WO2023132012A1 - Composition containing fine cellulose fibers, coating material, and thickener - Google Patents

Composition containing fine cellulose fibers, coating material, and thickener Download PDF

Info

Publication number
WO2023132012A1
WO2023132012A1 PCT/JP2022/000113 JP2022000113W WO2023132012A1 WO 2023132012 A1 WO2023132012 A1 WO 2023132012A1 JP 2022000113 W JP2022000113 W JP 2022000113W WO 2023132012 A1 WO2023132012 A1 WO 2023132012A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine cellulose
cellulose fibers
mass
sulfonated
water
Prior art date
Application number
PCT/JP2022/000113
Other languages
French (fr)
Japanese (ja)
Inventor
祥 日浅
朱十 西村
通誉 杉野
聖示 西山
Original Assignee
丸住製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸住製紙株式会社 filed Critical 丸住製紙株式会社
Priority to PCT/JP2022/000113 priority Critical patent/WO2023132012A1/en
Publication of WO2023132012A1 publication Critical patent/WO2023132012A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/14Cellulose sulfate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Definitions

  • the present invention relates to fine cellulose fiber-containing compositions, paints and thickeners. More particularly, it relates to compositions containing fine cellulose fibers for use in target liquids, and paints and thickeners containing the compositions containing fine cellulose fibers.
  • CNF Cellulose nanofibers
  • TEMPO nano-processing plant-derived cellulose
  • the use of CNF-containing composite materials is expected in various fields. In particular, it is expected to exert excellent thickening action (high viscosity and thixotropic properties), so development as a novel thickener with less environmental load is underway. For example, in the field of paints, the inclusion of CNF as a thickener is expected to improve coatability and strength of the coating film after drying.
  • Patent Document 1 discloses a composition comprising a fibrous cellulose-containing composition, a resin, and an isocyanate curing agent, wherein the fibrous cellulose-containing composition contains fine particles having a phosphite group or a substituent derived from a phosphite group.
  • a paint containing fibers, a water-soluble low-molecular-weight compound such as urea, and a predetermined saccharide is disclosed.
  • Patent Document 2 discloses a water-based paint containing CNF in a predetermined metal salt, silicate, resin, and water-based solvent.
  • Patent Document 3 discloses a thickener composition for paints or pharmaceuticals containing a predetermined polymer compound, water and CNF having a substituent derived from a carboxyl group.
  • Patent Documents 1 to 3 Although CNF can be dispersed in paints, pharmaceuticals, etc. to some extent, the dispersibility of CNF is insufficient and some CNF precipitates as aggregates. There are problems such as In addition, the techniques of these documents contain predetermined polymers, sugars, metal salts, etc. in order to disperse CNF in paints, pharmaceuticals, etc., so there are problems such as limited target paints and pharmaceuticals. There is room for improvement from the viewpoint of handleability.
  • an object of the present invention is to provide a fine cellulose fiber-containing composition capable of improving the dispersibility and handleability of CNF, and a paint and a thickener containing such a fine cellulose fiber-containing composition. do.
  • the present inventors have made intensive studies to solve the above problems, and found that the above problems can be solved by using fine cellulose fibers obtained by introducing sulfo groups in a water-soluble solvent. Completed.
  • the fine cellulose fiber-containing composition of the present invention has a sulfo group introduction amount of 0.4 mmol/g to 3.0 mmol/g, and a sulfone having a haze value of 30% or less at a solid content concentration of 0.5% by mass. It is a mixture of denatured fine cellulose fibers, water, and a water-soluble solvent.
  • the paint of the present invention is a paint containing the fine cellulose fiber-containing composition of the present invention, and the content of sulfonated fine cellulose fibers in the fine cellulose fiber-containing composition is 0.05% by mass to 10% by mass. is.
  • the thickener of the present invention is a thickener containing the fine cellulose fiber-containing composition of the present invention, and the content of the sulfonated fine cellulose fibers is 0.1 mass based on the total amount of the thickener. % to 95% by mass.
  • the fine cellulose fiber-containing composition of the present invention by containing fine cellulose fibers exhibiting predetermined physical property values and having an amount of sulfo groups adjusted within a predetermined range, in a solution containing a water-soluble solvent can maintain the fine cellulose fibers in a dispersed state. Then, if the fine cellulose fiber-containing composition of the present invention is used for a target liquid having affinity for a water-soluble solvent, the fine cellulose fibers can be appropriately dispersed in the target liquid. Excellent properties can be imparted. According to the paint of the present invention, since the fine cellulose fibers are appropriately dispersed in the paint, the coatability and the stability of the coating film can be improved.
  • the thickener of the present invention since fine cellulose fibers are appropriately dispersed in the thickener, it is possible to improve thickening properties and thixotropic properties. Therefore, if a thickening agent is used for the target liquid, appropriate thickening properties and thixotropic properties can be imparted.
  • FIG. 4 is a diagram showing experimental results, and a table showing characteristics (physical properties) of a slurry containing sulfonated cellulose fine fibers (corresponding to the composition containing fine cellulose fibers of the present embodiment).
  • FIG. 4 is a diagram showing experimental results, and a table showing properties (physical properties) of slurry containing sulfonated fine cellulose fibers.
  • FIG. 3 is a diagram showing experimental results, and a table showing properties (physical properties) of a paint containing a slurry containing sulfonated fine cellulose fibers (corresponding to the paint of the present embodiment).
  • FIG. 4 is a diagram showing experimental results, and a table showing characteristics (physical properties) of a slurry containing sulfonated cellulose fine fibers (corresponding to the composition containing fine cellulose fibers of the present embodiment).
  • FIG. 4 is a diagram showing experimental results, and a table showing properties (physical properties) of slurry containing sulfonated fine cellulose fibers
  • FIG. 3 is a diagram showing experimental results, and a table showing properties (physical properties) of a paint containing a slurry containing sulfonated fine cellulose fibers (corresponding to the paint of the present embodiment).
  • FIG. 3 is a diagram showing experimental results, and a table showing properties (physical properties) of a paint containing a slurry containing sulfonated fine cellulose fibers (corresponding to the paint of the present embodiment).
  • FIG. 3 is a diagram showing experimental results, and a table showing characteristics (physical properties) of cosmetics containing a slurry containing sulfonated fine cellulose fibers (corresponding to the cosmetics of the present embodiment).
  • the fine cellulose fiber-containing composition of the present embodiment is characterized by being able to impart excellent properties to the target liquid by containing the sulfonated fine cellulose fibers having affinity with the water-soluble solvent. are doing.
  • the fine cellulose fiber-containing composition of the present embodiment is a composition containing water, a water-soluble solvent, and sulfonated fine cellulose fibers.
  • the water-soluble solvent of the fine cellulose fiber-containing composition of the present embodiment is not particularly limited as long as it is a solvent that is miscible with water.
  • water-soluble solvents that are industrially used can be used. For example, those having a solubility in water (g/100 mL water) of 10 g or more are suitable as water-soluble solvents.
  • water-soluble solvents examples include lower alcohols such as methanol, ethanol, propanol, isopropyl alcohol, and butanol, ethylene glycol, acetic acid, tetrahydrofuran, dioxane, acetone, ethyl methyl ketone, acetonitrile, pyridine, dimethyl sulfoxide, and derivatives thereof. etc., and these substances can be used alone or in combination of two or more.
  • the water-soluble solvent is not limited to these substances as long as it has the functions described above.
  • the target liquid is cosmetics that are used on humans, ethanol, isopropyl alcohol, etc., which have little effect on humans, can be used as water-soluble solvents.
  • a highly volatile solvent such as methanol or propylene glycol monomethyl ether 1-methoxy-2-propanol (PM) can be used as the water-soluble solvent.
  • the target liquid in which the composition containing fine cellulose fibers of the present embodiment can be used (liquid to which the composition containing fine cellulose fibers of the present embodiment is added or mixed) has affinity with a water-soluble solvent.
  • a water-soluble solvent There is no particular limitation as long as it is a liquid.
  • a liquid for example, not only complete liquids such as water, but also water-based or oil-based paints containing insoluble substances such as pigments, liquid cosmetics such as lotions and liquid medicines, as well as gels such as cleansing agents and moisturizing creams.
  • Various liquids such as external skin preparations of various properties such as cosmetics in the form of liquids and slurries can be mentioned as target liquids, but it is needless to say that the liquids are not limited to these.
  • Water of the fine cellulose fiber-containing composition of the present embodiment Water contained in the fine cellulose fiber-containing composition of the present embodiment is not particularly limited.
  • Water contained in the fine cellulose fiber-containing composition of the present embodiment is not particularly limited.
  • pure water, distilled water, ion-exchanged water, RO water, Milli-Q water, ultrapure water, and the like can be used.
  • the sulfonated fine cellulose fibers contained in the fine cellulose fiber-containing composition of the present embodiment are fine cellulose fibers obtained by refining cellulose fibers.
  • the sulfonated fine cellulose fibers contain a plurality of finer cellulose fibers (hereinafter referred to as unit fibers).
  • sulfonated fine cellulose fibers are fibers formed by connecting multiple unit fibers.
  • this unit fiber at least part of the hydroxyl group (--OH group) of cellulose (chain polymer in which D-glucose is ⁇ (1 ⁇ 4) glycoside-bonded, general formula (1)) constituting such fiber is It is sulfated with a sulfo group represented by the general formula (2).
  • the sulfonated fine cellulose fibers are obtained by substituting some of the hydroxyl groups of the fine cellulose fibers with sulfo groups.
  • substitution refers to the replacement of hydroxyl groups of cellulose with sulfo groups, and means that at least some of the hydroxyl groups constituting the cellulose after the reaction are bonded with sulfo groups through a substitution reaction or the like.
  • the hydroxyl groups of cellulose are substituted with sulfo groups, meaning that at least part of the hydroxyl groups (--OH groups) of cellulose are substituted with sulfo groups.
  • a part of the hydroxyl group means to include not only the "H” (hydrogen atom) of the "--OH group” but also the "OH".
  • the sulfo group is bonded to the oxygen atom of the hydroxyl group instead of the hydrogen atom (H), and the carbon of the cellulose and the oxygen atom of the hydroxyl group (O ) and a sulfo group (so-called ester bond, for example, general formula (3)).
  • the structure in which a portion of the hydroxyl groups of cellulose is substituted with a sulfo group includes a structure in which a sulfo group is directly bonded to the carbon to which the hydroxyl group of cellulose is bonded (e.g., general formula (4)).
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the sulfo group in general formula (3) can be represented by (--SO 3 ⁇ ) r ⁇ Z r+ .
  • Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
  • R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.
  • the sulfo group in general formula (4) can also be represented in the same manner as in general formula (3), and Z can also include similar compounds.
  • sulfonated fine cellulose fibers functional groups other than sulfo groups may be bonded to some of the hydroxyl groups of the fine cellulose fibers. may contain.
  • sulfo groups may be introduced into the hydroxyl groups of the cellulose fibers constituting the sulfonated fine cellulose fibers.
  • the amount of sulfo groups introduced into the sulfonated fine cellulose fibers can be represented by the amount of sulfur derived from the sulfo groups, and the amount of sulfo groups introduced is not particularly limited.
  • the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is preferably adjusted to be higher than 0.4 mmol/g, more preferably 0.4 mmol/g to 9.9 mmol. /g, more preferably 0.5 mmol/g to 9.9 mmol/g, even more preferably 0.6 mmol/g to 9.9 mmol/g.
  • the amount of sulfo groups introduced is preferably higher than 0.4 mmol/g, more preferably 0. .5 mmol/g or more is preferable.
  • the amount of sulfur introduced approaches 9.9 mmol/g, there is concern that the crystallinity will decrease, and the cost of introducing sulfur tends to increase.
  • the amount of sulfo groups introduced into the sulfonated fine cellulose fibers is preferably adjusted to be higher than 0.4 mmol/g and 3.0 mmol/g or less, more preferably 0.5 mmol/g to 3.0 mmol/g. .0 mmol/g, more preferably 0.5 mmol/g to 2.0 mmol/g, even more preferably 0.5 mmol/g to 1.7 mmol/g, more preferably 0.5 mmol/g ⁇ 1.5 mmol/g. Also from the viewpoint of the transparency of the sulfonated fine cellulose fibers, it is preferable to adjust the amount of the sulfo group to be introduced so as to fall within the same range as the above range.
  • the sulfonated fine cellulose fibers preferably have the transparent structure described above. Specifically, it is a sulfonated fine cellulose fiber having a structure prepared so that the haze value of a dispersion liquid in which the sulfonated fine cellulose fiber has a solid content concentration of 0.5% by mass is 30% or less.
  • the structure of the sulfonated fine cellulose fibers preferably has a haze value of 20% or less, more preferably has a haze value of 15% or less, and still more preferably has a haze value of 10% or less. Those having a structure are preferred.
  • the composition containing fine cellulose fibers of the present embodiment contains sulfonated fine cellulose fibers having a predetermined structure, the fine cellulose fibers can be maintained in a dispersed state in the presence of a water-soluble solvent. can.
  • the composition containing fine cellulose fibers of the present embodiment is a composition having a predetermined transparency, and such transparency is due to the sulfonated fine cellulose fibers having the structure described above.
  • the coexistence of the sulfonated fine cellulose fibers having such a structure with the water-soluble solvent suppresses the formation of aggregates (lumps).
  • the composition containing fine cellulose fibers of the present embodiment is added to a target liquid (liquid having affinity for a water-soluble solvent), the target liquid can The sulfonated fine cellulose fibers can be easily dispersed therein. As a result, the effects of the sulfonated fine cellulose fibers on the target liquid, such as improved viscosity and desired thixotropy, can be exhibited. In other words, if the composition containing fine cellulose fibers of the present embodiment is used in a target liquid, it is possible to impart excellent properties resulting from the sulfonated fine cellulose fibers to the target liquid.
  • the sulfo groups possessed by the sulfonated fine cellulose fibers and the hydrophilic groups of the water-soluble solvent interact with each other through, for example, hydrogen bonding, whereby the sulfonated fine cellulose fibers are separated from each other. It is estimated that the aggregation of is suppressed.
  • the fine cellulose fiber-containing composition of the present embodiment is added to or mixed with a target liquid and used, the water-soluble solvent is mixed with the component in the target liquid with affinity in the target liquid.
  • the aggregation of the sulfonated fine cellulose fibers is suppressed by the combination, and the sulfonated fine cellulose fibers are easily dispersed in the target liquid.
  • the water-soluble solvent of the fine cellulose fiber-containing composition of the present embodiment has the property of being easily mixed with the components in the target liquid, or has affinity, the sulfonated fine It is thought that the cellulose fibers can be dispersed more appropriately.
  • the amount of sulfo groups introduced into the sulfonated fine cellulose fibers may be evaluated by directly measuring the sulfo groups, or may be evaluated by the amount of sulfur introduced due to the sulfo groups.
  • the conductivity can be calculated based on the value obtained by measuring the electrical conductivity while dropping an aqueous sodium hydroxide solution.
  • a predetermined amount of sulfonated fine cellulose fibers is combusted, and the sulfur content in the combusted material is measured using a combustion ion chromatograph in accordance with IEC 62321. It can be calculated based on the value.
  • the amount of sulfur introduced is 1:1.
  • the amount of sulfur introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.4 mmol/g
  • the amount of sulfo groups introduced is naturally 0.4 mmol/g.
  • the former measuring method (method using electrical conductivity) will be described more specifically.
  • 1/10 by volume of a slurry containing 0.2% by mass of nanocellulose fibers is added with a strongly acidic ion exchange resin (Amberjet 1024; conditioned by Organo Co., Ltd.) and shaken for 1 hour or more. (Treatment with ion exchange resin). Then, it is poured onto a mesh with an opening of about 90 ⁇ m to 200 ⁇ m to separate the resin from the slurry.
  • the change in electrical conductivity value is measured while adding 0.5N aqueous sodium hydroxide solution to the slurry containing sulfonated fine cellulose fibers after treatment with the ion exchange resin.
  • the titration amount of sodium hydroxide at this point of inflection corresponds to the amount of sulfo groups, and the amount of sodium hydroxide at this point of inflection is divided by the solid content of the sulfonated fine cellulose fibers used for measurement, thereby introducing sulfo groups. You can ask for the quantity.
  • the amount of sulfur introduced into the sulfonated pulp before refining may be used.
  • the structure of the sulfonated fine cellulose fibers is described in detail below.
  • the sulfonated fine cellulose fibers are fine cellulose fibers obtained by making cellulose fibers fine as described above, and the fibers are prepared to have a very fine structure.
  • Such a structure improves dispersibility in a water-soluble solvent and enables proper dispersion in a solution.
  • by evaluating the transparency it is possible to identify the sulfonated fine cellulose fibers contained in the fine cellulose fiber-containing composition of the present embodiment.
  • the sulfonated fine cellulose fibers having such a structure are maintained in a dispersed state in the presence of a water-soluble solvent in the fine cellulose fiber-containing composition of the present embodiment.
  • the sulfonated fine cellulose fibers of the fine cellulose fiber-containing composition of the present embodiment are preferably prepared so that the average fiber width is 1 nm to 30 nm when observed with an electron microscope, and more preferably. is prepared to be 2 nm to 30 nm.
  • the average fiber width of the sulfonated fine cellulose fibers exceeds 30 nm, the aspect ratio tends to decrease. There is a possibility that it may become difficult to exert an appropriate effect (for example, viscosity, etc.) when it is added.
  • the average fiber width of the sulfonated fine cellulose fibers is preferably 2 nm to 30 nm, more preferably 2 nm to 20 nm, still more preferably 2 nm to 10 nm, in terms of improving viscosity.
  • the aspect ratio (average fiber length/average fiber width) of the sulfonated fine cellulose fibers is preferably 20 or more, more preferably 50 or more, and still more preferably 100 or more, depending on the average fiber length described later. be.
  • the average fiber width when the average fiber width is larger than 30 nm, it approaches 1/10 of the wavelength of visible light, and when it is combined with a matrix material, refraction and scattering of visible light easily occur at the interface, and scattering of visible light occurs. As a result, transparency, which will be described later, tends to decrease.
  • the fiber width is 30 nm or less, the fiber width is 1/10 or less of the wavelength of visible light, and when combined with the paint composition, the light is not scattered and the fiber is transparent. The advantage is that a paint with high toughness can be obtained.
  • the sulfonated fine cellulose fibers are preferably prepared so that the average fiber width is 20 nm or less, more preferably 10 nm or less. .
  • the average fiber width is adjusted to 10 nm or less, scattering of visible light can be further reduced, so sulfonated fine cellulose fibers having high transparency can be obtained.
  • the average fiber width of sulfonated microcellulose fibers can be measured using known techniques. For example, sulfonated fine cellulose fibers are dispersed in a solvent such as pure water to prepare a mixed solution having a predetermined mass %. Then, this mixed solution is spin-coated on a silica substrate coated with PEI (polyethyleneimine), and sulfonated fine cellulose fibers on this silica substrate are observed. As an observation method, for example, a scanning probe microscope (eg, SPM-9700 manufactured by Shimadzu Corporation) can be used. By randomly selecting 20 sulfonated fine cellulose fibers in the observed image and measuring and averaging the width of each fiber, the average fiber width of the sulfonated fine cellulose fibers can be obtained.
  • a scanning probe microscope eg, SPM-9700 manufactured by Shimadzu Corporation
  • the sulfonated fine cellulose fibers have a structure having the average fiber width described above, they exhibit a certain level of transparency in a slurry state.
  • sulfonated fine cellulose fibers exhibit a total light transmittance of 90% or more when prepared to have a solid content concentration of 0.5% by mass. This total light transmittance is more preferably 95% or more.
  • the sulfonated fine cellulose fibers exhibit a haze value of 30% or less when prepared to have a solid content concentration of 0.5% by mass. This haze value is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less. Details of the measurement method will be described later.
  • the sulfonated fine cellulose fibers have the above-described average fiber width and have an elongated fibrous structure (for example, the aspect ratio is 20 or more), so that they exhibit predetermined viscosity characteristics in a slurry state.
  • the sulfonated fine cellulose fiber has a viscosity of 3000 mPa ⁇ when measured using a Brookfield viscometer at a solid content concentration of 0.5% by mass at 20 ° C. and a rotation speed of 6 rpm for 3 minutes. s (3 Pa ⁇ s) or more.
  • the sulfonated fine cellulose fibers were measured using a Brookfield viscometer at a solid content concentration of 0.5% by mass at 20 ° C. and a rotation speed of 6 rpm and a rotation speed of 60 rpm. is calculated, and the thixotropic index calculated from each viscosity ratio (viscosity at 6 rpm/viscosity at 60 rpm) exhibits 5.0 or more. Details of the measurement method will be described later.
  • the content ratio (mixture ratio) of water, water-soluble solvent and sulfonated fine cellulose fibers contained in the composition containing fine cellulose fibers of the present embodiment is not particularly limited, but is prepared so as to have the following ratios. can do.
  • the content of water can be blended to 20 to 300 parts by mass with respect to 1 part by mass of sulfonated fine cellulose fibers. It is preferably 40 parts by mass or more, more preferably 100 parts by mass or more based on 1 part by mass of the sulfonated fine cellulose fibers.
  • the content of the water-soluble solvent can be blended so as to be 10 to 300 parts by mass with respect to 100 parts by mass of water. That is, the content of the water-soluble solvent can be blended so as to be 2 to 900 parts by mass with respect to 1 part by mass of the sulfonated fine cellulose fibers.
  • the content of the water-soluble solvent may be within the above range, preferably 300% by mass or less, more preferably 200% by mass or less, and still more preferably 150% or less with respect to 100 parts by mass of water, Even more preferably, it is 100% by mass.
  • the lower limit is 10% by mass or more, more preferably 20% by mass or more, relative to 100 parts by mass of water.
  • the mixing ratio of water and water-soluble solvent can be adjusted so that the mass ratio (g of water/g of solvent) is 0.25 to 100.
  • the mixing ratio (mixing ratio) of the two is 0.25 in mass ratio.
  • the fine cellulose fiber-containing composition of the present embodiment may contain components other than those mentioned above.
  • Optional components include, for example, antifoaming agents, lubricants, ultraviolet absorbers, dyes, pigments, stabilizers, surfactants, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, organic particles, antistatic agents. , magnetic powders, orientation promoters, plasticizers, preservatives, cross-linking agents, and the like.
  • the cellulose microfiber-containing composition of this embodiment may combine sulfonated cellulose microfibers with certain ingredients. For example, both can be provided separately, optionally in combination with other ingredients. In this case, the combined amounts and ratios of the sulfone fine cellulose fibers and specific components may be adjusted so as to be the same as the compounding amounts of the fine cellulose fiber-containing composition.
  • the form of the fine cellulose fiber-containing composition of the present embodiment is not particularly limited.
  • they can exist in various forms such as slurries and dispersions.
  • transparency is a concept that includes both or either of the properties of liquid transparency and turbidity. That is, in the evaluation of transparency in this specification, the haze value can be used to more appropriately evaluate the turbidity of the liquid, and the total light transmittance can be used to more appropriately evaluate the transparency.
  • the fine cellulose fiber-containing composition of the present embodiment has a total light transmittance of 90% or more when the sulfonated fine cellulose fibers are prepared to have a solid content concentration of 0.5% by mass. This total light transmittance is more preferably 95% or more.
  • the haze value can evaluate the turbidity of the liquid, and therefore, like the total light transmittance, the dispersibility of the sulfonated fine cellulose fibers in the fine cellulose fiber-containing composition of the present embodiment can be evaluated. can do.
  • the fine cellulose fiber-containing composition of the present embodiment has a haze value of 30% or less when the sulfonated fine cellulose fibers are prepared to have a solid content concentration of 0.5% by mass.
  • the haze value is preferably 20% or less, more preferably 15% or less, even more preferably 10% or less.
  • the composition containing fine cellulose fibers of the present embodiment has a haze value of 30% or less
  • the sulfonated fine cellulose fibers are maintained in an appropriately dispersed state in the presence of a water-soluble solvent.
  • handleability is improved.
  • the fine cellulose fiber-containing composition has transparency, the color of the paint can be exhibited appropriately.
  • the film after coating can exhibit good transparency.
  • the total light transmittance is also the advantage that the effect of a transparent paint when formed into a coating film can be easily exhibited.
  • the fact that the fine cellulose fiber-containing composition of the present embodiment has the transparency as described above means that the contained sulfonated fine cellulose fibers have excellent dispersibility. be.
  • the sulfonated fine cellulose fibers having such excellent dispersibility have a structure suitable for dispersibility. That is, the fact that the fine cellulose fiber-containing composition of the present embodiment has the transparency as described above means that the contained sulfonated fine cellulose fibers have the above-described predetermined structure. If the composition containing fine cellulose fibers of the present embodiment has transparency as described above, the sulfonated fine cellulose fibers have a structure capable of maintaining a dispersed state in the presence of a water-soluble solvent. It's becoming
  • the total light transmittance and haze value can be measured by a method using a spectroscopic haze meter described in Examples below.
  • a spectroscopic haze meter described in Examples below.
  • the composition containing fine cellulose fibers of the present embodiment in which sulfonated fine cellulose fibers are dispersed at a predetermined concentration is measured using a spectrophotometer in accordance with JIS K 7105 to determine the haze value and total light transmittance. can be asked for.
  • the fine cellulose fiber-containing composition of the present embodiment preferably has predetermined viscosity characteristics. Specifically, the fine cellulose fiber-containing composition of the present embodiment is prepared to have a predetermined viscosity and thixotropic index.
  • the viscosity for example, the viscosity measured at 20° C., 6 rpm, and 3 minutes using a Brookfield viscometer in a state where the solid content concentration of the sulfonated fine cellulose fibers is 0.5% by mass. , 3000 mPa ⁇ s (3 Pa ⁇ s) or more and 40,000 mPa ⁇ s (40 Pa ⁇ s) or less (see Examples 1 to 5).
  • the upper limit of the viscosity is preferably 35,000 mPa ⁇ s (35 Pa ⁇ s) or less, more preferably 10,000 mPa ⁇ s (10 Pa ⁇ s) or less.
  • the lower limit of the viscosity is preferably higher than 3,000, more preferably 4,000 mPa ⁇ s (4 Pa ⁇ s) or more, and still more preferably 5,000 mPa ⁇ s (5 Pa ⁇ s). or more, and more preferably 6,000 mPa ⁇ s (6 Pa ⁇ s) or more.
  • the thixotropic index is measured, for example, using a Brookfield viscometer at a solid content concentration of 0.5% by mass of the sulfonated fine cellulose fibers at 20° C. at 6 rpm and 60 rpm. , Each viscosity is calculated, and the thixotropic index calculated from each viscosity ratio (viscosity at a rotation speed of 6 rpm/viscosity at a rotation speed of 60 rpm) is 5.0 or more, preferably 7.0 or more ( See Examples 1-5).
  • Such viscosity characteristics of the composition containing fine cellulose fibers of the present embodiment are presumed to be due to the fiber structure of the sulfonated fine cellulose fibers contained therein. In other words, it is speculated that the sulfonated fine cellulose fibers having the above-described predetermined structure can exhibit such characteristics in the fine cellulose fiber-containing composition. Since the fine cellulose fiber-containing composition of the present embodiment exhibits excellent viscosity characteristics as described above, it is possible to impart effects based on such viscosity characteristics to the target liquid.
  • the paint of this embodiment is a paint containing the composition containing fine cellulose fibers of this embodiment described above. Since the coating material of the present embodiment contains the composition containing fine cellulose fibers of the present embodiment, the viscosity characteristic of the composition containing fine cellulose fibers of the present embodiment is set to the lower limit value or higher, so that when a coating film is formed, It is possible to optimize the dispersibility of the fibers, Young's modulus and strength. Therefore, coatability and coating performance can be improved. A specific description will be given below.
  • the content ratio (content rate) of the fine cellulose fiber-containing composition of the present embodiment in the paint of the present embodiment is as long as the content of the sulfonated fine cellulose fibers in the paint of the present embodiment is within the range shown below. , is not particularly limited.
  • the content of the sulfonated fine cellulose fibers in the paint of this embodiment is adjusted to 0.05% by mass to 10% by mass.
  • the content of the sulfonated fine cellulose fibers is adjusted to 0.05% by mass to 10% by mass in the total amount of the paint of this embodiment.
  • the lower limit of the content of the sulfonated fine cellulose fibers is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass or more. is.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less.
  • the paint of the present embodiment can be prepared by mixing the fine cellulose fiber-containing composition of the present embodiment in which the solid content concentration of sulfonated fine cellulose fibers is 1%, and a mixing paint.
  • the mass ratio g of fine cellulose fiber-containing composition/g of paint for mixing
  • the paint of the present embodiment may contain a resin such as a thermoplastic resin, a thermosetting resin, or a photocurable resin.
  • resins include styrene resins, acrylic resins, aromatic polycarbonate resins, aliphatic polycarbonate resins, aromatic polyester resins, aliphatic polyester resins, aliphatic polyolefin resins, cyclic olefin resins, and polyamides.
  • thermoplastic polyimide resin polyacetal resin
  • polysulfone resin amorphous fluorine resin
  • rosin resin nitrocellulose
  • vinyl chloride resin chlorinated rubber resin
  • vinyl acetate resin examples include, but are not limited to, phenolic resins, epoxy resins, and the like.
  • the resin content is preferably 30 parts by mass or more, more preferably 70 parts by mass or more, and still more preferably 100 parts by mass or more, relative to 1 part by mass of the sulfonated fine cellulose fibers.
  • the upper limit of the resin content is preferably 500 parts by mass or less, more preferably 300 parts by mass or less, and still more preferably 200 parts by mass or less per 1 part by mass of the sulfonated fine cellulose fibers.
  • the paint of this embodiment may contain a curing agent.
  • a curing agent a known one can be appropriately used, and examples thereof include isocyanate curing agents (polyisocyanate, etc.), epoxy (oxirane) curing agents, oxetane curing agents, and the like. In the present invention, isocyanate-based curing agents are particularly preferred.
  • the content of the curing agent is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 30 parts by mass or more with respect to 1 part by mass of the sulfonated fine cellulose fibers.
  • the upper limit of the content of the curing agent is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 60 parts by mass or less with respect to 1 part by mass of the sulfonated fine cellulose fibers. .
  • the paint of this embodiment may contain components other than the components described above.
  • Other components include, for example, antifoaming agents, lubricants, ultraviolet absorbers, dyes, pigments, stabilizers, surfactants, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, organic particles, antistatic agents. , magnetic powders, orientation promoters, plasticizers, preservatives, cross-linking agents, and the like.
  • the paint of the present embodiment preferably has predetermined viscosity characteristics (viscosity, thixotropy). By exhibiting such viscosity characteristics, handleability can be improved.
  • Viscosity measured under conditions can be adjusted to 10 mPa ⁇ s (0.01 Pa ⁇ s) or more (see Examples 8 to 10).
  • the upper limit of the viscosity is not particularly limited, it is preferable to prepare the viscosity so as not to affect the coatability.
  • the upper limit of the viscosity of the paint of the present embodiment is preferably 4,000 mPa s (4 Pa s) or less, more preferably 3,000 mPa s (3 Pa s) or less. , more preferably 2,000 mPa ⁇ s (2 Pa ⁇ s) or less, and still more preferably 1,000 mPa ⁇ s (1 Pa ⁇ s) or less.
  • the lower limit of the viscosity is preferably 10 mPa s (0.01 Pa s) or more, more preferably 100 mPa s (0.1 Pa s) or more, and still more preferably It is 300 mPa ⁇ s (0.3 Pa ⁇ s) or more, and more preferably 500 mPa ⁇ s (0.5 Pa ⁇ s) or more.
  • thixotropic index for example, using a Brookfield viscometer in a state where the solid content concentration of the sulfonated fine cellulose fiber is 0.1% by mass to 1.0% by mass, 20 ° C., 6 rpm and rotation
  • a thixotropic index calculated from each viscosity ratio is preferably 1.5 or more, preferably 2.0 or more (see Examples 8-10).
  • the paint of the present embodiment can form a coating film when applied.
  • a coating film can be formed by a step of applying the coating material of the present embodiment onto a substrate and a step of drying it.
  • the formed coating film may be peeled off from the base material and used in the form of a sheet.
  • the thickness of the coating film thus formed is not particularly limited, but when considering the form of use as a paint, it is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and 300 ⁇ m or less. is more preferable, 100 ⁇ m or less is more preferable, and 80 ⁇ m or less is particularly preferable.
  • the lower limit is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the transparency of the coating film is not particularly limited. For example, it preferably has a high total light transmittance or a low haze value.
  • the total light transmittance is preferably 80% or more.
  • the total light transmittance (%) of a methacrylic film having high transparency is about 90%, it is more preferably 90% or more, and 95% or more when exhibiting the same transparency. It is even more preferable to have The haze value is preferably 30% or less, for example.
  • the haze value (%) of a film made of polyethylene, which is a general-purpose resin is about 20%, it is more preferably 20% or less, more preferably 10% or less, when exhibiting the same transparency. % or less is particularly preferred.
  • the transparency of the film after drying is such that the total light transmittance of the coated film after coating is 90% or more, and the haze value is 30% or less is sufficient.
  • the Young's modulus of the coating film is not particularly limited, but when considering a higher Young's modulus, for example, it is preferably 0.3 GPa or more, more preferably 0.5 GPa or more, and 0.7 GPa or more. is more preferable, and 0.8 GPa or more is particularly preferable. It is practical that the upper limit is 8 GPa or less. Since the present invention can achieve such a high Young's modulus, it can be suitably applied to applications requiring a high elastic modulus.
  • the Young's modulus of the coating film was measured using a tensile tester Tensilon (manufactured by A&D Co., Ltd.) according to JIS P 8113:2006 except that the test piece length between the grips was 50 mm and the tensile speed was 5 mm / min. Measure in compliance.
  • a test piece conditioned at 23° C. and a relative humidity of 50% for 24 hours is used. The measurement is performed 5 times per level, and the average value is adopted.
  • the quick-drying property of the coating film is not particularly limited.
  • the quick-drying property is high.
  • the mass due to volatilization of the solvent after 10 minutes is preferably 70% or less of the mass before drying, more preferably 60% or less, 50 % or less is more preferable.
  • the thickener of the present embodiment is a thickener containing the fine cellulose fiber-containing composition of the present embodiment described above.
  • the thickener of this embodiment can be used for various purposes. For example, it can be used by mixing with skin medicinal agents such as cosmetic agents and moisturizing cream agents. Since the thickener of the present embodiment contains the fine cellulose fiber-containing composition of the present embodiment, by setting the viscosity characteristics of the fine cellulose fiber-containing composition of the present embodiment to the lower limit or more, the applicability is improved. can be improved. A specific description will be given below.
  • the content ratio of the fine cellulose fiber-containing composition of the present embodiment is not particularly limited.
  • the content of the sulfonated fine cellulose fibers is adjusted to 0.1% by mass or more based on the total amount (the total amount of the thickener). More specifically, it is 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more with respect to the total amount (total amount of the thickener). is.
  • This content may be 30% by mass or more, 40% by mass or more, 50% by mass or more, 55% by mass or more, or 90% by mass or 95% by mass. From the viewpoint of handleability, the content of the fine cellulose fiber-containing composition of the present embodiment is preferably 90% by mass or less.
  • the thickener of the present embodiment is preferably prepared so that the amount of the fine cellulose fiber-containing composition of the present embodiment contained is 80% by mass or more with respect to the total amount of the thickener. It is more preferably 90% by mass or more, and still more preferably 95% by mass or more.
  • the thickener of the present embodiment preferably exhibits the thixotropic index described above as the viscosity characteristic of the composition containing fine cellulose fibers of the present embodiment.
  • a skin medicinal agent such as a cosmetic agent or a moisturizing cream agent
  • the viscosity is reduced due to shear stress caused by stirring during use, and the viscosity is reduced. It is advantageous in that the viscosity can be recovered after application and the fixability can be improved.
  • application properties are collectively referred to as application properties.
  • sunscreen cosmetics generally contain metals such as titanium oxide and zinc oxide, and derivatives thereof, as UV scattering agents.
  • a substance such as titanium oxide settles and separates when left standing. For this reason, it is necessary to shake firmly before use to disperse the anti-ultraviolet material such as titanium oxide. In addition, when the action of shaking is insufficient, the sunscreen function may not be exhibited appropriately.
  • other cosmetics that require sebum adsorption such as mica, zinc oxide, talc, hydroxyapatite, aluminum silicate, etc., described in the examples described later, are sebum-adsorbing materials that settle and need to be shaken firmly when used. Examples include lotions and milky lotions containing ingredients.
  • the thickener of the present embodiment is used by adding it to the cosmetics as described above, it is possible to suppress the sedimentation of the useful ingredients as described above in a still state.
  • the uniformly dispersed state of the UV inhibitor can be maintained without performing an action such as shaking to uniformly disperse the UV inhibitor during use. For this reason, even if it is used as it is in a stationary state, it is possible to obtain the advantage that the skin protection performance from ultraviolet rays and the like can be appropriately exhibited.
  • the thickener of the present embodiment is mixed or added and used, it can function as a dispersion stabilizer for other useful ingredients.
  • the method for producing the sulfonated fine cellulose fibers contained in the fine cellulose fiber-containing composition of the present embodiment involves finely treating sulfonated pulp produced by the following production method (sulfonated pulp production method). However, it is not limited to such a manufacturing method.
  • the outline of this sulfonated pulp manufacturing method is that the sulfonated pulp contained in the redispersible pulp of the present embodiment (hereinafter simply referred to as sulfonated pulp) is obtained by subjecting a fibrous raw material containing cellulose (for example, wood pulp) to a chemical treatment process. ) is a method of manufacturing.
  • This chemical treatment step is a method of bringing the supplied fiber raw material into contact with a reaction solution (contact step) and then subjecting it to a heating reaction (reaction step) to sulfonate the hydroxyl groups of cellulose.
  • the fiber raw material refers to a fibrous pulp or the like containing cellulose molecules.
  • Pulp is a fibrous member in which a plurality of cellulose fibers are aggregated.
  • the cellulose fibers are aggregates of a plurality of fine fibers (for example, microfibrils).
  • the fine fibers are aggregates of a plurality of cellulose molecules (hereinafter sometimes simply referred to as cellulose), which are chain polymers in which D-glucose is ⁇ (1 ⁇ 4) glycoside-bonded.
  • pulp is an aggregate of cellulose fibers having a size of 200 mesh or 235 mesh that can be a residue. Details of the fiber raw material will be described later.
  • the chemical treatment step includes a contact step of contacting cellulose fibers of a fiber raw material containing cellulose such as pulp with sulfamic acid, which is a sulfonating agent having a sulfo group, and urea, and the pulp after this contact step. and a reaction step of substituting and introducing a sulfo group into at least part of the hydroxyl groups of the cellulose fibers contained.
  • the contacting step is a step of bringing sulfamic acid and urea into contact with a fibrous raw material containing cellulose.
  • This contacting step is not particularly limited as long as it is a method capable of causing the above contact.
  • the fibrous raw material for example, wood pulp
  • the fibrous raw material may be immersed in a reaction liquid obtained by dissolving sulfamic acid and urea in a solvent to impregnate the fibrous raw material with the reaction liquid.
  • sulfamic acid and urea may be separately applied, impregnated, or sprayed onto the fiber raw material.
  • the solvent for dissolving sulfamic acid and urea is not particularly limited.
  • water alone including pure water such as ion-exchanged water and distilled water, as well as tap water, etc.
  • ammonia water polar solvents acetone, ethyl acetate, tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile, dimethylsulfoxide (DMSO), dimethylsulfide (DMS), aprotic polar solvents such as dimethylacetamide (DMA),
  • Non-polar solvents such as diethyl ether, benzene, toluene, hexane, chloroform, and 1,4-dioxane can be mentioned, and these may be used alone or in combination of two or more. may In particular, water is preferable from the viewpoint of easily
  • the mixing ratio of sulfamic acid and urea contained in the reaction liquid is not particularly limited.
  • the mixing ratio described in Examples described later can be used.
  • the concentration ratio (g/L) of the sulfonating agent and urea or/and its derivative is 4:1 (1:0.25), 2:1 (1:0.5), 1:1, 2 :3 (1:1.5) and 1:2.5.
  • the amount of the reaction liquid to be brought into contact with the fiber raw material is such that the sulfamic acid and urea in the reaction liquid are brought into contact with the fiber raw material at a predetermined ratio.
  • the sulfonating agent contained in the reaction liquid is 1 part by mass to 20,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material.
  • Urea and/or a derivative thereof contained in can be prepared so as to be 1 to 100,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material.
  • the fiber material impregnated with the reaction liquid when subjected to the reaction process of the next step is in the state of being impregnated with the reaction liquid, that is, the state of contact between the fiber material and the reaction liquid.
  • Examples include a state in which no reaction is performed, and a state in which water is actively removed from a state in which the fiber raw material and the reaction liquid are brought into contact with each other.
  • the fiber raw material is taken out from the state in which the reaction liquid and the fiber raw material are brought into contact with each other, and the fiber raw material is dried naturally by air drying or the like, or the reaction liquid and the fiber raw material are dehydrated after being brought into contact with each other.
  • reaction step The fiber raw material impregnated with the reaction solution prepared in the contacting step as described above is supplied to the reaction step in the next step.
  • this reaction step the cellulose fibers contained in the fiber raw material supplied from the contacting step, sulfamic acid, and urea are reacted to substitute the sulfo groups of sulfamic acid for the cellulose hydroxyl groups in the cellulose fibers.
  • This is a step of introducing a sulfo group into the cellulose fibers contained in the fiber raw material. That is, this reaction step is a step of carrying out a sulfonation reaction in which sulfo groups are substituted for the cellulose hydroxyl groups in the cellulose fibers contained in the fiber raw material impregnated with the reaction solution.
  • This reaction step is not particularly limited as long as it is a method capable of a sulfonation reaction in which the hydroxyl groups of the cellulose fibers in the fiber raw material are substituted with sulfo groups.
  • a method of accelerating the sulfonation reaction by heating the fiber raw material can be employed.
  • the case where the sulfonation reaction is performed by this heating method will be described as a representative.
  • the reaction temperature in the reaction step is not particularly limited as long as it is a temperature at which sulfo groups can be introduced into the cellulose fibers forming the fiber raw material while suppressing the thermal decomposition and hydrolysis reaction of the fibers.
  • the ambient temperature of the fiber raw material supplied to the reaction step is adjusted to 100° C. or higher and 200° C. or lower.
  • the ambient temperature is preferably 120° C. or higher and 200° C. or lower. If the ambient temperature during heating is higher than 200° C., thermal decomposition of the fibers may occur, or discoloration of the fibers may accelerate.
  • the reaction temperature is lower than 100° C., the resulting sulfonated pulp tends to be less transparent.
  • the reaction temperature (specifically, the ambient temperature) in the reaction step is 100° C. or higher and 200° C. or lower, preferably 120° C. or higher and 180° C. or lower.
  • the temperature is preferably 120°C or higher and 160°C or lower.
  • the heater or the like used in the reaction step is not particularly limited as long as it can directly or indirectly heat the fiber raw material after the contact step while satisfying the above requirements.
  • a hot press method using a known dryer, vacuum dryer, microwave heating device, autoclave, infrared heating device, or heat press for example, AH-2003C manufactured by AS ONE Co., Ltd.
  • the heating time (that is, the reaction time) when the above heating method is employed as the reaction step is not particularly limited as long as the sulfo groups can be appropriately introduced into the cellulose fibers as described above.
  • the reaction time in the reaction step is adjusted to 1 minute or more when the reaction temperature is adjusted to fall within the above range.
  • the time is preferably 5 minutes or longer, more preferably 10 minutes or longer, and still more preferably 15 minutes or longer. If the reaction time is shorter than 1 minute, it is presumed that the substitution reaction of the sulfo groups with respect to the hydroxyl groups of the cellulose fibers has hardly progressed.
  • the reaction time when the above heating method is employed as the reaction step is not particularly limited, but from the viewpoint of reaction time and operability, it is preferably 5 minutes or more and 300 minutes or less, more preferably 5 minutes or more and 120 minutes or less.
  • the fiber raw material used in the sulfonated pulp manufacturing method is not particularly limited as long as it contains cellulose as described above.
  • pulp what is generally called pulp may be used, and what contains cellulose isolated from sea squirts, seaweed, etc. can be used as the fiber raw material, but as long as it is composed of cellulose molecules, , can be anything.
  • the pulp include wood pulp (hereinafter simply referred to as wood pulp), dissolving pulp, cotton pulp such as cotton linter, straw, bagasse, kozo, mitsumata, hemp, kenaf, fruits, and the like.
  • wood pulp wood pulp
  • this wood pulp there are various types of this wood pulp, but there are no particular restrictions on their use. Examples thereof include softwood kraft pulp (NBKP), hardwood kraft pulp (LBKP), thermomechanical pulp (TMP), and other papermaking pulps. When the above pulp is used as the fiber raw material, one type of the pulp described above may be used alone, or two or more types may be mixed and used.
  • a washing step of washing the sulfonated pulp after introduction of the sulfo group may be included.
  • the surface of the sulfonated pulp after introduction of the sulfo group is acidified due to the influence of the sulfonating agent.
  • unreacted reaction liquid also exists. For this reason, if a washing step is provided to ensure that the reaction is completed and to neutralize the excess reaction solution by removing the excess reaction solution, the handleability can be improved.
  • This washing step is not particularly limited as long as the sulfonated pulp after introduction of the sulfo group can be made substantially neutral.
  • a method of washing with pure water or the like until the sulfonated pulp after introduction of the sulfo group becomes neutral can be adopted.
  • neutralization cleaning using an alkali or the like may be performed.
  • alkaline compounds contained in the alkaline solution include inorganic alkaline compounds and organic alkaline compounds.
  • examples of inorganic alkali compounds include hydroxides, carbonates, and phosphates of alkali metals.
  • examples of organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds, and hydroxides of heterocyclic compounds.
  • the sulfonated pulp prepared using the sulfonated pulp manufacturing method as described above is fed to the micronization step and micronized to obtain sulfonated fine cellulose fibers.
  • the sulfonated pulp is dried until its moisture content (%) reaches an equilibrium state before being supplied to the pulverization treatment step.
  • the refining step is a step of refining the sulfonated pulp into fine fibers of a predetermined size (for example, nano-level).
  • a processing apparatus used in this miniaturization process is not particularly limited as long as it has the above functions.
  • a low-pressure homogenizer, a high-pressure homogenizer, a grinder (stone mill type grinder), a ball mill, a cutter mill, a jet mill, a short-screw extruder, a twin-screw extruder, an ultrasonic agitator, a domestic mixer, etc. can be used.
  • the processing device is not limited to these devices.
  • a high-pressure homogenizer is preferable because it can uniformly apply a force to the material and is excellent in homogenization, but it is not limited to such a device.
  • the sulfonated pulp obtained by the above-described manufacturing method is supplied in a state of being dispersed in a mixed solution of water and a water-soluble solvent.
  • a state in which the sulfonated pulp is dispersed in this mixed solution is called a slurry.
  • the solid content concentration of the sulfonated pulp in this slurry is not particularly limited.
  • a solution adjusted so that the solid content concentration of the sulfonated pulp in the slurry is 0.1% by mass to 20% by mass may be supplied to a processing apparatus such as a high-pressure homogenizer.
  • a processing apparatus such as a high-pressure homogenizer
  • sulfonated fine cellulose fibers having the same solid content concentration are dispersed in the mixed solution.
  • a dispersion of states can be obtained. That is, in this case, it is possible to obtain the fine cellulose fiber-containing composition of the present embodiment in which the solid content concentration of the sulfonated fine cellulose fibers is adjusted to 0.5% by mass.
  • the pulp was added to the reaction solution prepared as follows and stirred to form a slurry.
  • the step of adding the pulp to the reaction liquid to form a slurry corresponds to the contacting step of the chemical treatment step of the present embodiment.
  • Step of preparing reaction solution A sulfonating agent and urea and/or a derivative thereof were prepared so as to have the following solid content concentrations.
  • sulfamic acid purity 98.5%, manufactured by Fuso Chemical Industries
  • urea solution purity 99%, manufactured by Wako Pure Chemical Industries, model number; special grade reagent
  • reaction solution An example of preparation of the reaction solution is shown below. 85 mL of water was added to the container. Then, 15 g of sulfamic acid and 15 g of urea were added to this container to prepare a reaction solution. That is, urea was added so as to be 100 parts by mass with respect to 100 parts by mass of sulfamic acid. In the experiment, 20 g of absolute dry pulp was added to the prepared reaction solution. That is, in the case of a reaction solution having a sulfamic acid/urea ratio ((g/L)/(g/L)) of 200/200 (1:1), sulfamic acid is 75 parts by mass per 100 parts by mass of pulp. , Urea was prepared to be 75 parts by mass.
  • a slurry prepared by adding pulp to the reaction solution is placed in a dryer (manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115) in which the temperature of the constant temperature bath is set to 50 ° C.
  • Moisture content (%) obtained from the following formula dried to equilibrium.
  • drying until the moisture content (%) reaches an equilibrium state was defined as the end point when the moisture in the atmosphere in the treatment facility and the moisture in the sample apparently stopped coming in and out.
  • the weighing bottle is capped in the drying apparatus, the sample is removed from the dryer while still in the weighing bottle, and the desiccant is added.
  • the mass of the sample was measured.
  • the end point of drying was a state in which the amount of change in the mass measured twice was within 1% of the mass at the start of drying (however, the second mass measurement was taken after the drying time required for the first time). more than half).
  • a heating reaction was carried out.
  • a dryer manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115
  • the reaction conditions are as follows. Constant temperature bath temperature: 120°C, heating time: 25 minutes
  • the reacted pulp is diluted with pure water so that the solid content is 1% by mass or less, and an excess amount of sodium bicarbonate is added. After neutralization, it was thoroughly washed with pure water. The washed sulfonated pulp was dried until the moisture content reached equilibrium.
  • Preliminary fibrillation treatment This dried sulfonated pulp was then subjected to a micronization process.
  • the main defibration treatment was performed after performing the preliminary defibration treatment.
  • the preliminary defibration treatment was carried out for 1 minute with a mixer (fiber mixer MX-X701 manufactured by Panasonic, high speed setting). The conditions at this time were adjusted so that the solid content concentration (% by mass) of the sulfonated pulp in water was 1% by mass. If this pre-fibrillation treatment is carried out as it is, the solid content concentration after main fibrillation will also be 1% by mass.
  • the dispersion obtained by the preliminary fibrillation treatment is fractionated, water and ethanol (corresponding to the water-soluble solvent in the present embodiment) are added to the dispersion, and the main fibrillation treatment is performed to obtain a predetermined mixing ratio (water /ethanol ratio (g/g)) (see figure).
  • preliminarily defibrated pulp was dispersed in a prepared mixed solution of water and ethanol, and the dispersion was subjected to the main fibrillation treatment step.
  • fibrillation treatment (10 times (10 passes) at a fibrillation pressure of 100 MPa) is performed using a high-pressure homogenizer (Yoshida Kikai N2000-2C-045 model), and the sulfonated fine cellulose fibers are mixed with the above mixed solution.
  • a slurry containing sulfonated fine cellulose fibers dispersed in was prepared (Examples 1, 2, 4). This sulfonated fine cellulose fiber-containing slurry corresponds to the fine cellulose fiber-containing composition of the present embodiment.
  • the solid content concentration (% by mass) of the sulfonated fine cellulose fibers in the slurry containing the sulfonated fine cellulose fibers of Example 1 is 0.5 mass %.
  • Example 3 The preparation of the sulfonated fine cellulose fiber slurry of Example 3 was carried out in the same manner as in Example 1 above, except for the method described below.
  • Example 3 Using the obtained sulfonated pulp, a slurry containing sulfonated fine cellulose fibers of Example 3 as shown in FIG. 2 was prepared.
  • Example 5 The preparation of the sulfonated fine cellulose fiber slurry of Example 5 was carried out in the same manner as in Example 1 above, except for the method described below.
  • sulfamic acid is 1000 parts per 100 parts by mass of pulp. Parts by mass, urea was prepared so as to be 2500 parts by mass.
  • the slurry was suction filtered using filter paper (No. 2). Suction filtration was performed until the solution stopped dripping. After suction filtration, the pulp was peeled off from the filter paper, and the filtered pulp was placed in a drier whose constant temperature bath temperature was set to 50° C. and dried until the moisture content reached an equilibrium state.
  • This sulfonated pulp having a degree of reactivity of 2 times was reacted again in the same manner as described above using a reaction solution having a mass ratio of sulfamic acid and urea of 200 (g/L):200 (g/L). A sulfonated pulp after the reaction was obtained.
  • Example 5 having a solid content concentration (mass%) of the sulfonated fine cellulose fibers of 0.5 mass% is obtained.
  • a fiber-containing slurry (see Figure 2) was prepared.
  • the haze value and the total light transmittance were measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number: SH- 7000).
  • the measurement method was performed according to the method of JIS K 7105.
  • An optional glass cell (part number: 2277, square cell, optical path length 10 mm ⁇ width 40 ⁇ height 55) of the haze meter filled with pure water was used as a blank measurement value, and the light transmittance of the slurry for measurement was measured.
  • the light source was D65, the field of view was 10°, and the measurement wavelength range was 380 to 780 nm.
  • the total light transmittance (%) and the haze value (%) were calculated using values obtained from a control unit of a haze meter (model number CUII, Ver2.00.02).
  • B type viscosity measurement The viscosity of the prepared slurry containing 0.5% by mass of sulfonated fine cellulose fibers was measured using a Brookfield viscometer. Measurement conditions, etc. for viscosity measurement are shown below.
  • B-type viscometer manufactured by BLOOKFIELD, DV2T (RV type)
  • Measurement conditions rotation speed 6 rpm, measurement temperature 20 ° C., measurement time 3 minutes, suitable spindle selected from RV-02 to 07
  • data recording method is single point Single point is B used in this experiment This is a setting item for the recording method for acquiring only the value at the end of measurement in the viscometer. In other words, the instantaneous value after 3 minutes from the start of measurement is recorded.
  • the thixotropic index (TI value) was determined. The TI value was calculated by using the Brookfield viscometer described above and measuring at 6 rpm and 60 rpm, and dividing the viscosity value obtained at 6 rpm by the viscosity value obtained at 60 rpm.
  • a sulfonated fine cellulose fiber-containing slurry for inclusion in a sulfonated fine cellulose fiber slurry-containing paint was prepared as follows.
  • the slurry containing sulfonated fine cellulose fibers was prepared in the same manner as in Example 1 above for Example 6 and in Example 2 above, except for the method described below.
  • the refining treatment step after the preliminary defibration treatment is performed at a solid content concentration of 2% by mass, water and ethanol are added so that the solid content concentration of the sulfonated fine cellulose fibers is 1% by mass, and the main defibration treatment is performed. was adjusted to a predetermined mixing ratio (water/ethanol ratio (g/g)) to prepare sulfonated fine cellulose fiber-containing slurries for Examples 6 and 7.
  • the prepared slurries containing sulfonated fine cellulose fibers were mixed with predetermined coating ingredients to prepare sulfonated fine cellulose fiber slurry-containing coatings (Examples 6 and 7).
  • the paint containing the sulfonated fine cellulose fiber slurry corresponds to the paint containing the composition containing fine cellulose fibers of the present embodiment.
  • Example 6 the sulfonated fine cellulose fiber-containing slurry prepared in Example 1 and the acrylic paint were prepared at a mass ratio (g/g) of 20 g (sulfonated fine cellulose fiber-containing slurry) and 80 g (acrylic paint), respectively. It was prepared by mixing to be 0.25.
  • the content of the sulfonated fine cellulose fibers in Example 6 was adjusted to 0.2% by mass (the solid content concentration of the sulfonated fine cellulose fibers was 0.2% by mass).
  • the content of sulfonated fine cellulose fibers was calculated using the following formula.
  • Content of sulfonated fine cellulose fibers in paint (%) ((sulfonated fine cellulose fibers in slurry containing sulfonated fine cellulose fibers (g))/total amount of paint (g)) x 100 (%)
  • Example 7 was prepared by mixing 20 g and 80 g of the sulfonated fine cellulose fiber-containing slurry prepared in Example 2 and the acrylic paint, respectively, at a mass ratio (g/g) of 0.25. That is, the content of the sulfonated fine cellulose fibers in Example 7 was adjusted to 0.2% by mass.
  • Viscosity measurement Viscosity was measured using the above-mentioned B-type viscometer after putting the prepared paint in a beaker, tightly covering it with aluminum foil, and allowing it to stand overnight in an environment at 20°C. The measurement conditions were the same as above.
  • the strength of the coating film formed using the prepared sulfonated fine cellulose fiber slurry-containing coating was evaluated.
  • 5.0 g of a paint containing a slurry of sulfonated fine cellulose fibers was cast on a Teflon sheet (registered trademark), formed into a circle with a diameter of 8 cm, and dried with a blower dryer whose constant temperature bath was set at 50°C. It was dried until it became a coating film.
  • the coating film was pulled by hand to determine the strength of the coating film. The sample was rated as ⁇ if it was not broken, ⁇ if it was broken when it was pulled strongly, and x if it was broken when it was pulled with a light force.
  • Examples 8, 9, 10 In Examples 8, 9, and 10, as shown in FIG. 5, a 1% CNF slurry prepared so that the solid content concentration of the sulfonated fine cellulose fibers was 1% by mass, water, and an acrylic paint were prepared. The procedure was carried out in the same manner as in Example 6 above, except that the mixture was prepared so as to have a mixing ratio of .
  • dispersion characteristics were evaluated by the following method.
  • this dispersion characteristic is shown as dispersion maintenance property.
  • a predetermined amount of the paint containing the prepared sulfonated fine cellulose fiber slurry was dispensed into a transparent test tube (Laboran screw tube bottle manufactured by AS ONE), and after closing the cap, it was shaken well and allowed to stand.
  • the height of the fractionated liquid from the inner bottom surface of the test tube was 9 cm, which corresponds to the distance of the fractionated liquid fractionated into the test tube in the following formula.
  • the acrylic paint was evenly dispersed to form an emulsion in all cases including the comparative examples.
  • the water and the acrylic paint were homogeneously mixed and no interface was formed between them.
  • the dispersion characteristics are excellent.
  • the dispersion characteristics (%) were evaluated according to the following formula.
  • the distance in the following formula means the distance between the bottom surface and the top surface of the liquid.
  • Dispersion characteristics (%) (distance cm of emulsion-formed part)/(distance cm of sampled liquid collected in test tube) x 100.
  • Comparative Examples 14 to 17 used phosphate groups, and Comparative Examples 17 to 20 were blanks to which fine cellulose fibers were not added.
  • Examples 11, 12, 13 In Examples 11, 12, and 13, as shown in FIG. 6, a 0.5% CNF slurry prepared so that the solid content concentration of the sulfonated fine cellulose fibers was 0.5% by mass was used instead of the acrylic paint.
  • a lotion a commercially available lotion containing sebum-adsorbing ingredients (the sebum-adsorbing ingredients form precipitates when left standing)
  • a cosmetic containing a sulfonated fine cellulose fiber slurry at a predetermined mixing ratio Then, the viscosity characteristics and dispersion characteristics were evaluated. Viscosity properties were evaluated in the same manner as in Example 8 above. In addition, in FIG. 6, this dispersion characteristic is shown as dispersion maintenance property.
  • Dispersion characteristic (%) (Distance cm of fractionated liquid fractionated in test tube - Distance cm of transparent part) / (Distance cm of fractionated liquid fractionated into test tube) x 100
  • the test tube has a transparent part in the upper part and an emulsion (emulsion-forming part) in the lower part, there is a gap between the bottom surface of the transparent part (interface between the emulsion-forming part and the transparent part) and the upper surface of the transparent part (equivalent to the upper surface inside the test tube). The distance was measured and taken as the transparent part distance (cm).
  • the distance of the transparent portion is 0 cm and the dispersion characteristic is 100%.
  • Comparative Example 1 was prepared in the same manner as Examples 1, 2 and 4, except that the water/ethanol ratio (g/g) was adjusted to 100/0.
  • Comparative Example 5 was the same as the sulfonated fine cellulose fibers used in Examples 1, 2 and 4, except that the amount of sulfo groups introduced into the sulfonated fine cellulose fibers was adjusted to 0.3 mmol/g. gone. Also, the water/ethanol ratio (g/g) was adjusted to 60/40.
  • Comparative Example 6 was the same as the sulfonated fine cellulose fibers used in Examples 1, 2 and 4, except that the sulfonated fine cellulose fibers were prepared so that the amount of sulfo groups introduced was 0.6 mmol/g. gone. Also, the water/ethanol ratio (g/g) was adjusted to 40/60. Comparative Example 7 was prepared in the same manner as Examples 1, 2 and 4, except that the water/ethanol ratio (g/g) was adjusted to 40/60.
  • Comparative Examples 2-4 slurries containing phosphate-esterified fine cellulose fibers were prepared in which phosphoric acid groups were introduced instead of sulfo groups.
  • ammonium dihydrogen phosphate (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, model number; special grade reagent), urea (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, model number; Special grade reagent) was weighed out, 80 mL of pure water was added, and the mixture was stirred to prepare a phosphoric acid esterification solution.
  • the raw material, dry pulp was prepared as follows.
  • a softwood kraft pulp sheet (NBKP sheet manufactured by Marusumi Paper Co., Ltd.) was used. Below, the NBKP used in the experiment will be simply described as pulp.
  • the pulp sheet used was dried to a moisture content of 7% and had a basis weight of 3000 g/m2.
  • Phosphate esterified pulp was produced as follows. 5 g (solid mass) of the prepared pulp was placed in a beaker, and 100 g of the phosphating solution was added. After allowing the pulp to absorb the solution well, it was spread on an aluminum vat and placed in a dryer at 80° C. to dry water until the moisture content reached 5% or less. After that, it was placed in a dryer under an atmosphere of 160° C. to 180° C. and reacted for 25 minutes.
  • the resulting phosphate ester pulp was micronized under the same conditions as in the method for preparing the sulfonated fine cellulose fibers to prepare slurries containing phosphate ester fine cellulose fibers (Comparative Examples 2 to 4).
  • Comparative Examples 8-13 Comparative Examples 8 to 13 were prepared as comparative examples of paints.
  • Comparative Example 8 was prepared by mixing 20 g and 80 g, respectively, of the slurry containing sulfonated fine cellulose fibers prepared in Comparative Example 1 and the acrylic paint at a mass ratio (g/g) of 0.25. That is, the content of the sulfonated fine cellulose fibers in Comparative Example 8 was adjusted to 0.2% by mass.
  • Comparative Example 9 was prepared by mixing 20 g and 80 g, respectively, of the phosphoric esterified fine cellulose fiber-containing slurry prepared in Comparative Example 2 and the acrylic paint at a mass ratio (20 g/80 g) of 0.25.
  • Comparative Example 10 was prepared by mixing 20 g and 80 g, respectively, of the phosphoric esterified fine cellulose fiber-containing slurry prepared in Comparative Example 3 and the acrylic paint at a mass ratio (20 g/80 g) of 0.25.
  • Comparative Example 11 was prepared by mixing 20 g and 80 g of the slurry containing phosphoric esterified fine cellulose fibers prepared in Comparative Example 2 and the acrylic paint in a mass ratio (20 g/80 g) of 0.25.
  • Comparative Example 12 was prepared by mixing 20 g and 80 g of the slurry containing phosphoric esterified fine cellulose fibers prepared in Comparative Example 3 and the acrylic paint at a mass ratio (20 g/80 g) of 0.25.
  • Comparative Example 13 was prepared by mixing 20 g and 80 g of water (pure water) and acrylic paint, respectively, at a mass ratio (20 g/80 g) of 0.25.
  • Comparative Examples 14, 15, and 16 the same measurements and measurements as in Example 8 were performed, except that the slurry containing phosphorylated esterified fine cellulose fibers prepared in Comparative Example 3 was used as 1% CNF, and the blending ratio in FIG. made an evaluation.
  • Comparative Examples 17 to 20 were measured and evaluated in the same manner as in Example 8, except that they were adjusted to the blend ratio shown in FIG. 5 without containing fine cellulose fibers.
  • Comparative Examples 21, 22, and 23 were the same as Example 11, except that the phosphorylated esterified fine cellulose fiber-containing slurry prepared in Comparative Example 3 was used as 0.5% CNF, and the blending ratio in FIG. 6 was prepared. Measurements and evaluations were made.
  • Comparative Example 24 was measured and evaluated in the same manner as in Example 11, except that it was adjusted to the blend ratio shown in FIG. 6 without containing fine cellulose fibers.
  • FIGS. 1-4 are tables showing properties (physical properties) of slurries containing sulfonated fine cellulose fibers.
  • 3 and 4 are tables showing the properties (physical properties) of paints containing sulfonated fine cellulose fiber-containing slurries.
  • the sulfonated fine cellulose fiber-containing slurry had high transparency and predetermined viscosity characteristics. From the results of Comparative Example 1, it can be seen that the sulfonated fine cellulose fibers contained in the slurry containing sulfonated fine cellulose fibers are fibers having a structure exhibiting transparency. In addition, it had excellent transparency and viscosity as compared with the slurry containing phosphate-esterified fine cellulose fibers of the comparative example.
  • Example 3 and Comparative Example 6 the amount of sulfo groups introduced was the same, but the former (water/ethanol is 60/40) was able to be defibrated. In contrast, the latter (40/60 water/ethanol) could not be defibrated.
  • Example 4 and Comparative Example 7 the amount of sulfo groups introduced is the same, but in the former (water/ethanol is 60/40) and the latter (water/ethanol is 40/60), the former is It shows high transparency (that is, it shows that a sulfonated fine cellulose fiber with a structure having dispersibility is obtained) and shows appropriate viscosity characteristics, whereas the latter shows a defibration treatment.
  • the transparency was poor (ie no suitable sulfonated microcellulose fibers could be prepared) and the viscosity properties could not be properly measured.
  • the amount of sulfo groups introduced is 1.3 mmol/g or less, the defibration treatment tends to be difficult to perform in a slurry state in which the ratio of ethanol is higher than that of water. It has also been found to be difficult to prepare the desired sulfonated fine cellulose fibers.
  • the paint containing the slurry containing sulfonated fine cellulose fibers had superior properties compared to the comparative example.
  • the fine cellulose fibers when only water was mixed with the acrylic paint, there was a tendency for the fine cellulose fibers to aggregate and form lumps in the paint.
  • almost no lumps were observed by mixing a slurry containing sulfonated fine cellulose fibers dispersed in a mixed solution of water and ethanol with the acrylic paint.
  • the mixed solution mixed with ethanol has a high affinity with the paint component, if the sulfonated fine cellulose fibers are uniformly dispersed in the ethanol mixed solution (slurry containing sulfonated fine cellulose fibers is transparent If it is in a good state, that is, if the haze value is low), even if it is mixed with a paint component such as an acrylic paint, it is considered that both can be mixed appropriately.
  • a paint component such as an acrylic paint
  • Example 8-10 The experimental results of Examples 8-10 are shown in FIG. In the coating liquids containing no fine cellulose fibers (Comparative Examples 18 to 20), water and coating components are separated, whereas in the coating containing the sulfonated fine cellulose fiber slurry of the present invention, the coating component (acrylic coating) is separated. It was confirmed that there was no separation, that is, the dispersion characteristics were 100%. Moreover, the sulfonated fine cellulose fiber slurry-containing paints of Examples 8 to 10 have excellent dispersion characteristics compared to the fine cellulose fiber-containing paints (Comparative Examples 14 to 16) in which phosphoric acid groups are introduced instead of sulfo groups. It was confirmed that it works.
  • the paints containing the sulfonated fine cellulose fiber slurry of Examples 8-10 have similar viscosities to the paints of Comparative Examples 14-16, and while exhibiting a predetermined TI value, they have an appropriate dispersion. It was confirmed that the properties (a state in which the sulfonated fine cellulose fibers are appropriately dispersed) are exhibited.
  • the coating composition containing the sulfonated fine cellulose fiber slurry of the present invention has excellent dispersion characteristics (coating components are uniformly It was confirmed that the state of being dispersed in) was exhibited. Therefore, it was confirmed that the use of the coating composition containing the sulfonated fine cellulose fiber slurry of the present invention enables the formation of a coating film in which the components of the coating composition are homogeneously contained. In addition, it was confirmed that the low viscosity and the predetermined TI value can be exhibited, so that the handleability as a paint can be improved.
  • the dispersion characteristics are lower than the paint containing the sulfonated fine cellulose fiber slurry of the present invention, so the paint component in the paint film contains the sulfonated fine cellulose fiber slurry of the present invention. It was found that the homogeneity was reduced compared to the coating film of the paint.
  • Example 11-13 The experimental results of Examples 11-13 are shown in FIG. In the cosmetic liquid containing no fine cellulose fibers (Comparative Example 24), the cosmetic components separated to form precipitates, whereas in the cosmetic liquid containing the sulfonated fine cellulose fiber slurry of Examples 11 and 12, the cosmetic No sedimentation of the components occurred, and it was confirmed that even the cosmetic containing the sulfonated fine cellulose fiber slurry of Example 13 exhibited a dispersibility of 70% or more. Moreover, the cosmetic compositions containing sulfonated fine cellulose fiber slurries of Examples 11 to 13 had excellent dispersion compared to cosmetic liquids containing fine cellulose fibers (Comparative Examples 21 to 23) in which phosphoric acid groups were introduced instead of sulfo groups.
  • the sulfonated fine cellulose fiber slurry-containing paint of this experiment contains sulfonated fine cellulose fibers having a predetermined structure (a structure that exhibits a predetermined transparency), so that it has excellent dispersion characteristics (cosmetic ingredients are dispersed homogeneously). It was confirmed that the state of being dispersed in) was exhibited. Therefore, by including the fine cellulose fiber-containing composition of the present invention in a cosmetic, a cosmetic composition that tends to precipitate can be maintained in a homogeneous state at all times. Since even a cosmetic composition that is easy to apply can be appropriately applied, the effect of the cosmetic can be appropriately exhibited.
  • composition containing fine cellulose fibers and the thickening agent of the present invention are used for dispersing fine cellulose fibers in various fields such as the medical field, food field, environmental field, industrial field, and papermaking field. Suitable as a sticky agent.
  • the paint of the present invention can be widely used in environmental fields, industrial fields, etc., as it exhibits the properties of fine cellulose fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Polymers & Plastics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Birds (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide a composition containing fine cellulose fibers in which the CNFs can have improved dispersibility and handleability and a coating material and a thickener which each include the composition containing fine cellulose fibers. [Solution] This composition comprises water, a water-soluble solvent, and sulfonated fine cellulose fibers which are dispersed in a mixture solution composed of the water-soluble solvent and the water and in which some of hydroxyl groups have been replaced with sulfo groups so as to result in an amount of introduced sulfo groups of 0.4-3.0 mmol/g. This composition has a haze of 30% or less when containing the sulfonated fine cellulose fibers in a solid concentration of 0.5 mass%. By using the composition containing fine cellulose fibers for a liquid of interest which has an affinity for the water-soluble solvent, the fine cellulose fibers can be adequately dispersed in the liquid and excellent properties can hence be imparted to the liquid.

Description

微細セルロース繊維含有組成物、塗料および増粘剤Compositions containing fine cellulose fibers, paints and thickeners
 本発明は、微細セルロース繊維含有組成物、塗料および増粘剤に関する。さらに詳しくは、対象液体に使用するための微細セルロース繊維含有組成物と、この微細セルロース繊維含有組成物を含有する塗料および増粘剤に関する。 The present invention relates to fine cellulose fiber-containing compositions, paints and thickeners. More particularly, it relates to compositions containing fine cellulose fibers for use in target liquids, and paints and thickeners containing the compositions containing fine cellulose fibers.
 セルロースナノファイバー(CNF)は、植物起因のセルロースをナノ化処理(機械的解繊やTEMPO触媒酸化など)した、繊維幅が数~数十nm、繊維長が数百nmの微小繊維である。CNFは軽量、高弾性、高強度、低線熱膨張性を有していることから、CNFを含有する複合材料などの利用が様々な分野で期待されている。とりわけ、優れた増粘作用(高粘性、チキソトロピー性)を発揮させることが期待されることから、環境への負荷が少ない新規な増粘剤としての開発が進められている。例えば、塗料の分野では、CNFを増粘剤として含有させることにより、塗工性の向上や乾燥後の塗膜の強度向上等が期待されている。一方、CNFは、水溶性塗料成分として一般的に使用されるアルコールなどの有機溶媒等に対しては凝集していわゆるダマが形成され易いということが知られている。そこで、かかる分野において、上記問題を解決するための様々な開発が進められている(例えば、特許文献1~3)。 Cellulose nanofibers (CNF) are microfibers with a fiber width of several to several tens of nanometers and a fiber length of several hundred nanometers, made by nano-processing plant-derived cellulose (mechanical fibrillation, TEMPO catalytic oxidation, etc.). Since CNF has light weight, high elasticity, high strength, and low linear thermal expansion, the use of CNF-containing composite materials is expected in various fields. In particular, it is expected to exert excellent thickening action (high viscosity and thixotropic properties), so development as a novel thickener with less environmental load is underway. For example, in the field of paints, the inclusion of CNF as a thickener is expected to improve coatability and strength of the coating film after drying. On the other hand, it is known that CNF agglomerates and forms so-called lumps in organic solvents such as alcohol, which are generally used as components of water-soluble paints. Therefore, in this field, various developments are underway to solve the above problems (for example, Patent Documents 1 to 3).
 特許文献1には、繊維状セルロース含有組成物と、樹脂と、イソシアネート系硬化剤とを含み、繊維状セルロース含有組成物が、亜リン酸基又は亜リン酸基に由来する置換基を有する微細繊維と尿素等の水溶性の低分子化合物と所定の糖類を含有する塗料が開示されている。特許文献2には、所定の金属塩、ケイ酸塩、樹脂および水系溶剤にCNFを含有した水性塗料が開示されている。また、特許文献3には、所定の高分子化合物と水とカルボキシル基に由来する置換基を有するCNFを含有する塗料用または医薬品用の増粘剤組成物が開示されている。 Patent Document 1 discloses a composition comprising a fibrous cellulose-containing composition, a resin, and an isocyanate curing agent, wherein the fibrous cellulose-containing composition contains fine particles having a phosphite group or a substituent derived from a phosphite group. A paint containing fibers, a water-soluble low-molecular-weight compound such as urea, and a predetermined saccharide is disclosed. Patent Document 2 discloses a water-based paint containing CNF in a predetermined metal salt, silicate, resin, and water-based solvent. Further, Patent Document 3 discloses a thickener composition for paints or pharmaceuticals containing a predetermined polymer compound, water and CNF having a substituent derived from a carboxyl group.
特許第6680371号公報Japanese Patent No. 6680371 特開2017-110130号公報Japanese Unexamined Patent Application Publication No. 2017-110130 特開2014-141675号公報JP 2014-141675 A
 しかしながら、特許文献1~3の塗料や増粘剤では、CNFを塗料や医薬品等にある程度分散させることができるものの、CNFの分散性が不十分で一部のCNFが凝集物として沈殿してしまうなどの問題がある。
 また、これらの文献の技術では、CNFを塗料や医薬品等に分散させるために所定のポリマーや糖、金属塩などを含有しているので、対象となる塗料や医薬品などが限定されるなどの問題が生じており、取り扱い性の観点でも改善の余地がある。
However, in the paints and thickeners of Patent Documents 1 to 3, although CNF can be dispersed in paints, pharmaceuticals, etc. to some extent, the dispersibility of CNF is insufficient and some CNF precipitates as aggregates. There are problems such as
In addition, the techniques of these documents contain predetermined polymers, sugars, metal salts, etc. in order to disperse CNF in paints, pharmaceuticals, etc., so there are problems such as limited target paints and pharmaceuticals. There is room for improvement from the viewpoint of handleability.
 本発明は上記事情に鑑み、CNFの分散性および取り扱い性を向上させることができる微細セルロース繊維含有組成物、かかる微細セルロース繊維含有組成物を含有する塗料および増粘剤を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a fine cellulose fiber-containing composition capable of improving the dispersibility and handleability of CNF, and a paint and a thickener containing such a fine cellulose fiber-containing composition. do.
 本発明者らは、上記課題を解決すべき鋭意検討を重ねた結果、スルホ基を導入して得られた微細セルロース繊維を水溶性溶剤と用いることにより上記課題を解決できることを見出し、本発明の完成に至った。 The present inventors have made intensive studies to solve the above problems, and found that the above problems can be solved by using fine cellulose fibers obtained by introducing sulfo groups in a water-soluble solvent. Completed.
 本発明の微細セルロース繊維含有組成物は、スルホ基の導入量が0.4mmol/g~3.0mmol/gであり、固形分濃度0.5質量%の状態におけるヘイズ値が30%以下のスルホン化微細セルロース繊維と、水と、水溶性溶剤と、が混合したものである。
 本発明の塗料は、本発明の微細セルロース繊維含有組成物を含有する塗料であり、この微細セルロース繊維含有組成物中のスルホン化微細セルロース繊維の含有率が、0.05質量%~10質量%である。
 本発明の増粘剤は、本発明の微細セルロース繊維含有組成物を含有する増粘剤であり、このスルホン化微細セルロース繊維の含有量が、増粘剤の全量に対して、0.1質量%~95質量%である。
The fine cellulose fiber-containing composition of the present invention has a sulfo group introduction amount of 0.4 mmol/g to 3.0 mmol/g, and a sulfone having a haze value of 30% or less at a solid content concentration of 0.5% by mass. It is a mixture of denatured fine cellulose fibers, water, and a water-soluble solvent.
The paint of the present invention is a paint containing the fine cellulose fiber-containing composition of the present invention, and the content of sulfonated fine cellulose fibers in the fine cellulose fiber-containing composition is 0.05% by mass to 10% by mass. is.
The thickener of the present invention is a thickener containing the fine cellulose fiber-containing composition of the present invention, and the content of the sulfonated fine cellulose fibers is 0.1 mass based on the total amount of the thickener. % to 95% by mass.
 本発明の微細セルロース繊維含有組成物によれば、所定の物性値を示し、かつスルホ基量が所定の範囲内に調整された微細セルロース繊維を含有することにより、水溶性溶剤が含有した溶液中において微細セルロース繊維を分散した状態に維持することができる。すると、本発明の微細セルロース繊維含有組成物を水溶性溶剤と親和性を有する対象液体に対して用いれば、対象液体中に微細セルロース繊維を適切に分散させることができるので、対象液体に対して優れた特性を付与することができるようになる。
 本発明の塗料によれば、塗料中に微細セルロース繊維が適切に分散しているので、塗工性や塗膜安定性を向上させることができる。
 本発明の増粘剤によれば、増粘剤中に微細セルロース繊維が適切に分散しているので、増粘性の向上やチキソトロピー性を向上させることができる。このため、増粘剤を対象液体に対して使用すれば、適切な増粘性やチキソトロピー性を付与することができる。
According to the fine cellulose fiber-containing composition of the present invention, by containing fine cellulose fibers exhibiting predetermined physical property values and having an amount of sulfo groups adjusted within a predetermined range, in a solution containing a water-soluble solvent can maintain the fine cellulose fibers in a dispersed state. Then, if the fine cellulose fiber-containing composition of the present invention is used for a target liquid having affinity for a water-soluble solvent, the fine cellulose fibers can be appropriately dispersed in the target liquid. Excellent properties can be imparted.
According to the paint of the present invention, since the fine cellulose fibers are appropriately dispersed in the paint, the coatability and the stability of the coating film can be improved.
According to the thickener of the present invention, since fine cellulose fibers are appropriately dispersed in the thickener, it is possible to improve thickening properties and thixotropic properties. Therefore, if a thickening agent is used for the target liquid, appropriate thickening properties and thixotropic properties can be imparted.
実験結果を示した図であり、スルホン化微細セルロース繊維含有スラリー(本実施形態の微細セルロース繊維含有組成物に相当)の特性(物性)を示した表である。FIG. 4 is a diagram showing experimental results, and a table showing characteristics (physical properties) of a slurry containing sulfonated cellulose fine fibers (corresponding to the composition containing fine cellulose fibers of the present embodiment). 実験結果を示した図であり、スルホン化微細セルロース繊維含有スラリーの特性(物性)を示した表である。FIG. 4 is a diagram showing experimental results, and a table showing properties (physical properties) of slurry containing sulfonated fine cellulose fibers. 実験結果を示した図であり、スルホン化微細セルロース繊維含有スラリーを含有した塗料(本実施形態の塗料に相当)の特性(物性)を示した表である。FIG. 3 is a diagram showing experimental results, and a table showing properties (physical properties) of a paint containing a slurry containing sulfonated fine cellulose fibers (corresponding to the paint of the present embodiment). 実験結果を示した図であり、スルホン化微細セルロース繊維含有スラリーを含有した塗料(本実施形態の塗料に相当)の特性(物性)を示した表である。FIG. 3 is a diagram showing experimental results, and a table showing properties (physical properties) of a paint containing a slurry containing sulfonated fine cellulose fibers (corresponding to the paint of the present embodiment). 実験結果を示した図であり、スルホン化微細セルロース繊維含有スラリーを含有した塗料(本実施形態の塗料に相当)の特性(物性)を示した表である。FIG. 3 is a diagram showing experimental results, and a table showing properties (physical properties) of a paint containing a slurry containing sulfonated fine cellulose fibers (corresponding to the paint of the present embodiment). 実験結果を示した図であり、スルホン化微細セルロース繊維含有スラリーを含有した化粧料(本実施形態の化粧料に相当)の特性(物性)を示した表である。FIG. 3 is a diagram showing experimental results, and a table showing characteristics (physical properties) of cosmetics containing a slurry containing sulfonated fine cellulose fibers (corresponding to the cosmetics of the present embodiment).
 以下、本発明の実施形態を図面に基づき説明する。
 本実施形態の微細セルロース繊維含有組成物が、水溶性溶剤と親和性を有するスルホン化微細セルロース繊維を含有することにより、対象液体に対して優れた特性を付与できるようにしたことに特徴を有している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described based on the drawings.
The fine cellulose fiber-containing composition of the present embodiment is characterized by being able to impart excellent properties to the target liquid by containing the sulfonated fine cellulose fibers having affinity with the water-soluble solvent. are doing.
<本実施形態の微細セルロース繊維含有組成物>
 本実施形態の微細セルロース繊維含有組成物は、水と、水溶性溶剤と、スルホン化微細セルロース繊維を含む組成物である。
<Composition containing fine cellulose fibers of the present embodiment>
The fine cellulose fiber-containing composition of the present embodiment is a composition containing water, a water-soluble solvent, and sulfonated fine cellulose fibers.
(本実施形態の微細セルロース繊維含有組成物の水溶性溶剤)
 まず、本実施形態の微細セルロース繊維含有組成物が含有する水溶性溶剤を説明する。
 本実施形態の微細セルロース繊維含有組成物の水溶性溶剤は、水と混ざり合う性質を有する溶剤であれば、とくに限定されない。
 具体的には、一般的に化学実験で用いられる水溶性の有機溶媒のほか、工業的に用いられる水溶性の溶剤などを挙げることができる。例えば、水に対する溶解度(g/100mL 水)が10g以上のものが水溶性溶剤として適している。
(Water-soluble solvent for fine cellulose fiber-containing composition of the present embodiment)
First, the water-soluble solvent contained in the composition containing fine cellulose fibers of the present embodiment will be described.
The water-soluble solvent of the fine cellulose fiber-containing composition of the present embodiment is not particularly limited as long as it is a solvent that is miscible with water.
Specifically, in addition to water-soluble organic solvents that are generally used in chemical experiments, water-soluble solvents that are industrially used can be used. For example, those having a solubility in water (g/100 mL water) of 10 g or more are suitable as water-soluble solvents.
 水溶性溶剤として、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどの低級アルコールのほか、エチレングリコール、酢酸、テトラヒドロフラン、ジオキサン、アセトン、エチルメチルケトン、アセトニトリル、ピリジン、ジメチルスルホキシドなどやこれらの誘導体などを挙げることができ、これらの物質を単独または2種以上を含むことができる。
 なお、水溶性溶剤としては、上述した機能を有するものであれば、これらの物質に限定されない。
Examples of water-soluble solvents include lower alcohols such as methanol, ethanol, propanol, isopropyl alcohol, and butanol, ethylene glycol, acetic acid, tetrahydrofuran, dioxane, acetone, ethyl methyl ketone, acetonitrile, pyridine, dimethyl sulfoxide, and derivatives thereof. etc., and these substances can be used alone or in combination of two or more.
The water-soluble solvent is not limited to these substances as long as it has the functions described above.
 例えば、対象液体が人に対して使用される化粧料などの場合には、人への影響が少ないエタノール、イソプロピルアルコールなどを水溶性溶剤として使用することができる。また、対象液体が塗料などの場合には、メタノールやプロピレングリコールモノメチルエーテル1-メトキシ-2-プロパノール(PM)などの揮発性の高いものを水性水溶性溶剤として使用することができる。 For example, if the target liquid is cosmetics that are used on humans, ethanol, isopropyl alcohol, etc., which have little effect on humans, can be used as water-soluble solvents. Further, when the target liquid is a paint or the like, a highly volatile solvent such as methanol or propylene glycol monomethyl ether 1-methoxy-2-propanol (PM) can be used as the water-soluble solvent.
(本実施形態の微細セルロース繊維含有組成物の対象液体)
 なお、本実施形態の微細セルロース繊維含有組成物を用いることができる対象液体(本実施形態の微細セルロース繊維含有組成物の添加、混合の対象となる液体)は、水溶性溶剤と親和性を有する液体であれば、とくに限定されない。
 例えば、水などのような完全な液体はもちろん、顔料などの不溶性の物質を含有する水性または油性の塗料や、化粧水、薬液、などの液体の化粧品はもちろん、クレンジング剤、保湿クリームなどのジェル状やスラリー状の化粧品など様々な性状の液体状の皮膚外用剤など様々なものを対象液体として挙げることができるが、これらに限定されないのはいうまでもない。
(Target liquid of the fine cellulose fiber-containing composition of the present embodiment)
The target liquid in which the composition containing fine cellulose fibers of the present embodiment can be used (liquid to which the composition containing fine cellulose fibers of the present embodiment is added or mixed) has affinity with a water-soluble solvent. There is no particular limitation as long as it is a liquid.
For example, not only complete liquids such as water, but also water-based or oil-based paints containing insoluble substances such as pigments, liquid cosmetics such as lotions and liquid medicines, as well as gels such as cleansing agents and moisturizing creams. Various liquids such as external skin preparations of various properties such as cosmetics in the form of liquids and slurries can be mentioned as target liquids, but it is needless to say that the liquids are not limited to these.
(本実施形態の微細セルロース繊維含有組成物の水)
 本実施形態の微細セルロース繊維含有組成物に含まれる水は、とくに限定されない。例えば、一般的な水道水のほか、純水、蒸留水、イオン交換水、RO水、ミリQ水、超純水などを用いることができる。
(Water of the fine cellulose fiber-containing composition of the present embodiment)
Water contained in the fine cellulose fiber-containing composition of the present embodiment is not particularly limited. For example, in addition to general tap water, pure water, distilled water, ion-exchanged water, RO water, Milli-Q water, ultrapure water, and the like can be used.
(本実施形態の微細セルロース繊維含有組成物のスルホン化微細セルロース繊維)
 本実施形態の微細セルロース繊維含有組成物に含まれるスルホン化微細セルロース繊維は、セルロース繊維が微細化された微細セルロース繊維である。
 このスルホン化微細セルロース繊維は、さらに微細なセルロース繊維(以下、ユニット繊維という)を複数含んだものである。
(Sulfonated fine cellulose fibers of fine cellulose fiber-containing composition of the present embodiment)
The sulfonated fine cellulose fibers contained in the fine cellulose fiber-containing composition of the present embodiment are fine cellulose fibers obtained by refining cellulose fibers.
The sulfonated fine cellulose fibers contain a plurality of finer cellulose fibers (hereinafter referred to as unit fibers).
 具体的には、スルホン化微細セルロース繊維は、複数のユニット繊維が連結して形成された繊維である。このユニット繊維は、かかる繊維を構成するセルロース(D-グルコースがβ(1→4)グリコシド結合した鎖状の高分子、一般式(1))の水酸基(-OH基)の少なくとも一部が、一般式(2)で示すスルホ基で硫酸化されたものである。つまり、スルホン化微細セルロース繊維は、微細セルロース繊維の水酸基の一部が、スルホ基で置換されたものである。 Specifically, sulfonated fine cellulose fibers are fibers formed by connecting multiple unit fibers. In this unit fiber, at least part of the hydroxyl group (--OH group) of cellulose (chain polymer in which D-glucose is β(1→4) glycoside-bonded, general formula (1)) constituting such fiber is It is sulfated with a sulfo group represented by the general formula (2). In other words, the sulfonated fine cellulose fibers are obtained by substituting some of the hydroxyl groups of the fine cellulose fibers with sulfo groups.
(一般式(1))
Figure JPOXMLDOC01-appb-C000001
 
(general formula (1))
Figure JPOXMLDOC01-appb-C000001
(一般式(2))
Figure JPOXMLDOC01-appb-C000002
 
(general formula (2))
Figure JPOXMLDOC01-appb-C000002
 なお、本明細書における置換とは、セルロースの水酸基をスルホ基で置き換えることをいい、反応後にセルロースを構成する少なくとも一部の水酸基が置換反応などでスルホ基が結合した状態のことを意味する。
 具体的には、本明細書のセルロースの水酸基がスルホ基で置換するとは、セルロースの水酸基(-OH基)の少なくとも一部がスルホ基で置換されたものを意味する。そして、水酸基の一部とは、「-OH基」の「H」(水素原子)のほか、「OH」も含むことを意味する。
 つまり、セルロースの水酸基の一部がスルホ基で置換された構造には、水酸基の酸素原子に対して水素原子(H)の代わりにスルホ基が結合してセルロースの炭素と水酸基の酸素原子(O)とスルホ基が結合した構造(いわゆるエステル結合したもの、例えば、一般式(3))の構造を含む。
 また、セルロースの水酸基の一部がスルホ基で置換された構造には、セルロースの水酸基が結合している炭素にスルホ基が直接結合した構造(例えば、一般式(4))の構造も含まれる。
The term "substitution" as used herein refers to the replacement of hydroxyl groups of cellulose with sulfo groups, and means that at least some of the hydroxyl groups constituting the cellulose after the reaction are bonded with sulfo groups through a substitution reaction or the like.
Specifically, in this specification, the hydroxyl groups of cellulose are substituted with sulfo groups, meaning that at least part of the hydroxyl groups (--OH groups) of cellulose are substituted with sulfo groups. A part of the hydroxyl group means to include not only the "H" (hydrogen atom) of the "--OH group" but also the "OH".
That is, in a structure in which a portion of the hydroxyl groups of cellulose is substituted with a sulfo group, the sulfo group is bonded to the oxygen atom of the hydroxyl group instead of the hydrogen atom (H), and the carbon of the cellulose and the oxygen atom of the hydroxyl group (O ) and a sulfo group (so-called ester bond, for example, general formula (3)).
In addition, the structure in which a portion of the hydroxyl groups of cellulose is substituted with a sulfo group includes a structure in which a sulfo group is directly bonded to the carbon to which the hydroxyl group of cellulose is bonded (e.g., general formula (4)). .
(一般式(3))
Figure JPOXMLDOC01-appb-C000003
 
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (3))
Figure JPOXMLDOC01-appb-C000003

(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、スルホ基は、セルロースのD-グルコースに最大で3個結合することができる。
 このため、一般式(3)中のスルホ基は、(-SO ・Zr+で表すことができる。すると、Zは、水素イオン、アルカリ金属の陽イオン、1価の遷移金属イオン、オニウムイオン(アンモニウムイオン、脂肪族アンモニウムイオン、芳香族アンモニウムイオン等)、カチオン性高分子よりなる群から選ばれる少なくとも1種である。また、Zは、アルカリ土類金属の陽イオンまたは多価金属の陽イオン、ジアミンのようなカチオン性官能基を分子内に2以上含有する化合物よりなる群から選ばれる少なくとも1種の場合もある。
A maximum of three sulfo groups can be bonded to D-glucose of cellulose.
Therefore, the sulfo group in general formula (3) can be represented by (--SO 3 ) r ·Z r+ . Then, Z is at least selected from the group consisting of hydrogen ions, alkali metal cations, monovalent transition metal ions, onium ions (ammonium ions, aliphatic ammonium ions, aromatic ammonium ions, etc.), and cationic polymers. It is one type. In some cases, Z is at least one selected from the group consisting of compounds containing two or more cationic functional groups in the molecule, such as alkaline earth metal cations, polyvalent metal cations, and diamines. .
(一般式(4))
Figure JPOXMLDOC01-appb-C000004
 
(式中、Rは、セルロース(一般式(1))から一部の水酸基を除いた構造を示す。Zは、水素イオン、金属イオン、オニウムイオンまたはカチオン性有機化合物を示す。)
(general formula (4))
Figure JPOXMLDOC01-appb-C000004

(In the formula, R represents a structure obtained by removing some hydroxyl groups from cellulose (general formula (1)).Z represents a hydrogen ion, a metal ion, an onium ion, or a cationic organic compound.)
 なお、一般式(4)中のスルホ基も一般式(3)の場合と同様に表すことができ、Zも同様の化合物を挙げることができる。 The sulfo group in general formula (4) can also be represented in the same manner as in general formula (3), and Z can also include similar compounds.
 なお、スルホン化微細セルロース繊維は、スルホ基以外の他の官能基が微細セルロース繊維の水酸基の一部に結合していてもよく、とくに、スルホ基以外に硫黄を含む官能基(置換基)を含んでいてもよい。
 以下の説明では、スルホン化微細セルロース繊維を構成するセルロース繊維の水酸基にスルホ基だけを導入した場合を代表として説明する。
In the sulfonated fine cellulose fibers, functional groups other than sulfo groups may be bonded to some of the hydroxyl groups of the fine cellulose fibers. may contain.
In the following description, the case where only sulfo groups are introduced into the hydroxyl groups of the cellulose fibers constituting the sulfonated fine cellulose fibers will be described as a representative.
 スルホン化微細セルロース繊維のスルホ基の導入量は、スルホ基に起因する硫黄量で表すことができ、その導入量は、とくに限定されない。
 例えば、スルホン化微細セルロース繊維1g(質量)あたりのスルホ基の導入量は、0.4mmol/gよりも高くなるように調整するのが好ましく、より好ましくは、0.4mmol/g~9.9mmol/gであり、さらに好ましくは0.5mmol/g~9.9mmol/gであり、さらにより好ましくは0.6mmol/g~9.9mmol/gである。
The amount of sulfo groups introduced into the sulfonated fine cellulose fibers can be represented by the amount of sulfur derived from the sulfo groups, and the amount of sulfo groups introduced is not particularly limited.
For example, the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is preferably adjusted to be higher than 0.4 mmol/g, more preferably 0.4 mmol/g to 9.9 mmol. /g, more preferably 0.5 mmol/g to 9.9 mmol/g, even more preferably 0.6 mmol/g to 9.9 mmol/g.
 スルホン化微細セルロース繊維1g(質量)あたりのスルホ基の導入量が0.4mmol/g以下の場合には、繊維間の水素結合が強固なため分散性が低下する傾向にある。その逆に、スルホ基の導入量が0.4mmol/gよりも高くすることによって分散性を向上させやすくなり、0.5mmol/g以上とすれば電子的反発性をより強くさせることができるので、分散した状態をより安定して維持させやすくなる。
 つまり、後述するスルホン化微細セルロース繊維を所定濃度に分散させた分散液の粘性を均質にするには、スルホ基の導入量が0.4mmol/gよりも高くするのが好ましく、より好ましくは0.5mmol/g以上とするのがよい。一方、かかる硫黄導入量が9.9mmol/gに近づくほど結晶性の低下が懸念され、しかも硫黄を導入する際のコストも増加する傾向にある。
 したがって、スルホン化微細セルロース繊維へのスルホ基の導入量は、0.4mmol/gよりも高く3.0mmol/g以下となるように調整するのが好ましく、より好ましくは0.5mmol/g~3.0mmol/gであり、さらに好ましくは0.5mmol/g~2.0mmol/gであり、さらにより好ましくは0.5mmol/g~1.7mmol/gであり、より好ましくは0.5mmol/g~1.5mmol/gである。
 なお、スルホン化微細セルロース繊維の透明性の観点においても、スルホ基の導入量を上記範囲と同様の範囲となるように調整するのが好ましい。
When the amount of sulfo groups introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.4 mmol/g or less, hydrogen bonding between fibers is strong, and dispersibility tends to decrease. Conversely, when the amount of the sulfo group introduced is higher than 0.4 mmol/g, the dispersibility tends to be improved, and when the amount is 0.5 mmol/g or more, the electronic repulsion can be strengthened. , it becomes easier to maintain the dispersed state more stably.
In other words, in order to homogenize the viscosity of the dispersion liquid in which the sulfonated fine cellulose fibers described later are dispersed at a predetermined concentration, the amount of sulfo groups introduced is preferably higher than 0.4 mmol/g, more preferably 0. .5 mmol/g or more is preferable. On the other hand, as the amount of sulfur introduced approaches 9.9 mmol/g, there is concern that the crystallinity will decrease, and the cost of introducing sulfur tends to increase.
Therefore, the amount of sulfo groups introduced into the sulfonated fine cellulose fibers is preferably adjusted to be higher than 0.4 mmol/g and 3.0 mmol/g or less, more preferably 0.5 mmol/g to 3.0 mmol/g. .0 mmol/g, more preferably 0.5 mmol/g to 2.0 mmol/g, even more preferably 0.5 mmol/g to 1.7 mmol/g, more preferably 0.5 mmol/g ~1.5 mmol/g.
Also from the viewpoint of the transparency of the sulfonated fine cellulose fibers, it is preferable to adjust the amount of the sulfo group to be introduced so as to fall within the same range as the above range.
 スルホン化微細セルロース繊維は、上述した透明性を有する構造のものが好ましい。
 具体的には、スルホン化微細セルロース繊維が固形分濃度0.5質量%の状態における分散液のヘイズ値が30%以下となるように調製された構造を有するスルホン化微細セルロース繊維である。スルホン化微細セルロース繊維の構造は、ヘイズ値が20%以下の構造を有するものが好ましく、より好ましくはヘイズ値が15%以下の構造を有するものであり、さらに好ましくはヘイズ値が10%以下の構造を有するものがよい。
The sulfonated fine cellulose fibers preferably have the transparent structure described above.
Specifically, it is a sulfonated fine cellulose fiber having a structure prepared so that the haze value of a dispersion liquid in which the sulfonated fine cellulose fiber has a solid content concentration of 0.5% by mass is 30% or less. The structure of the sulfonated fine cellulose fibers preferably has a haze value of 20% or less, more preferably has a haze value of 15% or less, and still more preferably has a haze value of 10% or less. Those having a structure are preferred.
 以上のごとく、本実施形態の微細セルロース繊維含有組成物が所定の構造を有するスルホン化微細セルロース繊維を含有することにより、水溶性溶剤の存在下、微細セルロース繊維が分散した状態を維持することができる。つまり、本実施形態の微細セルロース繊維含有組成物は、所定の透明性を有する組成物であり、かかる透明性は、上記構造を有するスルホン化微細セルロース繊維に起因するものである。そして、かかる構造を有するスルホン化微細セルロース繊維を水溶性溶剤と共存させることにより、凝集物(ダマ)の形成が抑制される。
 このため、本実施形態の微細セルロース繊維含有組成物を対象液体(水溶性溶剤と親和性を有する液体)に対して添加等すれば、本実施形態の微細セルロース繊維含有組成物と同様に対象液体中にスルホン化微細セルロース繊維を容易に分散させることができる。
 すると、対象液体に対してスルホン化微細セルロース繊維が有する効果、例えば、粘性を向上させたり、所望のチキソトロピー性を発揮させたりすることができるようになる。つまり、本実施形態の微細セルロース繊維含有組成物を対象液体に使用すれば、対象液体に対してスルホン化微細セルロース繊維に起因する優れた特性を付与することができるようになる。
As described above, since the composition containing fine cellulose fibers of the present embodiment contains sulfonated fine cellulose fibers having a predetermined structure, the fine cellulose fibers can be maintained in a dispersed state in the presence of a water-soluble solvent. can. In other words, the composition containing fine cellulose fibers of the present embodiment is a composition having a predetermined transparency, and such transparency is due to the sulfonated fine cellulose fibers having the structure described above. The coexistence of the sulfonated fine cellulose fibers having such a structure with the water-soluble solvent suppresses the formation of aggregates (lumps).
Therefore, if the composition containing fine cellulose fibers of the present embodiment is added to a target liquid (liquid having affinity for a water-soluble solvent), the target liquid can The sulfonated fine cellulose fibers can be easily dispersed therein.
As a result, the effects of the sulfonated fine cellulose fibers on the target liquid, such as improved viscosity and desired thixotropy, can be exhibited. In other words, if the composition containing fine cellulose fibers of the present embodiment is used in a target liquid, it is possible to impart excellent properties resulting from the sulfonated fine cellulose fibers to the target liquid.
 なお、本実施形態の微細セルロース繊維含有組成物における水溶性溶剤がスルホン化微細セルロース繊維の分散性に与える影響についての理由は定かではないが、以下の理由が推定される。 Although the reason why the water-soluble solvent in the composition containing fine cellulose fibers of the present embodiment affects the dispersibility of the sulfonated fine cellulose fibers is not clear, the following reasons are presumed.
 本実施形態の微細セルロース繊維含有組成物内においては、スルホン化微細セルロース繊維のもつスルホ基と水溶性溶剤の親水基が、例えば水素結合を介して相互的に作用してスルホン化微細セルロース繊維同士の凝集が抑制されているものと推定される。
 後述するように本実施形態の微細セルロース繊維含有組成物を対象液体に添加したり混合したりして使用する場合、対象液体中において、水溶性溶剤が親和性を有する対象液体中の成分と混じりあうことにより、スルホン化微細セルロース繊維の凝集が抑制されることで対象液体中においてスルホン化微細セルロース繊維が容易に分散するものと推定される。つまり、本実施形態の微細セルロース繊維含有組成物の水溶性溶剤が、対象液体中の成分と混ざりやすい性質を有していたり、親和性を有していれば、対象液体中において、スルホン化微細セルロース繊維をより適切に分散させることができるようになると考えられる。
In the composition containing fine cellulose fibers of the present embodiment, the sulfo groups possessed by the sulfonated fine cellulose fibers and the hydrophilic groups of the water-soluble solvent interact with each other through, for example, hydrogen bonding, whereby the sulfonated fine cellulose fibers are separated from each other. It is estimated that the aggregation of is suppressed.
As will be described later, when the fine cellulose fiber-containing composition of the present embodiment is added to or mixed with a target liquid and used, the water-soluble solvent is mixed with the component in the target liquid with affinity in the target liquid. It is presumed that the aggregation of the sulfonated fine cellulose fibers is suppressed by the combination, and the sulfonated fine cellulose fibers are easily dispersed in the target liquid. In other words, if the water-soluble solvent of the fine cellulose fiber-containing composition of the present embodiment has the property of being easily mixed with the components in the target liquid, or has affinity, the sulfonated fine It is thought that the cellulose fibers can be dispersed more appropriately.
(スルホ基の導入量の評価方法)
 スルホン化微細セルロース繊維に対するスルホ基の導入量は、直接的にスルホ基を測定して評価しもよいし、スルホ基に起因する硫黄導入量で評価してもよい。
 前者の測定方法としては、例えば、スルホン化微細セルロース繊維をイオン交換樹脂で処理した後に水酸化ナトリウム水溶液を滴下しながら電気伝導度を測定して得られた値に基づいて算出することができる。
 後者の測定方法としては、例えば、スルホン化微細セルロース繊維の所定量を燃焼させて、燃焼イオンクロマトグラフを用いて燃焼物に含まれる硫黄分をIEC 62321に準拠した方法で測定して得られた値に基づいて算出することができる。
(Method for evaluating amount of introduced sulfo group)
The amount of sulfo groups introduced into the sulfonated fine cellulose fibers may be evaluated by directly measuring the sulfo groups, or may be evaluated by the amount of sulfur introduced due to the sulfo groups.
In the former measurement method, for example, after treating sulfonated fine cellulose fibers with an ion-exchange resin, the conductivity can be calculated based on the value obtained by measuring the electrical conductivity while dropping an aqueous sodium hydroxide solution.
As the latter measurement method, for example, a predetermined amount of sulfonated fine cellulose fibers is combusted, and the sulfur content in the combusted material is measured using a combustion ion chromatograph in accordance with IEC 62321. It can be calculated based on the value.
 なお、スルホ基中の硫黄の原子数は1であるので、硫黄導入量:スルホ基導入量=1:1である。例えば、スルホン化微細セルロース繊維1g(質量)あたりの硫黄導入が0.4mmol/gの場合には、スルホ基の導入量も当然に0.4mmol/gとなる。 Since the number of sulfur atoms in the sulfo group is 1, the amount of sulfur introduced: the amount of sulfo groups introduced is 1:1. For example, when the amount of sulfur introduced per 1 g (mass) of sulfonated fine cellulose fibers is 0.4 mmol/g, the amount of sulfo groups introduced is naturally 0.4 mmol/g.
 前者の測定方法(電気伝導度を用いた方法)をより具体的に説明する。
 まず、0.2質量%のナノセルロース繊維含有スラリーに体積比で1/10の強酸性イオン交換樹脂(オルガノ株式会社製、アンバージェット1024;コンディショニング済)を加え、1時間以上振とう処理を行う(イオン交換樹脂による処理)。ついで、目開き90μm~200μm程度のメッシュ上に注ぎ、樹脂とスラリーを分離する。その後のアルカリを用いた滴定では、イオン交換樹脂による処理後のスルホン化微細セルロース繊維含有スラリーに、0.5Nの水酸化ナトリウム水溶液を加えながら、電気伝導度の値の変化を計測する。得られた計測データは、縦軸に電気伝導度、横軸に水酸化ナトリウム滴定量としてプロットすると曲線が得られ、変曲点が確認できる。この変曲点での水酸化ナトリウム滴定量がスルホ基量に相当し、この変曲点の水酸化ナトリウム量を測定に供したスルホン化微細セルロース繊維固形分量で除することで、スルホ基の導入量を求めることができる。
The former measuring method (method using electrical conductivity) will be described more specifically.
First, 1/10 by volume of a slurry containing 0.2% by mass of nanocellulose fibers is added with a strongly acidic ion exchange resin (Amberjet 1024; conditioned by Organo Co., Ltd.) and shaken for 1 hour or more. (Treatment with ion exchange resin). Then, it is poured onto a mesh with an opening of about 90 μm to 200 μm to separate the resin from the slurry. In the subsequent titration with alkali, the change in electrical conductivity value is measured while adding 0.5N aqueous sodium hydroxide solution to the slurry containing sulfonated fine cellulose fibers after treatment with the ion exchange resin. Plotting the obtained measurement data with the electrical conductivity on the vertical axis and the titration amount of sodium hydroxide on the horizontal axis yields a curve, and an inflection point can be confirmed. The titration amount of sodium hydroxide at this point of inflection corresponds to the amount of sulfo groups, and the amount of sodium hydroxide at this point of inflection is divided by the solid content of the sulfonated fine cellulose fibers used for measurement, thereby introducing sulfo groups. You can ask for the quantity.
 なお、後述するように化学処理したスルホン化パルプを微細化処理してスルホン化微細セルロース繊維を調製する場合には、微細化前のスルホン化パルプにおける硫黄導入量から求めてもよい。 In the case of preparing sulfonated fine cellulose fibers by refining chemically treated sulfonated pulp as described later, the amount of sulfur introduced into the sulfonated pulp before refining may be used.
(スルホン化微細セルロース繊維の平均繊維幅)
 スルホン化微細セルロース繊維の構造について、以下詳細に説明する。
 スルホン化微細セルロース繊維は、上述したようにセルロース繊維が微細化された微細セルロース繊維であり、その繊維は非常に細い構造となるように調製されている。かかる構造にすることにより、水溶性溶剤への分散性が向上して、溶液中において適切に分散することができるようになる。言い換えれば、透明性を評価することにより、本実施形態の微細セルロース繊維含有組成物に含有されるスルホン化微細セルロース繊維を特定することが可能となる。そして、このような構造を有するスルホン化微細セルロース繊維は、本実施形態の微細セルロース繊維含有組成物中において、水溶性溶剤存在下、分散した状態に維持されている。
 例えば、本実施形態の微細セルロース繊維含有組成物のスルホン化微細セルロース繊維は、平均繊維幅が、電子顕微鏡で観察した際に、1nm~30nmとなるように調製されているのが好ましく、より好ましくは2nm~30nmとなるように調製されている。
 スルホン化微細セルロース繊維の平均繊維幅が、30nmよりも大きくなるとアスペクト比が低下する傾向にあり、その結果、繊維同士のからみあいが減少し、対象液体に本実施形態の微細セルロース繊維含有組成物を添加等した際に適切な効果(例えば、粘性など)を発揮させにくくなる可能性がある。
(Average fiber width of sulfonated fine cellulose fibers)
The structure of the sulfonated fine cellulose fibers is described in detail below.
The sulfonated fine cellulose fibers are fine cellulose fibers obtained by making cellulose fibers fine as described above, and the fibers are prepared to have a very fine structure. Such a structure improves dispersibility in a water-soluble solvent and enables proper dispersion in a solution. In other words, by evaluating the transparency, it is possible to identify the sulfonated fine cellulose fibers contained in the fine cellulose fiber-containing composition of the present embodiment. The sulfonated fine cellulose fibers having such a structure are maintained in a dispersed state in the presence of a water-soluble solvent in the fine cellulose fiber-containing composition of the present embodiment.
For example, the sulfonated fine cellulose fibers of the fine cellulose fiber-containing composition of the present embodiment are preferably prepared so that the average fiber width is 1 nm to 30 nm when observed with an electron microscope, and more preferably. is prepared to be 2 nm to 30 nm.
When the average fiber width of the sulfonated fine cellulose fibers exceeds 30 nm, the aspect ratio tends to decrease. There is a possibility that it may become difficult to exert an appropriate effect (for example, viscosity, etc.) when it is added.
 したがって、スルホン化微細セルロース繊維の平均繊維幅は、粘性を向上させる上では、2nm~30nmが好ましく、より好ましくは2nm~20nmであり、さらに好ましくは2nm~10nmである。 Therefore, the average fiber width of the sulfonated fine cellulose fibers is preferably 2 nm to 30 nm, more preferably 2 nm to 20 nm, still more preferably 2 nm to 10 nm, in terms of improving viscosity.
 なお、後述する平均繊維長にもよるが、スルホン化微細セルロース繊維は、アスペクト比(平均繊維長/平均繊維幅)が20以上が好ましく、より好ましくは50以上であり、さらに好ましくは100以上である。 The aspect ratio (average fiber length/average fiber width) of the sulfonated fine cellulose fibers is preferably 20 or more, more preferably 50 or more, and still more preferably 100 or more, depending on the average fiber length described later. be.
 また、平均繊維幅が、30nmよりも大きくなると可視光の波長の1/10に近づき、マトリックス材料と複合した場合には界面で可視光の屈折及び散乱が生じ易く、可視光の散乱が生じてしまい、後述する透明性が低下する傾向にある。
 例えば、後述する本実施形態の塗料の場合、繊維幅が30nm以下であると、可視光の波長の1/10以下になり、塗料組成物と複合した場合に、光が散乱することなく、透明性の高い塗料が得られるという利点が得られる。
 このため、後述する透明性の観点においては、スルホン化微細セルロース繊維は、平均繊維幅が20nm以下となるように調製されているのが好ましく、より好ましくは10nm以下となるように調製されている。とくに平均繊維幅が10nm以下となるように調製すれば、可視光の散乱をより少なくできるので、高い透明性を有するスルホン化微細セルロース繊維を得ることができる。
In addition, when the average fiber width is larger than 30 nm, it approaches 1/10 of the wavelength of visible light, and when it is combined with a matrix material, refraction and scattering of visible light easily occur at the interface, and scattering of visible light occurs. As a result, transparency, which will be described later, tends to decrease.
For example, in the case of the paint of the present embodiment, which will be described later, if the fiber width is 30 nm or less, the fiber width is 1/10 or less of the wavelength of visible light, and when combined with the paint composition, the light is not scattered and the fiber is transparent. The advantage is that a paint with high toughness can be obtained.
Therefore, from the viewpoint of transparency, which will be described later, the sulfonated fine cellulose fibers are preferably prepared so that the average fiber width is 20 nm or less, more preferably 10 nm or less. . In particular, if the average fiber width is adjusted to 10 nm or less, scattering of visible light can be further reduced, so sulfonated fine cellulose fibers having high transparency can be obtained.
 スルホン化微細セルロース繊維の平均繊維幅は、公知の技術を用いて測定することができる。
 例えば、スルホン化微細セルロース繊維を純水等の溶媒に分散させて、所定の質量%となるように混合溶液を調整する。そしてこの混合溶液を、PEI(ポリエチレンイミン)をコーティングしたシリカ基盤上にスピンコートを行い、このシリカ基盤上のスルホン化微細セルロース繊維を観察する。
 観察方法としては、例えば、走査型プローブ顕微鏡(例えば、島津製作所製;SPM-9700)を用いることができる。得られた観察画像中のスルホン化微細セルロース繊維をランダムに20本選び、各繊維幅を測定し平均化すればスルホン化微細セルロース繊維の平均繊維幅を求めることができる。
The average fiber width of sulfonated microcellulose fibers can be measured using known techniques.
For example, sulfonated fine cellulose fibers are dispersed in a solvent such as pure water to prepare a mixed solution having a predetermined mass %. Then, this mixed solution is spin-coated on a silica substrate coated with PEI (polyethyleneimine), and sulfonated fine cellulose fibers on this silica substrate are observed.
As an observation method, for example, a scanning probe microscope (eg, SPM-9700 manufactured by Shimadzu Corporation) can be used. By randomly selecting 20 sulfonated fine cellulose fibers in the observed image and measuring and averaging the width of each fiber, the average fiber width of the sulfonated fine cellulose fibers can be obtained.
(スルホン化微細セルロース繊維の透明性)
 スルホン化微細セルロース繊維は、上述した平均繊維幅を有する構造であるので、スラリー状態において、所定の透明性を示す。
 例えば、スルホン化微細セルロース繊維は、固形分濃度0.5質量%の状態に調製した際の全光線透過率が90%以上を発揮するものである。この全光線透過率は、より好ましくは95%以上である。
 また、スルホン化微細セルロース繊維は、ヘイズ値においては、固形分濃度0.5質量%の状態に調製した際のヘイズ値が30%以下を発揮するものである。このヘイズ値は、好ましくは20%以下であり、より好ましくは15%以下であり、さらに好ましくは10%以下である。
 測定方法の詳細は後述する。
(Transparency of sulfonated fine cellulose fibers)
Since the sulfonated fine cellulose fibers have a structure having the average fiber width described above, they exhibit a certain level of transparency in a slurry state.
For example, sulfonated fine cellulose fibers exhibit a total light transmittance of 90% or more when prepared to have a solid content concentration of 0.5% by mass. This total light transmittance is more preferably 95% or more.
In addition, the sulfonated fine cellulose fibers exhibit a haze value of 30% or less when prepared to have a solid content concentration of 0.5% by mass. This haze value is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less.
Details of the measurement method will be described later.
(スルホン化微細セルロース繊維の粘度及びチキソトロピー性指数)
 スルホン化微細セルロース繊維は、上述した平均繊維幅を有しており、細長い繊維状(例えば、アスペクト比において、20以上)の構造を有しているので、スラリー状態において、所定の粘度特性を示す。
 例えば、スルホン化微細セルロース繊維は、固形分濃度を0.5質量%とした状態における、B型粘度計を用いて、20℃及び回転数6rpm、3分の条件で測定した粘度が、3000mPa・s(3Pa・s)以上を発揮するものである。
 また、スルホン化微細セルロース繊維は、固形分濃度を0.5質量%とした状態における、B型粘度計を用いて、20℃、回転数6rpmと回転数60rpm、で測定を行い、各々の粘度を算出し、各粘度比(回転数6rpmでの粘度/回転数60rpmでの粘度)から算出されるチキソトロピー性指数が、5.0以上を発揮するものである。
 測定方法の詳細は後述する。
(Viscosity and thixotropic index of sulfonated fine cellulose fibers)
The sulfonated fine cellulose fibers have the above-described average fiber width and have an elongated fibrous structure (for example, the aspect ratio is 20 or more), so that they exhibit predetermined viscosity characteristics in a slurry state. .
For example, the sulfonated fine cellulose fiber has a viscosity of 3000 mPa· when measured using a Brookfield viscometer at a solid content concentration of 0.5% by mass at 20 ° C. and a rotation speed of 6 rpm for 3 minutes. s (3 Pa·s) or more.
In addition, the sulfonated fine cellulose fibers were measured using a Brookfield viscometer at a solid content concentration of 0.5% by mass at 20 ° C. and a rotation speed of 6 rpm and a rotation speed of 60 rpm. is calculated, and the thixotropic index calculated from each viscosity ratio (viscosity at 6 rpm/viscosity at 60 rpm) exhibits 5.0 or more.
Details of the measurement method will be described later.
(水、水溶性溶剤、スルホン化微細セルロース繊維の含有率)
 本実施形態の微細セルロース繊維含有組成物に含有する、水、水溶性溶剤およびスルホン化微細セルロース繊維の含有割合(配合割合)は、とくに限定されないが、以下に示すような割合となるように調製することができる。
(Water, water-soluble solvent, content of sulfonated fine cellulose fibers)
The content ratio (mixture ratio) of water, water-soluble solvent and sulfonated fine cellulose fibers contained in the composition containing fine cellulose fibers of the present embodiment is not particularly limited, but is prepared so as to have the following ratios. can do.
 水の含有量が、スルホン化微細セルロース繊維1質量部に対して20質量部~300質量部となるように配合することができる。好ましくはスルホン化微細セルロース繊維1質量部に対して40質量部以上であり、より好ましくは100質量部以上である。 The content of water can be blended to 20 to 300 parts by mass with respect to 1 part by mass of sulfonated fine cellulose fibers. It is preferably 40 parts by mass or more, more preferably 100 parts by mass or more based on 1 part by mass of the sulfonated fine cellulose fibers.
 水溶性溶剤の含有量は、水100質量部に対して10質量部~300質量部となるように配合することができる。つまり、水溶性溶剤の含有量は、スルホン化微細セルロース繊維1質量部に対して2~900質量部となるように配合することができる。
 水溶性溶剤の含有量は、上記範囲であればよく、好ましくは水100質量部に対して300質量%以下であり、より好ましくは200質量%以下であり、さらに好ましくは150%以下であり、よりさらに好ましくは100%質量%である。一方下限値としては、水100質量部に対して10%質量%以上であり、より好ましくは20質量%以上である。
The content of the water-soluble solvent can be blended so as to be 10 to 300 parts by mass with respect to 100 parts by mass of water. That is, the content of the water-soluble solvent can be blended so as to be 2 to 900 parts by mass with respect to 1 part by mass of the sulfonated fine cellulose fibers.
The content of the water-soluble solvent may be within the above range, preferably 300% by mass or less, more preferably 200% by mass or less, and still more preferably 150% or less with respect to 100 parts by mass of water, Even more preferably, it is 100% by mass. On the other hand, the lower limit is 10% by mass or more, more preferably 20% by mass or more, relative to 100 parts by mass of water.
 例えば、水と水溶性溶剤の混合割合は、質量比(水g/溶剤g)において、0.25~100となるように調製することができる。水20gと水溶性溶剤80gを混合した場合、両者の混合割合(配合割合)は、質量比で0.25となる。 For example, the mixing ratio of water and water-soluble solvent can be adjusted so that the mass ratio (g of water/g of solvent) is 0.25 to 100. When 20 g of water and 80 g of a water-soluble solvent are mixed, the mixing ratio (mixing ratio) of the two is 0.25 in mass ratio.
 本実施形態の微細セルロース繊維含有組成物には、上述した成分以外の成分が含まれていてもよい。任意成分としては、たとえば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、カップリング剤、無機層状化合物、無機化合物、レベリング剤、有機系粒子、帯電防止剤、磁性粉、配向促進剤、可塑剤、防腐剤、架橋剤等を挙げることができる。また、任意成分として、有機イオンを添加してもよい。 The fine cellulose fiber-containing composition of the present embodiment may contain components other than those mentioned above. Optional components include, for example, antifoaming agents, lubricants, ultraviolet absorbers, dyes, pigments, stabilizers, surfactants, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, organic particles, antistatic agents. , magnetic powders, orientation promoters, plasticizers, preservatives, cross-linking agents, and the like. Moreover, you may add an organic ion as an arbitrary component.
 本実施形態の微細セルロース繊維含有組成物は、スルホン化微細セルロース繊維と特定の成分とを組み合わせてもよい。
 例えば、両者を別々に、必要によりその他の成分とも組み合わせて提供することもできる。この場合、スルホン微細セルロース繊維や特定の成分等の組合せ量や比率は、微細セルロース繊維含有組成物における配合量等と同じになるように調整すればよい。
The cellulose microfiber-containing composition of this embodiment may combine sulfonated cellulose microfibers with certain ingredients.
For example, both can be provided separately, optionally in combination with other ingredients. In this case, the combined amounts and ratios of the sulfone fine cellulose fibers and specific components may be adjusted so as to be the same as the compounding amounts of the fine cellulose fiber-containing composition.
 また、本実施形態の微細セルロース繊維含有組成物の形態は、とくに制限されるものではない。例えば、スラリーや分散体など種々の形態で存在することができる。 Further, the form of the fine cellulose fiber-containing composition of the present embodiment is not particularly limited. For example, they can exist in various forms such as slurries and dispersions.
(透明性について)
 従来の技術では、微細セルロース繊維と水溶性溶剤とを混合した場合、水溶性溶剤の影響により微細セルロース繊維の分散性が低下して、微細セルロース繊維の凝集体(ダマ)を形成することが知られている。
 しかし、本実施形態の微細セルロース繊維含有組成物では、上記のごとき構造を有するスルホン化微細セルロース繊維を含有させることにより、水溶性溶剤の存在下においても、スルホン化微細セルロース繊維の凝集性を抑制し、優れた分散性を発揮させることができる。
 本実施形態の微細セルロース繊維含有組成物中におけるスルホン微細セルロース繊維の分散状態は、透明性で評価することができる。
(About transparency)
In the prior art, when fine cellulose fibers are mixed with a water-soluble solvent, it is known that the dispersibility of the fine cellulose fibers is reduced due to the influence of the water-soluble solvent, resulting in the formation of aggregates (lumps) of the fine cellulose fibers. It is
However, in the fine cellulose fiber-containing composition of the present embodiment, by containing the sulfonated fine cellulose fibers having the structure described above, cohesiveness of the sulfonated fine cellulose fibers is suppressed even in the presence of a water-soluble solvent. and excellent dispersibility.
The dispersion state of the sulfone fine cellulose fibers in the fine cellulose fiber-containing composition of the present embodiment can be evaluated by transparency.
 本明細書における透明性とは、液体の透明性と濁りの両方またはいずれか一方の性質を含んだ概念である。つまり、本明細書における透明性の評価は、ヘイズ値で液体の濁りをより適切に評価することができ、全光線透過率で透明性をより適切に評価することができる。 The term "transparency" as used herein is a concept that includes both or either of the properties of liquid transparency and turbidity. That is, in the evaluation of transparency in this specification, the haze value can be used to more appropriately evaluate the turbidity of the liquid, and the total light transmittance can be used to more appropriately evaluate the transparency.
(微細セルロース繊維含有組成物の全光線透過率)
 例えば、本実施形態の微細セルロース繊維含有組成物は、スルホン化微細セルロース繊維が固形分濃度0.5質量%の状態に調製した際の全光線透過率が90%以上である。この全光線透過率は、より好ましくは95%以上である。
(Total light transmittance of fine cellulose fiber-containing composition)
For example, the fine cellulose fiber-containing composition of the present embodiment has a total light transmittance of 90% or more when the sulfonated fine cellulose fibers are prepared to have a solid content concentration of 0.5% by mass. This total light transmittance is more preferably 95% or more.
(微細セルロース繊維含有組成物のヘイズ値)
 また上述したようにヘイズ値は、液体の濁りを評価することができることから、全光線透過率と同様に、本実施形態の微細セルロース繊維含有組成物中におけるスルホン化微細セルロース繊維の分散性を評価することができる。
 例えば、本実施形態の微細セルロース繊維含有組成物は、スルホン化微細セルロース繊維が固形分濃度0.5質量%の状態に調製した際のヘイズ値が30%以下である。好ましくはヘイズ値が20%以下であり、より好ましくはヘイズ値が15%以下であり、さらに好ましくはヘイズ値が10%以下である。
(Haze value of fine cellulose fiber-containing composition)
Further, as described above, the haze value can evaluate the turbidity of the liquid, and therefore, like the total light transmittance, the dispersibility of the sulfonated fine cellulose fibers in the fine cellulose fiber-containing composition of the present embodiment can be evaluated. can do.
For example, the fine cellulose fiber-containing composition of the present embodiment has a haze value of 30% or less when the sulfonated fine cellulose fibers are prepared to have a solid content concentration of 0.5% by mass. The haze value is preferably 20% or less, more preferably 15% or less, even more preferably 10% or less.
 本実施形態の微細セルロース繊維含有組成物のヘイズ値が30%以下の場合、水溶性溶剤存在下、スルホン化微細セルロース繊維が適切に分散した状態を維持しているので、後述する本実施形態の微細セルロース繊維含有組成物を含有する塗料の場合、取り扱い性が向上する。また微細セルロース繊維含有組成物が透明性を有しているので、塗料の色を適切に発揮させることができる。例えば、顔料が入っていない塗料(透明塗料)の場合、塗工後の膜が良好な透明性を発揮させることができる。また、全光線透過率を90%以上とすることで、塗膜としたときの透明塗料としての効果が発揮させ易くなるという利点も得られる。 When the composition containing fine cellulose fibers of the present embodiment has a haze value of 30% or less, the sulfonated fine cellulose fibers are maintained in an appropriately dispersed state in the presence of a water-soluble solvent. In the case of a paint containing a fine cellulose fiber-containing composition, handleability is improved. Moreover, since the fine cellulose fiber-containing composition has transparency, the color of the paint can be exhibited appropriately. For example, in the case of paint containing no pigment (transparent paint), the film after coating can exhibit good transparency. In addition, by setting the total light transmittance to 90% or more, there is also the advantage that the effect of a transparent paint when formed into a coating film can be easily exhibited.
 上述したように、本実施形態の微細セルロース繊維含有組成物が上記のごとき透明性を有しているということは、含有するスルホン化微細セルロース繊維が優れた分散性を有しているということである。そして、このような優れた分散性を有するスルホン化微細セルロース繊維は、分散性に適した構造を有している。つまり、本実施形態の微細セルロース繊維含有組成物が上記のごとき透明性を有しているということは、含有するスルホン化微細セルロース繊維が上述した所定の構造を有しているということである。
 そして、本実施形態の微細セルロース繊維含有組成物が上記のごとき透明性を有していれば、スルホン化微細セルロース繊維は、水溶性溶剤の存在下、分散した状態を維持することができる構造になっている。
As described above, the fact that the fine cellulose fiber-containing composition of the present embodiment has the transparency as described above means that the contained sulfonated fine cellulose fibers have excellent dispersibility. be. The sulfonated fine cellulose fibers having such excellent dispersibility have a structure suitable for dispersibility. That is, the fact that the fine cellulose fiber-containing composition of the present embodiment has the transparency as described above means that the contained sulfonated fine cellulose fibers have the above-described predetermined structure.
If the composition containing fine cellulose fibers of the present embodiment has transparency as described above, the sulfonated fine cellulose fibers have a structure capable of maintaining a dispersed state in the presence of a water-soluble solvent. It's becoming
(透明性の測定方法)
 全光線透過率およびヘイズ値の測定方法は、後述する実施例に記載の分光ヘイズメータを用いた方法により測定することができる。
 例えば、スルホン化微細セルロース繊維を所定の濃度に分散させた本実施形態の微細セルロース繊維含有組成物をJIS K 7105に準拠して分光光度計を用いて測定することによりヘイズ値および全光線透過率を求めることができる。
(Transparency measuring method)
The total light transmittance and haze value can be measured by a method using a spectroscopic haze meter described in Examples below.
For example, the composition containing fine cellulose fibers of the present embodiment in which sulfonated fine cellulose fibers are dispersed at a predetermined concentration is measured using a spectrophotometer in accordance with JIS K 7105 to determine the haze value and total light transmittance. can be asked for.
(粘性およびチキソトロピー性指数)
 本実施形態の微細セルロース繊維含有組成物は、所定の粘度特性を有するものが好ましい。具体的には、本実施形態の微細セルロース繊維含有組成物は、所定の粘度、チキソトロピー性指数を有するように調製されている。
(viscous and thixotropic index)
The fine cellulose fiber-containing composition of the present embodiment preferably has predetermined viscosity characteristics. Specifically, the fine cellulose fiber-containing composition of the present embodiment is prepared to have a predetermined viscosity and thixotropic index.
 粘度としては、例えば、スルホン化微細セルロース繊維の固形分濃度を0.5質量%とした状態における、B型粘度計を用いて、20℃及び回転数6rpm、3分の条件で測定した粘度が、3000mPa・s(3Pa・s)以上、40,000mPa・s(40Pa・s)以下である(実施例1~5参照)。
 上記粘度の上限値は、好ましくは35,000mPa・s(35Pa・s)以下であり、より好ましくは10,000mPa・s(10Pa・s)以下である。一方、上記粘度の下限値は、3,000よりも高いのが好ましくは、より好ましくは4,000mPa・s(4Pa・s)以上であり、さらに好ましくは5,000mPa・s(5Pa・s)以上であり、さらにより好ましくは6,000mPa・s(6Pa・s)以上である。
As the viscosity, for example, the viscosity measured at 20° C., 6 rpm, and 3 minutes using a Brookfield viscometer in a state where the solid content concentration of the sulfonated fine cellulose fibers is 0.5% by mass. , 3000 mPa·s (3 Pa·s) or more and 40,000 mPa·s (40 Pa·s) or less (see Examples 1 to 5).
The upper limit of the viscosity is preferably 35,000 mPa·s (35 Pa·s) or less, more preferably 10,000 mPa·s (10 Pa·s) or less. On the other hand, the lower limit of the viscosity is preferably higher than 3,000, more preferably 4,000 mPa·s (4 Pa·s) or more, and still more preferably 5,000 mPa·s (5 Pa·s). or more, and more preferably 6,000 mPa·s (6 Pa·s) or more.
 チキソトロピー性指数としては、例えば、スルホン化微細セルロース繊維の固形分濃度を0.5質量%の状態における、B型粘度計を用いて、20℃、回転数6rpmと回転数60rpm、で測定を行い、各々の粘度を算出し、各粘度比(回転数6rpmでの粘度/回転数60rpmでの粘度)から算出されるチキソトロピー性指数が、5.0以上であり、好ましく7.0以上である(実施例1~5参照)。 The thixotropic index is measured, for example, using a Brookfield viscometer at a solid content concentration of 0.5% by mass of the sulfonated fine cellulose fibers at 20° C. at 6 rpm and 60 rpm. , Each viscosity is calculated, and the thixotropic index calculated from each viscosity ratio (viscosity at a rotation speed of 6 rpm/viscosity at a rotation speed of 60 rpm) is 5.0 or more, preferably 7.0 or more ( See Examples 1-5).
 このような本実施形態の微細セルロース繊維含有組成物の粘度特性は、含有するスルホン化微細セルロース繊維の繊維構造に起因するものと推測する。つまり、スルホン化微細セルロース繊維が上述した所定の構造を有することにより、微細セルロース繊維含有組成物においてかかる特性を発揮させることができるものと推測する。
 本実施形態の微細セルロース繊維含有組成物が上記のごとき優れた粘度特性を発揮するので、対象液体に対して、かかる粘度特性に基づく作用効果を付与することができる。
Such viscosity characteristics of the composition containing fine cellulose fibers of the present embodiment are presumed to be due to the fiber structure of the sulfonated fine cellulose fibers contained therein. In other words, it is speculated that the sulfonated fine cellulose fibers having the above-described predetermined structure can exhibit such characteristics in the fine cellulose fiber-containing composition.
Since the fine cellulose fiber-containing composition of the present embodiment exhibits excellent viscosity characteristics as described above, it is possible to impart effects based on such viscosity characteristics to the target liquid.
<本実施形態の塗料>
 本実施形態の塗料は、上述した本実施形態の微細セルロース繊維含有組成物を含有する塗料である。
 本実施形態の塗料が本実施形態の微細セルロース繊維含有組成物を含有しているので、本実施形態の微細セルロース繊維含有組成物の粘度特性を下限値以上とすることにより、塗膜としたときの繊維の分散性や、ヤング率や強度を好適化することができる。このため、塗工性や塗膜性能を向上させることができる。以下、具体的に説明する。
<Paint of this embodiment>
The paint of this embodiment is a paint containing the composition containing fine cellulose fibers of this embodiment described above.
Since the coating material of the present embodiment contains the composition containing fine cellulose fibers of the present embodiment, the viscosity characteristic of the composition containing fine cellulose fibers of the present embodiment is set to the lower limit value or higher, so that when a coating film is formed, It is possible to optimize the dispersibility of the fibers, Young's modulus and strength. Therefore, coatability and coating performance can be improved. A specific description will be given below.
(微細セルロース繊維含有組成物の含有率)
 本実施形態の塗料における、本実施形態の微細セルロース繊維含有組成物の含有割合(含有率)は、本実施形態の塗料中におけるスルホン化微細セルロース繊維の含有率が以下に示す範囲内であれば、とくに限定されない。
(Content of fine cellulose fiber-containing composition)
The content ratio (content rate) of the fine cellulose fiber-containing composition of the present embodiment in the paint of the present embodiment is as long as the content of the sulfonated fine cellulose fibers in the paint of the present embodiment is within the range shown below. , is not particularly limited.
 例えば、スルホン化微細セルロース繊維の含有率は、本実施形態の塗料中において0.05質量%~10質量%となるように調製する。そして、スルホン化微細セルロース繊維の含有率では、本実施形態の塗料全量において、0.05質量%~10質量%となるように調製する。
 スルホン化微細セルロース繊維の含有率の下限値は、0.05質量%以上となるように調製するのが好ましく、より好ましくは0.1質量%以上であり、さらに好ましくは0.3質量%以上である。一方、上限値としては、10質量%以下が好ましく、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下である。
For example, the content of the sulfonated fine cellulose fibers in the paint of this embodiment is adjusted to 0.05% by mass to 10% by mass. The content of the sulfonated fine cellulose fibers is adjusted to 0.05% by mass to 10% by mass in the total amount of the paint of this embodiment.
The lower limit of the content of the sulfonated fine cellulose fibers is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass or more. is. On the other hand, the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less.
 例えば、本実施形態の塗料は、スルホン化微細セルロース繊維の固形分濃度が1%の本実施形態の微細セルロース繊維含有組成物と、混合用塗料と、を混合し調製することができる。前者を20g、後者を80gとなるように混合した場合、質量比(微細セルロース繊維含有組成物g/混合用塗料g)において、20g/80g(0.25)となる。この場合、本実施形態の塗料中におけるスルホン化微細セルロース繊維の含有率は、((20×0.01)/100)×100=0.2質量%となる。 For example, the paint of the present embodiment can be prepared by mixing the fine cellulose fiber-containing composition of the present embodiment in which the solid content concentration of sulfonated fine cellulose fibers is 1%, and a mixing paint. When 20 g of the former and 80 g of the latter are mixed, the mass ratio (g of fine cellulose fiber-containing composition/g of paint for mixing) is 20 g/80 g (0.25). In this case, the content of sulfonated fine cellulose fibers in the paint of this embodiment is ((20×0.01)/100)×100=0.2% by mass.
(樹脂)
 本実施形態の塗料は、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂などの樹脂を含んでもよい。
 樹脂としては、例えば、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、非晶性フッ素系樹脂、ロジン系樹脂、ニトロセルロース、塩化ビニル系樹脂、塩化ゴム系樹脂、酢酸ビニル樹脂、フェノール樹脂、エポキシ樹脂等が挙げられるがこれらに制限されない。
(resin)
The paint of the present embodiment may contain a resin such as a thermoplastic resin, a thermosetting resin, or a photocurable resin.
Examples of resins include styrene resins, acrylic resins, aromatic polycarbonate resins, aliphatic polycarbonate resins, aromatic polyester resins, aliphatic polyester resins, aliphatic polyolefin resins, cyclic olefin resins, and polyamides. resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, amorphous fluorine resin, rosin resin, nitrocellulose, vinyl chloride resin, chlorinated rubber resin, vinyl acetate resin, Examples include, but are not limited to, phenolic resins, epoxy resins, and the like.
 樹脂の含有量は、スルホン化微細セルロース繊維1質量部に対して、30質量部以上が好ましく、より好ましくは70質量部以上であり、さらに好ましくは100質量部以上である。また、樹脂の含有量の上限値は、スルホン化微細セルロース繊維1質量部に対して、500質量部以下が好ましく、より好ましくは300質量部以下であり、さらに好ましくは200質量部以下である。樹脂を上記含有量となるように含有させることで、上記特定成分の効果を好適に発揮させ、塗工性や塗膜の平滑性、弾性率や強度の好適化などを実現することができる。 The resin content is preferably 30 parts by mass or more, more preferably 70 parts by mass or more, and still more preferably 100 parts by mass or more, relative to 1 part by mass of the sulfonated fine cellulose fibers. The upper limit of the resin content is preferably 500 parts by mass or less, more preferably 300 parts by mass or less, and still more preferably 200 parts by mass or less per 1 part by mass of the sulfonated fine cellulose fibers. By including the resin in such a content as described above, the effect of the specific component can be suitably exhibited, and coatability, smoothness of the coating film, and optimization of elastic modulus and strength can be realized.
(硬化剤)
 本実施形態の塗料は、硬化剤を含有してもよい。
 硬化剤としては、公知のものを適宜使用することができるが、例えば、イソシアネート系硬化剤(ポリイソシアネート等)、エポキシ(オキシラン)系硬化剤、オキセタン系硬化剤等が挙げられる。本発明においては、中でも、イソシアネート系硬化剤が好ましい。
(curing agent)
The paint of this embodiment may contain a curing agent.
As the curing agent, a known one can be appropriately used, and examples thereof include isocyanate curing agents (polyisocyanate, etc.), epoxy (oxirane) curing agents, oxetane curing agents, and the like. In the present invention, isocyanate-based curing agents are particularly preferred.
 硬化剤の含有量は、スルホン化微細セルロース繊維1質量部に対して、10質量部以上であることが好ましく、より好ましくは20質量部以上であり、さらに好ましくは30質量部以上である。また、硬化剤の含有量の上限値は、スルホン化微細セルロース繊維1質量部に対して、100質量部以下が好ましく、より好ましくは80質量部以下であり、さらに好ましくは60質量部以下である。硬化剤を上記含有量となるように含有させることで、上記特定成分の効果を好適に発揮させ、塗工性や塗膜の平滑性、弾性率の好適化などを実現することができる。 The content of the curing agent is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 30 parts by mass or more with respect to 1 part by mass of the sulfonated fine cellulose fibers. In addition, the upper limit of the content of the curing agent is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 60 parts by mass or less with respect to 1 part by mass of the sulfonated fine cellulose fibers. . By including the curing agent in the above content, the effect of the above specific component can be favorably exhibited, and coatability, smoothness of the coating film, optimization of elastic modulus, and the like can be realized.
 本実施形態の塗料には、上述した成分以外の成分が含まれていてもよい。その他成分としては、たとえば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、カップリング剤、無機層状化合物、無機化合物、レベリング剤、有機系粒子、帯電防止剤、磁性粉、配向促進剤、可塑剤、防腐剤、架橋剤等を挙げることができる。また、任意成分として、有機イオンを添加してもよい。 The paint of this embodiment may contain components other than the components described above. Other components include, for example, antifoaming agents, lubricants, ultraviolet absorbers, dyes, pigments, stabilizers, surfactants, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, organic particles, antistatic agents. , magnetic powders, orientation promoters, plasticizers, preservatives, cross-linking agents, and the like. Moreover, you may add an organic ion as an arbitrary component.
(粘性およびチキソトロピー性指数)
 本実施形態の塗料は、所定の粘度特性(粘度、チキソトロピー性)を有するものが好ましい。かかる粘度特性を発揮することにより、取り扱い性を向上させることができる。
(viscous and thixotropic index)
The paint of the present embodiment preferably has predetermined viscosity characteristics (viscosity, thixotropy). By exhibiting such viscosity characteristics, handleability can be improved.
 粘度としては、例えば、スルホン化微細セルロース繊維の固形分濃度を0.1質量%~1.0質量%とした状態における、B型粘度計を用いて、20℃及び回転数6rpm、3分の条件で測定した粘度が、10mPa・s(0.01Pa・s)以上となるように調製することができる(実施例8~10参照)。
 上記粘度の上限値は、とくに限定されないが、塗工性に影響を与えない程度の粘性を有するように調製するのが好ましい。例えば、塗工性の観点から、本実施形態の塗料の粘度は、上限が4,000mPa・s(4Pa・s)以下が好ましく、より好ましくは3,000mPa・s(3Pa・s)以下であり、さらに好ましくは2,000mPa・s(2Pa・s)以下であり、さらにより好ましくは1,000mPa・s(1Pa・s)以下である。
 一方、上記粘度の下限値は、塗工性の観点から、10mPa・s(0.01Pa・s)以上が好ましく、より好ましくは100mPa・s(0.1Pa・s)以上であり、さらに好ましくは300mPa・s(0.3Pa・s)以上であり、さらにより好ましくは500mPa・s(0.5Pa・s)以上である。
As the viscosity, for example, using a Brookfield viscometer in a state where the solid content concentration of the sulfonated fine cellulose fibers is 0.1% by mass to 1.0% by mass, 20 ° C. and rotation speed 6 rpm, 3 minutes Viscosity measured under conditions can be adjusted to 10 mPa·s (0.01 Pa·s) or more (see Examples 8 to 10).
Although the upper limit of the viscosity is not particularly limited, it is preferable to prepare the viscosity so as not to affect the coatability. For example, from the viewpoint of coatability, the upper limit of the viscosity of the paint of the present embodiment is preferably 4,000 mPa s (4 Pa s) or less, more preferably 3,000 mPa s (3 Pa s) or less. , more preferably 2,000 mPa·s (2 Pa·s) or less, and still more preferably 1,000 mPa·s (1 Pa·s) or less.
On the other hand, the lower limit of the viscosity is preferably 10 mPa s (0.01 Pa s) or more, more preferably 100 mPa s (0.1 Pa s) or more, and still more preferably It is 300 mPa·s (0.3 Pa·s) or more, and more preferably 500 mPa·s (0.5 Pa·s) or more.
 チキソトロピー性指数としては、例えば、スルホン化微細セルロース繊維の固形分濃度を0.1質量%~1.0質量%とした状態における、B型粘度計を用いて、20℃、回転数6rpmと回転数60rpm、で測定を行い、各々の粘度を算出し、各粘度比(回転数6rpmでの粘度/回転数60rpmでの粘度)から算出されるチキソトロピー性指数が、1.5以上であり、好ましく2.0以上である(実施例8~10参照)。 As the thixotropic index, for example, using a Brookfield viscometer in a state where the solid content concentration of the sulfonated fine cellulose fiber is 0.1% by mass to 1.0% by mass, 20 ° C., 6 rpm and rotation A thixotropic index calculated from each viscosity ratio (viscosity at 6 rpm/viscosity at 60 rpm) is preferably 1.5 or more, preferably 2.0 or more (see Examples 8-10).
(塗膜)
 本実施形態の塗料は、塗工すれば、塗膜を形成することができる。例えば、本実施形態の塗料を基材上に塗工する工程とこれを乾燥する工程により塗膜を形成することができる。なお、形成した塗膜は基材から剥離して、シート状にして用いていもよい。また、本実施形態の塗料を抄紙することによりシート状に形成してもよい。
(Coating film)
The paint of the present embodiment can form a coating film when applied. For example, a coating film can be formed by a step of applying the coating material of the present embodiment onto a substrate and a step of drying it. The formed coating film may be peeled off from the base material and used in the form of a sheet. Moreover, you may form into a sheet form by paper-making the coating material of this embodiment.
 このようにして形成された塗膜の厚さは特に限定されないが、塗料としての利用形態を考慮するときには、1000μm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましく、100μm以下であることがさらに好ましく、80μm以下であることが特に好ましい。下限値としては、1μm以上が好ましく、5μm以上がより好ましく、10μm以上が特に好ましい。 The thickness of the coating film thus formed is not particularly limited, but when considering the form of use as a paint, it is preferably 1000 μm or less, more preferably 500 μm or less, and 300 μm or less. is more preferable, 100 μm or less is more preferable, and 80 μm or less is particularly preferable. The lower limit is preferably 1 µm or more, more preferably 5 µm or more, and particularly preferably 10 µm or more.
 塗膜の透明性は、とくに限定されない。
 例えば、全光線透過率が高い、もしくはヘイズ値が低いことが好ましい。全光線透過率としては、例えば、80%以上が好ましい。また、高い透明性を有するメタクリル製のフィルムの全光線透過率(%)が90%程度であることから、同等の透明性を発揮させる場合には、90%以上がより好ましく、95%以上であることがさらに好ましい。
 ヘイズ値としては、例えば30%以下が好ましい。また、汎用樹脂であるポリエチレン製のフィルムのヘイズ値(%)は20%程度あることから、同等の透明性を発揮させる場合には、20%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
The transparency of the coating film is not particularly limited.
For example, it preferably has a high total light transmittance or a low haze value. For example, the total light transmittance is preferably 80% or more. In addition, since the total light transmittance (%) of a methacrylic film having high transparency is about 90%, it is more preferably 90% or more, and 95% or more when exhibiting the same transparency. It is even more preferable to have
The haze value is preferably 30% or less, for example. In addition, since the haze value (%) of a film made of polyethylene, which is a general-purpose resin, is about 20%, it is more preferably 20% or less, more preferably 10% or less, when exhibiting the same transparency. % or less is particularly preferred.
 なお、本実施形態の塗料が不透明性を発揮する樹脂を含有する場合、乾燥後の膜の透明度としては、塗工後の塗工膜の全光線透過率が90%以上であり、ヘイズ値が30%以下であればよい。 In the case where the paint of the present embodiment contains a resin that exhibits opacity, the transparency of the film after drying is such that the total light transmittance of the coated film after coating is 90% or more, and the haze value is 30% or less is sufficient.
 塗膜のヤング率は特に限定されないが、より高いヤング率とすることを考慮するとき、例えば、0.3GPa以上であることが好ましく、0.5GPa以上であることがより好ましく、0.7GPa以上であることがさらに好ましく、0.8GPa以上であることが特に好ましい。上限値としては、8GPa以下であることが実際的である。本発明によれば、このような高いヤング率を達成できるため、高弾性率が要求される用途において好適に対応することができる。 The Young's modulus of the coating film is not particularly limited, but when considering a higher Young's modulus, for example, it is preferably 0.3 GPa or more, more preferably 0.5 GPa or more, and 0.7 GPa or more. is more preferable, and 0.8 GPa or more is particularly preferable. It is practical that the upper limit is 8 GPa or less. Since the present invention can achieve such a high Young's modulus, it can be suitably applied to applications requiring a high elastic modulus.
 塗膜のヤング率は、引張試験機テンシロン(エー・アンド・デイ社製)を用いて、つかみ具間の試験片長さを50mm、引張速度を5mm/分とする以外はJIS P 8113:2006に準拠して測定する。
 ヤング率を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いる。測定は1水準につき5回行い、その平均値を採用する。
The Young's modulus of the coating film was measured using a tensile tester Tensilon (manufactured by A&D Co., Ltd.) according to JIS P 8113:2006 except that the test piece length between the grips was 50 mm and the tensile speed was 5 mm / min. Measure in compliance.
When measuring the Young's modulus, a test piece conditioned at 23° C. and a relative humidity of 50% for 24 hours is used. The measurement is performed 5 times per level, and the average value is adopted.
 塗膜の速乾性は、とくに限定されない。
 例えば、作業性の観点においては、速乾性が高いことが好ましい。例えば、50℃に設定した乾燥機を使用して乾燥させた場合に、10分後の溶媒の揮発に起因する質量が乾燥前の質量の70%以下が好ましく、60%以下がより好ましく、50%以下がさらに好ましい。
The quick-drying property of the coating film is not particularly limited.
For example, from the viewpoint of workability, it is preferable that the quick-drying property is high. For example, when dried using a dryer set at 50 ° C., the mass due to volatilization of the solvent after 10 minutes is preferably 70% or less of the mass before drying, more preferably 60% or less, 50 % or less is more preferable.
<本実施形態の増粘剤>
 本実施形態の増粘剤は、上述した本実施形態の微細セルロース繊維含有組成物を含有する増粘剤である。本実施形態の増粘剤は、様々な用途に使用することができる。例えば、化粧品用剤や保湿クリーム用剤などの皮膚用薬用剤等に混合等して使用することができる。
 本実施形態の増粘剤が本実施形態の微細セルロース繊維含有組成物を含有しているので、本実施形態の微細セルロース繊維含有組成物の粘度特性を下限値以上とすることにより、塗布性を向上させることができる。以下、具体的に説明する。
<Thickening agent of the present embodiment>
The thickener of the present embodiment is a thickener containing the fine cellulose fiber-containing composition of the present embodiment described above. The thickener of this embodiment can be used for various purposes. For example, it can be used by mixing with skin medicinal agents such as cosmetic agents and moisturizing cream agents.
Since the thickener of the present embodiment contains the fine cellulose fiber-containing composition of the present embodiment, by setting the viscosity characteristics of the fine cellulose fiber-containing composition of the present embodiment to the lower limit or more, the applicability is improved. can be improved. A specific description will be given below.
 本実施形態の微細セルロース繊維含有組成物の含有割合は、とくに限定されない。例えば、スルホン化微細セルロース繊維の含有量が、全量(増粘剤の全量)に対して0.1質量%以上となるように調製する。より具体的には、全量(増粘剤の全量)に対して1質量%以上であり、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上である。この含有量は、30質量%以上、40質量%以上、50質量%以上、55質量%以上でもよく90質量%であっても95質量%であってもよい。なお、取り扱い性の観点から、本実施形態の微細セルロース繊維含有組成物の含有量は、90質量%以下が好ましい。
 とくに、本実施形態の増粘剤は、含有する本実施形態の微細セルロース繊維含有組成物の量が、増粘剤の全体量に対して80質量%以上となるように調製するのが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。
The content ratio of the fine cellulose fiber-containing composition of the present embodiment is not particularly limited. For example, the content of the sulfonated fine cellulose fibers is adjusted to 0.1% by mass or more based on the total amount (the total amount of the thickener). More specifically, it is 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more with respect to the total amount (total amount of the thickener). is. This content may be 30% by mass or more, 40% by mass or more, 50% by mass or more, 55% by mass or more, or 90% by mass or 95% by mass. From the viewpoint of handleability, the content of the fine cellulose fiber-containing composition of the present embodiment is preferably 90% by mass or less.
In particular, the thickener of the present embodiment is preferably prepared so that the amount of the fine cellulose fiber-containing composition of the present embodiment contained is 80% by mass or more with respect to the total amount of the thickener. It is more preferably 90% by mass or more, and still more preferably 95% by mass or more.
 本実施形態の増粘剤は、含有する本実施形態の微細セルロース繊維含有組成物の粘度特性として上述したチキソトロピー性指数を発揮するものが好ましい。
 本実施形態の増粘剤を化粧品用剤や保湿クリーム用剤などの皮膚用薬用剤等に混合・添加等して使用する場合、使用する際の撹拌等によるせん断応力により粘度が低下し、塗布し易くさせることができ、塗布後は粘度が回復して定着性を向上させることができるという利点が得られる。なお、このような塗布のし易さと塗布後の粘性回復という性質をまとめて塗布性という。
The thickener of the present embodiment preferably exhibits the thixotropic index described above as the viscosity characteristic of the composition containing fine cellulose fibers of the present embodiment.
When the thickener of the present embodiment is used by mixing or adding it to a skin medicinal agent such as a cosmetic agent or a moisturizing cream agent, the viscosity is reduced due to shear stress caused by stirring during use, and the viscosity is reduced. It is advantageous in that the viscosity can be recovered after application and the fixability can be improved. The ease of application and recovery of viscosity after application are collectively referred to as application properties.
 また、日焼け止め化粧料は、一般的に紫外線散乱剤として酸化チタンや酸化亜鉛等の金属やこれらの誘導体を含有するものが多い。このような日焼け止め化粧料は、静置状態において、酸化チタン等の物質が沈降し分離した状態になる。このため、使用する際にはしっかりとふって酸化チタン等の紫外線防止材を分散させる必要がある。また、ふる行為が不十分な場合には日焼け止め機能を適切に発揮させることができないことがある。その他同様に、物質が沈降し使用する際にしっかりと振る必要性がある化粧料としては、後述する実施例に記載のマイカや酸化亜鉛、タルク、ヒドロキシアパタイト、ケイ酸アルミニウム等が等の皮脂吸着成分を含有した化粧水や乳液等があげられる。
 一方、本実施形態の増粘剤を上記のような化粧料に添加等して使用すれば、静置状態において、上記のような有用成分の沈降を抑制することができる。つまり、使用時に紫外線防止材を均一に分散させるためにふったりするといった行為を行わなくても紫外線防止材を均一に分散した状態を維持することができる。このため、静置状態からそのまま使用しても、紫外線等からの皮膚の保護性能を適切に発揮させることができるという利点が得られる。
 つまり、本実施形態の増粘剤を混合や添加等して使用すれば、他の有用成分などの分散安定剤としても機能させることができる。
In addition, many sunscreen cosmetics generally contain metals such as titanium oxide and zinc oxide, and derivatives thereof, as UV scattering agents. In such a sunscreen cosmetic, a substance such as titanium oxide settles and separates when left standing. For this reason, it is necessary to shake firmly before use to disperse the anti-ultraviolet material such as titanium oxide. In addition, when the action of shaking is insufficient, the sunscreen function may not be exhibited appropriately. Similarly, other cosmetics that require sebum adsorption such as mica, zinc oxide, talc, hydroxyapatite, aluminum silicate, etc., described in the examples described later, are sebum-adsorbing materials that settle and need to be shaken firmly when used. Examples include lotions and milky lotions containing ingredients.
On the other hand, if the thickener of the present embodiment is used by adding it to the cosmetics as described above, it is possible to suppress the sedimentation of the useful ingredients as described above in a still state. In other words, the uniformly dispersed state of the UV inhibitor can be maintained without performing an action such as shaking to uniformly disperse the UV inhibitor during use. For this reason, even if it is used as it is in a stationary state, it is possible to obtain the advantage that the skin protection performance from ultraviolet rays and the like can be appropriately exhibited.
In other words, if the thickener of the present embodiment is mixed or added and used, it can function as a dispersion stabilizer for other useful ingredients.
<スルホン化微細セルロース繊維の製造方法>
 本実施形態の微細セルロース繊維含有組成物に含まれるスルホン化微細セルロース繊維の製造方法は、以下に示す製法(スルホン化パルプ製法)により製造されたスルホン化パルプを微細化処理することにより製造することができるが、かかる製法に限定されない。
<Method for producing sulfonated fine cellulose fibers>
The method for producing the sulfonated fine cellulose fibers contained in the fine cellulose fiber-containing composition of the present embodiment involves finely treating sulfonated pulp produced by the following production method (sulfonated pulp production method). However, it is not limited to such a manufacturing method.
 このスルホン化パルプ製法の概略は、セルロースを含む繊維原料(例えば木材パルプなど)を化学処理工程に供することによって本実施形態の再分散性パルプに含まれるスルホン化パルプ(以下、単にスルホン化パルプという)を製造する方法である。 The outline of this sulfonated pulp manufacturing method is that the sulfonated pulp contained in the redispersible pulp of the present embodiment (hereinafter simply referred to as sulfonated pulp) is obtained by subjecting a fibrous raw material containing cellulose (for example, wood pulp) to a chemical treatment process. ) is a method of manufacturing.
 この化学処理工程は、供給された繊維原料を反応液に接触(接触工程)させた後、加熱反応(反応工程)に供してセルロースの水酸基をスルホン化させるという方法である。
 本明細書において、繊維原料とは、セルロース分子を含む繊維状のパルプなどをいう。パルプとは、複数のセルロース繊維が集合した繊維状の部材である。このセルロース繊維は、複数の微細繊維(例えば、ミクロフィブリル等)が集合したものである。そして、この微細繊維とは、D-グルコースがβ(1→4)グリコシド結合した鎖状の高分子であるセルロース分子(以下、単にセルロースということもある)が複数集合したものである。
This chemical treatment step is a method of bringing the supplied fiber raw material into contact with a reaction solution (contact step) and then subjecting it to a heating reaction (reaction step) to sulfonate the hydroxyl groups of cellulose.
As used herein, the fiber raw material refers to a fibrous pulp or the like containing cellulose molecules. Pulp is a fibrous member in which a plurality of cellulose fibers are aggregated. The cellulose fibers are aggregates of a plurality of fine fibers (for example, microfibrils). The fine fibers are aggregates of a plurality of cellulose molecules (hereinafter sometimes simply referred to as cellulose), which are chain polymers in which D-glucose is β(1→4) glycoside-bonded.
 なお、用いられる繊維原料は、事前に洗浄することが好ましい。例えば、200メッシュもしくは235メッシュのふるい上で水を使ってろ過脱水することで、微細繊維やゴミをふるい落とすことができ、製造時の取扱性が向上するため望ましい。言い換えれば、200メッシュや235メッシュの残渣となり得るサイズのセルロース繊維が集合した繊維がパルプである。繊維原料については詳細を後述する。 It should be noted that it is preferable to wash the fiber raw material to be used in advance. For example, filtration and dehydration using water on a 200-mesh or 235-mesh sieve is desirable because fine fibers and dust can be sieved out, and handleability during production is improved. In other words, pulp is an aggregate of cellulose fibers having a size of 200 mesh or 235 mesh that can be a residue. Details of the fiber raw material will be described later.
 化学処理工程は、上述したようにパルプ等のセルロースを含む繊維原料のセルロース繊維に対してスルホ基を有するスルホン化剤であるスルファミン酸と尿素を接触させる接触工程と、この接触工程後のパルプに含まれるセルロース繊維の水酸基の少なくとも一部にスルホ基を置換導入する反応工程とを含んでいる。以下、各工程を順に説明する。 As described above, the chemical treatment step includes a contact step of contacting cellulose fibers of a fiber raw material containing cellulose such as pulp with sulfamic acid, which is a sulfonating agent having a sulfo group, and urea, and the pulp after this contact step. and a reaction step of substituting and introducing a sulfo group into at least part of the hydroxyl groups of the cellulose fibers contained. Each step will be described in order below.
(接触工程)
 接触工程は、セルロースを含む繊維原料に対してスルファミン酸と尿素を接触させる工程である。この接触工程は、上記接触を起こさせることができる方法であれば、とくに限定されない。
 例えば、スルファミン酸と尿素を溶媒に溶解させた反応液に繊維原料(例えば、木材パルプ)を浸漬等して反応液を繊維原料に含浸させてもよいし、繊維原料に対してかかる反応液を塗布してもよいし、繊維原料に対してスルファミン酸と尿素をそれぞれ別々に塗布したり、含浸させたり、スプレー噴霧してもよい。例えば、反応液に繊維原料を浸漬させて繊維原料に反応液を含浸させる方法を採用すれば、均質にスルファミン酸と尿素を繊維原料に対して接触させ易いという利点が得られる。
(Contact process)
The contacting step is a step of bringing sulfamic acid and urea into contact with a fibrous raw material containing cellulose. This contacting step is not particularly limited as long as it is a method capable of causing the above contact.
For example, the fibrous raw material (for example, wood pulp) may be immersed in a reaction liquid obtained by dissolving sulfamic acid and urea in a solvent to impregnate the fibrous raw material with the reaction liquid. Alternatively, sulfamic acid and urea may be separately applied, impregnated, or sprayed onto the fiber raw material. For example, if a method of impregnating the fiber raw material with the reaction liquid by immersing the fiber raw material in the reaction liquid is adopted, it is possible to obtain the advantage that the sulfamic acid and the urea are easily brought into contact with the fiber raw material uniformly.
 なお、スルファミン酸と尿素を溶解させる溶媒は特に限定されない。例えば、水(イオン交換水や蒸留水等の純水はもちろんのこと水道水等を含む)のみの場合のほか、エタノールやメタノール、酢酸、ギ酸、2‐プロパノール、ニトロメタン、アンモニア水のようなプロトン性極性溶媒や、アセトンや、酢酸エチル、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルスルフィド(DMS)、ジメチルアセトアミド(DMA)等の非プロトン性極性溶媒や、ジエチルエーテルや、ベンゼン、トルエン、ヘキサン、クロロホルム、1,4-ジオキサン等の非極性溶媒などを挙げることができ、これらを単体で使用してもよいし、2種以上を混合したものを使用してもよい。特に、スルファミン酸と尿素を溶かしやすい観点から、水が好ましい。 The solvent for dissolving sulfamic acid and urea is not particularly limited. For example, in addition to water alone (including pure water such as ion-exchanged water and distilled water, as well as tap water, etc.), ethanol, methanol, acetic acid, formic acid, 2-propanol, nitromethane, and protons such as ammonia water polar solvents, acetone, ethyl acetate, tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile, dimethylsulfoxide (DMSO), dimethylsulfide (DMS), aprotic polar solvents such as dimethylacetamide (DMA), Non-polar solvents such as diethyl ether, benzene, toluene, hexane, chloroform, and 1,4-dioxane can be mentioned, and these may be used alone or in combination of two or more. may In particular, water is preferable from the viewpoint of easily dissolving sulfamic acid and urea.
(反応液の混合比)
 反応液に繊維原料を浸漬させて繊維原料に対して反応液を含浸させる方法を採用する場合、反応液に含まれるスルファミン酸と尿素の混合比は、とくに限定されない。例えば、後述する実施例に記載の混合比にすることができる。
 例えば、スルホン化剤と尿素または/およびその誘導体は、濃度比(g/L)において、4:1(1:0.25)、2:1(1:0.5)、1:1、2:3(1:1.5)、1:2.5となるように調整することができる。
(Mixing ratio of reaction solution)
When adopting the method of impregnating the fiber raw material with the reaction liquid by immersing the fiber raw material in the reaction liquid, the mixing ratio of sulfamic acid and urea contained in the reaction liquid is not particularly limited. For example, the mixing ratio described in Examples described later can be used.
For example, the concentration ratio (g/L) of the sulfonating agent and urea or/and its derivative is 4:1 (1:0.25), 2:1 (1:0.5), 1:1, 2 :3 (1:1.5) and 1:2.5.
(反応液の接触量)
 繊維原料に接触させる反応液の量は、繊維原料に対して反応液中のスルファミン酸と尿素が所定の割合となるように接触させる。
 例えば、反応液と繊維原料を接触させた状態において、反応液に含まれるスルホン化剤が、繊維原料の乾燥質量100質量部に対して、1質量部~20,000質量部であり、反応液に含まれる尿素または/およびその誘導体が、繊維原料の乾燥質量100質量部に対して、1質量部~100,000質量部となるように調製することができる。
(Contact amount of reaction liquid)
The amount of the reaction liquid to be brought into contact with the fiber raw material is such that the sulfamic acid and urea in the reaction liquid are brought into contact with the fiber raw material at a predetermined ratio.
For example, in a state in which the reaction liquid and the fiber raw material are brought into contact, the sulfonating agent contained in the reaction liquid is 1 part by mass to 20,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material. Urea and/or a derivative thereof contained in can be prepared so as to be 1 to 100,000 parts by mass with respect to 100 parts by mass of the dry mass of the fiber raw material.
 次工程の反応工程に供する際の反応液を含浸させた繊維原料は、例えば、反応液を含浸させたそのままの状態つまり繊維原料と反応液を接触させた状態のままで積極的な水分除去を行わない状態のものや、繊維原料と反応液を接触させた状態のものから水分を積極的に除去した状態のもの、などを挙げることができる。
 後者の方法としては、例えば、反応液と繊維原料を接触させた状態から繊維原料を取り出して風乾等により自然乾燥させて調製したものや、反応液と繊維原料を接触させた状態のものを脱水ろ過して調製したもの、この脱水ろ過したものをさらに風乾して調製したもの、この脱水ろ過したものをさらに循環送風式の乾燥機を用いて乾燥し調製したもの、この脱水ろ過したものをさらに加熱式の乾燥機を用いて乾燥して調製したもの、反応液と繊維原料を接触させた状態のものを循環送風式の乾燥機や加熱式の乾燥機を用いて乾燥して調製したもの、などを含むことを意味する。
 次工程の反応工程に供する際の反応液を含浸させた繊維原料は、上述した積極的な水分除去を行わない状態のものや、積極的な水分除去を行ってある程度の水分を除去した状態のままであってよい。また、乾燥により水分を除去する場合には、乾燥後の水分率が1%程度であってもとくに問題がない。
The fiber material impregnated with the reaction liquid when subjected to the reaction process of the next step, for example, is in the state of being impregnated with the reaction liquid, that is, the state of contact between the fiber material and the reaction liquid. Examples include a state in which no reaction is performed, and a state in which water is actively removed from a state in which the fiber raw material and the reaction liquid are brought into contact with each other.
As the latter method, for example, the fiber raw material is taken out from the state in which the reaction liquid and the fiber raw material are brought into contact with each other, and the fiber raw material is dried naturally by air drying or the like, or the reaction liquid and the fiber raw material are dehydrated after being brought into contact with each other. Prepared by filtering, further air-drying the dehydrated and filtered product, further drying the dehydrated and filtered product using a circulating air dryer, and further dewatering and filtering Those prepared by drying using a heating dryer, those prepared by drying the reaction liquid in contact with the fiber raw material using a circulating air dryer or a heating dryer, and so on.
The fiber raw material impregnated with the reaction liquid when subjected to the next reaction step is in a state in which the above-mentioned active water removal is not performed, or in a state in which a certain amount of water is removed by active water removal. You can leave it. Further, when the moisture is removed by drying, there is no particular problem even if the moisture content after drying is about 1%.
(反応工程)
 上記のごとく接触工程で調製された反応液を含浸させた繊維原料は、次工程の反応工程へ供給される。
 この反応工程は、接触工程から供給された繊維原料に含まれるセルロース繊維と、スルファミン酸と、尿素とを反応させて、セルロース繊維中のセルロース水酸基に対してスルファミン酸のスルホ基を置換させて、繊維原料に含まれるセルロース繊維にスルホ基を導入する工程である。つまり、この反応工程は、反応液を含浸した繊維原料に含まれるセルロース繊維中のセルロース水酸基にスルホ基を置換するスルホン化反応を行う工程である。
(Reaction step)
The fiber raw material impregnated with the reaction solution prepared in the contacting step as described above is supplied to the reaction step in the next step.
In this reaction step, the cellulose fibers contained in the fiber raw material supplied from the contacting step, sulfamic acid, and urea are reacted to substitute the sulfo groups of sulfamic acid for the cellulose hydroxyl groups in the cellulose fibers, This is a step of introducing a sulfo group into the cellulose fibers contained in the fiber raw material. That is, this reaction step is a step of carrying out a sulfonation reaction in which sulfo groups are substituted for the cellulose hydroxyl groups in the cellulose fibers contained in the fiber raw material impregnated with the reaction solution.
 この反応工程は、上記繊維原料中のセルロース繊維の水酸基にスルホ基を置換するスルホン化反応が可能な方法であれば、とくに限定されない。例えば、上記繊維原料を加熱することによりスルホン化反応を促進させる方法を採用することができる。以下、この加熱方法により、スルホン化反応を行う場合を代表として説明する。 This reaction step is not particularly limited as long as it is a method capable of a sulfonation reaction in which the hydroxyl groups of the cellulose fibers in the fiber raw material are substituted with sulfo groups. For example, a method of accelerating the sulfonation reaction by heating the fiber raw material can be employed. Hereinafter, the case where the sulfonation reaction is performed by this heating method will be described as a representative.
(反応工程における反応温度)
 反応工程における反応温度は、繊維の熱分解や加水分解反応を抑えながら、上記繊維原料を構成するセルロース繊維にスルホ基を導入できる温度であれば、とくに限定されない。
 例えば、反応工程に供給した上記繊維原料の雰囲気温度が100℃以上200℃以下となるように調整する。好ましくは雰囲気温度が120℃以上200℃以下である。加熱時における雰囲気温度が200℃よりも高くなると、繊維の熱分解が起こったり、繊維の変色の進行が早くなったりする。一方、反応温度が100℃よりも低くなると、得られるスルホン化パルプの透明性が低下する傾向にある。
 したがって、得られるスルホン化パルプの透明性の観点では、反応工程における反応温度(具体的には雰囲気温度)は、100℃以上200℃以下であり、好ましくは120℃以上180℃以下であり、さらに好ましくは120℃以上160℃以下である。
(Reaction temperature in reaction step)
The reaction temperature in the reaction step is not particularly limited as long as it is a temperature at which sulfo groups can be introduced into the cellulose fibers forming the fiber raw material while suppressing the thermal decomposition and hydrolysis reaction of the fibers.
For example, the ambient temperature of the fiber raw material supplied to the reaction step is adjusted to 100° C. or higher and 200° C. or lower. The ambient temperature is preferably 120° C. or higher and 200° C. or lower. If the ambient temperature during heating is higher than 200° C., thermal decomposition of the fibers may occur, or discoloration of the fibers may accelerate. On the other hand, if the reaction temperature is lower than 100° C., the resulting sulfonated pulp tends to be less transparent.
Therefore, from the viewpoint of the transparency of the obtained sulfonated pulp, the reaction temperature (specifically, the ambient temperature) in the reaction step is 100° C. or higher and 200° C. or lower, preferably 120° C. or higher and 180° C. or lower. The temperature is preferably 120°C or higher and 160°C or lower.
 なお、反応工程に用いられる加熱器などは、接触工程後の上記繊維原料を直接的または間接的に上記要件を満たしながら加熱することができるものであれば、とくに限定されない。
 例えば、公知の乾燥機や、減圧乾燥機、マイクロ波加熱装置、オートクレーブ、赤外線加熱装置、熱プレス機(例えば、アズワン(株)製、AH―2003C)を用いたホットプレス法等を採用することができる。とくに、操作性の観点では、反応工程でガスが発生する可能性があるので、循環送風式の乾燥機を使用するのが好ましい。
The heater or the like used in the reaction step is not particularly limited as long as it can directly or indirectly heat the fiber raw material after the contact step while satisfying the above requirements.
For example, a hot press method using a known dryer, vacuum dryer, microwave heating device, autoclave, infrared heating device, or heat press (for example, AH-2003C manufactured by AS ONE Co., Ltd.) can be employed. can be done. In particular, from the viewpoint of operability, it is preferable to use a circulating air dryer because gas may be generated in the reaction process.
(反応工程における反応時間)
 反応工程として上記加熱方法を採用した場合の加熱時間(つまり反応時間)は、上述したようにセルロース繊維にスルホ基を適切に導入することができれば、とくに限定されない。例えば、反応工程における反応時間は、反応温度を上記範囲となるように調整した場合、1分以上となるように調整する。好ましくは、5分以上であり、より好ましくは10分以上であり、さらに好ましくは15分以上である。
 反応時間が1分よりも短い場合は、セルロース繊維の水酸基に対するスルホ基の置換反応がほとんど進行していないと推察される。一方、加熱時間をあまり長くしてもスルホ基の導入量の向上が期待できない傾向にある。
 したがって、反応工程として上記加熱方法を採用した場合の反応時間は、とくに限定されないが、反応時間や操作性の観点から、5分以上300分以内が好ましく、より好ましくは5分以上120分以内とするのがよい。
(Reaction time in reaction step)
The heating time (that is, the reaction time) when the above heating method is employed as the reaction step is not particularly limited as long as the sulfo groups can be appropriately introduced into the cellulose fibers as described above. For example, the reaction time in the reaction step is adjusted to 1 minute or more when the reaction temperature is adjusted to fall within the above range. The time is preferably 5 minutes or longer, more preferably 10 minutes or longer, and still more preferably 15 minutes or longer.
If the reaction time is shorter than 1 minute, it is presumed that the substitution reaction of the sulfo groups with respect to the hydroxyl groups of the cellulose fibers has hardly progressed. On the other hand, even if the heating time is too long, there is a tendency that an increase in the amount of sulfo groups introduced cannot be expected.
Therefore, the reaction time when the above heating method is employed as the reaction step is not particularly limited, but from the viewpoint of reaction time and operability, it is preferably 5 minutes or more and 300 minutes or less, more preferably 5 minutes or more and 120 minutes or less. Better to
(繊維原料)
 スルホン化パルプ製法に用いられる繊維原料は、上述したようにセルロースを含むものであれば、とくに限定されない。例えば、一般的にパルプといわれるものを用いてもよいし、ホヤや海藻などから単離されるセルロースなどを含むものを繊維原料として採用することができるが、セルロース分子で構成されたものであれば、どのようなものであってもよい。
 上記パルプとしては、例えば、木材系のパルプ(以下単に木材パルプという)や、溶解パルプ、コットンリンタなどの綿系のパルプ、麦わらや、バガス、楮、三椏、麻、ケナフのほか、果物等などの非木材系のパルプ、新聞古紙、雑誌古紙やダンボール古紙などから製造された古紙系のパルプなどを挙げることができるが、これらに限定されない。なお、入手のし易さの観点から、木材パルプが繊維原料として採用しやすい。
(fiber raw material)
The fiber raw material used in the sulfonated pulp manufacturing method is not particularly limited as long as it contains cellulose as described above. For example, what is generally called pulp may be used, and what contains cellulose isolated from sea squirts, seaweed, etc. can be used as the fiber raw material, but as long as it is composed of cellulose molecules, , can be anything.
Examples of the pulp include wood pulp (hereinafter simply referred to as wood pulp), dissolving pulp, cotton pulp such as cotton linter, straw, bagasse, kozo, mitsumata, hemp, kenaf, fruits, and the like. Non-wood pulp, waste paper pulp produced from waste newspaper, waste magazine paper, waste cardboard, etc., but not limited to these. From the standpoint of availability, wood pulp is easy to employ as a fiber raw material.
 この木材パルプには、様々な種類が存在するが、使用に際してとくに限定されない。例えば、針葉樹クラフトパルプ(NBKP)、広葉樹クラフトパルプ(LBKP)、サーモメカニカルパルプ(TMP)などの製紙用パルプなどを挙げることができる。なお、繊維原料として、上記パルプを使用する場合に上述した種類のパルプ1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 There are various types of this wood pulp, but there are no particular restrictions on their use. Examples thereof include softwood kraft pulp (NBKP), hardwood kraft pulp (LBKP), thermomechanical pulp (TMP), and other papermaking pulps. When the above pulp is used as the fiber raw material, one type of the pulp described above may be used alone, or two or more types may be mixed and used.
(反応工程の後の洗浄工程)
 化学処理工程における反応工程の後に、スルホ基を導入した後のスルホン化パルプを洗浄する洗浄工程を含んでもよい。
 スルホ基を導入した後のスルホン化パルプは、スルホン化剤の影響により表面が酸性になっている。また、未反応の反応液も存在した状態となっている。このため、反応を確実に終了させ、余分な反応液を除去して中性状態にする洗浄工程を設ければ、取り扱い性を向上させることができるようなる。
(Washing process after reaction process)
After the reaction step in the chemical treatment step, a washing step of washing the sulfonated pulp after introduction of the sulfo group may be included.
The surface of the sulfonated pulp after introduction of the sulfo group is acidified due to the influence of the sulfonating agent. In addition, unreacted reaction liquid also exists. For this reason, if a washing step is provided to ensure that the reaction is completed and to neutralize the excess reaction solution by removing the excess reaction solution, the handleability can be improved.
 この洗浄工程は、スルホ基を導入した後のスルホン化パルプがほぼ中性になるようにできれば、とくに限定されない。
 例えば、スルホ基を導入した後のスルホン化パルプが中性になるまで純水等で洗浄するという方法を採用することができる。また、アルカリ等を用いた中和洗浄を行ってもよい。かかる中和洗浄を行う場合、アルカリ溶液に含まれるアルカリ化合物としては、無機アルカリ化合物、有機アルカリ化合物などを挙げることができる。そして、無機アルカリ化合物としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩等を挙げることができる。有機アルカリ化合物としては、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物、複素環式化合物の水酸化物などを挙げることができる。
This washing step is not particularly limited as long as the sulfonated pulp after introduction of the sulfo group can be made substantially neutral.
For example, a method of washing with pure water or the like until the sulfonated pulp after introduction of the sulfo group becomes neutral can be adopted. Further, neutralization cleaning using an alkali or the like may be performed. In the case of performing such neutralization cleaning, examples of alkaline compounds contained in the alkaline solution include inorganic alkaline compounds and organic alkaline compounds. Examples of inorganic alkali compounds include hydroxides, carbonates, and phosphates of alkali metals. Examples of organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds, and hydroxides of heterocyclic compounds.
 つぎに、上記のごとくスルホン化パルプ製法を用いて調製されたスルホン化パルプを微細化処理工程に供給し、微細化することによってスルホン化微細セルロース繊維が得られる。
 なお、微細化処理工程に供給する前にスルホン化パルプは、水分率(%)が平衡状態になるまで乾燥する。
Next, the sulfonated pulp prepared using the sulfonated pulp manufacturing method as described above is fed to the micronization step and micronized to obtain sulfonated fine cellulose fibers.
In addition, the sulfonated pulp is dried until its moisture content (%) reaches an equilibrium state before being supplied to the pulverization treatment step.
(微細化処理工程)
 微細化処理工程は、スルホン化パルプを微細化して所定の大きさの(例えば、ナノレベル)微細繊維にする工程である。
 この微細化処理工程に用いられる処理装置は、上記機能を有するものであれば、とくに限定されない。
 例えば、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー(石臼型粉砕機)、ボールミル、カッターミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用のミキサーなどを使用することができるが、処理装置は、これらの装置に限定されるものはない。
 これらのうち、材料に均等に力を加えることができ、均質化に優れているという点で、高圧ホモジナイザーを用いるのが望ましいが、かかる装置に限定されない。
(Miniaturization process)
The refining step is a step of refining the sulfonated pulp into fine fibers of a predetermined size (for example, nano-level).
A processing apparatus used in this miniaturization process is not particularly limited as long as it has the above functions.
For example, a low-pressure homogenizer, a high-pressure homogenizer, a grinder (stone mill type grinder), a ball mill, a cutter mill, a jet mill, a short-screw extruder, a twin-screw extruder, an ultrasonic agitator, a domestic mixer, etc. can be used. , the processing device is not limited to these devices.
Among these, a high-pressure homogenizer is preferable because it can uniformly apply a force to the material and is excellent in homogenization, but it is not limited to such a device.
 微細化処理工程において、高圧ホモジナイザーを用いる場合、上述した製法で得られたスルホン化パルプを水と水溶性溶剤の混合溶液に分散させた状態で供給する。なお、この混合溶液にスルホン化パルプを分散させた状態のものをスラリーという。 When using a high-pressure homogenizer in the micronization process, the sulfonated pulp obtained by the above-described manufacturing method is supplied in a state of being dispersed in a mixed solution of water and a water-soluble solvent. A state in which the sulfonated pulp is dispersed in this mixed solution is called a slurry.
 このスラリーのスルホン化パルプの固形分濃度は、とくに限定されない。例えば、このスラリーのスルホン化パルプの固形分濃度が、0.1質量%~20質量%となるように調整した溶液を高圧ホモジナイザー等の処理装置に供給すればよい。
 例えば、スルホン化パルプの固形分濃度が0.5質量%となるように調整したスラリーを高圧ホモジナイザー等の処理装置に供給した場合、同じ固形分濃度のスルホン化微細セルロース繊維が混合溶液に分散した状態の分散体を得ることができる。つまり、この場合、スルホン化微細セルロース繊維の固形分濃度が0.5質量%となるように調整された本実施形態の微細セルロース繊維含有組成物を得ることができる。
The solid content concentration of the sulfonated pulp in this slurry is not particularly limited. For example, a solution adjusted so that the solid content concentration of the sulfonated pulp in the slurry is 0.1% by mass to 20% by mass may be supplied to a processing apparatus such as a high-pressure homogenizer.
For example, when a slurry adjusted to have a sulfonated pulp solid content concentration of 0.5% by mass is supplied to a processing apparatus such as a high-pressure homogenizer, sulfonated fine cellulose fibers having the same solid content concentration are dispersed in the mixed solution. A dispersion of states can be obtained. That is, in this case, it is possible to obtain the fine cellulose fiber-containing composition of the present embodiment in which the solid content concentration of the sulfonated fine cellulose fibers is adjusted to 0.5% by mass.
 つぎに、実施例によりさらに詳細に本発明を説明する。ただし、本発明は、以下の実施例によってなんら制限を受けるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is in no way limited by the following examples.
<スルホン化微細セルロース繊維スラリーの調製>
(実施例1、2、4)
 針葉樹クラフトパルプシート(丸住製紙製NBKP)を使用した。以下では、実験に供したNBKPを単にパルプとして説明する。
 パルプシートは固形分濃度が93%となるように乾燥させたものを使用し、その坪量は3000g/mであった。このパルプシートを固形分質量にして20g分を分取し実験に供した。
<Preparation of sulfonated fine cellulose fiber slurry>
(Examples 1, 2, 4)
A softwood kraft pulp sheet (NBKP manufactured by Marusumi Paper Co., Ltd.) was used. Below, the NBKP used in the experiment will be simply described as pulp.
The pulp sheet used was dried to a solid content concentration of 93%, and its basis weight was 3000 g/m 2 . A portion of 20 g of this pulp sheet was taken as a solid mass and used for the experiment.
(化学処理工程)
 パルプを以下のように調製した反応液に加え撹拌してスラリー状にした。なお、パルプを反応液に加えてスラリー状にする工程が、本実施形態の化学処理工程の接触工程に相当する。
(Chemical treatment process)
The pulp was added to the reaction solution prepared as follows and stirred to form a slurry. The step of adding the pulp to the reaction liquid to form a slurry corresponds to the contacting step of the chemical treatment step of the present embodiment.
(反応液の調製工程)
 スルホン化剤と尿素または/およびその誘導体が以下の固形分濃度となるように調製した。
 実験では、スルホン化剤として、スルファミン酸(純度98.5%、扶桑化学工業製)を使用し、尿素またはその誘導体として、尿素溶液(純度99%、和光純薬工業製、型番;特級試薬)を使用した
(Step of preparing reaction solution)
A sulfonating agent and urea and/or a derivative thereof were prepared so as to have the following solid content concentrations.
In the experiment, sulfamic acid (purity 98.5%, manufactured by Fuso Chemical Industries) was used as the sulfonating agent, and urea solution (purity 99%, manufactured by Wako Pure Chemical Industries, model number; special grade reagent) was used as urea or its derivative. It was used
 反応液の調製の一例を以下に示す。
 容器に水85mLを加えた。ついで、この容器にスルファミン酸15g、尿素15gを加えて、反応液を調製した。つまり、尿素は、スルファミン酸100質量部に対して100質量部となるように加えた。
 実験では、この調製した反応液に対してパルプを絶乾質量にして20gを加えた。つまり、上記スルファミン酸/尿素比((g/L)/(g/L))が200/200(1:1)の反応液の場合、スルファミン酸はパルプ100質量部に対して、75質量部、尿素は75質量部となるように調製した。
 反応液にパルプを添加して調製したスラリーを、恒温槽の温度を50℃に設定した乾燥機(いすゞ製作所製、型番;VTR-115)に入れて以下の式より求めた水分率(%)が平衡状態になるまで乾燥した。
An example of preparation of the reaction solution is shown below.
85 mL of water was added to the container. Then, 15 g of sulfamic acid and 15 g of urea were added to this container to prepare a reaction solution. That is, urea was added so as to be 100 parts by mass with respect to 100 parts by mass of sulfamic acid.
In the experiment, 20 g of absolute dry pulp was added to the prepared reaction solution. That is, in the case of a reaction solution having a sulfamic acid/urea ratio ((g/L)/(g/L)) of 200/200 (1:1), sulfamic acid is 75 parts by mass per 100 parts by mass of pulp. , Urea was prepared to be 75 parts by mass.
A slurry prepared by adding pulp to the reaction solution is placed in a dryer (manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115) in which the temperature of the constant temperature bath is set to 50 ° C. Moisture content (%) obtained from the following formula dried to equilibrium.
 サンプルの秤量は、秤量瓶を使用した測定方法で行った。秤量には電子天秤(新光電子株式会社製、型番;RJ-320)を用いた。
 
 水分率(%)=((サンプルの質量-サンプルの固形分質量)/サンプルの質量)×100
 
サンプル:ろ紙から剥がしたパルプ
サンプルの質量:ろ紙から剥がしたパルプを乾燥機に供した質量(g)
サンプルの固形分質量:ろ紙から剥がしたパルプを乾燥機に供した質量(g)と同量のろ紙から剥がしたパルプを、105℃の雰囲気下で2時間、恒量になるまで乾燥させた後に残った固形物の質量(g)であり、乾燥方法はJIS P 8225 に準拠した方法により行った。
The samples were weighed by a measurement method using a weighing bottle. An electronic balance (manufactured by Shinko Denshi Co., Ltd., model number: RJ-320) was used for weighing.

Moisture content (%) = ((mass of sample - mass of solid content of sample) / mass of sample) x 100

Sample: Mass of pulp sample removed from filter paper: Mass (g) of pulp removed from filter paper and dried
Solid content mass of sample: The mass (g) of the pulp stripped from the filter paper was subjected to a dryer, and the same amount of pulp stripped from the filter paper was dried in an atmosphere of 105 ° C. for 2 hours until it reached a constant weight. It is the mass (g) of the solid matter obtained, and the drying method was performed according to JIS P 8225.
 なお、水分率(%)が平衡状態になるまで乾燥するとは、処理施設内における雰囲気中の水分とサンプル中の水分が見かけ上出入りしなくなる状態となった時点を終点とした。例えば、所定の時間、サンプルを質量が既知の秤量瓶中で乾燥させたのち、乾燥装置内で秤量瓶の蓋をし、サンプルを秤量瓶内に入れたまま乾燥機から取り出し、乾燥剤を入れたデシケータ等に入れて放熱させた後、サンプルの質量(サンプル入りの秤量瓶の質量‐秤量瓶の質量)を測定した。乾燥の終点は、測定した2回の質量の変化量が乾燥開始時の質量に対して1%以内となった状態とした(ただし、2回目の質量の測定は1回目に要した乾燥時間の半分以上とした)。 It should be noted that drying until the moisture content (%) reaches an equilibrium state was defined as the end point when the moisture in the atmosphere in the treatment facility and the moisture in the sample apparently stopped coming in and out. For example, after drying the sample in a weighing bottle of known mass for a predetermined time, the weighing bottle is capped in the drying apparatus, the sample is removed from the dryer while still in the weighing bottle, and the desiccant is added. After the sample was placed in a desiccator or the like to heat it, the mass of the sample (the mass of the weighing bottle containing the sample - the mass of the weighing bottle) was measured. The end point of drying was a state in which the amount of change in the mass measured twice was within 1% of the mass at the start of drying (however, the second mass measurement was taken after the drying time required for the first time). more than half).
 水分率が平衡状態になった後、加熱反応を行った。
 加熱反応は、乾燥機(いすゞ製作所製、型番;VTR-115)を用いた。反応条件は以下の通りである。
恒温槽の温度:120℃、加熱時間:25分
 加熱反応後、反応させたパルプを固形分で1質量%以下となるように純水で希釈し、過剰量の炭酸水素ナトリウムを添加することにより中和後、純水で十分に洗浄した。
 洗浄後のスルホン化パルプを水分率が平衡状態になるまで乾燥した。
After the moisture content reached an equilibrium state, a heating reaction was carried out.
A dryer (manufactured by Isuzu Manufacturing Co., Ltd., model number: VTR-115) was used for the heating reaction. The reaction conditions are as follows.
Constant temperature bath temperature: 120°C, heating time: 25 minutes After the heat reaction, the reacted pulp is diluted with pure water so that the solid content is 1% by mass or less, and an excess amount of sodium bicarbonate is added. After neutralization, it was thoroughly washed with pure water.
The washed sulfonated pulp was dried until the moisture content reached equilibrium.
(微細化処理工程) (Miniaturization process)
(予備解繊処理)
 ついで、この乾燥したスルホン化パルプを微細化処理工程に供した。
 微細化処理工程では、予備解繊処理を行った後、本解繊処理を行った。
 予備解繊処理には、ミキサー(パナソニック製ファイバーミキサー MX―X701、高速設定)にて1分間、予備解繊処理を行った。このときの条件はスルホン化パルプが水に固形分濃度(質量%)が1質量%になるように調製して行った。この予備解繊処理したものをそのまま本解繊処理すれば、本解繊後の固形分濃度も1質量%になる。
(Preliminary fibrillation treatment)
This dried sulfonated pulp was then subjected to a micronization process.
In the refinement treatment step, the main defibration treatment was performed after performing the preliminary defibration treatment.
The preliminary defibration treatment was carried out for 1 minute with a mixer (fiber mixer MX-X701 manufactured by Panasonic, high speed setting). The conditions at this time were adjusted so that the solid content concentration (% by mass) of the sulfonated pulp in water was 1% by mass. If this pre-fibrillation treatment is carried out as it is, the solid content concentration after main fibrillation will also be 1% by mass.
(本解繊処理)
 予備解繊処理で得られた分散体を分取して、この分散体に水とエタノール(本実施形態の水溶性溶剤に相当する)を加えて本解繊処理を行い所定の配合割合(水/エタノール比(g/g))となるように調製した(図参照)。
(Main defibration treatment)
The dispersion obtained by the preliminary fibrillation treatment is fractionated, water and ethanol (corresponding to the water-soluble solvent in the present embodiment) are added to the dispersion, and the main fibrillation treatment is performed to obtain a predetermined mixing ratio (water /ethanol ratio (g/g)) (see figure).
 具体的には、調製した水とエタノールの混合溶液に予備解繊したパルプを分散させて分散体を、本解繊処理工程へ供した。
 本解繊では、高圧ホモジナイザー(吉田機械製N2000-2C-045型)を用いて解繊処理(100MPaの解繊圧力で10回(10パス))を行い、スルホン化微細セルロース繊維が上記混合溶液に分散したスルホン化微細セルロース繊維含有スラリーを調製した(実施例1、2、4)。
 このスルホン化微細セルロース繊維含有スラリーが本実施形態の微細セルロース繊維含有組成物に相当する。
 例えば、実施例1のスルホン化微細セルロース繊維含有スラリー中のスルホン化微細セルロース繊維の固形分濃度(質量%)は、0.5質量%となる。
Specifically, preliminarily defibrated pulp was dispersed in a prepared mixed solution of water and ethanol, and the dispersion was subjected to the main fibrillation treatment step.
In this fibrillation, fibrillation treatment (10 times (10 passes) at a fibrillation pressure of 100 MPa) is performed using a high-pressure homogenizer (Yoshida Kikai N2000-2C-045 model), and the sulfonated fine cellulose fibers are mixed with the above mixed solution. A slurry containing sulfonated fine cellulose fibers dispersed in was prepared (Examples 1, 2, 4).
This sulfonated fine cellulose fiber-containing slurry corresponds to the fine cellulose fiber-containing composition of the present embodiment.
For example, the solid content concentration (% by mass) of the sulfonated fine cellulose fibers in the slurry containing the sulfonated fine cellulose fibers of Example 1 is 0.5 mass %.
 スルホン化微細セルロース繊維含有スラリー中のスルホン化微細セルロース繊維の固形分濃度は、下記式により算出した。
 
固形分濃度(質量%)=(スルホン化微細セルロース繊維の固形分質量(g))/(スルホン化微細セルロース繊維含有スラリーの質量(g))×100
The solid content concentration of the sulfonated cellulose fine fibers in the slurry containing the sulfonated fine cellulose fibers was calculated by the following formula.

Solid content concentration (% by mass) = (solid content mass (g) of sulfonated fine cellulose fibers)/(mass of slurry containing sulfonated fine cellulose fibers (g)) x 100
(実施例3)
 実施例3のスルホン化微細セルロース繊維スラリーの調製は、下記に記載の方法以外、上述の実施例1と同様に行った。
(Example 3)
The preparation of the sulfonated fine cellulose fiber slurry of Example 3 was carried out in the same manner as in Example 1 above, except for the method described below.
 純水720mLにスルファミン酸(純度99.8%、扶桑化学工業製)200gと尿素(純度99.0%、富士フィルム和光純薬社製、型番;特級試薬)288gを完全溶解した(スルファミン酸と尿素の質量比は280(g/L):400(g/L))。
 上記反応液を全量用いて、丸住製紙社製NBKPシート(水分率50%、坪量6000g/m、厚さ7mm)を105℃乾燥機で水分率1%程度になるまで乾燥したパルプシート400gに均一に含浸させた。この含浸シートを105℃の乾燥機で3.5時間乾燥させた。その後140℃の乾燥機で25分反応させた。得られた反応物は、目開き63μm(235メッシュ)のステンレスふるい上にて、多量の炭酸水素ナトリウム(純度99.5%、ナカライテスク社製)水溶液を用いて中和処理後、多量の純水で洗浄することによりスルホン化パルプを得た。
In 720 mL of pure water, 200 g of sulfamic acid (99.8% purity, manufactured by Fuso Chemical Industries) and 288 g of urea (99.0% purity, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) were completely dissolved (sulfamic acid and The mass ratio of urea is 280 (g/L):400 (g/L)).
Using the entire amount of the above reaction solution, a pulp sheet obtained by drying a NBKP sheet manufactured by Marusumi Paper Co., Ltd. (moisture content: 50%, basis weight: 6000 g/m 2 , thickness: 7 mm) in a drier at 105°C until the moisture content is about 1%. 400 g was uniformly impregnated. This impregnated sheet was dried in a drier at 105° C. for 3.5 hours. After that, they were reacted in a drier at 140° C. for 25 minutes. The obtained reactant was passed on a stainless steel sieve with a mesh size of 63 μm (235 mesh), neutralized with a large amount of sodium hydrogen carbonate (purity 99.5%, manufactured by Nacalai Tesque) aqueous solution, and then subjected to a large amount of pure Sulfonated pulp was obtained by washing with water.
 得られたスルホン化パルプを用いて、図2に示すような実施例3のスルホン化微細セルロース繊維含有スラリーを調製した。 Using the obtained sulfonated pulp, a slurry containing sulfonated fine cellulose fibers of Example 3 as shown in FIG. 2 was prepared.
(実施例5)
 実施例5のスルホン化微細セルロース繊維スラリーの調製は、下記に記載の方法以外、上述の実施例1と同様に行った。
(Example 5)
The preparation of the sulfonated fine cellulose fiber slurry of Example 5 was carried out in the same manner as in Example 1 above, except for the method described below.
 純水1000mLにスルファミン酸(純度99.8%、扶桑化学工業製)200gと尿素(純度99.0%、富士フィルム和光純薬社製、型番;特級試薬)500gを完全溶解した(スルファミン酸と尿素の質量比は200(g/L):500(g/L))。
 この調製した反応液に対して固形分質量10%の丸住製紙製NBKPパルプを絶乾質量にして2gを加えた。つまり、上記スルファミン酸/尿素比((g/L)/(g/L))が200/500(1:2.5)の反応液の場合、スルファミン酸はパルプ100質量部に対して、1000質量部、尿素は2500質量部となるように調製した。スラリーをろ紙(No.2)を用いて吸引ろ過した。吸引ろ過は溶液が滴下しなくなるまで行った。吸引ろ過後、ろ紙からパルプを剥がし、ろ過したパルプを恒温槽の温度を50℃に設定した乾燥機に入れて水分率が平衡状態になるまで乾燥した。
200 g of sulfamic acid (purity 99.8%, manufactured by Fuso Chemical Industries) and 500 g of urea (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number; special grade reagent) were completely dissolved in 1000 mL of pure water (sulfamic acid and The mass ratio of urea is 200 (g/L):500 (g/L)).
2 g of NBKP pulp manufactured by Marusumi Paper Co., Ltd. having a solid content of 10% was added to the prepared reaction solution. That is, in the case of a reaction solution having a sulfamic acid/urea ratio ((g/L)/(g/L)) of 200/500 (1:2.5), sulfamic acid is 1000 parts per 100 parts by mass of pulp. Parts by mass, urea was prepared so as to be 2500 parts by mass. The slurry was suction filtered using filter paper (No. 2). Suction filtration was performed until the solution stopped dripping. After suction filtration, the pulp was peeled off from the filter paper, and the filtered pulp was placed in a drier whose constant temperature bath temperature was set to 50° C. and dried until the moisture content reached an equilibrium state.
 水分率が平衡状態になった後、120℃に設定した乾燥した乾燥機にいれ、25分間加熱反応を行った。
 加熱反応後、反応させたパルプを固形分で1質量%以下となるように純水で希釈し、過剰量の炭酸水素ナトリウムを添加することにより中和後、純水で十分に洗浄した。
 得られたスルホン化パルプを、スルファミン酸と尿素の質量比が200(g/L):500(g/L))の反応液を使用し、上記と同様に反応させた2回反応後のスルホン化パルプを得た。この2回反応度のスルホン化パルプを、再度、スルファミン酸と尿素の質量比が200(g/L):200(g/L)の反応液を使用し、上記と同様に反応させた3回反応後のスルホン化パルプを得た。
After the moisture content reached an equilibrium state, it was placed in a dryer set at 120° C. and heat-reacted for 25 minutes.
After the heat reaction, the reacted pulp was diluted with pure water so that the solid content was 1% by mass or less, neutralized by adding an excess amount of sodium hydrogencarbonate, and thoroughly washed with pure water.
The obtained sulfonated pulp was reacted in the same manner as described above using a reaction solution in which the mass ratio of sulfamic acid and urea was 200 (g/L):500 (g/L). A charred pulp was obtained. This sulfonated pulp having a degree of reactivity of 2 times was reacted again in the same manner as described above using a reaction solution having a mass ratio of sulfamic acid and urea of 200 (g/L):200 (g/L). A sulfonated pulp after the reaction was obtained.
 得られた3回反応後のスルホン化パルプを用いて、パナソニック製ファイバーミキサー (MX―X701、高速設定)にて1分間、予備解繊処理を行い得られた分散体を分取して、この分散体に水とエタノールを加えて、所定の配合割合(水/エタノール比(g/g)=40/60)となるように調製し(図2参照)、本解繊処理を行った。具体的には、予備解繊時の固形分濃度は、1.25質量%とした。そして、この予備解繊した分散体に水とエタノールを加え本解繊処理を行い、スルホン化微細セルロース繊維の固形分濃度(質量%)が0.5質量%の実施例5のスルホン化微細セルロース繊維含有スラリー(図2参照)を調製した。 Using the obtained sulfonated pulp after the three-time reaction, pre-fibrillation treatment was performed for 1 minute with a Panasonic fiber mixer (MX-X701, high speed setting), and the obtained dispersion was fractionated. Water and ethanol were added to the dispersion to prepare a predetermined mixing ratio (water/ethanol ratio (g/g)=40/60) (see FIG. 2), and the main defibration treatment was performed. Specifically, the solid content concentration at the time of preliminary fibrillation was set to 1.25% by mass. Then, water and ethanol are added to this pre-fibrillated dispersion to perform the main fibrillation treatment, and the sulfonated fine cellulose of Example 5 having a solid content concentration (mass%) of the sulfonated fine cellulose fibers of 0.5 mass% is obtained. A fiber-containing slurry (see Figure 2) was prepared.
(測定) (measurement)
(電気伝導度測定によるスルホ基導入量の測定)
 調製したスルホン化微細セルロース繊維に含まれるスルホ基の導入量は、電気伝導度測定により測定した。
(Measurement of sulfo group introduction amount by electrical conductivity measurement)
The introduction amount of sulfo groups contained in the prepared sulfonated fine cellulose fibers was measured by electrical conductivity measurement.
 0.5質量%のスルホン化微細セルロース繊維含有スラリー(エタノールを含まない状態)に体積比で1/10の強酸性イオン交換樹脂(オルガノ株式会社製、アンバージェット1024;コンディショニング済)を加え、1時間以上振とう処理を行う(イオン交換樹脂による処理)。ついで、目開き90μm~200μm程度のメッシュ上に注ぎ、樹脂とスラリーを分離する。その後のアルカリを用いた滴定では、イオン交換樹脂による処理後のスルホン化微細セルロース繊維含有スラリーに、0.5Nの水酸化ナトリウム水溶液を加えながら、電気伝導度の値の変化を計測した。得られた計測データは、縦軸に電気伝導度、横軸に水酸化ナトリウム滴定量としてプロットすると曲線が得られ、変曲点が確認できる。この変曲点での水酸化ナトリウム滴定量がスルホ基量に相当し、この変曲点の水酸化ナトリウム量を測定に供したスルホン化微細セルロース繊維固形分量で除することで、スルホ基量を求めた。 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024, manufactured by Organo Co., Ltd.; conditioned) was added to a slurry containing 0.5% by mass of sulfonated fine cellulose fibers (without ethanol). Shake for more than 1 hour (treatment with ion exchange resin). Then, it is poured onto a mesh with an opening of about 90 μm to 200 μm to separate the resin from the slurry. In the subsequent titration with alkali, the change in the electrical conductivity value was measured while adding 0.5N aqueous sodium hydroxide solution to the slurry containing the sulfonated fine cellulose fibers after treatment with the ion-exchange resin. Plotting the obtained measurement data with the electrical conductivity on the vertical axis and the titration amount of sodium hydroxide on the horizontal axis yields a curve, and an inflection point can be confirmed. The titration amount of sodium hydroxide at this inflection point corresponds to the amount of sulfo groups. asked.
(ヘイズ値の測定および全光線透過率の測定)
 ヘイズ値の測定および全光線透過率の測定は、調製した0.5質量%のスルホン化微細セルロース繊維含有スラリーを分取してヘーズメーター(日本電色工業(株)社製、型番;SH-7000)を用いて測定した。測定方法は、JIS K 7105の方法に準拠して行った。
 純水を入れた上記ヘーズメーターのオプションのガラスセル(部品番号:2277、角セル、光路長10mm×幅40×高さ55)をブランク測定値とし、測定用スラリーの光透過度を測定した。光源はD65とし、視野は10°とし、測定波長の範囲は、380~780nmとした。
 全光線透過率(%)のおよびヘイズ値(%)算出は、ヘーズメーターのコントロールユニット(型番CUII、Ver2.00.02)により得られた数値とした。
(Measurement of haze value and measurement of total light transmittance)
The haze value and the total light transmittance were measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number: SH- 7000). The measurement method was performed according to the method of JIS K 7105.
An optional glass cell (part number: 2277, square cell, optical path length 10 mm×width 40×height 55) of the haze meter filled with pure water was used as a blank measurement value, and the light transmittance of the slurry for measurement was measured. The light source was D65, the field of view was 10°, and the measurement wavelength range was 380 to 780 nm.
The total light transmittance (%) and the haze value (%) were calculated using values obtained from a control unit of a haze meter (model number CUII, Ver2.00.02).
(B型粘度測定)
 粘度測定は、調製した0.5質量%のスルホン化微細セルロース繊維含有スラリーの粘度は、B型粘度計を用いて測定した。
 粘度測定の測定条件等を以下に示す。
 B型粘度計(BLOOKFIELD社製、DV2T(RV型))
 測定条件:回転数6rpm、測定温度20℃、測定時間3分、スピンドルはRV-02~07の内適切なものを選定、データの記録方法はシングルポイント
 シングルポイントとは、本実験に用いたB型粘度計における測定終了時の値のみを取得する記録方法の設定項目である。つまり、測定開始時から3分経過時の瞬間値を記録している。
(B type viscosity measurement)
The viscosity of the prepared slurry containing 0.5% by mass of sulfonated fine cellulose fibers was measured using a Brookfield viscometer.
Measurement conditions, etc. for viscosity measurement are shown below.
B-type viscometer (manufactured by BLOOKFIELD, DV2T (RV type))
Measurement conditions: rotation speed 6 rpm, measurement temperature 20 ° C., measurement time 3 minutes, suitable spindle selected from RV-02 to 07, data recording method is single point Single point is B used in this experiment This is a setting item for the recording method for acquiring only the value at the end of measurement in the viscometer. In other words, the instantaneous value after 3 minutes from the start of measurement is recorded.
(チキソトロピー性指数の測定)
 チキソトロピー性指数(TI値)を測定した。
 TI値の算出は、上述のB型粘度計を用いて、回転数6rpmと60rpmで測定を行い、回転数6rpmで得られた粘度値を60rpmで得られた粘度値で除した値とした。
(Measurement of thixotropic index)
The thixotropic index (TI value) was determined.
The TI value was calculated by using the Brookfield viscometer described above and measuring at 6 rpm and 60 rpm, and dividing the viscosity value obtained at 6 rpm by the viscosity value obtained at 60 rpm.
<スルホン化微細セルロース繊維スラリー含有塗料の調製>
(実施例6、7)
<Preparation of paint containing sulfonated fine cellulose fiber slurry>
(Examples 6 and 7)
(スルホン化微細セルロース繊維スラリー含有塗料の調製) (Preparation of paint containing sulfonated fine cellulose fiber slurry)
 スルホン化微細セルロース繊維スラリー含有塗料に含有するためのスルホン化微細セルロース繊維含有スラリーは、以下のように調製した。
 このスルホン化微細セルロース繊維含有スラリーの調製は、下記に記載の方法以外、実施例6は上述の実施例1と同様に行い、実施7は上述の実施例2と同様に行った。
A sulfonated fine cellulose fiber-containing slurry for inclusion in a sulfonated fine cellulose fiber slurry-containing paint was prepared as follows.
The slurry containing sulfonated fine cellulose fibers was prepared in the same manner as in Example 1 above for Example 6 and in Example 2 above, except for the method described below.
 微細化処理工程においては、予備解繊処理を固形分濃度2質量%で実施した後、スルホン化微細セルロース繊維の固形分濃度が1質量%となるように水とエタノールを加えて本解繊処理を行い所定の配合割合(水/エタノール比(g/g))となるように調製して、実施例6、7用のスルホン化微細セルロース繊維含有スラリーを調製した。 In the refining treatment step, after the preliminary defibration treatment is performed at a solid content concentration of 2% by mass, water and ethanol are added so that the solid content concentration of the sulfonated fine cellulose fibers is 1% by mass, and the main defibration treatment is performed. was adjusted to a predetermined mixing ratio (water/ethanol ratio (g/g)) to prepare sulfonated fine cellulose fiber-containing slurries for Examples 6 and 7.
 調製したスルホン化微細セルロース繊維含有スラリーを所定の塗料成分と混合して、スルホン化微細セルロース繊維含有スラリーを含有したスルホン化微細セルロース繊維スラリー含有塗料を調製した(実施例6、7)。
 なお、スルホン化微細セルロース繊維スラリー含有塗料が、本実施形態の微細セルロース繊維含有組成物を含有した塗料に相当する。
The prepared slurries containing sulfonated fine cellulose fibers were mixed with predetermined coating ingredients to prepare sulfonated fine cellulose fiber slurry-containing coatings (Examples 6 and 7).
The paint containing the sulfonated fine cellulose fiber slurry corresponds to the paint containing the composition containing fine cellulose fibers of the present embodiment.
 実験では、塗料成分としてアクリル塗料(アサヒペン社製、水性ガレージカラー クリヤ)を使用した。このアクリル塗料とスルホン化微細セルロース繊維含有スラリーの混合割合は、以下のとおりとした。
 実施例6は、実施例1で調製したスルホン化微細セルロース繊維含有スラリーをとアクリル塗料を、それぞれ20g(スルホン化微細セルロース繊維含有スラリー)と80g(アクリル塗料)、質量比(g/g)において0.25となるように混合して調製した。つまり、実施例6におけるスルホン化微細セルロース繊維の含有量が、0.2質量%(スルホン化微細セルロース繊維の固形分濃度0.2質量%)となるように調製した。スルホン化微細セルロース繊維の含有量は、下記式を用いて算出した。
 
塗料中のスルホン化微細セルロース繊維の含有量(%)=((スルホン化微細セルロース繊維含有スラリー中のスルホン化微細セルロース繊維(g))/塗料全量(g))×100(%)
In the experiment, an acrylic paint (Water Garage Color Clear, manufactured by Asahipen Co., Ltd.) was used as a paint component. The mixing ratio of this acrylic paint and the slurry containing sulfonated fine cellulose fibers was as follows.
In Example 6, the sulfonated fine cellulose fiber-containing slurry prepared in Example 1 and the acrylic paint were prepared at a mass ratio (g/g) of 20 g (sulfonated fine cellulose fiber-containing slurry) and 80 g (acrylic paint), respectively. It was prepared by mixing to be 0.25. That is, the content of the sulfonated fine cellulose fibers in Example 6 was adjusted to 0.2% by mass (the solid content concentration of the sulfonated fine cellulose fibers was 0.2% by mass). The content of sulfonated fine cellulose fibers was calculated using the following formula.

Content of sulfonated fine cellulose fibers in paint (%) = ((sulfonated fine cellulose fibers in slurry containing sulfonated fine cellulose fibers (g))/total amount of paint (g)) x 100 (%)
 実施例7は、実施例2で調製したスルホン化微細セルロース繊維含有スラリーとアクリル塗料を、それぞれ20gと80g、質量比(g/g)において0.25となるように混合して調製した。つまり、実施例7におけるスルホン化微細セルロース繊維の含有量が、0.2質量%となるように調製した。 Example 7 was prepared by mixing 20 g and 80 g of the sulfonated fine cellulose fiber-containing slurry prepared in Example 2 and the acrylic paint, respectively, at a mass ratio (g/g) of 0.25. That is, the content of the sulfonated fine cellulose fibers in Example 7 was adjusted to 0.2% by mass.
(評価及び測定) (Evaluation and measurement)
(分散性評価)
 スルホン化微細セルロース繊維スラリー含有塗料を調製したのち、かかる塗料液中においてスルホン化微細セルロース繊維の凝集物(ダマ)が見られるかを目視により評価した。
 ダマが確認されなければ○、小さなダマがあれば△、大きなダマがあれば×とした。
(Dispersibility evaluation)
After preparing the slurry containing sulfonated cellulose microfibers, it was visually evaluated whether aggregates (lumps) of sulfonated cellulose fibers were observed in the coating solution.
If no lumps were observed, it was evaluated as ◯; if small lumps were found, Δ;
(粘度測定)
 粘度測定は、上記B型粘度計を用いて、調製した塗料をビーカーに入れ、アルミ箔で隙間無く蓋をし、20℃の環境下に一昼夜静置した後、測定した。
 測定条件は、上記と同様に行った。
(Viscosity measurement)
Viscosity was measured using the above-mentioned B-type viscometer after putting the prepared paint in a beaker, tightly covering it with aluminum foil, and allowing it to stand overnight in an environment at 20°C.
The measurement conditions were the same as above.
(塗膜の速乾性評価)
 調製したスルホン化微細セルロース繊維スラリー含有塗料(実施例6、7)の速乾性の評価を行った。
 実験では、ヒノキ木材板に各混合物を0.5g塗工し、時間経過に伴う質量変化を測定した。速乾性評価は、室温20℃、湿度40%の実験室内にて実施した。
 図4に示すように、10分後の塗膜の質量が乾燥前と比較して、67%より低ければ◎、70%未満67%以上であれば○、70%以上であれば×とした。
(Evaluation of quick-drying property of coating film)
Quick-drying properties of the prepared sulfonated fine cellulose fiber slurry-containing paints (Examples 6 and 7) were evaluated.
In the experiment, 0.5 g of each mixture was applied to a cypress wood board, and the change in mass over time was measured. The quick-drying evaluation was performed in a laboratory at room temperature of 20°C and humidity of 40%.
As shown in FIG. 4, if the mass of the coating film after 10 minutes was less than 67% compared to before drying, it was evaluated as ⊚, if it was less than 70% and 67% or more, it was evaluated as ○, and if it was 70% or more, it was evaluated as ×. .
(塗膜の強度試験) 
 調製したスルホン化微細セルロース繊維スラリー含有塗料を使用して形成した塗膜の強度の評価を行った。
 実験では、テフロンシート(登録商標)上に、スルホン化微細セルロース繊維スラリー含有塗料5.0gをキャストし、直径8cmの円形にしたものを、恒温槽を50℃に設定した送風乾燥機で恒量となるまで乾燥させ塗膜を作製した。この塗膜を手で引っ張り、塗膜の強度を判断した。
 破断しなければ◎、強く引っ張って破断すれば○、軽い力で引っ張って破断すれば×とした。
(Strength test of coating film)
The strength of the coating film formed using the prepared sulfonated fine cellulose fiber slurry-containing coating was evaluated.
In the experiment, 5.0 g of a paint containing a slurry of sulfonated fine cellulose fibers was cast on a Teflon sheet (registered trademark), formed into a circle with a diameter of 8 cm, and dried with a blower dryer whose constant temperature bath was set at 50°C. It was dried until it became a coating film. The coating film was pulled by hand to determine the strength of the coating film.
The sample was rated as ⊚ if it was not broken, ∘ if it was broken when it was pulled strongly, and x if it was broken when it was pulled with a light force.
(実施例8、9、10)
 実施例8、9、10では、図5に示すように、スルホン化微細セルロース繊維の固形分濃度が1質量%となるように調製した1%CNFスラリーと、水と、アクリル塗料と、を所定の配合割合となるように調製した以外は、上述の実施例6と同様に行った。
(Examples 8, 9, 10)
In Examples 8, 9, and 10, as shown in FIG. 5, a 1% CNF slurry prepared so that the solid content concentration of the sulfonated fine cellulose fibers was 1% by mass, water, and an acrylic paint were prepared. The procedure was carried out in the same manner as in Example 6 above, except that the mixture was prepared so as to have a mixing ratio of .
 本実験の粘度及びTI値は、図5に示すように、上記の同様の方法を用いて測定した。 The viscosity and TI values in this experiment were measured using the same method as above, as shown in FIG.
 本実験では、以下のような方法により分散特性を評価した。
 なお、図5では、この分散特性を分散維持性として示した。
 透明の試験管(アズワン社製、ラボランスクリュー管瓶)に調製したスルホン化微細セルロース繊維スラリー含有塗料を所定量分取して、キャップを閉めた後、よく振り、静置した。この時の分取液の試験管の内底面からの高さは9cmであり、これが下式の試験管に分取した分取液の距離に相当する。静置直後は、比較例も含め全てにおいてアクリル塗料が均一に分散してエマルジョンの状態を形成していた。つまり振とう直後の状態は、水とアクリル塗料が均質に混合し両者の界面が形成されていない状態であった。言い換えれば、所定時間静置後の状態が振とう直後の状態と同じ状態であれば、分散特性が優れているといえる。
 静置して48時間後に、エマルジョンの状態を確認し、両者に界面が形成されている場合には、下記式により分散特性(%)を評価した。振とう後のエマルジョン状態が維持されて界面が形成されていない場合は、分散特性を100%とした。下記式中の距離とは、液底面と液上面との距離をいう。
In this experiment, dispersion characteristics were evaluated by the following method.
In addition, in FIG. 5, this dispersion characteristic is shown as dispersion maintenance property.
A predetermined amount of the paint containing the prepared sulfonated fine cellulose fiber slurry was dispensed into a transparent test tube (Laboran screw tube bottle manufactured by AS ONE), and after closing the cap, it was shaken well and allowed to stand. At this time, the height of the fractionated liquid from the inner bottom surface of the test tube was 9 cm, which corresponds to the distance of the fractionated liquid fractionated into the test tube in the following formula. Immediately after standing, the acrylic paint was evenly dispersed to form an emulsion in all cases including the comparative examples. That is, immediately after shaking, the water and the acrylic paint were homogeneously mixed and no interface was formed between them. In other words, if the state after standing still for a predetermined time is the same as the state immediately after shaking, it can be said that the dispersion characteristics are excellent.
After standing for 48 hours, the state of the emulsion was confirmed, and when an interface was formed between the two, the dispersion characteristics (%) were evaluated according to the following formula. When the emulsion state after shaking was maintained and no interface was formed, the dispersibility was taken as 100%. The distance in the following formula means the distance between the bottom surface and the top surface of the liquid.
 分散特性(%)は、下記式により算出される。
 
分散特性(%)=(エマルジョン形成部の距離cm)/(試験管に分取した分取液の距離cm)×100で評価した。
 
 例えば、試験管の上部に透明部、下部にエマルジョン(エマルジョン形成部)を有する場合、エマルジョン形成部の底面(試験管の内底面に相当)とエマルジョン形成部上面(エマルジョン形成部と透明部との界面)間の距離を測定して、エマルジョン形成部の距離cmとした。
Dispersion characteristic (%) is calculated by the following formula.

Dispersion characteristics (%) = (distance cm of emulsion-formed part)/(distance cm of sampled liquid collected in test tube) x 100.

For example, when a test tube has a transparent portion at the top and an emulsion (emulsion-forming portion) at the bottom, the bottom surface of the emulsion-forming portion (equivalent to the inner bottom surface of the test tube) and the top surface of the emulsion-forming portion (between the emulsion-forming portion and the transparent portion) The distance between the interfaces) was measured and taken as the distance cm of the emulsion forming part.
 なお、リン酸基を用いたものを比較例14~17、微細セルロース繊維無添加のブランクのものを比較例17~20とした。 Comparative Examples 14 to 17 used phosphate groups, and Comparative Examples 17 to 20 were blanks to which fine cellulose fibers were not added.
(実施例11、12、13)
 実施例11、12、13では、図6に示すように、スルホン化微細セルロース繊維の固形分濃度が0.5質量%となるように調製した0.5%CNFスラリーとし、アクリル塗料の代わりに化粧水(皮脂吸着成分を含有する市販の化粧水(静置状態で皮脂吸着成分が沈殿物と形成))を用い、所定の配合割合となるようにスルホン化微細セルロース繊維スラリー含有化粧料を調製し、粘度特性及び分散特性の評価を行った。粘度特性は上述の実施例8と同様に評価した。
 なお、図6では、この分散特性を分散維持性として示した。
(Examples 11, 12, 13)
In Examples 11, 12, and 13, as shown in FIG. 6, a 0.5% CNF slurry prepared so that the solid content concentration of the sulfonated fine cellulose fibers was 0.5% by mass was used instead of the acrylic paint. Using a lotion (a commercially available lotion containing sebum-adsorbing ingredients (the sebum-adsorbing ingredients form precipitates when left standing)), prepare a cosmetic containing a sulfonated fine cellulose fiber slurry at a predetermined mixing ratio. Then, the viscosity characteristics and dispersion characteristics were evaluated. Viscosity properties were evaluated in the same manner as in Example 8 above.
In addition, in FIG. 6, this dispersion characteristic is shown as dispersion maintenance property.
 本実験の分散特性評価では、試験管としてlabcon社製、遠沈管スーパーシールキャップを使用し、静置時間を24時間とし、分取液の量を試験管の内底面からの高さは6cmとし、界面の状態を以下のように評価した以外は、実施例8と同様に分散特性を評価した。 In the evaluation of the dispersion characteristics in this experiment, Labcon's centrifuge tube Super Seal Cap was used as the test tube, the stationary time was set to 24 hours, and the amount of the fractionated liquid was set to a height of 6 cm from the inner bottom surface of the test tube. , the dispersion characteristics were evaluated in the same manner as in Example 8, except that the state of the interface was evaluated as follows.
 本実験における分散特性(%)の下記式により算出される。
 
分散特性(%)=(試験管に分取した分取液の距離cm-透明部の距離cm)/(試験管に分取した分取液の距離cm)×100
 
 例えば、試験管の上部に透明部、下部にエマルジョン(エマルジョン形成部)を有する場合、透明部の底面(エマルジョン形成部と透明部との界面)と透明部上面(試験管内上面に相当)間の距離を測定して、透明部の距離(cm)とした。
 振とう後のエマルジョン状態が維持されて界面が形成されていない場合は、透明部の距離は0cmとなり、分散特性は100%となる。
It is calculated by the following formula of dispersion characteristics (%) in this experiment.

Dispersion characteristic (%) = (Distance cm of fractionated liquid fractionated in test tube - Distance cm of transparent part) / (Distance cm of fractionated liquid fractionated into test tube) x 100

For example, when the test tube has a transparent part in the upper part and an emulsion (emulsion-forming part) in the lower part, there is a gap between the bottom surface of the transparent part (interface between the emulsion-forming part and the transparent part) and the upper surface of the transparent part (equivalent to the upper surface inside the test tube). The distance was measured and taken as the transparent part distance (cm).
When the emulsion state after shaking is maintained and no interface is formed, the distance of the transparent portion is 0 cm and the dispersion characteristic is 100%.
<比較例> <Comparative example>
(比較例1、比較例5~7)
 比較例1は、水/エタノール比(g/g)が100/0となるように調製した以外、実施例1、2、4と同様に調製した。
 比較例5は、スルホン化微細セルロース繊維に含まれるスルホ基の導入量が0.3mmol/gとなるように調製した以外、実施例1、2、4に用いられるスルホン化微細セルロース繊維と同様で行った。また、水/エタノール比(g/g)は、60/40となるように調製した。
 比較例6は、スルホン化微細セルロース繊維に含まれるスルホ基の導入量が0.6mmol/gとなるように調製した以外、実施例1、2、4に用いられるスルホン化微細セルロース繊維と同様で行った。また、水/エタノール比(g/g)は、40/60となるように調製した。
 比較例7は、水/エタノール比(g/g)が、40/60となるように調製した以外、実施例1、2、4と同様に調製した。
(Comparative Example 1, Comparative Examples 5-7)
Comparative Example 1 was prepared in the same manner as Examples 1, 2 and 4, except that the water/ethanol ratio (g/g) was adjusted to 100/0.
Comparative Example 5 was the same as the sulfonated fine cellulose fibers used in Examples 1, 2 and 4, except that the amount of sulfo groups introduced into the sulfonated fine cellulose fibers was adjusted to 0.3 mmol/g. gone. Also, the water/ethanol ratio (g/g) was adjusted to 60/40.
Comparative Example 6 was the same as the sulfonated fine cellulose fibers used in Examples 1, 2 and 4, except that the sulfonated fine cellulose fibers were prepared so that the amount of sulfo groups introduced was 0.6 mmol/g. gone. Also, the water/ethanol ratio (g/g) was adjusted to 40/60.
Comparative Example 7 was prepared in the same manner as Examples 1, 2 and 4, except that the water/ethanol ratio (g/g) was adjusted to 40/60.
(比較例2~4)
 比較例2~4では、スルホ基の代わりにリン酸基を導入したリン酸エステル化微細セルロース繊維含有スラリーを調製した。
(Comparative Examples 2-4)
In Comparative Examples 2 to 4, slurries containing phosphate-esterified fine cellulose fibers were prepared in which phosphoric acid groups were introduced instead of sulfo groups.
 ビーカにリン酸二水素アンモニウム(純度99.0%、富士フィルム和光純薬社製、型番;特級試薬)を11.2g、尿素(純度99.0%、富士フィルム和光純薬社製、型番;特級試薬)を30gはかりとり、純水を80mL加えて、撹拌して、リン酸エステル化溶液を調製した。 In a beaker, 11.2 g of ammonium dihydrogen phosphate (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, model number; special grade reagent), urea (purity 99.0%, manufactured by Fujifilm Wako Pure Chemical Industries, model number; Special grade reagent) was weighed out, 80 mL of pure water was added, and the mixture was stirred to prepare a phosphoric acid esterification solution.
(パルプのリン酸エステル化)
 原料である乾燥パルプは次のように作製した。
 針葉樹クラフトパルプシート(丸住製紙製NBKPシート)を使用した。以下では、実験に供したNBKPを単にパルプとして説明する。
パルプシートは水分率が7%となるように乾燥させたものを使用し、その坪量は3000g/m2であった。
(Phosphate esterification of pulp)
The raw material, dry pulp, was prepared as follows.
A softwood kraft pulp sheet (NBKP sheet manufactured by Marusumi Paper Co., Ltd.) was used. Below, the NBKP used in the experiment will be simply described as pulp.
The pulp sheet used was dried to a moisture content of 7% and had a basis weight of 3000 g/m2.
 リン酸エステル化パルプは次のように作製した。
 ビーカーに調製したパルプ5g(固形分質量)を入れ、リン酸エステル化溶液を100g加えた。パルプへ溶液をよく吸収させた後アルミバットに広げ、80℃雰囲気下の乾燥機に入れ、水分率が5%以下に達するまで水を乾燥した。その後、160℃~180℃雰囲気下の乾燥機に入れ、25分間反応させた。その後、目開き63μmのメッシュ(235メッシュ)のステンレスふるい上に注ぎ、中和剤として炭酸水素ナトリウム(純度99.5%、ナカライテスク社製)を用いて中和処理後、多量の純水で洗浄した後、水分率が平衡状態になるまで乾燥してリン酸エステル化パルプを得た。
Phosphate esterified pulp was produced as follows.
5 g (solid mass) of the prepared pulp was placed in a beaker, and 100 g of the phosphating solution was added. After allowing the pulp to absorb the solution well, it was spread on an aluminum vat and placed in a dryer at 80° C. to dry water until the moisture content reached 5% or less. After that, it was placed in a dryer under an atmosphere of 160° C. to 180° C. and reacted for 25 minutes. After that, it is poured onto a stainless steel sieve with a mesh size of 63 μm (235 mesh), neutralized with sodium hydrogen carbonate (purity 99.5%, manufactured by Nacalai Tesque) as a neutralizing agent, and then washed with a large amount of pure water. After washing, the pulp was dried until the moisture content reached an equilibrium state to obtain a phosphate esterified pulp.
 得られたリン酸エステルパルプを上記スルホン化微細セルロース繊維の調製方法と同様の条件で微細化処理して、リン酸エステル化微細セルロース繊維含有スラリーを調製した(比較例2~4)。 The resulting phosphate ester pulp was micronized under the same conditions as in the method for preparing the sulfonated fine cellulose fibers to prepare slurries containing phosphate ester fine cellulose fibers (Comparative Examples 2 to 4).
(比較例8~13)
 塗料の比較例として、比較例8~13を調製した。
 比較例8は、比較例1で調製したスルホン化微細セルロース繊維含有スラリーとアクリル塗料を、それぞれ20gと80g、質量比(g/g)において0.25となるように混合し調製した。つまり、比較例8におけるスルホン化微細セルロース繊維の含有量が、0.2質量%となるように調製した。
 比較例9は、比較例2で調製したリン酸エステル化微細セルロース繊維含有スラリーとアクリル塗料を、それぞれ20gと80g、質量比(20g/80g)において0.25となるように混合し調製した。
 比較例10は、比較例3で調製したリン酸エステル化微細セルロース繊維含有スラリーとアクリル塗料を、それぞれ20gと80g、質量比(20g/80g)において0.25となるように混合し調製した。
 比較例11は、比較例2で調製したリン酸エステル化微細セルロース繊維含有スラリーとアクリル塗料を、それぞれ20gと80g、質量比(20g/80g)において0.25となるように混合し調製した。
 比較例12は、比較例3で調製したリン酸エステル化微細セルロース繊維含有スラリーとアクリル塗料を、それぞれ20gと80g、質量比(20g/80g)において0.25となるように混合し調製した。
 比較例13は、水(純水)とアクリル塗料を、それぞれ20gと80g、質量比(20g/80g)において0.25となるように混合し調製した。
(Comparative Examples 8-13)
Comparative Examples 8 to 13 were prepared as comparative examples of paints.
Comparative Example 8 was prepared by mixing 20 g and 80 g, respectively, of the slurry containing sulfonated fine cellulose fibers prepared in Comparative Example 1 and the acrylic paint at a mass ratio (g/g) of 0.25. That is, the content of the sulfonated fine cellulose fibers in Comparative Example 8 was adjusted to 0.2% by mass.
Comparative Example 9 was prepared by mixing 20 g and 80 g, respectively, of the phosphoric esterified fine cellulose fiber-containing slurry prepared in Comparative Example 2 and the acrylic paint at a mass ratio (20 g/80 g) of 0.25.
Comparative Example 10 was prepared by mixing 20 g and 80 g, respectively, of the phosphoric esterified fine cellulose fiber-containing slurry prepared in Comparative Example 3 and the acrylic paint at a mass ratio (20 g/80 g) of 0.25.
Comparative Example 11 was prepared by mixing 20 g and 80 g of the slurry containing phosphoric esterified fine cellulose fibers prepared in Comparative Example 2 and the acrylic paint in a mass ratio (20 g/80 g) of 0.25.
Comparative Example 12 was prepared by mixing 20 g and 80 g of the slurry containing phosphoric esterified fine cellulose fibers prepared in Comparative Example 3 and the acrylic paint at a mass ratio (20 g/80 g) of 0.25.
Comparative Example 13 was prepared by mixing 20 g and 80 g of water (pure water) and acrylic paint, respectively, at a mass ratio (20 g/80 g) of 0.25.
 比較例14、15、16は、1%CNFとして比較例3で調製したリン酸エステル化微細セルロース繊維含有スラリーを用い、図5における配合割合に調製した以外は、実施例8と同様の測定及び評価を行った。 In Comparative Examples 14, 15, and 16, the same measurements and measurements as in Example 8 were performed, except that the slurry containing phosphorylated esterified fine cellulose fibers prepared in Comparative Example 3 was used as 1% CNF, and the blending ratio in FIG. made an evaluation.
 比較例17~20は、微細セルロース繊維を含有しない状態で、図5における配合割合に調製した以外は、実施例8と同様の測定及び評価を行った。 Comparative Examples 17 to 20 were measured and evaluated in the same manner as in Example 8, except that they were adjusted to the blend ratio shown in FIG. 5 without containing fine cellulose fibers.
 比較例21、22、23は、0.5%CNFとして比較例3で調製したリン酸エステル化微細セルロース繊維含有スラリーを用い、図6における配合割合に調製した以外は、実施例11と同様の測定及び評価を行った。 Comparative Examples 21, 22, and 23 were the same as Example 11, except that the phosphorylated esterified fine cellulose fiber-containing slurry prepared in Comparative Example 3 was used as 0.5% CNF, and the blending ratio in FIG. 6 was prepared. Measurements and evaluations were made.
 比較例24は、微細セルロース繊維を含有しない状態で、図6における配合割合に調製した以外は、実施例11と同様の測定及び評価を行った。 Comparative Example 24 was measured and evaluated in the same manner as in Example 11, except that it was adjusted to the blend ratio shown in FIG. 6 without containing fine cellulose fibers.
 比較例の各特性(物性)は、上記実施例と同様の方法により測定した。結果は図に示す。 Each characteristic (physical property) of the comparative example was measured by the same method as the above example. Results are shown in the figure.
<実験結果> <Experimental results>
 実施例1~7の実験結果を図1~図4に示す。
 図1および図2は、スルホン化微細セルロース繊維含有スラリーの特性(物性)を示した表である。
 図3および図4は、スルホン化微細セルロース繊維含有スラリーを含有した塗料の特性(物性)を示した表である。
The experimental results of Examples 1-7 are shown in FIGS. 1-4.
1 and 2 are tables showing properties (physical properties) of slurries containing sulfonated fine cellulose fibers.
3 and 4 are tables showing the properties (physical properties) of paints containing sulfonated fine cellulose fiber-containing slurries.
 図1、図2に示すように、スルホン化微細セルロース繊維含有スラリーは、高い透明性と所定の粘度特性を有していた。なお、比較例1の結果から、スルホン化微細セルロース繊維含有スラリーに含有したスルホン化微細セルロース繊維は、透明性を発揮する構造を有する繊維であることが分かる。
 また、比較例のリン酸エステル化微細セルロース繊維含有スラリーと比べて、優れた透明性および粘性を有していた。
As shown in FIGS. 1 and 2, the sulfonated fine cellulose fiber-containing slurry had high transparency and predetermined viscosity characteristics. From the results of Comparative Example 1, it can be seen that the sulfonated fine cellulose fibers contained in the slurry containing sulfonated fine cellulose fibers are fibers having a structure exhibiting transparency.
In addition, it had excellent transparency and viscosity as compared with the slurry containing phosphate-esterified fine cellulose fibers of the comparative example.
 図2に示すように、スルホ基の導入量が少ないと解繊処理すら行うことができなかった(比較例5)。一方、スルホ基の導入量を高くすることにより、エタノールの濃度を高くしても優れた透明性と粘性を有していた(実施例5)。つまり、スルホ基量が多いほど、水/エタノール溶液中のエタノール比率が高くなっても透明性(つまりスルホン化微細セルロース繊維の分散性)を維持できることが確認できた。
 図2に示すように、実施例3と比較例6では、スルホ基の導入量が同じであるが、前者(水/エタノールが60/40)は、解繊処理を行うことができたのに対して、後者(水/エタノールが40/60)は解繊処理を行うことができなかった。また、同様に、実施例4と比較例7では、スルホ基の導入量が同じであるが、前者(水/エタノールが60/40)と後者(水/エタノールが40/60)では、前者が高い透明性を示しており(つまり分散性を有する構造のスルホン化微細セルロース繊維が得られていることを示している)、適切な粘度特性を示したのに対して、後者は解繊処理を行うことができたものの、透明性が低く(つまり適切なスルホン化微細セルロース繊維が調製できていない)、粘度特性も適切に測定することができなかった。
 つまり、スルホ基の導入量が1.3mmol/g以下の場合、エタノールの比率を水よりも多くしたスラリー状態では、解繊処理が行いにくい傾向にあり、解繊処理を行うことができたとしても所望のスルホン化微細セルロース繊維を調製しにくいことが分かった。
As shown in FIG. 2, when the amount of sulfo groups introduced was small, even defibration treatment could not be performed (Comparative Example 5). On the other hand, by increasing the amount of sulfo groups introduced, excellent transparency and viscosity were obtained even when the concentration of ethanol was increased (Example 5). In other words, it was confirmed that the greater the amount of sulfo groups, the more the transparency (that is, the dispersibility of the sulfonated fine cellulose fibers) could be maintained even when the ethanol ratio in the water/ethanol solution was increased.
As shown in FIG. 2, in Example 3 and Comparative Example 6, the amount of sulfo groups introduced was the same, but the former (water/ethanol is 60/40) was able to be defibrated. In contrast, the latter (40/60 water/ethanol) could not be defibrated. Similarly, in Example 4 and Comparative Example 7, the amount of sulfo groups introduced is the same, but in the former (water/ethanol is 60/40) and the latter (water/ethanol is 40/60), the former is It shows high transparency (that is, it shows that a sulfonated fine cellulose fiber with a structure having dispersibility is obtained) and shows appropriate viscosity characteristics, whereas the latter shows a defibration treatment. Although it could be done, the transparency was poor (ie no suitable sulfonated microcellulose fibers could be prepared) and the viscosity properties could not be properly measured.
In other words, when the amount of sulfo groups introduced is 1.3 mmol/g or less, the defibration treatment tends to be difficult to perform in a slurry state in which the ratio of ethanol is higher than that of water. It has also been found to be difficult to prepare the desired sulfonated fine cellulose fibers.
 また、図3に示すように、スルホン化微細セルロース繊維含有スラリーを用いて作製したフィルムは、高い透明性を有することが確認できた。 In addition, as shown in FIG. 3, it was confirmed that the film produced using the slurry containing sulfonated fine cellulose fibers had high transparency.
 図1および図2の結果から、エタノール量が増加に伴い各官能基により微細セルロース繊維の分散状態が異なった。スルホ基ではリン酸基と比べて、混合溶液中の水の比率を変えても透明性を維持することができた。このことから、スルホ基のほうがリン酸基より、微細セルロース繊維の分散性を改善するのに効果的だと考えられる。  From the results of Figures 1 and 2, as the amount of ethanol increased, the dispersion state of the fine cellulose fibers varied according to each functional group. Compared to the phosphate group, the sulfo group was able to maintain transparency even when the ratio of water in the mixed solution was changed. This suggests that the sulfo group is more effective in improving the dispersibility of fine cellulose fibers than the phosphate group.
 図3に示すように、スルホン化微細セルロース繊維含有スラリーを含有した塗料は、比較例と比べて優れた特性を有していた。とくに、水のみのままアクリル塗料に混ぜると塗料中において微細セルロース繊維が凝集してダマを形成する傾向が見られた。しかし、水にエタノールを混合した混合溶液にスルホン化微細セルロース繊維を分散させたスルホン化微細セルロース繊維含有スラリーをアクリル塗料と混合することにより、ダマはほとんど確認されなかった。
 これらのことから、エタノールを混合した混合溶液は塗料成分との親和性が高いために、エタノール混合溶液にスルホン化微細セルロース繊維が均一に分散していれば(スルホン化微細セルロース繊維含有スラリーが透明な状態、つまりヘイズ値が低い値を示していれば)、アクリル塗料などの塗料成分と混合しても、両者が適切にまじりわせやすいと考えられる。
 また、図4に示すように、塗料中に揮発を有するエタノールが混合されているので、速乾性(取り扱い性)を向上させることができることが確認できた。つまり、本発明の塗料を用いれば、微細セルロース繊維を含有させつつ、塗工性および取り扱い性を向上させることができることが確認できた。
As shown in Figure 3, the paint containing the slurry containing sulfonated fine cellulose fibers had superior properties compared to the comparative example. In particular, when only water was mixed with the acrylic paint, there was a tendency for the fine cellulose fibers to aggregate and form lumps in the paint. However, almost no lumps were observed by mixing a slurry containing sulfonated fine cellulose fibers dispersed in a mixed solution of water and ethanol with the acrylic paint.
From these facts, since the mixed solution mixed with ethanol has a high affinity with the paint component, if the sulfonated fine cellulose fibers are uniformly dispersed in the ethanol mixed solution (slurry containing sulfonated fine cellulose fibers is transparent If it is in a good state, that is, if the haze value is low), even if it is mixed with a paint component such as an acrylic paint, it is considered that both can be mixed appropriately.
Moreover, as shown in FIG. 4, it was confirmed that quick-drying property (handleability) can be improved because the paint contains volatile ethanol. In other words, it was confirmed that the use of the paint of the present invention could improve the coatability and handleability while containing fine cellulose fibers.
 実施例8~10の実験結果を図5に示す。
 微細セルロース繊維を含有しない塗料液体(比較例18~20)では、水と塗料成分とが分離するのに対して、本発明のスルホン化微細セルロース繊維スラリー含有塗料では、塗料成分(アクリル塗料)が分離しない、つまり分散特性が100%であることが確認できた。
 しかも、実施例8~10のスルホン化微細セルロース繊維スラリー含有塗料は、スルホ基の代わりにリン酸基を導入した微細セルロース繊維含有塗料(比較例14~16)と比べても優れた分散特性を発揮することが確認できた。
 また、実施例8~10のスルホン化微細セルロース繊維スラリー含有塗料は、比較例14~16の塗料と比べても同様の粘度を有し、かつ所定のTI値を発揮しながらも、適切な分散特性(スルホン化微細セルロース繊維が適切に分散した状態)を発揮することが確認できた。
The experimental results of Examples 8-10 are shown in FIG.
In the coating liquids containing no fine cellulose fibers (Comparative Examples 18 to 20), water and coating components are separated, whereas in the coating containing the sulfonated fine cellulose fiber slurry of the present invention, the coating component (acrylic coating) is separated. It was confirmed that there was no separation, that is, the dispersion characteristics were 100%.
Moreover, the sulfonated fine cellulose fiber slurry-containing paints of Examples 8 to 10 have excellent dispersion characteristics compared to the fine cellulose fiber-containing paints (Comparative Examples 14 to 16) in which phosphoric acid groups are introduced instead of sulfo groups. It was confirmed that it works.
In addition, the paints containing the sulfonated fine cellulose fiber slurry of Examples 8-10 have similar viscosities to the paints of Comparative Examples 14-16, and while exhibiting a predetermined TI value, they have an appropriate dispersion. It was confirmed that the properties (a state in which the sulfonated fine cellulose fibers are appropriately dispersed) are exhibited.
 したがって、本発明のスルホン化微細セルロース繊維スラリー含有塗料は、所定の構造(所定の透明性を発揮する構造)を有するスルホン化微細セルロース繊維を含有することにより、優れた分散特性(塗料成分を均質に分散させた状態を維持すること)を発揮することが確認できた。このため、本発明のスルホン化微細セルロース繊維スラリー含有塗料を使用すれば、塗料成分が均質に含まれる塗膜を形成することができることが確認できた。しかも、低い粘度及び所定のTI値を発揮させることができることから、塗料としての取り扱い性を向上させることができることが確認できた。一方、比較例14~16の塗料では、分散特性が本発明のスルホン化微細セルロース繊維スラリー含有塗料と比べても低いことから、塗膜中の塗料成分が本発明のスルホン化微細セルロース繊維スラリー含有塗料の塗膜と比べて均質性が低下することが分かった。 Therefore, the coating composition containing the sulfonated fine cellulose fiber slurry of the present invention has excellent dispersion characteristics (coating components are uniformly It was confirmed that the state of being dispersed in) was exhibited. Therefore, it was confirmed that the use of the coating composition containing the sulfonated fine cellulose fiber slurry of the present invention enables the formation of a coating film in which the components of the coating composition are homogeneously contained. In addition, it was confirmed that the low viscosity and the predetermined TI value can be exhibited, so that the handleability as a paint can be improved. On the other hand, in the paints of Comparative Examples 14 to 16, the dispersion characteristics are lower than the paint containing the sulfonated fine cellulose fiber slurry of the present invention, so the paint component in the paint film contains the sulfonated fine cellulose fiber slurry of the present invention. It was found that the homogeneity was reduced compared to the coating film of the paint.
 実施例11~13の実験結果を図6に示す。
 微細セルロース繊維を含有しない化粧料液体(比較例24)では、化粧成分が分離して沈殿物を形成するのに対して、実施例11~12のスルホン化微細セルロース繊維スラリー含有化粧料では、化粧成分の沈殿が全く発生せず、実施例13のスルホン化微細セルロース繊維スラリー含有化粧料でも70%以上の分散特性を発揮することが確認できた。
 しかも、実施例11~13のスルホン化微細セルロース繊維スラリー含有化粧料は、スルホ基の代わりにリン酸基を導入した微細セルロース繊維含有化粧液体(比較例21~23)と比べても優れた分散特性を発揮することが確認できた。
 また、実施例11~13のスルホン化微細セルロース繊維スラリー含有化粧料は、比較例21~23と比べても粘度を低くでき、しかも所定のTI値を発揮することが確認できた。
The experimental results of Examples 11-13 are shown in FIG.
In the cosmetic liquid containing no fine cellulose fibers (Comparative Example 24), the cosmetic components separated to form precipitates, whereas in the cosmetic liquid containing the sulfonated fine cellulose fiber slurry of Examples 11 and 12, the cosmetic No sedimentation of the components occurred, and it was confirmed that even the cosmetic containing the sulfonated fine cellulose fiber slurry of Example 13 exhibited a dispersibility of 70% or more.
Moreover, the cosmetic compositions containing sulfonated fine cellulose fiber slurries of Examples 11 to 13 had excellent dispersion compared to cosmetic liquids containing fine cellulose fibers (Comparative Examples 21 to 23) in which phosphoric acid groups were introduced instead of sulfo groups. It was confirmed that the characteristics were exhibited.
Moreover, it was confirmed that the sulfonated fine cellulose fiber slurry-containing cosmetic materials of Examples 11 to 13 could have a lower viscosity than those of Comparative Examples 21 to 23, and exhibited a predetermined TI value.
 したがって、本実験のスルホン化微細セルロース繊維スラリー含有塗料は、所定の構造(所定の透明性を発揮する構造)を有するスルホン化微細セルロース繊維を含有することにより、優れた分散特性(化粧成分を均質に分散させた状態を維持すること)を発揮することが確認できた。
 このため、本発明の微細セルロース繊維含有組成物を化粧料に含有することにより、沈殿し易い化粧組成物などを常に均質な状態に維持できるので、かかる化粧料を皮膚に塗布した際に沈殿し易い化粧組成物も適切に塗布することができるから、化粧料の効果を適切に発揮させることができる。
 また、沈殿を形成し易い化粧料の場合、使用前に沈殿物が均質な状態となるようにしっかりと振る必要があり、振りが不十分の場合には化粧料の効果を適切に発揮させることができないことがある。しかしながら、このような化粧料が本発明の微細セルロース繊維含有組成物を含有していれば、使用する直前のかかる動作を行わなくても化粧料の効果を適切に発揮させることができる。
Therefore, the sulfonated fine cellulose fiber slurry-containing paint of this experiment contains sulfonated fine cellulose fibers having a predetermined structure (a structure that exhibits a predetermined transparency), so that it has excellent dispersion characteristics (cosmetic ingredients are dispersed homogeneously). It was confirmed that the state of being dispersed in) was exhibited.
Therefore, by including the fine cellulose fiber-containing composition of the present invention in a cosmetic, a cosmetic composition that tends to precipitate can be maintained in a homogeneous state at all times. Since even a cosmetic composition that is easy to apply can be appropriately applied, the effect of the cosmetic can be appropriately exhibited.
In addition, in the case of cosmetics that tend to form sediment, it is necessary to shake them thoroughly before use so that the sediments are in a homogeneous state. may not be possible. However, if such a cosmetic contains the fine cellulose fiber-containing composition of the present invention, the effect of the cosmetic can be appropriately exhibited without performing such operations immediately before use.
 本発明の微細セルロース繊維含有組成物および増粘剤は、医療分野、食品分野、環境分野、工業分野、製紙分野などの各分野において、微細セルロース繊維を分散させるために使用される組成物、増粘剤として適している。また、本発明の塗料は、微細セルロース繊維の特性を発揮するものとして環境分野、工業分野などに広く活用することができる。 The composition containing fine cellulose fibers and the thickening agent of the present invention are used for dispersing fine cellulose fibers in various fields such as the medical field, food field, environmental field, industrial field, and papermaking field. Suitable as a sticky agent. Moreover, the paint of the present invention can be widely used in environmental fields, industrial fields, etc., as it exhibits the properties of fine cellulose fibers.

Claims (14)

  1.  対象液体に用いられる組成物であり、
    水と、水溶性溶剤と、該水溶性溶媒と水の混合溶液に分散した、水酸基の一部がスルホ基で置換され、該スルホ基の導入量が0.4mmol/g~3.0mmol/gのスルホン化微細セルロース繊維と、を含み、
    該スルホン化微細セルロース繊維の固形分濃度が0.5質量%の状態におけるヘイズ値が30%以下である
    ことを特徴とする微細セルロース繊維含有組成物。
    A composition used for the target liquid,
    Some of the hydroxyl groups dispersed in water, a water-soluble solvent, and a mixed solution of the water-soluble solvent and water are substituted with sulfo groups, and the introduction amount of the sulfo groups is 0.4 mmol/g to 3.0 mmol/g. sulfonated fine cellulose fibers of
    A composition containing fine cellulose fibers, wherein the sulfonated fine cellulose fibers have a haze value of 30% or less when the solid content concentration of the sulfonated fine cellulose fibers is 0.5% by mass.
  2.  前記水の含有量が、
    前記スルホン化微細セルロース繊維1質量部に対して20質量部~300質量部であり、
    前記水溶性溶剤の含有量が、
    前記水100質量部に対して10質量部~300質量部である
    ことを特徴とする請求項1記載の微細セルロース繊維含有組成物。
    The water content is
    20 parts by mass to 300 parts by mass with respect to 1 part by mass of the sulfonated fine cellulose fibers,
    The content of the water-soluble solvent is
    2. The fine cellulose fiber-containing composition according to claim 1, wherein the amount is 10 to 300 parts by mass with respect to 100 parts by mass of the water.
  3.  前記スルホン化微細セルロース繊維の固形分濃度が0.5質量%の状態における、B型粘度計を用いて、20℃、回転数6rpmと回転数60rpm、で測定を行い、各々の粘度を算出し、各粘度比(回転数6rpmでの粘度/回転数60rpmでの粘度)から算出されるチキソトロピー性指数が、5.0以上である
    ことを特徴とする請求項1または2記載の微細セルロース繊維含有組成物。
    The sulfonated fine cellulose fibers have a solid content concentration of 0.5% by mass, and are measured using a Brookfield viscometer at 20° C. at 6 rpm and 60 rpm to calculate the respective viscosities. 3. The fine cellulose fiber-containing composition according to claim 1 or 2, wherein the thixotropic index calculated from each viscosity ratio (viscosity at 6 rpm/viscosity at 60 rpm) is 5.0 or more Composition.
  4.  前記水溶性溶剤が、低級アルコールである
    ことを特徴とする請求項1、2または3記載の微細セルロース繊維含有組成物。
    4. The composition containing fine cellulose fibers according to claim 1, 2 or 3, wherein the water-soluble solvent is a lower alcohol.
  5.  前記スルホン化微細セルロース繊維の平均繊維幅が、2nm以上、30nm以下である
    ことを特徴とする請求項1、2、3または4記載の微細セルロース繊維含有組成物。
    5. The composition containing fine cellulose fibers according to claim 1, 2, 3 or 4, wherein the sulfonated fine cellulose fibers have an average fiber width of 2 nm or more and 30 nm or less.
  6.  前記スルホン化微細セルロース繊維は、アスペクト比(平均繊維長/平均繊維幅)が、20以上、1000以下である
    ことを特徴とする請求項1、2、3、4または5記載の微細セルロース繊維含有組成物。
    6. The fine cellulose fiber-containing fiber according to claim 1, 2, 3, 4 or 5, wherein the sulfonated fine cellulose fiber has an aspect ratio (average fiber length/average fiber width) of 20 or more and 1000 or less. Composition.
  7.  前記対象液体が塗料である
    ことを特徴とする請求項1乃至6のいずれかに記載の微細セルロース繊維含有組成物。
    7. The composition containing fine cellulose fibers according to any one of claims 1 to 6, wherein the target liquid is paint.
  8.  前記対象液体が皮膚外用剤である
    ことを特徴とする請求項1乃至6のいずれかに記載の微細セルロース繊維含有組成物。
    7. The composition containing fine cellulose fibers according to any one of claims 1 to 6, wherein the target liquid is an external preparation for skin.
  9.  前記対象液体が化粧料である
    ことを特徴とする請求項1乃至6のいずれかに記載の微細セルロース繊維含有組成物。
    7. The composition containing fine cellulose fibers according to any one of claims 1 to 6, wherein the target liquid is a cosmetic.
  10.  前記対象液体が増粘剤である
    ことを特徴とする請求項1乃至6のいずれかに記載の微細セルロース繊維含有組成物。
    7. The composition containing fine cellulose fibers according to any one of claims 1 to 6, wherein the target liquid is a thickening agent.
  11.  請求項1~6のいずれかに記載の微細セルロース繊維含有組成物を含有する塗料であり、
    該塗料中における、前記微細セルロース繊維含有組成物中のスルホン化微細セルロース繊維の含有率が、0.05質量%~10質量%である
    ことを特徴とする塗料。
    A paint containing the fine cellulose fiber-containing composition according to any one of claims 1 to 6,
    A paint, wherein the content of sulfonated fine cellulose fibers in the composition containing fine cellulose fibers in the paint is 0.05% by mass to 10% by mass.
  12.  前記スルホン化微細セルロース繊維の固形分濃度が0.1質量%~1.0質量%の状態における、B型粘度計を用いて、20℃及び回転数6rpm、3分の条件で測定した粘度が、100mPa・s以以上、4000mPa・s以下である
    ことを特徴とする請求項11記載の塗料。
    The solid content concentration of the sulfonated fine cellulose fibers is 0.1% by mass to 1.0% by mass, and the viscosity measured using a Brookfield viscometer under the conditions of 20° C., 6 rpm, and 3 minutes is , 100 mPa·s or more and 4000 mPa·s or less.
  13.  前記スルホン化微細セルロース繊維の固形分濃度が0.1質量%~1.0質量%の状態における、B型粘度計を用いて、20℃、回転数6rpmと回転数60rpm、で測定を行い、各々の粘度を算出し、各粘度比(回転数6rpmでの粘度/回転数60rpmでの粘度)から算出されるチキソトロピー性指数が、2.0以上である
    ことを特徴とする請求項11または12記載の塗料。
    Using a B-type viscometer, the solid content concentration of the sulfonated fine cellulose fibers is 0.1% by mass to 1.0% by mass. 12. The thixotropic index calculated from each viscosity ratio (viscosity at 6 rpm/viscosity at 60 rpm) is 2.0 or more. Paint as described.
  14.  請求項1~6のいずれかに記載の微細セルロース繊維含有組成物を含有する増粘剤であり、
    前記スルホン化微細セルロース繊維の含有量が、前記増粘剤の全量に対して、0.1質量%~95質量%である
    ことを特徴とする増粘剤。
     
    A thickener containing the fine cellulose fiber-containing composition according to any one of claims 1 to 6,
    A thickening agent characterized in that the content of the sulfonated fine cellulose fibers is 0.1% by mass to 95% by mass relative to the total amount of the thickening agent.
PCT/JP2022/000113 2022-01-05 2022-01-05 Composition containing fine cellulose fibers, coating material, and thickener WO2023132012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000113 WO2023132012A1 (en) 2022-01-05 2022-01-05 Composition containing fine cellulose fibers, coating material, and thickener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000113 WO2023132012A1 (en) 2022-01-05 2022-01-05 Composition containing fine cellulose fibers, coating material, and thickener

Publications (1)

Publication Number Publication Date
WO2023132012A1 true WO2023132012A1 (en) 2023-07-13

Family

ID=87073460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000113 WO2023132012A1 (en) 2022-01-05 2022-01-05 Composition containing fine cellulose fibers, coating material, and thickener

Country Status (1)

Country Link
WO (1) WO2023132012A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194300A (en) * 2018-04-25 2019-11-07 丸住製紙株式会社 Method for producing sulfonated fine cellulose fibers, and method for producing sulfonated pulp fibers
JP2019194389A (en) * 2018-04-25 2019-11-07 丸住製紙株式会社 Sulfonated fine cellulose fibers, sulfonated pulp fibers, and derivative pulp
JP2022014915A (en) * 2020-07-07 2022-01-20 丸住製紙株式会社 Fine cellulose fiber-containing composition, coating and thickener

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194300A (en) * 2018-04-25 2019-11-07 丸住製紙株式会社 Method for producing sulfonated fine cellulose fibers, and method for producing sulfonated pulp fibers
JP2019194389A (en) * 2018-04-25 2019-11-07 丸住製紙株式会社 Sulfonated fine cellulose fibers, sulfonated pulp fibers, and derivative pulp
JP2019194299A (en) * 2018-04-25 2019-11-07 丸住製紙株式会社 Sulfonated fine cellulose fibers, sulfonated pulp fibers, and derivative pulp
JP2022014915A (en) * 2020-07-07 2022-01-20 丸住製紙株式会社 Fine cellulose fiber-containing composition, coating and thickener

Similar Documents

Publication Publication Date Title
US20230054106A1 (en) Sulfate ester modified cellulose nanofibers and method for producing cellulose nanofibers
JP7006375B2 (en) Thickeners, compositions and sheets
JP6754885B2 (en) Dry solid containing fine cellulose fibers, fine cellulose fiber redispersion liquid
US20150361616A1 (en) Process for isolating cellulose from cellulosic biomass, isolated cellulose of type i and composite materials comprising same
JP6751811B2 (en) Dry solid containing fine cellulose fibers, fine cellulose fiber redispersion liquid
CN115427459B (en) Fibrous cellulose, fibrous cellulose dispersion, and method for producing fibrous cellulose
WO2017022830A1 (en) Cosmetic
JP2022014915A (en) Fine cellulose fiber-containing composition, coating and thickener
WO2023132012A1 (en) Composition containing fine cellulose fibers, coating material, and thickener
JP6299939B1 (en) Thickener, composition and sheet
JP2022075638A (en) Insect-repellent composition, insect repellent and pest repelling method
WO2020129855A1 (en) Production method for dry solid containing fine cellulose fibers, dry solid containing fine cellulose fibers, redispersion of fine cellulose fibers
JP7191616B2 (en) gel composition
JP2023028832A (en) CNF-containing composition
JP7427889B2 (en) Sulfate-esterified fibrous cellulose, composition, sheet, and method for producing sulfate-esterified fibrous cellulose
KR20210040430A (en) Fibrous cellulose-containing composition, liquid composition, and molded article
JP2020172461A (en) Powdery liquid
JP6835270B1 (en) Sulfate-esterified fibrous cellulose, composition, sheet and method for producing sulfate-esterified fibrous cellulose
JP7215554B1 (en) Fine cellulose fiber powder and method for producing fine cellulose fiber powder
JP7127005B2 (en) Fine fibrous cellulose inclusions
JP7215553B1 (en) Fine cellulose fiber solids and method for producing fine cellulose fiber solids
EP4029983A1 (en) Sulfonated cellulose microfibers and method for producing same
Rissanen Process optimization of cellulose fibril production-the effect of process medium composition on energy efficiency and product quality
JP2022133063A (en) Disinfecting composition
Nie Coating of tannins on nonwoven substrates: formulation and coating evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918603

Country of ref document: EP

Kind code of ref document: A1