WO2023132022A1 - センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム - Google Patents

センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム Download PDF

Info

Publication number
WO2023132022A1
WO2023132022A1 PCT/JP2022/000158 JP2022000158W WO2023132022A1 WO 2023132022 A1 WO2023132022 A1 WO 2023132022A1 JP 2022000158 W JP2022000158 W JP 2022000158W WO 2023132022 A1 WO2023132022 A1 WO 2023132022A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor tag
changes
physical quantity
sensing
Prior art date
Application number
PCT/JP2022/000158
Other languages
English (en)
French (fr)
Inventor
航一 古谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023562460A priority Critical patent/JP7403731B2/ja
Priority to PCT/JP2022/000158 priority patent/WO2023132022A1/ja
Publication of WO2023132022A1 publication Critical patent/WO2023132022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components

Definitions

  • the present disclosure relates to a sensor tag, a sensor tag reading method, and a sensor system using the sensor tag.
  • the sensing unit detects the physical quantity of the object sensed by the sensing unit by changing the attribute of the sensing unit based on the electromagnetic wave reflection characteristics of the sensing unit, for example, by changing the dielectric constant or conductivity described in Patent Document 1. indicates
  • the sensing portion senses the physical quantity of the object unless the permittivity or conductivity of the sensing portion changes despite the change in the physical quantity of the object. I had a problem that I could't do it.
  • An object of the present disclosure is to provide a sensor tag capable of sensing the physical quantity of an object even if the conductivity or permittivity of the sensing part does not change despite changes in the physical quantity of the object. be.
  • a sensor tag includes a plurality of conductors that are arranged close to each other and that constitute a resonance element, and a sensing part that is interposed between the plurality of conductors. and a sensing portion having a physical property that changes according to a change in physical quantity of an object to be sensed by the sensing portion.
  • the physical quantity of the object can be sensed even if the conductivity or dielectric constant of the sensing part does not change despite changes in the physical quantity of the object.
  • FIG. 1 shows the configuration of a sensor tag ST of Embodiment 1.
  • FIG. FIG. 2A shows the operation of the sensor tag ST of Embodiment 1 (Part 1 (1)).
  • FIG. 2B shows the operation (part 1 (2)) of the sensor tag ST of the first embodiment.
  • FIG. 2C shows the operation of the sensor tag ST of Embodiment 1 (Part 1 (3)).
  • FIG. 3A shows the operation of the sensor tag ST of Embodiment 1 (part 2(1)).
  • FIG. 3B shows the operation of the sensor tag ST of Embodiment 1 (Part 2 (2)).
  • FIG. 4 shows the operation (part 3) of the sensor tag ST of the first embodiment.
  • 1 shows the configuration (1) of a sensor tag ST of Embodiment 2.
  • FIG. 2 shows the configuration (2) of the sensor tag ST of Embodiment 2.
  • FIG. 1 shows the configuration (1) of a sensor tag ST of Embodiment 2.
  • FIG. 2 shows the configuration (2) of the sensor tag ST of Embodiment 2.
  • FIG. 1 shows the configuration
  • FIG. 3 shows the configuration (part 3) of the sensor tag ST of Embodiment 2.
  • FIG. FIG. 10 is a schematic diagram showing the displacement and displacement amount of the sensor tag ST of Embodiment 2;
  • FIG. 10 shows frequency characteristics (part 1) of the amount of reflection according to the second embodiment;
  • FIG. 10 shows the frequency characteristics of the amount of reflection (part 2) of the second embodiment;
  • FIG. 10 shows frequency characteristics (part 3) of the amount of reflection according to the second embodiment;
  • FIG. 3 shows the configuration of a sensor tag ST of Embodiment 3.
  • FIG. 4 shows an electric circuit DK of the sensing part 32 of embodiment 3;
  • FIG. 11 shows the configuration (part 1) of Embodiment 4.
  • FIG. FIG. 12 shows the configuration (part 2) of Embodiment 4.
  • FIG. 11 shows the frequency characteristics of the amount of reflection in Embodiment 4.
  • FIG. 11 shows the configuration of a sensor tag ST of Embodiment 5.
  • FIG. FIG. 18A shows the configuration (part 1) of the sensor tag ST of Embodiment 6.
  • FIG. 18B shows the configuration (part 2) of the sensor tag ST of the sixth embodiment.
  • FIG. 18C shows the configuration (part 3) of the sensor tag ST of the sixth embodiment.
  • FIG. 11 shows the frequency characteristics of the amount of reflection (without displacement) in Embodiment 6.
  • FIG. FIG. 11 shows the frequency characteristics of the amount of reflection (displacement in the X direction) of Embodiment 6.
  • FIG. FIG. 11 shows the frequency characteristics of the amount of reflection (displacement in the Y direction) in Embodiment 6.
  • FIG. 11 shows the frequency characteristics of the amount of reflection (displacement in the Z direction) in Embodiment 6.
  • FIG. FIG. 11 shows the arrangement (part 1) of the sensor tag ST of Embodiment 7.
  • FIG. FIG. 12 shows the arrangement (part 2) of the sensor tag ST of Embodiment 7.
  • FIG. The shape and dimensions of the sensor tag ST of Embodiment 7 are shown.
  • FIG. 11 shows the operation of the sensor tag ST of Embodiment 7.
  • FIG. FIG. 12 is a calculation result (X-direction vibration) of the n-th order coefficient Cn in the seventh embodiment;
  • FIG. FIG. 10 is a calculation result (vibration in the Y direction) of the n-th order coefficient Cn in Embodiment 7.
  • FIG. 11 is a calculation result (vibration in the Z direction) of the n-th order coefficient Cn in the seventh embodiment;
  • FIG. 11 shows the configuration of a sensor system SS of Embodiment 8.
  • FIG. 11 shows the configuration of a sensor system SS of Embodiment 9.
  • FIG. 11 shows the configuration of a sensor system SS of Embodiment 8.
  • Embodiment 1 A sensor tag according to the first embodiment will be described.
  • FIG. 1 shows the configuration of the sensor tag ST of Embodiment 1. As shown in FIG.
  • the sensor tag ST of Embodiment 1 includes a plurality of conductors 11, namely conductors 11a and 11b, and a sensing portion 12, as shown in FIG.
  • the "plurality of conductors 11" corresponds to “plurality of conductors”
  • the sensing section 12 corresponds to the “sensing section”
  • the resonant element 13 corresponds to the "resonant element”.
  • the conductor 11a and the conductor 11b are elements constituting the resonant element 13.
  • the conductor 11a and the conductor 11b are close to each other, more specifically, close to each other so that they can be electromagnetically coupled.
  • the sensing part 12 is interposed between the conductors 11a and 11b.
  • the sensing unit 12 detects a physical quantity BR (not shown) of an object TB to be sensed by the sensing unit 12 (e.g., corresponding to the monitored object KTB shown in FIG. 30 and the identification object STB shown in FIG. 31). ), the physical properties change, for example, the shape changes.
  • FIG. 2 shows the operation (part 1) of the sensor tag ST of the first embodiment.
  • FIG. 3 shows the operation (part 2) of the sensor tag ST of the first embodiment.
  • FIG. 4 shows the operation (part 3) of the sensor tag ST of the first embodiment.
  • the shape of the sensing section 12 changes in the sensor tag ST.
  • Combinations of the type of the physical quantity BR of the object TB and the type of the sensing unit 12 are, for example, as follows. (1) The physical quantity BR of the object TB is displacement, mechanical vibration, pressure, or the like, and the sensor 12 is spring, rubber, or the like. (2) The physical quantity BR of the object TB is temperature or the like, and the sensing section 12 is thermoplastic resin or the like.
  • the relative positional relationship between the conductors 11a and 11b in other words, the distance between the conductors 11a and 11b changes.
  • the "reflection coefficient” and “transmission coefficient” represent the amount of reflected or transmitted electromagnetic waves and the amount of phase change at that time.
  • the reading device YS When trying to observe the change in the frequency characteristics of the reflection coefficient or transmission coefficient of the resonance element 13 due to the change in the physical quantity BR of the object TB, the reading device YS (for example, shown in FIG. 23) reads the sensor tag
  • An electromagnetic wave e.g., corresponding to the transmission wave SH shown in FIG. 23
  • ST Sensor wave
  • a reflected wave or a transmitted wave whose frequency characteristics have changed due to a change in the physical quantity BR of the target object TB (For example, corresponding to the reflected wave HH shown in FIG. 23), the frequency characteristic of the reflected wave or the transmitted wave is observed.
  • the corresponding relationship between the frequency characteristics of the reflected wave HH and the state of the sensing unit 12 (shown in FIG. 2C), which is calculated in advance or obtained by experiments in advance, is calculated.
  • the state of the sensing unit 12 that is, the state of expansion and contraction (illustrated in FIGS. 2A and 2B), which is a change in shape, can be estimated.
  • the physical quantity of the object TB can be estimated from the corresponding relationship between the state of the sensing unit 12 and the physical quantity BR of the object TB (illustrated in FIGS. 3A and 3B).
  • the physical quantity BR of the object TB is estimated to be Z1 (mm).
  • the physical quantity of the object TB can be estimated to be Z2 (mm).
  • the correspondence relationship between the frequency characteristics of the reflected wave HH and the physical quantity BR of the object TB (shown in FIG. 4) is used.
  • the physical quantity BR1 of the object TB and the physical quantity BR2 of the object TB can be sharply distinguished.
  • the sensor tag ST of Embodiment 1 senses the physical quantity BR of the object TB without requiring the electrical properties (conductivity or dielectric constant) required for conventional sensing units. It becomes possible to
  • Embodiment 2 A sensor tag according to the second embodiment will be described.
  • the sensor tag ST of Embodiment 2 senses the displacement or vibration of the target TB as the physical quantity BR of the target TB.
  • FIG. 5 shows the configuration (part 1) of the sensor tag ST of the second embodiment.
  • FIG. 6 shows the configuration (part 2) of the sensor tag ST of the second embodiment.
  • FIG. 7 shows the configuration (part 3) of the sensor tag ST of the second embodiment.
  • the sensor tag ST of Embodiment 2 basically has the same configuration as the sensor tag ST of Embodiment 1 (illustrated in FIG. 1).
  • the sensing part 22 is a spring (material is irrelevant), as shown in FIG.
  • the sensor tag ST of Embodiment 2 also has substrates 24a and 24b, as shown in FIG.
  • Substrate 24a supports conductor 21a and, similarly, substrate 24b supports conductor 21b.
  • Conductors 21a and 21b have, for example, the dimensions shown in FIG.
  • the conductor 21a and the substrate 24a constitute the upper layer 25 of the sensor tag ST, and similarly the conductor 21b and the substrate 24b constitute the lower layer 26 of the sensor tag ST.
  • the top layer 25 is attached to the bottom surface of the object to be sensed TB1, while the bottom layer 26 is attached to the top surface of the object to be sensed TB2.
  • the upper layer 25 and the lower layer 26 are provided between two separated components that constitute a building (such as a bridge), and between two separated components that constitute an electronic device. is provided in
  • FIG. 8 is a schematic diagram showing the displacement and displacement amount of the sensor tag ST of the second embodiment.
  • the “reference state” is a state in which the upper layer 25 and the lower layer 26 are completely overlapped when viewed from the Z-axis direction, and the position of the lower layer 26 in the Z direction is a specific position (“lower layer 26” in FIG. 8C). 26 (before displacement)”).
  • the displacement amounts dx, dy, and dz are defined as amounts displaced from the "reference state” as shown in FIG.
  • FIG. 9 shows the frequency characteristics (part 1) of the amount of reflection in the second embodiment.
  • FIG. 10 shows the frequency characteristics (part 2) of the amount of reflection in the second embodiment.
  • FIG. 11 shows the frequency characteristics (part 3) of the amount of reflection in the second embodiment.
  • the frequency characteristics of the amount of reflection shown in FIGS. 9 to 11 show electromagnetic waves, more precisely, X-polarized waves (X It represents the magnitude of the reflection coefficient of the sensor tag ST with respect to the polarized wave that oscillates in the direction.
  • the frequency characteristics of the amount of reflection shown in FIGS. 9 to 11 are obtained by, for example, arranging a large number of sensor tags ST (shown in FIG. 1) two-dimensionally on the XY plane at intervals of 25 mm in order to increase the amount of reflection obtained. It is calculated by
  • the frequency characteristics of the amount of reflection change.
  • the frequency characteristics of the amount of reflection differ depending on which direction of X, Y, or Z the object TB2 is displaced and whether the amount of displacement is large or small.
  • the reader YS irradiates the sensor tag ST with the transmission wave SH and receives the reflected wave HH and the like from the sensor tag ST, thereby observing the frequency characteristics of the reflected wave HH and the like of the resonance element 23. .
  • the correspondence between the frequency characteristics of the reflected waves HH and the like and the state of the sensing unit 22 is calculated in advance or obtained by experiments in advance based on the observed frequency characteristics of the reflected waves HH and the like.
  • Embodiment 3 A sensor tag according to Embodiment 3 will be described.
  • the sensing section 32 changes the circuit constant of the electric circuit DK (illustrated in FIG. 13).
  • FIG. 12 shows the configuration of the sensor tag ST of Embodiment 3. As shown in FIG.
  • FIG. 13 shows the electric circuit DK of the sensing section 32 of the third embodiment.
  • the sensor tag ST of Embodiment 3 basically has the same configuration as the sensor tag ST of Embodiment 1 (shown in FIG. 1).
  • the electric circuit DK (illustrated in FIG. 13) of the sensing section 32 changes according to the change in the physical quantity BR of the target object TB. Circuit constants change.
  • the property of the varactor diode changes, for example, the value of the capacitor CA of the electric circuit DK.
  • a combination of the physical quantity BR of the object TB and the sensing unit 32 is, for example, as follows.
  • the physical quantity BR of the object TB is voltage, electric field, etc., and the sensing section 32 is a diode or the like.
  • the physical quantity BR of the object TB is a magnetic field or the like, and the sensing section 32 is a magnetic sensor or the like.
  • the physical quantity of the object TB is light or the like, and the sensing section 32 is a CdS sensor or the like.
  • the object TB is temperature or the like, and the sensing unit 32 is a thermistor or the like.
  • the object TB is humidity or the like, and the sensing unit 32 is a humidity sensor or the like.
  • the object TB is gas or the like, and the sensing section 32 is a gas sensor or the like.
  • the electrical connection state (the state of how they are electrically connected) of the conductors 31a and 31b changes, and the reflection coefficient of the resonance element 33 or The frequency characteristic of the transmission coefficient changes.
  • the reading device YS irradiates the sensor tag ST with the transmission wave SH and receives the reflected wave HH and the like from the sensor tag ST, thereby observing the frequency characteristics of the reflected wave HH and the like of the resonance element 33. .
  • the correspondence between the frequency characteristics of the reflected waves HH and the like and the state of the sensing unit 32 is calculated in advance or obtained by experiments in advance based on the observed frequency characteristics of the reflected waves HH and the like.
  • the physical quantity BR of the object TB can be estimated even if the conductivity or dielectric constant of the sensing part 32 does not change in response to the change of the object TB. can be done.
  • Embodiment 4 A sensor tag according to Embodiment 4 will be described.
  • the sensor tag ST of Embodiment 4 senses the electric field, which is the physical quantity BR of the object TB.
  • FIG. 14 shows the configuration (part 1) of the fourth embodiment.
  • FIG. 15 shows the configuration (part 2) of the fourth embodiment.
  • the sensor tag ST of Embodiment 4 basically has the same configuration as the sensor tag ST of Embodiment 1 (illustrated in FIG. 1).
  • the sensing section 42 is a varactor diode.
  • the sensor tag ST of Embodiment 4 also includes a substrate 44 .
  • the substrate 44 supports the conductors 41a and 41b. Conductors 41a and 41b have the dimensions shown in FIG. 15, for example.
  • FIG. 16 shows the frequency characteristics of the amount of reflection in the fourth embodiment.
  • the sensor tag ST is placed near an electromagnetic noise source on an electronic circuit, such as an IC chip.
  • the electromagnetic noise source described above emits electromagnetic waves, and due to the electromagnetic waves, an electric field is generated between the conductors 41a and 41b, and as a result, a voltage is generated between the conductors 41a and 41b.
  • the circuit constant of the sensing section 42 specifically the capacitance of the capacitor, depends on the magnitude of the voltage. changes.
  • FIG. 16 is calculated by a method similar to that of FIGS. 9 to 11 of the second embodiment. As shown in FIG. 16, when the value of the reverse bias voltage changes from 0V to 0.1V to 0.2V, the frequency characteristics of the amount of reflection change.
  • the reader YS irradiates the sensor tag ST with the transmission wave SH and receives the reflected wave HH and the like from the sensor tag ST, thereby observing the frequency characteristics of the reflected wave HH and the like of the resonance element 43. .
  • the correspondence between the frequency characteristics of the reflected waves HH and the like and the state of the sensing unit 22 is calculated in advance or obtained by experiments in advance based on the observed frequency characteristics of the reflected waves HH and the like.
  • the state of the sensing part 22 can be estimated and also the reverse bias voltage applied to the sensing part 42 can be estimated, i.e. the magnitude of the electric field of the object TB can be estimated. can be done.
  • the sensor tag ST of Embodiment 4 senses the electric field of the object TB even if the conductivity or permittivity of the sensing part 42 does not change in response to the change of the electric field of the object TB. be able to.
  • Embodiment 5 A sensor tag according to Embodiment 5 will be described.
  • Embodiments 1 to 4 unlike Embodiments 1 to 4 that directly sense the physical quantity BR of the target TB, by combining a plurality of sensing units, the physical quantity BR of the target TB is indirectly detected. Sense.
  • FIG. 17 shows the configuration of the sensor tag ST of the fifth embodiment.
  • the sensor tag ST of Embodiment 5 basically has the same configuration as the sensor tag ST of Embodiment 1 (illustrated in FIG. 1).
  • the sensor tag ST of the fifth embodiment has a sub-sensor 52a and a sub-sensor 52b in addition to the main sensing section 52 (corresponding to the sensing section 42 of the fourth embodiment shown in FIG. 14).
  • the sub-sensors 52a and 52b are, for example, vibration sensors using piezoelectric elements.
  • the sub sensing portion 52a and the sub sensing portion 52b are provided parallel to the main sensing portion 52 between the conductors 51a and 51b.
  • Embodiment 5 In the sensor tag ST of Embodiment 5, when the physical quantity BR of the object TB changes, the physical properties of the sub-sensors 52a and 52b change. When the physical properties of the sub-sensors 52a and 52b change, the physical properties of the main sensor 52 change.
  • the main sensing part 52 is different from the sensing parts 12 to 42 of Embodiments 1 to 4, which directly sense the physical quantity BR of the object TB. perceptually.
  • the sub-sensors 52a and 52b When the object TB vibrates, the sub-sensors 52a and 52b generate voltage. A voltage is thereby generated between the conductors 51a and 51b.
  • the magnitude of the reverse bias voltage applied to the main sensing portion 52 is estimated.
  • the vibration of the object TB can be estimated.
  • Embodiment 6 A sensor tag of Embodiment 6 will be described.
  • the chipless RFID technology is used in the sensor tag ST of the sixth embodiment, and more specifically, identification information is added to the sensor tags ST of the first to fifth embodiments.
  • FIG. 18 shows the configuration of the sensor tag ST of Embodiment 6. As shown in FIG.
  • the sensor tag ST of Embodiment 6 basically has the same configuration as the sensor tag ST of Embodiment 2 (illustrated in FIG. 5).
  • the sensor tag ST of Embodiment 6 has a conductor pattern with a single or double loop structure. As shown in FIG. 18, the presence or absence of the inner conductor pattern corresponds to whether the low-order bit of the identification information is 1 or 0. Similarly, the presence or absence of the outer conductor pattern corresponds to the high-order bit of the identification information. is 1 or 0.
  • FIG. 19 shows the frequency characteristics of the amount of reflection (no displacement) in the sixth embodiment.
  • FIG. 20 shows the frequency characteristics of the amount of reflection (displacement in the X direction) in the sixth embodiment.
  • FIG. 21 shows the frequency characteristics of the amount of reflection (displacement in the Y direction) in the sixth embodiment.
  • FIG. 22 shows the frequency characteristics of the amount of reflection (displacement in the Z direction) in the sixth embodiment.
  • the sensor tag ST of Embodiment 6 basically performs the same operation as the sensor tag ST of Embodiment 2 (illustrated in FIGS. 8 to 11).
  • the structure of the conductor 21a (illustrated in FIG. 5) of the upper layer 25, that is, the presence or absence of the inner conductor pattern and the presence or absence of the outer conductor pattern (illustrated in FIG. 18) is determined by the identification information "01", "10", Since each "11" is different, even if the displacement amount of the object TB is the same, the frequency characteristic of the reflection coefficient or transmission coefficient of the resonance element 23 (shown in FIG. 5) is different from that of the identification information "01". , "10" and "11".
  • a sensor tag ST having identification information "01" (illustrated in FIG. 18A), a sensor tag ST having identification information "10” (illustrated in FIG. 18B), and a sensor tag ST having identification information "11” (illustrated in FIG. 18C).
  • different frequency characteristics can be obtained depending on the amount of displacement of the object TB.
  • the amount of displacement of the target object TB is sensed, and which of the identification information "01", “10", and "11" of the sensor tag ST is detected. can be read.
  • the displacement amount of the object TB can be sensed even if the conductivity or dielectric constant of the sensing section 22 does not change corresponding to the displacement amount of the object TB. and can read the identification information "01", "10" and "11".
  • Embodiment 7 A sensor tag of Embodiment 7 will be described.
  • the sensor tag ST of Embodiment 7 uses the sensor tags ST of Embodiments 1 to 6 to detect fluctuations in the physical quantity BR having temporal periodicity of the target TB, and to detect the period and amplitude of the fluctuations. Applies to reading.
  • FIG. 23 shows the arrangement (part 1) of the sensor tag ST of the seventh embodiment.
  • FIG. 24 shows the arrangement (part 2) of the sensor tags ST of the seventh embodiment.
  • FIG. 25 shows the shape and dimensions of the sensor tag ST of the seventh embodiment.
  • FIG. 26 shows the operation of the sensor tag ST of the seventh embodiment.
  • the sensor tag ST of Embodiment 7 basically has the same configuration as the sensor tag ST of Embodiment 2 (shown in FIG. 5).
  • a conductor plate DB is arranged on the back surface of the lower layer 26 of the sensor tag ST via spacers SP. .
  • the upper layer 25 and lower layer 26 of the sensor tag ST have the shape and dimensions shown in FIG.
  • the reader YS transmits a transmission wave SH to the sensor tag ST, receives a reflected wave HH from the sensor tag ST, and calculates the spectrum of the received reflected wave HH. conduct.
  • the sensor tag ST of Embodiment 7 operates as follows.
  • the shape of the sensing part 22 changes, the relative position between the conductor 21a and the conductor 21b (shown in FIG. 5) changes, and the resonance element 23 changes.
  • the frequency characteristics of the reflection coefficient or transmission coefficient change.
  • the reader YS observes the spectrum of the reflected wave HH after being reflected by the sensor tag ST among the transmitted waves SH transmitted from the reader YS.
  • the reading device YS learns the frequency of the periodic variation from the frequency interval of the spectrum and the amplitude of the periodic variation from the pattern of the spectrum.
  • the sensor tag ST of Embodiment 7 operates as follows.
  • the amount of reflection at the sensor tag ST is 0 dB due to the presence of the conductor plate DB (illustrated in FIG. 24).
  • the reflection phase at the sensor tag ST is as shown in FIG. FIG. 26 is calculated by a method similar to that of FIGS. 9 to 11 of the second embodiment.
  • the sensing unit 22 senses variations in the physical quantity BR having temporal periodicity, the reflection amount and reflection phase of the resonant element 23, in other words, the reflection coefficient has temporal periodicity.
  • the reflection coefficient R is represented by the following Fourier series.
  • Cn is the n-th order coefficient
  • fv is the fluctuation frequency of the physical quantity BR of the object TB
  • t is time.
  • the coefficient Cn is obtained as follows.
  • Tv is the fluctuation period of the physical quantity BR of the object TB, and is the reciprocal of fv. From the above formula, the electric field Er of the reflected wave HH is expressed as follows.
  • Ei is the electric field of the transmitted wave SH emitted by the reader YS
  • A, fi are the amplitude and frequency of Ei, respectively.
  • the reader YS transmits a single-frequency transmission wave SH.
  • the harmonic component calculated by the above formula appears in the spectrum of the reflected wave HH.
  • FIG. 27 shows the calculation result of the n-th order coefficient Cn (vibration in the X direction) in the seventh embodiment.
  • FIG. 28 shows the calculation result (vibration in the Y direction) of the n-th order coefficient Cn in the seventh embodiment.
  • FIG. 29 shows the calculation result (vibration in the Z direction) of the n-th order coefficient Cn in the seventh embodiment.
  • Ax, Ay, and Az are the amplitudes of vibration of the object TB (unit: mm).
  • Figures 27 to 29 assume that X-polarized waves are incident.
  • the spectrum of the reflected wave HH also has a pattern similar to that shown in FIGS.
  • the above spectrum is a discrete spectrum with components at the (fi+nfv) frequency.
  • the frequency interval of the spectrum is determined by fv, the frequency of periodic fluctuations.
  • the spectrum pattern is determined by the amplitude of periodic fluctuations. Therefore, the frequency and amplitude of the periodic fluctuation can be estimated by referring to the corresponding relationship between the spectrum of the reflected wave HH calculated in advance or obtained by experiment and the spectrum of the observed reflected wave HH.
  • the spectrum of the reflected wave is not obtained by scanning the frequency of the electromagnetic wave emitted by the reader YS, that is, the frequency of the transmission wave SH emitted by the reader YS is is a single frequency, the harmonic components appearing when the physical quantity BR of the object TB fluctuates with time are observed, and by analyzing the pattern of the observed harmonic components, the physical quantity BR of the object TB Variation frequency and variation amplitude can be read.
  • Embodiment 8 A sensor tag system of Embodiment 8 will be described.
  • the sensor system SS of Embodiment 8 uses the sensor tag ST of Embodiments 1 to 7, In order to detect failures and abnormalities in the electrical equipment, building, etc., which are the objects to be monitored KTB, the state of the electrical equipment, building, etc. is monitored.
  • FIG. 30 shows the configuration of the sensor system SS of the eighth embodiment.
  • the sensor system SS of the eighth embodiment includes sensor tags ST1 to ST3 (corresponding to the sensor tags ST of the first to seventh embodiments). As shown in FIG. 30, the sensor tags ST1 to ST3 are installed on the surfaces of electrical equipment, buildings, and the like, which are objects to be monitored KTB.
  • the reading device YS uses the sensing method described in the first to seventh embodiments to detect changes in the physical quantity BR of the monitored object KTB (for example, vibration of a bridge, vibration of a building, vibration in a building and near electronic equipment). electromagnetic noise) is acquired through the sensor tags ST1 to ST3.
  • changes in the physical quantity BR of the monitored object KTB for example, vibration of a bridge, vibration of a building, vibration in a building and near electronic equipment. electromagnetic noise
  • the reading device YS determines whether or not an abnormality has occurred in the monitoring target KTB by comparing the obtained physical quantity BR of the monitoring target KTB with, for example, a predetermined threshold value.
  • the sensor tag ST of Embodiments 1 to 7 is used, that is, the sensor tag ST that produces the effects of Embodiments 1 to 7 is used to obtain electrical equipment and It is possible to monitor the state of a monitoring object KTB such as a building.
  • Embodiment 9 A sensor system according to Embodiment 9 will be described.
  • the sensor system SS of Embodiment 9 uses the sensor tags ST of Embodiments 1 to 7 to identify individuals such as electronic devices and robots. For the identification, for example, the identification information (illustrated in FIG. 18) described in the sixth embodiment is used.
  • the sensor system SS of the ninth embodiment identifies individuals by using so-called artifact metrics, more specifically, the characteristics of individuals on which sensor tags ST are installed.
  • FIG. 31 shows the configuration of the sensor system SS of the ninth embodiment.
  • the sensor system SS of the ninth embodiment includes a sensor tag ST (corresponding to the sensor tag ST of the first to seventh embodiments).
  • the reading device YS uses the sensing method described in Embodiments 1 to 7 to detect the physical quantity BR of the identification object STB (eg, unmanned aerial vehicle) (eg, vibration and electromagnetic noise of unmanned aerial vehicle, electromagnetic noise of electronic equipment, ) through the sensor tag ST.
  • the physical quantity BR of the identification object STB eg, unmanned aerial vehicle
  • the reading device YS converts the acquired physical quantity BR of the object to be identified STB to, for example, an artifact metric, for example, a threshold determined by pre-acquired information indicating the relationship between the type of individual, the identification information, and the physical quantity BR. By comparing, it is determined whether or not the object STB to be identified is true or false, that is, normal.
  • an artifact metric for example, a threshold determined by pre-acquired information indicating the relationship between the type of individual, the identification information, and the physical quantity BR.
  • the sensor tag according to the present disclosure can be used to sense the physical quantity of an object even if the physical quantity of the object changes but the conductivity or permittivity does not change.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

センサタグ(ST)は、相互に近接して配置された複数の導体(11)であって共振素子(13)を構成する前記複数の導体(11)と、前記複数の導体(11)間に介在する感知部(12)であって前記感知部(12)が感知すべき対象物(TB)の物理量(BR)が変化することにより変化する物性を有する前記感知部(12)と、を含む。

Description

センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム
 本開示は、センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステムに関する。
 本開示に係るセンサタグとタグの点で共通する特許文献1に記載のタグに代表される一般的なタグは、感知部を有する。前記感知部は、前記感知部の電磁波反射特性に基づく前記感知部の属性の変化により、例えば、特許文献1に記載の誘電率又は導電率の変化により、前記感知部が感知した対象物の物理量を示す。
特開2021-89725号公報
 しかしながら、上記したタグでは、上記した感知部が、上記した対象物の物理量が変化するにも拘わらず、前記感知部の誘電率又は導電率が変化しなければ、前記対象物の物理量を感知することができないとの課題があった。
 本開示の目的は、感知部の導電率又は誘電率が、対象物の物理量が変化するにも拘わらず変化しなくても、前記対象物の物理量を感知することができるセンサタグを提供することにある。
 上記した課題を解決すべく、本開示に係るセンサタグは、相互に近接して配置された複数の導体であって共振素子を構成する複数の導体と、複数の導体間に介在する感知部であって感知部が感知すべき対象物の物理量が変化することにより変化する物性を有する感知部と、を含む。
 本開示に係るセンサタグによれば、前記感知部の導電率又は誘電率が、前記対象物の物理量が変化するにも拘わらず変化しなくても、前記対象物の物理量を感知することができる。
実施形態1のセンサタグSTの構成を示す。 図2Aは、実施形態1のセンサタグSTの動作(その1(1))を示す。図2Bは、実施形態1のセンサタグSTの動作(その1(2))を示す。図2Cは、実施形態1のセンサタグSTの動作(その1(3))を示す。 図3Aは、実施形態1のセンサタグSTの動作(その2(1))を示す。図3Bは、実施形態1のセンサタグSTの動作(その2(2))を示す。 図4は、実施形態1のセンサタグSTの動作(その3)を示す。 実施形態2のセンサタグSTの構成(その1)を示す。 実施形態2のセンサタグSTの構成(その2)を示す。 実施形態2のセンサタグSTの構成(その3)を示す。 実施形態2のセンサタグSTの変位及び変位量を示す模式図である。 実施形態2の反射量の周波数特性(その1)を示す。 実施形態2の反射量の周波数特性(その2)を示す。 実施形態2の反射量の周波数特性(その3)を示す。 実施形態3のセンサタグSTの構成を示す。 実施形態3の感知部32の電気回路DKを示す。 実施形態4の構成(その1)を示す。 実施形態4の構成(その2)を示す。 実施形態4の反射量の周波数特性を示す。 実施形態5のセンサタグSTの構成を示す。 図18Aは、実施形態6のセンサタグSTの構成(その1)を示す。図18Bは、実施形態6のセンサタグSTの構成(その2)を示す。図18Cは、実施形態6のセンサタグSTの構成(その3)を示す。 実施形態6の反射量の周波数特性(変位なし)を示す。 実施形態6の反射量の周波数特性(X方向に変位)を示す。 実施形態6の反射量の周波数特性(Y方向に変位)を示す。 実施形態6の反射量の周波数特性(Z方向に変位)を示す。 実施形態7のセンサタグSTの配置(その1)を示す。 実施形態7のセンサタグSTの配置(その2)を示す。 実施形態7のセンサタグSTの形状及び寸法を示す。 実施形態7のセンサタグSTの動作を示す。 実施形態7のn次の係数Cnの計算結果(X方向の振動)である。 実施形態7のn次の係数Cnの計算結果(Y方向の振動)である。 実施形態7のn次の係数Cnの計算結果(Z方向の振動)である。 実施形態8のセンサシステムSSの構成を示す。 実施形態9のセンサシステムSSの構成を示す。
 本開示に係るセンサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステムの実施形態について説明する。
 以下では、説明及び理解を容易にすべく、1つの符号により複数の名称を総称することがある。例えば、1つの符号「11」により、2つの名称「導体11a」及び「導体11b」の両者を総称することがある。
実施形態1.
〈実施形態1〉
 実施形態1のセンサタグについて説明する。
〈実施形態1の構成〉
 図1は、実施形態1のセンサタグSTの構成を示す。
 実施形態1のセンサタグSTは、図1に示されるように、複数の導体11、即ち、導体11a及び導体11bと、感知部12と、を含む。
 「複数の導体11」は、「複数の導体」に対応し、感知部12は、「感知部」に対応し、共振素子13は、「共振素子」に対応する。
 導体11a及び導体11bは、共振素子13を構成する要素である。導体11a及び導体11bは、相互に近接しており、具体的には、相互間で電磁的に結合可能に近接している。
 感知部12は、導体11a及び導体11b間に介在している。感知部12は、感知部12が感知すべき対象物TB(例えば、図30に図示の監視対象物KTB、図31に図示の識別対象物STBに相当。))の物理量BR(図示せず。)の変化に伴い物性が変化し、例えば、形状が変化する。
〈実施形態1の動作〉
 図2は、実施形態1のセンサタグSTの動作(その1)を示す。
 図3は、実施形態1のセンサタグSTの動作(その2)を示す。
 図4は、実施形態1のセンサタグSTの動作(その3)を示す。
 感知部12が感知すべき対象物TBの物理量BRが変化すると、センサタグSTでは、感知部12の形状が、変化する。対象物TBの物理量BRの種類と感知部12の種類との組み合わせは、例えば、以下のとおりである。
(1)対象物TBの物理量BRが、変位、機械的振動、または圧力等であり、感知部12が、ばね、ゴム等である。
(2)対象物TBの物理量BRが、温度等であり、感知部12が熱可塑性樹脂等である。
 上記したように、感知部12の形状が変化すると、導体11a及び導体11b間の相対的な位置関係、換言すれば、導体11a及び導体11b間の距離が変化する。
 上記したように、導体11a及び導体11b間の相対的な位置関係が変化すると、共振素子13の反射係数又は透過係数の周波数特性が変化する。
 ここで、「反射係数」及び「透過係数」は、電磁波を反射し又は透過する量、及びそのときの位相の変化量を表す。
 上述した、対象物TBの物理量BRの変化に起因する共振素子13の反射係数又は透過係数の周波数特性の変化を観測しようとするときには、読取装置YS(例えば、図23に図示。)が、センサタグSTに向けて電磁波(例えば、図23に図示の送信波SHに相当。)を照射し、センサタグSTから、対象物TBの物理量BRの変化に起因して周波数特性が変化した反射波又は透過波(例えば、図23に図示の反射波HHに相当。)を受信することにより、前記反射波又は前記透過波の周波数特性を観測する。
 前記観測された反射波HH等の周波数特性に基づき、予め計算され又は予め実験により取得された、反射波HH等の周波数特性と感知部12の状態との対応関係(図2Cに図示。)を参照することにより、感知部12の状態、即ち、形状の変化である伸縮の状態(図2A、2Bに図示。)を推定することができる。
 更に、感知部12の状態と対象物TBの物理量BRとの対応関係(図3A、図3Bに図示。)から、対象物TBの物理量を推定することができる。例えば、感知部12の長さ、換言すれば、導体11a及び導体11b間の距離が、Z1(mm)であるとき、対象物TBの物理量BRが、Z1(mm)であると推定し、同様に、導体11a及び導体11b間の距離が、Z2(mm)であるとき、対象物TBの物理量が、Z2(mm)であると推定することができる。
 上記した2つの対応関係(図2、図3に図示。)を用いることに代えて、反射波HH等の周波数特性と対象物TBの物理量BRとの対応関係(図4に図示。)を用いてもよい。これにより、例えば、対象物TBの物理量BR1と対象物TBの物理量BR2とを峻別することができる。
〈実施形態1の効果〉
 上述したように、実施形態1のセンサタグSTでは、対象物TBの物理量BRが変化すると、感知部12の物性の一例である形状が変化し、それにより、導体11a及び導体11b間の相対位置が変化する。更に、導体11a及び導体11bの相対位置の変化に起因して共振素子13の反射係数又は透過係数が変化することにより、センサタグSTが反射等することによる反射波HH等の周波数特性が変化する。その結果、前記した周波数特性を観測することを以って、対象物TBの物理量BRを推定することができる。
 実施形態1のセンサタグSTでは、上記したように機能することにより、従来の感知部に必要であった電気特性(導電率又は誘電率)を必要とすることなく、対象物TBの物理量BRを感知することが可能となる。
実施形態2.
〈実施形態2〉
 実施形態2のセンサタグについて説明する。
 実施形態2のセンサタグSTは、対象物TBの物理量BRとして、対象物TBの変位又は振動を感知する。
〈実施形態2の構成〉
 図5は、実施形態2のセンサタグSTの構成(その1)を示す。
 図6は、実施形態2のセンサタグSTの構成(その2)を示す。
 図7は、実施形態2のセンサタグSTの構成(その3)を示す。
 実施形態2のセンサタグSTは、図5に示されるように、基本的に、実施形態1のセンサタグSTの構成(図1に図示。)と同様な構成を有する。
 実施形態2のセンサタグSTでは、他方で、実施形態1のセンサタグSTと相違し、感知部22は、図5に示されるように、ばね(材質は不問。)である。
 実施形態2のセンサタグSTでは、また、図5に示されるように、基板24a及び基板24bを有する。基板24aは、導体21aを支持し、同様に、基板24bは、導体21bを支持する。導体21a及び導体21bは、例えば、図6に図示の寸法を有する。
 図5に示されるように、導体21a及び基板24aは、センサタグSTの上層25を構成し、同様に、導体21b及び基板24bは、センサタグSTの下層26を構成する。
 図7に示されるように、上層25は、感知すべき対象物TB1の底面に貼り付けられており、他方で、下層26は、感知すべき対象物TB2の上面に貼り付けられている。上層25及び下層26は、具体的には、建造物(橋梁等)を構成する離隔された2つの構成物の間に設けられ、また、電子機器を構成する離隔された2つの構成物の間に設けられている。
〈実施形態2の動作〉
 以下では、対象物TB1(図7に図示。)の位置が固定されており、他方で、対象物TB2(図7に図示。)の位置が変位することを想定する。
 図8は、実施形態2のセンサタグSTの変位及び変位量を示す模式図である。
 ここで、「基準状態」を、Z軸方向から見て上層25と下層26とが完全に重なっている状態であり、かつ、下層26のZ方向の位置が特定の位置(図8Cの「下層26(変位前)」に示す。)である状態であると定義する。変位量dx、dy、dz(単位はmm)は、図8に示されるように、「基準状態」から変位している量であると定義される。
 対象物TB2の位置が変位すると、実施形態1と同様に、感知部22の形状が変化し、導体21a及び導体21b間の相対位置が変化し、共振素子23の反射係数又は透過係数の周波数特性が変化する。
 図9は、実施形態2の反射量の周波数特性(その1)を示す。
 図10は、実施形態2の反射量の周波数特性(その2)を示す。
 図11は、実施形態2の反射量の周波数特性(その3)を示す。
 図9~図11に図示された反射量の周波数特性は、対象物TB2が、X、Y、Zの3方向のいずれかに変位したときの、電磁波、より正確には、X偏波(X方向に振動する偏波)に対するセンサタグSTの反射係数の大きさを表す。
 図9~図11に図示された反射量の周波数特性は、得られる反射量を大きくすべく、例えば、多数のセンサタグST(図1に図示。)をXY平面上に25mm間隔で2次元配列することにより算出される。
 図9~11に示されるように、対象物TB2がX、Y、Zのいずれかの方向に変位すると、反射量の周波数特性が変化する。他方で、対象物TB2がX、Y、Zのいずれの方向に変位するか、及び変位量が大きいか小さいかによって、反射量の周波数特性が相違する。
 実施形態1と同様に、読取装置YSがセンサタグSTに向けて送信波SHを照射し、センサタグSTから反射波HH等を受信することにより、共振素子23の反射波HH等の周波数特性を観測する。
 実施形態1と概ね同様にして、前記観測された反射波HH等の周波数特性に基づき、予め計算され又は予め実験により取得された、反射波HH等の周波数特性と感知部22の状態との対応関係を参照することにより、感知部22の状態を推定し、更には、対象物TB2の変位方向及び変位量を推定することができる。
〈実施形態2の効果〉
 上述したように、実施形態2のセンサタグSTでは、対象物TB2が変化することに対応して感知部22の導電率又は誘電率が変化しなくても、対象物TB2の変位方向及び変位量を感知することができる。
実施形態3.
〈実施形態3〉
 実施形態3のセンサタグについて説明する。
 実施形態3のセンサタグSTでは、感知部32は、電気回路DK(図13に図示。)の回路定数が変化する。
〈実施形態3の構成〉
 図12は、実施形態3のセンサタグSTの構成を示す。
 図13は、実施形態3の感知部32の電気回路DKを示す。
 実施形態3のセンサタグSTは、図12に示されるように、基本的に、実施形態1のセンサタグSTの構成(図示1に図示。)と同様な構成を有する。
 実施形態3のセンサタグSTでは、実施形態1のセンサタグSTと相違して、感知部32は、対象物TBの物理量BRの変化に伴い、感知部32の電気回路DK(図13に図示。)の回路定数が変化する。
〈実施形態3の動作〉
 対象物TBの物理量BRが変化すると、感知部32の電気回路DKの回路定数が変化し、具体的には、図13に示されるように、例えば、能動素子であるバラクタダイオードと等価である電気回路DKを構成する、抵抗器TE、インダクタIN、又はキャパシタCAの大きさが変化する。
 対象物TBの物理量BRが変化すると、換言すれば、バラクタダイオードに印加される逆バイアス電圧の値が変化すると、バラクタダイオードの性質により、例えば、電気回路DKのキャパシタCAの値が変化する。
 対象物TBの物理量BRと、感知部32との組み合わせは、例えば、以下のとおりである。
(1)対象物TBの物理量BRは、電圧、電界等であり、感知部32は、ダイオード等である。
(2)対象物TBの物理量BRは、磁界等であり、感知部32は、磁気センサ等である。
(3)対象物TBの物理量は、光等であり、感知部32は、CdSセンサ等である。
(4)対象物TBは、温度等であり、感知部32は、サーミスタ等である。
(5)対象物TBは、湿度等であり、感知部32は、湿度センサ等である。
(6)対象物TBは、ガス等であり、感知部32は、ガスセンサ等である。
 感知部32の電気回路DKの回路定数が変化すると、導体31a及び導体31bの電気的な接続状態(どのように電気的に接続されているかの状況)が変化し、共振素子33の反射係数又は透過係数の周波数特性が変化する。
 実施形態1と同様に、読取装置YSがセンサタグSTに向けて送信波SHを照射し、センサタグSTから反射波HH等を受信することにより、共振素子33の反射波HH等の周波数特性を観測する。
 実施形態1と概ね同様にして、前記観測された反射波HH等の周波数特性に基づき、予め計算され又は予め実験により取得された、反射波HH等の周波数特性と感知部32の状態との対応関係を参照することにより、感知部32の状態を推定し、更に、対象物TBの物理量BRを推定することができる。
〈実施形態3の効果〉
 上述したように、実施形態3のセンサタグSTでは、対象物TBが変化することに対応して感知部32の導電率又は誘電率が変化しなくても、対象物TBの物理量BRを推定することができる。
実施形態4.
〈実施形態4〉
 実施形態4のセンサタグについて説明する。
 実施形態4のセンサタグSTは、対象物TBの物理量BRである電界を感知する。
〈実施形態4の構成〉
 図14は、実施形態4の構成(その1)を示す。
 図15は、実施形態4の構成(その2)を示す。
 実施形態4のセンサタグSTは、図14に示されるように、基本的に、実施形態1のセンサタグSTの構成(図1に図示。)と同様な構成を有する。
 実施形態4のセンサタグSTでは、実施形態1のセンサタグSTと相違し、感知部42は、バラクタダイオードである。実施形態4のセンサタグSTは、また、基板44を含む。基板44は、導体41a及び導体41bを支持する。導体41a及び導体41bは、例えば、図15に図示の寸法を有する。
〈実施形態4の動作〉
 図16は、実施形態4の反射量の周波数特性を示す。
 以下では、センサタグSTが、電子回路上の電磁ノイズ源、例えば、ICチップの近傍に配置されていることを想定する。
 上記した電磁ノイズ源は、電磁波を放出し、前記電磁波に起因して、導体41a及び導体41b間に電界が発生し、その結果、導体41a及び導体41b間に電圧が発生する。前記発生した電圧の方向が、感知部42のバラクタダイオードの逆バイアス電圧の方向に沿っていると、前記電圧の大きさに応じて、感知部42の回路定数、具体的には、キャパシタの容量が変化する。
 上記したキャパシタの容量が変化すると、導体41a及び導体41bの電気的な接続状態が変化し、その結果、センサタグSTの反射波HH等の周波数特性が変化する。
 図16は、実施形態2の図9~図11と同様な手法により算出される。図16に示されるように、上記した逆バイアス電圧の値が0V、0.1V、0.2Vと変化すると、反射量の周波数特性が変化する。
 実施形態1と同様に、読取装置YSがセンサタグSTに向けて送信波SHを照射し、センサタグSTから反射波HH等を受信することにより、共振素子43の反射波HH等の周波数特性を観測する。
 実施形態1と概ね同様にして、前記観測された反射波HH等の周波数特性に基づき、予め計算され又は予め実験により取得された、反射波HH等の周波数特性と感知部22の状態との対応関係を参照することにより、感知部22の状態を推定し、更には、感知部42に印加される逆バイアス電圧を推定することができ、即ち、対象物TBの電界の大きさを推定することができる。
〈実施形態4の効果〉
 上述したように、実施形態4のセンサタグSTでは、対象物TBの電界が変化することに対応して感知部42の導電率又は誘電率が変化しなくても、対象物TBの電界を感知することができる。
〈変形例〉
 上述した、空間を伝搬する電磁ノイズ、いわゆる、放射ノイズに代えて、電子回路の配線を伝搬する電磁ノイズ、いわゆる、伝導ノイズを感知することができる。伝導ノイズを感知しようとする場合には、配線上で電磁ノイズによる電圧が生じる2箇所を、導体41a及び導体41bにそれぞれ電気的に接続し、即ち、導体41a及び導体41b間に電磁ノイズによる電圧が生じるように配線する。これにより、上述したと同様に、伝導ノイズを感知することができる。
実施形態5.
〈実施形態5〉
 実施形態5のセンサタグについて説明する。
 実施形態5のセンサタグSTでは、対象物TBの物理量BRを直接的に感知する実施形態1~実施形態4と相違し、複数の感知部を組み合わせることにより、対象物TBの物理量BRを間接的に感知する。
〈実施形態5の構成〉
 図17は、実施形態5のセンサタグSTの構成を示す。
 実施形態5のセンサタグSTは、図17に示されるように、基本的には、実施形態1のセンサタグSTの構成(図1に図示。)と同様な構成を有する。
 実施形態5のセンサタグSTでは、主感知部52(図14に図示された実施形態4の感知部42に相当。)に加えて、副感知部52a及び副感知部52bを有する。副感知部52a及び副感知部52bは、例えば、圧電素子を用いた振動センサである。副感知部52a及び副感知部52bは、導体51a及び導体51b間で、主感知部52に平行に設けられている。
〈実施形態5の動作〉
 実施形態5のセンサタグSTでは、対象物TBの物理量BRが変化すると、副感知部52a及び副感知部52bの物性が変化する。副感知部52a及び副感知部52bの物性が変化すると、主感知部52の物性が変化する。
 主感知部52は、対象物TBの物理量BRを直接的に感知する実施形態1~実施形態4の感知部12~感知部42と相違し、副感知部52a及び副感知部52bを介して間接的に感知する。
 対象物TBが振動すると、副感知部52a及び副感知部52bが電圧を発生する。それにより、導体51a及び導体51b間に電圧が発生する。
 導体51a及び導体51b間の電圧の方向が、主感知部52のバラクタダイオードの逆バイアス電圧の方向に沿うとき、当該電圧の大きさに応じて、主感知部52の回路定数、具体的には、キャパシタの大きさが変化する。
 以後、実施形態4のセンサタグSTと同様にして、反射量の周波数特性を観測することにより、主感知部52に印加される逆バイアス電圧の大きさを推定し、更に、逆バイアス電圧の大きさから、対象物TBの振動を推定することができる。
〈実施形態5の効果〉
 上述したように、実施形態5のセンサタグSTでは、対象物TBの物理量BRが変化することに対応して主感知部52、副感知部52a、及び副感知部52bの導電率又は誘電率が変化しなくても、対象物TBの振動を感知することができる。
実施形態6.
〈実施形態6〉
 実施形態6のセンサタグについて説明する。
 実施形態6のセンサタグSTには、チップレスRFIDの技術が用いられており、より詳しくは、実施形態1~実施形態5のセンサタグSTに識別情報が付加されている。
〈実施形態6の構成〉
 図18は、実施形態6のセンサタグSTの構成を示す。
 実施形態6のセンサタグSTは、基本的には、実施形態2のセンサタグSTの構成(図5に図示。)と同様な構成を有する。
 実施形態6のセンサタグSTでは、他方で、図18に示されるように、実施形態2のセンサタグSTと相違し、上層25は、識別情報「01」、「10」、「11」に対応する、一重又は二重のループ構造を備える導体パターンを有する。図18に示されるように、内側の導体パターンの有無は、識別情報の下位ビットが1であるか0であるかに対応し、同様に、外側の導体パターンの有無は、識別情報の上位ビットが1であるか0であるかに対応する。
〈実施形態6の動作〉
 図19は、実施形態6の反射量の周波数特性(変位なし)を示す。
 図20は、実施形態6の反射量の周波数特性(X方向に変位)を示す。
 図21は、実施形態6の反射量の周波数特性(Y方向に変位)を示す。
 図22は、実施形態6の反射量の周波数特性(Z方向に変位)を示す。
 実施形態6のセンサタグSTは、基本的には、実施形態2のセンサタグSTの動作(図8~図11に図示。)と同様な動作を行う。
 図19~図22は、実施形態2の図9~図11と同様な手法により算出される。変位量については、実施形態2の図8に図示されたdx、dy、dzが、それぞれ、2mm、2mm、-2mmである。
 上層25の導体21a(図5に図示。)の構造、即ち、上記した内側の導体パターンの有無及び外側導体パターンの有無(図18に図示。)が、識別情報「01」、「10」、「11」毎に異なることから、たとえ、対象物TBの変位量が同一であっても、共振素子23(図5に図示。)の反射係数又は透過係数の周波数特性が、識別情報「01」、「10」、「11」毎に相違することになる。
 識別情報「01」を有するセンサタグST(図18Aに図示。)、識別情報「10」を有するセンサタグST(図18Bに図示。)、及び、識別情報「11」を有するセンサタグST(図18Cに図示。)を用いることにより、対象物TBの変位量によって相違する周波数特性が得られる。その結果、前記した3つのセンサタグSTからの受信の状況に基づき、対象物TBの変位量を感知するとともに、センサタグSTの識別情報「01」、「10」、「11」のいずれであるかを読み取ることができる。
〈実施形態6の効果〉
 上述したように、実施形態6のセンサタグSTでは、対象物TBの変位量に対応して感知部22の導電率又は誘電率が変化しなくても、対象物TBの変位量を感知することができ、かつ、識別情報「01」、「10」、「11」を読み取ることができる。
実施形態7.
〈実施形態7〉
 実施形態7のセンサタグについて説明する。
 実施形態7のセンサタグSTは、実施形態1~実施形態6のセンサタグSTを用いて、特に、対象物TBの時間的な周期性を有する物理量BRの変動を感知し、前記変動の周期及び振幅を読み取ることに適用される。
〈実施形態7の構成〉
 図23は、実施形態7のセンサタグSTの配置(その1)を示す。
 図24は、実施形態7のセンサタグSTの配置(その2)を示す。
 図25は、実施形態7のセンサタグSTの形状及び寸法を示す。
 図26は、実施形態7のセンサタグSTの動作を示す。
 実施形態7のセンサタグSTは、図24に示されるように、基本的に、実施形態2のセンサタグSTの構成(図5に図示。)と同様な構成を有する。
 実施形態7のセンサタグSTでは、他方で、実施形態2のセンサタグSTと相違し、図24に示されるように、センサタグSTの下層26の裏面にスペーサSPを介して導体板DBが配置されている。
 センサタグSTの上層25及び下層26は、図25に図示の形状及び寸法を有する。
 読取装置YSは、図23に示されるように、センサタグSTへ送信波SHを送信すること、センサタグSTから反射波HHを受信すること、及び、受信された反射波HHのスペクトラムを算出することを行う。
〈実施形態7の動作〉
 実施形態7では、実施形態2と同様に、対象物TBの振動を感知することを想定する。
〈動作の基本原理〉
 実施形態7のセンサタグSTは、以下のとおり動作する。
 対象物TBの物理量BRが変化すると、感知部22(図5に図示。)の形状が変化し、導体21a及び導体21b(図5に図示。)間の相対位置が変化し、共振素子23の反射係数又は透過係数の周波数特性が変化する。
 読取装置YSが、読取装置YSから送信された送信波SHのうち、センサタグSTにより反射等された後の反射波HH等のスペクトラムを観測する。読取装置YSは、前記スペクトラムの周波数間隔から、周期変動の周波数を知得し、他方で、前記スペクトラムのパターンから、周期変動の振幅を知得する。
〈動作の詳細〉
 実施形態7のセンサタグSTは、より詳しくは、以下のとおり動作する。
 センサタグSTでの反射量は、導体板DB(図24に図示。)の存在により、0dBである。
 センサタグSTでの反射位相は、図26に示されるとおりである。図26は、実施形態2の図9~図11と同様な手法により算出される。
 感知部22が時間的な周期性を有する物理量BRの変動を感知するとき、共振素子23の反射量及び反射位相、換言すれば、反射係数は、時間的な周期性を有する。
 従って、反射係数Rは、以下のフーリエ級数で表される。
 
Figure JPOXMLDOC01-appb-I000001

 Cnは、n次の係数であり、fvは、対象物TBの物理量BRの変動周波数であり、tは、時間である。係数Cnは、以下のように求められる。
 
Figure JPOXMLDOC01-appb-I000002

 Tvは、対象物TBの物理量BRの変動周期であり、fvの逆数である。以上の式より、反射波HHの電界Erは、以下のように表される。
 
Figure JPOXMLDOC01-appb-I000003

 Eiは、読取装置YSが放射する送信波SHの電界であり、A、fiは、それぞれEiの振幅及び周波数である。上記より、読取装置YSが単一周波数fiの送信波SHを出すとき、反射波HHは、fiに加えて、高調波成分fi+nfvを有する。
 読取装置YSは、単一周波数の送信波SHを送信する。対象物TBの物理量BRが時間的に周期的な変動を行う場合、上記の式により計算される高調波成分が、反射波HHのスペクトラムに現れる。
 図27は、実施形態7のn次の係数Cnの計算結果(X方向の振動)である。
 図28は、実施形態7のn次の係数Cnの計算結果(Y方向の振動)である。
 図29は、実施形態7のn次の係数Cnの計算結果(Z方向の振動)である。
 Ax、Ay、Azは、対象物TBの振動の振幅(mm単位)である。
 図27~図29は、X偏波が入射することを想定する。
 Cnは、n次高調波の周波数成分の振幅を表すことから、反射波HHのスペクトラムも、図27~29に図示されたと同様なパターンを持つスペクトラムとなる。
 上記したスペクトラムは、(fi+nfv)の周波数に成分を持つ離散的なスペクトラムである。スペクトラムの周波数間隔は、fv、即ち、周期変動の周波数により決まる。
 スペクトラムのパターンは、周期変動の振幅により決まる。従って、予め計算され又は実験により取得された反射波HHのスペクトラムと観測された反射波HHのスペクトラムとの対応関係を参照することにより、周期変動の周波数及び振幅が推定することができる。
〈実施形態7の効果〉
 上述したように、実施形態7では、例えば、読取装置YSが出す電磁波の周波数を走査することにより反射波のスペクトラムを得ることを行うことなく、即ち、読取装置YSが送出する送信波SHの周波数を単一周波数とし、対象物TBの物理量BRが時間的に変動する場合に現れる高調波成分を観測し、前記観測された高調波成分のパターンを分析することにより、対象物TBの物理量BRの変動周波数及び変動振幅を読み取ることができる。
実施形態8.
〈実施形態8〉
 実施形態8のセンサタグシステムについて説明する。
 実施形態8のセンサシステムSSは、実施形態1~実施形態7のセンサタグSTを用いて、
監視対象物KTBである電気機器及び建造物等の故障及び異常を検知すべく、電気機器及び建造物等の状態を監視する。
〈実施形態8の構成〉
 図30は、実施形態8のセンサシステムSSの構成を示す。
 実施形態8のセンサシステムSSは、図30に示されるように、センサタグST1~センサタグST3(実施形態1~実施形態7のセンサタグSTに相当。)を含む。センサタグST1~センサタグST3は、図30に示されるように、監視対象物KTBである電気機器及び建造物等の表面に設置されている。
 〈実施形態8の動作〉
 読取装置YSは、実施形態1~実施形態7で説明した感知方法を用いて、監視対象物KTBの物理量BRの変化(例えば、橋梁の振動、建造物の振動、建物内及び電子機器の近傍の電磁ノイズ)を、センサタグST1~センサタグST3を通じて取得する。
 読取装置YSは、取得された監視対象物KTBの物理量BRを、例えば、予め定められた閾値と比較することにより、監視対象物KTBに異常が発生していないか否かを判断する。
〈実施形態8の効果〉
 上述したように、実施形態8のセンサシステムSSでは、実施形態1~実施形態7のセンサタグSTを用いて、即ち、実施形態1~実施形態7の効果を奏するセンサタグSTを用いて、電気機器及び建造物等の監視対象物KTBの状態を監視することができる。
実施形態9.
〈実施形態9〉
 実施形態9のセンサシステムについて説明する。
 実施形態9のセンサシステムSSは、実施形態1~実施形態7のセンサタグSTを用いて、電子機器及びロボット等の個体を識別する。前記識別には、例えば、実施形態6で説明した識別情報(図18に図示。)が用いられる。
 実施形態9のセンサシステムSSは、上記の識別に加えて、いわゆる人工物メトリクス、より詳しくは、センサタグSTが設置された個体の特徴を用いることにより個体を識別する。
〈実施形態9の構成〉
 図31は、実施形態9のセンサシステムSSの構成を示す。
 実施形態9のセンサシステムSSは、図31に示されるように、センサタグST(実施形態1~実施形態7のセンサタグSTに相当。)を含む。
〈実施形態9の動作〉
 読取装置YSは、実施形態1~実施形態7で説明した感知方法を用いて、識別対象物STB(例えば、無人航空機)の物理量BR(例えば、無人航空機の振動及び電磁ノイズ、電子機器の電磁ノイズ)の変化を、センサタグSTを通じて取得する。
 読取装置YSは、取得された識別対象物STBの物理量BRを、例えば、人工物メトリクス、例えば、個体の種類と識別情報と物理量BRとの間の関係を示す予め取得された情報により定まる閾値と比較することにより、識別対象物STBの真偽、即ち、正規であるか否かを判定する。
〈実施形態9の効果〉
 上述したように、実施形態9のセンサシステムSSでは、実施形態1~実施形態7のセンサタグSTを用いて、即ち、実施形態1~実施形態7の効果を奏するセンサタグSTを用いて、電子機器及びロボット等の個体を識別することができる。
 本開示の要旨を逸脱しない範囲で、上述した実施形態同士を組み合わせてもよく、また、各実施形態中の構成要素を適宜、削除し、変更し、または、他の構成要素を追加してもよい。
 本開示に係るセンサタグは、感知部が対象物の物理量が変化するにも拘わらず導電率又は誘電率が変化しなくても、前記対象物の物理量を感知することに利用可能である。
11a 導体、11b 導体、12 感知部、13 共振素子、21a 導体、21b 導体、22 感知部、23 共振素子、24a 基板、24b 基板、25 上層、26 下層、31a 導体、31b       導体、32 感知部、33 共振素子、41a 導体、41b 導体、42 感知部、43 共振素子、44 基板、51a 導体、51b 導体、52 主感知部、52a 副感知部、52b 副感知部、BR 物理量、BR1 物理量、BR2 物理量、CA キャパシタ、Cn 係数、DK 電気回路、dx 変位量、dy 変位量、dz 変位量、Er 電界、fi 単一周波数、HH 反射波、IN インダクタ、KTB 監視対象物、R 反射係数、SH 送信波、SP スペーサ、SS センサシステム、ST センサタグ、ST1 センサタグ、ST3 センサタグ、STB 識別対象物、TB 対象物、TB1 対象物、TB2 対象物、TE 抵抗器、YS 読取装置。

Claims (16)

  1.  相互に近接して配置された複数の導体であって共振素子を構成する前記複数の導体と、
     前記複数の導体間に介在する感知部であって前記感知部が感知すべき対象物の物理量が変化することにより変化する物性を有する前記感知部と、
     を含むセンサタグ。
  2.  前記複数の導体は、前記複数の導体間の相対位置が前記感知部の形状の変化に伴い変化する、
    請求項1に記載のセンサタグ。
  3.  前記感知部は、ばねである、
     請求項2に記載のセンサタグ。
  4.  前記感知部は、前記対象物の物理量の変化に伴い回路定数が変化する電気回路を有する、
     請求項1に記載のセンサタグ。
  5.  前記電気回路は、能動素子を含む、
    請求項4に記載のセンサタグ。
  6.  相互に近接して配置された複数の導体であって共振素子を構成する前記複数の導体と、
     前記複数の導体間に介在する主感知部及び副感知部であって、前記主感知部及び前記副感知部が感知すべき対象物の物理量が変化することにより前記副感知部の物性が変化することによって前記主感知部の物性が変化する前記主感知部及び前記副感知部と、
     を含むセンサタグ。
  7.  前記副感知部は、前記対象物の物理量である振動を感知し、
     前記主感知部は、前記副感知部による前記振動の感知に起因して発生する電圧の印加を受けることにより物性が変化する能動素子を有する、
     請求項6に記載のセンサタグ。
  8.  識別情報を示すための少なくとも一つの導体パターンを更に含む、
     センサタグ1に記載のセンサタグ。
  9.  前記少なくとも一つの導体パターンは、ループ状である、
     請求項8に記載のセンサタグ。
  10.  複数の前記複数の導体及び前記感知部が、2次元的に配置されている、
     請求項1に記載のセンサタグ。
  11.  単一周波数の送信波の照射を受けることに応答して、請求項1から請求項6までのいずれかに記載のセンサタグの反射特性又は透過特性が変化することにより、前記対象物の物理量の変動の周期及び振幅を推測する、
     センサタグの読取方法。
  12.  前記対象物の振動の周期及び振幅を推測する、
     請求項11のセンサタグの読取方法。
  13.  電磁ノイズの振動の周期及び振幅を推測する、
     請求項11のセンサタグの読取方法。
  14.  請求項1から請求項10までのいずれかに記載のセンサタグを有する、
     センサシステム。
  15.  前記対象物の状態を監視する、
     請求項14に記載のセンサシステム。
  16.  前記対象物の個体識別を行う、
     請求項14に記載のセンサシステム。
PCT/JP2022/000158 2022-01-06 2022-01-06 センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム WO2023132022A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023562460A JP7403731B2 (ja) 2022-01-06 2022-01-06 センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム
PCT/JP2022/000158 WO2023132022A1 (ja) 2022-01-06 2022-01-06 センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000158 WO2023132022A1 (ja) 2022-01-06 2022-01-06 センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム

Publications (1)

Publication Number Publication Date
WO2023132022A1 true WO2023132022A1 (ja) 2023-07-13

Family

ID=87073576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000158 WO2023132022A1 (ja) 2022-01-06 2022-01-06 センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム

Country Status (2)

Country Link
JP (1) JP7403731B2 (ja)
WO (1) WO2023132022A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130560A (ja) * 2007-11-22 2009-06-11 Nec Tokin Corp アンテナ付き無給電センサ
JP2013120104A (ja) * 2011-12-07 2013-06-17 Nec Tokin Corp 振動センサシステム
JP2016053958A (ja) * 2014-09-03 2016-04-14 メッツォ フロー コントロール オサケユキチュア パッシブrfidセンサタグ
JP2016057223A (ja) * 2014-09-11 2016-04-21 日本電信電話株式会社 誘電分光センサ、誘電分光センサを用いた測定システムおよび誘電分光センサを用いた測定方法
JP2019049454A (ja) * 2017-09-08 2019-03-28 東芝テック株式会社 検出センサーおよび検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130560A (ja) * 2007-11-22 2009-06-11 Nec Tokin Corp アンテナ付き無給電センサ
JP2013120104A (ja) * 2011-12-07 2013-06-17 Nec Tokin Corp 振動センサシステム
JP2016053958A (ja) * 2014-09-03 2016-04-14 メッツォ フロー コントロール オサケユキチュア パッシブrfidセンサタグ
JP2016057223A (ja) * 2014-09-11 2016-04-21 日本電信電話株式会社 誘電分光センサ、誘電分光センサを用いた測定システムおよび誘電分光センサを用いた測定方法
JP2019049454A (ja) * 2017-09-08 2019-03-28 東芝テック株式会社 検出センサーおよび検出装置

Also Published As

Publication number Publication date
JP7403731B2 (ja) 2023-12-22
JPWO2023132022A1 (ja) 2023-07-13

Similar Documents

Publication Publication Date Title
Nie et al. Textile‐based wireless pressure sensor array for human‐interactive sensing
US6025725A (en) Electrically active resonant structures for wireless monitoring and control
US10605673B2 (en) Wireless temperature sensor having no electrical connections
KR100751069B1 (ko) 개선된 센싱 장치
KR101213614B1 (ko) 전자 장치, 및, 잡음 전류 측정 방법
US9874603B2 (en) System and method for capacitive coupling testing
US8692562B2 (en) Wireless open-circuit in-plane strain and displacement sensor requiring no electrical connections
US8917202B2 (en) Backscatter RFID sensor with a bend transducer
US20150292963A1 (en) Displacement sensor, push-in amount detection sensor, and touch type device
Xie et al. Exploring commodity rfid for contactless sub-millimeter vibration sensing
Zhou et al. State and fault estimation of sandwich systems with hysteresis
US8083405B2 (en) Pressure sensor having a rotational response to the environment
JP7019930B2 (ja) パッシブセンサタグシステム
WO2023132022A1 (ja) センサタグ、センサタグの読取方法、及びセンサタグを用いたセンサシステム
US20160252406A1 (en) Temperature sensor using piezoelectric resonator and methods of measuring temperature
Yamashita et al. Development of flexible piezoelectric strain sensor array
JP3472827B2 (ja) 触覚センサ、触覚センサユニット、触覚センサの使用方法、触覚センサユニットの使用方法、及び触覚センサユニットの製造方法
JP6229265B2 (ja) Rfidタグシステム及び温度検出方法
US20160266277A1 (en) Continuous sensor measurement in harsh environments
US8237545B2 (en) Wireless transponder and image forming device
Bhattacharyya Low-cost, passive UHF RFID tag antenna-based sensors for pervasive sensing applications
Yoon et al. Wireless piezoelectric strain sensing measurement using a frequency modulation technique
JPWO2023132022A5 (ja)
KR101021741B1 (ko) 시온 기능을 갖는 rf 태그 장치
Gallagher Design, fabrication, and interrogation of integrated wireless SAW temperature sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023562460

Country of ref document: JP