shape. The engagement hook portion 138 may be detachably engaged with the engagement receiving portion 162 when the pump body 10 is attached to the cradle device 11 .
 図3に示すように、ガイドレール151は、側壁部143において形成された突条部である。ガイドレール151は、必ずしも突条部が連続して延在してなくともよい。例えば、図3に示すように、ガイドレール151の途中に、切欠き158を適宜設けてもよい。
ポンプ本体10をクレードル装置11に装着する際に、ガイドレール151は、ポンプ本体10の側面部126に設けたガイド溝部137と係合する。これにより、ポンプ本体10の装着方向がガイドされる。
As shown in FIG. 3 , the guide rail 151 is a ridge formed on the side wall 143 . The guide rail 151 does not necessarily have to extend continuously. For example, as shown in FIG. 3, a notch 158 may be appropriately provided in the middle of the guide rail 151 .
When the pump main body 10 is attached to the cradle device 11 , the guide rails 151 are engaged with the guide grooves 137 provided on the side surface portion 126 of the pump main body 10 . This guides the mounting direction of the pump body 10 .
 図2及び図3に示すように、姿勢矯正部156は、側壁部143から上方向へ伸びる板状の突出部である。姿勢矯正部156は、ポンプ本体10の筐体111における上面部121と側面部126との接続部(角部)の形状に対応した、湾曲形状を有してもよい。 As shown in FIGS. 2 and 3, the posture corrector 156 is a plate-shaped projection extending upward from the side wall 143. As shown in FIG. Posture correcting portion 156 may have a curved shape corresponding to the shape of the connecting portion (corner portion) between upper surface portion 121 and side surface portion 126 of housing 111 of pump body 10 .
 クレードル装置11には、患者の皮膚に貼り付けられる貼付シートが設けられてもよい。貼付シートは、クレードル装置11の載置面部141の一面とは反対側の他面に取り付けられてもよい。貼付シートには、後述する接続ポート106のカニューレが貫通する不図示の開口部が形成されてもよい。貼付シートは、可撓性を有する部材で形成されてもよい。貼付シートにより、載置面部141とは反対側の面に、患者の皮膚に貼り付けられる接着層が形成されてもよい。患者の皮膚に貼り付ける前の状態では、貼付シートの接着層は、剥離紙によって覆われてもよい。 The cradle device 11 may be provided with an adhesive sheet that is attached to the patient's skin. The adhesive sheet may be attached to the other surface of the mounting surface portion 141 of the cradle device 11 opposite to the one surface. The adhesive sheet may be formed with an opening (not shown) through which a cannula of the connection port 106 (to be described later) passes. The patch sheet may be formed of a flexible member. An adhesive layer that is attached to the patient's skin may be formed on the surface opposite to the mounting surface portion 141 of the patch sheet. The adhesive layer of the patch sheet may be covered with a release paper before being attached to the patient's skin.
 接続ポート106は、その内部にカニューレを保持することが可能なポート本体181を有してもよい。ポート本体181は、筒状の接続部を有してもよい。カニューレが接続された場合、接続部の内部(筒孔)、ポート本体181、及び、カニューレは、連通する。接続部の先端部にはキャップ182が装着され、接続部の他端部はポート本体181に接続している。キャップ182は、接続部の先端開口を封止する。これにより、接続ポート106の内部は、外部環境から分離される。 The connection port 106 may have a port body 181 capable of holding a cannula therein. The port body 181 may have a tubular connecting portion. When the cannula is connected, the interior of the connection (bore), the port body 181, and the cannula communicate. A cap 182 is attached to the tip of the connecting portion, and the other end of the connecting portion is connected to a port body 181 . A cap 182 seals the distal end opening of the connecting portion. This isolates the inside of the connection port 106 from the external environment.
 不図示の穿刺機構を用いて接続ポート106をクレードル装置11の装着部155に装着した際に、カニューレは、穿刺針とともに載置面部141を貫通し、載置面部141の他面(皮膚に貼付される面)へと突出する。そして、カニューレは、穿刺針とともに生体内に穿刺される。その後、穿刺針を抜去することで、カニューレが生体内に留置される。 When the connection port 106 is attached to the attachment portion 155 of the cradle device 11 using a puncture mechanism (not shown), the cannula penetrates the mounting surface portion 141 together with the puncture needle, and the other surface of the mounting surface portion 141 (which is attached to the skin) surface). The cannula is then punctured into the living body together with the puncture needle. After that, the cannula is left in the living body by removing the puncture needle.
 ポート本体181の接続部は、装着方向の上流側を向いてもよい。ポンプ本体10の外部へ露出する接続針管は、導出管29と流体的に接続する。接続針管は、キャップ182のセプタム面を穿刺することで、筒孔内に侵入する。これにより、ポート本体181とポンプ本体10の導出管29(図5等参照)が接続され、導出管29とカニューレが流体接続する。そして、ポンプ本体10のリザーバ18に貯蔵された薬液は、駆動部40(図5等参照)が駆動されることで、導出管29を介して接続ポート106に送り出されると共にカニューレから患者に投与される。すなわち、導出管29は、リザーバ18に接続するとともに、薬液をリザーバ18の外へ導出する流路として作用する。接続針管が導出管29に接続している場合、薬液投与装置1の流路には、導出管29及び接続針管が含まれてもよい。 The connecting portion of the port body 181 may face the upstream side in the mounting direction. A connecting needle tube exposed to the outside of the pump body 10 is fluidly connected to the lead-out tube 29 . By puncturing the septum surface of the cap 182, the connecting needle tube penetrates into the cylindrical hole. As a result, the port body 181 and the outlet tube 29 (see FIG. 5, etc.) of the pump body 10 are connected, and the outlet tube 29 and the cannula are fluidly connected. Then, the drug solution stored in the reservoir 18 of the pump body 10 is delivered to the connection port 106 through the lead-out tube 29 and administered to the patient through the cannula by driving the drive unit 40 (see FIG. 5, etc.). be. In other words, the lead-out tube 29 is connected to the reservoir 18 and acts as a channel for leading the drug solution out of the reservoir 18 . When the connecting needle tube is connected to the lead-out tube 29, the flow path of the drug-solution administration device 1 may include the lead-out tube 29 and the connecting needle tube.
 (ポンプ本体の構成)
 図4は、図3のポンプ本体10の分解斜視図の一例を示す図である。図5は、ナット部24が非接触位置にある状態のカートリッジ12の一例を示す図である。図6は、ナット部24が所定位置にある状態のカートリッジ12の一例を示す図である。
(Configuration of pump body)
FIG. 4 is a diagram showing an example of an exploded perspective view of the pump body 10 of FIG. FIG. 5 shows an example of the cartridge 12 with the nut portion 24 at the non-contact position. FIG. 6 shows an example of the cartridge 12 with the nut portion 24 at a predetermined position.
 図4に示すように、ポンプ本体10は、使い捨てのカートリッジ12、及び、再利用可能な装置本体14を備える。カートリッジ12は、片側が開口した平箱形状のベース部16を備えている。ベース部16は、平面視で略長方形状を有する。ベース部16は、患者の皮膚に貼着可能なクレードル装置11に対して着脱可能に設けられてもよい。 As shown in FIG. 4, the pump body 10 includes a disposable cartridge 12 and a reusable device body 14. The cartridge 12 has a flat box-shaped base portion 16 which is open on one side. The base portion 16 has a substantially rectangular shape in plan view. The base portion 16 may be provided detachably with respect to the cradle device 11 that can be adhered to the patient's skin.
 図4に示すように、ベース部16には、薬液が充填されるリザーバ18、リザーバ18内に設けられたプランジャ20、プランジャ20と同軸に配設された送りねじ軸22、及び、送りねじ軸22に螺合されたナット部(可動部)24が設けられる。 As shown in FIG. 4, the base portion 16 includes a reservoir 18 filled with a chemical solution, a plunger 20 provided in the reservoir 18, a feed screw shaft 22 provided coaxially with the plunger 20, and a feed screw shaft. A nut portion (movable portion) 24 that is screwed onto 22 is provided.
 リザーバ18は、ベース部16の長手方向に円筒状に延在している。リザーバ18の先端部は、外径及び内径が先端に向かって縮径している。このようなリザーバ18の先端部には、リザーバ18内へ薬液を導入するための導入ポート26、及び、リザーバ18内の薬液を導出するための導出ポート28(図5参照)が形成されている。導出ポート28には、リザーバ18内の薬液をカニューレに導く導出管29が連通している。 The reservoir 18 extends cylindrically in the longitudinal direction of the base portion 16 . The distal end portion of the reservoir 18 has an outer diameter and an inner diameter that decrease toward the distal end. An introduction port 26 for introducing the chemical solution into the reservoir 18 and an outlet port 28 (see FIG. 5) for extracting the chemical solution from the reservoir 18 are formed at the tip of the reservoir 18. . The lead-out port 28 communicates with a lead-out tube 29 that guides the drug solution in the reservoir 18 to the cannula.
 プランジャ20は、樹脂材料等で一体的に成形されており、リザーバ18の軸線方向に沿って液密に摺動可能にリザーバ18内に設けられている。プランジャ20は、先端側を構成するプランジャ本体30、及び、プランジャ本体30に設けられて後端側を構成する押し子32を有している。プランジャ本体30のうち円筒状に形成された後端側には、リザーバ18内を摺動可能なシール部材34が装着されている。 The plunger 20 is integrally molded with a resin material or the like, and is provided in the reservoir 18 so as to be liquid-tight and slidable along the axial direction of the reservoir 18 . The plunger 20 has a plunger main body 30 forming a tip side, and a pusher 32 provided on the plunger main body 30 and forming a rear end side. A sealing member 34 slidable in the reservoir 18 is attached to the cylindrical rear end of the plunger body 30 .
 押し子32は、プランジャ本体30から後方に向かってリザーバ18の外側まで延出した一対の延出部36、及び、延出部36の後端部に設けられた一対の爪部38を備える。送りねじ軸22は、その一端部が軸受39によって軸支されており、ナット部24を移動させる駆動部40を構成する。 The pusher 32 has a pair of extensions 36 extending rearward from the plunger body 30 to the outside of the reservoir 18 and a pair of claws 38 provided at the rear ends of the extensions 36 . One end of the feed screw shaft 22 is rotatably supported by a bearing 39 and constitutes a drive section 40 that moves the nut section 24 .
 駆動部40は、動力源としての電池42、電池42によって駆動するモータ44、モータ44の回転駆動力を減速して伝達するギヤボックス(動力伝達機構)46、及び、ギヤボックス46の出力歯車48に噛み合う平歯車50が固定されて送りねじ軸22に一体回転可能に係止された伝達軸52をさらに有している。 The drive unit 40 includes a battery 42 as a power source, a motor 44 driven by the battery 42, a gearbox (power transmission mechanism) 46 that reduces the rotational driving force of the motor 44 and transmits it, and an output gear 48 of the gearbox 46. It further has a transmission shaft 52 to which a spur gear 50 meshing with is fixed and locked to the feed screw shaft 22 so as to be integrally rotatable.
 本実施形態では、伝達軸52がカートリッジ12に設けられ、電池42、モータ44、及びギヤボックス46が装置本体14に設けられている。このように、電池42、モータ44、及びギヤボックス46を、リユースされる装置本体14に設けることにより、カートリッジ12のコストの削減を図ることができる。この場合、電池42は二次電池としてもよい。 In this embodiment, the transmission shaft 52 is provided in the cartridge 12, and the battery 42, the motor 44, and the gear box 46 are provided in the apparatus main body 14. By providing the battery 42, the motor 44, and the gear box 46 in the reusable device body 14 in this manner, the cost of the cartridge 12 can be reduced. In this case, the battery 42 may be a secondary battery.
 電池42には、モータ44に電気的に接続する端子54が設けられている。伝達軸52は、送りねじ軸22と同軸に配設された状態でベース部16に設けられた一対の軸受56によって軸支されている。 The battery 42 is provided with terminals 54 electrically connected to the motor 44 . The transmission shaft 52 is supported by a pair of bearings 56 provided on the base portion 16 while being coaxial with the feed screw shaft 22 .
 モータ44が回転すると、その回転力が送りねじ軸22へ伝えられ、送りねじ軸22の回転作用によりナット部24はプランジャ20へ向かう方向又はプランジャ20から離れる方向へ移動する。以下、ナット部24がプランジャ20へ向かう方向に移動するためのモータ44の回転を正回転と呼び、正回転と逆方向へのモータ44の回転を逆回転と呼ぶ。モータ44は正回転と逆回転の両方の回転をすることができるように構成されている。モータ44は、正回転又は逆回転に一定以上の力(トルク)がかかった場合、回転駆動力がギヤボックス46以下の構成部品に伝わらないように構成される。モータ44として、例えば、ステッピングモータを採用してもよい。ステッピングモータを採用した場合、正回転又は逆回転に一定以上の力がかかったときは、モータ44は、入力パルスに同期しなくなるため回転駆動力を伝達しなくなる(脱調)。例えば、ナット部24が送りねじ軸22の軸受56側の最後端に接触している状態でモータ44が逆回転した場合、脱調により、モータ44、ギヤボックス46、伝達軸52等の機構に無理な力がかかって破損することを防ぐことができる。モータ44の出力軸には不図示のロータリーエンコーダが設けられ、モータ44が入力パルスに同期しなくなった(脱調)かは、ロータリーエンコーダによりモータ44の回転を検出することで判定可能である。モータ44の動作状態は、制御部71へ伝達される。 When the motor 44 rotates, its rotational force is transmitted to the feed screw shaft 22 , and the rotation of the feed screw shaft 22 causes the nut portion 24 to move toward or away from the plunger 20 . Hereinafter, the rotation of the motor 44 for moving the nut portion 24 toward the plunger 20 will be referred to as forward rotation, and the rotation of the motor 44 in the direction opposite to the forward rotation will be referred to as reverse rotation. The motor 44 is configured to rotate both forward and reverse. The motor 44 is configured so that when a certain force (torque) is applied to the forward or reverse rotation, the rotational driving force is not transmitted to the components below the gear box 46 . A stepping motor, for example, may be employed as the motor 44 . When a stepping motor is employed, when a certain amount of force is applied to forward or reverse rotation, the motor 44 will not be synchronized with the input pulse and will not transmit rotational driving force (step out). For example, if the motor 44 rotates in the opposite direction while the nut portion 24 is in contact with the rearmost end of the feed screw shaft 22 on the bearing 56 side, the motor 44, gear box 46, transmission shaft 52, and other mechanisms may malfunction due to step-out. It is possible to prevent damage due to excessive force. A rotary encoder (not shown) is provided on the output shaft of the motor 44, and whether or not the motor 44 is out of synchronization with the input pulse (step out) can be determined by detecting the rotation of the motor 44 with the rotary encoder. The operating state of the motor 44 is transmitted to the control section 71 .
 ナット部24は、樹脂材料によって一体的に成形されており、略直方体形状に形成されたナット部本体58、及び、ナット部本体58に設けられたスライド部60を有している。ナット部本体58には、送りねじ軸22が螺合するねじ孔62、及び、ねじ孔62を両側から挟むようにして形成されて爪部38が挿通する一対の貫通孔64が形成されている。ナット部本体58の外面には、例えば、金属材料等で構成された補強カバー66が装着されている。 The nut portion 24 is integrally molded from a resin material and has a nut portion main body 58 formed in a substantially rectangular parallelepiped shape and a slide portion 60 provided on the nut portion main body 58 . The nut main body 58 is formed with a threaded hole 62 into which the feed screw shaft 22 is screwed, and a pair of through holes 64 which are formed to sandwich the threaded hole 62 from both sides and through which the claws 38 are inserted. A reinforcing cover 66 made of, for example, a metal material is attached to the outer surface of the nut body 58 .
 スライド部60は、ベース部16に設けられてプランジャ20の軸線方向に沿って延在した案内壁68に対してスライドする。すなわち、ナット部24は、使用前の状態において、プランジャ20に接触しない非接触位置にあり(図5参照)、送りねじ軸22の回転作用によって、非接触位置から、ナット部24とプランジャ20が係止した接触位置(以後、「初期位置」と称する)に移動する。プランジャ20に接触した後、更に送りねじ軸22が回転することにより、ナット部24は、プランジャ20を先端側に押圧する(図6参照)。案内壁68にスライド部60がそれ以上後退できないようにストッパーとなる規制部を設けてもよい。 The slide portion 60 slides on a guide wall 68 provided on the base portion 16 and extending along the axial direction of the plunger 20 . That is, before use, the nut portion 24 is in a non-contact position (see FIG. 5), and the nut portion 24 and the plunger 20 are moved from the non-contact position by the rotation of the feed screw shaft 22. It moves to the locked contact position (hereinafter referred to as "initial position"). After contacting the plunger 20, further rotation of the feed screw shaft 22 causes the nut portion 24 to press the plunger 20 to the distal end side (see FIG. 6). The guide wall 68 may be provided with a regulating portion that serves as a stopper so that the slide portion 60 cannot retreat any further.
 図4~図6に示すように、装置本体14は、ベース部16の開口を閉塞するようにしてベース部16に着脱可能に設けられた蓋体、並びに、制御部71、記憶部72、及び通信部73を備えている。蓋体は筐体111の上面部121に設けられてもよい。制御部71には、電池42、モータ44、記憶部72、及び通信部73がバス79を介して電気的に接続されている(図7参照)。制御部71は、薬液投与装置1の各部を制御して、薬液投与装置1の動作に関わる処理を実行する。例えば、制御部71は、リモコン90から送信された薬液投与に関する情報に基づいてモータ44を駆動制御する。 As shown in FIGS. 4 to 6, the device main body 14 includes a cover body detachably provided on the base portion 16 so as to close the opening of the base portion 16, a control portion 71, a storage portion 72, and a A communication unit 73 is provided. The lid may be provided on the upper surface portion 121 of the housing 111 . A battery 42, a motor 44, a storage unit 72, and a communication unit 73 are electrically connected to the control unit 71 via a bus 79 (see FIG. 7). The control unit 71 controls each part of the medicinal-solution administration device 1 and executes processing related to the operation of the medicinal-solution administration device 1 . For example, the control unit 71 drives and controls the motor 44 based on information regarding drug solution administration transmitted from the remote controller 90 .
 図7は、図1の薬液投与装置1の制御に関する構成の一例を示すブロック図である。前述のように、制御部71には、電池42、モータ44、記憶部72、及び通信部73がバス79を介して電気的に接続されている。 FIG. 7 is a block diagram showing an example of a configuration related to control of the medicinal-solution administration device 1 of FIG. As described above, the battery 42 , the motor 44 , the storage unit 72 , and the communication unit 73 are electrically connected to the control unit 71 via the bus 79 .
 制御部71は、1つ以上のプロセッサである。制御部71は、薬液投与装置1を構成する各構成部と通信可能に接続され、薬液投与装置1全体の動作を制御する。プロセッサは、CPU(Central Processing Unit)等の汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。制御部71には、1つ以上の専用回路が含まれてもよいし、又は制御部71において、1つ以上のプロセッサを1つ以上の専用回路に置き換えてもよい。専用回路は、例えば、FPGA(Field Programmable Gate Array)である。 The control unit 71 is one or more processors. The control unit 71 is communicably connected to each component constituting the medicinal-solution administration device 1 and controls the operation of the medicinal-solution administration device 1 as a whole. The processor is a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor specialized for specific processing. The controller 71 may include one or more dedicated circuits, or one or more processors may be replaced with one or more dedicated circuits in the controller 71 . The dedicated circuit is, for example, an FPGA (Field Programmable Gate Array).
 記憶部72は、1つ以上の半導体メモリ、1つ以上の磁気メモリ、1つ以上の光メモリ、又はこれらのうち少なくとも2種類の組み合わせである。半導体メモリは、例えば、RAM(Random Access Memory)又はROM(Read Only Memory)である。記憶部72は、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能する。 The storage unit 72 is one or more semiconductor memories, one or more magnetic memories, one or more optical memories, or a combination of at least two of them. The semiconductor memory is, for example, RAM (Random Access Memory) or ROM (Read Only Memory). The storage unit 72 functions as, for example, a main memory device, an auxiliary memory device, or a cache memory.
 通信部73は、リモコン90と通信するための通信インタフェースである。本実施形態では、通信部73はBluetooth(登録商標)によりリモコン90と通信するが、これに限られず、例えば、無線LAN(Local Area Network)等の他の無線通信経路又は有線ケーブルを介して通信してもよい。 The communication unit 73 is a communication interface for communicating with the remote control 90. In this embodiment, the communication unit 73 communicates with the remote controller 90 via Bluetooth (registered trademark), but is not limited to this, and communicates via other wireless communication paths such as a wireless LAN (Local Area Network) or a wired cable, for example. You may
 薬液投与装置1の制御は、プログラムを、制御部71に含まれるプロセッサで実行することにより実行されてもよい。すなわち、薬液投与装置1の制御は、ソフトウェアにより実現されてもよい。この場合、プログラムは、薬液投与装置1の動作に含まれるステップの処理をコンピュータに実行させることで、そのステップの処理に対応する機能をコンピュータに実現させる。あるいは、薬液投与装置1の一部又は全ての機能が、制御部71に含まれる専用回路により実現されてもよい。すなわち、薬液投与装置1の一部又は全ての機能が、ハードウェアにより実現されてもよい。
 (リモコンの構成)
 図8は、図1のリモコン90のハードウェア構成の一例を示すブロック図である。リモコン90は、制御部91、記憶部92、通信部93、入力部94、出力部95、及びバス99を備える。
Control of the medicinal-solution administration device 1 may be executed by executing a program by a processor included in the control unit 71 . That is, the control of the medicinal-solution administration device 1 may be realized by software. In this case, the program causes the computer to execute the processing of steps included in the operation of the drug-solution administration device 1, thereby causing the computer to implement the functions corresponding to the processing of the steps. Alternatively, part or all of the functions of the medicinal-solution administration device 1 may be implemented by a dedicated circuit included in the control section 71 . That is, part or all of the functions of the drug-solution administration device 1 may be realized by hardware.
(Remote control configuration)
FIG. 8 is a block diagram showing an example of the hardware configuration of the remote control 90 of FIG. 1. As shown in FIG. The remote controller 90 includes a control section 91 , a storage section 92 , a communication section 93 , an input section 94 , an output section 95 and a bus 99 .
 制御部91は、1つ以上のプロセッサである。制御部91は、リモコン90を構成する各構成部とバス99を介して通信可能に接続され、リモコン90全体の動作を制御する。プロセッサは、CPU若しくはGPU(Graphics Processing Unit)等の汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。制御部91には、1つ以上の専用回路が含まれてもよいし、又は制御部91において、1つ以上のプロセッサを1つ以上の専用回路に置き換えてもよい。専用回路は、例えば、FPGAである。 The control unit 91 is one or more processors. The control unit 91 is communicably connected to each constituent unit of the remote controller 90 via a bus 99 and controls the operation of the remote controller 90 as a whole. The processor is a general-purpose processor such as a CPU or GPU (Graphics Processing Unit), or a dedicated processor specialized for specific processing. Control unit 91 may include one or more dedicated circuits, or one or more processors may be replaced by one or more dedicated circuits in control unit 91 . A dedicated circuit is, for example, an FPGA.
 記憶部92は、1つ以上の半導体メモリ、1つ以上の磁気メモリ、1つ以上の光メモリ、又はこれらのうち少なくとも2種類の組み合わせである。半導体メモリは、例えば、RAM又はROMである。RAMは、例えば、SRAM(Static RAM)又はDRAM(Dynamic RAM)である。ROMは、例えば、EEPROM(Electrically Erasable Programmable ROM)である。記憶部92は、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能する。 The storage unit 92 is one or more semiconductor memories, one or more magnetic memories, one or more optical memories, or a combination of at least two of them. A semiconductor memory is, for example, a RAM or a ROM. RAM is, for example, SRAM (Static RAM) or DRAM (Dynamic RAM). The ROM is, for example, an EEPROM (Electrically Erasable Programmable ROM). The storage unit 92 functions, for example, as a main storage device, an auxiliary storage device, or a cache memory.
 通信部93は、薬液投与装置1と通信するための通信インタフェースである。通信部93は、薬液投与装置1と通信して、ユーザにより入力された情報を薬液投与装置1へ送信したり、薬液投与装置1から情報を受信したりする。通信部93は例えばBluetooth(登録商標)により薬液投与装置1と通信するが、これに限られず、例えば、無線LAN等の他の無線通信経路又は有線ケーブルにより通信してもよい。 The communication unit 93 is a communication interface for communicating with the drug-solution administration device 1. The communication unit 93 communicates with the medicinal-solution administration device 1 to transmit information input by the user to the medicinal-solution administration device 1 and receive information from the medicinal-solution administration device 1 . The communication unit 93 communicates with the medicinal-solution administration device 1 via, for example, Bluetooth (registered trademark), but is not limited to this, and may communicate via other wireless communication paths such as wireless LAN or wired cables, for example.
 入力部94は、ユーザの入力操作を受け付けて、ユーザの操作に基づく入力情報を取得する1つ以上の入力インタフェースを含む。入力部94は、例えば、出力部95のディスプレイ(表示装置)と一体的に設けられたタッチスクリーンであるが、これに限らず、物理キー(例えば、外付けテンキー)、静電容量キー、ポインティングディバイス、又は音声入力を受け付けるマイク等としてもよい。 The input unit 94 includes one or more input interfaces that receive user's input operations and acquire input information based on the user's operations. The input unit 94 is, for example, a touch screen provided integrally with the display (display device) of the output unit 95, but is not limited to this, physical keys (eg, external numeric keypad), capacitance keys, pointing It may be a device or a microphone or the like that receives voice input.
 表示部としての出力部95は、ユーザに対して情報を出力し、ユーザに通知する1つ以上の出力インタフェースを含む。例えば、出力部95は、情報を画像表示により出力するディスプレイ、LED(Light Emitting Diode)、スピーカ、又はバイブレータ等であるが、これらに限定されない。 The output unit 95 as a display unit outputs information to the user and includes one or more output interfaces for notifying the user. For example, the output unit 95 is a display that outputs information by image display, an LED (Light Emitting Diode), a speaker, a vibrator, or the like, but is not limited to these.
 リモコン90の機能は、本実施形態に係るプログラムを、制御部91に含まれるプロセッサで実行することにより実現されてもよい。すなわち、リモコン90の機能は、ソフトウェアにより実現されてもよい。この場合、プログラムは、リモコン90の動作に含まれるステップの処理をコンピュータに実行させることで、そのステップの処理に対応する機能をコンピュータに実現させる。あるいは、リモコン90の一部又は全ての機能が、制御部91に含まれる専用回路により実現されてもよい。すなわち、リモコン90の一部又は全ての機能が、ハードウェアにより実現されてもよい。 The functions of the remote control 90 may be realized by executing the program according to the present embodiment with a processor included in the control unit 91. That is, the functions of the remote control 90 may be realized by software. In this case, the program causes the computer to execute the processing of steps included in the operation of the remote control 90, thereby causing the computer to implement the functions corresponding to the processing of the steps. Alternatively, some or all of the functions of remote controller 90 may be realized by a dedicated circuit included in control section 91 . That is, some or all of the functions of remote control 90 may be realized by hardware.
 (薬液投与装置の動作)
 本実施形態に係る薬液投与装置1を作動させる場合、まず、ユーザは、包装容器からカートリッジ12を取り出す。この状態で、カートリッジ12のリザーバ18内に薬液は充填されておらず、ナット部24はプランジャ20に接触しない非接触位置にある(図5参照)。
(Operation of chemical-solution administration device)
When operating the drug-solution administration device 1 according to this embodiment, first, the user takes out the cartridge 12 from the packaging container. In this state, the reservoir 18 of the cartridge 12 is not filled with the chemical solution, and the nut portion 24 is in the non-contact position where it does not contact the plunger 20 (see FIG. 5).
 次いで、ユーザは、充填装置又はシリンジ等を使用して薬液が密閉保存されているバイアル等の薬液容器からリザーバ18内に適切な量の薬液を充填する。このとき、プランジャ20は、初期充填量に対応する位置まで移動される。その後、ユーザは、装置本体14をカートリッジ12に装着する。その後、装置本体14の電池42の電力が各構成部品に供給され、装置本体14のギヤボックス46の出力歯車48がカートリッジ12の平歯車50に噛み合う。制御部71、記憶部72等は、この電池42の電力の供給を受けて起動する。 Next, the user fills the reservoir 18 with an appropriate amount of medicinal solution from a medicinal solution container such as a vial in which the medicinal solution is hermetically stored using a filling device, syringe, or the like. At this time, the plunger 20 is moved to a position corresponding to the initial filling amount. After that, the user mounts the device main body 14 on the cartridge 12 . After that, the power of the battery 42 of the device main body 14 is supplied to each component, and the output gear 48 of the gear box 46 of the device main body 14 meshes with the spur gear 50 of the cartridge 12 . The control unit 71, the storage unit 72, and the like are activated by being supplied with power from the battery 42. FIG.
 続いて、ユーザは、薬液投与装置1のプライミングを行う。プライミングとは、導出管29及びカニューレ等を含む、薬液投与装置1の流路を薬液で充たす操作をいう。具体的には、リモコン90を操作してモータ44を正回転に回転駆動させる。これにより、モータ44の回転駆動力がギヤボックス46、平歯車50、及び、伝達軸52を介して送りねじ軸22に伝達されるため、送りねじ軸22が回転し、ナット部24が案内壁68をスライドしながらプランジャ20側に進行する。 Subsequently, the user primes the medical-solution administration device 1. Priming refers to an operation of filling the flow path of the drug-solution administration device 1, including the lead-out tube 29, the cannula, etc., with the drug solution. Specifically, the remote controller 90 is operated to rotate the motor 44 forward. As a result, the rotational driving force of the motor 44 is transmitted to the feed screw shaft 22 via the gear box 46, the spur gear 50, and the transmission shaft 52, so that the feed screw shaft 22 rotates, and the nut portion 24 moves toward the guide wall. While sliding 68, it advances to the plunger 20 side.
 ナット部24がプランジャ20の先端側に進行すると、一対の爪部38がナット部24の貫通孔64を構成する壁面に当たり、一対の延出部36が互いに近接するように撓む。そして、爪部38が貫通孔64を通り抜けると、爪部38は元の位置に復帰することによりナット部24がプランジャ20に対して係止されることとなる。これにより、ナット部24は、プランジャ20を保持しながら先端側に押圧可能となる。その後、さらに、ナット部24を進行させることにより、リザーバ18内の薬液がプランジャ20に押圧されて、流路としての導出管29の内孔が薬液で満たされてプライミングが完了する。本実施形態では、ユーザは導出管29に続く接続針管の先端を観察し、接続針管の先端から薬液が流出したことをユーザが確認して、プライミングの停止を薬液投与装置1に指示する。例えば、リモコン90はプライミング停止ボタンの画像を出力部95のディスプレイに表示し、プライミング停止ボタンがユーザにより選択されたことに応じて、モータ44の停止を薬液投与装置1へ通知してもよい。 When the nut portion 24 advances toward the distal end side of the plunger 20, the pair of claw portions 38 hits the wall surface forming the through hole 64 of the nut portion 24, and the pair of extension portions 36 are bent so as to approach each other. When the claw portion 38 passes through the through hole 64 , the claw portion 38 returns to its original position, thereby locking the nut portion 24 with respect to the plunger 20 . As a result, the nut portion 24 can be pushed forward while holding the plunger 20 . After that, by advancing the nut portion 24 further, the chemical in the reservoir 18 is pressed by the plunger 20, and the inner hole of the lead-out tube 29 as a flow path is filled with the chemical, completing priming. In this embodiment, the user observes the tip of the connecting needle tube that continues to the outlet tube 29, confirms that the drug solution has flowed out from the tip of the connecting needle tube, and instructs the drug-solution administration device 1 to stop priming. For example, the remote controller 90 may display an image of a priming stop button on the display of the output unit 95 and notify the medical-solution administration device 1 to stop the motor 44 in response to the user selecting the priming stop button.
 続いて、ユーザは、クレードル装置11を皮膚の所定位置に貼着して、穿刺機構を用いて接続ポート106のカニューレを生体内に留置させるとともに、接続ポート106をクレードル装置11に係止させる。次いで、カートリッジ12及び装置本体14をクレードル装置11に装着することで導出管29とカニューレが連通し、制御部71がモータ44を回転制御することによりリザーバ18内の薬液が生体内に持続的又は間欠的に投与されることとなる。制御部71は、リモコン90から指示された薬液投与のスケジュールに従ってモータ44の回転を制御し、患者の容体に合わせて基礎レート(ベーサル)又はボーラス等の様々なレートで薬液を投与する。基礎レートとは、インスリンの基礎分泌に当たる単位時間当たりの薬液量である。ボーラスとは、食事又は血糖値の上昇に対するインスリンの追加分泌に当たる薬液量である。 Subsequently, the user attaches the cradle device 11 to a predetermined position on the skin, uses the puncture mechanism to leave the cannula of the connection port 106 in the living body, and locks the connection port 106 to the cradle device 11 . Next, by mounting the cartridge 12 and the device main body 14 on the cradle device 11, the lead-out tube 29 and the cannula are communicated, and the control unit 71 controls the rotation of the motor 44, whereby the drug solution in the reservoir 18 is continuously or continuously delivered to the living body. It will be administered intermittently. The control unit 71 controls the rotation of the motor 44 in accordance with the drug solution administration schedule instructed from the remote controller 90, and administers the drug solution at various rates such as a basal rate or bolus according to the patient's condition. The basal rate is the amount of drug solution per unit time corresponding to the basal secretion of insulin. A bolus is an amount of drug solution corresponding to additional secretion of insulin in response to a meal or an increase in blood sugar level.
 カートリッジ12のリザーバ18には、一定日数の投与サイクルにおいて投与すべき量の薬液が充填される。リザーバ18に充填された薬液が、例えば、3日~一週間をかけて生体内に投与された後、カートリッジ12は交換され、廃棄される。この1投与サイクルごとにカートリッジ12は新しいカートリッジに交換される。カートリッジ12の交換の都度、カートリッジ12のリザーバ18への薬液充填、カートリッジ12と装置本体14との接続、及び、プライミング操作が行われる。このような操作を経て、薬液を投与している間、薬液投与装置1は、例えば、プライミングと送液において行われたモータ44の回転数に基づき、薬液投与量を推定することができる。本実施形態に係る薬液投与装置1は、使い捨てのカートリッジ12と再利用可能な装置本体14とを備えているので、ランニングコストの低廉化を図ることができる。 The reservoir 18 of the cartridge 12 is filled with the amount of drug solution to be administered in an administration cycle of a certain number of days. After the drug solution filled in the reservoir 18 is administered into the body over, for example, three days to one week, the cartridge 12 is replaced and discarded. The cartridge 12 is replaced with a new cartridge for each administration cycle. Each time the cartridge 12 is replaced, the chemical filling of the reservoir 18 of the cartridge 12, the connection between the cartridge 12 and the apparatus main body 14, and the priming operation are performed. Through such an operation, the medical-solution administration device 1 can estimate the amount of medical-solution to be administered, for example, based on the number of rotations of the motor 44 during priming and liquid-feeding. Since the drug-solution administration device 1 according to this embodiment includes the disposable cartridge 12 and the reusable device main body 14, it is possible to reduce the running cost.
 カートリッジ12のリザーバ18に充填される薬液の量は、投与サイクルの長さが同一であっても、患者の年齢及び容体等によって異なる。例えば、リザーバ18に3日相当分の薬液が充填される場合、成人用のカートリッジ12には、小児用のカートリッジ12よりもより多くの薬液が充填される。 The amount of drug solution filled in the reservoir 18 of the cartridge 12 varies depending on the patient's age and condition, etc., even if the length of the administration cycle is the same. For example, if the reservoir 18 is filled with three days' worth of liquid medicine, the cartridge 12 for adults will be filled with more liquid than the cartridge 12 for children.
 リザーバ18に充填される薬液の量が異なる場合、以下のとおり、投与サイクルの長さが同一であっても、その薬液の投与が完了するまでに必要な消費電力にも相違が生じる。プライミング操作において、薬液投与装置1は、非接触位置(図5参照)のナット部24を、初期充填量に対応するプランジャ20に接触する位置(初期位置)まで移動させる。さらに、薬液投与装置1は、リザーバ18内の薬液がプランジャ20に押圧されて導出管29及び接続針管の内部が薬液で満たされる(プライミング完了位置)まで、ナット部24を押し込む。利便性の観点から、プライミング操作は、生体内への薬液投与時よりも速いスピードでナット部24を移動させてもよい。すなわち、プライミング時のモータ44の回転速度は、薬液投与時のモータの回転速度よりも大きくてもよい。そのため、リザーバ18に充填される薬液の量が少ない場合、プライミング操作によるナット部24の移動距離はより長くなり、投与サイクルにおける投与動作によるナット部24の移動距離はより短くなる。リザーバ18に充填される薬液の量がより多い場合、プライミング操作によるナット部24の移動距離はより短くなり、投与サイクルにおける投与動作によるナット部24の移動距離はより長くなる。そして、ナット部24を同一の距離だけ移動させる場合、プライミング操作においてナット部24を移動させるのに要する消費電力は、生体内へ薬液を投与する動作においてナット部24を移動させるのに要する消費電力よりも小さい。これは、プライミング操作時では薬液投与装置1の流路は生体内に留置したカニューレと流体接続していないが、投与動作時では、薬液投与装置1の流路が生体内に留置したカニューレと流体接続され、留置したカニューレの先端にある生体組織に抗して薬液を投与する必要があるため、モータ44への負荷がプライミング操作時に比べて高いためである。したがって、モータ44を同じ回転角度で回転させるためには、投与動作時においては、プライミング操作時に比べてより多くの電力が必要となる。例えば、モータ44をステッピングモータにより構成した場合は、モータ44に印可するパルスのパルス幅をプライミング操作時よりも広くする必要がある。プライミング操作時と投与動作時のモータ44に印可するパルスのパルス幅は、モータ44への想定される負荷や回転速度に基づいて、脱調とならず、かつ低消費電力となるように、予め設定することが可能であり、これに基づいて制御部71は、プライミング操作時と投与動作時で、モータ44に印可するパルスのパルス幅を変更できる。 When the amount of the drug solution filled in the reservoir 18 differs, the power consumption required to complete the administration of the drug solution also differs as follows, even if the length of the administration cycle is the same. In the priming operation, the medical-solution administration device 1 moves the nut portion 24 from the non-contact position (see FIG. 5) to a position (initial position) where it contacts the plunger 20 corresponding to the initial filling amount. Further, the medicinal-solution administration device 1 pushes the nut portion 24 until the medicinal solution in the reservoir 18 is pressed by the plunger 20 and the insides of the lead-out tube 29 and the connecting needle tube are filled with the medicinal solution (priming completion position). From the viewpoint of convenience, the priming operation may move the nut portion 24 at a faster speed than when administering the drug solution into the living body. That is, the rotation speed of the motor 44 during priming may be higher than the rotation speed of the motor during drug solution administration. Therefore, when the reservoir 18 is filled with a small amount of liquid medicine, the priming operation causes the nut portion 24 to travel a longer distance, and the administration operation in the administration cycle causes the nut portion 24 to travel a shorter distance. When the reservoir 18 is filled with more liquid, the priming operation will move the nut portion 24 a shorter distance, and the dosing action in the dosing cycle will move the nut portion 24 a longer distance. When the nut portion 24 is moved by the same distance, the power consumption required to move the nut portion 24 in the priming operation is the power consumption required to move the nut portion 24 in the operation of injecting the drug solution into the living body. less than This is because the flow path of the drug-solution administration device 1 is not fluidly connected to the cannula placed in the living body during the priming operation, but the flow path of the drug-solution administration device 1 is connected to the cannula placed in the body in the administration operation. This is because the load on the motor 44 is higher than that during the priming operation because the drug solution needs to be administered against the living tissue at the tip of the connected and indwelling cannula. Therefore, in order to rotate the motor 44 at the same rotation angle, more electric power is required during the administration operation than during the priming operation. For example, when the motor 44 is configured by a stepping motor, the pulse width of the pulse applied to the motor 44 must be wider than that during the priming operation. The pulse width of the pulse applied to the motor 44 during the priming operation and the administration operation is preliminarily determined based on the assumed load and rotation speed of the motor 44 so as to prevent step-out and to achieve low power consumption. Based on this, the control section 71 can change the pulse width of the pulse applied to the motor 44 during the priming operation and during the administration operation.
 このように、カートリッジ12の交換サイクルや使用期限が同一であっても、カートリッジ12に充填された薬液の投与が終わるまでに消費される電力量は、リザーバ18に充填される薬液のイニシャルの量によって異なる。したがって、カートリッジ12における薬液の初期量(すなわち、充填量)を考慮しないと、装置本体14の電池42に残存する電力に対して、あと何回カートリッジ12を交換することが可能か正確に算出できない。 Thus, even if the replacement cycle and expiration date of the cartridge 12 are the same, the amount of power consumed until the end of administration of the drug solution filled in the cartridge 12 is the initial amount of the drug solution filled in the reservoir 18. Varies depending on Therefore, without considering the initial amount of the liquid medicine in the cartridge 12 (that is, the filling amount), it is impossible to accurately calculate how many times the cartridge 12 can be replaced with respect to the power remaining in the battery 42 of the apparatus main body 14. .
 本実施形態に係る薬液投与装置1は、プライミング電力量と、送液電力量と、電池42に残存している電力量と、に基づき、カートリッジ12の交換可能回数を算出する。ここで、プライミング電力量は、薬液投与装置1の流路が薬液で充たされるまでナット部24を移動する(すなわち、プライミング)ために必要な電力量である。送液電力量は、プライミングによって薬液投与が開始可能な状態になった後に、薬液投与が開始されてから投与終了までに使用する電力量である。すなわち、送液電力量は、リザーバ18に充填された薬液を患者に投与するために必要な電力量である。プライミング電力量及び送液電力量は、薬液の充填量に応じた値となる。したがって、本実施形態に係る薬液投与装置1によれば、カートリッジ12の交換可能回数を正確に測定することが可能である。 The drug-solution administration device 1 according to this embodiment calculates the number of times the cartridge 12 can be replaced based on the priming power amount, the liquid transfer power amount, and the power amount remaining in the battery 42 . Here, the priming electric energy is the electric energy required to move the nut portion 24 until the flow path of the medical-solution administration device 1 is filled with the medical solution (that is, priming). The liquid feeding power amount is the power amount used from the start of liquid medicine administration to the end of liquid medicine administration after priming makes it possible to start liquid medicine administration. In other words, the amount of power to send the liquid is the amount of power required to administer the drug solution filled in the reservoir 18 to the patient. The priming power amount and the liquid feeding power amount are values corresponding to the filling amount of the chemical solution. Therefore, according to the drug-solution administration device 1 according to the present embodiment, it is possible to accurately measure the number of times the cartridge 12 can be replaced.
 図9は、図1の薬液投与装置1の動作手順を示すフローチャートである。図10は、図9の回転数測定処理の手順を示すフローチャートである。図9及び図10を参照して説明する薬液投与装置1の動作は薬液投与装置1の制御方法の一つに相当し得る。図9及び図10の各ステップの動作は、薬液投与装置1の制御部71又はリモコン90の制御部91による制御に基づき実行され得る。以下の処理は、例えば、カートリッジ12の交換後、薬液投与装置1の装置本体14とカートリッジ12とが接続され、リモコン90を介してプライミング操作の指示がなされたことに応じて実行されてもよい。 FIG. 9 is a flow chart showing the operating procedure of the medicinal-solution administration device 1 of FIG. FIG. 10 is a flow chart showing the procedure of the rotational speed measurement process of FIG. The operation of the medicinal-solution administration device 1 described with reference to FIGS. 9 and 10 can correspond to one control method of the medicinal-solution administration device 1 . 9 and 10 can be executed under the control of the control unit 71 of the drug-solution administration device 1 or the control unit 91 of the remote control 90. FIG. The following process may be executed, for example, after the cartridge 12 is replaced, the apparatus body 14 of the drug-solution administration apparatus 1 is connected to the cartridge 12, and the priming operation is instructed via the remote controller 90. .
 ステップS1において、薬液投与装置1の制御部71は、電池42の電力残量を測定する。具体的には、例えば、制御部71は、電池42の電圧又はインピーダンスを測定することにより、電池42の電力残量を測定してもよい。 In step S<b>1 , the control unit 71 of the medicinal-solution administration device 1 measures the remaining power of the battery 42 . Specifically, for example, the control unit 71 may measure the remaining power level of the battery 42 by measuring the voltage or impedance of the battery 42 .
 ステップS2において、薬液投与装置1の制御部71は、過去の薬液投与に関する履歴情報から、1サイクル分の必要電力量を推定する。具体的には、制御部71は、プライミング操作及び薬液投与を行う場合、これらの動作に要した消費電力の情報を予め記憶部72に保存しておく。制御部71は、動作の前後において測定された電池42の電力残量の差分に基づき消費電力を測定してもよい。記憶部72には、このようにして測定されたプライミング操作及び薬液投与に要した消費電力が日時の情報とともに保存される。ステップS2において、制御部71は、これらの情報を参照して、1投与サイクル分の必要電力量を推定する。例えば、制御部71は、直前の投与サイクルのプライミング操作及び薬液投与に要した消費電力と同じ消費電力を、1投与サイクル分の必要電力量として推定してもよい。あるいは、制御部71は、直近の一定数の投与サイクルにおいてプライミング操作及び薬液投与に要した消費電力の平均値を、1投与サイクル分の必要電力量として推定してもよい。薬液投与装置1の動作が初めてであり、過去の薬液投与に関する履歴情報が記憶部72に記憶されていない場合は、予め患者が入力した薬液量を投与するための電力量を1投与サイクル分の必要電力量として推定してもよい。あるいは、リザーバ18の最大充填可能量を投与するための電力量をデフォルト値として、1投与サイクルに必要な電力量の最大値としてもよい。 In step S2, the control unit 71 of the medicinal-solution administration device 1 estimates the required power amount for one cycle from history information regarding past medicinal-solution administration. Specifically, when performing a priming operation and drug solution administration, the control unit 71 stores information on power consumption required for these operations in the storage unit 72 in advance. The control unit 71 may measure the power consumption based on the difference in the remaining power of the battery 42 measured before and after the operation. The storage unit 72 stores the measured power consumption required for the priming operation and the drug solution administration together with date and time information. In step S2, the control unit 71 refers to these pieces of information to estimate the required power amount for one administration cycle. For example, the control unit 71 may estimate the same power consumption as the power consumption required for the priming operation and drug solution administration in the immediately preceding administration cycle as the required power amount for one administration cycle. Alternatively, the control unit 71 may estimate the average value of power consumption required for the priming operation and drug solution administration in the last fixed number of administration cycles as the required power amount for one administration cycle. When the medicinal-solution administration device 1 is operated for the first time and the history information regarding the past medicinal-solution administration is not stored in the storage unit 72, the amount of electric power for administering the amount of medicinal-solution previously input by the patient is reduced to one administration cycle. You may estimate as a required electric energy. Alternatively, the amount of power required to dispense the maximum fillable amount of reservoir 18 may be the default value and the maximum amount of power required for one dosing cycle.
 ステップS3において、薬液投与装置1の制御部71は、ステップS1で取得された現在の電池残量が、ステップS2で推定された1投与サイクル分の必要電力量を上回っているか否かを判定する。制御部71は、上回っている場合(ステップS3でYES)はステップS4へ進み、そうでない場合(ステップS3でNO)はステップS9へ進む。ステップS3において、制御部71は、ステップS1で取得された現在の電池残量と、ステップS2で推定された1投与サイクル分の必要電力量とが同一の場合もステップS4へ進むようにしてもよい。また、制御部71は、ステップS1で取得された現在の電池残量の値が予め定められた値(例えば、電池42が充電可能な最大電力量の10%)未満の場合は、1投与サイクル分の必要電力量にかかわらず、ステップS9へ進んでもよい。 In step S3, the control unit 71 of the medicinal-solution administration device 1 determines whether or not the current remaining battery level obtained in step S1 exceeds the required power amount for one administration cycle estimated in step S2. . If it exceeds (YES in step S3), the controller 71 proceeds to step S4, otherwise (NO in step S3), it proceeds to step S9. In step S3, the control unit 71 may proceed to step S4 even when the current remaining battery level obtained in step S1 is the same as the required power amount for one administration cycle estimated in step S2. Further, if the current remaining battery level value acquired in step S1 is less than a predetermined value (for example, 10% of the maximum chargeable power amount of the battery 42), the control unit 71 The process may proceed to step S9 irrespective of the amount of power required for each minute.
 ステップS4において、薬液投与装置1の制御部71は、薬液の充填量に対応するナット部24の位置を測定するために、モータ44の回転数を測定する回転数測定処理を実行する。以下の処理の前提として、ナット部24は、プランジャ20と接触しない非接触位置にある。 In step S4, the control unit 71 of the medicinal solution administration device 1 executes rotation speed measurement processing for measuring the rotation speed of the motor 44 in order to measure the position of the nut part 24 corresponding to the filling amount of the medicinal solution. As a premise for the following processing, the nut portion 24 is in the non-contact position where it does not contact the plunger 20 .
 図10のステップS11において、薬液投与装置1の制御部71は、モータ44の逆回転を開始する。これによりナット部24は、プランジャ20から離れる方向へ移動する。このとき、ナット部24は、所定の位置まで逆回転する。所定の位置は、例えば、案内壁68に設けられたストッパーによってスライド部60の後退が規制される位置、あるいは、送りねじ軸22の最後端の位置である。ナット部24が所定の位置に到達して更にモータ44が逆回転すると、モータ44は脱調する。 At step S11 in FIG. 10, the control unit 71 of the medicinal-solution administration device 1 starts rotating the motor 44 in the reverse direction. This causes the nut portion 24 to move away from the plunger 20 . At this time, the nut portion 24 rotates in the reverse direction to a predetermined position. The predetermined position is, for example, a position where the slide portion 60 is restricted from retreating by a stopper provided on the guide wall 68 or a position at the rearmost end of the feed screw shaft 22 . When the nut portion 24 reaches a predetermined position and the motor 44 rotates in the reverse direction, the motor 44 steps out.
 ステップS12において、薬液投与装置1の制御部71は、モータ44が脱調したか否かを判定する。制御部71は、脱調した場合(ステップS12でYES)はステップS13へ進み、そうでない場合(ステップS12でNO)はモータ44の逆回転を継続して、再度ステップS12の処理を行う。モータ44が脱調した場合、ナット部24は所定の位置に存在する。ここで、所定の位置までナット部24を移動させることで、ナット部24の位置合わせがなされる。これにより、カートリッジ12の準備中にナット部24が意図せず移動したとしても、後述のカートリッジ12交換回数の推定精度を維持することが可能となる。 In step S12, the control unit 71 of the medicinal-solution administration device 1 determines whether or not the motor 44 has stepped out. If step-out occurs (YES in step S12), the control unit 71 proceeds to step S13. Otherwise (NO in step S12), the control unit 71 continues the reverse rotation of the motor 44 and performs the process of step S12 again. When the motor 44 is out of step, the nut portion 24 is at a predetermined position. Here, the nut portion 24 is aligned by moving the nut portion 24 to a predetermined position. As a result, even if the nut portion 24 moves unintentionally while the cartridge 12 is being prepared, it is possible to maintain the accuracy of estimating the number of exchanges of the cartridge 12, which will be described later.
 ステップS13において、薬液投与装置1の制御部71は、ステップS11で逆回転を開始してから脱調するまでのモータ44の逆回転数を記憶部72に保存する。 In step S13, the control unit 71 of the medicinal-solution administration device 1 saves in the storage unit 72 the number of reverse rotations of the motor 44 from the start of reverse rotation in step S11 until step-out.
 ステップS14において、薬液投与装置1の制御部71は、モータ44の正回転を開始する。これによりナット部24は、プランジャ20へ近づく方向へ移動し、やがてナット部24とプランジャ20は互いに係止する。その後、ナット部24がプランジャ20を押し込むことで、リザーバ18内の薬液に圧力がかかり、薬液投与装置1の流路を薬液で充たすプライミングが行われる。患者等のユーザは、接続針管の先端を観察し、接続針管の先端から薬液が流出したことを確認すると、プライミングの停止を薬液投与装置1に指示する。例えば、ユーザは、リモコン90の出力部95のディスプレイに表示されたプライミング停止ボタンの画像を選択することにより、プライミングの停止を薬液投与装置1に指示してもよい。 In step S14, the control unit 71 of the medicinal-solution administration device 1 starts rotating the motor 44 forward. As a result, the nut portion 24 moves toward the plunger 20, and eventually the nut portion 24 and the plunger 20 are engaged with each other. After that, the plunger 20 is pushed by the nut portion 24 to apply pressure to the liquid medicine in the reservoir 18, and priming is performed in which the flow path of the liquid medicine administration device 1 is filled with the liquid medicine. A user such as a patient observes the tip of the connecting needle tube, and when confirming that the drug solution has flowed out from the tip of the connecting needle tube, instructs the drug-solution administration device 1 to stop priming. For example, the user may instruct the drug-solution administration device 1 to stop priming by selecting the image of the priming stop button displayed on the display of the output unit 95 of the remote controller 90 .
 ステップS15において、薬液投与装置1の制御部71は、ユーザによりプライミング停止ボタンが選択されたか否かを判定する。制御部71は、プライミング停止ボタンが選択された場合(ステップS15でYES)はステップS16へ進み、そうでない場合(ステップS15でNO)はモータ44の正回転を継続して、再度ステップS15の処理を行う。 In step S15, the control unit 71 of the medicinal-solution administration device 1 determines whether or not the user has selected the priming stop button. If the priming stop button is selected (YES in step S15), the control unit 71 proceeds to step S16. I do.
 ステップS16において、薬液投与装置1の制御部71は、モータ44の回転を停止する。 At step S16, the control unit 71 of the medicinal-solution administration device 1 stops the rotation of the motor 44.
 ステップS17において、薬液投与装置1の制御部71は、ステップS14で正回転を開始してから回転を停止するまでのモータ44の正回転数を記憶部72に保存する。そして、制御部71は、回転数測定処理を終了し、図9のステップS5へ進む。 In step S17, the control unit 71 of the medicinal-solution administration device 1 stores in the storage unit 72 the number of forward rotations of the motor 44 from the start of forward rotation in step S14 until the rotation is stopped. Then, the control unit 71 ends the rotational speed measurement process, and proceeds to step S5 in FIG.
 図9のステップS5において、薬液投与装置1の制御部71は、ステップS4の回転数測定処理により測定されたモータ44の回転数に基づき、プライミング操作に要した電力量(プライミング電力量)を推定する。例えば、制御部71は、予め記憶部72に記憶されたモータ44が1回転することにより消費される電力量を取得し、その値とモータ44の回転数を乗じることにより、プライミング操作に要した電力量を推定してもよい。ここで、モータ44の回転数は、図10のステップS13で保存した逆回転数と、ステップS17で保存した正回転数との合計値である。 In step S5 of FIG. 9, the control unit 71 of the drug-solution administration device 1 estimates the electric energy required for the priming operation (priming electric energy) based on the rotation speed of the motor 44 measured by the rotation speed measurement process in step S4. do. For example, the control unit 71 acquires the amount of electric power consumed by one rotation of the motor 44 stored in advance in the storage unit 72, and multiplies this value by the number of revolutions of the motor 44 to obtain the amount of power required for the priming operation. The amount of power may be estimated. Here, the rotation speed of the motor 44 is the sum of the reverse rotation speed saved in step S13 of FIG. 10 and the forward rotation speed saved in step S17.
 ステップS6において、薬液投与装置1の制御部71は、リザーバ18に充填している薬液の量に基づき、その薬液を投与するために必要な電力量(送液電力量)を推定する。具体的には、制御部71は、図10のステップS17で保存した正回転数を取得し、その正回転数に対応する薬液の充填量を取得してもよい。制御部71は、その薬液の充填量に対応する送液電力量を取得してもよい。制御部71は、例えば、正回転数と、薬液の充填量と、送液電力量との対応関係を示すテーブルを予め記憶部72に記憶しておき、そのテーブルを参照して、正回転数に対応する送液電力量を取得してもよい。 In step S6, the control unit 71 of the medicinal-solution administration device 1 estimates the amount of power (liquid-feeding power) required to administer the medicinal solution based on the amount of medicinal solution filled in the reservoir 18 . Specifically, the control unit 71 may acquire the forward rotation speed saved in step S17 of FIG. 10, and acquire the filling amount of the chemical solution corresponding to the forward rotation speed. The control unit 71 may acquire the liquid feeding power amount corresponding to the filling amount of the chemical liquid. For example, the control unit 71 stores in the storage unit 72 in advance a table indicating the correspondence relationship between the forward rotation speed, the amount of liquid medicine filled, and the amount of electric power for feeding the liquid. may be acquired.
 ステップS7において、薬液投与装置1の制御部71は、電池42の電力残量を測定する。具体的には、ステップS1と同様に、制御部71は、電池42の電圧又はインピーダンスを測定することにより、電池42の電力残量を測定してもよい。 In step S7, the control unit 71 of the medicinal-solution administration device 1 measures the remaining power of the battery 42. Specifically, similarly to step S<b>1 , the controller 71 may measure the remaining power level of the battery 42 by measuring the voltage or impedance of the battery 42 .
 ステップS8において、薬液投与装置1の制御部71は、ステップS5で推定したプライミング電力量、ステップS6で推定した送液電力量、及びステップS7で取得した電池残量に基づき、カートリッジ12(ディスポ部)の交換可能回数を算出する。具体的には、制御部71は、ステップS7で取得した電池残量を、プライミング電力量及び送液電力量の合計値で除算した値を交換可能回数として算出してもよい。制御部71は、除算により算出された値の小数点第一位以下を切り捨てた値を交換可能回数として算出してもよい。制御部71は、算出した交換可能回数をリモコン90の出力部95のディスプレイに表示させてもよい。具体的には、制御部71は、通信部73を介してリモコン90に交換可能回数を通知してもよい。リモコン90の制御部91は、交換可能回数の通知に応じて、その値を出力部95のディスプレイに表示させてもよい。ステップS8の処理を終えると、制御部71は、フローチャートの処理を終了する。 In step S8, the control unit 71 of the medicinal-solution administration device 1 controls the cartridge 12 (disposable unit ) can be exchanged. Specifically, the control unit 71 may calculate the number of replacement times by dividing the remaining battery level acquired in step S7 by the total value of the priming power amount and the liquid transfer power amount. The control unit 71 may calculate a value obtained by truncating the value calculated by the division to the first decimal place as the possible number of exchanges. The control unit 71 may display the calculated number of possible exchanges on the display of the output unit 95 of the remote controller 90 . Specifically, the control unit 71 may notify the remote controller 90 of the number of possible exchanges via the communication unit 73 . The control unit 91 of the remote controller 90 may display the value on the display of the output unit 95 in response to the notification of the number of possible exchanges. After completing the process of step S8, the control unit 71 ends the process of the flowchart.
 ステップS9において、薬液投与装置1の制御部71は、ユーザに電力不足を報知する。具体的には、例えば、通信部73を介してリモコン90に電力不足を通知してもよい。
リモコン90の制御部91は、薬液投与装置1からの通知に応じて、電力不足を示す画像を出力部95のディスプレイに表示させてもよい。さらに、制御部91は、出力部95から画像表示に加えて、又は、これに代えて音声出力、振動等により、電力不足をユーザに報知してもよい。
In step S9, the control unit 71 of the medical-solution administration device 1 notifies the user of the power shortage. Specifically, for example, the power shortage may be notified to the remote controller 90 via the communication unit 73 .
The control unit 91 of the remote controller 90 may display an image indicating power shortage on the display of the output unit 95 in response to the notification from the medical-solution administration device 1 . Furthermore, the control unit 91 may notify the user of the power shortage by outputting an audio signal, vibrating, or the like from the output unit 95 in addition to the image display or instead of this.
 上記のように、薬液投与装置1は、リザーバ18内に充填した薬液をプランジャ20の押圧作用により生体内に投与する。薬液投与装置1は、リザーバ18、プランジャ20、ナット部24、駆動部40、電池42、及び制御部71を備える。リザーバ18は、着脱可能に接続される使い捨てのカートリッジ12に設けられ、薬液が充填される。プランジャ20は、リザーバ18内に設けられ、リザーバ18の長手方向に移動可能である。ナット部24は、可動領域において移動することにより、プランジャ20をリザーバ18の先端側に押圧することが可能である。駆動部40は、ナット部24を可動領域において移動させる。電池42は、駆動部40を駆動するための電力を供給する。制御部71は、プライミング電力量と、送液電力量と、電池42に残存している電力量と、に基づき、カートリッジ12を交換することが可能な回数である交換可能回数を算出する。プライミング電力量は、薬液投与装置1の流路が薬液で充たされるまでナット部24を移動するために必要な電力量である。送液電力量は、リザーバ18に充填された薬液を投与するために必要な電力量である。制御部71は、算出された交換可能回数をユーザに提示する。 As described above, the medicinal solution administration device 1 injects the medicinal solution filled in the reservoir 18 into the living body by the pressing action of the plunger 20 . The drug-solution administration device 1 includes a reservoir 18 , a plunger 20 , a nut portion 24 , a drive portion 40 , a battery 42 and a control portion 71 . A reservoir 18 is provided in the disposable cartridge 12 that is detachably connected, and is filled with a chemical solution. A plunger 20 is provided within the reservoir 18 and is movable in the longitudinal direction of the reservoir 18 . The nut portion 24 can press the plunger 20 toward the distal end of the reservoir 18 by moving in the movable region. The driving part 40 moves the nut part 24 in the movable area. A battery 42 supplies power for driving the drive unit 40 . The control unit 71 calculates the number of exchangeable times, which is the number of times the cartridge 12 can be exchanged, based on the priming electric energy, the liquid feeding electric energy, and the electric energy remaining in the battery 42 . The priming power amount is the amount of power required to move the nut portion 24 until the flow path of the drug solution administration device 1 is filled with the drug solution. The liquid feeding power amount is the power amount required to administer the drug solution filled in the reservoir 18 . The control unit 71 presents the calculated number of possible exchanges to the user.
 このように、本実施形態に係る薬液投与装置1は、プライミング電力量と、送液電力量と、電池42に残存している電力量と、に基づき、カートリッジ12の交換可能回数を算出するため、交換可能回数を正確に測定することが可能である。図4~図6の例では、リザーバ18、プランジャ20、及びナット部24はカートリッジ12に設けられ、駆動部40、制御部71、及び電池42は装置本体14に設けられているが、このような構成に限られない。例えば、ナット部24が装置本体14に設けられたり、駆動部40、及び制御部71の少なくともいずれかがカートリッジ12に設けられたりしてもよい。 As described above, the drug-solution administration device 1 according to the present embodiment calculates the number of times the cartridge 12 can be replaced based on the priming power amount, the liquid transfer power amount, and the power amount remaining in the battery 42. , it is possible to accurately measure the number of exchangeable times. In the examples of FIGS. 4 to 6, the reservoir 18, plunger 20, and nut portion 24 are provided in the cartridge 12, and the driving portion 40, control portion 71, and battery 42 are provided in the main body 14 of the device. configuration. For example, the nut portion 24 may be provided on the device main body 14 , or at least one of the driving portion 40 and the control portion 71 may be provided on the cartridge 12 .
 また、駆動部40は、モータ44の回転に基づく駆動力を伝達することにより、ナット部24を移動させてもよい。制御部71は、薬液投与装置1の流路を薬液で充たすまでナット部24を移動させるために回転させたモータ44の回転数に基づき、プライミング電力量及び送液電力量を推定してもよい。このように、本実施形態に係る薬液投与装置1は、プライミング電力量及び送液電力量をモータ44の回転数に基づき推定して、カートリッジ12の交換可能回数を算出するため、交換可能回数を正確に測定することが可能である。 Further, the driving section 40 may move the nut section 24 by transmitting the driving force based on the rotation of the motor 44 . The control unit 71 may estimate the priming power amount and the liquid feeding power amount based on the number of rotations of the motor 44 that is rotated to move the nut part 24 until the flow path of the liquid medicine administration device 1 is filled with the liquid medicine. . As described above, the drug-solution administration device 1 according to the present embodiment estimates the priming power amount and the liquid feeding power amount based on the number of revolutions of the motor 44, and calculates the number of times the cartridge 12 can be replaced. It is possible to measure accurately.
 また、制御部71は、電池42に残存している電力量を、プライミング電力量及び送液電力量の合計値で除算することにより、交換可能回数を算出してもよい。このように、本実施形態に係る薬液投与装置1は、単純な計算により交換可能回数を算出するため、交換可能回数を容易に求めることが可能である。 Further, the control unit 71 may calculate the number of exchanges possible by dividing the amount of power remaining in the battery 42 by the total value of the priming power amount and the liquid feeding power amount. As described above, since the medicinal-solution administration device 1 according to the present embodiment calculates the allowable number of exchanges by simple calculation, it is possible to easily obtain the allowable number of exchanges.
 また、制御部71は、算出された交換可能回数を表示装置に表示させてもよい。これにより、ユーザは、カートリッジ12の交換可能回数を容易に認識することができる。本実施形態の例では、薬液投与装置1は、リモコン90の出力部95のディスプレイに残存量を表示したが、薬液投与装置1自身が表示装置を備えている場合は、その表示装置に表示してもよい。また、薬液投与装置1は、例えば、スマートフォン、スマートウォッチ又はタブレット等の他の装置に薬液の残存量を通知して表示させてもよい。 Also, the control unit 71 may cause the display device to display the calculated number of possible exchanges. This allows the user to easily recognize the number of times the cartridge 12 can be replaced. In the example of the present embodiment, the medicinal-solution administration device 1 displays the remaining amount on the display of the output unit 95 of the remote control 90, but if the medicinal-solution administration device 1 itself has a display device, the remaining amount is displayed on the display device. may In addition, the medicinal-solution administration device 1 may notify and display the remaining amount of the medicinal solution on another device such as a smart phone, a smart watch, or a tablet, for example.
 以上のように、本実施形態にかかる薬液投与装置1は、リユース部である装置本体14の残電池量を、カートリッジ12の交換可能回数として精度よく把握できる。これにより、ユーザは、電池42が切れる前に装置本体14を前もって充電したり、新しい電池42に交換するなどの処置を行うことができる。また、装置本体14の残電池量を効率よく使用することができる。 As described above, the medicinal-solution administration device 1 according to the present embodiment can accurately grasp the remaining battery level of the device body 14, which is a reusable part, as the number of times the cartridge 12 can be replaced. As a result, the user can take measures such as charging the apparatus body 14 in advance or replacing the battery 42 with a new one before the battery 42 runs out. Also, the remaining battery capacity of the device body 14 can be used efficiently.
 本開示は上述の実施形態に限定されない。例えば、ブロック図に記載の複数のブロックは統合されてもよいし、又は1つのブロックは分割されてもよい。フローチャートに記載の複数のステップは、記述に従って時系列に実行する代わりに、各ステップを実行する装置の処理能力に応じて、又は必要に応じて、並列的に又は異なる順序で実行されてもよい。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。 The present disclosure is not limited to the above-described embodiments. For example, multiple blocks shown in the block diagrams may be combined, or a single block may be divided. Instead of being performed in chronological order according to the description, multiple steps described in the flowcharts may be performed in parallel or in a different order depending on the processing power of the device performing each step or as required. . Other modifications are possible without departing from the scope of the present disclosure.
1   薬液投与装置
  10   ポンプ本体
  11   クレードル装置
  12   カートリッジ
  14   装置本体
  16   ベース部
  18   リザーバ
  20   プランジャ
  22   送りねじ軸
  24   ナット部
  26   導入ポート
  28   導出ポート
  29   導出管
  30   プランジャ本体
  32   押し子
  34   シール部材
  36   延出部
  38   爪部
  39   軸受
  40   駆動部
  42   電池
  44   モータ
  46   ギヤボックス
  48   出力歯車
  50   平歯車
  52   伝達軸
  54   端子
  56   軸受
  58   ナット部本体
  60   スライド部
  62   ねじ孔
  64   貫通孔
  66   補強カバー
  68   案内壁
  70   蓋体
  71   制御部
  72   記憶部
  73   通信部
  74   位置検知部(接触センサ)
  75   姿勢検知部
  79   バス
  106  接続ポート
  111  筐体
  121  上面部
  123  正面部
  124  背面部
  126  側面部
  137  ガイド溝部
  138  係合フック部
  141  載置面部
  143  側壁部
  144  側壁部
  151  ガイドレール
  152  検出レール
  153  摺動レール
  154  嵌合孔
  155  装着部
  156  姿勢矯正部
  158  切欠き
  162  係合受け部
  181  ポート本体
  182  キャップ
90   リモコン
  91   制御部
  92   記憶部
  93   通信部
  94   入力部
  95   出力部
  99   バス
100  薬液投与システム
 
 
 
1 drug-solution administration device 10 pump main body 11 cradle device 12 cartridge 14 device main body 16 base portion 18 reservoir 20 plunger 22 feed screw shaft 24 nut portion 26 introduction port 28 outlet port 29 outlet pipe 30 plunger main body 32 plunger 34 sealing member 36 extension Part 38 Claw Part 39 Bearing 40 Drive Part 42 Battery 44 Motor 46 Gear Box 48 Output Gear 50 Spur Gear 52 Transmission Shaft 54 Terminal 56 Bearing 58 Nut Body 60 Slide Part 62 Screw Hole 64 Through Hole 66 Reinforcement Cover 68 Guide Wall 70 Lid body 71 control unit 72 storage unit 73 communication unit 74 position detection unit (contact sensor)
75 Attitude detector 79 Bus 106 Connection port 111 Housing 121 Top surface 123 Front surface 124 Rear surface 126 Side surface 137 Guide groove 138 Engaging hook 141 Placement surface 143 Side wall 144 Side wall 151 Guide rail 152 Detection rail 153 Slide Moving rail 154 Fitting hole 155 Mounting part 156 Posture correction part 158 Notch 162 Engagement receiving part 181 Port main body 182 Cap 90 Remote controller 91 Control part 92 Storage part 93 Communication part 94 Input part 95 Output part 99 Bus 100 Liquid administration system

Claims (6)

  1.  リザーバ内に充填した薬液をプランジャの押圧作用により生体内に投与する薬液投与装置であって、
     着脱可能に接続される使い捨てのカートリッジに設けられた、前記薬液が充填される前記リザーバと、
     前記リザーバに接続するとともに、前記薬液を前記リザーバの外へ導出する流路と、
     前記リザーバの長手方向に移動可能な前記プランジャと、
     可動領域において移動することにより、前記プランジャを前記リザーバの先端側に押圧することが可能な可動部と、
     前記可動部を前記可動領域において移動させる駆動部と、
     前記駆動部を駆動するための電力を供給する電池と、
     制御部と、
     を備え、
     前記制御部は、
     前記流路が前記薬液で充たされるまで前記可動部を移動するために必要な電力量であるプライミング電力量と、前記リザーバに充填された前記薬液を投与するために必要な電力量である送液電力量と、前記電池に残存している電力量と、に基づき、前記カートリッジを交換することが可能な回数である交換可能回数を算出し、
     算出された前記交換可能回数をユーザに提示する、
     薬液投与装置。
    A drug solution administration device for administering a drug solution filled in a reservoir into a living body by a pressing action of a plunger,
    the reservoir filled with the drug solution provided in a disposable cartridge that is detachably connected;
    a flow path connected to the reservoir and leading the drug solution out of the reservoir;
    said plunger movable longitudinally of said reservoir;
    a movable part capable of pressing the plunger toward the distal end of the reservoir by moving in the movable area;
    a drive unit that moves the movable unit in the movable area;
    a battery that supplies power for driving the drive unit;
    a control unit;
    with
    The control unit
    A priming power amount, which is the power amount required to move the movable part until the flow path is filled with the drug solution, and a liquid feeding, which is the power amount required to administer the drug solution filled in the reservoir. calculating the number of times the cartridge can be replaced based on the amount of power and the amount of power remaining in the battery;
    presenting the calculated number of possible exchanges to the user;
    Chemical liquid administration device.
  2.  前記駆動部は、モータの回転に基づく駆動力を伝達することにより、前記可動部を移動させ、
     前記制御部は、前記薬液投与装置の前記流路を前記薬液で充たすまで前記可動部を移動させるために回転させた前記モータの回転数に基づき、前記プライミング電力量及び前記送液電力量を推定する、
     請求項1に記載の薬液投与装置。
    The drive unit moves the movable unit by transmitting a driving force based on rotation of a motor,
    The control unit estimates the priming power amount and the liquid feeding power amount based on the number of rotations of the motor that is rotated to move the movable part until the flow path of the liquid medicine administration device is filled with the liquid medicine. do,
    The drug-solution administration device according to claim 1.
  3.  前記制御部は、前記電池に残存している電力量を、前記プライミング電力量及び前記送液電力量の合計値で除算することにより、前記交換可能回数を算出する、請求項1又は2に記載の薬液投与装置。 3. The control unit according to claim 1, wherein the control unit calculates the number of exchangeable times by dividing the amount of power remaining in the battery by the total value of the priming power amount and the liquid feeding power amount. liquid medicine administration device.
  4.  前記制御部は、前記算出された交換可能回数を表示装置に表示させる、請求項1から3のいずれか一項に記載の薬液投与装置。 The medical-solution administration device according to any one of claims 1 to 3, wherein the control unit causes a display device to display the calculated number of possible exchanges.
  5.  請求項1から4のいずれか一項に記載の薬液投与装置と、
     ユーザが前記薬液投与装置を操作するためのリモコンと、
     を備える薬液投与システム。
    the drug-solution administration device according to any one of claims 1 to 4;
    a remote controller for a user to operate the medical-solution administration device;
    A drug delivery system comprising:
  6.  着脱可能に接続される使い捨てのカートリッジに設けられた、薬液が充填されるリザーバと、
     前記リザーバに接続するとともに、前記薬液を前記リザーバの外へ導出する流路と、
     前記リザーバの長手方向に移動可能なプランジャと、
     可動領域において移動することにより、前記プランジャを前記リザーバの先端側に押圧することが可能な可動部と、
     前記可動部を前記可動領域において移動させる駆動部と、
     前記駆動部を駆動するための電力を供給する電池と、
     制御部と、
     を備え、
     前記リザーバ内に充填した前記薬液を前記プランジャの押圧作用により生体内に投与する薬液投与装置の制御方法であって、
     前記制御部が、
     前記流路が前記薬液で充たされるまで前記可動部を移動するために必要な電力量であるプライミング電力量と、前記リザーバに充填された前記薬液を投与するために必要な電力量である送液電力量と、前記電池に残存している電力量と、に基づき、前記カートリッジを交換することが可能な回数である交換可能回数を算出する工程と、
     算出された前記交換可能回数をユーザに提示する工程と、
     を含む、薬液投与装置の制御方法。
     
     
     
    a reservoir filled with a medical solution provided in a removably connected disposable cartridge;
    a flow path connected to the reservoir and leading the drug solution out of the reservoir;
    a longitudinally movable plunger of the reservoir;
    a movable part capable of pressing the plunger toward the distal end of the reservoir by moving in the movable area;
    a drive unit that moves the movable unit in the movable area;
    a battery that supplies power for driving the drive unit;
    a control unit;
    with
    A control method for a drug solution administration device that administers the drug solution filled in the reservoir into the living body by the pressing action of the plunger,
    The control unit
    A priming power amount, which is the power amount required to move the movable part until the flow path is filled with the drug solution, and a liquid feeding, which is the power amount required to administer the drug solution filled in the reservoir. calculating the number of times the cartridge can be replaced based on the amount of power and the amount of power remaining in the battery;
    a step of presenting the calculated number of possible exchanges to a user;
    A method of controlling a drug-solution administration device, comprising:


PCT/JP2022/034105 2022-01-07 2022-09-12 Medicinal solution administration device, control method thereof, and medicinal solution administration system WO2023132103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001896 2022-01-07
JP2022001896 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023132103A1 true WO2023132103A1 (en) 2023-07-13

Family

ID=87073387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034105 WO2023132103A1 (en) 2022-01-07 2022-09-12 Medicinal solution administration device, control method thereof, and medicinal solution administration system

Country Status (1)

Country Link
WO (1) WO2023132103A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069746A1 (en) * 2007-09-07 2009-03-12 M2 Medical Group Holdings, Inc. Data Storage for an Infusion Pump System
US20090069749A1 (en) * 2007-09-07 2009-03-12 M2 Medical Power Management Techniques for an Infusion Pump System
JP2011521744A (en) * 2008-05-30 2011-07-28 アラーガン、インコーポレイテッド Injection device for injecting soft tissue enhancing fillers, bioactive agents and other biocompatible materials in liquid or gel form

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069746A1 (en) * 2007-09-07 2009-03-12 M2 Medical Group Holdings, Inc. Data Storage for an Infusion Pump System
US20090069749A1 (en) * 2007-09-07 2009-03-12 M2 Medical Power Management Techniques for an Infusion Pump System
JP2011521744A (en) * 2008-05-30 2011-07-28 アラーガン、インコーポレイテッド Injection device for injecting soft tissue enhancing fillers, bioactive agents and other biocompatible materials in liquid or gel form

Similar Documents

Publication Publication Date Title
US8480630B2 (en) Modular injection device
CN107206157B (en) Liquid medicine feeding device
CN110753561B (en) Patch pump system and device for managing diabetes and method thereof
US9173993B2 (en) Fluid delivery device
US11406754B2 (en) Patch pump
TW201511787A (en) Drug infusion device with safety interlock
US20220016340A1 (en) Liquid medicine administration device
CN110711294A (en) Novel electronic pen type injector
US20230270933A1 (en) Medication fluid delivery device
CN109789267B (en) Liquid medicine administration device and method for controlling liquid medicine administration device
WO2016151973A1 (en) Device for administering liquid medicine
JP2023554626A (en) Fluid delivery system with needle assembly
WO2023132103A1 (en) Medicinal solution administration device, control method thereof, and medicinal solution administration system
WO2023166864A1 (en) Liquid drug administration device, method for controlling same, and liquid drug administration system
EP4056210A1 (en) Pumping mechanism with wire-pulled plunger
US20220008650A1 (en) Liquid medicine administration device
WO2021192997A1 (en) Liquid medicine administration apparatus
CN113260398B (en) Liquid medicine feeding device
JP2023127492A (en) Liquid medicine administration device, control method thereof, and liquid medicine administration system
WO2023132104A1 (en) Liquid drug administration device, method for controlling same, and liquid drug administration system
WO2023166865A1 (en) Liquid drug administration device, method for controlling same, and liquid drug administration system
JP2023127494A (en) Liquid medicine administration device, control method thereof, and liquid medicine administration system
JP6438822B2 (en) Chemical solution administration device
WO2020203004A1 (en) Liquid medicine administration apparatus
CN113573757A (en) Liquid medicine feeding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918692

Country of ref document: EP

Kind code of ref document: A1