WO2023130811A1 - 提高硼表测量准确度的方法和系统 - Google Patents

提高硼表测量准确度的方法和系统 Download PDF

Info

Publication number
WO2023130811A1
WO2023130811A1 PCT/CN2022/127601 CN2022127601W WO2023130811A1 WO 2023130811 A1 WO2023130811 A1 WO 2023130811A1 CN 2022127601 W CN2022127601 W CN 2022127601W WO 2023130811 A1 WO2023130811 A1 WO 2023130811A1
Authority
WO
WIPO (PCT)
Prior art keywords
count rate
concentration
neutron count
boron
boron meter
Prior art date
Application number
PCT/CN2022/127601
Other languages
English (en)
French (fr)
Inventor
郑军伟
刘航
Original Assignee
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2023130811A1 publication Critical patent/WO2023130811A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/005Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using neutrons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of monitoring the boron concentration of coolant in a pressurized water reactor nuclear power plant, in particular to a method and a system for improving the measurement accuracy of a boron meter.
  • the boron meter used for monitoring the boron concentration of the primary circuit coolant in the nuclear island of the pressurized water reactor nuclear power plant can be divided into two main parts: the neutron measurement device and the signal processing cabinet according to the function of the equipment; the neutron source and the signal processing cabinet are installed in the neutron measurement device.
  • the neutron detector, between the neutron source and the neutron detector is the measured container or pipeline.
  • the number of neutrons absorbed This reaction causes the number of neutrons injected into the neutron detector to change, and the number of pulse signals generated by the neutron detector will change accordingly.
  • the pulse signal generated by the neutron measuring device is input to the boron meter signal processing cabinet, and after a series of signal processing and calculation, the total boron concentration of the measured primary circuit coolant is automatically output.
  • the boron table does not take the 10 B abundance of the primary circuit coolant of the nuclear island as the calculation parameter of the total boron concentration.
  • the boron table does not take the 10 B abundance of the primary circuit coolant of the nuclear island as the calculation parameter of the total boron concentration.
  • it is affected by the 10 B(n, ⁇ ) 7 Li nuclear reaction, and the 10 B abundance of the primary circuit coolant
  • the deviation of the total boron concentration measured by the boron meter relative to the actual total boron concentration in the primary circuit coolant gradually increases.
  • the boron concentration deviation is prone to exceed the control limit
  • the boron meter lacks the 10 B concentration monitoring function, which is not conducive to the safety of core reactivity control.
  • the purpose of the present invention is: in order to solve the problem in the prior art that the boron concentration deviation exceeds the standard because the boron meter cannot track the 10 B abundance in the primary circuit coolant, and the shortcoming that the boron meter cannot monitor the 10 B concentration of the primary circuit coolant, and A method and system for improving the measurement accuracy of boron meters is proposed.
  • a method for improving the measurement accuracy of a boron meter the steps are as follows:
  • the specific content of said S1 includes: collecting the digital neutron count rate signal generated in the boron meter signal processing cabinet, and collecting the pipeline where the boron meter neutron measurement device is located temperature, and perform temperature compensation on the collected neutron count rate based on the collected pipeline temperature and the preset temperature compensation coefficient.
  • the specific content of S2 includes: judging the validity of the temperature-compensated neutron count rate to generate a logic quantity judgment signal, 1 means valid, 0 means Invalid, when the neutron count rate validity judgment signal is 1, an effective temperature-compensated neutron count rate will be output; The effective neutron count rate at the moment before the neutron count rate becomes invalid.
  • the specific content of said S3 includes: selecting the reference neutron count rate from the calibration test data, and measuring the neutron count rate of the boron meter under the deionized water condition The neutron count rate is used as the reference neutron count rate to calculate the normalized value of the neutron count rate measured by the boron meter;
  • the specific content of said S4 includes: according to the normalized value of the neutron count rate measured by the boron meter, it is judged which range section the boron meter measures the 10 B concentration to which it belongs, and According to the judgment result, select the output boron meter to measure the concentration of 10 B;
  • the method for judging the range section to which the B concentration belongs is specifically:
  • the normalized value of the neutron count rate measured by the boron meter is less than the normalized value of the neutron count rate at the dividing point, it is judged that the measured 10 B concentration belongs to the high range range, and the output is obtained from the calculation equation of the high range 10 B concentration out of the 10 B concentration.
  • the specific content of described S5 comprises:
  • the normalized value of neutron count rate is the independent variable, and the concentration of 10 B is the dependent variable, respectively for the high range and low range Perform polynomial fitting on segment calibration data;
  • the 10 B concentration measured by the boron meter was calculated according to the calculation equation of the 10 B concentration in the high range section and the 10 B concentration calculation equation in the low range section, respectively.
  • the present invention provides a kind of system that improves the measurement accuracy of boron meter, and it comprises:
  • Parameter acquisition module used for collecting neutron count rate and pipeline temperature
  • Calculation parameter storage module used to store 10 B abundance, calibration test fitting coefficient, reference neutron count rate, temperature compensation coefficient
  • the neutron count rate processing module is used to comprehensively process the neutron count rate
  • An invalid alarm module is used to generate a boron meter measurement result invalid alarm signal according to the neutron count rate validity judgment signal;
  • the self-maintaining module is used to maintain the effective neutron count rate at the last moment as the input signal of the neutron count rate output selection module when the neutron count rate validity judgment result is 0;
  • the total boron concentration calculation module is used to calculate the total boron concentration according to the 10 B concentration output by the concentration output selection module and the preset 10 B abundance in the calculation parameter storage module;
  • the display terminal is used to display the 10 B concentration measured by the boron meter, the total boron concentration, and an invalid alarm for the measured result of the boron meter.
  • the parameter collection module includes:
  • the neutron count rate sub-module is used to collect the digital neutron count rate signal generated in the boron meter signal processing cabinet;
  • the pipeline temperature sub-module is used to collect the temperature of the pipeline where the boron meter neutron measurement device is located.
  • the neutron count rate processing module includes:
  • the neutron count rate temperature compensation sub-module is used for temperature compensation of the neutron count rate
  • the neutron count rate validity judgment sub-module is used to judge the validity of the temperature-compensated neutron count rate and generate a logical quantity judgment signal
  • the neutron count rate output selection module is used to select and output the neutron count rate that will be used for 10 B concentration and total boron concentration calculation;
  • the neutron count rate normalization sub-module is used to calculate the output neutron count rate normalization value.
  • the total boron concentration calculation module includes:
  • the low-range section concentration calculation sub-module is used to calculate the low-range section 10 B concentration
  • the high-range section concentration calculation sub-module is used to calculate the high-range section 10 B concentration
  • the concentration output selection sub-module is used to judge the range segment of the 10 B concentration measured by the boron meter according to the normalized value of the neutron count rate. If the judgment result is a high range range, output the 10 B concentration generated by the high range range concentration calculation submodule Concentration, if the judgment result is the low range range, then output the 10 B concentration generated by the low range range concentration calculation sub-module.
  • the method and system for improving the measurement accuracy of the boron meter of the present invention have the following technical effects:
  • the present invention realizes the function of monitoring the 10 B concentration in the nuclear island primary circuit coolant by the boron meter without changing the boron meter neutron measuring device; the 10 B abundance in the nuclear island primary circuit coolant is used as the total After calculating the parameters of the boron concentration, it can solve the problem that the total boron concentration measured by the boron meter is affected by the 10 B burnup effect in the primary circuit coolant, so that the boron concentration deviation is easy to exceed the control standard in the middle stage of a fuel cycle.
  • the present invention calculates the 10 B concentration respectively according to the high and low range sections, and selects the technical scheme of outputting the correct 10 B concentration according to the calculation result of the 10 B concentration output selection module, realizes the 10 B concentration monitoring function of the boron meter, and simultaneously Guarantee the accuracy of 10 B concentration monitoring.
  • the operating value of the unit should be coordinated with the chemical analysis department to carry out sampling and analysis of the boron concentration of the coolant in the primary circuit of the nuclear island in time to confirm the actual boron concentration of the coolant in the primary circuit, and coordinate maintenance at the same time
  • the department analyzed the reasons for triggering the invalid alarm of the boron meter measurement results, restored the normal operation of the boron meter in time, and ensured that the boron meter can monitor the boron concentration of the primary circuit coolant normally.
  • Fig. 1 is a kind of flow chart of the method that improves the measurement accuracy of boron meter that the present invention proposes;
  • Fig. 2 is a kind of method that the present invention proposes to improve boron meter measurement accuracy 10 B concentration output determination flow chart;
  • Fig. 3 is a flow chart of logical quantity judgment signal in a kind of method that the present invention proposes to improve boron meter measurement accuracy
  • Fig. 4 is a kind of method neutron counting rate effectiveness judgment flow chart that improves boron meter measurement accuracy that the present invention proposes;
  • Fig. 5 is a kind of system frame diagram that improves the measurement accuracy of boron meter that the present invention proposes
  • Fig. 6 is a frame structure diagram of a system for improving the measurement accuracy of a boron meter proposed by the present invention.
  • the method that the present invention improves the measurement accuracy of boron meter comprises the following steps:
  • Collect the digital neutron count rate signal generated in the boron meter signal processing cabinet collect the temperature of the pipeline where the neutron measurement device of the boron meter is located, and adjust the collected neutron count rate based on the collected pipeline temperature and the preset temperature compensation coefficient Perform temperature compensation.
  • the effectiveness of the temperature-compensated neutron count rate is judged, and a logical quantity judgment signal is generated. 1 means valid, and 0 means invalid.
  • the neutron count rate validity judgment signal is 1, an effective temperature-compensated neutron count is output.
  • rate when the neutron count rate validity judgment signal is 0, a boron meter measurement result invalid alarm signal is generated, and the effective neutron count rate at the moment before the neutron count rate is invalid is output at the same time;
  • the method for judging the validity of the neutron count rate is:
  • the boron meter According to the normalized value of the neutron count rate measured by the boron meter, it is judged which range segment the boron meter measures the 10 B concentration, and according to the judgment result, the boron meter is selected to output the boron meter to measure the 10 B concentration;
  • the normalized value of the neutron count rate measured by the boron meter is greater than or equal to the normalized value of the neutron count rate of the division point, it is judged that the measured 10 B concentration belongs to the low range section, and the output is calculated by the low range section 10 B concentration calculation equation The resulting 10 B concentration.
  • the normalized value of neutron count rate is the independent variable
  • the concentration of 10 B is the dependent variable, respectively for the high range and low range
  • P H is the concentration of 10 B in the high range range
  • P L is the concentration of 10 B in the low range range
  • n * is the normalized value of the neutron count rate
  • a 1 , b 1 , c 1 , d 1 are the high range range
  • a 2 , b 2 , c 2 , d 2 are the fitting coefficients of the calibration test in the low range section.
  • P m is the total boron concentration measured by the boron meter
  • P B10 is the 10 B concentration measured by the boron meter
  • a B10 is the 10 B abundance in the primary circuit coolant of the nuclear island.
  • a kind of system that improves the measuring accuracy of boron meter comprises:
  • Parameter acquisition module used for collecting neutron count rate and pipeline temperature
  • Calculation parameter storage module used to store 10 B abundance, calibration test fitting coefficient, reference neutron count rate, temperature compensation coefficient
  • the neutron count rate processing module is used to comprehensively process the neutron count rate
  • An invalid alarm module is used to generate a boron meter measurement result invalid alarm signal according to the neutron count rate validity judgment signal;
  • the self-maintaining module is used to maintain the effective neutron count rate at the last moment as the input signal of the neutron count rate output selection module when the neutron count rate validity judgment result is 0;
  • the total boron concentration calculation module is used to calculate the total boron concentration according to the 10 B concentration output by the concentration output selection module and the preset 10 B abundance in the calculation parameter storage module;
  • the display terminal is used to display the 10 B concentration measured by the boron meter, the total boron concentration, and an invalid alarm for the measured result of the boron meter.
  • the parameter acquisition module includes:
  • the neutron count rate sub-module is used to collect the digital neutron count rate signal generated in the boron meter signal processing cabinet;
  • the pipeline temperature sub-module is used to collect the temperature of the pipeline where the boron meter neutron measurement device is located.
  • the neutron count rate processing module includes:
  • the neutron count rate temperature compensation sub-module is used for temperature compensation of the neutron count rate
  • the neutron count rate validity judgment sub-module is used to judge the validity of the neutron count rate through temperature compensation, and generates a logic quantity judgment signal;
  • the neutron count rate output selection module is used to select and output the neutron count rate that will be used for 10 B concentration and total boron concentration calculation;
  • the neutron count rate normalization sub-module is used to calculate the output neutron count rate normalization value.
  • the total boron concentration calculation module includes:
  • the low-range section concentration calculation sub-module is used to calculate the low-range section 10 B concentration
  • the high-range section concentration calculation sub-module is used to calculate the high-range section 10 B concentration
  • the concentration output selection sub-module is used to judge the range segment of the 10 B concentration measured by the boron meter according to the normalized value of the neutron count rate. If the judgment result is a high range range, output the 10 B concentration generated by the high range range concentration calculation submodule Concentration, if the judgment result is the low range range, then output the 10 B concentration generated by the low range range concentration calculation sub-module.
  • the present invention realizes the function of monitoring the 10 B concentration in the nuclear island primary circuit coolant by the boron meter without changing the boron meter neutron measuring device; the 10 B abundance in the nuclear island primary circuit coolant is used as the total After calculating the parameters of the boron concentration, it can solve the problem that the total boron concentration measured by the boron meter is affected by the 10 B burnup effect in the primary circuit coolant, so that the boron concentration deviation is easy to exceed the control standard in the middle stage of a fuel cycle.
  • the present invention calculates the 10 B concentration respectively according to the high and low range sections, and selects the technical scheme of outputting the correct 10 B concentration according to the calculation result of the 10 B concentration output selection module, realizes the 10 B concentration monitoring function of the boron meter, and simultaneously Guarantee the accuracy of 10 B concentration monitoring.
  • the operating value of the unit should be coordinated with the chemical analysis department to carry out sampling and analysis of the boron concentration of the coolant in the primary circuit of the nuclear island in time to confirm the actual boron concentration of the coolant in the primary circuit, and coordinate maintenance at the same time
  • the department analyzed the reasons for triggering the invalid alarm of the boron meter measurement results, restored the normal operation of the boron meter in time, and ensured that the boron meter can monitor the boron concentration of the primary circuit coolant normally.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明涉及压水堆核电厂冷却剂硼浓度监测领域,具体公开了一种提高硼表测量准确度的方法和系统。本发明提高硼表测量准确度的方法包括以下步骤:S1、基于管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿;S2、对经过温度补偿的中子计数率进行有效性判断;S3、从标定试验数据中选定基准中子计数率;S4、根据硼表测量中子计数率的归一化值判断硼表测量 10B浓度所属的量程段;S5、基于标定试验拟合系数和中子计数率归一化值计算硼表测量 10B浓度;S6、基于核岛一回路冷却剂中 10B丰度和选择输出的硼表测量 10B浓度,计算输出硼表测量总硼浓度。

Description

提高硼表测量准确度的方法和系统 技术领域
本发明涉及压水堆核电厂冷却剂硼浓度监测技术领域,尤其涉及一种提高硼表测量准确度的方法和系统。
背景技术
压水堆核电厂核岛一回路冷却剂硼浓度监测所用的硼表按照设备功能划分,可分为中子测量装置和信号处理机柜两个主要部分;中子测量装置内安装了中子源和中子探测器,中子源和中子探测器之间是被测量容器或管道,当含有硼酸的一回路冷却剂流经被测量容器或管道时,中子源衰变产生的中子因与一回路冷却剂中的 10B发生 10B(n,α) 7Li反应而被吸收,当一回路冷却剂的硼浓度升高时,中子被吸收的数量增加,反之,中子被吸收的数量减少,这种反应造成射入中子探测器的中子数量发生变化,中子探测器产生的脉冲信号数量将随之变化。中子测量装置产生的脉冲信号输入到硼表信号处理机柜后经过一系列的信号处理和运算,自动输出被测一回路冷却剂的总硼浓度。
硼表未将核岛一回路冷却剂的 10B丰度作为总硼浓度计算参数,机组带功率运行过程中受 10B(n,α) 7Li核反应影响,一回路冷却剂的 10B丰度在 10B燃耗效应作用下逐渐下降,造成硼表测量总硼浓度相对一回路冷却剂中实际总硼浓度的偏差逐渐增大,在一个核燃料循环的中间阶段容易发生硼浓度偏差超过控制限值问题;硼表缺少 10B浓度监测功能,不利于堆芯反应性控制安全。
发明内容
本发明的目的是:为了解决现有技术中存在因硼表无法跟踪一回路冷却剂中 10B丰度造成硼浓度偏差超标问题,以及硼表无法监测一回路冷却剂 10B浓度的缺点,而提出的一种提高硼表测量准确度的方法和系统。
为了实现上述目的,本发明采用了如下技术方案:
一种提高硼表测量准确度的方法,步骤如下:
S1、基于管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿;
S2、对经过温度补偿的中子计数率进行有效性判断;
S3、从标定试验数据中选定基准中子计数率;
S4、根据硼表测量中子计数率的归一化值判断硼表测量 10B浓度所属的量程段;
S5、基于标定试验拟合系数和中子计数率归一化值计算硼表测量 10B浓度;
S6、基于核岛一回路冷却剂中 10B丰度和选择输出的硼表测量 10B浓度,计算输出硼表测量总硼浓度。
根据本发明提高硼表测量准确度的方法的一个实施方式,所述S1的具体内容包括:采集硼表信号处理机柜中产生的数字量中子计数率信号,采集硼表中子测量装置所在管道的温度,基于采集到的管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿。
根据本发明提高硼表测量准确度的方法的一个实施方式,所述 S2的具体内容包括:对经过温度补偿的中子计数率进行有效性判断,产生逻辑量判断信号,1表示有效,0表示无效,当中子计数率有效性判断信号为1时,输出有效的经过温度补偿的中子计数率,当中子计数率有效性判断信号为0时,产生硼表测量结果无效报警信号,同时输出中子计数率无效前一时刻的有效中子计数率。
根据本发明提高硼表测量准确度的方法的一个实施方式,所述S3的具体内容包括:从标定试验数据中选定基准中子计数率,把硼表在去离子水条件下标定测得的中子计数率作为基准中子计数率,计算硼表测量中子计数率的归一化值;
根据本发明提高硼表测量准确度的方法的一个实施方式,所述S4的具体内容包括:根据硼表测量中子计数率的归一化值判断硼表测量 10B浓度所属的量程段,并根据判断结果,选择输出硼表测量 10B浓度;
根据本发明提高硼表测量准确度的方法的一个实施方式,判断 10B浓度所属的量程段的方法具体为:
基于硼表标定试验数据,计算 10B浓度高、低量程段划分点对应的子计数率归一化值,将该值定为判断 10B浓度所属量程段的阈值;
当硼表测量中子计数率的归一化值大于等于划分点的中子计数率归一化值时,判断测量的 10B浓度属于低量程段,则输出由低量程段 10B浓度计算方程得出的 10B浓度;
当硼表测量中子计数率的归一化值小于划分点的中子计数率归一化值时,判断测量的 10B浓度属于高量程段,则输出由高量程段 10B 浓度计算方程得出的 10B浓度。
根据本发明提高硼表测量准确度的方法的一个实施方式,所述S5的具体内容包括:
基于硼表标定试验所记录的 10B浓度和中子计数率归一化值,以中子计数率归一化值为自变量,以 10B浓度为因变量,分别对高量程段和低量程段标定数据进行多项式拟合;
基于标定试验拟合系数和中子计数率归一化值,分别按照高量程段 10B浓度计算方程和低量程段 10B浓度计算方程计算硼表测量的 10B浓度。
为了实现上述发明目的,本发明提供了一种提高硼表测量准确度的系统,其包括:
参数采集模块,用于采集中子计数率和管道温度;
计算参数存储模块,用于储存 10B丰度、标定试验拟合系数、基准中子计数率、温度补偿系数;
中子计数率处理模块,用于对中子计数率进行综合性的处理;
无效报警模块,用于根据中子计数率有效性判断信号产生硼表测量结果无效报警信号;
自保持模块,用于在中子计数率有效性判断结果为0时,将上一时刻的有效中子计数率保持为中子计数率输出选择模块的输入信号;
总硼浓度计算模块,用于根据浓度输出选择模块输出的 10B浓度和计算参数存储模块中预设的 10B丰度计算总硼浓度;
显示终端,用于显示硼表测量的 10B浓度、总硼浓度,以及硼表 测量结果无效报警。
根据本发明提高硼表测量准确度的系统的一个实施方式,所述参数采集模块包括:
中子计数率子模块,用于采集硼表信号处理机柜中产生的数字量中子计数率信号;
管道温度子模块,用于采集采集硼表中子测量装置所在管道的温度。
根据本发明提高硼表测量准确度的系统的一个实施方式,所述中子计数率处理模块包括:
中子计数率温度补偿子模块,用于对中子计数率进行温度补偿;
中子计数率有效性判断子模块,用于判断经过温度补偿的中子计数率的有效性,产生逻辑量判断信号;
中子计数率输出选择模块,用于选择输出将用于 10B浓度和总硼浓度计算的中子计数率;
中子计数率归一化子模块,用于计算输出中子计数率归一化值。
根据本发明提高硼表测量准确度的系统的一个实施方式,所述总硼浓度计算模块包括:
低量程段浓度计算子模块,用于计算低量程段 10B浓度;
高量程段浓度计算子模块,用于计算高量程段 10B浓度;
浓度输出选择子模块,用于根据中子计数率归一化值判断硼表测量的 10B浓度所属的量程段,若判断结果为高量程段则输出高量程段浓度计算子模块产生的 10B浓度,若判断结果为低量程段则输出低量 程段浓度计算子模块产生的 10B浓度。
相对于现有技术,本发明提高硼表测量准确度的方法和系统具有以下技术效果:
1、本发明在不改变硼表中子测量装置的前提下,实现了通过硼表监测核岛一回路冷却剂中 10B浓度的功能;将核岛一回路冷却剂中 10B丰度作为总硼浓度计算参数后,能够解决硼表测量总硼浓度受一回路冷却剂中 10B燃耗效应影响导致硼浓度偏差容易在一个燃料循环的中间阶段超过控制标准问题。
2、本发明通过按照高、低量程段分别计算 10B浓度,并根据 10B浓度输出选择模块的运算结果选择输出正确的 10B浓度的技术方案,实现硼表的 10B浓度监测功能,同时保证 10B浓度监测准确度。
3、本发明当系统触发硼表测量结果无效报警时,机组运行值应及时协调化学分析部门执行核岛一回路冷却剂硼浓度取样分析,确认一回路冷却剂的实际硼浓度,同时应协调维修部门对触发硼表测量结果无效报警的原因进行分析,及时恢复硼表正常运行,确保硼表对一回路冷却剂硼浓度的监测功能正常。
附图说明
图1为本发明提出的一种提高硼表测量准确度的方法流程图;
图2为本发明提出的一种提高硼表测量准确度的方法中 10B浓度输出判定流程图;
图3为本发明提出的一种提高硼表测量准确度的方法中逻辑量判断信号流程图;
图4为本发明提出的一种提高硼表测量准确度的方法中子计数率有效性判断流程图;
图5为本发明提出的一种提高硼表测量准确度的系统框架图;
图6为本发明提出的一种提高硼表测量准确度的系统框架结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
参照图1-6所述,本发明提高硼表测量准确度的方法包括以下步骤:
S1、基于管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿;
采集硼表信号处理机柜中产生的数字量中子计数率信号,采集硼表中子测量装置所在管道的温度,基于采集到的管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿。
S2、对经过温度补偿的中子计数率进行有效性判断;
对经过温度补偿的中子计数率进行有效性判断,产生逻辑量判断信号,1表示有效,0表示无效,当中子计数率有效性判断信号为1时,输出有效的经过温度补偿的中子计数率,当中子计数率有效性判断信号为0时,产生硼表测量结果无效报警信号,同时输出中子计数率无效前一时刻的有效中子计数率;
其中,中子计数率有效性判断方法为:
划分硼表测量总硼浓度的高、低量程段,确定划分点对应的总硼浓度值;
基于硼表标定试验数据,以中子计数率倒数(n -1)为自变量,以化学滴定硼浓度为因变量,分别对高、低量程段进行多项式拟合,使用2次3项拟合得出拟合系数(a,b,c);
对经过温度补偿的中子计数率进行有效性判断,当b 2-4a(c-n -1)≥0时判断中子计数率有效,当b 2-4a(c-n -1)<0判断中子计数率无效。
S3、从标定试验数据中选定基准中子计数率,把硼表在去离子水条件下标定测得的中子计数率作为基准中子计数率,计算硼表测量中子计数率的归一化值;
其中,计算硼表测量中子计数率的归一化值,使用的计算方程为:
Figure PCTCN2022127601-appb-000001
S4、根据硼表测量中子计数率的归一化值判断硼表测量 10B浓度所属的量程段,并根据判断结果,选择输出硼表测量 10B浓度;
判断 10B浓度所属的量程段的方法具体为:
基于硼表标定试验数据,计算 10B浓度高、低量程段划分点对应的子计数率归一化值,将该值定为判断 10B浓度所属量程段的阈值;
当硼表测量中子计数率的归一化值大于等于划分点的中子计数率归一化值时,判断测量的 10B浓度属于低量程段,则输出由低量程段 10B浓度计算方程得出的 10B浓度。
S4、当硼表测量中子计数率的归一化值小于划分点的中子计数率 归一化值时,判断测量的 10B浓度属于高量程段,则输出由高量程段 10B浓度计算方程得出的 10B浓度。
S5、基于标定试验拟合系数和中子计数率归一化值,分别按照高量程段 10B浓度计算方程和低量程段 10B浓度计算方程计算硼表测量的 10B浓度;
基于硼表标定试验所记录的 10B浓度和中子计数率归一化值,以中子计数率归一化值为自变量,以 10B浓度为因变量,分别对高量程段和低量程段标定数据进行多项式拟合;使用3次4项拟合计算出高、低量程段标定试验拟合系数;
把计算得出的高、低量程段标定试验拟合系数代入3次4项拟合计算方程,得到用于计算 10B浓度的计算方程;
其中,3次4项拟合计算方程如下:
Figure PCTCN2022127601-appb-000002
式中:P H为高量程段 10B浓度,P L为低量程段 10B浓度,n *为中子计数率归一化值;a 1,b 1,c 1,d 1为高量程段的标定试验拟合系数;a 2,b 2,c 2,d 2为低量程段的标定试验拟合系数。
S6、基于核岛一回路冷却剂中 10B丰度和选择输出的硼表测量 10B浓度,计算输出硼表测量总硼浓度;
其中,计算方程如下:
Figure PCTCN2022127601-appb-000003
式中:P m为硼表测量总硼浓度,P B10为硼表测量 10B浓度,A B10为核 岛一回路冷却剂中 10B丰度。
参照图5、图6,一种提高硼表测量准确度的系统,包括:
参数采集模块,用于采集中子计数率和管道温度;
计算参数存储模块,用于储存 10B丰度、标定试验拟合系数、基准中子计数率、温度补偿系数;
中子计数率处理模块,用于对中子计数率进行综合性的处理;
无效报警模块,用于根据中子计数率有效性判断信号产生硼表测量结果无效报警信号;
自保持模块,用于在中子计数率有效性判断结果为0时,将上一时刻的有效中子计数率保持为中子计数率输出选择模块的输入信号;
总硼浓度计算模块,用于根据浓度输出选择模块输出的 10B浓度和计算参数存储模块中预设的 10B丰度计算总硼浓度;
显示终端,用于显示硼表测量的 10B浓度、总硼浓度,以及硼表测量结果无效报警。
其中,参数采集模块包括:
中子计数率子模块,用于采集硼表信号处理机柜中产生的数字量中子计数率信号;
管道温度子模块,用于采集采集硼表中子测量装置所在管道的温度。
其中,中子计数率处理模块包括:
中子计数率温度补偿子模块,用于对中子计数率进行温度补偿;
中子计数率有效性判断子模块,用于判断经过温度补偿的中子计 数率的有效性,产生逻辑量判断信号;
中子计数率输出选择模块,用于选择输出将用于 10B浓度和总硼浓度计算的中子计数率;
中子计数率归一化子模块,用于计算输出中子计数率归一化值。
其中,总硼浓度计算模块包括:
低量程段浓度计算子模块,用于计算低量程段 10B浓度;
高量程段浓度计算子模块,用于计算高量程段 10B浓度;
浓度输出选择子模块,用于根据中子计数率归一化值判断硼表测量的 10B浓度所属的量程段,若判断结果为高量程段则输出高量程段浓度计算子模块产生的 10B浓度,若判断结果为低量程段则输出低量程段浓度计算子模块产生的 10B浓度。
结合以上对本发明实施方式的详细描述可以看出,相对于现有技术,本发明提高硼表测量准确度的方法和系统具有以下技术效果:
1、本发明在不改变硼表中子测量装置的前提下,实现了通过硼表监测核岛一回路冷却剂中 10B浓度的功能;将核岛一回路冷却剂中 10B丰度作为总硼浓度计算参数后,能够解决硼表测量总硼浓度受一回路冷却剂中 10B燃耗效应影响导致硼浓度偏差容易在一个燃料循环的中间阶段超过控制标准问题。
2、本发明通过按照高、低量程段分别计算 10B浓度,并根据 10B浓度输出选择模块的运算结果选择输出正确的 10B浓度的技术方案,实现硼表的 10B浓度监测功能,同时保证 10B浓度监测准确度。
3、本发明当系统触发硼表测量结果无效报警时,机组运行值应 及时协调化学分析部门执行核岛一回路冷却剂硼浓度取样分析,确认一回路冷却剂的实际硼浓度,同时应协调维修部门对触发硼表测量结果无效报警的原因进行分析,及时恢复硼表正常运行,确保硼表对一回路冷却剂硼浓度的监测功能正常。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种提高硼表测量准确度的方法,其特征在于,包括以下步骤:
    S1、基于管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿;
    S2、对经过温度补偿的中子计数率进行有效性判断;
    S3、从标定试验数据中选定基准中子计数率;
    S4、根据硼表测量中子计数率的归一化值判断硼表测量 10B浓度所属的量程段;
    S5、基于标定试验拟合系数和中子计数率归一化值计算硼表测量 10B浓度;
    S6、基于核岛一回路冷却剂中 10B丰度和选择输出的硼表测量 10B浓度,计算输出硼表测量总硼浓度。
  2. 根据权利要求1所述的提高硼表测量准确度的方法,其特征在于,所述S1的具体内容包括:采集硼表信号处理机柜中产生的数字量中子计数率信号,采集硼表中子测量装置所在管道的温度,基于采集到的管道温度和预设的温度补偿系数对采集到的中子计数率进行温度补偿。
  3. 根据权利要求1所述的提高硼表测量准确度的方法,其特征在于,所述S2的具体内容包括:对经过温度补偿的中子计数率进行有效性判断,产生逻辑量判断信号,1表示有效,0表示无效,当中子计数率有效性判断信号为1时,输出有效的经过温度补偿的中子计数率,当中子计数率有效性判断信号为0时,产生硼表测量结果无效 报警信号,同时输出中子计数率无效前一时刻的有效中子计数率。
  4. 根据权利要求1所述的提高硼表测量准确度的方法,其特征在于,所述S3的具体内容包括:从标定试验数据中选定基准中子计数率,把硼表在去离子水条件下标定测得的中子计数率作为基准中子计数率,计算硼表测量中子计数率的归一化值;
  5. 根据权利要求1所述的提高硼表测量准确度的方法,其特征在于,所述S4的具体内容包括:根据硼表测量中子计数率的归一化值判断硼表测量 10B浓度所属的量程段,并根据判断结果,选择输出硼表测量 10B浓度;
    所述判断 10B浓度所属的量程段的方法具体为:
    基于硼表标定试验数据,计算 10B浓度高、低量程段划分点对应的子计数率归一化值,将该值定为判断 10B浓度所属量程段的阈值;
    当硼表测量中子计数率的归一化值大于等于划分点的中子计数率归一化值时,判断测量的 10B浓度属于低量程段,则输出由低量程段 10B浓度计算方程得出的 10B浓度;
    当硼表测量中子计数率的归一化值小于划分点的中子计数率归一化值时,判断测量的 10B浓度属于高量程段,则输出由高量程段 10B浓度计算方程得出的 10B浓度。
  6. 根据权利要求1所述的提高硼表测量准确度的方法,其特征在于,所述S5的具体内容包括:
    基于硼表标定试验所记录的 10B浓度和中子计数率归一化值,以中子计数率归一化值为自变量,以 10B浓度为因变量,分别对高量程 段和低量程段标定数据进行多项式拟合;
    基于标定试验拟合系数和中子计数率归一化值,分别按照高量程段 10B浓度计算方程和低量程段 10B浓度计算方程计算硼表测量的 10B浓度。
  7. 一种提高硼表测量准确度的系统,其特征在于,包括:
    参数采集模块,用于采集中子计数率和管道温度;
    计算参数存储模块,用于储存 10B丰度、标定试验拟合系数、基准中子计数率、温度补偿系数;
    中子计数率处理模块,用于对中子计数率进行综合性的处理;
    无效报警模块,用于根据中子计数率有效性判断信号产生硼表测量结果无效报警信号;
    自保持模块,用于在中子计数率有效性判断结果为0时,将上一时刻的有效中子计数率保持为中子计数率输出选择模块的输入信号;
    总硼浓度计算模块,用于根据浓度输出选择模块输出的 10B浓度和计算参数存储模块中预设的 10B丰度计算总硼浓度;
    显示终端,用于显示硼表测量的 10B浓度、总硼浓度,以及硼表测量结果无效报警。
  8. 根据权利要求7所述的提高硼表测量准确度的系统,其特征在于,所述参数采集模块包括:
    中子计数率子模块,用于采集硼表信号处理机柜中产生的数字量中子计数率信号;
    管道温度子模块,用于采集采集硼表中子测量装置所在管道的温 度。
  9. 根据权利要求7所述的提高硼表测量准确度的系统,其特征在于,所述中子计数率处理模块包括:
    中子计数率温度补偿子模块,用于对中子计数率进行温度补偿;
    中子计数率有效性判断子模块,用于判断经过温度补偿的中子计数率的有效性,产生逻辑量判断信号;
    中子计数率输出选择模块,用于选择输出将用于 10B浓度和总硼浓度计算的中子计数率;
    中子计数率归一化子模块,用于计算输出中子计数率归一化值。
  10. 根据权利要求7所述的提高硼表测量准确度的系统,其特征在于,所述总硼浓度计算模块包括:
    低量程段浓度计算子模块,用于计算低量程段 10B浓度;
    高量程段浓度计算子模块,用于计算高量程段 10B浓度;
    浓度输出选择子模块,用于根据中子计数率归一化值判断硼表测量的 10B浓度所属的量程段,若判断结果为高量程段则输出高量程段浓度计算子模块产生的 10B浓度,若判断结果为低量程段则输出低量程段浓度计算子模块产生的 10B浓度。
PCT/CN2022/127601 2022-01-04 2022-10-26 提高硼表测量准确度的方法和系统 WO2023130811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210002853.3A CN114400104A (zh) 2022-01-04 2022-01-04 提高硼表测量准确度的方法和系统
CN202210002853.3 2022-01-04

Publications (1)

Publication Number Publication Date
WO2023130811A1 true WO2023130811A1 (zh) 2023-07-13

Family

ID=81228617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127601 WO2023130811A1 (zh) 2022-01-04 2022-10-26 提高硼表测量准确度的方法和系统

Country Status (2)

Country Link
CN (1) CN114400104A (zh)
WO (1) WO2023130811A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400104A (zh) * 2022-01-04 2022-04-26 中广核工程有限公司 提高硼表测量准确度的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376374A (zh) * 2010-08-26 2012-03-14 中国核动力研究设计院 核电站硼浓度在线监测系统
CN103680650A (zh) * 2013-12-17 2014-03-26 阴国玮 核电站硼浓度计及其标定方法
CN204102582U (zh) * 2014-01-06 2015-01-14 阴国玮 连续监测核电站一回路水硼浓度的硼浓度计
CN107610790A (zh) * 2017-08-17 2018-01-19 广西防城港核电有限公司 一种用于核电站硼表标定的中子计数率采集装置及方法
CN114400104A (zh) * 2022-01-04 2022-04-26 中广核工程有限公司 提高硼表测量准确度的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376374A (zh) * 2010-08-26 2012-03-14 中国核动力研究设计院 核电站硼浓度在线监测系统
CN103680650A (zh) * 2013-12-17 2014-03-26 阴国玮 核电站硼浓度计及其标定方法
CN204102582U (zh) * 2014-01-06 2015-01-14 阴国玮 连续监测核电站一回路水硼浓度的硼浓度计
CN107610790A (zh) * 2017-08-17 2018-01-19 广西防城港核电有限公司 一种用于核电站硼表标定的中子计数率采集装置及方法
CN114400104A (zh) * 2022-01-04 2022-04-26 中广核工程有限公司 提高硼表测量准确度的方法和系统

Also Published As

Publication number Publication date
CN114400104A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN102169735A (zh) 核电站燃料棒破损在线探测系统
WO2023130811A1 (zh) 提高硼表测量准确度的方法和系统
CN103928068A (zh) 定量测量压水堆核电厂一回路冷却剂泄漏率的系统及方法
CN203070790U (zh) 定量测量压水堆核电厂一回路冷却剂泄漏率的系统
CN111751866B (zh) 基于中子符合计数的溶液系统钚浓度估算方法及监测系统
KR101260936B1 (ko) 열출력 자동보정기능이 구비된 디지털 노외핵계측계통 시스템
KR20090120305A (ko) 원자력 발전소의 증기발생기의 누설 감지장치 및 방법
CN114420328A (zh) 反应堆次临界度的监测方法及装置
CA2425244C (en) Method for reduction of the statistical measurement times in the field of radioactivity measurement
JPH02242197A (ja) ボロン濃度自動分析装置
CN113791439A (zh) 一种通过测量中子得到钆浓度的在线监测方法及系统
KR101178707B1 (ko) 누적 편차합 관리도를 이용한 붕소희석 사고 경보 시스템 및 그 방법
WO2020243408A1 (en) System and method to determine reactivity
JPH02157695A (ja) 加圧水型原子炉の反応度係数測定方法
JP2895101B2 (ja) 原子炉の減速材温度係数測定方法及びその装置
Jimenez et al. Continuous Measurement of Boron Concentration in Nuclear Power Plants: Why is it Essential for Safe and Efficient Operation?
CN217111359U (zh) 一种冷却剂泄漏监测装置
KR950012820B1 (ko) 장기 중성자 선량 측정 노출중 동위원소 버언-인을 검출 및 교정하는 방법
Chen et al. A FPGA based data acquisition system for research reactor operational monitoring
CN112488460B (zh) 一种二氧化铀临界事故应急时总裂变次数估算方法
CN103995279B (zh) 用于宽动态范围中子通量监测的动态标定系统及方法
JP3137569B2 (ja) 原子炉の中性子源強度及びガンマ線強度を評価する方法
Mihalczo et al. Quality Assurance Verification of High-Flux Isotope Reactor Fuel Elements by the 252Cf-Source-Driven Noise Analysis Method
Ammon et al. Monitoring the Integrity of Control Rods On-Line with a Helium Leak Detector
CN116125548A (zh) 一种铀裂变瞬发中子测井的中子时间谱死时间修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918263

Country of ref document: EP

Kind code of ref document: A1