WO2023131000A1 - 带宽配置方法及相关设备 - Google Patents

带宽配置方法及相关设备 Download PDF

Info

Publication number
WO2023131000A1
WO2023131000A1 PCT/CN2022/142339 CN2022142339W WO2023131000A1 WO 2023131000 A1 WO2023131000 A1 WO 2023131000A1 CN 2022142339 W CN2022142339 W CN 2022142339W WO 2023131000 A1 WO2023131000 A1 WO 2023131000A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bandwidth
physical topology
aps
physical
Prior art date
Application number
PCT/CN2022/142339
Other languages
English (en)
French (fr)
Inventor
杨镇安
丁律
贺渊
包德伟
牛翀宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210334477.8A external-priority patent/CN116437397A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023131000A1 publication Critical patent/WO2023131000A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the communication field, in particular to a bandwidth configuration method and related equipment.
  • WLAN Wireless Local Area Network
  • AP access point
  • APs in a coverage area can be called an AP group. Any two APs included in an AP group can perform RF signal scanning, and the WLAN controller can obtain the neighbor relationship between APs in the AP group according to the RF scanning results between APs, and adjust the bandwidth configuration of the AP group according to the neighbor relationship between APs.
  • Obtaining the neighbor relationship between APs according to the radio frequency signal scanning between APs may be called a neighbor scanning mechanism. Due to the instability of the neighbor scanning mechanism (for example, people moving around during scanning or other factors will affect the scanning results), the neighbor relationship between APs is sometimes missing and sometimes redundant, which in turn leads to varying degrees of fluctuations in the bandwidth configuration results of APs. , affecting the network experience of users in the wireless network.
  • the present application provides a bandwidth configuration method and related equipment, which can provide stable bandwidth configuration results for APs in a wireless network and improve user network experience.
  • the present application provides a bandwidth configuration method.
  • the method can be applied to electronic devices.
  • Electronic devices are, for example, WLAN controllers, computing devices, APs, and the like.
  • the electronic device determines the bandwidth configuration schemes of the N AP groups, and adjusts the bandwidth configuration schemes of the AP groups according to the similarity of the physical topologies among the AP groups.
  • the maximum value of the bandwidths of the two APs is determined as the bandwidth of the two APs ( This is called the principle of maximum bandwidth).
  • the electronic device adjusts the bandwidth of the second AP in the bandwidth configuration scheme of the second AP group to the bandwidth of the first AP.
  • the electronic device adjusts the first AP in the bandwidth configuration scheme of the first AP group.
  • the bandwidth of is the bandwidth of the second AP.
  • each AP group includes multiple APs, and N is an integer greater than or equal to 2.
  • N AP groups include a first AP group and a second AP group, the first physical topology includes physical location information of multiple APs in the first AP group, and the second physical topology includes physical location information of multiple APs in the second AP group .
  • adjusting the bandwidth configuration scheme of the AP group can effectively ensure the stability of the bandwidth configuration results of the AP group Reliability, that is, to ensure the stability of the bandwidth configuration of the AP, thereby improving the user's network experience.
  • adjusting the bandwidth configuration of the AP group according to the principle of maximum bandwidth will help improve the network capacity of the wireless network and further improve the user's network experience.
  • the multiple APs in the first AP group have the same bandwidth
  • the multiple APs in the second AP group have the same bandwidth
  • the bandwidth of the entire AP group can be completed. For adjustment, there is no need to compare multiple APs in the AP group one by one, which can improve the efficiency of bandwidth adjustment.
  • the first physical topology further includes building structure information corresponding to a building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to a building where the second AP group is installed.
  • the physical topology in this solution includes not only the physical location information of each AP in the AP group, but also the building structure information of the building where the AP group is installed. Adding building structure information as the basis for judging the similarity of the physical topology can improve the judgment The accuracy of the physical topology similarity between two AP groups helps to adjust the bandwidth of the AP group more accurately.
  • the electronic device determines the bandwidth configuration scheme of each AP group according to the neighbor relationship between APs in each AP group.
  • the electronic device determines the geometric distance information between two APs in the AP group according to the physical location information of the APs in the AP group. The electronic device then determines the physical topology corresponding to the AP group according to the physical location information of the APs in the AP group and the geometric distance information between two APs.
  • the electronic device determines the similarity between the first physical topology and the second physical topology according to the AP information of the first physical topology and the AP information of the second physical topology.
  • the AP information includes the geometric distance between the APs and the mutual position information between the APs.
  • the electronic device divides the first physical topology into multiple first subtopologies, and divides the second physical topology into multiple second subtopologies. The electronic device then determines the homogeneous sub-topology according to the multiple first sub-topologies and the multiple second sub-topologies. The electronic device determines a degree of similarity between the first physical topology and the second physical topology based on the number or ratio of isomorphic subtopologies.
  • the electronic device determines whether the first subtopology and the second subtopology in the subtopology pair are isomorphic subtopologies according to a geometric distance difference between corresponding edges between the subtopology pairs.
  • the first physical topology includes a first sub-topology
  • the second physical topology includes a second sub-topology.
  • the present application provides a bandwidth configuration method.
  • the method can be applied to electronic devices.
  • Electronic devices are, for example, WLAN controllers, computing devices, APs, and the like.
  • the electronic device first obtains the bandwidth configuration scheme of the first AP group.
  • the similarity between the first physical topology corresponding to the first AP group and the second physical topology corresponding to the second AP group is greater than the similarity threshold, the electronic device determines the bandwidth configuration scheme of the first AP group as the second AP group bandwidth configuration scheme.
  • the first AP group and the second AP group respectively include multiple APs
  • the first physical topology includes the physical location information of the multiple APs in the first AP group
  • the second physical topology includes the physical location information of the multiple APs in the second AP group. location information.
  • the physical topology of the AP group is stable and difficult to change, only relying on the physical topology similarity between the AP groups can realize the migration of the bandwidth configuration scheme of the AP group, which can not only effectively improve the efficiency of the bandwidth configuration of the AP group, Moreover, the stability of the bandwidth configuration result of the AP group can also be guaranteed, that is, the stability of the bandwidth configuration of the AP can be guaranteed.
  • the first physical topology further includes building structure information corresponding to a building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to a building where the second AP group is installed.
  • building structure information is added as the basis for judging the similarity of the physical topology, which can improve the accuracy of judging the similarity of the physical topology of two AP groups, and help configure the bandwidth of the AP group more accurately.
  • the electronic device determines the bandwidth allocation scheme of the first AP group according to the neighbor relationship between APs in the first AP group.
  • the electronic device determines the geometric distance information between two APs in the AP group according to the physical location information of the APs in the AP group. The electronic device then determines the physical topology corresponding to the AP group according to the physical location information of the APs in the AP group and the geometric distance information between two APs.
  • the electronic device determines the similarity between the first physical topology and the second physical topology according to the AP information of the first physical topology and the AP information of the second physical topology, and the AP information includes the geometric Distance and mutual location information between APs.
  • the electronic device divides the first physical topology into multiple first subtopologies, and divides the second physical topology into multiple second subtopologies. The electronic device then determines the homogeneous sub-topology according to the multiple first sub-topologies and the multiple second sub-topologies. The electronic device determines a degree of similarity between the first physical topology and the second physical topology based on the number or ratio of isomorphic subtopologies.
  • the present application provides a bandwidth configuration device.
  • the device includes a determination module and an adjustment module.
  • the determination module is used to determine the bandwidth allocation scheme of N AP groups.
  • Each AP group includes multiple APs
  • the bandwidth configuration scheme of each AP group includes the bandwidth of each AP in the multiple APs in each AP group
  • N is an integer greater than or equal to 2.
  • the adjustment module is configured to adjust the bandwidth configuration scheme of the AP group according to the similarity of the physical topology between the AP groups.
  • the similarity between the first physical topology corresponding to the first AP group and the second physical topology corresponding to the second AP group is greater than the similarity threshold, and the bandwidth of the first AP in the first AP group is greater than that in the second physical topology
  • the adjustment module adjusts the bandwidth of the second AP in the bandwidth configuration scheme of the second AP group to the bandwidth of the first AP.
  • the adjustment module adjusts the first AP in the bandwidth configuration scheme of the first AP group
  • the bandwidth of is the bandwidth of the second AP.
  • the N AP groups include the first AP group and the second AP group.
  • the first physical topology includes physical location information of multiple APs in the first AP group
  • the second physical topology includes physical location information of multiple APs in the second AP group.
  • the multiple APs in the first AP group have the same bandwidth
  • the multiple APs in the second AP group have the same bandwidth
  • the first physical topology further includes building structure information corresponding to a building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to a building where the second AP group is installed.
  • the determining module is specifically configured to: determine the bandwidth allocation scheme of each AP group according to the neighbor relationship between APs in each AP group.
  • the determining module is also used for:
  • the geometric distance information between two APs in the AP group is determined according to the physical location information of the APs in the AP group.
  • the physical topology corresponding to the AP group is determined according to the physical location information of the APs in the AP group and the geometric distance information between two APs.
  • the adjustment module is also used for:
  • the similarity between the first physical topology and the second physical topology is determined according to the AP information of the first physical topology and the AP information of the second physical topology, where the AP information includes a geometric distance between APs and mutual position information between APs.
  • the adjustment module is also used for:
  • a degree of similarity between the first physical topology and the second physical topology is determined based on the number or proportion of isomorphic subtopologies.
  • the present application provides a bandwidth configuration device.
  • the device includes an acquisition module and a determination module.
  • An acquiring module configured to acquire the bandwidth configuration scheme of the first AP group.
  • a determining module configured to determine the bandwidth configuration scheme of the first AP group as the first AP group when the similarity between the first physical topology corresponding to the first AP group and the second physical topology corresponding to the second AP group is greater than a similarity threshold.
  • the first AP group and the second AP group respectively include multiple APs.
  • the first physical topology includes physical location information of multiple APs in the first AP group
  • the second physical topology includes physical location information of multiple APs in the second AP group.
  • the first physical topology further includes building structure information corresponding to a building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to a building where the second AP group is installed.
  • the obtaining module is specifically configured to: determine the bandwidth allocation scheme of the first AP group according to the neighbor relationship between APs in the first AP group.
  • the determining module is also used for:
  • the geometric distance information between two APs in the AP group is determined according to the physical location information of the APs in the AP group.
  • the physical topology corresponding to the AP group is determined according to the physical location information of the APs in the AP group and the geometric distance information between two APs.
  • the determining module is also used for:
  • the similarity between the first physical topology and the second physical topology is determined according to the AP information of the first physical topology and the AP information of the second physical topology, where the AP information includes a geometric distance between APs and mutual position information between APs.
  • the determining module is also used for:
  • a degree of similarity between the first physical topology and the second physical topology is determined based on the number or proportion of isomorphic subtopologies.
  • the present application also provides a bandwidth configuration device, including a processor and a memory;
  • said memory is used to store instructions or computer programs
  • the processor is configured to execute the instruction or the computer program, so that the bandwidth configuration device executes the bandwidth configuration method provided by the first aspect or any possible implementation manner of the first aspect, or, the second aspect or the second A bandwidth configuration method provided in any possible implementation manner of the aspect.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions are executed by a processor, the first aspect or any possibility of the first aspect is realized.
  • the present application further provides a computer program product, including a computer program, when the computer program is executed by a processor, the bandwidth configuration method provided in the first aspect or any possible implementation manner of the first aspect is implemented , or, the bandwidth configuration method provided by the second aspect or any possible implementation manner of the second aspect.
  • Figure 1a is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • Figure 1b is a schematic diagram of another system architecture provided by the embodiment of the present application.
  • Fig. 1c is a schematic diagram of another system architecture provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a bandwidth configuration method provided in an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of a bandwidth allocation scheme for determining an AP group provided by an embodiment of the present application
  • FIG. 4a is a schematic flowchart of a method for determining the physical topology of an AP group provided in an embodiment of the present application
  • FIG. 4b is a schematic diagram of a physical topology of an AP group provided in an embodiment of the present application.
  • Figure 4c is a schematic diagram of the geometric distance between APs in the AP group in Figure 4b;
  • Fig. 5a is a schematic flow chart of calculating physical topology similarity provided by the embodiment of the present application.
  • FIG. 5b is a schematic topology diagram of an AP group provided by an embodiment of the present application.
  • Figure 5c is a schematic diagram of the geometric distance between APs in the AP group in Figure 5b;
  • Fig. 5d is a schematic flow chart of determining an isomorphic subgraph provided by an embodiment of the present application.
  • Fig. 5e is a schematic diagram of a matching subgraph provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another bandwidth configuration method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a bandwidth configuration device provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another bandwidth configuration device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a bandwidth configuration device provided in an embodiment of the present application.
  • access point access point (access point, AP)
  • An access point also known as a wireless access point, is an access device for a wireless network.
  • the access point is mainly used in homes, buildings, parks, warehouses, factories and other places.
  • the typical distance covers tens of meters to hundreds of meters. It can also be used for long-distance transmission. The farthest can reach about 30KM.
  • the main technology is IEEE802 .11 series.
  • the access point can also have an access point client mode (AP client), which can be connected wirelessly with other APs to expand the coverage of the wireless network.
  • AP client access point client mode
  • Two or more APs form an AP group.
  • a building includes 10 floors, and each floor has 10 APs. Assuming that the APs on each floor form an AP group, the building corresponds to 10 AP groups.
  • the bandwidth of the AP refers to the frequency width of the working channel of the AP.
  • the unit of the bandwidth of the AP is, for example, megahertz (megahertz, M).
  • a WLAN controller is a network device responsible for managing APs in a wireless network within a certain area.
  • AP management by the WLAN controller includes: configuration management, radio frequency management, access security control, etc.
  • a building is provided with a WLAN controller, and the WLAN controller is used to manage all APs in the building.
  • each floor of a building may be provided with a WLAN controller, and one WLAN controller is used to manage APs on one floor.
  • the WLAN controller is, for example, an access controller (Access Controller, AC).
  • the digital map is used to represent the physical location relationship among multiple APs in the WLAN system, and may include the physical location information of each AP (for example, the coordinate location of the AP) and the geometric distance between the APs.
  • a graph is composed of nodes and a collection of edges between nodes, usually expressed as: G(V,E), where G represents a graph, V is the collection of nodes in graph G, and E is the edge in graph G gather.
  • G represents a graph
  • V is the collection of nodes in graph G
  • E is the edge in graph G gather.
  • a graph includes four nodes A, B, C, and D, and the edges between these four nodes.
  • a subgraph of a graph is a graph whose node set and edge set are respectively a subset of the node set and a subset of the edge set of the graph.
  • subgraph isomorphism subgraph isomorphism
  • the condition of the subgraph can be set according to the actual situation. For example, S1 and S2 are called a group of isomorphic subgraphs (isomorphic graph) of graph G1 and G2.
  • FIG. 1a is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • a wireless network 103 includes a WLAN controller 102 and multiple APs, for example, AP1-AP10.
  • the WLAN controller 102 is configured to manage the above-mentioned multiple APs, for example, determine the bandwidth configuration of the multiple APs, and instruct each AP to work according to the bandwidth configuration.
  • wireless network 103 may also include computing device 101 .
  • the computing device 101 is used to determine bandwidth configurations of multiple APs, and send the bandwidth configurations to corresponding APs through the WLAN controller 102, so that the APs work according to the bandwidth configurations.
  • the computing device 101 is a device with computing capabilities, such as a personal computer, server, server cluster, virtual machine, virtual machine cluster, cloud device, and the like.
  • a cloud is, for example, a public cloud, a private cloud or a hybrid cloud.
  • each WLAN controller can separately manage some APs in the wireless network 103, for example, the wireless network 103 includes 5 WLAN controllers, and each WLAN controller manages 2 APs .
  • the multiple WLAN controllers can respectively determine bandwidth configuration schemes for the APs managed by themselves, and instruct the APs managed by themselves to work according to the bandwidth configuration.
  • each of the multiple WLAN controllers may receive the bandwidth configuration of the APs managed by the computing device 101 and send the bandwidth configuration to the corresponding AP.
  • any two APs included in an AP group can perform RF signal scanning, and the WLAN controller can obtain the neighbor relationship between APs in the AP group according to the RF scanning results between APs, and adjust the bandwidth configuration of the AP group according to the neighbor relationship between APs.
  • Obtaining the neighbor relationship between APs according to the radio frequency signal scanning between APs may be called a neighbor scanning mechanism. Due to the instability of the neighbor scanning mechanism (for example, people moving around during scanning or other factors will affect the scanning results), the neighbor relationship between APs is sometimes missing and sometimes redundant, which in turn leads to varying degrees of fluctuations in the bandwidth configuration results of APs. .
  • the bandwidth configuration result of each AP is sometimes 40M and sometimes 80M. This leads to unstable bandwidth configuration.
  • this instability may cause the AP that can be configured as 80M to be configured as 40M, which reduces the capacity of the AP and the wireless network where the AP is located, and affects the network experience of users in the wireless network.
  • the present application provides a bandwidth configuration method, which adjusts the bandwidth configuration of APs in the two AP groups based on the similarity of the physical topologies of the two AP groups.
  • the bandwidth of an AP in the first AP group is equal to the bandwidth of the AP and the bandwidth of the AP corresponding to the AP in the second AP group.
  • the maximum value, the bandwidth of an AP in the second AP group is the maximum value between the bandwidth of the AP and the bandwidth of the AP corresponding to the AP in the first AP group.
  • the bandwidths of the two AP groups are similar, if the bandwidths of the two APs corresponding to the physical locations in the two AP groups are different, the maximum value of the bandwidths of the two APs is determined as the bandwidth of the two APs.
  • Bandwidth (referred to as the principle of bandwidth is as large as possible).
  • the physical locations of APs generally seldom change. That is, the physical topology of an AP group is relatively stable. Therefore, the physical topology similarity between two AP groups is also relatively stable. Based on the physical topology similarity between AP groups, the AP group Adjusting the bandwidth of the AP can make the bandwidth of the AP more stable. Further, when adjusting the bandwidth, adjusting the bandwidth of the AP based on the principle of maximizing the bandwidth can effectively increase the network capacity of the wireless network, thereby improving the user's network experience.
  • the present application can also realize the migration of the bandwidth configuration scheme of the AP group based on the physical topology similarity between the AP groups. For example, if the bandwidth allocation scheme of multiple APs in the first building is known, when the physical topology of the multiple APs in the second building is similar to the physical topology of the multiple APs in the first building, the The bandwidth allocation scheme of multiple APs of one building is applied to multiple APs of a second building. In this way, the efficiency of AP bandwidth configuration can be effectively improved.
  • the execution subject of the bandwidth configuration method in this application may be an electronic device, such as a WLAN controller, a computing device, an AP, and the like.
  • the aforementioned AP can be understood as any AP in the wireless network targeted by the bandwidth configuration method.
  • the following takes an electronic device as a computing device as an example to describe a bandwidth configuration method in detail.
  • FIG. 2 is a schematic flowchart of a bandwidth configuration method provided in an embodiment of the present application.
  • the bandwidth configuration method 200 includes step 201 and step 202 .
  • APs in a wireless network within a preset range may be divided into N AP groups.
  • Each AP group includes multiple APs, and multiple means greater than or equal to 2 APs.
  • N is an integer greater than or equal to 2.
  • the number of APs in each AP group may be the same or different.
  • the building includes ten floors, and ten APs are deployed in each floor. Assuming that the APs on each floor form an AP group, there are ten AP groups corresponding to this building.
  • each room is equipped with five APs, and the APs in the same room can be classified into one AP group, then there are ten AP groups on one floor.
  • the bandwidth configuration scheme of an AP group includes the configured bandwidth of each AP in the AP group, wherein the configured bandwidths of multiple APs in the same AP group may be the same or different.
  • the configured bandwidths of multiple APs in the same AP group may be the same or different.
  • FIG. 1b is a schematic diagram of another system architecture provided by an embodiment of the present application.
  • the fourteen APs included in the wireless network 103 are divided into two AP groups: a first AP group 104 and a second AP group 105 .
  • the first AP group 104 includes AP1, AP2, AP3, AP4, AP5, AP6 and AP7
  • the second AP group 105 includes AP8, AP9, AP10, AP11, AP12, AP13 and AP14.
  • the configured bandwidths of AP1 to AP10 are as shown in Table 1 or Table 2. In Table 1, the configured bandwidths of APs in an AP group are not completely the same, but in Table 2, the configured bandwidths of APs in the same AP group are the same.
  • the N AP groups include the first AP group and the second AP group
  • the first physical topology includes the physical location information of the multiple APs in the first AP group
  • the second physical topology includes the physical location information of the multiple APs in the second AP group. location information.
  • the physical topology similarity of the two AP groups includes the similarity of the physical topology structures of the APs in the two AP groups. How to obtain the similarity of the physical topology structures of two AP groups, please refer to the embodiment shown in FIG. 5a below, and details are not described here. Wherein, the specific size of the similarity threshold can be set according to the actual situation, and is not specifically limited.
  • the above "second AP corresponding to the first AP" should be understood as, for the two first AP group and the second AP group satisfying the similarity threshold, the relative position of the first AP in the first AP group and the second AP group The relative positions in the second AP group are the same.
  • the second AP is an AP whose relative position in the second AP group is the same as that of the first AP in the first AP group.
  • the corresponding second AP is AP11; assuming that the first AP is AP1, then the corresponding AP is AP8 .
  • any two AP groups in N AP groups such as the first AP group and the second AP group
  • the degree is greater than the similarity threshold and the bandwidth of the first AP in the first AP group is greater than the bandwidth of the second AP corresponding to the first AP in the second physical topology
  • adjust the second AP in the bandwidth configuration scheme of the second AP group adjust the second AP in the bandwidth configuration scheme of the second AP group.
  • the bandwidth of the AP is the bandwidth of the first AP.
  • the second AP is AP9 (with a bandwidth of 20M).
  • the configured bandwidth of AP9 will be adjusted to 80M.
  • the configured bandwidth of the APs in the AP group is the same, at this time, for the first AP group and the second AP group whose similarity is greater than the similarity threshold, only one comparison is required to complete the bandwidth The adjustment is to adjust the configured bandwidth of all APs in the second AP group 105 to 80M.
  • the configured bandwidth of all APs in the same AP group is the same, when adjusting the bandwidth of the AP group, there is no need to compare them one by one, only once, and the larger value of the two configured bandwidths is used as the AP group with the smaller configured bandwidth
  • the configured bandwidth of the AP in the AP can improve the efficiency of bandwidth adjustment.
  • the bandwidth of the first AP in the bandwidth configuration scheme of the first AP group is the bandwidth of the second AP.
  • the first AP is AP4 (with a bandwidth of 20M)
  • the second AP is AP11 (with a bandwidth of 40M).
  • the configured bandwidth of AP4 will be adjusted to 40M.
  • the configured bandwidth of the APs in the second AP group other than the above-mentioned S1 APs it can be determined according to the method for determining the bandwidth of APs in the prior art, without special limitation.
  • the second AP group except the above-mentioned S1 APs other than APs can continue to reserve the configured bandwidth determined in step 201.
  • the configured bandwidths of the APs in the second AP group are the same, for the APs in the second AP group other than the above S1 APs, keep their configured bandwidths consistent with the S1 APs in the second AP group .
  • the configured bandwidth of the AP can be actively reduced, and the bandwidth of the AP can be reduced to a preset conservative bandwidth, so as to reduce the impact of the AP on the above-mentioned S1 APs.
  • the specific value of the conservative bandwidth can be set according to the actual situation. For example, the conservative bandwidth is 20M. Assuming that the bandwidth determined by an AP in step 201 is 80M, the bandwidth of the AP can be reduced to 20M.
  • each AP group can be further divided into multiple AP groups. For example, K APs with the same bandwidth in the first AP group are divided into one group. If the APs corresponding to the K APs in the second AP group The bandwidths of the K APs are also the same, and the corresponding K APs in the second AP group are also divided into one group.
  • the physical topology between AP groups is similar, the physical topology between corresponding AP groups is also similar. At this time, you can directly set the bandwidth of all APs in the two similar AP groups to the bandwidth of the two similar AP groups. large value.
  • the bandwidth of the APs in the AP group are not exactly the same, it is not necessary to compare the bandwidth of each AP one by one and then adjust the bandwidth of each AP. Instead, the bandwidth of the APs can be adjusted group by group based on the comparison of the AP groups. It can improve the efficiency of AP bandwidth adjustment.
  • AP1, AP2 and AP3 are the first AP group (the bandwidth of the APs in the group is 80M), and AP8, AP9 and AP10 are the second AP group (the bandwidth of the APs in the group is 20M)
  • the bandwidths of AP1, AP2 and AP6 in the first AP group 104 in FIG. AP1, AP2, and AP6 are divided into one group
  • AP8, AP9, and AP13 are divided into one group, and then the bandwidths of the two groups are compared to adjust the bandwidth of one of the groups at the same time.
  • the electronic device adjusts the bandwidth configuration scheme of the AP group based on the physical topology similarity between the AP groups.
  • the physical location of the AP group is relatively stable, and the physical topology of the AP group is stable and difficult to change, so the physical topology similarity between AP groups is also stable and difficult to change. Therefore, based on the physical topology similarity between AP groups Adjust the bandwidth configuration scheme of the AP group to make the bandwidth configuration scheme of the AP group stable, that is, ensure the stability of the bandwidth configuration of the APs in the AP group, and improve the user's network experience.
  • adjusting the bandwidth configuration of the AP group according to the principle of maximum bandwidth can help improve the network capacity of the wireless network and improve the user's network experience.
  • FIG. 1c is a schematic diagram of another system architecture provided by an embodiment of the present application.
  • the computing device 101 first divides the forty APs into the first AP group T1, the second AP group T2, the third AP group T3, the fourth AP group T4 and the fifth AP group T5 Among these five AP groups, the first AP group T1 includes nine APs, the second AP group T2 includes four APs, the third AP group T3 includes nine APs, the fourth AP group T4 includes ten APs, and the fifth AP group T4 includes ten APs.
  • AP group T5 includes eight APs.
  • the computing device 101 After initially determining the bandwidth configuration schemes of the above five AP groups, the computing device 101 adjusts the configured bandwidth of the AP groups according to the similarity of the physical topology among the AP groups. Taking the same bandwidth of APs in the same AP group as an example, referring to FIG.
  • the bandwidth configured for the group T2 and the fifth AP group T5 is 40M.
  • the similarities between the third physical topology corresponding to the third AP group T3 and the fifth physical topology corresponding to the fifth AP group T5 are greater than the similarity threshold, adjust the configured bandwidth of the fifth AP group T5 from 40M to 80M.
  • the electronic device may determine a bandwidth configuration scheme for the AP group based on neighbor relationships among APs in the AP group, so as to obtain bandwidth configuration schemes for N AP groups.
  • the bandwidth of an AP depends on the channel bandwidth used by the AP. For example, when the channel used by the AP is channel 36, the bandwidth of the AP is 20M; and when the channel used by the AP is channel 46, the bandwidth of the AP is 40M. But the number of channels is limited, for example, there are only three available channels for 80M (channel 42, channel 58 and channel 155), and there are six available channels for 40M (channel 38, channel 46, channel 54, channel 62, channel 151 Corresponding to channels 159 and 20M, there are thirteen available channels (channel 36, channel 40, channel 44, channel 48, channel 52, channel 56, channel 60, channel 64, channel 149, channel 153, channel 157, channel 161 and channel 165).
  • the configurable bandwidth of the AP can be determined according to the neighbor relationship between APs. For example, for neighbors in an AP group Configure high bandwidth for a small number of APs, configure low bandwidth for APs with a large number of neighbors in the AP group, and at the same time, try to prevent adjacent APs in the AP group from using the same channel to obtain the bandwidth configuration scheme for the AP group.
  • the electronic device can also count the number of neighboring APs of each AP in the AP group, and then configure the same bandwidth for APs in an AP group according to the statistics of the number of neighboring APs. For details, please refer to the embodiment shown in FIG. 3 below.
  • the electronic device can determine whether the APs are neighbors according to the radio frequency signal detection results between the APs.
  • the electronic device judges the neighbor relationship between the APs according to the signal strength between the APs. The higher the signal strength between two APs, the closer the neighbor relationship between these two APs.
  • the signal strength between two APs is greater than the signal strength threshold, it can be determined that the two APs are neighbor APs.
  • the signal strength between APs may be received signal strength.
  • the specific size of the signal strength threshold can be set according to actual conditions.
  • the electronic device may determine the neighbor relationship of the APs according to the time delay between two APs. For example, when the delay between two APs is less than the delay threshold, it is determined that the two APs are neighbor APs.
  • the electronic device may determine the neighbor relationship of the APs according to whether there are signals between the two APs. For example, when there is signal exchange between two APs, it is determined that the two APs are neighbor APs. Among them, if AP1 can receive the signal of AP2, then AP2 is said to be the neighbor of AP1, and if it senses the signal of each other, it is called neighbor of each other.
  • the electronic device may determine that AP1 and AP2 have a neighbor relationship.
  • FIG. 3 is a schematic flowchart of a method for determining a bandwidth configuration scheme of an AP group provided by an embodiment of the present application.
  • the configured bandwidth of the AP group is the first preset bandwidth; when the first ratio of the AP group is smaller than the ratio threshold, the configured bandwidth of the AP group is determined is the second preset bandwidth.
  • the first preset bandwidth is greater than the second preset bandwidth.
  • the first ratio is the ratio between the number of APs satisfying the first condition in the AP group and the total number of APs in the AP group, and the first condition is that the number of neighbors in the AP group is less than or equal to the first number threshold.
  • the first quantity threshold may be determined according to the first preset bandwidth.
  • the number of available channels of the first preset bandwidth is L, and the first number threshold is (L-1).
  • the first preset bandwidth is 80M (the number of available channels is 3)
  • the first preset bandwidth is 40M (the number of available channels is 6)
  • the ratio threshold can be set as required, for example, 75%.
  • the number of neighbors in an AP group refers to the number of APs in the AP group that are neighbors of the AP.
  • the bandwidth of the APs in the AP group can be configured as the bandwidth.
  • the first condition may further include that the number of out-of-group neighbors of the AP is less than or equal to a second number threshold.
  • the second quantity threshold is also L-1.
  • the number of neighbors outside the AP group refers to the number of APs outside the AP group that are neighbors of the AP.
  • the processing steps in FIG. 3 are executed to determine the bandwidth configuration scheme of each AP group, thereby determining the configuration schemes of N AP groups.
  • the configured bandwidth of N1 AP groups is 80M
  • the configured bandwidth of N2 AP groups is 40M
  • the configured bandwidth of N3 AP groups is 20M
  • N N1+N2+N3.
  • Fig. 4a shows a schematic flowchart of a method for determining the physical topology of an AP group provided by an embodiment of the present application.
  • the method can be applied to electronic devices.
  • the electronic device is, for example, a WLAN controller, a computing device, or an AP.
  • the method includes step 401 and step 402 .
  • the physical location information of the AP can be the longitude, latitude and height of the AP measured by the surveyor or the X-Y-Z coordinate information in the preset coordinate system.
  • the surveyor measures the physical location of the AP based on laser ranging technology information.
  • the preset coordinate system may be a coordinate system with an origin at any point in the area where the AP is located.
  • the physical location information of the AP is obtained based on the network planning file.
  • the network planning file includes the coordinate information of the AP and the information of the AP, for example, the ID of the AP.
  • the physical location information of the AP is determined based on a digital map containing the coordinate information of the AP.
  • the digital map can be obtained in the following way: the digital map construction device selects the topological area that needs bandwidth configuration, and divides the topological area into specific buildings, such as office buildings, apartment houses, and teaching buildings.
  • the digital map construction device imports a bitmap (for example, architectural engineering drawings) into the building interface as a background image. Wherein, the bitmap is a picture of size S1*S2, and S1 and S2 are the maximum values of X and Y of the AP coordinates, respectively.
  • the digital map construction device places the AP logo into the bitmap through automatic placement, or manually places the AP logo into the bitmap.
  • the digital map construction device exports the topological area planning information of the AP in the form of an xlsx file, and obtains the X-axis and Y-axis coordinates corresponding to the AP, and the unit of the coordinates is the pixel value relative to the origin of the coordinates.
  • the digital map construction device can add the corresponding Z-axis information (for example, the height of the building) as the height information to the xlsx file, so as to obtain the digital map of the AP.
  • the digital map construction device is, for example, the above-mentioned electronic equipment.
  • the electronic device After acquiring the physical location information of each AP in the AP group, the electronic device determines the geometric distance information between two APs in the AP group according to the physical location information of the APs in the AP group.
  • the geometric distance can be calculated using the Euclidean distance calculation formula.
  • the preset coordinate system is the earth coordinate system
  • the geometric distance information is calculated according to the physical position information of the AP in the earth coordinate system
  • the obtained geometric distance is the real distance between two APs.
  • the geometric distance information based on the physical location information of the AP in the relative coordinate system for example, the location coordinate information of the AP obtained based on network planning files or digital maps
  • the scale for example, the scale is 1:100
  • the calculation result can be converted according to the scale to obtain the real distance; otherwise, the geometric distance obtained is a relative distance.
  • the electronic device can generate the physical topology corresponding to the AP group according to the physical location information of each AP in the AP group and the geometric distance information between two APs.
  • the physical topology of the AP group includes the physical location information of each AP in the AP group and the geometric distance information between two APs.
  • FIG. 4b is a schematic diagram of a physical topology of an AP group provided by an embodiment of the present application
  • FIG. 4c is a schematic diagram of geometric distances between APs in the AP group in FIG. 4b.
  • the digital map 403 corresponding to the AP group includes physical location information (xi , y i , z i ) of the four APs of AP1, AP2, AP3 and AP4.
  • the electronic device calculates the geometric distance MDi-j between two APs according to the physical location information of the APs (MDi-j represents the relative distance from APi to APj).
  • the specific value of the geometric distance corresponding to the digital map 403 can be Refer to the schematic diagram of the geometric distance shown in Fig. 4c.
  • the electronic device can generate the physical topology 404 corresponding to the digital map 403 according to the physical location information of each AP in the AP group and the geometric distance between two APs.
  • the electronic device may calculate the similarity of the physical topology of every two AP groups. For the first physical topology corresponding to the first AP group and the second physical topology corresponding to the second AP group, the electronic device can determine the first physical topology and the second physical topology according to the AP information of the first physical topology and the AP information of the second physical topology. Similarity between physical topologies, AP information includes distance between APs and mutual location information between APs.
  • the distance between APs in an AP group refers to the geometric distance between two APs in the AP group.
  • the mutual location information between APs refers to the location relationship between APs in the AP group.
  • the electronic device may use any point in the area where the AP group is located as a reference point to determine mutual position information between APs in the AP group.
  • the electronic device when determining the mutual position information between APs of the AP group composed of AP1 to AP4, the electronic device can take AP1 as the origin, then the mutual position information between the APs of the AP group in Figure 4b is that AP2 is located at the positive level of AP1 Direction, AP3 is located in the negative ninety-degree direction of AP1, and AP4 is located in the negative forty-five-degree direction of AP1.
  • the electronic device determines the similarity between the two physical topologies based on the difference in mutual position information between the APs in the two physical topologies and the difference in the geometric distance between the APs in the two physical topologies. In order to more accurately acquire the difference in the mutual location information between the APs of the two physical topologies, the electronic device may unify the location information of the APs of the two physical topologies to a reference point.
  • APx1 in the first physical topology as the reference point (for example, change the X-axis and Y-axis coordinates of APx1 to 0), and adjust other APs in the first physical topology (for example, APx2, APx3, APx4, etc.)
  • the location information of the APs in the first physical topology keeps the mutual location relationship between the APs and the geometric distance between the APs unchanged, so that the new location information of the APs in the first physical topology can be obtained; one of the APs in the second physical topology Both the X-axis and Y-axis coordinates of AP (for example, APy1) are changed to 0, and the position information of other APs (for example, APy2, APy3, APy4, etc.) in the second physical topology is adjusted to maintain the distance between the APs in the second physical topology.
  • APx1 in the first physical topology and APy1 in the second physical topology are APs with corresponding positions, and the electronic device can compare the location information of other APs in the first physical topology relative to APx1 with other APs in the second physical topology.
  • the location relationship of APy1 determines APs in the second physical topology that correspond to other APs in the first physical topology.
  • the electronic device can calculate the geometric distance between the APs corresponding to every two positions in the first physical topology and the second physical topology to obtain the position difference between the two APs, and the electronic device accumulates the distance between each AP in the first physical topology and the corresponding AP The position difference between APs in two physical topologies is obtained.
  • the electronic device may calculate the geometric distance difference between two edges corresponding to positions in the first physical topology and the second physical topology, and accumulate the geometric distance differences of all edges in the first physical topology to obtain the geometric distance between APs of the two physical topologies difference.
  • the electronic device takes the above two differences as the similarity between the first physical topology and the second physical topology, and compares the similarity with a threshold to determine the similarity of the two physical topologies. For example, when the relative position difference between the APs of the two physical topologies is less than the position difference threshold, and the geometric distance difference between the APs of the two physical topologies is less than the geometric distance difference threshold, the electronic device determines that the first physical topology and the second physical topology are similar The degree is greater than the similarity threshold, so it is determined that the first physical topology is similar to the second physical topology.
  • the electronic device may also perform weighted summation of the above two differences to obtain the similarity between the first physical topology and the second physical topology, and determine that the first physical topology and the second physical topology are similar when the similarity is greater than a similarity threshold.
  • the specific values of the position difference threshold, the geometric distance difference threshold, and the similarity threshold can be set according to actual conditions, and are not particularly limited.
  • the second physical topology adjusted based on APy1 may not be similar to the first physical topology adjusted based on APx1, and the electronic device may also use other APs in the second physical topology as a benchmark in turn to adjust the first physical topology according to the above method.
  • second physical topology and determine the similarity between the adjusted second physical topology and the first physical topology. When there is an AP in the second physical topology so that the adjusted second physical topology is similar to the adjusted first physical topology, it is determined that the first physical topology is similar to the second physical topology.
  • the physical topology with a small number of APs can be used as the first physical topology, and the same number of APs as the first physical topology can be selected from the physical topology with a large number of APs to form the second physical topology. topology. Then, the electronic device determines the similarity between the first physical topology and the second physical topology according to the above method.
  • the electronic device calculates the difference in the adjusted physical location information between APs with the same relative position, such as the Euclidean distance between the adjusted physical location information between AP2 and AP9, and the adjusted physical location information between AP3 and AP10 Euclidean distance of . Since AP1 and AP8 overlap, the adjusted physical position difference between them is 0.
  • the electronic device can calculate the relative position difference between the APs of the two physical topologies according to the position difference between two APs with the same relative position.
  • the electronic device can separately calculate the difference of the geometric distance corresponding to the sides with the same relative position (for example, AP1-AP3 and AP8-AP10, AP1-AP2 and AP8-AP9, and AP2-AP3 and AP9-AP10), and then accumulate the geometric distance to obtain the geometric distance difference between APs of two physical topologies.
  • the electronic device can determine the similarity between the first physical topology and the second physical topology according to the relative position difference between the APs of the two physical topologies, the geometric distance difference between the APs of the two physical topologies, and the corresponding comparison threshold.
  • the electronic device divides the physical topology into multiple subtopologies, and determines the similarity between the physical topologies based on the number or ratio of the isomorphic subtopologies.
  • the electronic device For the first physical topology and the second physical topology, the electronic device divides the first physical topology into a plurality of first subtopologies, and divides the second physical topology into a plurality of second subtopologies. The electronic device then determines the homogeneous sub-topology according to the multiple first sub-topologies and the multiple second sub-topologies. The electronic device determines a degree of similarity between the first physical topology and the second physical topology based on the number or ratio of isomorphic subtopologies.
  • a subtopology is a subgraph
  • an isomorphic subtopology is an isomorphic subgraph
  • FIG. 5a is a schematic flowchart of a method for calculating physical topology similarity provided by an embodiment of the present application, which can be applied to electronic devices.
  • each subgraph includes a preset number of APs in the physical topology and edges between APs.
  • Figure 5b is a schematic topology diagram of an AP group provided in an embodiment of the present application
  • Figure 5c is a schematic diagram of the topology of an AP group in Figure 5b. Schematic diagram of the geometric distance between APs in the AP group.
  • an AP group includes AP1, AP2, AP3, AP4, AP5, and AP6.
  • the root node AP1, leaf node AP2, leaf node AP3, and leaf node AP4 can be used as a subgraph of the physical topology of the AP group.
  • other nodes can also be used as root nodes to determine the corresponding leaf nodes, and finally six subgraphs of the physical topology can be obtained.
  • an isomorphic subgraph refers to two subgraphs satisfying the condition of an isomorphic subgraph in the first physical topology Pa and the second physical topology Pb.
  • the method for calculating the similarity between the first physical topology Pa and the second physical topology Pb based on the isomorphic subgraph includes but is not limited to the subgraph isomorphic similarity calculation method or the Jaccard similarity calculation method .
  • F(Pa) ⁇ F(Pb) represents the isomorphic subgraph of the first physical topology Pa and the second physical topology Pb
  • Num ⁇ F(Pa) ⁇ F(Pb) ⁇ represents the isomorphism of the above two physical topologies
  • the number of groups of subgraphs, Num ⁇ F(Pb) ⁇ represents the number of subgraphs of the second subgraph set F(pb).
  • K(Pa, Pb) is the physical topology similarity of Pa relative to Pb.
  • the first physical topology Pa (assumed to include AP1-AP10) and the second physical topology Pb (assumed to include AP11-AP22) include two sets of isomorphic subgraphs, then it can be determined that Num ⁇ F(Pb) ⁇ is 12, and Pa is relatively
  • the Jaccard similarity calculation formula is:
  • F(Pa) ⁇ F(Pb) represents the union of the first physical topology Pa and the second physical topology Pb
  • Num ⁇ F(Pa) ⁇ F(Pb) ⁇ represents the total number of subgraphs of the two physical topologies.
  • FIG. 5d is a schematic flowchart of determining an isomorphic subgraph provided by an embodiment of the present application.
  • the above-mentioned determination of the isomorphic subgraphs of the first physical topology and the second physical topology according to the first subgraph set and the second subgraph set specifically includes the following steps:
  • the subgraph where the root node Y is located and where the root node X is located in the second subgraph set F(Pb) with the smallest geometric distance from the root node X The subgraph is determined as a set of pending subgraphs [Za, Zb];
  • FIG. 5e is a schematic diagram of a matching subgraph provided by an embodiment of the present application.
  • the first physical topology 501 and the second physical topology 502 include six APs
  • the first physical topology 501 can be understood as being set on the first floor of a certain building
  • the second physical topology 502 is set on the second floor of the building middle.
  • the corresponding subgraph to be processed can be determined as the subgraph where the second root node 504 in the second physical topology 502 is located , that is, the subgraph where the first root node 503 is located and the subgraph where the second root node 504 is located are a group of subgraphs to be processed.
  • the remaining 5 groups of subgraphs to be processed of the first physical topology Pa and the second physical topology Pb may be determined.
  • the group of subgraphs to be processed is determined to be isomorphic subgraphs of the first physical topology and the second physical topology.
  • the specific numerical value of the first threshold may be set according to actual conditions, and is not particularly limited.
  • the isomorphic subgraph condition in this embodiment is that the geometric distance differences between edges corresponding to the same distance order in a group of subgraphs to be processed are all smaller than the first threshold.
  • the geometric distance difference between at least one edge corresponding to the same distance order in a group of subgraphs to be processed is greater than or equal to a first threshold, it may be determined that the group of subgraphs to be processed is a non-isomorphic subgraph.
  • the distances of the edges may not be sorted, and the difference between the geometric distances of the corresponding edges in the two subgraphs may be directly calculated. is less than the threshold, or the sum of the geometric distance differences of all edges is less than the threshold, it is determined that the two subgraphs are isomorphic subgraphs.
  • the subgraph where the root node AP1 is located and the subgraph where the root node AP2 is located are a set of subgraphs to be processed, assuming that each subgraph has three edges, then the edges sorted by the same distance are AP1-AP2 and AP2-AP3 , AP1-AP3 and AP2-AP1, AP1-AP4 and AP2-AP4.
  • the root node distance of a group of subgraphs to be processed is less than the second Threshold, wherein, the root node distance of a group of subgraphs to be processed is the geometric distance between two root nodes of a group of subgraphs to be processed.
  • the specific value of the second threshold can be set according to actual conditions, and is not particularly limited.
  • the second threshold of a group of subgraphs to be processed may be 1/2 of the average AP distance of the AP group in which at least one subgraph to be processed is located in the group of subgraphs to be processed, and the average AP distance of an AP group is AP group The average of the geometric distances between any pair of APs in .
  • the second threshold of the subgraph to be processed may be half of the average AP distance of the entire wireless network, and the average AP distance of the wireless network is an average value of geometric distances between two APs in the wireless network.
  • the isomorphic subgraph condition in this embodiment is whether the root node distance of a group of subgraphs to be processed is less than the second threshold, and the geometric distance difference between edges corresponding to the same distance sorting in the group of subgraphs to be processed is are less than the first threshold.
  • the root node distance of a group of subgraphs to be processed is greater than or equal to the second threshold, it may be determined that the group of subgraphs to be processed is a non-isomorphic subgraph.
  • the group of subgraphs to be processed is a matching subgraph that satisfies position matching (meaning that the positions of each AP in the group of subgraphs to be processed correspond to each other) , you can enter the next judgment step.
  • the subgraph to be processed is a non-isomorphic subgraph, that is, the matching subgraph satisfying the condition defined by the first threshold at this time is an isomorphic subgraph.
  • Figure 5e shows two physical topologies located on different floors.
  • the two physical topologies can be regarded as two wholes, and these two wholes can be set at the same coordinate origin. Then, the processing of step S4, step S5, etc. is performed on the two physical topologies. For example, referring to FIG.
  • the first root node 503 in the first physical topology 501 can be used as the coordinate origin, and the corresponding position in the second physical topology 502
  • the second root node 504 is translated to the origin of the above-mentioned coordinates to realize the overall movement of the second physical topology 502 ;
  • the second root node 504 in the second physical topology 502 can also be used as the coordinate origin, and the first root node 503 in the first physical topology 501 can be moved to the coordinate origin to realize the overall move.
  • determining the isomorphic subgraphs of the first physical topology and the second physical topology according to the first subgraph set and the second subgraph set further includes the following steps:
  • a subgraph may have multiple isomorphic subgraphs, and the optimal unique isomorphic subgraph is selected according to the principle of the minimum distance from the root node, and the isomorphic relations of the remaining groups of isomorphic subgraphs are deleted.
  • the subgraph to be processed corresponding to the second root node 504 and the subgraph to be processed corresponding to the fourth root node 506 are all subgraphs where the first root node 503 is located, assuming The subgraph of the first root node 503 and the subgraph of the second root node 504 satisfy the above isomorphic subgraph condition, and the subgraph of the first root node 503 and the subgraph of the fourth root node 506 also satisfy the isomorphic subgraph condition , then according to the principle of minimum root node distance, the isomorphic relationship of the subgraph where the fourth root node 506 is located will be deleted.
  • the first physical topology 501 and the second The isomorphic subgraphs of the physical topology 502 are the subgraph where the first root node 503 is located and the subgraph where the second root node 504 is located.
  • the accuracy of the isomorphic subgraph of the physical topology can be improved, thereby improving the accuracy of the similarity of the physical topology.
  • step numbers of steps S1, S2, etc. above are only for distinguishing different steps, and do not limit the execution order of the steps.
  • the first physical topology further includes building structure information corresponding to the building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to the building where the second AP group is installed.
  • the physical topology in this solution includes not only the physical location information of each AP in the AP group, but also the building structure information of the building where the AP group is installed.
  • the building structure information includes internal layout structure information, wall material information, etc. at least one of the
  • the internal layout structure information includes at least one of the number of partition spaces, and the size and specific location of the partition spaces.
  • the wall material information includes wood, brick-concrete material or metal material (such as steel, iron, etc.).
  • Different wall materials have different effects on AP signal transmission, resulting in different signal transmission environments for AP groups installed in spaces with different wall materials.
  • AP's wireless signal uses 2.4G or 5G and other wireless microwave frequency bands, one of its notable features is straight-line propagation, so after passing through a wall, the wireless signal will be seriously affected, and the general wall will cause the wireless signal 5-10dBm attenuation, and wireless devices behind walls may only be able to receive weak signals. Therefore, the thicker the wall and the greater the number of walls, the greater the attenuation of the wireless signal.
  • Metal barriers not only block microwave wireless signals, but also absorb electromagnetic energy. Therefore, the AP signal passing through metal obstacles will become very weak, or cannot pass through at all.
  • building structure information has an impact on AP signal transmission
  • adding building structure information as the basis for judging physical topology similarity can improve the accuracy of judging the physical topology similarity between two AP groups and help more accurately adjust the AP group bandwidth.
  • the building structure similarity corresponding to the two AP groups can be calculated based on the building structure information of the two AP groups, and the specific calculation method can be a method in the prior art, and is not particularly limited. For example, assuming that the building structure information includes the number, size, location, and wall material of the partition space, the internal layout structure information and the wall material information occupy 50% of the importance respectively. When the building structure information corresponding to two AP groups is exactly the same, such as the number, size, location, and wall material of partition spaces are the same, then it is judged that the building structure similarity of the two AP groups is 100%.
  • the similarity in step 202 includes not only the similarity of the physical topology, but also the similarity of the architectural structure of the AP group.
  • the similarity threshold in step 202 should include the similarity for judging the physical topology The physical similarity threshold of , and the structural similarity threshold used to judge the similarity of building structures.
  • the similarity of the physical topology structures of the two AP groups is greater than the physical similarity threshold, and the architectural structure similarity of the two AP groups is greater than the structural similarity threshold, it can be determined that the physical topology of the two AP groups meets the similarity condition.
  • the specific values of the physical similarity threshold and the structural similarity threshold can be set according to actual conditions.
  • the similarity of the two AP groups is compared according to the similarity and a similarity threshold (only one similarity threshold is needed at this time), so as to judge the similarity of the physical topologies of two AP groups.
  • the bandwidth configuration scheme can be migrated based on the physical topology similarity of the AP groups in the two areas.
  • the physical topologies of the AP groups in the two areas are similar, directly apply the bandwidth configuration scheme of the AP group in one area to the other area. This can effectively improve the efficiency of bandwidth allocation.
  • FIG. 6 is a schematic flowchart of another bandwidth configuration method provided in an embodiment of the present application, which can be applied to electronic devices.
  • the bandwidth configuration method 600 includes step 601 and step 602 .
  • the first AP group and the second AP group respectively include multiple APs
  • the first physical topology includes the physical location information of the multiple APs in the first AP group
  • the second physical topology includes the physical location information of the multiple APs in the second AP group. location information.
  • the specific value of the similarity threshold can be set according to actual conditions, and is not particularly limited.
  • the physical topology of the AP group is stable and not easy to change, only relying on the physical topology similarity between the AP groups can realize the migration of the bandwidth configuration scheme of the AP group, which can not only effectively improve the bandwidth configuration of the AP group Efficiency, and can guarantee the stability of the bandwidth configuration result of the AP group, that is, ensure the stability of the bandwidth configuration of the AP.
  • the first building includes one AP group, and the bandwidth configuration scheme of the AP group is known.
  • the second building, the third building, and the fourth building are the second building, the third building, and the fourth building.
  • the bandwidth configuration scheme of the AP group in the first building is applied to the second building, the third building, and the fourth building to implement migration of the bandwidth configuration scheme, which can effectively improve bandwidth configuration efficiency.
  • the first physical topology further includes building structure information corresponding to the building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to the building where the second AP group is installed.
  • the electronic device determines the bandwidth configuration scheme of the first AP group according to the neighbor relationship between APs in the first AP group.
  • the electronic device determines the geometric distance information between two APs in the AP group according to the physical location information of the APs in the AP group, and determines the geometric distance information between the two APs according to the physical location information of the APs in the AP group and the distance between the two APs.
  • the geometric distance information determines the physical topology corresponding to the AP group.
  • the electronic device determines the similarity between the first physical topology and the second physical topology according to the AP information of the first physical topology and the AP information of the second physical topology, and the AP information includes the geometric distance between APs Mutual location information with the AP.
  • the electronic device divides the first physical topology into multiple first subtopologies, divides the second physical topology into multiple second subtopologies, and according to the multiple first subtopologies and the multiple first subtopologies,
  • the two sub-topologies determine the isomorphic sub-topologies, and determine the similarity between the first physical topology and the second physical topology based on the number or ratio of the isomorphic sub-topologies.
  • FIG. 7 is a schematic structural diagram of a bandwidth configuration device provided in an embodiment of the present application.
  • the bandwidth configuration apparatus 700 includes a determination module 701 and an adjustment module 702 .
  • the determination module 701 is used to execute step 201 in the embodiment shown in FIG. 2
  • the adjustment module 702 is used to execute step 202 in the embodiment shown in FIG. 2 .
  • the determination module 701 is configured to determine the bandwidth allocation scheme of N AP groups. Each AP group includes multiple APs. The bandwidth configuration scheme of an AP group includes the bandwidth of each AP in the AP group. N is an integer greater than or equal to 2.
  • the adjustment module 702 is configured to adjust the bandwidth of the APs in the first AP group or the second AP group according to the similarity between the first physical topology corresponding to the first AP group and the second physical topology corresponding to the second AP group.
  • the N AP groups include the first AP group and the second AP group.
  • the first physical topology includes physical location information of multiple APs in the first AP group
  • the second physical topology includes physical location information of multiple APs in the second AP group.
  • APs in the same AP group have the same bandwidth.
  • the first physical topology further includes building structure information corresponding to the building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to the building where the second AP group is installed.
  • the determining module 701 is specifically configured to determine the bandwidth configuration scheme of each AP group according to the neighbor relationship between APs in each AP group.
  • the determining module 701 is further configured to: determine the geometric distance information between two APs in the AP group according to the physical location information of the APs in the AP group, and determine the geometric distance information between two APs in the AP group according to the physical location information of the APs in the AP group and the two The geometric distance information between two APs determines the physical topology corresponding to the AP group.
  • the adjustment module 702 is further configured to: determine the similarity between the first physical topology and the second physical topology according to the AP information of the first physical topology and the AP information of the second physical topology.
  • the AP information includes the geometric distance between the APs and the mutual position information between the APs.
  • the adjustment module 702 is also configured to:
  • a degree of similarity between the first physical topology and the second physical topology is determined based on the number or proportion of isomorphic subtopologies.
  • bandwidth configuration device 700 for the specific execution process and corresponding beneficial effects of the bandwidth configuration device 700 , reference may be made to the relevant description of the bandwidth configuration method 200 , and details are not repeated here.
  • FIG. 8 is a schematic structural diagram of another bandwidth configuration device provided by an embodiment of the present application.
  • the bandwidth configuration apparatus 800 includes an acquisition module 801 and a determination module 802 .
  • the acquiring module 801 is configured to execute step 601 in the embodiment shown in FIG. 6
  • the determining module 802 is configured to execute step 602 in the embodiment shown in FIG. 6 .
  • the obtaining module 801 is configured to obtain the bandwidth configuration scheme of the first AP group.
  • a determining module 802 configured to determine the bandwidth configuration scheme of the first AP group as A bandwidth configuration scheme of the second AP group.
  • the first AP group and the second AP group respectively include multiple APs.
  • the first physical topology includes physical location information of multiple APs in the first AP group
  • the second physical topology includes physical location information of multiple APs in the second AP group.
  • the first physical topology further includes building structure information corresponding to the building where the first AP group is installed
  • the second physical topology further includes building structure information corresponding to the building where the second AP group is installed.
  • the obtaining module 801 is specifically configured to determine the bandwidth configuration scheme of the first AP group according to the neighbor relationship between APs in the first AP group.
  • the determining module 802 is further configured to determine the similarity between the first physical topology and the second physical topology according to the AP information of the first physical topology and the AP information of the second physical topology.
  • the AP information includes the geometric distance between the APs and the mutual position information between the APs.
  • a degree of similarity between the first physical topology and the second physical topology is determined based on the number or proportion of isomorphic subtopologies.
  • bandwidth configuration apparatus 800 for the specific execution process and corresponding beneficial effects of the bandwidth configuration apparatus 800, reference may be made to the description of the bandwidth configuration method 600, and details are not repeated here.
  • FIG. 9 is a schematic structural diagram of a bandwidth configuration device provided in an embodiment of the present application.
  • the bandwidth configuration device 900 includes a memory 901 , a processor 902 , a communication interface 904 and a bus 903 .
  • the memory 901 , the processor 902 , and the communication interface 904 are connected to each other through the bus 903 .
  • the memory 901 may be a read-only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device or a random access memory (Random Access Memory, RAM).
  • the memory 901 may store a program, and when the program stored in the memory 901 is executed by the processor 902, the processor 902 is configured to execute each step of the bandwidth configuration method described in any of the foregoing embodiments.
  • the processor 902 may be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), a graphics processing unit (graphics processing unit, GPU) or one or more
  • the integrated circuit is used to execute related programs to realize the functions required by the units in the bandwidth configuration device described in any of the above embodiments, or to execute the bandwidth configuration method described in any of the above embodiments.
  • the processor 902 may also be an integrated circuit chip, which has a signal processing capability. During implementation, each step of the bandwidth configuration method described in any embodiment of the present application may be implemented by an integrated logic circuit of hardware in the processor 902 or instructions in the form of software.
  • the above-mentioned processor 902 can also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application-specific integrated circuit
  • FPGA Field Programmable Gate Array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the bandwidth configuration method described in any embodiment of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 901, and the processor 902 reads the information in the memory 901, and combines its hardware to complete the functions required by the units included in the bandwidth configuration device described in any of the above embodiments, or to execute any of the implementations of the present application.
  • the bandwidth configuration method described in the example is described in the example.
  • the communication interface 904 implements communication between the bandwidth configuration device 900 and other devices or communication networks by using a transceiver device such as but not limited to a transceiver.
  • a transceiver device such as but not limited to a transceiver.
  • the bandwidth configuration device 900 may acquire geometric distance data or AP group data between two APs through the communication interface 904 .
  • the bus 903 may include a path for transferring information between various components of the bandwidth configuration device 900 (eg, the memory 901 , the processor 902 , the communication interface 904 ).
  • bandwidth configuration device 900 shown in FIG. 9 only shows a memory, a processor, and a communication interface, in a specific implementation process, those skilled in the art should understand that the bandwidth configuration device 900 also includes other necessary devices. Meanwhile, according to specific needs, those skilled in the art should understand that the bandwidth configuration device 900 may also include hardware devices for implementing other additional functions. In addition, those skilled in the art should understand that the bandwidth configuration device 900 may only include components necessary to implement the embodiment of the present application, and does not necessarily include all the components shown in FIG. 9 .
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the essence of the technical solution of the present application or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a computer program product, and the computer program product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • An embodiment of the present application further provides a chip, the chip includes a processor and a data interface, and the processor reads instructions stored in a memory through the data interface, and executes the bandwidth configuration method described in any embodiment.
  • the chip may further include a memory, the memory stores instructions, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the bandwidth configuration method described in any embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种带宽配置方法及相关设备,应用于通信技术领域。电子设备先确定N个AP组的带宽配置方案,再根据AP组之间的物理拓扑相似性调整AP组的带宽配置方案。当两个AP组的物理拓扑相似时,若该两个AP组中对应物理位置的两个AP的带宽不同,电子设备则将这两个AP的带宽中的最大值确定为这两个AP的带宽(称之为带宽就大原则)。由于AP组的物理拓扑具有稳定不易发生变化的特性,因此,本申请基于AP组之间的物理拓扑相似性,对AP组的带宽配置方案进行调整,可以有效保障AP组的带宽配置结果的稳定性。而根据带宽就大原则进行AP组的带宽配置调整,有利于提升无线网络的网络容量,提升用户的网络体验。

Description

带宽配置方法及相关设备
本申请要求于2022年01月04日提交中国专利局、申请号为202210014285.9、申请名称为“一种带宽推荐方法和装置”的中国专利申请,以及于2022年03月31日提交中国专利局、申请号为202210334477.8、申请名称为“带宽配置方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种带宽配置方法及相关设备。
背景技术
随着无线局域网(Wireless Local Area Network,WLAN)的迅猛发展,接入点(access point,AP)的部署呈密集化趋势,以满足校园、企业园区、自动生产车间和医院等场景的网络覆盖需求。
一个覆盖区域的多个AP可以称之为一个AP组。一个AP组包括的任意两个AP可以进行射频信号扫描,WLAN控制器可以根据AP间的射频扫描结果获取AP组内AP间的邻居关系,并根据AP间的邻居关系调整AP组的带宽配置。根据AP间的射频信号扫描获取AP间的邻居关系可以称之为邻居扫描机制。由于邻居扫描机制的不稳定性(例如,扫描时的人员走动或其他因素会影响扫描结果),导致AP之间的邻居关系时而缺失时而冗余,进而导致AP的带宽配置结果存在不同程度的波动,影响该无线网络中用户的网络体验。
发明内容
本申请提供一种带宽配置方法及相关设备,可以为无线网络中的AP提供稳定的带宽配置结果,提升用户的网络体验。
第一方面,本申请提供一种带宽配置方法。该方法可以应用于电子设备。电子设备例如为WLAN控制器、计算设备、AP等。电子设备确定N个AP组的带宽配置方案,并根据AP组间的物理拓扑的相似性调整AP组的带宽配置方案。当两个AP组的物理拓扑相似时,若该两个AP组中对应物理位置的两个AP的带宽不同,则将这两个AP的带宽中的最大值确定为这两个AP的带宽(称之为带宽就大原则)。当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且第一AP组中的第一AP的带宽大于第二物理拓扑中与第一AP对应的第二AP的带宽时,电子设备调整第二AP组的带宽配置方案中的第二AP的带宽为第一AP的带宽。当第一物理拓扑和第二物理拓扑之间的相似度大于相似度阈值,且第一AP的带宽小于第二AP的带宽时,电子设备调整第一AP组的带宽配置方案中的第一AP的带宽为第二AP的带宽。
其中,每个AP组包括多个AP,N为大于或等于2的整数。N个AP组包括第一AP组和第二AP组,第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
本方案中,由于AP组的物理拓扑具有稳定不易发生变化的特性,基于AP组之间的物理拓扑相似性,对AP组的带宽配置方案进行调整,可以有效保障AP组的带宽配置结果的稳定性,也即保证AP的带宽配置稳定性,进而提升用户的网络体验。另外,根据带宽就大原则 进行AP组的带宽配置调整,有利于提升无线网络的网络容量,进一步提升用户的网络体验。
在一种可能的实施方式中,第一AP组中多个AP的带宽相同,第二AP组中多个AP的带宽相同。
当第一AP组中多个AP的带宽相同且第二AP组中多个AP的带宽相同时,在进行AP组的带宽调整时,通过比较2个带宽值,即可以完成整个AP组的带宽调整,无需逐个比较AP组中的多个AP,可以提高带宽调整的效率。
在一种可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
本方案中的物理拓扑除了包括AP组中每个AP的物理位置信息之外,还包括安装该AP组的建筑的建筑结构信息,增加建筑结构信息作为判断物理拓扑相似性的依据,可以提高判断两个AP组的物理拓扑相似度的精度,帮助更准确地调整AP组的带宽。
在一种可能的实施方式中,电子设备根据每个AP组中AP间的邻居关系确定每个AP组的带宽配置方案。
在一种可能的实施方式中,电子设备根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息。电子设备再根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
在一种可能的实施方式中,电子设备根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度。AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,电子设备将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑。电子设备再根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑。电子设备基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
在一种可能的实施方式中,电子设备根据子拓扑对间的对应边的几何距离差确定子拓扑对中的第一子拓扑和第二子拓扑是否为同构子拓扑。第一物理拓扑包括第一子拓扑,第二物理拓扑包括第二子拓扑。
第二方面,本申请提供一种带宽配置方法。该方法可以应用于电子设备。电子设备例如为WLAN控制器、计算设备、AP等。电子设备先获取第一AP组的带宽配置方案。当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值时,电子设备将第一AP组的带宽配置方案确定为第二AP组的带宽配置方案。
其中,第一AP组和第二AP组分别包括多个AP,第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
本方案中,由于AP组的物理拓扑具有稳定不易发生变化的特性,仅依靠AP组之间的物理拓扑相似性可以实现AP组的带宽配置方案迁移,不仅可以有效提升AP组带宽配置的效率,而且还可以保障AP组的带宽配置结果的稳定性,也即保证AP的带宽配置稳定性。
在一种可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
本方案中,增加建筑结构信息作为判断物理拓扑相似性的依据,可以提高判断两个AP组的物理拓扑相似度的精度,帮助更准确地配置AP组的带宽。
在一种可能的实施方式中,电子设备根据第一AP组中AP间的邻居关系确定第一AP组 的带宽配置方案。
在一种可能的实施方式中,电子设备根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息。电子设备再根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
在一种可能的实施方式中,电子设备根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度,AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,电子设备将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑。电子设备再根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑。电子设备基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
第三方面,本申请提供一种带宽配置装置。该装置包括确定模块和调整模块。
确定模块,用于确定N个AP组的带宽配置方案。每个AP组包括多个AP,每个AP组的带宽配置方案包括每个AP组中的多个AP中的每个AP的带宽,N为大于或等于2的整数。
调整模块,用于根据AP组间的物理拓扑的相似性调整AP组的带宽配置方案。当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且第一AP组中的第一AP的带宽大于第二物理拓扑中与第一AP对应的第二AP的带宽时,调整模块调整第二AP组的带宽配置方案中的第二AP的带宽为第一AP的带宽。当第一物理拓扑和第二物理拓扑之间的相似度大于相似度阈值,且第一AP的带宽小于第二AP的带宽时,调整模块调整第一AP组的带宽配置方案中的第一AP的带宽为第二AP的带宽。
其中,N个AP组包括第一AP组和第二AP组。第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
在一种可能的实施方式中,第一AP组中多个AP的带宽相同,第二AP组中多个AP的带宽相同。
在一种可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
在一种可能的实施方式中,确定模块,具体用于:根据每个AP组中AP间的邻居关系确定每个AP组的带宽配置方案。
在一种可能的实施方式中,确定模块,还用于:
根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息。
根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
在一种可能的实施方式中,调整模块,还用于:
根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度,AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,调整模块,还用于:
将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑;
根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑;
基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
第四方面,本申请提供一种带宽配置装置。该装置包括获取模块和确定模块。
获取模块,用于获取第一AP组的带宽配置方案。
确定模块,用于当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值时,将第一AP组的带宽配置方案确定为第二AP组的带宽配置方案。
其中,第一AP组和第二AP组分别包括多个AP。第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
在一种可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
在一种可能的实施方式中,获取模块,具体用于:根据第一AP组中AP间的邻居关系确定第一AP组的带宽配置方案。
在一种可能的实施方式中,确定模块,还用于:
根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息。
再根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
在一种可能的实施方式中,确定模块,还用于:
根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度,AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,确定模块,还用于:
将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑;
根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑;
基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
第五方面,本申请还提供一种带宽配置设备,包括处理器和存储器;
所述存储器用于存储指令或计算机程序;
所述处理器用于执行所述指令或计算机程序,以使所述带宽配置设备执行第一方面或第一方面的任一种可能的实施方式提供的带宽配置方法,或者,第二方面或第二方面的任一种可能的实施方式提供的带宽配置方法。
第六方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被处理器执行时,实现第一方面或第一方面的任一种可能的实施方式提供的带宽配置方法,或者,第二方面或第二方面的任一种可能的实施方式提供的带宽配置方法。
第七方面,本申请还提供一种计算机程序产品,包括计算机程序,当所述计算机程序被处理器执行时,实现第一方面或第一方面的任一种可能的实施方式提供的带宽配置方法,或者,第二方面或第二方面的任一种可能的实施方式提供的带宽配置方法。
附图说明
图1a是本申请实施例提供的一种系统架构示意图;
图1b是本申请实施例提供的另一种系统架构示意图;
图1c是本申请实施例提供的又一种系统架构示意图;
图2是本申请实施例提供的一种带宽配置方法的流程示意图;
图3是本申请实施例提供的一种确定AP组的带宽配置方案的流程示意图;
图4a是本申请实施例提供的一种确定AP组的物理拓扑的方法流程示意图;
图4b是本申请实施例提供的一种AP组的物理拓扑示意图;
图4c是图4b中的AP组中的AP间的几何距离的示意图;
图5a是本申请实施例提供的一种计算物理拓扑相似度的流程示意图;
图5b是本申请实施例提供的一种AP组的拓扑示意图;
图5c是图5b中的AP组中的AP间几何距离的示意图;
图5d是本申请实施例提供的一种确定同构子图的流程示意图;
图5e是本申请实施例提供的一种匹配子图的示意图;
图6是本申请实施例提供的另一种带宽配置方法的流程示意图;
图7是本申请实施例提供的一种带宽配置装置的结构示意图;
图8是本申请实施例提供的另一种带宽配置装置的结构示意图;
图9是本申请实施例提供的一种带宽配置设备的结构示意图。
具体实施方式
为了便于理解,下面先对本申请实施例涉及的相关术语进行介绍。
(1)接入点(access point,AP)
接入点,又称为无线接入点,是一个无线网络的接入设备。接入点主要用于家庭、大楼内部、园区内部以及仓库、工厂等地方,典型距离覆盖几十米至上百米,也有可以用于远距离传送,最远的可以达到30KM左右,主要技术为IEEE802.11系列。另外,接入点还可以带有接入点客户端模式(AP client),可以和其它AP进行无线连接,以扩大无线网络的覆盖范围。
(2)AP组
大于或等于两个的AP为一个AP组。例如一栋建筑中包括10层楼,每层楼中具有10个AP,假设每层楼的AP组成一个AP组,则该栋建筑对应有10个AP组。
(3)AP的带宽
AP的带宽是指AP的工作信道的频率宽度。AP的带宽的单位例如为兆赫(megahertz,M)。
(4)WLAN控制器
WLAN控制器是一种网络设备,负责管理某个区域内无线网络中的AP。WLAN控制器对AP管理包括:配置管理、射频管理、接入安全控制等。例如,一栋建筑设置一个WLAN控制器,该WLAN控制器用于管理该建筑中的所有AP。又例如,一栋建筑中的每一层楼均可以设置一个WLAN控制器,一个WLAN控制器用于管理一层楼的AP。WLAN控制器例如为接入控制器(Access Controller,AC)。
(5)数字地图
数字地图用于表示WLAN系统中多个AP之间的物理位置关系,可以包括各个AP的物理位置信息(例如,AP的坐标位置)和AP间的几何距离。
(6)同构子图
图(Graph)是由节点和节点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中节点的集合,E是图G中边的集合。例如,一个图包括A、B、C和D四个节点,以及这四个节点之间的边。某一个图的子图是指节点集和边集分别是该图的节点集的子集和边集的子集的图。
假设G1、G2为图,S1、S2分别为G1、G2中的一个子图,如果S1和S2满足同构子图 条件的话,就称之为子图同构(subgraph isomorphism),其中,该同构子图条件可以根据实际情况进行设置,例如,S1、S2就称为图G1、G2的一组同构子图(isomorphic graph)。
下面将结合附图,对本申请中的技术方案进行描述。参考图1a,图1a是本申请实施例提供的一种系统架构示意图。图1a中,无线网络103包括WLAN控制器102和多个AP,例如,AP1~AP10。WLAN控制器102用于管理上述多个AP,例如,确定多个AP的带宽配置,并指示各AP按照带宽配置工作。
可选地,无线网络103还可以包括计算设备101。当无线网络103包括计算设备101时,计算101用于确定多个AP的带宽配置,并通过WLAN控制器102发送带宽配置给相应的AP,以使AP按照带宽配置工作。计算设备101为具备计算能力的设备,例如,个人计算机、服务器、服务器集群、虚拟机、虚拟机集群、云上设备等。云例如为公有云、私有云或混合云。
当无线网络103包括多个WLAN控制器时,每个WLAN控制器可以分别管理无线网络103中的部分的AP,例如,无线网络103包括5个WLAN控制器,每个WLAN控制器管理2个AP。该多个WLAN控制器可以分别为自身管理的AP确定带宽配置方案,并指示自身管理的AP按照带宽配置工作。当无线网络103包括计算设备101时,该多个WLAN控制器中的每个WLAN控制器可以接收计算设备101发送的针对自身管理的AP的带宽配置,并发送带宽配置给相应的AP。
一个AP组包括的任意两个AP可以进行射频信号扫描,WLAN控制器可以根据AP间的射频扫描结果获取AP组内AP间的邻居关系,并根据AP间的邻居关系调整AP组的带宽配置。根据AP间的射频信号扫描获取AP间的邻居关系可以称之为邻居扫描机制。由于邻居扫描机制的不稳定性(例如,扫描时的人员走动或其他因素会影响扫描结果),导致AP之间的邻居关系时而缺失时而冗余,进而导致AP的带宽配置结果存在不同程度的波动。例如,每个AP的带宽配置结果时而为40M时而为80M。这导致带宽配置不稳定。而且,该不稳定性可能导致原本可以被配置为80M的AP被配置成了40M,降低了AP以及AP所在的无线网络的容量,影响该无线网络中用户的网络体验。
鉴于此,本申请提供一种带宽配置方法,该方法基于两个AP组的物理拓扑的相似性调整该两个AP组中AP的带宽配置。当第一AP组的物理拓扑和第二AP组的物理拓扑相似时,第一AP组中的一个AP的带宽为该AP的带宽和第二AP组中与该AP对应的AP的带宽中的最大值,第二AP组中的一个AP的带宽为该AP的带宽和第一AP组中与该AP对应的AP的带宽中的最大值。即,当两个AP组的物理拓扑相似时,若该两个AP组中对应物理位置的两个AP的带宽不同,则将这两个AP的带宽中的最大值确定为这两个AP的带宽(称之为带宽就大原则)。AP的物理位置一般很少发生变化,即,AP组的物理拓扑比较稳定,因此,两个AP组间的物理拓扑相似性也比较稳定,基于AP组间的物理拓扑相似性为AP组中的AP调整带宽可以使得AP的带宽更稳定。进一步地,在带宽调整时,基于带宽就大原则调整AP的带宽,可以有效提升无线网络的网络容量,进而提升用户的网络体验。
另外,本申请还可以基于AP组之间的物理拓扑相似性实现AP组的带宽配置方案的迁移。例如,若已知第一建筑物内的多个AP的带宽配置方案,当第二建筑物的多个AP的物理拓扑和第一建筑物的多个AP的物理拓扑相似时,可以直接将第一建筑物的多个AP的带宽配置方案应用到第二建筑物的多个AP。如此,可以有效提升AP带宽配置的效率。
本申请中的带宽配置方法的执行主体可以为电子设备,电子设备例如为WLAN控制器、 计算设备、AP等。上述AP可以理解为带宽配置方法所针对的无线网络中的任意一个AP。下面以电子设备为计算设备为例,对带宽配置方法进行具体介绍。
参考图2,图2是本申请实施例提供的一种带宽配置方法的流程示意图。带宽配置方法200包括步骤201和步骤202。
201、确定N个AP组的带宽配置方案。
预设范围内的无线网络(预设范围例如为一栋建筑或一层楼等)中的AP可以被划分成N个AP组。每个AP组包括多个AP,多个是指大于或等于2个。N为大于或等于2的整数。N个AP组中,每个AP组的AP数量可以相同,也可以不相同。
例如,对于一栋建筑,该栋建筑包括十层楼,每层楼中部署有十个AP。假设每层楼的AP组成一个AP组,则该栋建筑对应有十个AP组。
又例如,对于同一层楼中的十个房间,每个房间设置有五个AP,可以将同在一个房间中的AP归于一个AP组,则一层楼有十个AP组。
一个AP组的带宽配置方案包括该AP组中的每个AP的配置带宽,其中,同一个AP组中的多个AP的配置带宽可以相同,也可以不同。确定每个AP的配置带宽的具体过程,请参考下文图3示出的实施例,在此不做赘述。
参考图1b,图1b是本申请实施例提供的另一种系统架构示意图。无线网络103包括的十四个AP被划分成两个AP组:第一AP组104和第二AP组105。第一AP组104包括AP1、AP2、AP3、AP4、AP5、AP6和AP7,第二AP组105包括AP8、AP9、AP10、AP11、AP12、AP13和AP14。假设AP1至AP10的配置带宽如表1或表2所示,表1中,一个AP组中AP的配置带宽不完全相同,而表2中,同一个AP组中AP的配置带宽相同。
表1
AP编号 AP1 AP2 AP3 AP4 AP5 AP6 AP7
带宽/M 80 80 80 20 20 20 20
AP编号 AP8 AP9 AP10 AP11 AP12 AP13 AP14
带宽/M 20 20 20 40 40 40 40
表2
AP编号 AP1 AP2 AP3 AP4 AP5 AP6 AP7
带宽/M 80 80 80 80 80 80 80
AP编号 AP8 AP9 AP10 AP11 AP12 AP13 AP14
带宽/M 20 20 20 20 20 20 20
202、根据AP组间的物理拓扑的相似性调整AP组内的AP的配置带宽。
当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且第一AP组中的第一AP的带宽大于第二物理拓扑中与第一AP对应的第二AP的带宽时,调整第二AP组的带宽配置方案中的第二AP的带宽为第一AP的带宽。
当第一物理拓扑和第二物理拓扑之间的相似度大于相似度阈值,且第一AP的带宽小于第二AP的带宽时,调整第一AP组的带宽配置方案中的第一AP的带宽为第二AP的带宽。
即,当两个AP组的物理拓扑相似时,若该两个AP组中对应物理位置的两个AP的带宽不同,则将这两个AP的带宽中的最大值确定为这两个AP的带宽(称之为带宽就大原则)。 其中,N个AP组包括第一AP组和第二AP组,第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。如何获取AP组的物理拓扑,请参考下文图4a示出的实施例,在此不做赘述。
两个AP组的物理拓扑相似度包括该两个AP组中的AP的物理拓扑结构的相似度。如何获取两个AP组的物理拓扑结构的相似度,请参考下文图5a示出的实施例,在此不做赘述。其中,相似度阈值的具体大小可以根据实际情况进行设置,不做特别限定。上述“与第一AP对应的第二AP”应当理解为,对于两个满足相似度阈值的第一AP组和第二AP组,第一AP在第一AP组中的相对位置与第二AP在第二AP组中的相对位置相同。即,第二AP为在第二AP组中的相对位置与第一AP在第一AP组中的相对位置相同的AP。例如,参考图1b,第一AP组104中,假设第一AP为AP4,则在第二AP组105中,对应的第二AP为AP11;假设第一AP为AP1,则对应的AP为AP8。
对于N个AP组中的任意两个AP组,如第一AP组和第二AP组,当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且第一AP组中的第一AP的带宽大于第二物理拓扑中与第一AP对应的第二AP的带宽时,调整第二AP组的带宽配置方案中的第二AP的带宽为第一AP的带宽。
参考图1b和表1,假设第一AP为AP2(带宽为80M),则第二AP为AP9(带宽为20M),此时,将调整AP9的配置带宽为80M。再参考图1b和表2,当AP组中的AP的配置带宽相同时,此时,对于相似度大于相似度阈值的第一AP组和第二AP组,只需要对比一次,即可以完成带宽调整,即将第二AP组105中的所有AP的配置带宽均调整为80M。若同一AP组中的所有AP的配置带宽相同,在进行AP组的带宽调整时,无需逐个比较,仅需比较一次,并将两个配置带宽中的大值作为配置带宽为小值的AP组中的AP的配置带宽即可,这可以提高带宽调整的效率。
当第一物理拓扑和第二物理拓扑之间的相似度大于相似度阈值,且第一AP的带宽小于第二AP的带宽时,调整第一AP组的带宽配置方案中的第一AP的带宽为第二AP的带宽。参考图1b和表1,假设第一AP为AP4(带宽为20M),则第二AP为AP11(带宽为40M),此时,将调整AP4的配置带宽为40M。
当满足物理拓扑相似性要求的第一AP组和第二AP组的AP数量不一致时,假设第一AP组的数量为S1,第二AP组的数量为S2,S2大于S1,在进行带宽配置调整时,先确定第二AP组中与所述第一AP组的物理拓扑相似度最高的S1个AP,对于第二AP组中上述的S1个AP,可以根据带宽就大原则进行带宽调整。而对于第二AP组中除上述S1个AP之外的AP的配置带宽,可以根据现有技术中确定AP的带宽的方法来确定,不做特别限定,例如,第二AP组中除上述S1个AP之外的AP,可以继续保留在步骤201中确定的配置带宽。又例如,当第二AP组中AP的配置带宽都相同时,对于第二AP组中除上述S1个AP之外的AP,将它们的配置带宽和第二AP组中的S1个AP保持一致。又例如,对于第二AP组中除上述S1个AP之外的AP,可以主动降低AP的配置带宽,可以将AP的带宽降低到预设的保守带宽,以减小AP对上述S1个AP的带宽影响。保守带宽的具体数值可以根据实际情况进行设置,例如,保守带宽为20M,假设一个AP在步骤201中确定的带宽为80M,则可以将该AP的带宽降低到20M。
进一步地,每个AP组还可以进一步划分成多个AP小组,例如,将第一AP组中的带宽相同的K个AP划分到一个小组,若第二AP组中与该K个AP对应的K个AP的带宽也相同,则也将第二AP组中的对应的K个AP划分到一个小组。在AP组间的物理拓扑相似时, 对应的AP小组间的物理拓扑也相似,此时,可以直接将两个相似的AP小组中所有AP的带宽均设置为两个相似的AP小组的带宽中的大值。如此,即使AP组内的AP的带宽并不完全相同,也不需要逐个的比较每个AP的带宽进而调整各个AP的带宽,而是可以基于AP小组的比较逐小组的调整AP的带宽,这可以提升AP带宽调整的效率。例如,图1b和表1中,AP1、AP2和AP3为第一AP小组(组内AP的带宽均为80M),AP8、AP9和AP10为第二AP小组(组内AP的带宽均为20M),调整第一AP小组和第二AP小组时,只需要对比一次带宽大小,即可以完成两个AP小组的带宽调整,即将第二AP小组的配置带宽调整为80M。又例如,若图1b中的第一AP组104中的AP1、AP2和AP6的带宽相同,第二AP组105中与上述3个AP对应的AP8、AP9和AP13的带宽也相同,则可以将AP1、AP2和AP6划分到一个小组,将AP8、AP9和AP13划分到一个小组,然后比较这两个小组的带宽以同时调整其中一个小组的带宽。
本申请实施例中,电子设备基于AP组之间的物理拓扑相似性调整AP组的带宽配置方案。AP组的物理位置较为稳定,AP组的物理拓扑具有稳定不易发生变化的特性,则AP组间的物理拓扑相似性也具有稳定不易发生变化的特性,因此,基于AP组间的物理拓扑相似性调整AP组的带宽配置方案,使得AP组的带宽配置方案稳定,也即保证了AP组内AP的带宽配置的稳定性,提升用户的网络体验。另外,根据带宽就大原则进行AP组的带宽配置调整,有利于提升无线网络的网络容量,提升用户的网络体验。
参考图1c,图1c是本申请实施例提供的又一种系统架构示意图。利用本申请实施例的带宽配置方法,计算设备101先将四十个AP划分为第一AP组T1、第二AP组T2、第三AP组T3、第四AP组T4和第五AP组T5这五个AP组,其中,第一AP组T1包括九个AP,第二AP组T2包括四个AP,第三AP组T3包括九个AP,第四AP组T4包括十个AP,第五AP组T5包括八个AP。计算设备101在初步确定上述五个AP组的带宽配置方案之后,根据AP组之间的物理拓扑的相似度调整AP组的配置带宽。以同一AP组中的AP的带宽相同为例,参考图1c,假设计算设备101为第一AP组T1、第三AP组T3、第四AP组T4配置的带宽为80M,而为第二AP组T2和第五AP组T5配置的带宽为40M。当第三AP组T3对应的第三物理拓扑和第五AP组T5对应的第五物理拓扑的相似度均大于相似度阈值时,将第五AP组T5的配置带宽从40M调整为80M。
针对一个AP组,电子设备可以基于一个AP组内AP间的邻居关系为该AP组确定带宽配置方案,以获取N个AP组的带宽配置方案。
一个AP的带宽取决于该AP使用的信道频宽,例如,当AP使用的信道为信道36时,AP的带宽为20M;而当AP使用的信道为信道46时,AP的带宽为40M。但信道的数量是有限的,例如,80M的可用信道只有三个(信道42、信道58和信道155),40M对应有六个可用信道(信道38、信道46、信道54、信道62、信道151和信道159,20M对应有十三个可用信道(信道36、信道40、信道44、信道48、信道52、信道56、信道60、信道64、信道149、信道153、信道157、信道161和信道165)。若AP组的AP均配置高带宽(例如,80M),可能导致严重的同频干扰。因此,可以根据AP间的邻居关系确定AP可配置的带宽。例如,为一个AP组中邻居数量少的AP配置高带宽,为该AP组中邻居数量多的AP配置低带宽,同时,尽量避免该AP组中的相邻AP使用相同的信道,以获取该AP组的带宽配置方案。又例如,电子设备还可以统计AP组中各个AP的邻居AP的数量,然后根据邻居AP数量的统计值为一个AP组中的AP配置相同的带宽,具体请参见下文图3所示实施例。
电子设备可以根据AP间的射频信号探测结果确定AP之间是否为邻居关系。
一种示例中,电子设备根据AP间的信号强弱判断AP间的邻居关系。两个AP之间的信号强度越高,这两个AP之间的邻居关系越紧密。当两个AP之间的信号强度大于信号强度阈值时,可以确定这两个AP互为邻居AP。AP之间的信号强度可以为接收信号强度。信号强度阈值的具体大小可以根据实际情况进行设置。
另一种示例中,电子设备可以根据两个AP之间的时延判断AP的邻居关系。例如,当两个AP之间的时延小于时延阈值时,确定这两个AP互为邻居AP。
又一种示例中,电子设备可以根据两个AP之间有无信号往来判断AP的邻居关系。例如,当两个AP之间具有信号往来时,确定这两个AP互为邻居AP。其中,AP1能接收到AP2的信号,则称AP2是AP1的邻居,若互相感知信号则互为邻居。
又一种示例中,当有终端在AP1和AP2之间漫游时,电子设备可以确定AP1和AP2存在邻居关系。
参考图3,图3是本申请实施例提供的一种确定AP组的带宽配置方案的方法流程示意图。
在该方法中,当AP组的第一比例大于或等于比例阈值时,确定AP组的配置带宽为第一预设带宽;当AP组的第一比例小于比例阈值时,确定AP组的配置带宽为第二预设带宽。第一预设带宽大于第二预设带宽。
其中,第一比例为AP组中满足第一条件的AP数量与AP组的AP总数之间的比值,第一条件为AP的组内邻居数量小于或等于第一数量阈值。第一数量阈值可以根据第一预设带宽确定。第一预设带宽的可用信道的数量为L,则第一数量阈值为(L-1)。例如,第一预设带宽为80M(可用信道数为3),第二预设带宽为40M或20M,L=3,第一数量阈值为2。又例如,第一预设带宽为40M(可用信道数为6),第二预设带宽为20M,L=6,第一数量阈值为5。比例阈值可以根据需要设置,例如为75%。AP的组内邻居数量是指AP组内与该AP为邻居关系的AP的数目。
即当一个AP组一定比例(例如,大于比例阈值)的AP的邻居数量小于等于一个带宽的可用信道数时,可以将该AP组的AP的带宽均配置为该带宽。
可选地,第一条件还可以包括AP的组外邻居数量小于等于第二数量阈值。例如,第二数量阈值也为L-1。一个AP的组外邻居数量是指AP组外与该AP为邻居关系的AP的数目。
对于每个AP组,均执行图3的处理步骤,以确定每个AP组的带宽配置方案,从而确定N个AP组的配置方案。例如,N1个AP组的配置带宽为80M,N2个AP组的配置带宽为40M,N3个AP组的配置带宽为20M,N=N1+N2+N3。
图4a示出了本申请实施例提供的一种确定AP组的物理拓扑的方法流程示意图。该方法可以应用于电子设备。电子设备例如为WLAN控制器、计算设备或AP等。请参考图4a,该方法包括步骤401和步骤402。
401、根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息。
在一个示例中,AP的物理位置信息可以为测量人员测量得到的AP的经度、纬度和高度或者在预设坐标系下的X-Y-Z坐标信息,例如,测量人员基于激光测距技术测量AP的物理位置信息。预设坐标系可以是以AP所在区域的任一点为原点的坐标系。
在另一个示例中,AP的物理位置信息是基于网规文件获取的。网规文件中包括AP的坐标信息和AP的信息,例如,AP的标识。
在另一个示例中,AP的物理位置信息是基于包含AP的坐标信息的数字地图确定的。数 字地图可以通过以下方式得到:数字地图构建装置选定需要进行带宽配置的拓扑区域,并将该拓扑区域划分到具体建筑物,比如写字楼,公寓住宅和教学楼等。数字地图构建装置在建筑物界面中导入点位图(例如,建筑工程图纸)作为背景图。其中,点位图为尺寸S1*S2的图片,S1和S2分别为AP坐标的X和Y的最大值。数字地图构建装置通过自动布放方式将AP标识放置到点位图中,或者是人工将AP标识放置到点位图中。最后,数字地图构建装置将AP的拓扑区域规划信息以xlsx文件的形式导出,获取AP对应的X轴和Y轴坐标,该坐标的单位是相对坐标原点的像素值。数字地图构建装置在xlsx文件添加对应的Z轴信息(例如,建筑物的高度)作为高度信息,就可以得到AP的数字地图。数字地图构建装置例如为上述电子设备。
在获取到AP组中各AP的物理位置信息后,电子设备根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息。几何距离可以采用欧式距离计算公式来计算。当预设坐标系为地球坐标系时,根据AP在地球坐标系中的物理位置信息计算几何距离信息时,得到的几何距离为两个AP之间的真实距离。而当根据AP在相对坐标系中的物理位置信息(例如,基于网规文件或数字地图获取到的AP的位置坐标信息)计算几何距离信息时,当比例尺(例如比例尺为1:100)已知时,可以按照比例尺换算计算结果以得到真实距离;反之,则得到的几何距离为相对距离。
402、根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
具体地,电子设备根据AP组中每个AP的物理位置信息和两两AP之间的几何距离信息,可以生成该AP组对应的物理拓扑。AP组的物理拓扑包括AP组中每个AP的物理位置信息和两两AP之间的几何距离信息。
参考图4b和图4c,图4b是本申请实施例提供的一种AP组的物理拓扑示意图,图4c是图4b中的AP组中AP间的几何距离示意图。以一个AP组包括AP1、AP2、AP3和AP4为例,该AP组对应的数字地图403包含AP1、AP2、AP3和AP4这四个AP的物理位置信息(x i,y i,z i)。电子设备依据欧式距离计算方式,根据AP的物理位置信息计算两两AP之间的几何距离MDi-j(MDi-j代表APi到APj的相对距离),数字地图403对应的几何距离的具体数值可参考图4c示出的几何距离示意图。电子设备根据AP组中每个AP的物理位置信息、以及两两AP间的几何距离可以生成数字地图403对应的物理拓扑404。
在确定每个AP组的物理拓扑后,电子设备可以计算每两个AP组的物理拓扑的相似性。对于第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑,电子设备可以根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度,AP信息包括AP间的距离和AP间的相互位置信息。
AP组的AP间的距离是指该AP组中两两AP之间的几何距离。AP间的相互位置信息是指该AP组中各个AP之间的位置关系。电子设备可以以该AP组所在区域中的任一点为基准点来确定该AP组的AP间的相互位置信息。参考图4b,确定AP1至AP4所组成的AP组的AP间的相互位置信息时,电子设备可以以AP1为原点,则图4b的AP组的AP间的相互位置信息为AP2位于AP1的正水平方向,AP3位于AP1的负九十度方向,而AP4位于AP1的负四十五度方向。
一种示例中,电子设备通过两个物理拓扑的AP间的相互位置信息的差异和该两个物理拓扑的AP间的几何距离的差异确定该两个物理拓扑的相似度。为更准确地获取两个物理拓扑的AP间的相互位置信息的差异,电子设备可以将两个物理拓扑的AP位置信息统一到一个 基准点。例如,以第一物理拓扑中的APx1为基准点(例如,将APx1的X轴和Y轴坐标均变更为0),调整第一物理拓扑中的其他AP(例如,APx2、APx3、APx4等)的位置信息以保持第一物理拓扑中各AP间的相互位置关系和AP间的几何距离不变,如此可获得第一物理拓扑中各AP的新的位置信息;将第二物理拓扑中的一个AP(例如,APy1)的X轴和Y轴坐标均变更为0,调整第二物理拓扑中的其他AP(例如,APy2、APy3、APy4等)的位置信息以保持第二物理拓扑中各AP间的相互位置关系和AP间的几何距离不变,如此可获得第二物理拓扑中各AP的新的位置信息。此时,第一物理拓扑中的APx1和第二物理拓扑中的APy1是位置对应的AP,电子设备可基于第一物理拓扑中其他AP相对于APx1的位置信息和第二物理拓扑中其他AP相对于APy1的位置关系确定第二物理拓扑中与第一物理拓扑中的其他AP对应的AP。电子设备可以计算第一物理拓扑和第二物理拓扑中每两个位置对应的AP间的几何距离以获取该两个AP间的位置差异,电子设备累加第一物理拓扑中每个AP与对应AP的位置差异以获取两个物理拓扑的AP间相对位置差异。电子设备可以计算第一物理拓扑和第二物理拓扑中位置对应的两个边的几何距离差异,并累加第一物理拓扑中所有边的几何距离差以获取两个物理拓扑的AP间的几何距离差异。电子设备将上述两种差异作为第一物理拓扑和第二物理拓扑的相似度,并将该相似度与阈值比较,以确定两个物理拓扑的相似度。例如,当两个物理拓扑的AP间相对位置差异小于位置差异阈值,且两个物理拓扑的AP间的几何距离差异小于几何距离差异阈值时,电子设备确定第一物理拓扑和第二物理拓扑相似度大于相似度阈值,从而确定第一物理拓扑和第二物理拓扑相似。电子设备还可以将上述两种差异进行加权求和以获取第一物理拓扑和第二物理拓扑的相似度,当该相似度大于相似度阈值时,确定第一物理拓扑和第二物理拓扑相似。
其中,位置差异阈值、几何距离差异阈值、相似度阈值的具体数值可以根据实际情况进行设置,不做特别限定。
以APy1为基准调整后的第二物理拓扑可能与以APx1为基准调整后的第一物理拓扑不相似,电子设备还可以依照上述方法轮流地以第二物理拓扑中的其他AP作为基准以调整第二物理拓扑,并判断调整后的第二物理拓扑与第一物理拓扑的相似性。当第二物理拓扑中存在一个AP,使得调整后的第二物理拓扑与调整后的第一物理拓扑相似时,确定第一物理拓扑与第二物理拓扑相似。
当两个物理拓扑包括的AP数量不相同时,可以以AP数量少的物理拓扑作为第一物理拓扑,从AP数量多的物理拓扑中选择与第一物理拓扑相同数量的AP以构成第二物理拓扑。然后,电子设备再依据上述方法确定第一物理拓扑和第二物理拓扑的相似性。
参考图1b,假设第一物理拓扑包括AP1、AP2和AP3,第二物理拓扑包括AP8、AP9和AP10。电子设备将AP1和AP8统一到AP1所在位置,相当于将第二物理拓扑平移到第一物理拓扑所在的位置,并使得AP1和AP8重叠,根据AP1的物理位置信息调整两个物理拓扑中的AP的物理位置信息。电子设备再计算相对位置相同的AP之间的调整后的物理位置信息的差异,如AP2和AP9之间的调整后的物理位置信息的欧式距离,AP3和AP10之间的调整后的物理位置信息的欧式距离。由于AP1和AP8重叠,它们之间的调整后的物理位置差异为0。电子设备根据相对位置相同的两两AP之间的位置差异可以计算得到两个物理拓扑的AP间相对位置差异。电子设备可以分别计算相对位置相同的边(例如,AP1-AP3与AP8-AP10、AP1-AP2与AP8-AP9、以及AP2-AP3与AP9-AP10)对应的几何距离的差值,再累加几何距离的差值以获取两个物理拓扑的AP间的几何距离差异。电子设备根据两个物理拓扑的AP间相对位置差异、两个物理拓扑的AP间的几何距离差异,以及相应的比较阈值,可以确定第 一物理拓扑和第二物理拓扑之间的相似度。
一种示例中,电子设备将物理拓扑划分成多个子拓扑,基于同构子拓扑的数量或比例确定物理拓扑间的相似性。
对于第一物理拓扑和第二物理拓扑,电子设备将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑。电子设备再根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑。电子设备基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
本申请实施例中,子拓扑即子图,同构子拓扑即同构子图。
参考图5a,图5a是本申请实施例提供的一种计算物理拓扑相似度的方法流程示意图,可以应用于电子设备。
S1、基于预设图分解方式对第一物理拓扑Pa进行子图分解得到第一子图集合F(Pa)={sa1,sa2,sa3,……},以及对第二物理拓扑Pb进行子图分解得到第二子图集合F(pb){sb1,sb2,sb3,……}。预设图分解方式为:对于物理拓扑中的每个AP,将每个AP作为根节点,并将该根节点、该物理拓扑中与该根节点的几何距离最近的预设数目的叶节点AP、以及该根节点与每个叶节点AP之间的边作为该物理拓扑的一个子图。即,每个子图包括物理拓扑中的预设数目的AP以及AP之间的边。
下面以预设数目为三为例,对物理拓扑的子图进行具体说明,参考图5b和图5c,图5b是本申请实施例提供的一种AP组的拓扑示意图,图5c是图5b中的AP组中AP间的几何距离示意图。假设一个AP组包括AP1、AP2、AP3、AP4、AP5和AP6,以AP1作为根节点为例,参考图5c可知,与AP1的几何距离最近的三个叶节点(如图5c中虚线框圈中的几何距离对应的叶节点)分别为AP2、AP3和AP4,因此,根节点AP1、叶节点AP2、叶节点AP3和叶节点AP4可以作为该AP组的物理拓扑的一个子图。以此类推,将其他节点也作为根节点可以确定相应的叶节点,最后可以得到该物理拓扑的六个子图。
S2、根据第一子图集合和第二子图集合确定第一物理拓扑Pa和第二物理拓扑Pb的同构子图。
具体地,同构子图是指在第一物理拓扑Pa和第二物理拓扑Pb中满足同构子图条件的两个子图。
S3、基于同构子图确定第一物理拓扑Pa和第二物理拓扑Pb之间的相似度。
具体地,基于同构子图计算第一物理拓扑Pa和第二物理拓扑Pb之间的相似度的方法包括但不限于子图同构相似性计算方法或杰卡德(Jaccard)相似性计算方法。
示例性地,子图同构相似性计算公式为:
Figure PCTCN2022142339-appb-000001
其中,F(Pa)∩F(Pb)表示第一物理拓扑Pa和第二物理拓扑Pb的同构子图,Num{F(Pa)∩F(Pb)}表示上述两个物理拓扑的同构子图的组数,Num{F(Pb)}表示第二子图集合F(pb)的子图数量。K(Pa,Pb)为Pa相对于Pb的物理拓扑相似度。例如,第一物理拓扑Pa(假设包括AP1-AP10)和第二物理拓扑Pb(假设包括AP11-AP22)包括两组同构子图,则可以确定Num{F(Pb)}为12,Pa相对于Pb的物理拓扑相似度K(Pa,Pb)为2/12=1/6。
相应地,
Figure PCTCN2022142339-appb-000002
表示Pb相对于Pa的物理拓扑相似度,其中,Num{F(Pa)}表示第一子图集合F(pa)的子图数量。
示例性地,杰卡德相似性计算公式为:
Figure PCTCN2022142339-appb-000003
其中,F(Pa)∪F(Pb)表示第一物理拓扑Pa和第二物理拓扑Pb的并集,Num{F(Pa)∪F(Pb)}表示两个物理拓扑的子图总数。
当两个物理拓扑之间的同构子图为0组时,可以确定这两个物理拓扑的相似度为0。
参考图5d,图5d是本申请实施例提供的一种确定同构子图的流程示意图。上述根据第一子图集合和第二子图集合确定第一物理拓扑和第二物理拓扑的同构子图,具体包括以下步骤:
S4、对于第一子图集合F(Pa)中每个根节点X,将第二子图集合F(Pb)中与根节点X的几何距离最小的根节点Y所在子图和根节点X所在子图确定为一组待处理子图[Za,Zb];
具体地,参考图5e,图5e是本申请实施例提供的一种匹配子图的示意图。假设第一物理拓扑501和第二物理拓扑502均包括六个AP,第一物理拓扑501可以理解为设置于某一建筑的第一层,而第二物理拓扑502设置于该建筑的第二层中。对于第一物理拓扑501中的一个第一根节点503,根据根节点之间的几何距离最小原则可以确定相应的待处理子图为第二物理拓扑502中的第二根节点504所在的子图,即第一根节点503所在子图和第二根节点504所在子图为一组待处理子图。同样地,可以确定第一物理拓扑Pa和第二物理拓扑Pb其余的5组待处理子图。
S5、对于每一组待处理子图[Za,Zb],对每个待处理子图中每个边对应的几何距离进行排序,一组待处理子图中相同距离排序对应的边之间的几何距离差均小于第一阈值时,将该组待处理子图确定为第一物理拓扑和第二物理拓扑的同构子图。
具体地,第一阈值的具体数值可以根据实际情况进行设置,不做特别限定。本实施例中的同构子图条件为一组待处理子图中相同距离排序对应的边之间的几何距离差均小于第一阈值。当一组待处理子图中至少一个相同距离排序对应的边之间的几何距离差大于或等于第一阈值时,可以判定该组待处理子图是非同构子图。可选地,本申请实施例中,在判断同构子图时,还可以不排序边的距离,直接计算两个子图中对应边的几何距离的差,当一定比例的边的几何距离差均小于阈值,或者所有边的几何距离差的和小于阈值时,确定该两个子图为同构子图。
参考图5c,假设根节点AP1所在子图和根节点AP2所在子图为一组待处理子图,假设每个子图具有三个边,则相同距离排序的边依次为AP1-AP2与AP2-AP3、AP1-AP3与AP2-AP1、AP1-AP4与AP2-AP4。
进一步地,参考图5d,为了加快同构子图的判断速度,在对每组待处理子图进行几何距离差判断之前,还可以先判断每组待处理子图的根节点距离是否小于第二阈值,其中,一组待处理子图的根节点距离为一组待处理子图中两个根节点之间的几何距离。而第二阈值的具体数值可以根据实际情况进行设置,不做特别限定。例如,一组待处理子图的第二阈值可以为该组待处理子图中至少一个待处理子图所在AP组的平均AP距离的二分之一,一个AP组的平均AP距离为AP组中两两AP之间的几何距离的平均值。又例如,待处理子图的第二阈值可以为整个无线网络的平均AP距离的二分之一,无线网络的平均AP距离为无线网络中两两AP之间的几何距离的平均值。
此时,本实施例中的同构子图条件为一组待处理子图的根节点距离是否小于第二阈值,且该组待处理子图中相同距离排序对应的边之间的几何距离差均小于第一阈值。当一组待处理子图的根节点距离大于或等于第二阈值时,可以判定该组待处理子图是非同构子图。当一组待处理子图的根节点距离小于第二阈值时,可以判定该组待处理子图为满足位置匹配性(指 该组待处理子图中各个AP的位置相对应)的匹配子图,可以进入下一个判断步骤。当一组待处理子图的根节点距离小于第二阈值,且该组待处理子图中至少一个相同距离排序对应的边之间的几何距离差大于或等于第一阈值时,可以判定该组待处理子图是非同构子图,也即,此时满足第一阈值所限定的条件的匹配子图为同构子图。
图5e中示意的是位于不同楼层的两个物理拓扑,当两个物理拓扑位于同一楼层时,可以分别将两个物理拓扑作为两个整体,并将这两个整体设置于同一坐标原点中,再对该两个物理拓扑进行步骤S4、步骤S5等的处理。例如,参考图5e,假设第一物理拓扑501和第二物理拓扑502位于同一楼层中,可以第一物理拓扑501中的第一根节点503作为坐标原点,将第二物理拓扑502中对应位置的第二根节点504平移到上述坐标原点中,实现第二物理拓扑502的整体移动;再对第一物理拓扑501和第二物理拓扑502进行相似度计算。又或者,也可以以第二物理拓扑502中的第二根节点504作为坐标原点,将第一物理拓扑501中的第一根节点503移动到该坐标原点中,实现第一物理拓扑501的整体移动。
对第一物理拓扑和第二物理拓扑之间的多组待处理子图进行判断之后,可以得到它们之间的同构子图集合。进一步地,参考图5d,在一些可能的实施例中,根据第一子图集合和第二子图集合确定第一物理拓扑和第二物理拓扑的同构子图,具体还包括以下步骤:
第一物理拓扑和第二物理拓扑的多组同构子图中,K组同构子图具有相同的子图时,保留K组同构子图中根节点距离最小的一组同构子图的同构关系,并去除K组同构子图中其余的各组同构子图的同构关系。
具体地,一个子图可能存在多个同构子图,根据根节点距离最小原则选出最优唯一同构子图,删除其余各组同构子图的同构关系。参考图5e,假设第三根节点505不存在,则第二根节点504对应的待处理子图、第四根节点506对应的待处理子图均为第一根节点503所在的子图,假设第一根节点503所在子图和第二根节点504所在子图满足上述同构子图条件,且第一根节点503所在子图和第四根节点506所在子图也满足同构子图条件,则根据根节点距离最小原则,将删除第四根节点506所在子图的同构关系,假设其他各组待处理子图均不满足同构子图条件,则第一物理拓扑501和第二物理拓扑502的同构子图为第一根节点503所在子图和第二根节点504所在子图。
通过去除同一个子图重复的同构关系,可以提高物理拓扑的同构子图的精度,进而提升物理拓扑的相似度的精度。
上述步骤S1、S2等步骤编号只为了区别不同的步骤,不对步骤之间的先后执行顺序造成限定。
在一些可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
本方案中的物理拓扑除了包括AP组中每个AP的物理位置信息之外,还包括安装该AP组的建筑的建筑结构信息,其中,建筑结构信息包括内部布局结构信息、墙体材料信息等中的至少一种。内部布局结构信息包括隔断空间的个数、以及隔断空间的大小和具体位置等中的至少一种。
而墙体材料信息包括木材、砖混材料或金属材料(如钢,铁等)。不同的墙体材料对AP信号的传输有不同影响,导致安装在不同墙体材料的空间中的AP组的信号传输环境不同。因为AP的无线信号使用的2.4G或5G等无线微波频段,它的一个显著特点就是直线传播、因此经过一面墙壁后,无线信号就会受到严重的影响,一般的墙壁都会造成无线信号5-10dBm的衰减,而墙壁后面的无线设备可能只能够接收到微弱的信号。因此,墙壁越厚,墙壁的数 量越多,无线信号的削弱就越强。而金属障碍物,不仅阻挡微波无线信号,它还能吸收电磁的能量。因此,经过金属障碍物的AP信号将变得非常的微弱,或者根本无法穿过。
由于建筑结构信息对AP的信号传输具有影响,因此,增加建筑结构信息作为判断物理拓扑相似性的依据,可以提高判断两个AP组的物理拓扑相似度的精度,帮助更准确地调整AP组的带宽。
另外,基于两个AP组的建筑结构信息可以计算得到该两个AP组对应的建筑结构相似度,具体的计算方法可以采用现有技术中的方法,不做特别限定。例如,假设建筑结构信息包括隔断空间个数、大小、位置、墙体材料四种信息,内部布局结构信息、墙体材料信息分别占据50%的重要程度。当两个AP组对应的建筑结构信息完全相同时,如隔断空间个数、大小、位置、墙体材料均相同,则判断该两个AP组的建筑结构相似度为100%。反之,当隔断空间个数、大小、位置中的至少一个不相同时,则判断该两个AP组的建筑结构相似度为50%。同样地,当只有墙体材料不同时,则判断该两个AP组的建筑结构相似度为50%。
进一步地,步骤202中的相似度除了物理拓扑结构的相似度之外,还包括AP组的建筑结构相似度,此时,步骤202中的相似度阈值应当包括用于判断物理拓扑结构的相似度的物理相似度阈值,以及用于判断建筑结构相似度的结构相似度阈值。当两个AP组的物理拓扑结构的相似度大于物理相似度阈值,且两个AP组的建筑结构相似度大于结构相似度阈值时,可以确定两个AP组的物理拓扑满足相似度条件。其中,物理相似度阈值、结构相似度阈值的具体数值可以根据实际情况进行设定。
另外,也可以是根据两个AP组的物理拓扑结构的相似度和建筑结构相似度以及它们各自的权重(两者权重之和为一,具体数值可以根据实际情况进行调整)进行加权计算得到最终的相似度,再根据该相似度和相似度阈值(此时只需一种相似度阈值)进行比较,以判断两个AP组的物理拓扑的相似程度。
当一个区域的AP组已经完成带宽配置之后,需要为另一个区域的AP组配置带宽时,可以根据两个区域中AP组的物理拓扑相似性进行带宽配置方案的迁移。当该两个区域中的AP组的物理拓扑相似时,直接将上述一个区域的AP组的带宽配置方案应用到另一个区域中。这可以有效提升带宽配置的效率。
参考图6,图6是本申请实施例提供的另一种带宽配置方法的流程示意图,可以应用于电子设备。带宽配置方法600包括步骤601和步骤602。
601、获取第一AP组的带宽配置方案。
602、当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值时,将第一AP组的带宽配置方案确定为第二AP组的带宽配置方案。
其中,第一AP组和第二AP组分别包括多个AP,第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
具体地,相似度阈值的具体数值可以根据实际情况进行设置,不做特别限定。
本申请实施例中,由于AP组的物理拓扑具有稳定不易发生变化的特性,仅依靠AP组之间的物理拓扑相似性可以实现AP组的带宽配置方案迁移,不仅可以有效提升AP组带宽配置的效率,而且可以保障AP组的带宽配置结果的稳定性,也即保证AP的带宽配置稳定性。
例如,第一建筑包括1个AP组,该AP组的带宽配置方案已知。现在另有第二建筑、第三建筑和第四建筑,在确定第一建筑的AP组分别和第二建筑、第三建筑、第四建筑的AP组满足相似度阈值判断条件时,可以直接将第一建筑的AP组的带宽配置方案应用于第二建筑、 第三建筑和第四建筑,实现带宽配置方案迁移,可以有效提升带宽的配置效率。
在一些可能的实施例中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。增加建筑结构信息作为判断物理拓扑相似性的依据,可以提高判断两个AP组的物理拓扑相似度的精度,帮助更准确地配置AP组的带宽。
在一些可能的实施例中,电子设备根据第一AP组中AP间的邻居关系确定第一AP组的带宽配置方案。
在一些可能的实施例中,电子设备根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息,并根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
在一些可能的实施例中,电子设备根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度,AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,电子设备将第一物理拓扑划分为多个第一子拓扑,将第二物理拓扑划分为多个第二子拓扑,根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑,并基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
本申请实施例的带宽配置方法600中对于每个步骤的具体描述,可以参考上述带宽配置方法200的相关描述,不再赘述。
参考图7,图7是本申请实施例提供的一种带宽配置装置的结构示意图。带宽配置装置700包括确定模块701和调整模块702。确定模块701用于执行图2所示实施例中的步骤201,调整模块702用于执行图2所示实施例中的步骤202。
确定模块701,用于确定N个AP组的带宽配置方案。每个AP组包括多个AP。一个AP组的带宽配置方案包括该AP组中的每个AP的带宽。N为大于或等于2的整数。
调整模块702,用于根据第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑的相似性调整第一AP组或第二AP组内AP的带宽。
当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且第一AP组中的第一AP的带宽大于第二物理拓扑中与第一AP对应的第二AP的带宽时,调整第二AP组的带宽配置方案中的第二AP的带宽为第一AP的带宽。当第一物理拓扑和第二物理拓扑之间的相似度大于相似度阈值,且第一AP的带宽小于第二AP的带宽时,调整第一AP组的带宽配置方案中的第一AP的带宽为第二AP的带宽。
其中,N个AP组包括第一AP组和第二AP组。第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
在一些可能的实施方式中,同一AP组中的AP的带宽相同。
在一些可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
在一种可能的实施方式中,确定模块701具体用于根据每个AP组中AP间的邻居关系确定每个AP组的带宽配置方案。
在一些可能的实施方式中,确定模块701还用于:根据AP组中AP的物理位置信息确定AP组中两两AP之间的几何距离信息,并根据AP组中AP的物理位置信息和两两AP之间的几何距离信息确定AP组对应的物理拓扑。
在一些可能的实施方式中,调整模块702,还用于:根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度。AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,调整模块702,还用于:
将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑;
根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑;
基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
需要说明的是,带宽配置装置700的具体执行过程以及相应的有益效果可以参考带宽配置方法200的相关描述,不再赘述。
参考图8,图8是本申请实施例提供的另一种带宽配置装置的结构示意图。带宽配置装置800包括获取模块801和确定模块802。获取模块801用于执行图6所示实施例中的步骤601,确定模块802用于执行图6所示实施例中的步骤602。
获取模块801,用于获取第一AP组的带宽配置方案。
确定模块802,用于当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值时,将第一AP组的带宽配置方案确定为第二AP组的带宽配置方案。
其中,第一AP组和第二AP组分别包括多个AP。第一物理拓扑包括第一AP组中多个AP的物理位置信息,第二物理拓扑包括第二AP组中多个AP的物理位置信息。
在一些可能的实施方式中,第一物理拓扑还包括安装第一AP组的建筑对应的建筑结构信息,第二物理拓扑还包括安装第二AP组的建筑对应的建筑结构信息。
在一些可能的实施方式中,获取模块801具体用于根据第一AP组中AP间的邻居关系确定第一AP组的带宽配置方案。
在一些可能的实施方式中,确定模块802还用于根据第一物理拓扑的AP信息和第二物理拓扑的AP信息确定第一物理拓扑和第二物理拓扑之间的相似度。AP信息包括AP间的几何距离和AP间的相互位置信息。
在一种可能的实施方式中,确定模块802,还用于:
将第一物理拓扑划分为多个第一子拓扑,以及将第二物理拓扑划分为多个第二子拓扑;
根据多个第一子拓扑和多个第二子拓扑确定同构子拓扑;
基于同构子拓扑的数量或比例确定第一物理拓扑和第二物理拓扑之间的相似度。
需要说明的是,带宽配置装置800的具体执行过程以及相应的有益效果可以参考带宽配置方法600的描述,不再赘述。
参考图9,图9是本申请实施例提供的一种带宽配置设备的结构示意图。带宽配置设备900包括存储器901、处理器902、通信接口904以及总线903。其中,存储器901、处理器902、通信接口904通过总线903实现彼此之间的通信连接。
存储器901可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器901可以存储程序,当存储器901中存储的程序被处理器902执行时,处理器902用于执行上述任意实施例所述的带宽配置方法的各个步骤。
处理器902可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应 用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现上述任一实施例所述的带宽配置装置中的单元所需执行的功能,或者执行上述任一实施例所述的带宽配置方法。
处理器902还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请任一实施例所述的带宽配置方法的各个步骤可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器902还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请任一实施例所述的带宽配置方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器901,处理器902读取存储器901中的信息,结合其硬件完成上述任一实施例所述的带宽配置装置中包括的单元所需执行的功能,或者执行本申请任一实施例所述的带宽配置方法。
通信接口904使用例如但不限于收发器一类的收发装置,来实现带宽配置设备900与其他设备或通信网络之间的通信。例如,带宽配置设备900可以通过通信接口904获取两两AP之间的几何距离数据或者AP分组数据等。
总线903可包括在带宽配置设备900各个部件(例如,存储器901、处理器902、通信接口904)之间传送信息的通路。
应注意,尽管图9所示的带宽配置设备900仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,带宽配置设备900还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,带宽配置设备900还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,带宽配置设备900也可仅仅包括实现本申请实施例所必须的器件,而不必包括图9中所示的全部器件。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技 术做出贡献的部分或者该技术方案的部分可以以计算机程序产品的形式体现出来,该计算机程序产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行任一实施例所述的带宽配置方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行任一实施例所述的带宽配置方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种带宽配置方法,其特征在于,所述方法包括:
    确定N个接入点AP组的带宽配置方案,每个AP组包括多个AP,所述每个AP组的带宽配置方案包括所述每个AP组中的多个AP中的每个AP的带宽,N为大于或等于2的整数;
    当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且所述第一AP组中的第一AP的带宽大于所述第二物理拓扑中与所述第一AP对应的第二AP的带宽时,调整所述第二AP组的带宽配置方案中的所述第二AP的带宽为所述第一AP的带宽;
    当所述第一物理拓扑和所述第二物理拓扑之间的相似度大于所述相似度阈值,且所述第一AP的带宽小于所述第二AP的带宽时,调整所述第一AP组的带宽配置方案中的所述第一AP的带宽为所述第二AP的带宽;
    其中,所述N个AP组包括所述第一AP组和所述第二AP组,所述第一物理拓扑包括所述第一AP组中多个AP的物理位置信息,所述第二物理拓扑包括所述第二AP组中多个AP的物理位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一AP组中多个AP的带宽相同,所述第二AP组中多个AP的带宽相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一物理拓扑还包括安装所述第一AP组的建筑对应的建筑结构信息,所述第二物理拓扑还包括安装所述第二AP组的建筑对应的建筑结构信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述确定N个无线接入点AP组的带宽配置方案,包括:
    根据所述每个AP组中AP间的邻居关系确定所述每个AP组的带宽配置方案。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法包括:
    根据所述每个AP组中AP的物理位置信息确定所述每个AP组中两两AP之间的几何距离信息;
    根据所述每个AP组中所述AP的物理位置信息和所述两两AP之间的几何距离信息确定所述每个AP组对应的物理拓扑。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法包括:
    根据所述第一物理拓扑的AP信息和所述第二物理拓扑的AP信息确定所述第一物理拓扑和所述第二物理拓扑之间的相似度,所述AP信息包括AP间的几何距离和AP间的相互位置信息。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法包括:
    将所述第一物理拓扑划分为多个第一子拓扑,以及将所述第二物理拓扑划分为多个第二子拓扑;
    根据所述多个第一子拓扑和所述多个第二子拓扑确定同构子拓扑;
    基于所述同构子拓扑的数量或比例确定所述第一物理拓扑和所述第二物理拓扑之间的相似度。
  8. 一种带宽配置方法,其特征在于,所述方法包括:
    获取第一接入点AP组的带宽配置方案;
    当所述第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值时,将所述第一AP组的带宽配置方案确定为所述第二AP组的带宽配置方案;
    其中,所述第一AP组和所述第二AP组分别包括多个AP,所述第一物理拓扑包括所述第一AP组中多个AP的物理位置信息,所述第二物理拓扑包括所述第二AP组中多个AP的物理位置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第一物理拓扑还包括安装所述第一AP组的建筑对应的建筑结构信息,所述第二物理拓扑还包括安装所述第二AP组的建筑对应的建筑结构信息。
  10. 一种带宽配置装置,其特征在于,所述装置包括:
    确定模块,用于确定N个接入点AP组的带宽配置方案,每个AP组包括多个AP,所述每个AP组的带宽配置方案包括所述每个AP组中的多个AP中的每个AP的带宽,N为大于或等于2的整数;
    调整模块,用于:
    当第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值,且所述第一AP组中的第一AP的带宽大于所述第二物理拓扑中与所述第一AP对应的第二AP的带宽时,调整所述第二AP组的带宽配置方案中的所述第二AP的带宽为所述第一AP的带宽;
    当所述第一物理拓扑和所述第二物理拓扑之间的相似度大于所述相似度阈值,且所述第一AP的带宽小于所述第二AP的带宽时,调整所述第一AP组的带宽配置方案中的所述第一AP的带宽为所述第二AP的带宽;
    其中,所述N个AP组包括所述第一AP组和所述第二AP组,所述第一物理拓扑包括所述第一AP组中多个AP的物理位置信息,所述第二物理拓扑包括所述第二AP组中多个AP的物理位置信息。
  11. 根据权利要求10所述的装置,其特征在于,所述第一AP组中多个AP的带宽相同,所述第二AP组中多个AP的带宽相同。
  12. 根据权利要求10或11所述的装置,其特征在于,所述第一物理拓扑还包括安装所述第一AP组的建筑对应的建筑结构信息,所述第二物理拓扑还包括安装所述第二AP组的建筑对应的建筑结构信息。
  13. 根据权利要求10至12任一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据所述每个AP组中AP间的邻居关系确定所述每个AP组的带宽配置方案。
  14. 根据权利要求10至13任一项所述的装置,其特征在于,所述确定模块,还用于:
    根据所述每个AP组中AP的物理位置信息确定所述每个AP组中两两AP之间的几何距离信息;
    根据所述每个AP组中所述AP的物理位置信息和所述两两AP之间的几何距离信息确定所述每个AP组对应的物理拓扑。
  15. 根据权利要求10至14任一项所述的装置,其特征在于,所述调整模块,还用于:
    根据所述第一物理拓扑的AP信息和所述第二物理拓扑的AP信息确定所述第一物理拓扑和所述第二物理拓扑之间的相似度,所述AP信息包括AP间的几何距离和AP间的相互位置信息。
  16. 根据权利要求10至14任一项所述的装置,其特征在于,所述调整模块,还用于:
    将所述第一物理拓扑划分为多个第一子拓扑,以及将所述第二物理拓扑划分为多个第二子拓扑;
    根据所述多个第一子拓扑和所述多个第二子拓扑确定同构子拓扑;
    基于所述同构子拓扑的数量或比例确定所述第一物理拓扑和所述第二物理拓扑之间的相似度。
  17. 一种带宽配置装置,其特征在于,所述装置包括:
    获取模块,用于获取第一接入点AP组的带宽配置方案;
    确定模块,用于当所述第一AP组对应的第一物理拓扑和第二AP组对应的第二物理拓扑之间的相似度大于相似度阈值时,将所述第一AP组的带宽配置方案确定为所述第二AP组的带宽配置方案;
    其中,所述第一AP组和所述第二AP组分别包括多个AP,所述第一物理拓扑包括所述第一AP组中多个AP的物理位置信息,所述第二物理拓扑包括所述第二AP组中多个AP的物理位置信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第一物理拓扑还包括安装所述第一AP组的建筑对应的建筑结构信息,所述第二物理拓扑还包括安装所述第二AP组的建筑对应的建筑结构信息。
  19. 一种带宽配置设备,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令或计算机程序;
    所述处理器用于执行所述指令或计算机程序,以使所述带宽配置设备执行权利要求1至7任一项所述的带宽配置方法,或者,权利要求8至9任一项所述的带宽配置方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被处理器执行时,实现权利要求1至7任一项所述的带宽配置方法,或者,权利要求8至9任一项所述的带宽配置方法。
  21. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序在处理器上运行时,实现权利要求1至7任一项所述的带宽配置方法,或者,权利要求8至9任一项所述的带宽配置方法。
PCT/CN2022/142339 2022-01-04 2022-12-27 带宽配置方法及相关设备 WO2023131000A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210014285.9 2022-01-04
CN202210014285 2022-01-04
CN202210334477.8 2022-03-31
CN202210334477.8A CN116437397A (zh) 2022-01-04 2022-03-31 带宽配置方法及相关设备

Publications (1)

Publication Number Publication Date
WO2023131000A1 true WO2023131000A1 (zh) 2023-07-13

Family

ID=87073100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142339 WO2023131000A1 (zh) 2022-01-04 2022-12-27 带宽配置方法及相关设备

Country Status (1)

Country Link
WO (1) WO2023131000A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399728A (zh) * 2007-09-30 2009-04-01 华为技术有限公司 一种共享带宽的网络、方法及接入点
WO2009111457A1 (en) * 2008-03-03 2009-09-11 Qualcomm Incorporated Method of assigning traffic resource
CN101611642A (zh) * 2006-12-20 2009-12-23 爱尔瓦纳股份有限公司 网络中的通信组配置
CN101969644A (zh) * 2009-07-27 2011-02-09 中国移动通信集团公司 中继传输方法及设备
US20170079044A1 (en) * 2015-09-10 2017-03-16 Qualcomm Incorporated Communication resource allocation
CN112714496A (zh) * 2019-10-25 2021-04-27 华为技术有限公司 一种无线局域网通信方法、控制器、接入点

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101611642A (zh) * 2006-12-20 2009-12-23 爱尔瓦纳股份有限公司 网络中的通信组配置
CN101399728A (zh) * 2007-09-30 2009-04-01 华为技术有限公司 一种共享带宽的网络、方法及接入点
WO2009111457A1 (en) * 2008-03-03 2009-09-11 Qualcomm Incorporated Method of assigning traffic resource
CN101969644A (zh) * 2009-07-27 2011-02-09 中国移动通信集团公司 中继传输方法及设备
US20170079044A1 (en) * 2015-09-10 2017-03-16 Qualcomm Incorporated Communication resource allocation
CN112714496A (zh) * 2019-10-25 2021-04-27 华为技术有限公司 一种无线局域网通信方法、控制器、接入点

Similar Documents

Publication Publication Date Title
US6680924B2 (en) Method for estimating signal strengths
US9759800B2 (en) Infrastructure for location discovery
Hassan et al. Interference minimization in D2D communication underlaying cellular networks
US9585077B2 (en) Systems and methods facilitating joint channel and routing assignment for wireless mesh networks
JP2007506376A (ja) シミュレーションで促進されるワイアレスlanプランニング
Ma et al. Range-free wireless sensor networks localization based on hop-count quantization
WO2022017012A1 (zh) 一种网络配置方法及装置
CN113709754B (zh) 基于聚类算法的无线宽带通信系统布站组网方法及系统
Ayinde et al. Differential evolution based deployment of wireless sensor networks
CN104661225A (zh) 一种wlan热点布设方法和装置
Li et al. An analytic model predicting the optimal range for maximizing 1-hop broadcast coverage in dense wireless networks
Hriba et al. Optimization of a millimeter-wave uav-to-ground network in urban deployments
CN109963254A (zh) 一种基于室内地图的蓝牙定位信标部署方法
WO2023131000A1 (zh) 带宽配置方法及相关设备
CN109391946B (zh) 一种基站簇规划的方法及装置
Schindelhauer et al. Worst case mobility in ad hoc networks
Erturk et al. A hexagonal grid based human blockage model for the 5G low terahertz band communications
CN110621025A (zh) 一种设备选型方法和装置
Portela et al. Cellular coverage map as a voronoi diagram
CN116437397A (zh) 带宽配置方法及相关设备
WO2022193717A1 (zh) 权值优化方法、装置、通信设备及计算机可读存储介质
Yenihayat et al. Downlink data rate, energy and spectral efficiency distribution in heterogeneous networks with cell-edge located small cells
CN115568023A (zh) 时域资源分配方法、装置、电子设备及存储介质
Riihijärvi et al. What will interference be like in 5G HetNets?
KR20230116513A (ko) 기지국의 설치 위치를 결정하는 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022918442

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022918442

Country of ref document: EP

Effective date: 20240704

NENP Non-entry into the national phase

Ref country code: DE