WO2023130784A1 - 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法 - Google Patents

一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法 Download PDF

Info

Publication number
WO2023130784A1
WO2023130784A1 PCT/CN2022/123804 CN2022123804W WO2023130784A1 WO 2023130784 A1 WO2023130784 A1 WO 2023130784A1 CN 2022123804 W CN2022123804 W CN 2022123804W WO 2023130784 A1 WO2023130784 A1 WO 2023130784A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellets
magnetite
roasting
temperature
additive
Prior art date
Application number
PCT/CN2022/123804
Other languages
English (en)
French (fr)
Inventor
李�杰
刘卫星
杨爱民
齐西伟
于复兴
Original Assignee
华北理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北理工大学 filed Critical 华北理工大学
Priority to US18/075,422 priority Critical patent/US11891677B2/en
Publication of WO2023130784A1 publication Critical patent/WO2023130784A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic

Definitions

  • scheme one the pellets are returned to the ore, mixed with slaked lime and sodium humate, aged, and ball milled as a composite additive, and added to the pellet raw materials for pelletizing, pellet preheating and roasting experiments, reducing
  • the pellet roasting temperature is 30-50°C.
  • the low-temperature roasting additive generally needs to be prepared in advance, and the additive contains a small amount of alkali metal Na + , which may affect the smooth operation of the blast furnace in the actual industrial production process.
  • the present invention provides an additive for reducing the calcination temperature of magnetite concentrate pellets, which can significantly reduce the calcination temperature of pellets,
  • the average reduction of the pellet roasting temperature by 50-80°C can significantly reduce production energy consumption, improve the pellet strength index, and alleviate the high-temperature roasting bonding phenomenon.
  • the present invention provides an additive for reducing the roasting temperature of magnetite concentrate pellets, which consists of components: B 2 O 3 and Mn 2 O 3 .
  • B 2 O 3 and Mn 2 O 3 are analytically pure chemical reagents, and the additives are mixed with B 2 O 3 and Mn 2 O 3 , wherein the mass percentage of B 2 O 3 is 0.8% of the dry mass of magnetite concentrate, The mass percentage of Mn 2 O 3 is 4% of the dry mass of the magnetite concentrate.
  • the mixing, pelletizing, drying and oxidative roasting processes are the same as those of the common iron ore pellet roasting in the prior art.
  • bentonite with an amount of 0.7%
  • calcium flux and additives are formulated into a mixture
  • water with a dry basis mass ratio of 12 to 14% of the mixture is added, and the diameter 10 is prepared in a disc pelletizer.
  • green balls of ⁇ 12.5mm after the green balls are completely dried, preheat them at 600-1000°C for 15-20 minutes to ensure that Mn 2 O 3 is fully decomposed, and then bake them at 1200°C for 15 minutes.
  • the pellets are cooled to room temperature to obtain finished pellets. Then the reference pellets without B 2 O 3 and Mn 2 O 3 were subjected to high-temperature (1250-1280°C) preheating roasting experiment, and after the test, the compressive strength test and mineral phase structure observation were carried out.
  • the biggest advantage of the technical scheme of the present invention is that after using the additive, the pellet roasting temperature can be significantly reduced, and the average pellet roasting temperature can be reduced by 50-80°C, which can significantly reduce production energy consumption and improve the pellet strength index.
  • the additives for the roasting temperature of the ore pellets include B 2 O 3 and Mn 2 O 3 chemical reagents of analytical grade, and the roasting temperature is set below the melting point of low melting point substances, that is, 1200°C.
  • the melting point of B 2 O 3 is 450°C.
  • the thermal decomposition equation of Mn 2 O 3 in the document "Research on Decomposition Kinetics of Manganese Dioxide at Low Temperature” is as follows: 6Mn 2 O 3 ⁇ 4Mn 3 O 4 +O 2 , and the TG curve of Mn 2 O 3 is shown in the figure As shown in 2, the TG curve shows that during the heating process, Mn 2 O 3 decomposes slowly when the temperature range is 600-1000 °C, which is consistent with the preheating temperature range of magnetite pellets under normal conditions. During the preheating process, O 2 is slowly released to promote the oxidation and recrystallization of magnetite from the inside.
  • Fig. 1 Flow chart of pellet production process of the present invention.
  • Fig. 2 TG curve diagram of the thermogravimetric analysis experiment of the present invention.
  • Example 1 Using local high-silicon magnetite concentrate (TFe66.3%, SiO 2 content 6.17%) as raw material, add 0.7% bentonite and calcareous flux CaO to mix, without adding B 2 O 3 , Mn 2 O 3 , after adding 12-14% water, prepare green balls with a diameter of 10-12.5mm in a disc pelletizer. After the ball is dehydrated and dried, the preheating temperature is 900°C, the preheating time is 15 minutes, the roasting temperature is 1200°C, and the roasting time is 15 minutes. The average strength of roasted finished balls is 1980N/piece, and the strength of pellets is low at this time.
  • TFe66.3%, SiO 2 content 6.17% Using local high-silicon magnetite concentrate (TFe66.3%, SiO 2 content 6.17%) as raw material, add 0.7% bentonite and calcareous flux CaO to mix, without adding B 2 O 3 , Mn 2 O 3 , after adding 12-14% water, prepare green balls with
  • Embodiment 2 Take local high-silicon magnetite concentrate (TFe66.3%, SiO 2 content 6.17%) as raw material, add 0.7% bentonite, calcium flux CaO, 4% Mn 2 O 3 mix, do not add B 2 O 3 , after adding 12-14% water, prepare green balls with a diameter of 10-12.5mm in a disc pelletizer, the drop strength of green balls is 5 times per ball (0.5m), and the compressive strength 8.4N, after the green balls are dehydrated and dried, the preheating temperature is 600-1000°C, the preheating time is 15min, the roasting temperature is 1200°C, and the roasting time is 15min. The average strength of roasted finished balls is 2274N/piece, and the strength of pellets is slightly higher at this time.
  • Example 3 Using local high-silicon magnetite concentrate (TFe66.3%, SiO2 content 6.17%) as raw material, add 0.7% bentonite, calcium flux CaO, 0.8% B2O3 and mix well without adding Mn 2 O 3 , after adding 12 to 14% water, prepare green balls with a diameter of 10 to 12.5mm in a disc pelletizer, with a drop strength of 6 times per ball (0.5m), and a compressive strength of 9.1 N, after the green balls are dehydrated and dried, the preheating temperature is 900°C, the preheating time is 15min, the roasting temperature is 1200°C, and the roasting time is 15min. The average compressive strength of the pellets is 2631N/piece, and the strength of the pellets is relatively high at this time.
  • Example 4 Using local high-silicon magnetite concentrate (TFe66.3%, SiO 2 content 6.17%) as raw material, add 0.7% bentonite, calcium flux CaO, 0.8% B 2 O 3 , 4% Mn 2 O 3 After mixing, after adding 12-14% water, prepare green balls with a diameter of 10-12.5mm in a disc pelletizer. N, after the green balls are dehydrated and dried, the preheating temperature is 600-1000°C, the preheating time is 15min, the roasting temperature is 1200°C, and the roasting time is 15min. The average strength of the roasted finished balls is 2962N/piece, and the strength of the pellets is very high at this time.
  • Example 5 Using local high-silicon magnetite concentrate (TFe66.3%, SiO 2 content 6.17%) as raw material, add 0.7% bentonite, calcium flux CaO and mix well, without adding B 2 O 3 , Mn 2 O 3 , after adding 12-14% water, prepare green balls with a diameter of 10-12.5mm in a disc pelletizer. After the ball is dehydrated and dried, the preheating temperature is 900°C, the preheating time is 15 minutes, the roasting temperature is 1280°C, and the roasting time is 15 minutes. The average strength of roasted finished balls is 3063N/piece, and the strength of pellets is the highest at this time.
  • TFe66.3%, SiO 2 content 6.17% Using local high-silicon magnetite concentrate (TFe66.3%, SiO 2 content 6.17%) as raw material, add 0.7% bentonite, calcium flux CaO and mix well, without adding B 2 O 3 , Mn 2 O 3 , after adding 12-14% water, prepare green balls with a diameter
  • the macroscopic strength shows that both B 2 O 3 and Mn 2 O 3 can promote the oxidation recrystallization process of magnetite at low temperature, but the ways of promotion are different. Among them, Mn 2 O 3 starts from the gas phase to promote the oxidation and recrystallization of magnetite, and B 2 O 3 starts from the liquid phase to promote the movement of Fe 2+ to accelerate the solid phase consolidation.
  • the comprehensive promoting effect of the additive is greater than that of a single additive, and the macroscopic strength results show that the compressive strength of the pellets at 1200 °C after adding the additive is basically the same as that of the pellets roasted at 1250-1280 °C.
  • the traditional way to reduce the cohesion rate of flux-based pellets during high-temperature calcination is to add MgO flux to the pellets to generate high-melting point substances, which are not suitable for bonding at high temperatures.
  • the traditional oxidation roasting of magnetite pellets is carried out layer by layer from the outside to the inside.
  • Calcium ferrite system such as CaO ⁇ Fe 2 O 3 , CaO ⁇ 2Fe 2 O 3 , CaO ⁇ Fe 2 O 3 - CaO ⁇ 2FeO eutectic mixture, their melting points are all low, respectively 1216°C, 1226°C and 1205°C,
  • a proper amount of liquid phase can promote the bonding of iron ore particles and increase the strength of pellets during the high-temperature oxidation roasting process of pellets.
  • the liquid phase amount needs to be strictly controlled, but also the liquid phase amount of calcium ferrite is difficult to control. If the liquid phase amount is too high, the pellets will be bonded, the porosity will be reduced, and the metallurgical properties of the pellets will be deteriorated.
  • the present invention mixes the oxide additives into the raw materials of the pellets, so that they can be fully decomposed to generate O 2 during the preheating roasting process, which is carried out from both internal and external aspects, and promotes the oxidation and recrystallization of magnetite to ensure its low temperature (1200°C). ) can maintain the strength under high temperature (1250-1280°C) roasting, and reduce the pellet caking rate at the same time.
  • the present invention starts from the source, and by adding other additives, while properly reducing the roasting temperature of the pellets, it can increase its strength as much as possible, fundamentally control the amount of liquid phase generation at high temperature, avoid the problem of caking, and reduce the Roasting temperature is also conducive to energy saving and consumption reduction, prolonging the service life of equipment, and ensuring the smooth progress of the roasting process, which is of great significance to the industrial production of pellets.

Abstract

本发明公开一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法,由组分:B2O3、Mn2O3构成,所述B2O3、Mn2O3均为化学试剂分析纯,添加剂质量分别为磁铁精矿干基质量的0.8%、4%。将磁铁精矿、膨润土、钙质熔剂与添加剂进行配料后,配加混合料干基质量比12~14%的水,在圆盘造球机内制备成直径10~12.5mm的生球,生球干燥完全后,在600~1000℃条件下先进行预热15~20min,确保Mn2O3充分分解,再在1200℃的条件下进行焙烧15min,焙烧完成后,球团冷却至室温,获得成品球团矿。

Description

一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法 技术领域
本发明涉及一种磁铁精矿球团焙烧添加剂,特别涉及一种用于降低磁铁精矿球团焙烧温度的添加剂,还涉及利用添加剂降低磁铁精矿球团焙烧温度的方法,属于钢铁冶金领域。
背景技术
铁前工序作为钢铁流程中有害粉尘气体排放量最大的环节,给低碳环保工作带来阻碍,而作为主要入炉原料的烧结矿与球团矿更是其中的关键因素,球团矿的生产相较于烧结矿,其能耗约为烧结工序的1/2,粉尘、SO 2、NO x排放量分别约为烧结工序的1/7、1/3、1/5。因此,减少烧结矿的使用量,增大球团矿的入炉比例是当今钢铁工业的一条绿色发展之路。
为了满足高炉炼铁需求,提高球团矿的入炉比例,近年来,研究重心逐渐转移到熔剂性球团上来。熔剂性球团由于钙质熔剂的添加,在高温焙烧过程中容易生成铁酸钙和铁橄榄石等低熔点物质,造成液相量较多使得焙烧过程中产生粘结现象,实际生产中难以控制。为了缓解熔剂性球团焙烧粘结问题,以往大都通过添加含镁熔剂促进高熔点物质的生成来改善熔剂性球团性能。现有技术方案中,方案一:将球团返矿、消石灰和腐殖酸钠混合、陈化、球磨后作为复合添加剂,加入到球团原料中进行造球、球团预热焙烧实验,降低了球团焙烧温度30~50℃。方案一中低温焙烧添加剂一般需要提前制备,并且添加剂中含有少量的碱金属Na +,实际工业化生产过程中有可能会给高炉顺行带来影响。
方案二:通过在回转窑中添加一定粒度的钛渣将焙烧过程中的球团矿分离开来可以以降低球团矿粘结率和缓解回转窑结圈状况。方案二是通过加入外部因素来缓解球团矿之间的焙烧粘结问题,只是在一定程度上抑制了回转窑结圈现象,并没有从根本上解决球团矿焙烧粘结问题并且钛渣粒度较细,可能会有微量钛渣吸附在球团矿表面,对球团矿质量造成影响。
方案三:通过优化细粒磁铁矿球团焙烧过程的热工参数,如风温、升温速度、料层高度、链篦机运行速度和焙烧气氛氧含量等,并且外加控制预热段、焙烧段及冷却段球团矿的氧化比例,实现了球团矿深度氧化和高效固结。最终当回转窑焙烧温度1200℃时,球团矿平均抗压强度达到2779N/个。方案三虽然通过改变热工参数促进了球团矿深度固结,得到了强度较高的铁矿球团,但该优化方案并不一定适用于其他种类磁铁矿。
方案四:将镁质熔剂轻烧白云石与水充分消化后,按一定重量比将上述镁质添加剂与磁铁精矿、膨润土进行混匀、造球、焙烧和冷却后,在焙烧温度1190℃下焙烧9min时制得抗压强度2200‑2400N/个高品质的镁质球团矿。方案四向原料中加入MgO熔剂虽然可以生成高熔点物质,在一定程度上降低粘结问题,但Mg 2+的加入会使其进入磁铁矿晶格中,在一定程度上阻碍了磁铁矿氧化再结晶,并且MgO熔剂的添加量不能过高,因此也具有一定弊端。
技术问题
针对目前存在的高硅磁铁精矿制备氧化球团焙烧温度高、产品强度低等问题,本发明提供了一种降低磁铁精矿球团焙烧温度的添加剂,该添加剂可显著降低球团焙烧温度,球团焙烧温度平均降低50~80℃,可显著降低生产能耗,提高球团强度指标,缓解高温焙烧粘结现象。
技术解决方案
为实现上述技术目的,本发明提供了一种用于降低磁铁精矿球团焙烧温度的添加剂,由组分:B 2O 3、Mn 2O 3构成。B 2O 3、Mn 2O 3均为化学试剂分析纯,添加剂由B 2O 3与Mn 2O 3混合而成,其中B 2O 3的质量百分比为磁铁精矿干基质量的0.8%,Mn 2O 3的质量百分比为磁铁精矿干基质量的4%。
本发明除预热过程中预热温度段为600~1000℃时适当延长预热时间外,混料、造球、干燥及氧化焙烧与现有技术常见的铁矿球团焙烧工艺均相同。将磁铁精矿、用量为0.7%的膨润土、钙质熔剂与添加剂进行配成混合料后,配加混合料干基质量比12~14%的水,在圆盘造球机内制备成直径10~12.5mm的生球,生球干燥完全后,在600~1000℃条件下先进行预热15~20min,确保Mn 2O 3充分分解,再在1200℃的条件下进行焙烧15min,焙烧完成后,球团冷却至室温,获得成品球团矿。再将未添加B 2O 3、Mn 2O 3的基准球团进行高温(1250~1280℃)预热焙烧实验,试验结束后进行抗压强度测试与矿相结构观察。
有益效果
本发明的技术方案最大优点是使用添加剂后,可显著降低球团焙烧温度,球团焙烧温度平均降低50~80℃,可显著降低生产能耗,提高球团强度指标,本发明中降低磁铁精矿球团焙烧温度的添加剂包括B 2O 3、Mn 2O 3化学试剂分析纯,将焙烧温度定在低熔点物质熔点温度以下,即1200℃。B 2O 3熔点温度为450℃,在预热过程中为球团提供微量液相促进Fe 2+移动,加速固相固结。文献《二氧化锰低温分解动力学研究》中Mn 2O 3的加热分解方程式如下:6Mn 2O 3→4Mn 3O 4+O 2,并对Mn 2O 3进行热重分析实验TG曲线如图2所示,TG曲线表明,升温过程中Mn 2O 3温度区间为600~1000℃时缓慢失重分解,该温度区间与正常情况下的磁铁矿球团预热温度区间吻合。预热过程中缓慢释放O 2,从内部促进磁铁矿氧化再结晶。
附图说明
图1:本发明球团生产过程流程图。
图2:本发明热重分析实验TG曲线图。
本发明的实施方式
参考附图1球团矿生产过程进行实施。
实施例1:以本地高硅磁铁精矿(TFe66.3%,SiO 2含量6.17%)为原料,添加0.7%的膨润土和钙质熔剂CaO混匀,不添加B 2O 3、Mn 2O 3,加入12~14%水分后,在圆盘造球机内制备成直径10~12.5mm的生球,生球落下强度5次/个球(0.5m),生球抗压强度8.2N,生球脱水干燥后,预热温度900℃,预热时间15min,焙烧温度1200℃,焙烧时间15min。焙烧成品球平均强度为1980N/个,此时球团矿强度较低。
实施例2:以本地高硅磁铁精矿(TFe66.3%,SiO 2含量6.17%)为原料,添加0.7%的膨润土、钙质熔剂CaO、4%的Mn 2O 3进行混匀,不添加B 2O 3,加入12~14%水分后,在圆盘造球机内制备成直径10~12.5mm的生球,生球落下强度5次/个球(0.5m),生球抗压强度8.4N,生球脱水干燥后,预热温度600~1000℃,预热时间15min,焙烧温度1200℃,焙烧时间15min。焙烧成品球平均强度为2274N/个,此时球团矿强度稍高。
实施例3:以本地高硅磁铁精矿(TFe66.3%,SiO 2含量6.17%)为原料,添加0.7%的膨润土、钙质熔剂CaO、0.8%B 2O 3后混匀,不加Mn 2O 3,加入12~14%水分后,在圆盘造球机内制备成直径10~12.5mm的生球,生球落下强度6次/个球(0.5m),生球抗压强度9.1N,生球脱水干燥后,预热温度900℃,预热时间15min,焙烧温度1200℃,焙烧时间15min。球团矿平均抗压强度为2631N/个,此时球团矿强度较高。
实施例4:以本地高硅磁铁精矿(TFe66.3%,SiO 2含量6.17%)为原料,添加0.7%的膨润土、钙质熔剂CaO、0.8% B 2O 3、4%Mn 2O 3后混匀,加入12~14%水分后,在圆盘造球机内制备成直径10~12.5mm的生球,生球落下强度6次/个球(0.5m),生球抗压强度9.3N,生球脱水干燥后,预热温度600~1000℃,预热时间15min,焙烧温度1200℃,焙烧时间15min。焙烧成品球平均强度为2962N/个,此时球团矿强度很高。
实施例5:以本地高硅磁铁精矿(TFe66.3%,SiO 2含量6.17%)为原料,添加0.7%的膨润土、钙质熔剂CaO混匀,不加B 2O 3、Mn 2O 3,加入12~14%水分后,在圆盘造球机内制备成直径10~12.5mm的生球,生球落下强度6次/个球(0.5m),生球抗压强度9.5N,生球脱水干燥后,预热温度900℃,预热时间15min,焙烧温度1280℃,焙烧时间15min。焙烧成品球平均强度为3063N/个,此时球团矿强度最高。
工业实用性
宏观强度表明:B 2O 3、Mn 2O 3在低温下对磁铁矿的氧化再结晶过程均有促进作用,但促进方式有所不同。其中Mn 2O 3从气相入手促进磁铁矿氧化再结晶,B 2O 3从液相入手促进Fe 2+移动加速固相固结。该添加剂的综合促进作用均大于单一添加剂的促进效果,并且宏观强度结果表明加入添加剂后1200℃下球团矿抗压强度与1250~1280℃下焙烧试样球团矿抗压强度基本一致。
传统降低熔剂性球团高温焙烧粘结率的方法是向球团中加入MgO熔剂,使其生成高熔点物质,使之在高温下不宜粘结。传统磁铁矿球团氧化焙烧是从外到内进行逐层进行的。
铁酸钙体系如CaO·Fe 2O 3、CaO·2Fe 2O 3、CaO·Fe 2O 3- CaO·2FeO共熔混合物,它们熔点均较低,分别为1216℃、1226℃和1205℃,在球团高温氧化焙烧过程中适量的液相可以起到促进铁矿颗粒粘结,增加球团强度的作用。但是在球团焙烧过程中,液相量不仅需要严格控制,而且铁酸钙液相量难以控制,液相量过高会导致球团粘结、孔隙率降低,反而恶化球团冶金性能。
本发明是通过将氧化物添加剂混入球团原料中,使之在预热焙烧过程中充分分解产生O 2,从内外结合两方面进行,促进磁铁矿氧化再结晶,确保其在低温(1200℃)下可以维持高温(1250~1280℃)焙烧下的强度,同时降低球团矿粘结率。
本发明从根源入手,通过添加其他添加剂,在适当降低球团焙烧温度的同时,尽可能提高其强度,从根本上控制高温下液相的生成量,避免粘结问题,同时降低球团矿的焙烧温度也有利于节能降耗、延长设备使用寿命、保障焙烧过程顺利进行,对于球团矿的工业生产具有重要意义。

Claims (3)

  1. 一种降低熔剂性磁铁矿球团焙烧温度的添加剂,其特征在于,由组分:B 2O 3、Mn 2O 3构成,所述B 2O 3、Mn 2O 3均为化学试剂分析纯,添加剂由B 2O 3与Mn 2O 3混合而成,其中B 2O 3的质量百分比为磁铁精矿干基质量的0.8%,Mn 2O 3的质量百分比为磁铁精矿干基质量的4%,适当延长预热温度段600~1000℃的预热时间,使得Mn 2O 3在600~1000℃时缓慢失重分解缓慢释放O 2,从内部促进磁铁矿氧化再结晶,将焙烧温度定在低熔点物质熔点温度1200℃以下。
  2. 如权利要求1所述的一种降低熔剂性磁铁矿球团焙烧温度的添加剂使用方法:将磁铁精矿、膨润土、钙质熔剂与添加剂进行配成混合料后,配加混合料干基质量比12~14%的水,在圆盘造球机内制备成直径10~12.5mm的生球,生球干燥完全后,在600~1000℃条件下先进行预热15~20min,确保Mn 2O 3充分分解,再在1200℃的条件下进行焙烧15min,焙烧完成后,球团冷却至室温,获得成品球团矿。
  3. 如权利要求3所述的一种降低熔剂性磁铁矿球团焙烧温度的添加剂使用方法:其特征在于,所述膨润土用量为混合料干基质量的0.7%。
PCT/CN2022/123804 2022-01-10 2022-10-08 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法 WO2023130784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/075,422 US11891677B2 (en) 2022-01-10 2022-12-06 Additive for reducing the roasting temperature of fluxed magnetite pellets and a method of using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210019068.9A CN114032387B (zh) 2022-01-10 2022-01-10 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法
CN202210019068.9 2022-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/075,422 Continuation US11891677B2 (en) 2022-01-10 2022-12-06 Additive for reducing the roasting temperature of fluxed magnetite pellets and a method of using it

Publications (1)

Publication Number Publication Date
WO2023130784A1 true WO2023130784A1 (zh) 2023-07-13

Family

ID=80141466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123804 WO2023130784A1 (zh) 2022-01-10 2022-10-08 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法

Country Status (2)

Country Link
CN (1) CN114032387B (zh)
WO (1) WO2023130784A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032387B (zh) * 2022-01-10 2022-04-01 华北理工大学 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法
CN115466840A (zh) * 2022-10-10 2022-12-13 内蒙古科技大学 一种含硼球团矿及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178000C1 (ru) * 2000-06-27 2002-01-10 Вдовин Константин Николаевич Способ доменной плавки
CN102906285A (zh) * 2010-04-27 2013-01-30 吴美惠 用于金属烧结的添加剂组合物
CN109355494A (zh) * 2018-11-22 2019-02-19 攀钢集团攀枝花钢铁研究院有限公司 一种可提高抗粉化性能的含有含铬型钒钛磁铁矿的球团及其制备方法
CN113889616A (zh) * 2021-09-13 2022-01-04 武汉大学 一种高振实密度富锂锰基正极材料及其制备方法
CN113957240A (zh) * 2021-10-20 2022-01-21 中南大学 一种含锰钒钛磁铁矿球团的制备方法
CN114032387A (zh) * 2022-01-10 2022-02-11 华北理工大学 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326175B (zh) * 2017-07-04 2019-05-28 攀钢集团攀枝花钢铁研究院有限公司 一种降低高铬型钒钛磁铁矿烧结混合料熔点的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2178000C1 (ru) * 2000-06-27 2002-01-10 Вдовин Константин Николаевич Способ доменной плавки
CN102906285A (zh) * 2010-04-27 2013-01-30 吴美惠 用于金属烧结的添加剂组合物
CN109355494A (zh) * 2018-11-22 2019-02-19 攀钢集团攀枝花钢铁研究院有限公司 一种可提高抗粉化性能的含有含铬型钒钛磁铁矿的球团及其制备方法
CN113889616A (zh) * 2021-09-13 2022-01-04 武汉大学 一种高振实密度富锂锰基正极材料及其制备方法
CN113957240A (zh) * 2021-10-20 2022-01-21 中南大学 一种含锰钒钛磁铁矿球团的制备方法
CN114032387A (zh) * 2022-01-10 2022-02-11 华北理工大学 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法

Also Published As

Publication number Publication date
CN114032387B (zh) 2022-04-01
CN114032387A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023130784A1 (zh) 一种降低熔剂性磁铁矿球团焙烧温度的添加剂及使用方法
CN110205486B (zh) 一种熔剂性铁酸钙的制备方法
KR101158883B1 (ko) 자기-환원성 냉-결합 펠렛
CN101270410A (zh) 一种冷固结球团及其制备方法
CN100336918C (zh) 一种铁矿粉烧结用化学添加剂
WO2021197258A1 (zh) 一种由低阶煤制造的氧化球团粘结剂及其制备方法和应用
KR101304686B1 (ko) 고로용 부분 환원철 및 그 제조방법
CN108070713B (zh) 一种使用轻烧镁球的铁矿烧结方法
CN108359792B (zh) 钛精矿与钒铁精矿混合精矿酸性氧化球团及其制备方法
CN1212410C (zh) 钢铁尘泥全部炼钢实现零排放的方法
WO2020077851A1 (zh) 一种对铜渣焙烧改性回收铁的方法
CN110894575A (zh) 低碱度镁质球团用复合粘结剂及其制备方法和应用
CN107488784B (zh) 一种高炉炼铁用高碱度球团矿及其生产方法
CN106811597A (zh) 一种利用石灰窑废气生产高炉用冷固结含碳球团的方法
CN114763582B (zh) 一种利用取向硅钢氧化镁废弃物生产镁质球团的方法
JP6964692B2 (ja) 金属鉄の製造方法
Zhu et al. Utilization of hydrated lime as binder and fluxing agent for the production of high basicity magnesium fluxed pellets
CN106222402A (zh) 一种钛精矿球团的生产方法
Pal et al. Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making
US11891677B2 (en) Additive for reducing the roasting temperature of fluxed magnetite pellets and a method of using it
CN113416838B (zh) 一种用大粒度铁矿粉制备熔剂性含碳低钛球团的方法
CN110894572B (zh) 一种用于降低高硅磁铁精矿球团焙烧温度的添加剂及其应用方法
CN114990330A (zh) 铬渣无害资源化处理方法、活性微粉材料组合物和活性微粉材料
CN110184414A (zh) 高碱度铁酸钙复合物、其制备方法及其应用
CN115700284B (zh) 一种以全赤铁矿粉为原料制备高品质dri的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918238

Country of ref document: EP

Kind code of ref document: A1