WO2023130906A1 - Pdcch检测方法、装置、终端及存储介质 - Google Patents

Pdcch检测方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2023130906A1
WO2023130906A1 PCT/CN2022/138136 CN2022138136W WO2023130906A1 WO 2023130906 A1 WO2023130906 A1 WO 2023130906A1 CN 2022138136 W CN2022138136 W CN 2022138136W WO 2023130906 A1 WO2023130906 A1 WO 2023130906A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
coresets
target
pdcch monitoring
detected
Prior art date
Application number
PCT/CN2022/138136
Other languages
English (en)
French (fr)
Inventor
李晓皎
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023130906A1 publication Critical patent/WO2023130906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a PDCCH detection method, device, terminal and storage medium.
  • the embodiments of the present disclosure provide a PDCCH detection method, device, terminal and storage medium.
  • an embodiment of the present disclosure provides a PDCCH detection method, including:
  • PDCCH monitoring opportunities of at least two control resource sets CORESETs determine the PDCCH monitoring opportunities of at least one target CORESET;
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and the threshold value is used to represent the time interval for the terminal to perform beam switching. The maximum time required.
  • determining a PDCCH monitoring opportunity of at least one target CORESET among physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET includes:
  • determining the target ranking corresponding to at least two CORESETs includes at least one of the following:
  • a second target ranking corresponding to the at least two CORESETs is determined.
  • determining the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs including:
  • the set to be detected includes at least two CORESETs;
  • the first CORESET is the CORESET that has not been judged together with all the eleventh CORESETs in the set to be detected at the target time, and the eleventh CORESET is all CORESETs included in the set to be detected except the first CORESET.
  • the second CORESET is the CORESET closest to the first CORESET among all eleventh CORESETs at the target time; the target time is to judge whether to use the first CORESET or the second CORESET The moment when CORESET is removed from the set to be tested.
  • judging whether to delete the first CORESET or the second CORESET from the set to be detected includes:
  • determining the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs including:
  • the set to be detected includes the item with the highest priority among at least two CORESETs;
  • the third CORESET is the CORESET that ranks the highest among the CORESETs that have not been judged whether to add to the set to be detected at the target time in the second target ranking, and the target time is to judge whether to add the third CORESET to the set to be detected time.
  • judging whether to add the third CORESET to the set to be detected includes:
  • each fourth CORESET is the same as the beam direction corresponding to the third CORESET, then add the third CORESET to the set to be detected, wherein the first The fourth CORESET is a CORESET whose time interval from the PDCCH listening opportunity of the third CORESET is smaller than the threshold value.
  • the method before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the method further includes:
  • the threshold value is greater than or equal to the target duration, and the threshold value is the number of symbols or a time value.
  • determining the threshold value based on the target duration includes:
  • the number of symbols is determined.
  • the method further includes:
  • the beam direction corresponding to the CORESET is determined based on a transmission configuration indication state associated with the CORESET.
  • the time interval between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET among the at least two CORESETs is based on the time of the end symbol of the fifth CORESET Determined by the difference between the domain position and the time domain position of the start symbol of the sixth CORESET;
  • the fifth CORESET and the sixth CORESET are any two CORESETs in at least two CORESETs; the fifth CORESET is the item with a higher time domain position among the fifth CORESET and the sixth CORESET, and the sixth CORESET is the fifth CORESET and the sixth CORESET. An item with a later position in the time domain in the sixth CORESET.
  • the method before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the method further includes:
  • the cell index and the search space index respectively corresponding to the at least two CORESETs are determined.
  • the priorities corresponding to at least two CORESETs are determined Sort, including:
  • a prioritization is determined based on the first prioritization, the second prioritization, and the third prioritization.
  • the search space type includes a public search space and a user-specific search space
  • the CORESET whose search space type is the public search space is ranked in the search space type Before the CORESET for the user-specific search space.
  • the seventh CORESET is ranked before the eighth CORESET, and the seventh CORESET and the eighth CORESET are multiple priorities in the first priority sorting.
  • the cell index corresponding to the seventh CORESET is smaller than the cell index corresponding to the eighth CORESET.
  • the ninth CORESET is ranked before the tenth CORESET in the third priority ranking, and the ninth CORESET and the tenth CORESET are multiple priorities in the second priority ranking
  • the search space index corresponding to the ninth CORESET is smaller than the search space index corresponding to the tenth CORESET.
  • the method before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the method further includes:
  • the priority of the time domain position of the first symbol is higher than the priority of the item of the time domain position of the first symbol
  • the first symbol is the start symbol of CORESET or the end symbol of CORESET.
  • At least two CORESETs can use the first N symbols of the target time slot in the time domain, N is a positive integer, N is stipulated by the protocol or configured by the network side device, 1 ⁇ N ⁇ M, M is the total number of symbols in the target slot, and M is a positive integer.
  • an embodiment of the present disclosure further provides a terminal, including a memory, a transceiver, and a processor; wherein:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • PDCCH monitoring opportunities of at least two control resource sets CORESETs determine the PDCCH monitoring opportunities of at least one target CORESET;
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and the threshold value is used to represent the time interval for the terminal to perform beam switching. The maximum time required.
  • determining the PDCCH monitoring timing of at least one target CORESET includes:
  • determining the target rankings corresponding to at least two CORESETs includes at least one of the following:
  • a second target ranking corresponding to the at least two CORESETs is determined.
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the set to be detected includes at least two CORESETs;
  • the first CORESET is the CORESET that has not been judged together with all the eleventh CORESETs in the set to be detected at the target time, and the eleventh CORESET is all CORESETs included in the set to be detected except the first CORESET.
  • the second CORESET is the CORESET closest to the first CORESET among all eleventh CORESETs at the target time; the target time is to judge whether to use the first CORESET or the second CORESET The moment when CORESET is removed from the set to be tested.
  • judging whether to delete the first CORESET or the second CORESET from the set to be detected includes:
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the set to be detected includes the item with the highest priority among at least two CORESETs;
  • the third CORESET is the CORESET that ranks the highest among the CORESETs that have not been judged whether to add to the set to be detected at the target time in the second target ranking, and the target time is to judge whether to add the third CORESET to the set to be detected time.
  • judging whether to add the third CORESET to the set to be detected includes:
  • the PDCCH listening opportunity of each CORESET in the set to be detected is the same as the third
  • each fourth CORESET is the same as the beam direction corresponding to the third CORESET, then add the third CORESET to the set to be detected, wherein the first The fourth CORESET is a CORESET whose time interval from the PDCCH listening opportunity of the third CORESET is smaller than the threshold value.
  • the operation before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the operation further includes:
  • the threshold value is greater than or equal to the target duration, and the threshold value is the number of symbols or a time value.
  • determining the threshold value includes:
  • the number of symbols is determined.
  • the operation further includes:
  • the beam direction corresponding to the CORESET is determined based on a transmission configuration indication state associated with the CORESET.
  • the time interval between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET among the at least two CORESETs is based on the time domain position of the end symbol of the fifth CORESET and the start symbol of the sixth CORESET The difference between the time domain positions is determined;
  • the fifth CORESET and the sixth CORESET are any two CORESETs in at least two CORESETs; the fifth CORESET is the item with a higher time domain position among the fifth CORESET and the sixth CORESET, and the sixth CORESET is the fifth CORESET and the sixth CORESET. An item with a later position in the time domain in the sixth CORESET.
  • the operation before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the operation further includes:
  • the cell index and the search space index respectively corresponding to the at least two CORESETs are determined.
  • determine the priority ordering corresponding to at least two CORESETs including:
  • a prioritization is determined based on the first prioritization, the second prioritization, and the third prioritization.
  • the search space type includes public search space and user-specific search space
  • the CORESET whose search space type is public search space is ranked before the CORESET whose search space type is user-specific search space.
  • the seventh CORESET is ranked before the eighth CORESET, and the seventh CORESET and the eighth CORESET are any two CORESETs among the CORESETs with the same priority in the first priority ranking,
  • the cell index corresponding to the seventh CORESET is smaller than the cell index corresponding to the eighth CORESET.
  • the ninth CORESET is ranked before the tenth CORESET, and the ninth CORESET and the tenth CORESET are any two CORESETs among the CORESETs with the same priority in the second priority ranking.
  • the search space index corresponding to the ninth CORESET is smaller than the search space index corresponding to the tenth CORESET.
  • the operation before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the operation further includes:
  • the priority of the time domain position of the first symbol is higher than the priority of the item of the time domain position of the first symbol
  • the first symbol is the start symbol of CORESET or the end symbol of CORESET.
  • At least two CORESETs can use the first N symbols of the target time slot in the time domain, N is a positive integer, N is stipulated by the protocol or configured by the network side device, 1 ⁇ N ⁇ M, M is the symbol of the target time slot The total number of symbols, M is a positive integer.
  • an embodiment of the present disclosure further provides a PDCCH detection device, including: a first determination unit, a detection unit, wherein:
  • the first determining unit is configured to determine a PDCCH monitoring opportunity of at least one target CORESET among physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET;
  • a detection unit configured to detect a PDCCH at a PDCCH monitoring opportunity of at least one target CORESET
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and the threshold value is used to represent the time interval for the terminal to perform beam switching. The maximum time required.
  • the first determination unit is also used for:
  • the first determining unit is also used for at least one of the following:
  • the first determination unit is also used for:
  • the set to be detected includes the at least two CORESETs;
  • the first CORESET is a CORESET that has not been judged together with all the eleventh CORESETs in the set to be detected at the target time
  • the eleventh CORESET is a CORESET included in the set to be detected except the first CORESET Among all CORESETs other than one CORESET, any CORESET that ranks after the first CORESET in the first target ranking
  • the second CORESET is the closest among all the eleventh CORESETs at the target time
  • the target time is the time when it is judged whether to delete the first CORESET or the second CORESET from the set to be detected.
  • the first determination unit is also used for:
  • the CORESET with lower priority among the first CORESET and the second CORESET is deleted from the set to be detected.
  • the first determination unit is also used for:
  • the set to be detected Based on the second target sorting, it is judged whether to add the third CORESET to the set to be detected, so that after the third CORESET is added to the set to be detected, any object corresponding to a different beam direction in the set to be detected.
  • the time interval between the PDCCH monitoring opportunities of the two CORESETs is greater than or equal to the threshold value; before the judgment whether to add the third CORESET to the set to be detected, the set to be detected includes the at least two CORESETs the item with the highest priority;
  • the third CORESET is the highest-ranked CORESET among the CORESETs that have not yet been judged whether to add to the set to be detected in the second target ranking, and the target time is whether the judgment will be The time at which the third CORESET is added to the set to be detected.
  • the first determination unit is also used for:
  • the third CORESET flags are added to the set to be detected; or,
  • the beam direction corresponding to each of the fourth CORESETs is the same as the beam direction corresponding to the third CORESET, then increase the third CORESET to the set to be detected, wherein the fourth CORESET is the CORESET whose time interval from the PDCCH monitoring opportunity of the third CORESET is smaller than the threshold value.
  • the device further includes a second determining unit, and the second determining unit is configured to:
  • the threshold value is greater than or equal to the target duration, and the threshold value is a number of symbols or a time value.
  • the second determination unit is also used for:
  • the threshold value is the number of symbols
  • the number of symbols is determined based on the target carrier and the target duration.
  • the device further includes a sending unit, and the sending unit is configured to:
  • the beam direction corresponding to the CORESET is determined based on a transmission configuration indication state associated with the CORESET.
  • the time interval between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET among the at least two CORESETs is based on the time domain position of the end symbol of the fifth CORESET and the time domain position of the sixth CORESET. determined by the difference between the time-domain positions of the start symbols of the CORESET;
  • the fifth CORESET and the sixth CORESET are any two CORESETs among the at least two CORESETs;
  • the sixth CORESET is an item whose time domain position is later among the fifth CORESET and the sixth CORESET.
  • the device further includes a third determining unit, and the third determining unit is configured to:
  • the priorities corresponding to the at least two CORESETs are determined.
  • the third determination unit is also used for:
  • the multiple CORESETs with the same priority in the second priority ranking are The CORESETs are sorted, and the third priority sorting corresponding to the at least two CORESETs is obtained;
  • the prioritization is determined based on the first prioritization, the second prioritization, and the third prioritization.
  • the search space type includes a public search space and a user-specific search space, and in the first priority ranking, the search space type is the CORESET of the public search space and the search space type is The user-specific search space precedes the CORESET.
  • the seventh CORESET is ranked before the eighth CORESET, and the seventh CORESET and the eighth CORESET are multiple priorities in the first priority ranking
  • the cell index corresponding to the seventh CORESET is smaller than the cell index corresponding to the eighth CORESET.
  • the ninth CORESET is ranked before the tenth CORESET, and the ninth CORESET and the tenth CORESET are multiple CORESETs with the same priority in the second priority ranking Among any two CORESETs, the search space index corresponding to the ninth CORESET is smaller than the search space index corresponding to the tenth CORESET.
  • the device further includes a fourth determining unit, and the fourth determining unit is configured to:
  • the priority of the item whose time domain position is earlier than that of the first symbol is higher than the priority of the item whose time domain position is later than that of the first symbol ;
  • the first symbol is the start symbol of the CORESET or the end symbol of the CORESET.
  • the at least two CORESETs can use the first N symbols of the target time slot in the time domain, the N is a positive integer, the N is agreed by the protocol or configured by the network side device, 1 ⁇ N ⁇ M, The M is the total symbol number of the target time slot, and the M is a positive integer.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause a processor to execute the steps of the PDCCH detection method in the first aspect above.
  • the PDCCH detection method, device, terminal, and storage medium provided by the embodiments of the present disclosure determine the PDCCH monitoring timing of at least one target CORESET among the PDCCH monitoring timings of at least two CORESETs, so that the PDCCH monitoring timing of at least one target CORESET The time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, thereby enabling the network
  • the side device configures CORESET resources, it does not need to ensure that the time-domain resource interval between two CORESETs with different beams is greater than the beam switching time, which can improve the flexibility of control resource configuration and increase resource utilization.
  • FIG. 1 is one of the schematic flow charts of a PDCCH detection method provided by an embodiment of the present disclosure
  • FIG. 2 is one of the schematic diagrams of single-carrier PDCCH monitoring opportunities provided by an embodiment of the present disclosure
  • FIG. 3 is the second schematic diagram of a single-carrier PDCCH monitoring opportunity provided by an embodiment of the present disclosure
  • FIG. 4 is one of schematic diagrams of multi-carrier PDCCH monitoring opportunities provided by an embodiment of the present disclosure
  • FIG. 5 is the second schematic diagram of multi-carrier PDCCH monitoring opportunities provided by an embodiment of the present disclosure.
  • FIG. 6 is a third schematic diagram of a single-carrier PDCCH monitoring opportunity provided by an embodiment of the present disclosure.
  • FIG. 7 is a fourth schematic diagram of a single-carrier PDCCH monitoring opportunity provided by an embodiment of the present disclosure.
  • FIG. 8 is a third schematic diagram of multi-carrier PDCCH monitoring opportunities provided by an embodiment of the present disclosure.
  • FIG. 9 is a fourth schematic diagram of multi-carrier PDCCH monitoring opportunities provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of a PDCCH detection device provided by an embodiment of the present disclosure.
  • OFDM symbols are longer, and beam switching can be completed in the CP of OFDM.
  • the SCS of high frequency configuration is larger, for example, the subcarrier spacing is 480kHz or At 960kHz, beam switching may require a symbol length interval. At this time, two adjacent CORESETs with different beam directions that do not meet the interval cannot receive at the same time.
  • a user equipment User Equipment
  • BWP Bandwidth Part
  • the processing method is to only use the beam corresponding to the CORESET with the highest priority for reception.
  • Different Component Carriers CCs
  • TCI Transmission Configuration Indicator
  • the criterion for judging the priority is that the Common Search Space (CSS) is higher than the UE special Search Space (USS). When both are CSS or USS, the lower the Cell Index, the higher the priority.
  • the insufficient length of the beam switching time is not considered.
  • the beam switching time may exceed the length of the CP.
  • the time interval between PDCCH monitoring occasions of different CORESETs needs to be greater than a certain length before beam switching can be performed, and the respective beam directions are used for reception. Otherwise, only the beam direction of a PDCCH monitoring occasion of one CORESET can be selected for reception.
  • the present disclosure provides a PDCCH detection method.
  • the PDCCHs can be detected in beam directions respectively corresponding to the PDCCH monitoring occasions of at least one target CORESET.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal device can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • CN Core Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • Fig. 1 is one of the schematic flowcharts of the PDCCH detection method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a PDCCH detection method, and the execution subject may be a terminal, such as a mobile phone.
  • the method includes the following steps 101 to 102:
  • Step 101 among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, determine the PDCCH monitoring timing of at least one target CORESET;
  • the terminal may determine the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs, so that the PDCCH monitoring opportunities of at least one target CORESET correspond to the PDCCH monitoring opportunities of any two target CORESETs with different beam directions
  • the time interval between them is greater than or equal to the threshold value, that is, it can be guaranteed that the time domain resource interval between any two target CORESETs with different beam directions is greater than the beam switching time.
  • the terminal can judge all pairwise combinations corresponding to the PDCCH monitoring opportunities of at least two CORESETs, and obtain the judgment result of each pairwise combination, wherein, any pairwise combination includes two CORESETs, and any pairwise combination
  • the judgment result is used to indicate whether the time-domain resource interval between the two CORESETs in the corresponding pairwise combination meets the time requirement for beam switching; and then the terminal can monitor the PDCCH of at least two CORESETs based on the judgment result of each pairwise combination In the timing, the PDCCH monitoring timing of at least one target CORESET is determined.
  • the terminal can sort the at least two CORESETs to obtain the sorting A corresponding to the at least two CORESETs, and then the terminal can judge the pairwise combination corresponding to the PDCCH monitoring timing of the at least two CORESETs based on the sorting A, and obtain at least one Judgment results of pairwise combinations, wherein any pairwise combination includes two CORESETs, and the judgment result of any pairwise combination is used to indicate whether the time-domain resource interval between the two CORESETs in the corresponding pairwise combination satisfies the requirements for beam switching time requirement; furthermore, the terminal may determine at least one PDCCH monitoring opportunity of the target CORESET among the PDCCH monitoring opportunities of at least two CORESETs based on the judgment result of at least one pairwise combination.
  • the PDCCH monitoring timing of at least two CORESETs may be the PDCCH monitoring timing of two or more CORESETs, for example, it may be the PDCCH monitoring timing of 2 CORESETs, or it may be the PDCCH monitoring timing of 3 CORESETs, It may also be five CORESET PDCCH monitoring opportunities, which is not limited.
  • the threshold value is used to characterize the maximum duration required for the terminal to switch beams, when the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value , it can ensure that the time-domain resource interval between any two target CORESETs with different beam directions is greater than the beam switching time.
  • Step 102 detecting the PDCCH at the PDCCH monitoring opportunity of at least one target CORESET
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and the threshold value is used to represent the time interval for the terminal to perform beam switching. The maximum time required.
  • the terminal may detect PDCCHs in beam directions respectively corresponding to the PDCCH monitoring occasions of the at least one target CORESET.
  • At least one target CORESET may include CORESET 1, CORESET 2, and CORESET 3.
  • the terminal may detect the PDCCH with the beam direction corresponding to CORESET 1 at the PDCCH monitoring timing of CORESET 1, and use the beam direction corresponding to CORESET 2 at the PDCCH monitoring timing of CORESET 2.
  • At least one target CORESET may include CORESET 4, CORESET 5, and CORESET 6, wherein, according to the chronological order of PDCCH monitoring timing, the PDCCH monitoring timing of CORESET 4 ranks first, and the PDCCH monitoring timing of CORESET 5 ranks second , the PDCCH monitoring timing of CORESET 6 ranks third, and the beam directions corresponding to each CORESET are different from each other;
  • the terminal can detect PDCCH with the beam direction corresponding to CORESET 4 at the PDCCH monitoring opportunity of CORESET 4, and then switch to the beam direction corresponding to CORESET 5, and then detect the PDCCH with the beam direction corresponding to CORESET 5 at the PDCCH monitoring opportunity of CORESET 5, and then can Switch to the beam direction corresponding to CORESET 6, and then detect the PDCCH with the beam direction corresponding to CORESET 6 at the PDCCH monitoring timing of CORESET 6.
  • the PDCCH detection method provided by the embodiments of the present disclosure determines the PDCCH monitoring timing of at least one target CORESET among the PDCCH monitoring timings of at least two CORESETs, so that any two PDCCH monitoring timings of at least one target CORESET correspond to different beam directions.
  • the time interval between the PDCCH monitoring opportunities of the target CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that the network side equipment can configure the resources of the CORESET
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the terminal can sort the at least two CORESETs, and then can obtain the target rankings corresponding to the at least two CORESETs, and then can judge the PDCCH monitoring timing of the at least two CORESETs based on the target rankings, and the PDCCHs of the at least two CORESETs In the monitoring timing, at least one PDCCH monitoring timing of the target CORESET is determined.
  • At least two CORESETs may include CORESET 1, CORESET 2, and CORESET 3, and the terminal may sort the at least two CORESETs based on certain rules (such as time order or priority sorting), for example, the determined target sorting may be that CORESET 1 ranks No. 1, CORESET 2 No. 2, CORESET 3 No. 3;
  • the terminal can sort the PDCCH monitoring timings of at least two CORESETs according to the above targets, and determine the PDCCH monitoring timing of at least one target CORESET among the PDCCH monitoring timings of CORESET 1, the PDCCH monitoring timings of CORESET 2, and the PDCCH monitoring timings of CORESET 3.
  • Timing, for example, the PDCCH listening timing of at least one target CORESET may be the PDCCH listening timing of CORESET 1 and the PDCCH listening timing of CORESET 3;
  • the terminal can detect the PDCCH with the beam direction corresponding to CORESET 1 at the PDCCH monitoring opportunity of CORESET 1, and detect the PDCCH with the beam direction corresponding to CORESET 3 at the PDCCH monitoring opportunity of CORESET 3.
  • the terminal can judge the PDCCH monitoring occasions of at least two CORESETs according to the target order, and determine the PDCCH monitoring occasions of at least one target CORESET among the PDCCH monitoring occasions of the at least two CORESETs.
  • determining the target rankings corresponding to at least two CORESETs includes at least one of the following:
  • a second target ranking corresponding to the at least two CORESETs is determined.
  • the terminal can sort the at least two CORESETs according to the time sequence of the PDCCH monitoring opportunities corresponding to the at least two CORESETs, and then can obtain the target sorting corresponding to the at least two CORESETs, and then based on the target sorting, at least two The PDCCH monitoring timing of the CORESET is judged, and at least one PDCCH monitoring timing of the target CORESET is determined among at least two PDCCH monitoring timings of the CORESET.
  • the terminal can sort the at least two CORESETs according to the priorities corresponding to the at least two CORESETs, and then can obtain the target rankings corresponding to the at least two CORESETs, and then can monitor the PDCCHs of the at least two CORESETs based on the target rankings.
  • the timing is judged, and among the PDCCH monitoring timings of at least two CORESETs, at least one PDCCH monitoring timing of the target CORESET is determined.
  • the at least two CORESETs may include CORESET 1, CORESET 2, and CORESET 3, and the terminal may base on the chronological sequence of the PDCCH monitoring timings corresponding to the at least two CORESETs, for example, the PDCCH monitoring timing corresponding to CORESET 1 is the first, and the PDCCH monitoring timing corresponding to CORESET 3 is the first.
  • the timing of PDCCH monitoring is the last, and at least two CORESETs are sorted.
  • the determined target sorting can be that CORESET 1 is ranked first, CORESET 2 is ranked second, and CORESET 3 is ranked third.
  • At least two CORESETs can include CORESET 4, CORESET 5, and CORESET 6, and the terminal can be sorted based on the priorities corresponding to at least two CORESETs, for example, CORESET 4 has the highest priority, CORESET 5 has the second priority, and CORESET 6 has the priority The lowest level, sort at least two CORESETs.
  • the determined target ranking can be that CORESET 4 is ranked first, CORESET 5 is ranked second, and CORESET 6 is ranked third.
  • the terminal can determine the target rankings corresponding to at least two CORESETs in a variety of ways.
  • the target rankings can be the first target ranking or the second target ranking, and then based on the first target ranking or the second target ranking, at least two CORESET Among the PDCCH monitoring occasions, at least one PDCCH monitoring occasion of the target CORESET is determined.
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the set to be detected includes at least two CORESETs;
  • the first CORESET is the CORESET that has not been judged together with all the eleventh CORESETs in the set to be detected at the target time, and the eleventh CORESET is all CORESETs included in the set to be detected except the first CORESET.
  • the second CORESET is the CORESET closest to the first CORESET among all eleventh CORESETs at the target time; the target time is to judge whether to use the first CORESET or the second CORESET The moment when CORESET is removed from the set to be tested.
  • the terminal can add all at least two CORESETs to the set to be detected to obtain an initial set to be detected, and then can determine whether to add the first CORESET or the second target based on the first target ranking
  • Two CORESETs are deleted from the set to be detected until the time interval between the PDCCH monitoring opportunities of any two CORESETs corresponding to different beam directions in the set to be detected is greater than or equal to the threshold value, that is, any two CORESETs with different beam directions in the set to be detected
  • the time-domain resource interval between target CORESETs is greater than the beam switching time;
  • the terminal may use the CORESET in the detection set as at least one target CORESET, that is, may use the PDCCH monitoring opportunity of the CORESET in the to-be-detected set as the PDCCH of at least one target CORESET Listening timing.
  • the first CORESET may be a CORESET that has not yet been judged with the eleventh CORESET in the set to be detected at the target time, and the eleventh CORESET is all CORESETs included in the set to be detected except the first CORESET. Any CORESET that is ranked after the first CORESET in the target ranking, where the target time may be the time when it is judged whether to delete the first CORESET or the second CORESET from the set to be detected.
  • the second CORESET may be the CORESET closest to the first CORESET among all the eleventh CORESETs at the target time.
  • the first target order corresponding to CORESET in a certain time slot Slot0 can be CORESET 1, CORESET 2, CORESET 3, CORESET 4, CORESET 5, among which CORESET 1 is at the top and CORESET 5 is at the end;
  • the first CORESET can be CORESET 2; the eleventh CORESET can be CORESET 3, CORESET 4 or CORESET 5, since CORESET 3 is the closest CORESET to CORESET 2 among all eleventh CORESETs, the second CORESET can be CORESET 3;
  • the terminal can determine whether to delete CORESET 2 or CORESET 3 from the set to be detected.
  • the terminal can judge the first CORESET and the second CORESET in the set to be detected, and judge whether to delete the first CORESET or the second CORESET from the set to be detected, so that the final determined set to be detected
  • the time interval between the PDCCH monitoring opportunities of any two CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and then based on the PDCCH monitoring opportunities of the CORESETs in the set to be detected as the PDCCH monitoring opportunities of at least one target CORESET, the terminal can The PDCCH is detected in the beam directions respectively corresponding to the PDCCH monitoring occasions of at least one target CORESET.
  • judging whether to delete the first CORESET or the second CORESET from the set to be detected includes:
  • the terminal in the operation of judging whether to delete the first CORESET or the second CORESET from the set to be detected, the terminal can judge whether the beam direction corresponding to the first CORESET is the same as the beam direction corresponding to the second CORESET, and judge whether the first CORESET Whether the time interval between the PDCCH monitoring opportunity of the first CORESET and the PDCCH monitoring opportunity of the second CORESET is less than a threshold value;
  • the terminal may first determine whether the beam direction corresponding to the first CORESET is the same as the beam direction corresponding to the second CORESET, and if it is determined that the beam direction corresponding to the first CORESET is different from the beam direction corresponding to the second CORESET, continue to determine the first Whether the time interval between the PDCCH monitoring timing of the CORESET and the PDCCH monitoring timing of the second CORESET is less than the threshold value, if the PDCCH monitoring timing of the first CORESET and the second
  • the CORESET with lower priority among the first CORESET and the second CORESET may be deleted from the set to be detected.
  • the terminal may first determine whether the time interval between the PDCCH monitoring timing of the first CORESET and the PDCCH monitoring timing of the second CORESET is less than a threshold value, if the PDCCH monitoring timing of the first CORESET and the PDCCH monitoring timing of the second CORESET If the time interval between them is less than the threshold value, continue to judge whether the beam direction corresponding to the first CORESET is the same as the beam direction corresponding to the second CORESET, if it is determined that the beam direction corresponding to the first CORESET is different from the beam direction corresponding to the second CORESET, Then the CORESET with lower priority among the first CORESET and the second CORESET may be deleted from the set to be detected.
  • the terminal may , delete the CORESET with lower priority among the first CORESET and the second CORESET from the set to be detected.
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the set to be detected includes the item with the highest priority among at least two CORESETs;
  • the third CORESET is the CORESET that ranks the highest among the CORESETs that have not been judged whether to add to the set to be detected at the target time in the second target ranking, and the target time is to judge whether to add the third CORESET to the set to be detected time.
  • the terminal can add the item with the highest priority among at least two CORESETs to the set to be detected to obtain an initial set to be detected, and then judge whether to add The third CORESET is added to the set to be detected, so that after the third CORESET is added to the set to be detected, the time interval between the PDCCH monitoring opportunities of any two CORESETs corresponding to different beam directions in the set to be detected is greater than or equal to the threshold value , that is, the time-domain resource interval between any two target CORESETs with different beam directions in the set to be detected is greater than the beam switching time.
  • the terminal may use the CORESET in the detection set as at least one target CORESET, that is, may use the PDCCH monitoring opportunity of the CORESET in the to-be-detected set as the PDCCH of at least one target CORESET Listening timing.
  • the ranking of the second target corresponding to CORESET can be CORESET 1, CORESET 2, CORESET 3, CORESET 4, CORESET 5, among which CORESET 1 is at the top and CORESET 5 is at the end;
  • the terminal After determining the second target ranking, the terminal can add the item with the highest priority in Slot0, that is, CORESET 1, to the set to be detected, so as to obtain the initial set to be detected;
  • CORESET 3 is the second target sorting at the target time B has not been judged whether it is Add to the top CORESET in the CORESET of the set to be detected, so at the target time B, the third CORESET can be CORESET 3;
  • the terminal can determine whether to add CORESET 3 to the CORESET of the set to be detected.
  • the terminal can judge whether to add the third CORESET to the set to be detected based on the second target ordering, so that the time interval between the PDCCH monitoring opportunities of any two CORESETs corresponding to different beam directions in the finally determined set to be detected is Greater than or equal to the threshold value, and then based on the PDCCH monitoring opportunity of the CORESET in the set to be detected as the PDCCH monitoring opportunity of at least one target CORESET, the terminal can detect the PDCCH in beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET.
  • judging whether to add the third CORESET to the set to be detected includes:
  • each fourth CORESET is the same as the beam direction corresponding to the third CORESET, then add the third CORESET to the set to be detected, wherein the first The fourth CORESET is a CORESET whose time interval from the PDCCH listening opportunity of the third CORESET is smaller than the threshold value.
  • the terminal may judge whether the time interval between the PDCCH listening opportunity of each CORESET in the set to be detected and the PDCCH listening opportunity of the third CORESET is greater than or Equal to the threshold value, if it is determined that the time interval between the PDCCH monitoring opportunity of each CORESET in the set to be detected and the PDCCH monitoring opportunity of the third CORESET is greater than or equal to the threshold value, the third CORESET can be added to the detection gather;
  • the terminal may judge whether the beam direction corresponding to each fourth CORESET is the same as that of the third CORESET when there is at least one fourth CORESET in the set to be detected.
  • the beam directions corresponding to the CORESETs are the same, and if it is determined that the beam directions corresponding to each fourth CORESET are the same as the beam directions corresponding to the third CORESET, the third CORESET can be added to the set to be detected;
  • the fourth CORESET may be a CORESET whose time interval from the PDCCH monitoring opportunity of the third CORESET is smaller than a threshold value.
  • the terminal can make the time between the PDCCH monitoring opportunities of any two CORESETs corresponding to different beam directions in the set to be detected after adding the third CORESET to the set to be detected The interval is greater than or equal to the threshold.
  • the method before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the method further includes:
  • the threshold value is greater than or equal to the target duration, and the threshold value is the number of symbols or a time value.
  • the terminal may determine a target duration required by the terminal itself for beam switching, and then based on the target duration, may determine a threshold value, so that the threshold value is greater than or equal to the target duration.
  • the terminal may determine the target duration required by the terminal itself for beam switching, and then based on the target duration, may determine the number of symbols, so that the time length corresponding to the number of symbols is greater than or equal to the target duration.
  • the terminal may determine a target duration required by the terminal itself for beam switching, and then based on the target duration, may determine a time value so that the time value is greater than or equal to the target duration.
  • the terminal can determine the threshold value according to the target duration required for beam switching by itself, and the threshold value can represent the maximum duration required for the terminal to perform beam switching.
  • determining the threshold value includes:
  • the number of symbols is determined.
  • the terminal can determine the item with the smallest subcarrier spacing among the at least two carrier components is the target carrier, and then the number of symbols can be determined based on the target carrier and the target duration.
  • Component Carrier Component Carrier
  • the terminal can determine the target duration required by the terminal itself for beam switching, and then determine the number of symbols based on the target carrier and the target duration, so that the time length corresponding to the number of symbols is greater than or equal to the target duration.
  • the method further includes:
  • the terminal may report the threshold value to the network side device, so that the network side device knows the maximum duration required for the terminal to perform beam switching.
  • the network side device can adjust the PDCCH monitoring timing of the subsequent CORESET and/or adjust the beam direction of the subsequent CORESET after learning the maximum duration required for the terminal to perform beam switching.
  • the beam direction corresponding to the CORESET is determined based on a transmission configuration indication state associated with the CORESET.
  • the terminal may determine the beam direction corresponding to the CORESET based on the TCI state associated with the CORESET.
  • the time interval between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET among the at least two CORESETs is based on the time domain position of the end symbol of the fifth CORESET and the start symbol of the sixth CORESET The difference between the time domain positions is determined;
  • the fifth CORESET and the sixth CORESET are any two CORESETs in at least two CORESETs; the fifth CORESET is the item with a higher time domain position among the fifth CORESET and the sixth CORESET, and the sixth CORESET is the fifth CORESET and the sixth CORESET. An item with a later position in the time domain in the sixth CORESET.
  • the terminal may determine the difference between the time domain position of the end symbol of the fifth CORESET and the time domain position of the start symbol of the sixth CORESET, and then determine the PDCCH listening opportunity of the fifth CORESET and the time domain position of the sixth CORESET based on the difference.
  • the fifth CORESET and the sixth CORESET are any two CORESETs among the at least two CORESETs
  • the fifth CORESET is an item whose time domain position is earlier among the fifth CORESET and the sixth CORESET
  • the sixth CORESET is the first The one whose time domain position is later in the fifth CORESET and the sixth CORESET, that is, the time domain position of the start symbol of the fifth CORESET is before the time domain position of the start symbol of the sixth CORESET.
  • the terminal can determine the difference between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET by using the difference between the time domain position of the end symbol of the fifth CORESET and the time domain position of the start symbol of the sixth CORESET. time interval between.
  • the method before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the method further includes:
  • the cell index and the search space index respectively corresponding to the at least two CORESETs are determined.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the search space types respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the cell indexes respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the search space indexes respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the search space types and search space indexes respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the search space types and cell indexes respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the cell indexes and search space indexes respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on the search space types, cell indexes, and search space indexes respectively corresponding to the at least two CORESETs.
  • the terminal may determine the priorities corresponding to the at least two CORESETs based on one or more items of configuration information respectively corresponding to the at least two CORESETs.
  • the priority ranking corresponding to the at least two CORESETs is determined, including:
  • a prioritization is determined based on the first prioritization, the second prioritization, and the third prioritization.
  • the terminal may acquire the first priority rankings corresponding to the at least two CORESETs based on the search space types respectively corresponding to the at least two CORESETs, and then may determine the priority rankings based on the first priority rankings.
  • the terminal may acquire the first priority rankings corresponding to the at least two CORESETs, and then may sort the first priority rankings based on the cell indexes corresponding to the at least two CORESETs respectively. Multiple CORESETs with the same priority are sorted to obtain the second priority ranking corresponding to at least two CORESETs, and then the priority ranking can be determined based on the second priority ranking.
  • the terminal may obtain the first priority ranking corresponding to the at least two CORESETs based on the search space types corresponding to the at least two CORESETs respectively;
  • the CORESETs with the same priority in the second priority ranking can be sorted, and the third priority ranking corresponding to at least two CORESETs can be obtained, and then based on the third priority Level sorting, determine the priority sorting.
  • the terminal may determine the prioritization based on the first prioritization, the second prioritization and the third prioritization.
  • the search space type includes public search space and user-specific search space
  • the CORESET whose search space type is public search space is ranked before the CORESET whose search space type is user-specific search space.
  • the terminal may sort the at least two CORESETs based on the sorting rule that the CORESET whose search space type is a public search space is ranked before the CORESET whose search space type is a user-specific search space, and obtain the first CORESET corresponding to the at least two CORESETs. Prioritize.
  • the seventh CORESET is ranked before the eighth CORESET, and the seventh CORESET and the eighth CORESET are any two CORESETs among the CORESETs with the same priority in the first priority ranking,
  • the cell index corresponding to the seventh CORESET is smaller than the cell index corresponding to the eighth CORESET.
  • the terminal may sort multiple CORESETs with the same priority in the first priority ranking based on the sorting rule that the smaller the cell index, the higher the ranking, and obtain the second priority ranking corresponding to at least two CORESETs, so that The seventh CORESET is ranked before the eighth CORESET in the second priority order.
  • the ninth CORESET is ranked before the tenth CORESET, and the ninth CORESET and the tenth CORESET are any two CORESETs among the CORESETs with the same priority in the second priority ranking.
  • the search space index corresponding to the ninth CORESET is smaller than the search space index corresponding to the tenth CORESET.
  • the terminal sorts multiple CORESETs with the same priority in the second priority sorting, and obtains the third priority sorting corresponding to at least two CORESETs, Such that the ninth CORESET is ranked before the tenth CORESET in the third priority ranking.
  • the method before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the method further includes:
  • the priority of the time domain position of the first symbol is higher than the priority of the item of the time domain position of the first symbol
  • the first symbol is the start symbol of CORESET or the end symbol of CORESET.
  • the terminal may sort the at least two CORESETs based on the sorting rule that the first symbols are sorted earlier in the time domain, and acquire the priority sorting corresponding to the at least two CORESETs.
  • the terminal may sort the at least two CORESETs based on the sorting rule that the time domain position of the start symbol is earlier and the higher the priority, and obtain the priority ranking corresponding to the at least two CORESETs.
  • the terminal may sort the at least two CORESETs based on the sorting rule that the earlier the time domain position of the end symbol is, the higher the ranking is, and obtain the priority ranking corresponding to the at least two CORESETs.
  • At least two CORESETs can use the first N symbols of the target time slot in the time domain, N is a positive integer, N is stipulated by the protocol or configured by the network side device, 1 ⁇ N ⁇ M, M is the symbol of the target time slot The total number of symbols, M is a positive integer.
  • At least two CORESETs can use the first N symbols of the target time slot in the time domain, 1 ⁇ N ⁇ M, where M is the total number of symbols in the target time slot, where N is a positive integer, and M is a positive integer.
  • At least two CORESETs can be configured by the network side device to use the first N symbols of the target time slot in the time domain, 1 ⁇ N ⁇ M, where M is the total number of symbols of the target time slot, where N is a positive integer, M is a positive integer.
  • the PDCCH monitoring timing of at least one target CORESET is determined among the PDCCH monitoring timings of at least two CORESETs, so that any two PDCCH monitoring timings of at least one target CORESET correspond to different beam directions.
  • the time interval between the PDCCH monitoring opportunities of the target CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that the network side equipment can configure the resources of the CORESET
  • FIG. 2 is one of the schematic diagrams of the single-carrier PDCCH monitoring timing provided by the embodiment of the present disclosure.
  • FIG. 2 is an optional example of the present disclosure, but not as a limitation of the present disclosure; as shown in FIG. 2 ,
  • the priority of each CORESET can be determined as shown in Table 1, wherein the smaller the priority level value is, the higher the priority is, and the transmission configuration indication of each CORESET (
  • the Transmission Configuration Indicator (TCI) status can be determined by the Reference Signal (RS) indicated by the Quasi Co-Location (QCL) typeD.
  • RS Reference Signal
  • QCL Quasi Co-Location
  • the threshold value may be a symbol length.
  • the above-mentioned process of determining the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs may include steps 201 to 202:
  • Step 201 for at least two CORESETs configured in each time slot (slot), sort according to the start time, and then obtain the first target ranking corresponding to the CORESET in slot0, and the first target ranking corresponding to the CORESET in slot1, in:
  • the first target order corresponding to CORESET in Slot0 can be CORESET 1, CORESET 2, CORESET 3, CORESET 4, CORESET 5, among which CORESET 1 is at the top and CORESET 5 is at the end;
  • the first target order corresponding to CORESET in Slot1 can be CORESET 1, CORESET 4, and CORESET 5 in sequence, where CORESET 1 is at the top and CORESET 5 is at the end;
  • Step 202 judging whether there is beam overlap and performing beam overlap processing according to the first target ranking
  • the beam (beam) overlapping criterion is two adjacent PDCCH listening opportunities, whether the interval between the last symbol of the previous PDCCH listening opportunity and the first symbol of the next PDCCH listening opportunity is less than the threshold requirement, if Beam overlap exists if it is less than the threshold requirement.
  • the beam overlap processing method may be that, in the case that the PDCCH monitoring opportunities of two CORESETs have beam overlap, if the TCI states of the two CORESETs are inconsistent, the CORESET with a lower priority among the two CORESETs is transferred from Delete from the CORESET set to be detected; in the case that the PDCCH monitoring timing of the two CORESETs has beam overlap, if the TCI states of the two CORESETs are consistent, then keep the two CORESETs in the CORESET set to be detected;
  • the CORESET in Slot0 can be judged in pairs whether there is beam overlap, and beam overlap processing can be performed; then it can be determined to delete the CORESET from the CORESET set to be detected corresponding to Slot0
  • the order, from front to back, can be CORESET 1, CORESET 2, CORESET 4, CORESET 5, among which, the first to delete is CORESET 1, and the last to delete is CORESET 5.
  • the CORESET in Slot1 can be judged in pairs whether there is beam overlap, and beam overlap processing can be performed; then it can be determined that the CORESET to be deleted from the CORESET set to be detected can be CORESET 5 .
  • the final CORESET set 1 to be detected can be determined, as shown in Table 2.
  • FIG. 3 is the second schematic diagram of a single-carrier PDCCH monitoring opportunity provided by an embodiment of the present disclosure.
  • the threshold value is one symbol long
  • the final CORESET set 1 to be detected can be determined .
  • FIG. 4 is one of the schematic diagrams of multi-carrier PDCCH monitoring opportunities provided by the embodiment of the present disclosure.
  • FIG. 4 is an optional example of the present disclosure, but not as a limitation of the present disclosure; as shown in FIG. 4 , for multiple
  • the PDCCH monitoring timing of at least two control resource sets CORESET of the carrier can determine the priority of each CORESET as shown in Table 3, where the smaller the priority level value is, the higher the priority is, and the TCI status of each CORESET can be passed through QCL typeD
  • the indicated RS is OK.
  • the threshold value may be the length of one symbol of CC1 (the SCS of CC1 is small, so the threshold value is defined by the number of symbols of CC1, which can be converted into the length of two symbols of CC2).
  • the above-mentioned process of determining the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs may include steps 401 to 402:
  • Step 401 for at least two CORESETs configured in slot0, sort them according to the start time, and sort all CCs together, and then obtain the first target sorting corresponding to the CORESET in slot0, where:
  • the first target order corresponding to CORESET in Slot0 can be CORESET 1, CORESET 6, CORESET 2, CORESET 7, CORESET 3, CORESET 4, CORESET 5, among which CORESET 1 is at the top and CORESET 5 is at the end;
  • Step 402 judging whether there is beam overlap and performing beam overlap processing according to the first target ranking
  • the beam (beam) overlapping criterion is two adjacent PDCCH listening opportunities, whether the interval between the last symbol of the previous PDCCH listening opportunity and the first symbol of the next PDCCH listening opportunity is less than the threshold requirement, if Beam overlap exists if it is less than the threshold requirement.
  • the beam overlap processing method may be that, in the case that the PDCCH monitoring opportunities of two CORESETs have beam overlap, if the TCI states of the two CORESETs are inconsistent, the CORESET with a lower priority among the two CORESETs is transferred from Deleted from the CORESET set to be detected; in the case that the PDCCH monitoring opportunities of the two CORESETs overlap with beams, if the TCI states of the two CORESETs are consistent, the two CORESETs are retained in the CORESET set to be detected.
  • CORESET 1 is the first to be deleted
  • CORESET 5 is the last to be deleted.
  • the final CORESET set 2 to be detected can be determined, as shown in Table 4.
  • FIG. 5 is the second schematic diagram of the multi-carrier PDCCH monitoring opportunity provided by the embodiment of the present disclosure.
  • the threshold value is one symbol length of CC1
  • the final CORESET set to be detected can be determined 2.
  • Fig. 6 is the third schematic diagram of the single-carrier PDCCH monitoring opportunity provided by the embodiment of the present disclosure.
  • Fig. 6 is an optional example of the present disclosure, but not as a limitation to the present disclosure;
  • the PDCCH monitoring timing of a control resource set CORESET can determine the priority of each CORESET as shown in Table 5, wherein the smaller the priority level value is, the higher the priority is, and the TCI status of each CORESET can be passed through the RS indicated by QCL typeD Sure.
  • the threshold value may be a symbol length.
  • the above-mentioned process of determining the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs may include steps 601 to 603:
  • Step 601 for at least two CORESETs configured in each time slot (slot), sort according to the priority, and then obtain the second target ranking corresponding to the CORESET in slot0 and the second target ranking corresponding to the CORESET in slot1, in:
  • the second target order corresponding to CORESET in Slot0 can be CORESET 3, CORESET 2, CORESET 1, CORESET 4, CORESET 5, among which CORESET3 is at the top and CORESET 5 is at the end;
  • the second target ranking corresponding to CORESET in Slot1 can be CORESET 1, CORESET 4, and CORESET 5 in sequence, where CORESET 1 is at the top and CORESET 5 is at the end;
  • Step 602 adding the CORESET with the highest priority to the CORESET set to be detected, and recording its corresponding QCL-type D;
  • CORESET3 can be put into the CORESET set to be detected corresponding to Slot0, and the QCL-type D corresponding to CORESET3 can be recorded.
  • CORESET1 can be put into the CORESET set to be detected corresponding to Slot1, and the QCL-type D corresponding to CORESET1 can be recorded.
  • Step 603 judging whether there is beam overlap and performing beam overlap processing according to the second target ordering
  • the beam (beam) overlapping criterion is two adjacent PDCCH listening opportunities, whether the interval between the last symbol of the previous PDCCH listening opportunity and the first symbol of the next PDCCH listening opportunity is less than the threshold requirement, if Beam overlap exists if it is less than the threshold requirement.
  • the third CORESET can be added to the CORESET set to be detected corresponding to the Slot ;
  • the third CORESET may be the CORESET with the highest ranking among the CORESETs corresponding to the CORESET in the slot that has not been judged whether to be added to the CORESET set to be detected at the target time in the second target ranking, and the target time is to judge whether to add the third CORESET The moment when the CORESET is added to the CORESET set to be detected corresponding to the Slot.
  • the beam overlapping processing method may be, in the case that there is at least one fourth CORESET in the CORESET set to be detected corresponding to the Slot (such as Slot0 or Slot1), if the TCI state corresponding to each fourth CORESET is the same as that of the third If the TCI states corresponding to the CORESETs are consistent, the third CORESET is added to the set of CORESETs to be detected; wherein, the fourth CORESET is a CORESET that has a beam overlap with the third CORESET.
  • the fourth CORESET is a CORESET that has a beam overlap with the third CORESET.
  • the order of adding CORESET to the CORESET set to be detected can be determined. From front to back, it can be CORESET 3, CORESET 1, CORESET 3 is added first, and CORESET 3 is added last. is CORESET 1.
  • the final CORESET set 3 to be detected can be determined, as shown in Table 6.
  • FIG. 7 is a fourth schematic diagram of a single-carrier PDCCH monitoring opportunity provided by an embodiment of the present disclosure. As shown in FIG. 7 , in the case where the threshold value is one symbol long, the final CORESET set 3 to be detected can be determined .
  • Fig. 8 is the third schematic diagram of multi-carrier PDCCH monitoring timing provided by the embodiment of the present disclosure.
  • Fig. 8 is an optional example of the present disclosure, but not as a limitation to the present disclosure; as shown in Fig. 8, for at least two multi-carrier
  • the PDCCH monitoring timing of a control resource set CORESET can determine the priority of each CORESET as shown in Table 7, wherein the smaller the priority level value is, the higher the priority is, and the TCI status of each CORESET can be passed through the RS indicated by QCL typeD Sure.
  • the threshold value may be the length of one symbol of CC1 (the SCS of CC1 is small, so the threshold value is defined by the number of symbols of CC1, which can be converted into the length of two symbols of CC2).
  • the above-mentioned process of determining the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs may include steps 801-803:
  • Step 801 for at least two CORESETs configured in slot0, sort them according to their priority, and all CCs are sorted together, so as to obtain the second target sorting corresponding to the CORESET in slot0, where:
  • the second target order corresponding to CORESET in Slot0 can be CORESET 3, CORESET 2, CORESET 1, CORESET 4, CORESET 5, CORESET 6, CORESET 7, among which CORESET3 is at the top and CORESET 7 is at the end;
  • Step 802 adding the highest priority CORESET to the CORESET set to be detected, and recording its corresponding QCL-type D;
  • CORESET3 can be put into the CORESET set to be detected corresponding to Slot0, and the QCL-type D corresponding to CORESET3 can be recorded.
  • Step 803 judging whether there is beam overlap and performing beam overlap processing according to the second target ordering
  • the beam (beam) overlapping criterion is two adjacent PDCCH listening opportunities, whether the interval between the last symbol of the previous PDCCH listening opportunity and the first symbol of the next PDCCH listening opportunity is less than the threshold requirement, if Beam overlap exists if it is less than the threshold requirement.
  • the third CORESET can be added to the CORESET set to be detected corresponding to the Slot;
  • the third CORESET may be the CORESET with the highest ranking among the CORESETs corresponding to the CORESET in the slot that has not been judged whether to be added to the CORESET set to be detected at the target time in the second target ranking, and the target time is to judge whether to add the third CORESET The moment when the CORESET is added to the CORESET set to be detected corresponding to the Slot.
  • the beam overlapping processing method may be, in the case that there is at least one fourth CORESET in the CORESET set to be detected corresponding to the Slot (for example, Slot0), if the TCI state corresponding to each fourth CORESET corresponds to the third CORESET If the TCI states of the TCIs are consistent, the third CORESET is added to the CORESET set to be detected; wherein, the fourth CORESET is a CORESET that has a beam overlap with the third CORESET.
  • the Slot for example, Slot0
  • the order of adding CORESET to the CORESET set to be detected corresponding to Slot0 can be determined, which can be CORESET 3, CORESET 1, and CORESET 6 from front to back, and the first one added is CORESET 3, the last addition is CORESET 6.
  • the final CORESET set 4 to be detected can be determined, as shown in Table 8.
  • FIG. 9 is the fourth schematic diagram of the multi-carrier PDCCH monitoring opportunity provided by the embodiment of the present disclosure.
  • the threshold value is the length of one symbol of CC1
  • the final CORESET set to be detected can be determined 4.
  • the PDCCH monitoring timing of at least one target CORESET is determined among the PDCCH monitoring timings of at least two CORESETs, so that any two PDCCH monitoring timings of at least one target CORESET correspond to different beam directions.
  • the time interval between the PDCCH monitoring opportunities of the target CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that the network side equipment can configure the resources of the CORESET
  • Fig. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in Fig. 10, the terminal includes a memory 1020, a transceiver 1000, and a processor 1010, where:
  • the memory 1020 is used to store computer programs; the transceiver 1000 is used to send and receive data under the control of the processor 1010; the processor 1010 is used to read the computer programs in the memory 1020 and perform the following operations:
  • PDCCH monitoring opportunities of at least two control resource sets CORESETs determine the PDCCH monitoring opportunities of at least one target CORESET;
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to the threshold value, and the threshold value is used to represent the time interval for the terminal to perform beam switching. The maximum time required.
  • the terminal determines the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs, so that the PDCCH monitoring opportunities of at least one target CORESET correspond to any two targets with different beam directions
  • the time interval between the PDCCH monitoring opportunities of the CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that when the network side device configures the resources of the CORESET, There is no need to ensure that the time-domain resource interval between two CORESETs with different beams is greater than the beam switching time, which can improve the flexibility of control resource configuration and increase resource utilization.
  • the transceiver 1000 is configured to receive and send data under the control of the processor 1010 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1010 and various circuits of the memory represented by the memory 1020 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1000 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the user interface 1030 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1010 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1010 when performing operations.
  • the processor 1010 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor is used to execute any method provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • determining the PDCCH monitoring timing of at least one target CORESET includes:
  • determining the target rankings corresponding to at least two CORESETs includes at least one of the following:
  • a second target ranking corresponding to the at least two CORESETs is determined.
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the set to be detected includes at least two CORESETs;
  • the first CORESET is the CORESET that has not been judged together with all the eleventh CORESETs in the set to be detected at the target time, and the eleventh CORESET is all CORESETs included in the set to be detected except the first CORESET.
  • the second CORESET is the CORESET closest to the first CORESET among all eleventh CORESETs at the target time; the target time is to judge whether to use the first CORESET or the second CORESET The moment when CORESET is removed from the set to be tested.
  • judging whether to delete the first CORESET or the second CORESET from the set to be detected includes:
  • determining the PDCCH monitoring opportunities of at least one target CORESET includes:
  • the set to be detected includes the item with the highest priority among at least two CORESETs;
  • the third CORESET is the CORESET that ranks the highest among the CORESETs that have not been judged whether to add to the set to be detected at the target time in the second target ranking, and the target time is to judge whether to add the third CORESET to the set to be detected time.
  • judging whether to add the third CORESET to the set to be detected includes:
  • each fourth CORESET is the same as the beam direction corresponding to the third CORESET, then add the third CORESET to the set to be detected, wherein the first The fourth CORESET is a CORESET whose time interval from the PDCCH listening opportunity of the third CORESET is smaller than the threshold value.
  • the operation before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the operation further includes:
  • the threshold value is greater than or equal to the target duration, and the threshold value is the number of symbols or a time value.
  • determining the threshold value includes:
  • the number of symbols is determined.
  • the operation further includes:
  • the beam direction corresponding to the CORESET is determined based on a transmission configuration indication state associated with the CORESET.
  • the time interval between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET among the at least two CORESETs is based on the time domain position of the end symbol of the fifth CORESET and the start symbol of the sixth CORESET The difference between the time domain positions is determined;
  • the fifth CORESET and the sixth CORESET are any two CORESETs in at least two CORESETs; the fifth CORESET is the item with a higher time domain position among the fifth CORESET and the sixth CORESET, and the sixth CORESET is the fifth CORESET and the sixth CORESET. An item with a later position in the time domain in the sixth CORESET.
  • the operation before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the operation further includes:
  • the cell index and the search space index respectively corresponding to the at least two CORESETs are determined.
  • determine the priority ordering corresponding to at least two CORESETs including:
  • a prioritization is determined based on the first prioritization, the second prioritization, and the third prioritization.
  • the search space type includes public search space and user-specific search space
  • the CORESET whose search space type is public search space is ranked before the CORESET whose search space type is user-specific search space.
  • the seventh CORESET is ranked before the eighth CORESET, and the seventh CORESET and the eighth CORESET are any two CORESETs among the CORESETs with the same priority in the first priority ranking,
  • the cell index corresponding to the seventh CORESET is smaller than the cell index corresponding to the eighth CORESET.
  • the ninth CORESET is ranked before the tenth CORESET, and the ninth CORESET and the tenth CORESET are any two CORESETs among the CORESETs with the same priority in the second priority ranking.
  • the search space index corresponding to the ninth CORESET is smaller than the search space index corresponding to the tenth CORESET.
  • the operation before determining the PDCCH monitoring opportunity of at least one target CORESET among the physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET, the operation further includes:
  • the priority of the time domain position of the first symbol is higher than the priority of the item of the time domain position of the first symbol
  • the first symbol is the start symbol of CORESET or the end symbol of CORESET.
  • At least two CORESETs can use the first N symbols of the target time slot in the time domain, N is a positive integer, N is stipulated by the protocol or configured by the network side device, 1 ⁇ N ⁇ M, M is the symbol of the target time slot The total number of symbols, M is a positive integer.
  • the terminal determines the PDCCH monitoring opportunity of at least one target CORESET among the PDCCH monitoring opportunities of at least two CORESETs, so that the PDCCH monitoring opportunities of at least one target CORESET correspond to any two targets with different beam directions
  • the time interval between the PDCCH monitoring opportunities of the CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that when the network side device configures the resources of the CORESET, There is no need to ensure that the time-domain resource interval between two CORESETs with different beams is greater than the beam switching time, which can improve the flexibility of control resource configuration and increase resource utilization.
  • the above-mentioned terminal provided by the embodiment of the present invention can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the terminal, and can achieve the same technical effect.
  • the same parts and beneficial effects as those of the method embodiment will be described in detail.
  • FIG. 11 is a schematic structural diagram of a PDCCH detection device provided by an embodiment of the present disclosure. As shown in FIG. 11 , the device includes: a first determination unit 1101 and a detection unit 1102, wherein:
  • the first determining unit 1101 is configured to determine a PDCCH monitoring opportunity of at least one target CORESET among physical downlink control channel PDCCH monitoring opportunities of at least two control resource sets CORESET;
  • the detection unit 1102 is configured to detect a PDCCH at a PDCCH monitoring opportunity of the at least one target CORESET;
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to a threshold value, and the threshold value is used to characterize the terminal The maximum amount of time required for beam switching to occur.
  • the PDCCH detection device determines the PDCCH monitoring timing of at least one target CORESET among the PDCCH monitoring timings of at least two CORESETs, so that any two PDCCH monitoring timings of at least one target CORESET correspond to different beam directions.
  • the time interval between the PDCCH monitoring opportunities of the target CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that the network side equipment can configure the resources of the CORESET
  • the first determination unit is also used for:
  • the first determining unit is also used for at least one of the following:
  • the first determination unit is also used for:
  • the set to be detected includes the at least two CORESETs;
  • the first CORESET is a CORESET that has not been judged together with all the eleventh CORESETs in the set to be detected at the target time
  • the eleventh CORESET is a CORESET included in the set to be detected except the first CORESET Among all CORESETs other than one CORESET, any CORESET that ranks after the first CORESET in the first target ranking
  • the second CORESET is the closest among all the eleventh CORESETs at the target time
  • the target time is the time when it is judged whether to delete the first CORESET or the second CORESET from the set to be detected.
  • the first determination unit is also used for:
  • the CORESET with lower priority among the first CORESET and the second CORESET is deleted from the set to be detected.
  • the first determination unit is also used for:
  • the set to be detected Based on the second target sorting, it is judged whether to add the third CORESET to the set to be detected, so that after the third CORESET is added to the set to be detected, any object corresponding to a different beam direction in the set to be detected.
  • the time interval between the PDCCH monitoring opportunities of the two CORESETs is greater than or equal to the threshold value; before the judgment whether to add the third CORESET to the set to be detected, the set to be detected includes the at least two CORESETs the item with the highest priority;
  • the third CORESET is the highest-ranked CORESET among the CORESETs that have not yet been judged whether to add to the set to be detected in the second target ranking, and the target time is whether the judgment will be The time at which the third CORESET is added to the set to be detected.
  • the first determination unit is also used for:
  • the third CORESET flags are added to the set to be detected; or,
  • the beam direction corresponding to each of the fourth CORESETs is the same as the beam direction corresponding to the third CORESET, then increase the third CORESET to the set to be detected, wherein the fourth CORESET is the CORESET whose time interval from the PDCCH monitoring opportunity of the third CORESET is smaller than the threshold value.
  • the device further includes a second determining unit, and the second determining unit is configured to:
  • the threshold value is greater than or equal to the target duration, and the threshold value is a number of symbols or a time value.
  • the second determination unit is also used for:
  • the threshold value is the number of symbols
  • the number of symbols is determined based on the target carrier and the target duration.
  • the device further includes a sending unit, and the sending unit is configured to:
  • the beam direction corresponding to the CORESET is determined based on a transmission configuration indication state associated with the CORESET.
  • the time interval between the PDCCH monitoring opportunity of the fifth CORESET and the PDCCH monitoring opportunity of the sixth CORESET among the at least two CORESETs is based on the time domain position of the end symbol of the fifth CORESET and the time domain position of the sixth CORESET. determined by the difference between the time-domain positions of the start symbols of the CORESET;
  • the fifth CORESET and the sixth CORESET are any two CORESETs among the at least two CORESETs;
  • the sixth CORESET is an item whose time domain position is later among the fifth CORESET and the sixth CORESET.
  • the device further includes a third determining unit, and the third determining unit is configured to:
  • the priorities corresponding to the at least two CORESETs are determined.
  • the third determination unit is also used for:
  • the multiple CORESETs with the same priority in the second priority ranking are The CORESETs are sorted, and the third priority sorting corresponding to the at least two CORESETs is obtained;
  • the prioritization is determined based on the first prioritization, the second prioritization, and the third prioritization.
  • the search space type includes a public search space and a user-specific search space, and in the first priority ranking, the search space type is the CORESET of the public search space and the search space type is The user-specific search space precedes the CORESET.
  • the seventh CORESET is ranked before the eighth CORESET, and the seventh CORESET and the eighth CORESET are multiple priorities in the first priority ranking
  • the cell index corresponding to the seventh CORESET is smaller than the cell index corresponding to the eighth CORESET.
  • the ninth CORESET is ranked before the tenth CORESET, and the ninth CORESET and the tenth CORESET are multiple CORESETs with the same priority in the second priority ranking Among any two CORESETs, the search space index corresponding to the ninth CORESET is smaller than the search space index corresponding to the tenth CORESET.
  • the device further includes a fourth determining unit, and the fourth determining unit is configured to:
  • the priority of the item whose time domain position is earlier than that of the first symbol is higher than the priority of the item whose time domain position is later than that of the first symbol ;
  • the first symbol is the start symbol of the CORESET or the end symbol of the CORESET.
  • the at least two CORESETs can use the first N symbols of the target time slot in the time domain, the N is a positive integer, the N is agreed by the protocol or configured by the network side device, 1 ⁇ N ⁇ M, The M is the total symbol number of the target time slot, and the M is a positive integer.
  • the PDCCH detection device determines the PDCCH monitoring timing of at least one target CORESET among the PDCCH monitoring timings of at least two CORESETs, so that any two PDCCH monitoring timings of at least one target CORESET correspond to different beam directions.
  • the time interval between the PDCCH monitoring opportunities of the target CORESET is greater than or equal to the threshold value, and then the terminal can detect the PDCCH in the beam directions corresponding to the PDCCH monitoring opportunities of at least one target CORESET, so that the network side equipment can configure the resources of the CORESET
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the embodiments of the present disclosure further provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the above-mentioned embodiments.
  • methods including, for example:
  • PDCCH monitoring opportunities of at least two control resource sets CORESETs determine the PDCCH monitoring opportunities of at least one target CORESET;
  • the time interval between the PDCCH monitoring opportunities of any two target CORESETs corresponding to different beam directions is greater than or equal to a threshold value, and the threshold value is used to characterize the terminal The maximum amount of time required for beam switching to occur.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种PDCCH检测方法、装置、终端及存储介质,所述方法包括:在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;在至少一个目标CORESET的PDCCH监听时机,检测PDCCH;在至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值。本公开实施例通过确定至少一个目标CORESET的PDCCH监听时机,可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,可以实现提高控制资源配置的灵活性,增加资源的利用率。

Description

PDCCH检测方法、装置、终端及存储介质
相关申请的交叉引用
本申请要求于2022年01月10日提交的申请号为202210022055.7,发明名称为“PDCCH检测方法、装置、终端及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种PDCCH检测方法、装置、终端及存储介质。
背景技术
在通信系统中,可以引入更大的子载波间隔。但随着子载波间隔的变大,符号长度会随之变的更短,这会给物理下行控制信道(Physical downlink control channel,PDCCH)监测带来影响。
当不同控制资源集(Control resource set,CORESET)的PDCCH monitor occasion(PDCCH盲检时机)对应的波束方向不同时,需要进行波束切换,由于子载波间隔(Subcarrier Spacing,SCS)变大导致循环前缀(Cyclic Prefix,CP)长度变短,波束切换的时间可能会超过CP的长度。
发明内容
针对现有技术存在的问题,本公开实施例提供一种PDCCH检测方法、装置、终端及存储介质。
第一方面,本公开实施例提供一种PDCCH检测方法,包括:
在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
在至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在至少一个目标CORESET的PDCCH监听时机中,对应不同 波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,门限值用于表征终端进行波束切换所需的最大时长。
可选地,根据本公开一个实施例的PDCCH检测方法,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
确定至少两个CORESET对应的目标排序;
基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
可选地,根据本公开一个实施例的PDCCH检测方法,确定至少两个CORESET对应的目标排序,包括以下至少一项:
基于至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定至少两个CORESET对应的第一目标排序;或
基于至少两个CORESET对应的优先级排序,确定至少两个CORESET对应的第二目标排序。
可选地,根据本公开一个实施例的PDCCH检测方法,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,在判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,待检测集合包括至少两个CORESET;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第一CORESET是在目标时刻待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,第十一CORESET为在待检测集合包括的除第一CORESET以外的所有CORESET中,在第一目标排序中排在第一CORESET之后的任一项CORESET;第二CORESET是在目标时 刻在所有第十一CORESET中最靠近第一CORESET的CORESET;目标时刻是判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
可选地,根据本公开一个实施例的PDCCH检测方法,判断是否将第一CORESET或第二CORESET从待检测集合中删除,包括:
在确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,且第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值的情况下,将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
可选地,根据本公开一个实施例的PDCCH检测方法,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将第三CORESET增加至待检测集合之后,待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值;在判断是否将第三CORESET增加至待检测集合中之前,待检测集合包括至少两个CORESET中优先级最高的一项;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第三CORESET是第二目标排序中在目标时刻还未被判断是否增加至待检测集合的CORESET中排序最靠前的CORESET,目标时刻是判断是否将第三CORESET增加至待检测集合中的时刻。
可选地,根据本公开一个实施例的PDCCH检测方法,判断是否将第三CORESET增加至待检测集合中,包括:
在待检测集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值的情况下,将第三标识增加至待检测集合;或,
在待检测集合中存在至少一个第四CORESET的情况下,若每个第四 CORESET对应的波束方向均与第三CORESET对应的波束方向相同,则将第三CORESET增加至待检测集合,其中,第四CORESET为与第三CORESET的PDCCH监听时机之间的时间间隔小于门限值的CORESET。
可选地,根据本公开一个实施例的PDCCH检测方法,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,方法还包括:
确定终端进行波束切换所需的目标时长;
基于目标时长,确定门限值;
其中,门限值大于或等于目标时长,门限值为符号数量或时间值。
可选地,根据本公开一个实施例的PDCCH检测方法,在门限值为符号数量的情况下,基于目标时长,确定门限值,包括:
在至少两个CORESET对应至少两个载波单元的情况下,在至少两个载波单元中确定子载波间隔最小的一项为目标载波;
基于目标载波和目标时长,确定符号数量。
可选地,根据本公开一个实施例的PDCCH检测方法,在基于目标时长,确定门限值之后,方法还包括:
向网络侧设备发送门限值。
可选地,根据本公开一个实施例的PDCCH检测方法,CORESET对应的波束方向基于CORESET关联的传输配置指示状态确定。
可选地,根据本公开一个实施例的PDCCH检测方法,至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于第五CORESET的结束符号的时域位置与第六CORESET的起始符号的时域位置之间的差值确定的;
其中,第五CORESET和第六CORESET是至少两个CORESET中任意两个CORESET;第五CORESET为第五CORESET和第六CORESET中时域位置较靠前的一项,第六CORESET为第五CORESET和第六CORESET中时域位置较靠后的一项。
可选地,根据本公开一个实施例的PDCCH检测方法,在至少两个控 制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,方法还包括:
基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序。
可选地,根据本公开一个实施例的PDCCH检测方法,基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序,包括:
基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序;
在第一优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的小区索引,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序;
在第二优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的搜索空间索引,对第二优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第三优先级排序;
基于第一优先级排序、第二优先级排序和第三优先级排序,确定优先级排序。
可选地,根据本公开一个实施例的PDCCH检测方法,搜索空间类型包括公共搜索空间和用户专用搜索空间,在第一优先级排序中,搜索空间类型为公共搜索空间的CORESET排在搜索空间类型为用户专用搜索空间的CORESET之前。
可选地,根据本公开一个实施例的PDCCH检测方法,在第二优先级排序中,第七CORESET排在第八CORESET之前,第七CORESET与第八CORESET为第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第七CORESET对应的小区索引小于第八CORESET对应的小区索引。
可选地,根据本公开一个实施例的PDCCH检测方法,在第三优先级排序中第九CORESET排在第十CORESET之前,第九CORESET与第十CORESET为第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第九CORESET对应的搜索空间索引小于第十CORESET对应的搜索空间索引。
可选地,根据本公开一个实施例的PDCCH检测方法,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,方法还包括:
基于至少两个CORESET分别对应的第一符号的时域位置,确定至少两个CORESET对应的优先级排序;
其中,对于至少两个CORESET中任意两项,第一符号的时域位置较靠前一项的优先级高于第一符号的时域位置较靠后一项的优先级;
第一符号为CORESET的起始符号或CORESET的结束符号。
可选地,根据本公开一个实施例的PDCCH检测方法,至少两个CORESET在时域上可用目标时隙的前N个符号,N为正整数,N由协议约定或者由网络侧设备配置,1≤N≤M,M为目标时隙的总符号数,M为正整数。
第二方面,本公开实施例还提供一种终端,包括存储器,收发机,处理器;其中:
存储器,用于存储计算机程序;收发机,用于在处理器的控制下收发数据;处理器,用于读取存储器中的计算机程序并执行以下操作:
在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
在至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,门限值用于表征终端进行波束切换所需的最大时长。
可选地,在至少两个控制资源集CORESET的物理下行控制信道 PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
确定至少两个CORESET对应的目标排序;
基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
可选地,确定至少两个CORESET对应的目标排序,包括以下至少一项:
基于至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定至少两个CORESET对应的第一目标排序;或
基于至少两个CORESET对应的优先级排序,确定至少两个CORESET对应的第二目标排序。
可选地,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,在判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,待检测集合包括至少两个CORESET;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第一CORESET是在目标时刻待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,第十一CORESET为在待检测集合包括的除第一CORESET以外的所有CORESET中,在第一目标排序中排在第一CORESET之后的任一项CORESET;第二CORESET是在目标时刻在所有第十一CORESET中最靠近第一CORESET的CORESET;目标时刻是判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
可选地,判断是否将第一CORESET或第二CORESET从待检测集合中删除,包括:
在确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,且第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值的情况下,将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
可选地,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将第三CORESET增加至待检测集合之后,待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值;在判断是否将第三CORESET增加至待检测集合中之前,待检测集合包括至少两个CORESET中优先级最高的一项;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第三CORESET是第二目标排序中在目标时刻还未被判断是否增加至待检测集合的CORESET中排序最靠前的CORESET,目标时刻是判断是否将第三CORESET增加至待检测集合中的时刻。
可选地,判断是否将第三CORESET增加至待检测集合中,包括:
在待检测集合中的每个CORESET的PDCCH监听时机与第三
CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值的情况下,将第三标识增加至待检测集合;或,
在待检测集合中存在至少一个第四CORESET的情况下,若每个第四CORESET对应的波束方向均与第三CORESET对应的波束方向相同,则将第三CORESET增加至待检测集合,其中,第四CORESET为与第三CORESET的PDCCH监听时机之间的时间间隔小于门限值的CORESET。
可选地,在至少两个控制资源集CORESET的物理下行控制信道 PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,操作还包括:
确定终端进行波束切换所需的目标时长;
基于目标时长,确定门限值;
其中,门限值大于或等于目标时长,门限值为符号数量或时间值。
可选地,在门限值为符号数量的情况下,基于目标时长,确定门限值,包括:
在至少两个CORESET对应至少两个载波单元的情况下,在至少两个载波单元中确定子载波间隔最小的一项为目标载波;
基于目标载波和目标时长,确定符号数量。
可选地,在基于目标时长,确定门限值之后,操作还包括:
向网络侧设备发送门限值。
可选地,CORESET对应的波束方向基于CORESET关联的传输配置指示状态确定。
可选地,至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于第五CORESET的结束符号的时域位置与第六CORESET的起始符号的时域位置之间的差值确定的;
其中,第五CORESET和第六CORESET是至少两个CORESET中任意两个CORESET;第五CORESET为第五CORESET和第六CORESET中时域位置较靠前的一项,第六CORESET为第五CORESET和第六CORESET中时域位置较靠后的一项。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,操作还包括:
基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序。
可选地,基于至少两个CORESET分别对应的搜索空间类型、小区索 引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序,包括:
基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序;
在第一优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的小区索引,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序;
在第二优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的搜索空间索引,对第二优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第三优先级排序;
基于第一优先级排序、第二优先级排序和第三优先级排序,确定优先级排序。
可选地,搜索空间类型包括公共搜索空间和用户专用搜索空间,在第一优先级排序中,搜索空间类型为公共搜索空间的CORESET排在搜索空间类型为用户专用搜索空间的CORESET之前。
可选地,在第二优先级排序中,第七CORESET排在第八CORESET之前,第七CORESET与第八CORESET为第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第七CORESET对应的小区索引小于第八CORESET对应的小区索引。
可选地,在第三优先级排序中第九CORESET排在第十CORESET之前,第九CORESET与第十CORESET为第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第九CORESET对应的搜索空间索引小于第十CORESET对应的搜索空间索引。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,操作还包括:
基于至少两个CORESET分别对应的第一符号的时域位置,确定至少两个CORESET对应的优先级排序;
其中,对于至少两个CORESET中任意两项,第一符号的时域位置较靠前一项的优先级高于第一符号的时域位置较靠后一项的优先级;
第一符号为CORESET的起始符号或CORESET的结束符号。
可选地,至少两个CORESET在时域上可用目标时隙的前N个符号,N为正整数,N由协议约定或者由网络侧设备配置,1≤N≤M,M为目标时隙的总符号数,M为正整数。
第三方面,本公开实施例还提供一种PDCCH检测装置,包括:第一确定单元,检测单元,其中:
第一确定单元,用于在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
检测单元,用于在至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,门限值用于表征终端进行波束切换所需的最大时长。
可选地,所述第一确定单元还用于:
确定所述至少两个CORESET对应的目标排序;
基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机。
可选地,所述第一确定单元还用于以下至少一项:
基于所述至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定所述至少两个CORESET对应的第一目标排序;或
基于所述至少两个CORESET对应的优先级排序,确定所述至少两个CORESET对应的第二目标排序。
可选地,所述第一确定单元还用于:
基于所述第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值,在所述判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,所述待检测集合包括所述至少两个CORESET;
将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
其中,所述第一CORESET是在目标时刻所述待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,所述第十一CORESET为在所述待检测集合包括的除所述第一CORESET以外的所有CORESET中,在所述第一目标排序中排在所述第一CORESET之后的任一项CORESET;所述第二CORESET是在目标时刻在所有所述第十一CORESET中最靠近所述第一CORESET的CORESET;所述目标时刻是所述判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
可选地,所述第一确定单元还用于:
在确定所述第一CORESET对应的波束方向和所述第二CORESET对应的波束方向不同,且所述第一CORESET的PDCCH监听时机和所述第二CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的情况下,将所述第一CORESET和所述第二CORESET中优先级更低的CORESET从所述待检测集合中删除。
可选地,所述第一确定单元还用于:
基于所述第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将所述第三CORESET增加至所述待检测集合之后,所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值;在所述判断是否将第三CORESET增加至待检测集合中之前,所述待检测集合包括所述至少两个CORESET 中优先级最高的一项;
将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
其中,所述第三CORESET是所述第二目标排序中在目标时刻还未被判断是否增加至所述待检测集合的CORESET中排序最靠前的CORESET,所述目标时刻是所述判断是否将第三CORESET增加至待检测集合中的时刻。
可选地,所述第一确定单元还用于:
在所述待检测集合中的每个所述CORESET的PDCCH监听时机与所述第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于所述门限值的情况下,将所述第三标识增加至所述待检测集合;或,
在所述待检测集合中存在至少一个第四CORESET的情况下,若每个所述第四CORESET对应的波束方向均与所述第三CORESET对应的波束方向相同,则将所述第三CORESET增加至所述待检测集合,其中,所述第四CORESET为与所述第三CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的所述CORESET。
可选地,所述装置还包括第二确定单元,所述第二确定单元用于:
确定所述终端进行波束切换所需的目标时长;
基于所述目标时长,确定所述门限值;
其中,所述门限值大于或等于所述目标时长,所述门限值为符号数或时间值。
可选地,所述第二确定单元还用于:
在所述门限值为所述符号数的情况下,若所述至少两个CORESET对应至少两个载波单元,则在所述至少两个载波单元中确定子载波间隔最小的一项为目标载波;
基于所述目标载波和所述目标时长,确定所述符号数。
可选地,所述装置还包括发送单元,所述发送单元用于:
向网络侧设备发送所述门限值。
可选地,所述CORESET对应的波束方向基于所述CORESET关联的传输配置指示状态确定。
可选地,所述至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于所述第五CORESET的结束符号的时域位置与所述第六CORESET的起始符号的时域位置之间的差值确定的;
其中,所述第五CORESET和所述第六CORESET是所述至少两个CORESET中任意两个CORESET;所述第五CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠前的一项,所述第六CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠后的一项。
可选地,所述装置还包括第三确定单元,所述第三确定单元用于:
基于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序。
可选地,所述第三确定单元还用于:
基于所述至少两个CORESET分别对应的搜索空间类型,获取所述至少两个CORESET对应的第一优先级排序;
在所述第一优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的小区索引,对所述第一优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第二优先级排序;
在所述第二优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的搜索空间索引,对所述第二优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第三优先级排序;
基于所述第一优先级排序、所述第二优先级排序和所述第三优先级排序,确定所述优先级排序。
可选地,所述搜索空间类型包括公共搜索空间和用户专用搜索空间,在所述第一优先级排序中,所述搜索空间类型为所述公共搜索空间的CORESET排在所述搜索空间类型为所述用户专用搜索空间的CORESET之前。
可选地,在所述第二优先级排序中,第七CORESET排在第八CORESET之前,所述第七CORESET与所述第八CORESET为所述第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第七CORESET对应的小区索引小于所述第八CORESET对应的小区索引。
可选地,在所述第三优先级排序中第九CORESET排在第十CORESET之前,所述第九CORESET与所述第十CORESET为所述第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第九CORESET对应的搜索空间索引小于所述第十CORESET对应的搜索空间索引。
可选地,所述装置还包括第四确定单元,所述第四确定单元用于:
基于所述至少两个CORESET分别对应的第一符号的时域位置,确定所述至少两个CORESET对应的优先级排序;
其中,对于所述至少两个CORESET中任意两项,所述第一符号的时域位置较靠前一项的优先级高于所述第一符号的时域位置较靠后一项的优先级;
所述第一符号为所述CORESET的起始符号或所述CORESET的结束符号。
可选地,所述至少两个CORESET在时域上可用目标时隙的前N个符号,所述N为正整数,所述N由协议约定或者由网络侧设备配置,1≤N≤M,所述M为所述目标时隙的总符号数,所述M为正整数。
第四方面,本公开实施例还提供一种处理器可读存储介质,处理器可读存储介质存储有计算机程序,计算机程序用于使处理器执行如上第一方面的PDCCH检测方法的步骤。
本公开实施例提供的PDCCH检测方法、装置、终端及存储介质,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的PDCCH检测方法的流程示意图之一;
图2是本公开实施例提供的单载波PDCCH监听时机示意图之一;
图3是本公开实施例提供的单载波PDCCH监听时机示意图之二;
图4是本公开实施例提供的多载波PDCCH监听时机示意图之一;
图5是本公开实施例提供的多载波PDCCH监听时机示意图之二;
图6是本公开实施例提供的单载波PDCCH监听时机示意图之三;
图7是本公开实施例提供的单载波PDCCH监听时机示意图之四;
图8是本公开实施例提供的多载波PDCCH监听时机示意图之三;
图9是本公开实施例提供的多载波PDCCH监听时机示意图之四;
图10是本公开实施例提供的一种终端的结构示意图;
图11是本公开实施例提供的PDCCH检测装置的结构示意图。
具体实施方式
为了便于更加清晰地理解本公开各实施例,首先对一些相关的背景知识进行如下介绍。
(1)波束切换;
波束切换需要满足一定的时间要求,在较低的SCS配置下,OFDM符号较长,波束切换可以在OFDM的CP内完成,而当高频配置的SCS较大时,例如子载波间隔为480kHz或960kHz时,波束切换可能会需要一个符号长度间隔,此时不满足间隔时间的相邻两个不同波束方向的CORESET不能同时接收。
为了避免这种波束切换的情况,网络侧设备在配置CORESET的资源时,需要保证两个波束方向不同的CORESET之间的时域资源间隔大于波束切换的时间,这样会限制基站进行控制资源配置的灵活性,导致资源短缺。
(2)CORESET的PDCCH monitoring occasion存在重叠的情况;
在通信系统中,当用户设备(User Equipment,UE)需要在一个带宽子集(Bandwidth Part,BWP)上检测多个PDCCH盲检的候选资源时,如果不同CORESET对应的接收波束不同,且CORESET存在重叠的情况,则处理方式是只用其中优先级最高的CORESET对应的波束进行接收。不同载波单元(Component Carrier,CC)同一时刻上需要采用相同的传输配置指示(Transmission Configuration Indicator,TCI)状态(state)。优先级判断的标准为公共搜索空间(Common Search Space,CSS)高于用户专用搜索空间(UE special Search Space,USS),同为CSS或者USS时,Cell Index越低优先级越高,Cell Index相同时,搜索空间的index越小优先级越高。如果不同CORESET对应的接收波束不同,且CORESET不存在重叠的情况,则CORESET使用各自的波束进行接收,需要进行接收波束切换,切换可在对应OFDM符号的CP时间内进行。
由于只针对CORESET的PDCCH monitoring occasion存在重叠的情况进行处理,并未考虑波束切换时间长度不足的情况,而当SCS变大导致CP长度变短,波束切换的时间可能会超过CP的长度,此时不同CORESET的PDCCH monitoring occasion之间的时间间隔需要大于一定的长度时才能够进行波束切换,使用各自的波束方向进行接收,否则只能选择一个CORESET的PDCCH monitoring occasion的波束方向进行接收。
为了克服上述缺陷,本公开提供一种PDCCH检测方法,通过确定至少一个目标CORESET的PDCCH监听时机,可以实现在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系 统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP) 通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
图1是本公开实施例提供的PDCCH检测方法的流程示意图之一,如图1所示,本公开实施例提供一种PDCCH检测方法,其执行主体可以为终端,例如,手机等。该方法包括如下步骤101至步骤102:
步骤101,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
具体地,终端可以在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,使得至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,也即 可以保证不同波束方向的任意两个目标CORESET之间的时域资源间隔大于波束的切换时间。
例如,终端可以对至少两个CORESET的PDCCH监听时机对应的所有两两组合进行判断,获取每个两两组合的判断结果,其中,任一两两组合包括两个CORESET,任一两两组合的判断结果用于表示对应两两组合中的两个CORESET之间的时域资源间隔是否满足波束切换的时间要求;进而终端可以基于每个两两组合的判断结果,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
例如,终端可以对至少两个CORESET进行排序,获取对应于至少两个CORESET的排序A,进而终端可以基于排序A,对至少两个CORESET的PDCCH监听时机对应的两两组合进行判断,获取至少一个两两组合的判断结果,其中,任意两两组合包括两个CORESET,任一两两组合的判断结果用于表示对应两两组合中的两个CORESET之间的时域资源间隔是否满足波束切换的时间要求;进而终端可以基于至少一个两两组合的判断结果,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
需要说明的是,以上例子仅作为对本公开实施例的举例说明,不作为对本公开实施例的限定。
可选地,至少两个CORESET的PDCCH监听时机可以是两个或两个以上的CORESET的PDCCH监听时机,例如,可以是2个CORESET的PDCCH监听时机,还可以是3个CORESET的PDCCH监听时机,还可以是5个CORESET的PDCCH监听时机,对此不作限定。
可以理解的是,门限值用于表征终端进行波束切换所需的最大时长,在对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值的情况下,可以保证不同波束方向的任意两个目标CORESET之间的时域资源间隔大于波束的切换时间。
步骤102,在至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,门限值用于表征终端进行波束切换所需的最大时长。
具体地,在确定至少一个目标CORESET的PDCCH监听时机之后,终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH。
例如,至少一个目标CORESET可以包括CORESET 1、CORESET 2和CORESET 3,终端可以在CORESET 1的PDCCH监听时机以CORESET 1对应的波束方向检测PDCCH,在CORESET 2的PDCCH监听时机以CORESET 2对应的波束方向检测PDCCH,在CORESET 3的PDCCH监听时机以CORESET 3对应的波束方向检测PDCCH。
例如,至少一个目标CORESET可以包括CORESET 4、CORESET 5和CORESET 6,其中,按PDCCH监听时机的时间顺序,CORESET 4的PDCCH监听时机排在第1位,CORESET 5的PDCCH监听时机排在第2位,CORESET 6的PDCCH监听时机排在第3位,且每个CORESET对应的波束方向互不相同;
终端可以在CORESET 4的PDCCH监听时机以CORESET 4对应的波束方向检测PDCCH,之后可以切换至CORESET 5对应的波束方向,进而在CORESET 5的PDCCH监听时机以CORESET 5对应的波束方向检测PDCCH,之后可以切换至CORESET 6对应的波束方向,进而在CORESET 6的PDCCH监听时机以CORESET 6对应的波束方向检测PDCCH。
需要说明的是,以上例子仅作为对本公开实施例的举例说明,不作为对本公开实施例的限定。
可以理解的是,由于对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,可以保证在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH。
本公开实施例提供的PDCCH检测方法,通过在至少两个CORESET 的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
确定至少两个CORESET对应的目标排序;
基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
具体地,终端可以对至少两个CORESET进行排序,进而可以获取至少两个CORESET对应的目标排序,进而可以基于目标排序,对至少两个CORESET的PDCCH监听时机进行判断,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
例如,至少两个CORESET可以包括CORESET 1、CORESET 2和CORESET 3,终端可以基于一定规则(例如时间顺序或优先级排序)对至少两个CORESET进行排序,例如确定的目标排序可以是CORESET 1排在第1位,CORESET 2排在第2位,CORESET 3排在第3位;
进而终端可以按上述目标排序,对至少两个CORESET的PDCCH监听时机进行判断,在CORESET 1的PDCCH监听时机、CORESET 2的PDCCH监听时机和CORESET 3的PDCCH监听时机中确定至少一个目标CORESET的PDCCH监听时机,例如至少一个目标CORESET的PDCCH监听时机可以是CORESET 1的PDCCH监听时机和CORESET 3的PDCCH监听时机;
进而终端可以在CORESET 1的PDCCH监听时机以CORESET 1对应的波束方向检测PDCCH,在CORESET 3的PDCCH监听时机以CORESET 3对应的波束方向检测PDCCH。
需要说明的是,以上例子仅作为对本公开实施例的举例说明,不作为对本公开实施例的限定。
因此,终端可以按目标排序对至少两个CORESET的PDCCH监听时机进行判断,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
可选地,确定至少两个CORESET对应的目标排序,包括以下至少一项:
基于至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定至少两个CORESET对应的第一目标排序;或
基于至少两个CORESET对应的优先级排序,确定至少两个CORESET对应的第二目标排序。
具体地,终端可以按至少两个CORESET分别对应的PDCCH监听时机的时间顺序,对至少两个CORESET进行排序,进而可以获取至少两个CORESET对应的目标排序,进而可以基于目标排序,对至少两个CORESET的PDCCH监听时机进行判断,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
具体地,终端可以按至少两个CORESET对应的优先级排序,对至少两个CORESET进行排序,进而可以获取至少两个CORESET对应的目标排序,进而可以基于目标排序,对至少两个CORESET的PDCCH监听时机进行判断,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
例如,至少两个CORESET可以包括CORESET 1、CORESET 2和CORESET 3,终端可以基于至少两个CORESET分别对应的PDCCH监听时机的时间顺序,例如CORESET 1对应的PDCCH监听时机最靠前,CORESET 3对应的PDCCH监听时机最靠后,对至少两个CORESET进行 排序,例如确定的目标排序可以是CORESET 1排在第1位,CORESET 2排在第2位,CORESET 3排在第3位。
例如,至少两个CORESET可以包括CORESET 4、CORESET 5和CORESET 6,终端可以基于至少两个CORESET对应的优先级排序,例如CORESET 4的优先级最高,CORESET 5的优先级次之,CORESET 6的优先级最低,对至少两个CORESET进行排序,例如确定的目标排序可以是CORESET 4排在第1位,CORESET 5排在第2位,CORESET 6排在第3位。
因此,终端可以通过多种方式确定至少两个CORESET对应的目标排序,目标排序可以是第一目标排序或第二目标排序,进而可以基于第一目标排序或第二目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
可选地,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,在判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,待检测集合包括至少两个CORESET;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第一CORESET是在目标时刻待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,第十一CORESET为在待检测集合包括的除第一CORESET以外的所有CORESET中,在第一目标排序中排在第一CORESET之后的任一项CORESET;第二CORESET是在目标时刻在所有第十一CORESET中最靠近第一CORESET的CORESET;目标时刻是判断是否将第一CORESET或第二CORESET从待检测集合中删除 的时刻。
具体地,在确定第一目标排序之后,终端可以将至少两个CORESET全部增加至待检测集合中,以获取初始的待检测集合,进而可以基于第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合删除,直至待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,也即待检测集合中不同波束方向的任意两个目标CORESET之间的时域资源间隔大于波束的切换时间;
具体地,在基于第一目标排序执行完上述判断之后,终端可以将检测集合中的CORESET作为至少一个目标CORESET,也即可以将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机。
可选地,第一CORESET可以是目标时刻待检测集合中还未与第十一CORESET进行判断的CORESET,第十一CORESET为在待检测集合包括的除第一CORESET以外的所有CORESET中,在第一目标排序中排在第一CORESET之后的任一项CORESET,其中,目标时刻可以是判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
可选地,第二CORESET可以是目标时刻在所有第十一CORESET中最靠近第一CORESET的CORESET。
例如,在某个时隙Slot0中的CORESET对应的第一目标排序,依次可以是CORESET 1,CORESET 2,CORESET 3,CORESET 4,CORESET 5,其中,CORESET 1排在最前,CORESET 5排在最后;
在目标时刻A,若CORESET 1已从待检测集合中删除,且CORESET 2还未与排在其后的CORESET进行判断,则第一CORESET可以是CORESET 2;第十一CORESET可以是CORESET 3,CORESET 4或CORESET 5中的任一项,由于CORESET 3是所有第十一CORESET中最靠近CORESET 2的CORESET,因而第二CORESET可以是CORESET 3;
在目标时刻A,终端可以判断是否将CORESET 2或CORESET 3从待 检测集合中删除。
因此,终端可以基于第一目标排序,对待检测集合中第一CORESET和第二CORESET进行判断,判断是否将第一CORESET或第二CORESET从待检测集合中删除,以使最后确定的待检测集合中的对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而基于待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机,终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH。
可选地,判断是否将第一CORESET或第二CORESET从待检测集合中删除,包括:
在确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,且第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值的情况下,将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
具体地,在判断是否将第一CORESET或第二CORESET从待检测集合中删除的操作中,终端可以判断第一CORESET对应的波束方向和第二CORESET对应的波束方向是否相同,以及判断第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔是否小于门限值;
具体地,若确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,且第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值,则可以将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
可选地,终端可以先判断第一CORESET对应的波束方向和第二CORESET对应的波束方向是否相同,若确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,则继续判断第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间 隔是否小于门限值,若第一CORESET的PDCCH监听时机和第二
CORESET的PDCCH监听时机之间的时间间隔小于门限值,则可以将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
可选地,终端可以先判断第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔是否小于门限值,若第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值,则继续判断第一CORESET对应的波束方向和第二CORESET对应的波束方向是否相同,若确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,则可以将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
因此,终端可以在第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,且第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值的情况下,将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
可选地,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将第三CORESET增加至待检测集合之后,待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值;在判断是否将第三CORESET增加至待检测集合中之前,待检测集合包括至少两个CORESET中优先级最高的一项;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第三CORESET是第二目标排序中在目标时刻还未被判断是否增加至待检测集合的CORESET中排序最靠前的CORESET,目标时刻是 判断是否将第三CORESET增加至待检测集合中的时刻。
具体地,在确定第二目标排序之后,终端可以将至少两个CORESET中优先级最高的一项增加至待检测集合中,以获取初始的待检测集合,进而可以基于第二目标排序判断是否将第三CORESET增加至待检测集合,以使将第三CORESET增加至待检测集合之后,待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,也即待检测集合中不同波束方向的任意两个目标CORESET之间的时域资源间隔大于波束的切换时间。
具体地,在基于第二目标排序执行完上述判断之后,终端可以将检测集合中的CORESET作为至少一个目标CORESET,也即可以将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机。
例如,在某个时隙Slot0中的CORESET对应的第二目标排序,依次可以是CORESET 1,CORESET 2,CORESET 3,CORESET 4,CORESET 5,其中,CORESET 1排在最前,CORESET 5排在最后;
在确定第二目标排序之后,终端可以将Slot0中的优先级最高的一项,也即CORESET 1增加至待检测集合中,以获取初始的待检测集合;
在目标时刻B,若CORESET 2已被判断是否增加至待检测集合,且CORESET 3还未被判断是否增加至待检测集合,则CORESET 3是第二目标排序中在目标时刻B还未被判断是否增加至待检测集合的CORESET中排序最靠前的CORESET,因而在目标时刻B,第三CORESET可以是CORESET 3;
在目标时刻B,终端可以判断是否将CORESET 3增加至待检测集合的CORESET中。
因此,终端可以基于第二目标排序,判断是否将第三CORESET增加至待检测集合中,使得最后确定的待检测集合中的对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而基于待检测集合中的CORESET的PDCCH监听时机作为至少一个目 标CORESET的PDCCH监听时机,终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH。
可选地,判断是否将第三CORESET增加至待检测集合中,包括:
在待检测集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值的情况下,将第三标识增加至待检测集合;或,
在待检测集合中存在至少一个第四CORESET的情况下,若每个第四CORESET对应的波束方向均与第三CORESET对应的波束方向相同,则将第三CORESET增加至待检测集合,其中,第四CORESET为与第三CORESET的PDCCH监听时机之间的时间间隔小于门限值的CORESET。
具体地,终端在判断是否将第三CORESET增加至待检测集合的操作中,可以判断待检测集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔是否大于或等于门限值,若确定待检测集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值,则可以将第三CORESET增加至待检测集合;
具体地,终端在判断是否将第三CORESET增加至待检测集合的操作中,可以在待检测集合中存在至少一个第四CORESET的情况下,判断每个第四CORESET对应的波束方向是否与第三CORESET对应的波束方向相同,若确定每个第四CORESET对应的波束方向均与第三CORESET对应的波束方向相同,则可以将第三CORESET增加至待检测集合;
其中,第四CORESET可以是与第三CORESET的PDCCH监听时机之间的时间间隔小于门限值的CORESET。
因此,终端通过判断是否将第三CORESET增加至待检测集合,可以使得将第三CORESET增加至待检测集合之后,待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值。
可选地,在至少两个控制资源集CORESET的物理下行控制信道 PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,方法还包括:
确定终端进行波束切换所需的目标时长;
基于目标时长,确定门限值;
其中,门限值大于或等于目标时长,门限值为符号数量或时间值。
具体地,终端可以确定终端自身进行波束切换所需的目标时长,进而基于目标时长,可以确定门限值,以使门限值大于或等于目标时长。
可选地,终端可以确定终端自身进行波束切换所需的目标时长,进而基于目标时长,可以确定符号数量,以使符号数量对应的时间长度大于或等于目标时长。
可选地,终端可以确定终端自身进行波束切换所需的目标时长,进而基于目标时长,可以确定时间值,以使时间值大于或等于目标时长。
因此,终端通过自身进行波束切换所需的目标时长,可以确定门限值,门限值可以表征终端进行波束切换所需的最大时长。
可选地,在门限值为符号数量的情况下,基于目标时长,确定门限值,包括:
在至少两个CORESET对应至少两个载波单元的情况下,在至少两个载波单元中确定子载波间隔最小的一项为目标载波;
基于目标载波和目标时长,确定符号数量。
具体地,在门限值为符号数量的情况下,若至少两个CORESET对应至少两个载波单元(Component Carrier,CC),则终端可以在至少两个载波单元中确定子载波间隔最小的一项为目标载波,进而可以基于目标载波和目标时长,确定符号数量。
因此,终端可以确定终端自身进行波束切换所需的目标时长,进而基于目标载波和目标时长,可以确定符号数量,使得符号数量对应的时间长度大于或等于目标时长。
可选地,在基于目标时长,确定门限值之后,方法还包括:
向网络侧设备发送门限值。
具体地,终端在确定门限值之后,可以向网络侧设备上报该门限值,以使网络侧设备获知终端进行波束切换所需的最大时长。
可以理解的是,网络侧设备在获知终端进行波束切换所需的最大时长,可以基于此,调整后续CORESET的PDCCH监听时机,和/或调整后续CORESET的波束方向。
可选地,CORESET对应的波束方向基于CORESET关联的传输配置指示状态确定。
可选地,终端可以基于CORESET关联的TCI状态,确定CORESET对应的波束方向。
可选地,至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于第五CORESET的结束符号的时域位置与第六CORESET的起始符号的时域位置之间的差值确定的;
其中,第五CORESET和第六CORESET是至少两个CORESET中任意两个CORESET;第五CORESET为第五CORESET和第六CORESET中时域位置较靠前的一项,第六CORESET为第五CORESET和第六CORESET中时域位置较靠后的一项。
具体地,终端可以确定第五CORESET的结束符号的时域位置与第六CORESET的起始符号的时域位置之间的差值,进而基于该差值,确定第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔;
可以理解的是,第五CORESET和第六CORESET是至少两个CORESET中任意两个CORESET,第五CORESET为第五CORESET和第六CORESET中时域位置较靠前的一项,第六CORESET为第五CORESET和第六CORESET中时域位置较靠后的一项,也即第五CORESET的起始符号的时域位置在第六CORESET的起始符号的时域位置之前。
因此,终端可以通过第五CORESET的结束符号的时域位置与第六CORESET的起始符号的时域位置之间的差值,确定第五CORESET的 PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,方法还包括:
基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的小区索引,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间索引,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型和搜索空间索引,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型和小区索引,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的小区索引和搜索空间索引,确定至少两个CORESET对应的优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引,确定至少两个CORESET对应的优先级排序。
因此,终端可以基于至少两个CORESET分别对应的一项或多项配置信息,确定至少两个CORESET对应的优先级排序。
可选地,基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序,包括:
基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序;
在第一优先级排序中存在多项优先级相同的CORESET的情况下,基 于至少两个CORESET分别对应的小区索引,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序;
在第二优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的搜索空间索引,对第二优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第三优先级排序;
基于第一优先级排序、第二优先级排序和第三优先级排序,确定优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序,进而可以基于第一优先级排序,确定优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序,进而可以基于至少两个CORESET分别对应的小区索引,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序,进而可以基于第二优先级排序,确定优先级排序。
可选地,终端可以基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序;
进而可以基于至少两个CORESET分别对应的小区索引,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序,
进而可以基于至少两个CORESET分别对应的搜索空间索引,对第二优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第三优先级排序,进而可以基于第三优先级排序,确定优先级排序。
因此,终端可以基于第一优先级排序、第二优先级排序和第三优先级排序,确定优先级排序。
可选地,搜索空间类型包括公共搜索空间和用户专用搜索空间,在第一优先级排序中,搜索空间类型为公共搜索空间的CORESET排在搜索空间类型为用户专用搜索空间的CORESET之前。
可选地,终端可以基于搜索空间类型为公共搜索空间的CORESET排在搜索空间类型为用户专用搜索空间的CORESET之前的排序规则,对至少两个CORESET进行排序,获取至少两个CORESET对应的第一优先级排序。
可选地,在第二优先级排序中,第七CORESET排在第八CORESET之前,第七CORESET与第八CORESET为第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第七CORESET对应的小区索引小于第八CORESET对应的小区索引。
可选地,终端可以基于小区索引越小排序越靠前的排序规则,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序,使得在第二优先级排序中第七CORESET排在第八CORESET之前。
可选地,在第三优先级排序中第九CORESET排在第十CORESET之前,第九CORESET与第十CORESET为第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第九CORESET对应的搜索空间索引小于第十CORESET对应的搜索空间索引。
可选地,终端可以基于搜索空间索引越小排序越靠前的排序规则,对第二优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第三优先级排序,使得在第三优先级排序中第九CORESET排在第十CORESET之前。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,方法还包括:
基于至少两个CORESET分别对应的第一符号的时域位置,确定至少两个CORESET对应的优先级排序;
其中,对于至少两个CORESET中任意两项,第一符号的时域位置较靠前一项的优先级高于第一符号的时域位置较靠后一项的优先级;
第一符号为CORESET的起始符号或CORESET的结束符号。
可选地,终端可以基于第一符号的时域位置越靠前排序越靠前的排序规则,对至少两个CORESET进行排序,获取至少两个CORESET对应的优先级排序。
可选地,终端可以基于起始符号的时域位置越靠前排序越靠前的排序规则,对至少两个CORESET进行排序,获取至少两个CORESET对应的优先级排序。
可选地,终端可以基于结束符号的时域位置越靠前排序越靠前的排序规则,对至少两个CORESET进行排序,获取至少两个CORESET对应的优先级排序。
可选地,至少两个CORESET在时域上可用目标时隙的前N个符号,N为正整数,N由协议约定或者由网络侧设备配置,1≤N≤M,M为目标时隙的总符号数,M为正整数。
可选地,可以通过协议约定至少两个CORESET在时域上可用目标时隙的前N个符号,1≤N≤M,M为目标时隙的总符号数,其中,N为正整数,M为正整数。
可选地,可以通过网络侧设备配置至少两个CORESET在时域上可用目标时隙的前N个符号,1≤N≤M,M为目标时隙的总符号数其中,N为正整数,M为正整数。
本公开实施例提供的PDCCH检测方法,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域 资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
在一个实施例中,图2是本公开实施例提供的单载波PDCCH监听时机示意图之一,图2为本公开的一个可选的示例,但不作为对本公开的限定;如图2所示,对于单载波的至少两个控制资源集CORESET的PDCCH监听时机,可以确定每个CORESET优先级如表1所示,其中,优先级等级值越小优先级越高,每个CORESET的传输配置指示(Transmission Configuration Indicator,TCI)状态可以通过准共站址(Quasi Co-Location,QCL)typeD所指示的参考信号(Reference Signal,RS)确定。
表1 CORESET优先级排序1
优先级等级 CORESET QCL-type D
3 1 RS 1
2 2 RS 2
1 3 RS 3
4 4 RS 4
5 5 RS 2
可选地,门限值可以为一个符号的长度。
上述在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机的过程,可以包括步骤201至步骤202:
步骤201,对于每个时隙(slot)配置的至少两个CORESET,按照起始时间排序,进而可以获取slot0中的CORESET对应的第一目标排序,以及slot1中的CORESET对应的第一目标排序,其中:
Slot0中的CORESET对应的第一目标排序,依次可以是CORESET 1,CORESET 2,CORESET 3,CORESET 4,CORESET 5,其中,CORESET 1排在最前,CORESET 5排在最后;
Slot1中的CORESET对应的第一目标排序,依次可以是CORESET 1,CORESET 4,CORESET 5,其中,CORESET 1排在最前,CORESET 5排 在最后;
步骤202,按照第一目标排序判断是否存在波束重叠以及进行波束重叠处理;
可选地,波束(beam)重叠的准则是相邻两个PDCCH监听时机,前一个PDCCH监听时机的最后一个符号和后一个PDCCH监听时机的第一个符号之间的间隔是否小于门限要求,如果小于门限要求则存在beam重叠。
可选地,beam重叠处理方法可以是,在两个CORESET的PDCCH监听时机存在beam重叠的情况下,若这两个CORESET的TCI状态不一致,则将这两个CORESET中优先级较低的CORESET从待检测CORESET集合中删除;在两个CORESET的PDCCH监听时机存在beam重叠的情况下,若这两个CORESET的TCI状态一致,则将这两个CORESET保留在待检测CORESET集合中;
例如,可以按照Slot0中的CORESET对应的第一目标排序,对Slot0中的CORESET进行两两判断是否存在beam重叠,以及进行beam重叠处理;进而可以确定从Slot0对应的待检测CORESET集合中删除CORESET的顺序,从前到后依次可以是CORESET 1,CORESET 2,CORESET 4,CORESET 5,其中,最先删除的是CORESET 1,最后删除的是CORESET 5。
例如,可以按照Slot1中的CORESET对应的第一目标排序,对Slot1中的CORESET进行两两判断是否存在beam重叠,以及进行beam重叠处理;进而可以确定从待检测CORESET集合中删除的可以是CORESET 5。
可选地,在门限值为一个符号的长度的情况下,可以确定最终的待检测CORESET集合1,如表2所示。
表2最终的待检测CORESET集合1
Slot CORESET QCL-type D
0 3 RS 3
1 1 RS 1
1 4 RS 4
可选地,图3是本公开实施例提供的单载波PDCCH监听时机示意图之二,如图3所示,在门限值为一个符号的长度的情况下,可以确定最终的待检测CORESET集合1。
可选地,图4是本公开实施例提供的多载波PDCCH监听时机示意图之一,图4为本公开的一个可选的示例,但不作为对本公开的限定;如图4所示,对于多载波的至少两个控制资源集CORESET的PDCCH监听时机,可以确定每个CORESET优先级如表3所示,其中,优先级等级值越小优先级越高,每个CORESET的TCI状态可以通过QCL typeD所指示的RS确定。
表3 CORESET优先级排序2
优先级等级 CORESET QCL-type D
3 1 RS 1
2 2 RS 2
1 3 RS 3
4 4 RS 4
5 5 RS 2
6 6 RS 1
7 7 RS 2
可选地,如图4所示,门限值可以为CC1一个符号的长度(CC1的SCS较小,因此以CC1的符号数量来定义门限值,可以换算为CC2两个符号的长度)。
上述在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机的过程,可以包括步骤401至步骤402:
步骤401,对于slot0配置的至少两个CORESET,按照起始时间排序,所有CC共同排序,进而可以获取slot0中的CORESET对应的第一目标排 序,其中:
Slot0中的CORESET对应的第一目标排序,依次可以是CORESET 1,CORESET 6,CORESET 2,CORESET 7,CORESET 3,CORESET 4,CORESET 5,其中,CORESET 1排在最前,CORESET 5排在最后;
步骤402,按照第一目标排序判断是否存在波束重叠以及进行波束重叠处理;
可选地,波束(beam)重叠的准则是相邻两个PDCCH监听时机,前一个PDCCH监听时机的最后一个符号和后一个PDCCH监听时机的第一个符号之间的间隔是否小于门限要求,如果小于门限要求则存在beam重叠。
可选地,beam重叠处理方法可以是,在两个CORESET的PDCCH监听时机存在beam重叠的情况下,若这两个CORESET的TCI状态不一致,则将这两个CORESET中优先级较低的CORESET从待检测CORESET集合中删除;在两个CORESET的PDCCH监听时机存在beam重叠的情况下,若这两个CORESET的TCI状态一致,则将这两个CORESET保留在待检测CORESET集合中。
例如,可以按照Slot0中的CORESET对应的第一目标排序,对Slot0中的CORESET进行两两判断是否存在beam重叠,以及进行beam重叠处理;进而可以确定从待检测CORESET集合中删除CORESET的顺序,从前到后依次可以是,CORESET 1,CORESET 6,CORESET 7,CORESET 2,CORESET 4,CORESET 5,其中,最先删除的是CORESET 1,最后删除的是CORESET 5。
可选地,在门限值为CC1一个符号的长度的情况下,可以确定最终的待检测CORESET集合2,如表4所示。
表4最终的待检测CORESET集合2
CORESET QCL-type D
3 RS 3
可选地,图5是本公开实施例提供的多载波PDCCH监听时机示意图 之二,如图5所示,在门限值为CC1一个符号的长度的情况下,可以确定最终的待检测CORESET集合2。
图6是本公开实施例提供的单载波PDCCH监听时机示意图之三,图6为本公开的一个可选的示例,但不作为对本公开的限定;如图6所示,对于单载波的至少两个控制资源集CORESET的PDCCH监听时机,可以确定每个CORESET优先级如表5所示,其中,优先级等级值越小优先级越高,每个CORESET的TCI状态可以通过QCL typeD所指示的RS确定。
表5 CORESET优先级排序3
优先级等级 CORESET QCL-type D
3 1 RS 1
2 2 RS 2
1 3 RS 3
4 4 RS 4
5 5 RS 2
可选地,门限值可以为一个符号的长度。
上述在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机的过程,可以包括步骤601至步骤603:
步骤601,对于每个时隙(slot)配置的至少两个CORESET,按照优先级高低排序,进而可以获取slot0中的CORESET对应的第二目标排序,以及slot1中的CORESET对应的第二目标排序,其中:
Slot0中的CORESET对应的第二目标排序,依次可以是CORESET 3,CORESET 2,CORESET 1,CORESET 4,CORESET 5,其中,CORESET3排在最前,CORESET 5排在最后;
Slot1中的CORESET对应的第二目标排序,依次可以是CORESET 1,CORESET 4,CORESET 5,其中,CORESET 1排在最前,CORESET 5排在最后;
步骤602,将最高优先级的CORESET增加至待检测CORESET集合, 并记录其对应的QCL-type D;
例如,Slot0中最高优先级的CORESET为CORESET3,则可以将CORESET3放入Slot0对应的待检测CORESET集合,并可以记录CORESET3对应的QCL-type D。
例如,Slot1中最高优先级的CORESET为CORESET 1,则可以将CORESET1放入Slot1对应的待检测CORESET集合,并可以记录CORESET1对应的QCL-type D。
步骤603,按照第二目标排序判断是否存在波束重叠以及进行波束重叠处理;
可选地,波束(beam)重叠的准则是相邻两个PDCCH监听时机,前一个PDCCH监听时机的最后一个符号和后一个PDCCH监听时机的第一个符号之间的间隔是否小于门限要求,如果小于门限要求则存在beam重叠。
可选地,在目标时刻,若Slot(例如Slot0或Slot1)对应的待检测CORESET集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机均不存在beam重叠,也即Slot对应的待检测CORESET集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值,则可以将第三CORESET增加至Slot对应的待检测CORESET集合中;
其中,第三CORESET可以是slot中的CORESET对应的第二目标排序中在目标时刻还未被判断是否增加至待检测CORESET集合的CORESET中排序最靠前的CORESET,目标时刻是判断是否将第三CORESET增加至Slot对应的待检测CORESET集合中的时刻。
可选地,beam重叠处理方法可以是,在Slot(例如Slot0或Slot1)对应的待检测CORESET集合中存在至少一个第四CORESET的情况下,若每个第四CORESET对应的TCI状态均与第三CORESET对应的TCI状态一致,则将第三CORESET增加至待检测CORESET集合;其中,第四CORESET为与第三CORESET存在beam重叠的CORESET。
例如,对Slot0中的CORESET执行步骤602及步骤603,可以确定将CORESET增加至待检测CORESET集合中的顺序,从前到后依次可以是CORESET 3,CORESET 1,最先增加的是CORESET 3,最后增加的是CORESET 1。
例如,对Slot1中的CORESET执行步骤602及步骤603,可以确定将CORESET增加至待检测CORESET集合中的顺序,从前到后依次可以是CORESET 1,CORESET 4,最先增加的是CORESET 1,最后增加的是CORESET 4。
可选地,在门限值为一个符号的长度的情况下,可以确定最终的待检测CORESET集合3,如表6所示。
表6最终的待检测CORESET集合3
Slot CORESET QCL-type D
0 3 RS 3
0 1 RS 1
1 1 RS 1
1 4 RS 4
可选地,图7是本公开实施例提供的单载波PDCCH监听时机示意图之四,如图7所示,在门限值为一个符号的长度的情况下,可以确定最终的待检测CORESET集合3。
图8是本公开实施例提供的多载波PDCCH监听时机示意图之三,图8为本公开的一个可选的示例,但不作为对本公开的限定;如图8所示,对于多载波的至少两个控制资源集CORESET的PDCCH监听时机,可以确定每个CORESET优先级如表7所示,其中,优先级等级值越小优先级越高,每个CORESET的TCI状态可以通过QCL typeD所指示的RS确定。
表7 CORESET优先级排序4
优先级等级 CORESET QCL-type D
3 1 RS 1
2 2 RS 2
1 3 RS 3
4 4 RS 4
5 5 RS 2
6 6 RS 1
7 7 RS 2
可选地,如图8所示,门限值可以为CC1一个符号的长度(CC1的SCS较小,因此以CC1的符号数量来定义门限值,可以换算为CC2两个符号的长度)。
上述在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机的过程,可以包括步骤801-步骤803:
步骤801,对于slot0配置的至少两个CORESET,按照优先级高低排序,所有CC共同排序,进而可以获取slot0中的CORESET对应的第二目标排序,其中:
Slot0中的CORESET对应的第二目标排序,依次可以是CORESET 3,CORESET 2,CORESET 1,CORESET 4,CORESET 5,CORESET 6,CORESET 7,其中,CORESET3排在最前,CORESET 7排在最后;
步骤802,将最高优先级的CORESET增加至待检测CORESET集合,并记录其对应的QCL-type D;
例如,Slot0中最高优先级的CORESET为CORESET3,则可以将CORESET3放入Slot0对应的待检测CORESET集合,并可以记录CORESET3对应的QCL-type D。
步骤803,按照第二目标排序判断是否存在波束重叠以及进行波束重叠处理;
可选地,波束(beam)重叠的准则是相邻两个PDCCH监听时机,前一个PDCCH监听时机的最后一个符号和后一个PDCCH监听时机的第一个符号之间的间隔是否小于门限要求,如果小于门限要求则存在beam重 叠。
可选地,在目标时刻,若Slot(例如Slot0)对应的待检测CORESET集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机均不存在beam重叠,也即Slot对应的待检测CORESET集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值,则可以将第三CORESET增加至Slot对应的待检测CORESET集合中;
其中,第三CORESET可以是slot中的CORESET对应的第二目标排序中在目标时刻还未被判断是否增加至待检测CORESET集合的CORESET中排序最靠前的CORESET,目标时刻是判断是否将第三CORESET增加至Slot对应的待检测CORESET集合中的时刻。
可选地,beam重叠处理方法可以是,在Slot(例如Slot0)对应的待检测CORESET集合中存在至少一个第四CORESET的情况下,若每个第四CORESET对应的TCI状态均与第三CORESET对应的TCI状态一致,则将第三CORESET增加至待检测CORESET集合;其中,第四CORESET为与第三CORESET存在beam重叠的CORESET。
例如,对Slot0中的CORESET执行步骤802及步骤803,可以确定将CORESET增加至Slot0对应的待检测CORESET集合的顺序,从前到后依次可以是CORESET 3,CORESET 1,CORESET 6,最先增加的是CORESET 3,最后增加的是CORESET 6。
可选地,在门限值为CC1一个符号的长度的情况下,可以确定最终的待检测CORESET集合4,如表8所示。
表8最终的待检测CORESET集合4
CORESET QCL-type D
3 RS 3
1 RS 1
6 RS 1
可选地,图9是本公开实施例提供的多载波PDCCH监听时机示意图之四,如图9所示,在门限值为CC1一个符号的长度的情况下,可以确定最终的待检测CORESET集合4。
本公开实施例提供的PDCCH检测方法,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
本公开各实施例提供的方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
图10是本公开实施例提供的一种终端的结构示意图,如图10所示,终端包括存储器1020,收发机1000,处理器1010,其中:
存储器1020,用于存储计算机程序;收发机1000,用于在处理器1010的控制下收发数据;处理器1010,用于读取存储器1020中的计算机程序并执行以下操作:
在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
在至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,门限值用于表征终端进行波束切换所需的最大时长。
本公开实施例提供的终端,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少 一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
具体地,收发机1000,用于在处理器1010的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1010代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1000可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1010负责管理总线架构和通常的处理,存储器1020可以存储处理器1010在执行操作时所使用的数据。
可选地,处理器1010可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一方法。处理器与存储器也可以物理上分开布置。
可选地,在至少两个控制资源集CORESET的物理下行控制信道 PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
确定至少两个CORESET对应的目标排序;
基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机。
可选地,确定至少两个CORESET对应的目标排序,包括以下至少一项:
基于至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定至少两个CORESET对应的第一目标排序;或
基于至少两个CORESET对应的优先级排序,确定至少两个CORESET对应的第二目标排序。
可选地,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,在判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,待检测集合包括至少两个CORESET;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第一CORESET是在目标时刻待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,第十一CORESET为在待检测集合包括的除第一CORESET以外的所有CORESET中,在第一目标排序中排在第一CORESET之后的任一项CORESET;第二CORESET是在目标时刻在所有第十一CORESET中最靠近第一CORESET的CORESET;目标时刻是判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
可选地,判断是否将第一CORESET或第二CORESET从待检测集合中删除,包括:
在确定第一CORESET对应的波束方向和第二CORESET对应的波束方向不同,且第一CORESET的PDCCH监听时机和第二CORESET的PDCCH监听时机之间的时间间隔小于门限值的情况下,将第一CORESET和第二CORESET中优先级更低的CORESET从待检测集合中删除。
可选地,基于至少两个CORESET对应的目标排序,在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
基于第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将第三CORESET增加至待检测集合之后,待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值;在判断是否将第三CORESET增加至待检测集合中之前,待检测集合包括至少两个CORESET中优先级最高的一项;
将待检测集合中的CORESET的PDCCH监听时机作为至少一个目标CORESET的PDCCH监听时机;
其中,第三CORESET是第二目标排序中在目标时刻还未被判断是否增加至待检测集合的CORESET中排序最靠前的CORESET,目标时刻是判断是否将第三CORESET增加至待检测集合中的时刻。
可选地,判断是否将第三CORESET增加至待检测集合中,包括:
在待检测集合中的每个CORESET的PDCCH监听时机与第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于门限值的情况下,将第三标识增加至待检测集合;或,
在待检测集合中存在至少一个第四CORESET的情况下,若每个第四CORESET对应的波束方向均与第三CORESET对应的波束方向相同,则将第三CORESET增加至待检测集合,其中,第四CORESET为与第三CORESET的PDCCH监听时机之间的时间间隔小于门限值的CORESET。
可选地,在至少两个控制资源集CORESET的物理下行控制信道 PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,操作还包括:
确定终端进行波束切换所需的目标时长;
基于目标时长,确定门限值;
其中,门限值大于或等于目标时长,门限值为符号数量或时间值。
可选地,在门限值为符号数量的情况下,基于目标时长,确定门限值,包括:
在至少两个CORESET对应至少两个载波单元的情况下,在至少两个载波单元中确定子载波间隔最小的一项为目标载波;
基于目标载波和目标时长,确定符号数量。
可选地,在基于目标时长,确定门限值之后,操作还包括:
向网络侧设备发送门限值。
可选地,CORESET对应的波束方向基于CORESET关联的传输配置指示状态确定。
可选地,至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于第五CORESET的结束符号的时域位置与第六CORESET的起始符号的时域位置之间的差值确定的;
其中,第五CORESET和第六CORESET是至少两个CORESET中任意两个CORESET;第五CORESET为第五CORESET和第六CORESET中时域位置较靠前的一项,第六CORESET为第五CORESET和第六CORESET中时域位置较靠后的一项。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,操作还包括:
基于至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序。
可选地,基于至少两个CORESET分别对应的搜索空间类型、小区索 引和搜索空间索引中的一项或多项,确定至少两个CORESET对应的优先级排序,包括:
基于至少两个CORESET分别对应的搜索空间类型,获取至少两个CORESET对应的第一优先级排序;
在第一优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的小区索引,对第一优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第二优先级排序;
在第二优先级排序中存在多项优先级相同的CORESET的情况下,基于至少两个CORESET分别对应的搜索空间索引,对第二优先级排序中多项优先级相同的CORESET进行排序,获取至少两个CORESET对应的第三优先级排序;
基于第一优先级排序、第二优先级排序和第三优先级排序,确定优先级排序。
可选地,搜索空间类型包括公共搜索空间和用户专用搜索空间,在第一优先级排序中,搜索空间类型为公共搜索空间的CORESET排在搜索空间类型为用户专用搜索空间的CORESET之前。
可选地,在第二优先级排序中,第七CORESET排在第八CORESET之前,第七CORESET与第八CORESET为第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第七CORESET对应的小区索引小于第八CORESET对应的小区索引。
可选地,在第三优先级排序中第九CORESET排在第十CORESET之前,第九CORESET与第十CORESET为第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,第九CORESET对应的搜索空间索引小于第十CORESET对应的搜索空间索引。
可选地,在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,操作还包括:
基于至少两个CORESET分别对应的第一符号的时域位置,确定至少两个CORESET对应的优先级排序;
其中,对于至少两个CORESET中任意两项,第一符号的时域位置较靠前一项的优先级高于第一符号的时域位置较靠后一项的优先级;
第一符号为CORESET的起始符号或CORESET的结束符号。
可选地,至少两个CORESET在时域上可用目标时隙的前N个符号,N为正整数,N由协议约定或者由网络侧设备配置,1≤N≤M,M为目标时隙的总符号数,M为正整数。
本公开实施例提供的终端,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
在此需要说明的是,本发明实施例提供的上述终端,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图11是本公开实施例提供的PDCCH检测装置的结构示意图,如图11所示,所述装置包括:第一确定单元1101和检测单元1102,其中:
第一确定单元1101,用于在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
检测单元1102,用于在所述至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在所述至少一个目标CORESET的PDCCH监听时机中,对应 不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,所述门限值用于表征终端进行波束切换所需的最大时长。
本公开实施例提供的PDCCH检测装置,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
可选地,所述第一确定单元还用于:
确定所述至少两个CORESET对应的目标排序;
基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机。
可选地,所述第一确定单元还用于以下至少一项:
基于所述至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定所述至少两个CORESET对应的第一目标排序;或
基于所述至少两个CORESET对应的优先级排序,确定所述至少两个CORESET对应的第二目标排序。
可选地,所述第一确定单元还用于:
基于所述第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值,在所述判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,所述待检测集合包括所述至少两个CORESET;
将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
其中,所述第一CORESET是在目标时刻所述待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,所述第十一CORESET为在所述待检测集合包括的除所述第一CORESET以外的所有CORESET中,在所述第一目标排序中排在所述第一CORESET之后的任一项CORESET;所述第二CORESET是在目标时刻在所有所述第十一CORESET中最靠近所述第一CORESET的CORESET;所述目标时刻是所述判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
可选地,所述第一确定单元还用于:
在确定所述第一CORESET对应的波束方向和所述第二CORESET对应的波束方向不同,且所述第一CORESET的PDCCH监听时机和所述第二CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的情况下,将所述第一CORESET和所述第二CORESET中优先级更低的CORESET从所述待检测集合中删除。
可选地,所述第一确定单元还用于:
基于所述第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将所述第三CORESET增加至所述待检测集合之后,所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值;在所述判断是否将第三CORESET增加至待检测集合中之前,所述待检测集合包括所述至少两个CORESET中优先级最高的一项;
将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
其中,所述第三CORESET是所述第二目标排序中在目标时刻还未被判断是否增加至所述待检测集合的CORESET中排序最靠前的CORESET,所述目标时刻是所述判断是否将第三CORESET增加至待检测集合中的时 刻。
可选地,所述第一确定单元还用于:
在所述待检测集合中的每个所述CORESET的PDCCH监听时机与所述第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于所述门限值的情况下,将所述第三标识增加至所述待检测集合;或,
在所述待检测集合中存在至少一个第四CORESET的情况下,若每个所述第四CORESET对应的波束方向均与所述第三CORESET对应的波束方向相同,则将所述第三CORESET增加至所述待检测集合,其中,所述第四CORESET为与所述第三CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的所述CORESET。
可选地,所述装置还包括第二确定单元,所述第二确定单元用于:
确定所述终端进行波束切换所需的目标时长;
基于所述目标时长,确定所述门限值;
其中,所述门限值大于或等于所述目标时长,所述门限值为符号数或时间值。
可选地,所述第二确定单元还用于:
在所述门限值为所述符号数的情况下,若所述至少两个CORESET对应至少两个载波单元,则在所述至少两个载波单元中确定子载波间隔最小的一项为目标载波;
基于所述目标载波和所述目标时长,确定所述符号数。
可选地,所述装置还包括发送单元,所述发送单元用于:
向网络侧设备发送所述门限值。
可选地,所述CORESET对应的波束方向基于所述CORESET关联的传输配置指示状态确定。
可选地,所述至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于所述第五CORESET的结束符号的时域位置与所述第六CORESET的起始符号的时域位置之间的差值确定的;
其中,所述第五CORESET和所述第六CORESET是所述至少两个CORESET中任意两个CORESET;所述第五CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠前的一项,所述第六CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠后的一项。
可选地,所述装置还包括第三确定单元,所述第三确定单元用于:
基于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序。
可选地,所述第三确定单元还用于:
基于所述至少两个CORESET分别对应的搜索空间类型,获取所述至少两个CORESET对应的第一优先级排序;
在所述第一优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的小区索引,对所述第一优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第二优先级排序;
在所述第二优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的搜索空间索引,对所述第二优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第三优先级排序;
基于所述第一优先级排序、所述第二优先级排序和所述第三优先级排序,确定所述优先级排序。
可选地,所述搜索空间类型包括公共搜索空间和用户专用搜索空间,在所述第一优先级排序中,所述搜索空间类型为所述公共搜索空间的CORESET排在所述搜索空间类型为所述用户专用搜索空间的CORESET之前。
可选地,在所述第二优先级排序中,第七CORESET排在第八CORESET之前,所述第七CORESET与所述第八CORESET为所述第一 优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第七CORESET对应的小区索引小于所述第八CORESET对应的小区索引。
可选地,在所述第三优先级排序中第九CORESET排在第十CORESET之前,所述第九CORESET与所述第十CORESET为所述第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第九CORESET对应的搜索空间索引小于所述第十CORESET对应的搜索空间索引。
可选地,所述装置还包括第四确定单元,所述第四确定单元用于:
基于所述至少两个CORESET分别对应的第一符号的时域位置,确定所述至少两个CORESET对应的优先级排序;
其中,对于所述至少两个CORESET中任意两项,所述第一符号的时域位置较靠前一项的优先级高于所述第一符号的时域位置较靠后一项的优先级;
所述第一符号为所述CORESET的起始符号或所述CORESET的结束符号。
可选地,所述至少两个CORESET在时域上可用目标时隙的前N个符号,所述N为正整数,所述N由协议约定或者由网络侧设备配置,1≤N≤M,所述M为所述目标时隙的总符号数,所述M为正整数。
本公开实施例提供的PDCCH检测装置,通过在至少两个CORESET的PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,以使至少一个目标CORESET的PDCCH监听时机中对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,进而终端可以在至少一个目标CORESET的PDCCH监听时机分别对应的波束方向上检测PDCCH,进而使得网络侧设备在配置CORESET的资源时,不需要保证两个波束不同的CORESET之间的时域资源间隔大于波束的切换时间,可以实现提高控制资源配置的灵活性,增加资源的利用率。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法,例如包括:
在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
在所述至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
其中,在所述至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,所述门限值用于表征终端进行波束切换所需的最 大时长。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。。

Claims (58)

  1. 一种PDCCH检测方法,其特征在于,包括:
    在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
    在所述至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
    其中,在所述至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,所述门限值用于表征终端进行波束切换所需的最大时长。
  2. 根据权利要求1所述的PDCCH检测方法,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机,包括:
    确定所述至少两个CORESET对应的目标排序;
    基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机。
  3. 根据权利要求2所述的PDCCH检测方法,其特征在于,所述确定所述至少两个CORESET对应的目标排序,包括以下至少一项:
    基于所述至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定所述至少两个CORESET对应的第一目标排序;或
    基于所述至少两个CORESET对应的优先级排序,确定所述至少两个CORESET对应的第二目标排序。
  4. 根据权利要求3所述的PDCCH检测方法,其特征在于,所述基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机,包括:
    基于所述第一目标排序,判断是否将第一CORESET或第二CORESET 从待检测集合中删除,直至所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值,在所述判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,所述待检测集合包括所述至少两个CORESET;
    将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
    其中,所述第一CORESET是在目标时刻所述待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,所述第十一CORESET为在所述待检测集合包括的除所述第一CORESET以外的所有CORESET中,在所述第一目标排序中排在所述第一CORESET之后的任一项CORESET;所述第二CORESET是在目标时刻在所有所述第十一CORESET中最靠近所述第一CORESET的CORESET;所述目标时刻是所述判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
  5. 根据权利要求4所述的PDCCH检测方法,其特征在于,所述判断是否将第一CORESET或第二CORESET从待检测集合中删除,包括:
    在确定所述第一CORESET对应的波束方向和所述第二CORESET对应的波束方向不同,且所述第一CORESET的PDCCH监听时机和所述第二CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的情况下,将所述第一CORESET和所述第二CORESET中优先级更低的CORESET从所述待检测集合中删除。
  6. 根据权利要求3所述的PDCCH检测方法,其特征在于,所述基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机,包括:
    基于所述第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将所述第三CORESET增加至所述待检测集合之后,所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之 间的时间间隔大于或等于所述门限值;在所述判断是否将第三CORESET增加至待检测集合中之前,所述待检测集合包括所述至少两个CORESET中优先级最高的一项;
    将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
    其中,所述第三CORESET是所述第二目标排序中在目标时刻还未被判断是否增加至所述待检测集合的CORESET中排序最靠前的CORESET,所述目标时刻是所述判断是否将第三CORESET增加至待检测集合中的时刻。
  7. 根据权利要求6所述的PDCCH检测方法,其特征在于,所述判断是否将第三CORESET增加至待检测集合中,包括:
    在所述待检测集合中的每个所述CORESET的PDCCH监听时机与所述第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于所述门限值的情况下,将所述第三标识增加至所述待检测集合;或,
    在所述待检测集合中存在至少一个第四CORESET的情况下,若每个所述第四CORESET对应的波束方向均与所述第三CORESET对应的波束方向相同,则将所述第三CORESET增加至所述待检测集合,其中,所述第四CORESET为与所述第三CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的所述CORESET。
  8. 根据权利要求1所述的PDCCH检测方法,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,所述方法还包括:
    确定所述终端进行波束切换所需的目标时长;
    基于所述目标时长,确定所述门限值;
    其中,所述门限值大于或等于所述目标时长,所述门限值为符号数量或时间值。
  9. 根据权利要求8所述的PDCCH检测方法,其特征在于,在所述门限值为所述符号数量的情况下,所述基于所述目标时长,确定所述门限值, 包括:
    在所述至少两个CORESET对应至少两个载波单元的情况下,在所述至少两个载波单元中确定子载波间隔最小的一项为目标载波;
    基于所述目标载波和所述目标时长,确定所述符号数量。
  10. 根据权利要求8所述的PDCCH检测方法,其特征在于,在所述基于所述目标时长,确定所述门限值之后,所述方法还包括:
    向网络侧设备发送所述门限值。
  11. 根据权利要求1-10任一项所述的PDCCH检测方法,其特征在于,所述CORESET对应的波束方向基于所述CORESET关联的传输配置指示状态确定。
  12. 根据权利要求1-10任一项所述的PDCCH检测方法,其特征在于,所述至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于所述第五CORESET的结束符号的时域位置与所述第六CORESET的起始符号的时域位置之间的差值确定的;
    其中,所述第五CORESET和所述第六CORESET是所述至少两个CORESET中任意两个CORESET;所述第五CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠前的一项,所述第六CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠后的一项。
  13. 根据权利要求1-10任一项所述的PDCCH检测方法,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,所述方法还包括:
    基于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序。
  14. 根据权利要求13所述的PDCCH检测方法,其特征在于,所述基 于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序,包括:
    基于所述至少两个CORESET分别对应的搜索空间类型,获取所述至少两个CORESET对应的第一优先级排序;
    在所述第一优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的小区索引,对所述第一优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第二优先级排序;
    在所述第二优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的搜索空间索引,对所述第二优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第三优先级排序;
    基于所述第一优先级排序、所述第二优先级排序和所述第三优先级排序,确定所述优先级排序。
  15. 根据权利要求14所述的PDCCH检测方法,其特征在于,所述搜索空间类型包括公共搜索空间和用户专用搜索空间,在所述第一优先级排序中,所述搜索空间类型为所述公共搜索空间的CORESET排在所述搜索空间类型为所述用户专用搜索空间的CORESET之前。
  16. 根据权利要求14所述的PDCCH检测方法,其特征在于,在所述第二优先级排序中,第七CORESET排在第八CORESET之前,所述第七CORESET与所述第八CORESET为所述第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第七CORESET对应的小区索引小于所述第八CORESET对应的小区索引。
  17. 根据权利要求14所述的PDCCH检测方法,其特征在于,在所述第三优先级排序中第九CORESET排在第十CORESET之前,所述第九CORESET与所述第十CORESET为所述第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第九CORESET对应的搜 索空间索引小于所述第十CORESET对应的搜索空间索引。
  18. 根据权利要求1-10任一项所述的PDCCH检测方法,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,所述方法还包括:
    基于所述至少两个CORESET分别对应的第一符号的时域位置,确定所述至少两个CORESET对应的优先级排序;
    其中,对于所述至少两个CORESET中任意两项,所述第一符号的时域位置较靠前一项的优先级高于所述第一符号的时域位置较靠后一项的优先级;
    所述第一符号为所述CORESET的起始符号或所述CORESET的结束符号。
  19. 根据权利要求1-10或14-17任一项所述的PDCCH检测方法,其特征在于,所述至少两个CORESET在时域上可用目标时隙的前N个符号,所述N为正整数,所述N由协议约定或者由网络侧设备配置,1≤N≤M,所述M为所述目标时隙的总符号数,所述M为正整数。
  20. 一种终端,包括存储器,收发机,处理器;其特征在于:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
    在所述至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
    其中,在所述至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,所述门限值用于表征终端进行波束切换所需的最大时长。
  21. 根据权利要求20所述的终端,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少 一个目标CORESET的PDCCH监听时机,包括:
    确定所述至少两个CORESET对应的目标排序;
    基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机。
  22. 根据权利要求21所述的终端,其特征在于,所述确定所述至少两个CORESET对应的目标排序,包括以下至少一项:
    基于所述至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定所述至少两个CORESET对应的第一目标排序;或
    基于所述至少两个CORESET对应的优先级排序,确定所述至少两个CORESET对应的第二目标排序。
  23. 根据权利要求22所述的终端,其特征在于,所述基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机,包括:
    基于所述第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值,在所述判断是否将第一CORESET或第二CORESET从待检测集合中删除之前,所述待检测集合包括所述至少两个CORESET;
    将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
    其中,所述第一CORESET是在目标时刻所述待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,所述第十一CORESET为在所述待检测集合包括的除所述第一CORESET以外的所有CORESET中,在所述第一目标排序中排在所述第一CORESET之后的任一项CORESET;所述第二CORESET是在目标时刻在所有所述第十一CORESET中最靠近所述第一CORESET的CORESET;所述目标时刻是所 述判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
  24. 根据权利要求23所述的终端,其特征在于,所述判断是否将第一CORESET或第二CORESET从待检测集合中删除,包括:
    在确定所述第一CORESET对应的波束方向和所述第二CORESET对应的波束方向不同,且所述第一CORESET的PDCCH监听时机和所述第二CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的情况下,将所述第一CORESET和所述第二CORESET中优先级更低的CORESET从所述待检测集合中删除。
  25. 根据权利要求22所述的终端,其特征在于,所述基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机,包括:
    基于所述第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将所述第三CORESET增加至所述待检测集合之后,所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值;在所述判断是否将第三CORESET增加至待检测集合中之前,所述待检测集合包括所述至少两个CORESET中优先级最高的一项;
    将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
    其中,所述第三CORESET是所述第二目标排序中在目标时刻还未被判断是否增加至所述待检测集合的CORESET中排序最靠前的CORESET,所述目标时刻是所述判断是否将第三CORESET增加至待检测集合中的时刻。
  26. 根据权利要求25所述的终端,其特征在于,所述判断是否将第三CORESET增加至待检测集合中,包括:
    在所述待检测集合中的每个所述CORESET的PDCCH监听时机与所 述第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于所述门限值的情况下,将所述第三标识增加至所述待检测集合;或,
    在所述待检测集合中存在至少一个第四CORESET的情况下,若每个所述第四CORESET对应的波束方向均与所述第三CORESET对应的波束方向相同,则将所述第三CORESET增加至所述待检测集合,其中,所述第四CORESET为与所述第三CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的所述CORESET。
  27. 根据权利要求20所述的终端,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,所述操作还包括:
    确定所述终端进行波束切换所需的目标时长;
    基于所述目标时长,确定所述门限值;
    其中,所述门限值大于或等于所述目标时长,所述门限值为符号数量或时间值。
  28. 根据权利要求27所述的终端,其特征在于,在所述门限值为所述符号数量的情况下,所述基于所述目标时长,确定所述门限值,包括:
    在所述至少两个CORESET对应至少两个载波单元的情况下,在所述至少两个载波单元中确定子载波间隔最小的一项为目标载波;
    基于所述目标载波和所述目标时长,确定所述符号数量。
  29. 根据权利要求27所述的终端,其特征在于,在所述基于所述目标时长,确定所述门限值之后,所述操作还包括:
    向网络侧设备发送所述门限值。
  30. 根据权利要求20-29任一项所述的终端,其特征在于,所述CORESET对应的波束方向基于所述CORESET关联的传输配置指示状态确定。
  31. 根据权利要求20-29任一项所述的终端,其特征在于,所述至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于所述第五CORESET的结束符 号的时域位置与所述第六CORESET的起始符号的时域位置之间的差值确定的;
    其中,所述第五CORESET和所述第六CORESET是所述至少两个CORESET中任意两个CORESET;所述第五CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠前的一项,所述第六CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠后的一项。
  32. 根据权利要求20-29任一项所述的终端,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,所述操作还包括:
    基于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序。
  33. 根据权利要求32所述的终端,其特征在于,所述基于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序,包括:
    基于所述至少两个CORESET分别对应的搜索空间类型,获取所述至少两个CORESET对应的第一优先级排序;
    在所述第一优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的小区索引,对所述第一优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第二优先级排序;
    在所述第二优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的搜索空间索引,对所述第二优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第三优先级排序;
    基于所述第一优先级排序、所述第二优先级排序和所述第三优先级排序,确定所述优先级排序。
  34. 根据权利要求33所述的终端,其特征在于,所述搜索空间类型包括公共搜索空间和用户专用搜索空间,在所述第一优先级排序中,所述搜索空间类型为所述公共搜索空间的CORESET排在所述搜索空间类型为所述用户专用搜索空间的CORESET之前。
  35. 根据权利要求33所述的终端,其特征在于,在所述第二优先级排序中,第七CORESET排在第八CORESET之前,所述第七CORESET与所述第八CORESET为所述第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第七CORESET对应的小区索引小于所述第八CORESET对应的小区索引。
  36. 根据权利要求33所述的终端,其特征在于,在所述第三优先级排序中第九CORESET排在第十CORESET之前,所述第九CORESET与所述第十CORESET为所述第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第九CORESET对应的搜索空间索引小于所述第十CORESET对应的搜索空间索引。
  37. 根据权利要求20-29任一项所述的终端,其特征在于,所述在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机之前,所述操作还包括:
    基于所述至少两个CORESET分别对应的第一符号的时域位置,确定所述至少两个CORESET对应的优先级排序;
    其中,对于所述至少两个CORESET中任意两项,所述第一符号的时域位置较靠前一项的优先级高于所述第一符号的时域位置较靠后一项的优先级;
    所述第一符号为所述CORESET的起始符号或所述CORESET的结束符号。
  38. 根据权利要求20-29或33-36任一项所述的终端,其特征在于,所述至少两个CORESET在时域上可用目标时隙的前N个符号,所述N为正整数,所述N由协议约定或者由网络侧设备配置,1≤N≤M,所述M为所述目标时隙的总符号数,所述M为正整数。
  39. 一种PDCCH检测装置,其特征在于,包括:
    第一确定单元,用于在至少两个控制资源集CORESET的物理下行控制信道PDCCH监听时机中,确定至少一个目标CORESET的PDCCH监听时机;
    检测单元,用于在所述至少一个目标CORESET的PDCCH监听时机,检测PDCCH;
    其中,在所述至少一个目标CORESET的PDCCH监听时机中,对应不同波束方向的任意两个目标CORESET的PDCCH监听时机之间的时间间隔大于或等于门限值,所述门限值用于表征终端进行波束切换所需的最大时长。
  40. 根据权利要求39所述的PDCCH检测装置,其特征在于,所述第一确定单元还用于:
    确定所述至少两个CORESET对应的目标排序;
    基于所述至少两个CORESET对应的目标排序,在所述至少两个CORESET的PDCCH监听时机中,确定所述至少一个目标CORESET的PDCCH监听时机。
  41. 根据权利要求40所述的PDCCH检测装置,其特征在于,所述第一确定单元还用于以下至少一项:
    基于所述至少两个CORESET分别对应的PDCCH监听时机的时间顺序,确定所述至少两个CORESET对应的第一目标排序;或
    基于所述至少两个CORESET对应的优先级排序,确定所述至少两个CORESET对应的第二目标排序。
  42. 根据权利要求41所述的PDCCH检测装置,其特征在于,所述第一确定单元还用于:
    基于所述第一目标排序,判断是否将第一CORESET或第二CORESET从待检测集合中删除,直至所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值,在所述判断是否将第一CORESET或第二CORESET从待检测集合中删除 之前,所述待检测集合包括所述至少两个CORESET;
    将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
    其中,所述第一CORESET是在目标时刻所述待检测集合中还未与所有第十一CORESET一起进行判断的CORESET,所述第十一CORESET为在所述待检测集合包括的除所述第一CORESET以外的所有CORESET中,在所述第一目标排序中排在所述第一CORESET之后的任一项CORESET;所述第二CORESET是在目标时刻在所有所述第十一CORESET中最靠近所述第一CORESET的CORESET;所述目标时刻是所述判断是否将第一CORESET或第二CORESET从待检测集合中删除的时刻。
  43. 根据权利要求42所述的PDCCH检测装置,其特征在于,所述第一确定单元还用于:
    在确定所述第一CORESET对应的波束方向和所述第二CORESET对应的波束方向不同,且所述第一CORESET的PDCCH监听时机和所述第二CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的情况下,将所述第一CORESET和所述第二CORESET中优先级更低的CORESET从所述待检测集合中删除。
  44. 根据权利要求41所述的PDCCH检测装置,其特征在于,所述第一确定单元还用于:
    基于所述第二目标排序,判断是否将第三CORESET增加至待检测集合中,以使将所述第三CORESET增加至所述待检测集合之后,所述待检测集合中对应不同波束方向的任意两个CORESET的PDCCH监听时机之间的时间间隔大于或等于所述门限值;在所述判断是否将第三CORESET增加至待检测集合中之前,所述待检测集合包括所述至少两个CORESET中优先级最高的一项;
    将所述待检测集合中的所述CORESET的PDCCH监听时机作为所述至少一个目标CORESET的PDCCH监听时机;
    其中,所述第三CORESET是所述第二目标排序中在目标时刻还未被判断是否增加至所述待检测集合的CORESET中排序最靠前的CORESET,所述目标时刻是所述判断是否将第三CORESET增加至待检测集合中的时刻。
  45. 根据权利要求44所述的PDCCH检测装置,其特征在于,所述第一确定单元还用于:
    在所述待检测集合中的每个所述CORESET的PDCCH监听时机与所述第三CORESET的PDCCH监听时机之间的时间间隔均大于或等于所述门限值的情况下,将所述第三标识增加至所述待检测集合;或,
    在所述待检测集合中存在至少一个第四CORESET的情况下,若每个所述第四CORESET对应的波束方向均与所述第三CORESET对应的波束方向相同,则将所述第三CORESET增加至所述待检测集合,其中,所述第四CORESET为与所述第三CORESET的PDCCH监听时机之间的时间间隔小于所述门限值的所述CORESET。
  46. 根据权利要求39所述的PDCCH检测装置,其特征在于,所述装置还包括第二确定单元,所述第二确定单元用于:
    确定所述终端进行波束切换所需的目标时长;
    基于所述目标时长,确定所述门限值;
    其中,所述门限值大于或等于所述目标时长,所述门限值为符号数或时间值。
  47. 根据权利要求46所述的PDCCH检测装置,其特征在于,所述第二确定单元还用于:
    在所述门限值为所述符号数的情况下,若所述至少两个CORESET对应至少两个载波单元,则在所述至少两个载波单元中确定子载波间隔最小的一项为目标载波;
    基于所述目标载波和所述目标时长,确定所述符号数。
  48. 根据权利要求46所述的PDCCH检测装置,其特征在于,所述装置还包括发送单元,所述发送单元用于:
    向网络侧设备发送所述门限值。
  49. 根据权利要求39-48任一项所述的PDCCH检测装置,其特征在于,所述CORESET对应的波束方向基于所述CORESET关联的传输配置指示状态确定。
  50. 根据权利要求39-48任一项所述的PDCCH检测装置,其特征在于,所述至少两个CORESET中第五CORESET的PDCCH监听时机和第六CORESET的PDCCH监听时机之间的时间间隔是基于所述第五CORESET的结束符号的时域位置与所述第六CORESET的起始符号的时域位置之间的差值确定的;
    其中,所述第五CORESET和所述第六CORESET是所述至少两个CORESET中任意两个CORESET;所述第五CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠前的一项,所述第六CORESET为所述第五CORESET和所述第六CORESET中时域位置较靠后的一项。
  51. 根据权利要求39-48任一项所述的PDCCH检测装置,其特征在于,所述装置还包括第三确定单元,所述第三确定单元用于:
    基于所述至少两个CORESET分别对应的搜索空间类型、小区索引和搜索空间索引中的一项或多项,确定所述至少两个CORESET对应的优先级排序。
  52. 根据权利要求51所述的PDCCH检测装置,其特征在于,所述第三确定单元还用于:
    基于所述至少两个CORESET分别对应的搜索空间类型,获取所述至少两个CORESET对应的第一优先级排序;
    在所述第一优先级排序中存在多项优先级相同的CORESET的情况下,基于所述至少两个CORESET分别对应的小区索引,对所述第一优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第二优先级排序;
    在所述第二优先级排序中存在多项优先级相同的CORESET的情况 下,基于所述至少两个CORESET分别对应的搜索空间索引,对所述第二优先级排序中多项优先级相同的CORESET进行排序,获取所述至少两个CORESET对应的第三优先级排序;
    基于所述第一优先级排序、所述第二优先级排序和所述第三优先级排序,确定所述优先级排序。
  53. 根据权利要求52所述的PDCCH检测装置,其特征在于,所述搜索空间类型包括公共搜索空间和用户专用搜索空间,在所述第一优先级排序中,所述搜索空间类型为所述公共搜索空间的CORESET排在所述搜索空间类型为所述用户专用搜索空间的CORESET之前。
  54. 根据权利要求52所述的PDCCH检测装置,其特征在于,在所述第二优先级排序中,第七CORESET排在第八CORESET之前,所述第七CORESET与所述第八CORESET为所述第一优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第七CORESET对应的小区索引小于所述第八CORESET对应的小区索引。
  55. 根据权利要求52所述的PDCCH检测装置,其特征在于,在所述第三优先级排序中第九CORESET排在第十CORESET之前,所述第九CORESET与所述第十CORESET为所述第二优先级排序中多项优先级相同的CORESET中的任意两个CORESET,所述第九CORESET对应的搜索空间索引小于所述第十CORESET对应的搜索空间索引。
  56. 根据权利要求39-48任一项所述的PDCCH检测装置,其特征在于,所述装置还包括第四确定单元,所述第四确定单元用于:
    基于所述至少两个CORESET分别对应的第一符号的时域位置,确定所述至少两个CORESET对应的优先级排序;
    其中,对于所述至少两个CORESET中任意两项,所述第一符号的时域位置较靠前一项的优先级高于所述第一符号的时域位置较靠后一项的优先级;
    所述第一符号为所述CORESET的起始符号或所述CORESET的结束符号。
  57. 根据权利要求39-48任一项或52-55任一项所述的PDCCH检测装置,其特征在于,所述至少两个CORESET在时域上可用目标时隙的前N个符号,所述N为正整数,所述N由协议约定或者由网络侧设备配置,1≤N≤M,所述M为所述目标时隙的总符号数,所述M为正整数。
  58. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至19任一项所述的方法。
PCT/CN2022/138136 2022-01-10 2022-12-09 Pdcch检测方法、装置、终端及存储介质 WO2023130906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210022055.7A CN116455514A (zh) 2022-01-10 2022-01-10 Pdcch检测方法、装置、终端及存储介质
CN202210022055.7 2022-01-10

Publications (1)

Publication Number Publication Date
WO2023130906A1 true WO2023130906A1 (zh) 2023-07-13

Family

ID=87073078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138136 WO2023130906A1 (zh) 2022-01-10 2022-12-09 Pdcch检测方法、装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN116455514A (zh)
WO (1) WO2023130906A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324900A (zh) * 2018-03-29 2019-10-11 维沃移动通信有限公司 Pdsch的接收方法和终端
CN110972326A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 一种下行控制信道传输方法、终端和网络侧设备
CN111278092A (zh) * 2019-04-26 2020-06-12 维沃移动通信有限公司 一种信道监听方法、终端及网络设备
CN112654084A (zh) * 2019-10-10 2021-04-13 维沃移动通信有限公司 一种搜索空间分配方法、搜索空间配置方法及相关设备
US20210337408A1 (en) * 2020-04-27 2021-10-28 Qualcomm Incorporated Control channel overlap handling for systems with large subcarrier spacing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324900A (zh) * 2018-03-29 2019-10-11 维沃移动通信有限公司 Pdsch的接收方法和终端
CN110972326A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 一种下行控制信道传输方法、终端和网络侧设备
CN111278092A (zh) * 2019-04-26 2020-06-12 维沃移动通信有限公司 一种信道监听方法、终端及网络设备
CN112654084A (zh) * 2019-10-10 2021-04-13 维沃移动通信有限公司 一种搜索空间分配方法、搜索空间配置方法及相关设备
US20210337408A1 (en) * 2020-04-27 2021-10-28 Qualcomm Incorporated Control channel overlap handling for systems with large subcarrier spacing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Remaining issues on downlink control channel", 3GPP DRAFT; R1-1808490 REMAINING ISSUES ON DOWNLINK CONTROL CHANNEL_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 9, XP051515868 *

Also Published As

Publication number Publication date
CN116455514A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US20220416975A1 (en) Signal transmission method and device
WO2022151868A1 (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
WO2022152068A1 (zh) 资源确定方法、通信设备和存储介质
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
WO2022206489A1 (zh) 传输配置指示tci状态的确定方法、装置及终端设备
WO2023130906A1 (zh) Pdcch检测方法、装置、终端及存储介质
WO2022152067A1 (zh) 发送位置确定方法、通信设备和存储介质
EP4280516A1 (en) Signal transmission method, apparatus, terminal device, network device, and storage medium
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
WO2022237326A1 (zh) 物理下行控制信道的监测方法、装置、设备以及存储介质
TWI815385B (zh) 一種參考信號傳輸位置指示確定方法及裝置
US20240188029A1 (en) Reference signal transmission position indication determining method and apparatus
WO2024093894A1 (zh) 时域配置信息指示方法、装置、终端及网络侧设备
WO2023000899A1 (zh) 一种信息传输方法、装置、终端设备及网络设备
WO2024067164A1 (zh) 相干联合传输方法及装置
WO2023131258A1 (zh) Dmrs传输方法、装置及存储介质
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
WO2023151453A1 (zh) 信息传输方法、装置及存储介质
WO2024041659A1 (zh) 测量上报方法、装置、终端及网络设备
WO2024017082A1 (zh) 配置信息的指示方法及装置
WO2023016266A1 (zh) 先听后说方法、装置及存储介质
WO2024046092A1 (zh) 目标小区的选择方法、配置方法、信息传输方法及设备
WO2022152094A1 (zh) 一种控制信道监测方法、装置及存储介质
WO2023024930A1 (zh) 信道调度方法、设备、装置及存储介质
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918356

Country of ref document: EP

Kind code of ref document: A1