WO2023130757A1 - 环形光斑激光器在清洗凹凸槽结构中的应用 - Google Patents

环形光斑激光器在清洗凹凸槽结构中的应用 Download PDF

Info

Publication number
WO2023130757A1
WO2023130757A1 PCT/CN2022/118215 CN2022118215W WO2023130757A1 WO 2023130757 A1 WO2023130757 A1 WO 2023130757A1 CN 2022118215 W CN2022118215 W CN 2022118215W WO 2023130757 A1 WO2023130757 A1 WO 2023130757A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
spot
laser beam
concave
groove structure
Prior art date
Application number
PCT/CN2022/118215
Other languages
English (en)
French (fr)
Inventor
谢春波
汪军
刘亚辉
张春芳
高辉
闫大鹏
Original Assignee
武汉锐科光纤激光技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉锐科光纤激光技术股份有限公司 filed Critical 武汉锐科光纤激光技术股份有限公司
Priority to EP22865872.0A priority Critical patent/EP4230316A4/en
Publication of WO2023130757A1 publication Critical patent/WO2023130757A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching

Definitions

  • the present application relates to the technical field of lasers, in particular to the application of an annular spot laser in cleaning concave-convex structures.
  • the concave-convex groove structure is applied to the gun barrel.
  • the barrel is a pipe used to launch projectiles.
  • the inner wall of the barrel is processed to form a concave-convex groove structure, that is, rifling.
  • the role of the rifling is to give the bullet the ability to rotate, so that the bullet can maintain the originally set direction to fly smoothly after being discharged from the chamber, increase the penetrating power, and improve the shooting accuracy.
  • the gun barrel will leave a large amount of sulfide, carbide, oil and other residues on the inner wall of the gun barrel after firing the projectile. Under the huge force generated when the shell is fired, the residue accumulated in the rifling will cause cracks and concave-convex pits on the inner wall of the barrel, which will reduce the shooting accuracy; in severe cases, the barrel will even be scrapped or the chamber will be blown.
  • the concave-convex groove structure is applied to the grid roller. Mesh rollers are mostly used in the printing industry, and the residue formed on the surface will affect the printing quality if it is not cleaned in time. Therefore, it is necessary to clean the concave-convex groove structure to remove the substances attached to the surface of the concave-convex groove structure.
  • Chemical cleaning is a traditional cleaning technology.
  • the cleanliness of the surface after cleaning is high, but the cleaning efficiency is low and the environmental friendliness is poor.
  • Laser cleaning is more and more used in the field of cleaning due to its low cleaning efficiency and high environmental friendliness, such as removing the oxide layer on the metal surface, grinding the coating on the metal surface, and grinding the metal surface to adjust the size.
  • the existing laser cleaning technology is generally carried out on the substances attached to the flat surface. For the substances attached to the surface of the concave-convex groove structure, due to the unevenness of the substrate, it is easy to cause the cleaning to be unclean or the substrate is damaged even though it is cleaned.
  • An embodiment of the present application provides an application of a ring-shaped spot laser in cleaning a concave-convex groove structure.
  • the ring-shaped spot laser cleans pollutants attached to the concave-convex groove structure whose groove depth is at the submillimeter level.
  • the embodiment of the present application also provides an application of a ring-shaped spot laser in cleaning a concave-convex groove structure.
  • the ring-shaped spot laser includes: a pulsed laser, used to emit pulsed laser light; a continuous laser, used to emit continuous laser light; and A beamer for combining the pulsed laser and the continuous laser to form a laser beam; wherein, the spot of the laser beam includes:
  • the first light spot is the light spot formed by the pulsed laser.
  • the second spot is the spot formed by the continuous laser
  • the first light spot is a circular light spot, and the outer edge of the second light spot surrounds the outer edge of the first light spot; the laser beam is moved along the scanning path on the surface to be cleaned of the concave-convex groove structure to clean the surface to be cleaned;
  • the optical power of the pulsed laser is 243W to 297W; the optical power of the continuous laser is 1008W to 1232W; the pulse frequency of the pulsed laser is 22.5 kHz to 27.5 kHz; the pulse width of the pulsed laser is 120 nanometers seconds to 150 nanoseconds; the scan rate of the laser beam is 5850 mm/s to 7150 mm/s;
  • the spot overlap rate of the laser beam is 40% to 60%; the definition of the spot overlap rate: the overlapping degree of the focused spot formed after the laser beam formed after the pulsed laser and the continuous laser beam are collimated and focused during the movement process.
  • the diameter of the spot of the laser beam is 300 microns; the diameter of the first spot formed by the pulsed laser is 100 microns; The inner diameter of the second spot is 130 microns, and the outer diameter is 300 microns; after the laser beam is collimated and focused: the pulsed laser beam and the continuous laser beam are combined to form a beam spot, and the beam spot The diameter is 60 microns to 270 microns.
  • the diameter of the spot of the laser beam is 400 microns; the diameter of the first spot formed by the pulsed laser is 150 microns; the continuous laser The formed second spot has an inner diameter of 200 microns and an outer diameter of 400 microns; after the laser beam is collimated and focused: the pulsed laser beam combines with the continuous laser beam to form a combined beam spot, and the combined beam The diameter of the spot is 44 microns to 132 microns.
  • the embodiment of the present application also provides an application of a ring-shaped spot laser in cleaning the concave-convex groove structure.
  • the ring-shaped spot laser includes: a pulse laser for emitting pulsed laser light; a continuous laser for emitting continuous laser light; and a beam combiner , used to combine the pulsed laser and the continuous laser to form a laser beam; the spot of the laser beam includes:
  • the first light spot is a light spot formed by a pulsed laser
  • the second spot is a spot formed by continuous laser light
  • the first light spot is a circular light spot, and the outer edge of the second light spot surrounds the outer edge of the first light spot; the laser beam is moved along the scanning path on the surface to be cleaned of the concave-convex groove structure to clean the surface to be cleaned.
  • the optical power of the pulsed laser is 240W to 300W; the optical power of the continuous laser is 960W to 1280W; the pulse frequency of the pulsed laser is 20 kHz to 30 kHz; the pulse width of the pulsed laser is 80 nanoseconds to 200 nanoseconds; the scan rate of the laser beam is 5000 mm/s to 8000 mm/s.
  • the maximum output power of the pulsed laser is P max1
  • the maximum output power of the continuous laser is P max2
  • the current output power of the pulsed laser that is, the optical power of the pulsed laser
  • the current output power of the continuous laser that is, the optical power of the continuous light
  • P max1 is 300W
  • P max2 is 1600W
  • the optical power of the pulsed laser can be 240W to 300W
  • the optical power of the continuous laser can be 960W to 1280W.
  • the optical power of the pulsed laser is 243W to 297W; the optical power of the continuous laser is 1008W to 1232W; the pulse frequency of the pulsed laser is 22.5 kHz to 27.5 kHz; the pulse width of the pulsed laser is 120 nanoseconds to 150 nanoseconds; the scan rate of the laser beam is 5850 mm/s to 7150 mm/s.
  • the spot overlap rate of the laser beam is 40% to 60%.
  • the spot overlap rate is defined as the value obtained by quotienting the overlapping area of the first spot and the second spot with the area of the spot of the laser beam.
  • spot overlap ratio the overlapping degree of the focused spot formed after the laser beam formed after the combination of the pulsed laser and the continuous laser beam is collimated and focused during the movement.
  • the overlapping ratio of the spot is adjusted so that the energy density of the spot of the laser beam is higher than the energy threshold of the pollution layer attached to the surface of the concave-convex groove structure, and lower than the energy threshold of the substrate of the concave-convex groove structure.
  • the spot overlap rate of the laser beams is 45% to 55%. It can be understood that the overlapping of the first light spot and the second light spot is used to increase the energy density of the light spot of the laser beam. On the one hand, only when the energy density of the spot of the laser beam exceeds the lower limit of the energy threshold of the pollution layer attached to the surface of the concave-convex groove structure, the pollution layer attached to the surface of the concave-convex groove structure will be peeled off. When the spot overlapping ratio is 40%, the energy density of the spot of the laser beam is approximately equal to the lower limit of the energy threshold of the contamination layer attached to the surface of the concave-convex groove structure.
  • the spot overlap ratio of the laser beam is too high, the energy density of the spot of the laser beam will exceed the upper limit of the energy threshold of the substrate surface with the concave-convex groove structure, which will cause damage to the substrate surface.
  • the spot overlapping ratio is 60%, the energy density of the spot of the laser beam is approximately equal to the lower limit of the energy threshold attached to the surface of the substrate with the concave-convex groove structure.
  • the diameter of the spot of the laser beam is 300 microns; the diameter of the first spot formed by the pulsed laser is 100 microns; the inner diameter of the second spot formed by the continuous laser is 130 microns , The outer diameter is 300 microns.
  • the pulsed laser beam and the continuous laser beam are combined to form a combined spot, and the diameter of the combined spot is 60 microns to 270 microns.
  • the laser beam is collimated by a collimating mirror and focused by a focusing mirror; the focal length of the collimating mirror is 50mm, 75mm or 90mm; the focal length of the focusing mirror is 100mm, 160mm, 170mm, 175mm, 180mm, 200mm or 254mm.
  • the ring spot laser includes a laser fiber for emitting laser light.
  • Laser fibers include pulsed fibers and continuous fibers. The pulsed fiber is used to emit pulsed laser light. Continuous fiber is used to emit continuous laser light.
  • a laser fiber includes an inner layer and an outer layer. The pulse fiber is the inner layer of the laser fiber, the continuous fiber is the outer layer of the laser fiber, and the continuous fiber is wrapped around the pulse fiber.
  • the diameter of the overlapping spot is d
  • the diameter of the laser fiber is D
  • the focal length of the collimating mirror is f 1
  • the focal length of the focusing mirror is f 2 .
  • the focal length of the collimator is preferably 75 mm.
  • the focal length of the focusing lens is preferably 175 mm. It can be understood that the collimation and focusing of the laser beam is used to make the laser beam act on the substance in the pollution layer that is not easy to expand and gasify, so that the substance generates plasma gas.
  • the diameter of the spot of the laser beam is 400 microns; the diameter of the first spot formed by the pulsed laser is 150 microns; the inner diameter of the second spot formed by the continuous laser is 200 microns , The outer diameter is 400 microns.
  • the pulsed laser beam and the continuous laser beam are combined to form a beam combining spot, and the diameter of the beam combining spot is 44 microns to 132 microns.
  • the laser beam is collimated by a collimating mirror and focused by a focusing mirror; the focal length of the collimating mirror is 50mm, 75mm or 90mm; the focal length of the focusing mirror is 100mm, 160mm, 170mm, 175mm, 180mm, 200mm or 254mm.
  • the incident angle of the laser beam on the surface of the concave-convex groove structure is 10° to 20°. It can be understood that when the laser beam is perpendicular to the surface of the concave-convex groove structure, that is, when the incident angle of the laser beam incident on the surface of the concave-convex groove structure is 0°, the surface of the concave-convex groove structure reflects a part of the laser beam in the laser beam to form reflected light , the reflected light will be focused by the focusing lens to form high-energy-density incident light and irradiate the optical lens, thereby causing damage to the optical lens.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure gradually increases from 0°, the laser light irradiated on the optical lens in the reflected light gradually decreases.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure increases to 10°, the laser light irradiated on the optical lens in the reflected light is further reduced to not enough to damage the optical lens.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure exceeds 20°, the absorption rate of the laser beam by the concave-convex groove structure decreases rapidly.
  • adjusting the incident angle of the laser beam incident on the surface of the concave-convex groove structure to 10° to 20° can not only protect the optical lens from being damaged by the reflected light of the laser beam, but also maintain the high absorption rate of the laser beam by the concave-convex groove structure .
  • the maximum output power of the pulsed laser is P max1
  • the optical power of the pulsed laser of the pulsed laser can be 80%*P max1 to 100%*P max1 .
  • the maximum output power of the continuous laser is P max2
  • the optical power of the continuous light of the continuous laser may be 60%*P max1 to 80%*P max1 .
  • the concave-convex groove structure with a groove depth of submillimeter level, that is, the groove depth is within 1mm, is cleaned by a ring spot laser, so as to remove the contamination layer attached to the surface of the concave-convex groove structure without damaging the substrate of the concave-convex groove structure .
  • the first light spot is a light spot formed by a pulsed laser
  • the second light spot is a light spot formed by a continuous laser.
  • the first light spot and the second light spot are superimposed to form the light spot of the laser beam.
  • the surface of the concave-convex groove structure is irradiated by the laser beam and simultaneously absorbs pulsed laser energy and continuous laser energy.
  • the first spot formed by the pulsed laser and the second spot formed by the continuous laser act together on a region of the contamination layer on the surface of the concave-convex groove structure, and the second spot causes the contamination layer attached to the surface of the concave-convex groove structure to expand and gasify, forming a plasma Gas, carbonization decomposition, the oscillating pulse wave formed by the first light spot strips the residue after carbonization decomposition from the substrate of the concave-convex groove structure.
  • the energy density of the spot of the laser beam is adjusted to the energy threshold of the contamination layer attached to the surface of the concave-convex groove structure, which is lower than the energy threshold of the substrate of the concave-convex groove structure.
  • the energy threshold of the pollution layer on the surface of the concave-convex groove structure can be understood as the highest value of energy required for the decomposition reaction of the substances contained in the pollution layer.
  • the energy threshold of the base of the concave-convex groove structure can be understood as the minimum value of the energy required for the chemical reaction of the substances contained in the substrate of the concave-convex groove structure.
  • the contamination layer attached to the surface of the concave-convex groove structure absorbs the energy of the spot of the laser beam and then decomposes and peels off.
  • the energy density of the light spot of the laser beam is lower than the energy threshold of the substrate of the concave-convex groove structure, the substrate of the concave-convex groove structure will not undergo chemical reaction and thus will not be destroyed.
  • FIG. 1 is an optical path diagram of a ring spot laser according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a laser fiber of a ring-spot laser according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first light spot and a second light spot formed before the emitted laser beam is collimated and focused by the ring-spot laser according to the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a combined beam spot formed after the laser beams emitted by the ring spot laser are collimated and focused.
  • Existing lasers include pulsed lasers, continuous lasers and ring spot lasers.
  • the pulsed laser generates pulsed laser light.
  • CW lasers which produce continuous laser light.
  • Ring spot laser which can generate pulsed laser and continuous laser at the same time. Ring spot lasers are generally used in laser welding.
  • Raycus model Ray-P300-C1500 ring spot laser is selected.
  • the ring spot laser includes a laser fiber 120 for emitting laser light.
  • the laser fiber includes a pulsed fiber 122 and a continuous fiber 124 .
  • the pulse fiber 122 is used for emitting pulse laser.
  • the continuous fiber 124 is used to emit continuous laser light.
  • the ring spot laser also includes a beam combiner 160 and a beam combining fiber 180 .
  • the pulsed laser and the continuous laser are formed into a laser beam through a beam combiner 160 , and the laser beam is conducted through a combining optical fiber 180 .
  • the laser fiber 120 includes an inner layer and an outer layer.
  • the pulse fiber 122 is the inner layer of the laser fiber 120
  • the continuous fiber 124 is the outer layer of the laser fiber 120
  • the continuous fiber 124 is arranged around the pulse fiber 122 .
  • the laser beam is collimated and focused to form a first spot 220 and a second spot 240 .
  • the laser beams are collimated and focused to form a combined beam spot 260 .
  • the cleaning object is the gun barrel and grid roller.
  • the cleaning part of the barrel is the inner wall of the barrel, which is the rifling of the barrel.
  • the main cleaning part of the mesh roller is the outer wall of the mesh roller.
  • the inner wall of the barrel and the outer wall of the grid roller are surfaces with concave-convex groove structure.
  • the barrel model the caliber is 120mm.
  • the model of the grid roller the length is 80cm, the width is 60cm, the height is 70cm, and the weight is 200kg.
  • the gun barrel and the grid roller are referred to as objects to be cleaned.
  • the inner wall of the gun barrel and the outer wall of the grid roller are called the surface to be cleaned.
  • the optical parameters of the laser beam include: the optical power of the pulsed laser, the optical power of the continuous laser; the pulse frequency of the pulsed laser, the pulse width of the pulsed laser; the scanning rate of the laser beam; the spot overlap ratio of the laser beam; The size of the combined beam spot formed at the end; the focal length of the focusing mirror; the focal length of the collimating mirror; the incident angle of the laser beam.
  • the energy of the laser beam is adjusted to make the pollution layer laser beam attached to the surface of the concave-convex groove structure Under the action of expansion and gasification.
  • the scanning rate of the laser beam By adjusting the scanning rate of the laser beam, it is used to adjust the energy absorption of the laser beam by the pollution layer attached to the surface of the concave-convex groove structure per unit time.
  • the energy density of the spot of the laser beam is higher than the energy threshold of the pollution layer attached to the surface of the concave-convex groove structure, and lower than the energy threshold of the substrate of the concave-convex groove structure.
  • the focal length of the focusing mirror; the focal length of the collimating mirror; it is used to make the laser beam act on the substance in the pollution layer that is not easy to expand and gasify, so that the substance generates plasma gas. It can be understood that some pollutants are easy to expand and gasify, so there is no need to generate plasma gas at this time.
  • the incident angle of the laser beam can not only protect the optical lens from being damaged by the reflected light of the laser beam, but also maintain the high absorption of the laser beam by the concave-convex groove structure Rate.
  • the optical power of the pulsed laser is 240W.
  • the optical power of the continuous laser is 960W.
  • the pulse frequency of the pulsed laser is 20 kHz.
  • the pulse width of the pulsed laser is 80 nanoseconds.
  • the scan rate of the laser beam is 5000 mm/s.
  • the spot overlap rate of the laser beam is 40%.
  • the diameter of the spot of the laser beam is 300 microns; the diameter of the first spot formed by the pulsed laser is 100 microns; the inner diameter of the second spot formed by the continuous laser is 130 microns, and the outer diameter is 300 microns ;
  • the pulsed laser beam and the continuous laser beam are combined to form a combined beam spot, and the diameter of the combined beam spot is 132 microns.
  • the laser beam is collimated by the collimating mirror and focused by the focusing mirror; the focal length of the collimating mirror is 75mm; the focal length of the focusing mirror is 170mm.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure is 10°.
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CHN Spec's CS-380.
  • the measurement results of the barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • the optical power of the pulsed laser is 300W.
  • the optical power of the continuous laser is 1280W.
  • the pulse frequency of the pulsed laser is 30 kHz.
  • the pulse width of the pulsed laser is 200 nanoseconds.
  • the scan rate of the laser beam is 8000 mm/s.
  • the spot overlap rate of the laser beam is 60%.
  • the diameter of the spot of the laser beam is 400 microns; the diameter of the first spot formed by the pulsed laser is 150 microns; the inner diameter of the second spot formed by the continuous laser is 200 microns, and the outer diameter is 400 microns ;
  • the pulsed laser beam and the continuous laser beam are combined to form a combined beam spot, and the diameter of the combined beam spot is 125 microns.
  • the laser beam is collimated by the collimating mirror and focused by the focusing mirror; the focal length of the collimating mirror is 50mm; the focal length of the focusing mirror is 160mm.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure is 20°.
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CHN Spec's CS-380.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • the optical power of the pulsed laser is 243W.
  • the optical power of the continuous laser is 1008W.
  • the pulse frequency of the pulsed laser is 22.5 kHz.
  • the pulse width of the pulsed laser is 100 nanoseconds.
  • the scan rate of the laser beam is 5850 mm/s.
  • the spot overlap rate of the laser beam is 45%.
  • the diameter of the spot of the laser beam is 300 microns; the diameter of the first spot formed by the pulsed laser is 100 microns; the inner diameter of the second spot formed by the continuous laser is 130 microns, and the outer diameter is 300 microns ;
  • the pulsed laser beam and the continuous laser beam are combined to form a combined beam spot, and the diameter of the combined beam spot is 106 microns.
  • the laser beam is collimated by the collimating mirror and focused by the focusing mirror; the focal length of the collimating mirror is 90mm; the focal length of the focusing mirror is 254mm.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure is 15°
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CHN Spec's CS-380.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • the optical power of the pulsed laser is 297W.
  • the optical power of the continuous laser is 1232W.
  • the pulse frequency of the pulsed laser is 27.5 kHz.
  • the pulse width of the pulsed laser is 154 nanoseconds.
  • the scan rate of the laser beam is 7150 mm/s.
  • the spot overlap rate of the laser beam is 55%.
  • the diameter of the spot of the laser beam is 400 microns; the diameter of the first spot formed by the pulsed laser is 150 microns; the inner diameter of the second spot formed by the continuous laser is 200 microns, and the outer diameter is 400 microns ;
  • the pulsed laser beam and the continuous laser beam are combined to form a combined beam spot, and the diameter of the combined beam spot is 187 microns.
  • the laser beam is collimated by the collimating mirror and focused by the focusing mirror; the focal length of the collimating mirror is 75mm; the focal length of the focusing mirror is 160mm.
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure is 15°.
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CHN Spec's CS-380.
  • the measurement results of the barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • Pulsed lasers which generate pulsed laser light.
  • Model of pulsed laser P1000W.
  • the optical parameters of the pulsed laser the frequency is 20KHz; the optical power is 1000W.
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CHN Spec's CS-380.
  • the measurement results of the barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • Embodiment six (comparative example)
  • Model of continuous laser C2000W.
  • Optical parameters of the continuous laser the optical power is 2000W.
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CHN Spec's CS-380.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • Embodiment seven (comparative example)
  • Ring spot laser which can generate pulsed laser and continuous laser at the same time. Ring spot lasers are generally used in laser welding.
  • the model of the ring spot laser is Ray-P300-C1500.
  • Pulse optical parameters power: 300W; frequency: 20KHz;
  • the incident angle of the laser beam incident on the surface of the concave-convex groove structure 15°.
  • the cleaning efficiency of the surface with concave-convex groove structure was measured. Cleaning efficiency is defined as the surface area of the concave-convex groove structure cleaned per unit time.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • a roughness test and a smoothness test are performed on the surface of the cleaned concave-convex groove structure.
  • the instrument used in the roughness test is Mitutoyo's SJ-210.
  • the instrument used in the smoothness test is CS-380 of CHN Spec.
  • the measurement results of the gun barrel are shown in Table 1.
  • the measurement results of grid rolls are shown in Table 2.
  • the test process of the inner wall of the barrel is to slice the barrel and then test the roughness and smoothness of the inner wall of the barrel on the slice.
  • Roughness is mainly the unevenness of the tiny peaks and valleys that characterize the measured surface.
  • Smoothness is mainly a visual effect that characterizes the flatness of the measured surface.
  • Example 1-Example 4 the roughness of the slices is all less than 10 ⁇ m, and the smoothness is greater than 150GU, indicating that the base of the inner wall of the gun barrel is completely exposed, and the inner wall of the gun barrel is in a state of being cleaned.
  • Embodiment 1-Example 4 by comparing the base of the inner wall of the gun barrel after cleaning with the base of the inner wall of the gun barrel without the contamination layer, the result is no color difference, indicating that the base of the inner wall of the gun barrel after cleaning is not damaged.
  • Embodiment 1-embodiment 4 under the situation that the gun barrel inner wall is cleaned, the cleaning efficiency of embodiment 1 is the highest.
  • Example 5 the roughness is greater than 10 ⁇ m, and the smoothness is less than 150GU, indicating that the base of the inner wall of the gun barrel is not completely exposed, and there are still pollutants attached to the inner wall of the gun barrel.
  • the test process of the outer wall of the mesh roller is to slice the mesh roller and then test the roughness and smoothness of the inner wall of the mesh roller on the slice.
  • Roughness is mainly the unevenness of the tiny peaks and valleys that characterize the measured surface.
  • Smoothness is mainly a visual effect that characterizes the flatness of the measured surface.
  • Example 1-Example 4 the roughness of the slices is all less than 15 ⁇ m, and the smoothness is greater than 150GU, indicating that the base of the outer wall of the mesh roller is completely exposed, and the outer wall of the mesh roller is in a clean state.
  • Embodiment 1-embodiment 4 by comparing the base of the grid roll outer wall after cleaning with the grid roll outer wall without contamination layer, the result is no color difference, showing that the base of the grid roll outer wall after cleaning is not destroyed.
  • Embodiment 1-embodiment 4 in the case that the outer wall of the grid roller is cleaned, the cleaning efficiency of embodiment 1 is the highest.
  • Example 5 the roughness is greater than 15 ⁇ m, and the smoothness is less than 150GU, indicating that the base of the outer wall of the grid roller is not completely exposed, and pollutants are still attached to the outer wall of the grid roller.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

提供了一种环形光斑激光器在清洗凹凸槽结构中的应用,环形光斑激光器包括脉冲激光器(122)、连续激光器(124)和合束器(160),产生的激光束的光斑包括第一光斑(220)和第二光斑(240);第一光斑(220)为圆形光斑,第二光斑(240)的外缘环绕第一光斑(220)的外缘;将激光束在待清洗面沿着扫描路径移动清洗待清洗面,能够清洗槽深在亚毫米级的凹凸槽结构内的污染物。

Description

环形光斑激光器在清洗凹凸槽结构中的应用 技术领域
本申请涉及激光器技术领域,尤其涉及一种环形光斑激光器在清洗凹凸结构中的应用。
背景技术
机械部件通常通过加工形成槽深在亚毫米级的凹凸槽结构,用来改善机械部件的性能及提升机械部件的应用能力。例如,凹凸槽结构应用于炮管。炮管是一种用于发射弹丸的管道,炮管的内壁加工形成凹凸槽结构,也就是膛线。膛线的作用在于赋予弹头旋转的能力,使弹头在出膛之后,能够保持原来设定的方向平稳飞行,增大穿透力,提高射击精度。炮管在发射弹丸后会在炮管内壁留下大量的硫化物、碳化物、油污等残留物。在炮弹发射时产生的巨大作用力下,积累于膛线内的残留物会使炮管内壁生成裂纹、形成凹凸坑,从而使得射击精度降低;严重时甚至会使炮管报废或炸膛。再例如,凹凸槽结构应用于网格辊。网格辊多应用于印刷行业,其表面形成的残留物如不及时清洗掉会影响印刷质量。因此需要对凹凸槽结构进行清洗以去除附着于凹凸槽结构表面的物质。
化学清洗为传统的清洗技术,清洗后的表面洁净度高,但清洗效率低、环境友好性差。激光清洗因清洗效率低、环境友好性高而越来越多的应用于清洗领域,诸如清除金属表面的氧化层、打磨金属表面的镀层、打磨金属表面以调整尺寸。但是现有的激光清洗技术一般是附着于平整表面的物质进行,对于附着于凹凸槽结构表面的物质,因基底凹凸不平,容易导致清洗不干净或者虽清洗干净但基底被破坏。
因此,需要提供一种适用于凹凸槽结构的激光清洗方法。
技术问题
如何提供一种适用于凹凸槽结构的激光清洗方法。
技术解决方案
本申请实施例提供一种环形光斑激光器在清洗凹凸槽结构中的应用,通过环形光斑激光器清洗附着于槽深在亚毫米级的凹凸槽结构的污染物。
第一方面,本申请实施例还提供一种环形光斑激光器在清洗凹凸槽结构中的应用,所述环形光斑激光器包括:脉冲激光器,用以发射脉冲激光;连续激光器,用以发射连续激光;和合束器,用以对所述脉冲激光和所述连续激光进行合束以形成激光束;其中,所述激光束的光斑包括:
第一光斑,为所述脉冲激光形成的光斑;和
第二光斑,为所述连续激光形成的光斑;
其中,所述第一光斑为圆形光斑,所述第二光斑的外缘环绕所述第一光斑的外缘;将所述激光束在所述凹凸槽结构的待清洗面沿着扫描路径移动以清洗所述待清洗面;
所述脉冲激光的光功率为243W至297W;所述连续激光的光功率为1008W至1232W;所述脉冲激光的脉冲频率为22.5千赫兹至27.5千赫兹;所述脉冲激光的脉冲宽度为120纳秒至150纳秒;所述激光束的扫描速率为5850毫米/秒至7150毫米/秒;
所述激光束的光斑重叠率为40%至60%;光斑重叠率的定义:脉冲激光与连续激光合束之后形成的激光束经过准直聚焦之后形成的聚焦光斑在移动过程中的重叠程度。
在一些实施例中,所述激光束经准直聚焦之前:所述激光束的光斑的直径为300微米;所述脉冲激光形成的所述第一光斑的直径为100 微米;所述连续激光形成的所述第二光斑的内径为130微米、外径为300微米;在所述激光束经准直聚焦之后:所述脉冲激光与所述连续激光合束形成合束光斑,所述合束光斑的直径为60微米至270微米。
在一些实施例中,在所述激光束经准直聚焦之前:所述激光束的光斑的直径为400微米;所述脉冲激光形成的所述第一光斑的直径为150微米;所述连续激光形成的所述第二光斑的内径为200微米、外径为400微米;在所述激光束经准直聚焦之后:所述脉冲激光与所述连续激光合束形成合束光斑,所述合束光斑的直径为44微米至132微米。
第二方面,本申请实施例还提供一种环形光斑激光器在清洗凹凸槽结构中的应用,环形光斑激光器包括:脉冲激光器,用以发射脉冲激光;连续激光器,用以发射连续激光;和合束器,用以对脉冲激光和连续激光进行合束以形成激光束;激光束的光斑包括:
第一光斑,为脉冲激光形成的光斑;和
第二光斑,为连续激光形成的光斑;
其中,第一光斑为圆形光斑,第二光斑的外缘环绕第一光斑的外缘;将激光束在凹凸槽结构的待清洗面沿着扫描路径移动以清洗待清洗面。
在一些实施例中,脉冲激光的光功率为240W至300W;连续激光的光功率为960W至1280W;脉冲激光的脉冲频率为20千赫兹至30千赫兹;脉冲激光的脉冲宽度为80纳秒至200纳秒;激光束的扫描速率为5000毫米/秒至8000毫米/秒。
可以理解的是,脉冲激光器的最大输出功率为P max1,连续激光器的最大输出功率为P max2,脉冲激光器的当前输出功率也就是脉冲激光的光功率可以为80%*P max1至100%*P max1;连续激光器的当前输出功率也就是连续光的光功率可以为60%*P max1至80%*P max1。当P max1取值300W;P max2取值1600W时,脉冲激光的光功率可以为240W至300W, 连续激光的光功率可以为960W至1280W。
在一些实施例中,脉冲激光的光功率为243W至297W;连续激光的光功率为1008W至1232W;脉冲激光的脉冲频率为22.5千赫兹至27.5千赫兹;脉冲激光的脉冲宽度为120纳秒至150纳秒;激光束的扫描速率为5850毫米/秒至7150毫米/秒。
在一些实施例中,激光束的光斑重叠率为40%至60%;光斑重叠率定义为将第一光斑和第二光斑的重叠面积与激光束的光斑的面积做商得到的数值。可以理解的是,光斑重叠率的定义:脉冲激光与连续激光合束之后形成的激光束经过准直聚焦之后形成的聚焦光斑在移动过程中的重叠程度。调整光斑重叠率,用以使得激光束的光斑的能量密度高于附着于凹凸槽结构的表面的污染层的能量阈值、低于凹凸槽结构的基底的能量阈值。
在一些实施例中,激光束的光斑重叠率为45%至55%。可以理解的是,第一光斑与第二光斑的重叠,用以提高激光束的光斑的能量密度。一方面,只有当激光束的光斑的能量密度超出附着于凹凸槽结构的表面的污染层的能量阈值的下限时,才会将附着于凹凸槽结构的表面的污染层剥离下来。在光斑重叠率为40%时,激光束的光斑的能量密度约等于附着于凹凸槽结构的表面的污染层的能量阈值的下限。另一方面,激光束的光斑重叠率过高,激光束的光斑的能量密度会超出凹凸槽结构的基材表面的能量阈值的上限,会对基材表面造成损伤。在光斑重叠率为60%时,激光束的光斑的能量密度约等于附着于凹凸槽结构的基材表面的能量阈值的下限。
在一些实施例中,在激光束经准直聚焦之前:激光束的光斑的直径为300微米;脉冲激光形成的第一光斑的直径为100微米;连续激光形成的第二光斑的内径为130微米、外径为300微米。
在一些实施例中,在激光束经准直聚焦之后:脉冲激光与连续激 光合束形成合束光斑,合束光斑的直径为60微米至270微米。
在一些实施例中,激光束通过准直镜进行准直,通过聚焦镜进行聚焦;准直镜的焦距为50mm、75mm或90mm;聚焦镜的焦距为100mm、160mm、170mm、175mm、180mm、200mm或254mm。可以理解的是,环形光斑激光器包括激光光纤,用以发射激光。激光光纤包括脉冲光纤和连续光纤。脉冲光纤用以发射脉冲激光。连续光纤用以发射连续激光。激光光纤包括内层和外层。脉冲光纤为激光光纤的内层,连续光纤为激光光纤的外层,连续光纤包绕脉冲光纤设置。重叠光斑的直径可以通过d=D*f 1*f 2计算。其中,重叠光斑的直径为d,激光光纤的直径为D,准直镜的焦距为f 1,聚焦镜的焦距为f 2。可以理解的是,准直镜的焦距优选75mm。聚焦透镜的焦距优选175mm。可以理解的是,对激光束进行准直及聚焦,用以使激光束作用于污染层中不容易膨胀气化的物质,使该物质生成等离子气体。
在一些实施例中,在激光束经准直聚焦之前:激光束的光斑的直径为400微米;脉冲激光形成的第一光斑的直径为150微米;连续激光形成的第二光斑的内径为200微米、外径为400微米。
在一些实施例中,在激光束经准直聚焦之后:脉冲激光与连续激光合束形成合束光斑,合束光斑的直径为44微米至132微米。
在一些实施例中,激光束通过准直镜进行准直,通过聚焦镜进行聚焦;准直镜的焦距为50mm、75mm或90mm;聚焦镜的焦距为100mm、160mm、170mm、175mm、180mm、200mm或254mm。
在一些实施例中,激光束入射凹凸槽结构的表面的入射角为10°至20°。可以理解的是,激光束垂直入射凹凸槽结构的表面,也就是激光束入射凹凸槽结构的表面的入射角为0°时,凹凸槽结构的表面对激光束中的一部分激光进行反射形成反射光,反射光会经过聚焦镜被聚焦后形成高能量密度的入射光照射到光学镜片上,从而对光学镜 片造成损伤。在将激光束入射凹凸槽结构的表面的入射角从0°逐渐增大时,反射光中照射到光学镜片上的激光逐渐减少。在激光束入射凹凸槽结构的表面的入射角增大到10°时,反射光中照射到光学镜片上的激光进一步减少至不足以损伤光学镜片。在将激光束入射凹凸槽结构的表面的入射角度超过20°,凹凸槽结构对激光的吸收率迅速降低。因此,将激光束入射凹凸槽结构的表面的入射角调整到10°至20度,既能够保护光学镜片不会被激光束的反射光损伤,也能够保持凹凸槽结构对激光的较高吸收率。
在一些实施例中,所述脉冲激光器的最大输出功率为P max1,所述脉冲激光器的脉冲激光的光功率可以为80%*P max1至100%*P max1
在一些实施例中,所述连续激光器的最大输出功率为P max2,所述连续激光器的连续光的光功率可以为60%*P max1至80%*P max1
有益效果
本申请实施例中:
1、通过环形光斑激光器对槽深在亚毫米级也就是槽深在1mm以内的凹凸槽结构进行清洗,用以在去除凹凸槽结构的表面附着的污染层的同时不会破坏凹凸槽结构的基底。
2、通过环形光斑激光器发射具有第一光斑和第二光斑的激光束。第一光斑为脉冲激光形成的光斑,第二光斑为连续激光形成的光斑。第一光斑和第二光斑叠加形成激光束的光斑。通过调整脉冲激光的光学参数以及连续激光的光学参数,使得激光束的光斑的能量均匀化分布。
当激光束照射到凹凸槽结构的表面时,凹凸槽结构的表面被激光束照射处同时吸收脉冲激光能量及连续激光能量。脉冲激光形成的第一光斑及连续激光形成的第二光斑一同作用于凹凸槽结构的表面的 污染层的一个区域,第二光斑使得附着于凹凸槽结构的表面的污染层膨胀气化、形成等离子气体、碳化分解,第一光斑形成的震荡脉冲波将碳化分解后的残余物从凹凸槽结构的基底剥离。
3、通过调整激光束的光学参数将激光束的光斑的能量密度调整到附着于凹凸槽结构的表面的污染层的能量阈值、低于凹凸槽结构的基底的能量阈值。凹凸槽结构的表面的污染层的能量阈值可以理解为污染层中包含的物质发生分解反应所需能量的最高值。凹凸槽结构的基底的能量阈值可以理解为凹凸槽结构的基底中包含的物质发生化学反应所需能量的最低值。
当激光束的光斑的能量密度高于附着于凹凸槽结构的表面的污染层的能量阈值时,附着于凹凸槽结构的表面的污染层吸收激光束的光斑的能量后得以分解剥离。当激光束的光斑的能量密度低于凹凸槽结构的基底的能量阈值时,凹凸槽结构的基底不会发生化学反应,因而不会被破坏。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的环形光斑激光器的光路图。
图2为本申请实施例的环形光斑激光器的激光光纤的横截面结构示意图。
图3为本申请实施例的环形光斑激光器的发射的激光束经准直聚焦前形成的第一光斑及第二光斑的结构示意图。
图4为环形光斑激光器发射的激光束经准直聚焦后形成的合束光斑的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”,仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
现有的激光器包括脉冲激光器、连续激光器和环形光斑激光器。其中,脉冲激光器,产生脉冲激光。连续激光器,产生连续激光。环形光斑激光器,同时产生脉冲激光和连续激光。环形光斑激光器一般应用于激光焊接。
环形光斑激光器,选用Raycus的型号为Ray-P300-C1500的环形光斑激光器。
请参阅图1和图2,环形光斑激光器包括激光光纤120,用以发射激光。激光光纤包括脉冲光纤122和连续光纤124。脉冲光纤122用以发射脉冲激光。连续光纤124用以发射连续激光。环形光斑激光器还包括合束器160和合束光纤180。脉冲激光和连续激光经合束器160形成激光束,激光束经合束光纤180进行传导。
请参阅图2,激光光纤120包括内层和外层。脉冲光纤122为激光光纤120的内层,连续光纤124为激光光纤120的外层,连续光纤124包绕脉冲光纤122设置。
请参阅图3,激光束经准直聚焦前形成第一光斑220和第二光斑240。
请参阅图4,激光束经准直聚焦后形成合束光斑260。
清洗对象为炮管及网格辊。炮管的清洗部位为炮管的内壁也就是炮管膛线。网格辊的主要清洗部位为网格辊的外壁。炮管的内壁、网格辊的外壁均为具有凹凸槽结构的表面。其中,炮管型号:口径为120mm。网格辊的型号:长度为80cm、宽度为60cm、高度为70cm、重量为200kg。
为了方便描述,后续描述中,将炮管及网格辊称为待清洗对象。将炮管的内壁及网格辊的外壁称为待清洗面。
激光束的光学参数包括:脉冲激光的光功率、连续激光的光功率;脉冲激光的脉冲频率、脉冲激光的脉冲宽度;激光束的扫描速率;激光束的光斑重叠率;激光束经准直聚焦后形成的合束光斑的尺寸;聚焦镜的焦距;准直镜的焦距;激光束的入射角。
其中,通过调整脉冲激光的光功率、连续激光的光功率;脉冲激光的脉冲频率、脉冲激光的脉冲宽度,以调整激光束的能量,用以使附着于凹凸槽结构的表面的污染层激光束的作用下膨胀气化。
通过调整激光束的扫描速率,用以调整单位时间内附着于凹凸槽结构的表面的污染层对激光束的能量的吸收量。
通过调整激光束的光斑重叠率;用以使得激光束的光斑的能量密度高于附着于凹凸槽结构的表面的污染层的能量阈值、低于凹凸槽结构的基底的能量阈值。
激光束经准直聚焦后形成的合束光斑的尺寸;合束光斑的尺寸越大,单位时间内合束光斑扫描的凹凸槽结构的表面的面积更大。
聚焦镜的焦距;准直镜的焦距;用以使激光束作用于污染层中不容易膨胀气化的物质,使该物质生成等离子气体。可以理解的是,有的污染物容易膨胀气化,此时就不用生成等离子气体。
激光束的入射角,将激光束入射凹凸槽结构的表面的入射角调整 到合适范围,既能够保护光学镜片不会被激光束的反射光损伤,也能够保持凹凸槽结构对激光的较高吸收率。
实施例一
脉冲激光的光功率为240W。连续激光的光功率为960W。脉冲激光的脉冲频率为20千赫兹。脉冲激光的脉冲宽度为80纳秒。激光束的扫描速率为5000毫米/秒。激光束的光斑重叠率为40%。在激光束经准直聚焦之前:激光束的光斑的直径为300微米;脉冲激光形成的第一光斑的直径为100微米;连续激光形成的第二光斑的内径为130微米、外径为300微米;在激光束经准直聚焦之后:脉冲激光与连续激光合束形成合束光斑,合束光斑的直径为132微米。激光束通过准直镜进行准直,通过聚焦镜进行聚焦;准直镜的焦距为75mm;聚焦镜的焦距为170mm。激光束入射凹凸槽结构的表面的入射角为10°。
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果见表2。
实施例二
脉冲激光的光功率为300W。连续激光的光功率为1280W。脉冲激光的脉冲频率为30千赫兹。脉冲激光的脉冲宽度为200纳秒。激光束的扫描速率为8000毫米/秒。激光束的光斑重叠率为60%。在激光束经准直聚焦之前:激光束的光斑的直径为400微米;脉冲激光形成的第一光斑的直径为150微米;连续激光形成的第二光斑的内径为200微米、外径为400微米;在激光束经准直聚焦之后:脉冲激光与连续 激光合束形成合束光斑,合束光斑的直径为125微米。激光束通过准直镜进行准直,通过聚焦镜进行聚焦;准直镜的焦距为50mm;聚焦镜的焦距为160mm。激光束入射凹凸槽结构的表面的入射角为20°。
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果见表2。
实施例三
脉冲激光的光功率为243W。连续激光的光功率为1008W。脉冲激光的脉冲频率为22.5千赫兹。脉冲激光的脉冲宽度为100纳秒。激光束的扫描速率为5850毫米/秒。激光束的光斑重叠率为45%。在激光束经准直聚焦之前:激光束的光斑的直径为300微米;脉冲激光形成的第一光斑的直径为100微米;连续激光形成的第二光斑的内径为130微米、外径为300微米;在激光束经准直聚焦之后:脉冲激光与连续激光合束形成合束光斑,合束光斑的直径为106微米。激光束通过准直镜进行准直,通过聚焦镜进行聚焦;准直镜的焦距为90mm;聚焦镜的焦距为254mm。激光束入射凹凸槽结构的表面的入射角为15°
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果 见表2。
实施例四
脉冲激光的光功率为297W。连续激光的光功率为1232W。脉冲激光的脉冲频率为27.5千赫兹。脉冲激光的脉冲宽度为154纳秒。激光束的扫描速率为7150毫米/秒。激光束的光斑重叠率为55%。在激光束经准直聚焦之前:激光束的光斑的直径为400微米;脉冲激光形成的第一光斑的直径为150微米;连续激光形成的第二光斑的内径为200微米、外径为400微米;在激光束经准直聚焦之后:脉冲激光与连续激光合束形成合束光斑,合束光斑的直径为187微米。激光束通过准直镜进行准直,通过聚焦镜进行聚焦;准直镜的焦距为75mm;聚焦镜的焦距为160mm。激光束入射凹凸槽结构的表面的入射角为15°。
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果见表2。
实施例五(比例)
脉冲激光器,产生脉冲激光。
脉冲激光器的型号:P1000W。脉冲激光器的光学参数:频率为20KHz;光功率为1000W。
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗 糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果见表2。
实施例六(对比例)
连续激光器,产生连续激光。
连续激光器的型号:C2000W。连续激光器的光学参数:光功率为2000W。
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果见表2。
实施例七(对比例)
环形光斑激光器,同时产生脉冲激光和连续激光。环形光斑激光器一般应用于激光焊接。
环形光斑激光器的型号Ray-P300-C1500。
脉冲光学参数:功率:300W;频率:20KHz;
连续光学参数:功率:1200W;振镜扫描速度:6000mm/s;
激光束入射凹凸槽结构的表面的入射角度:15°。
对凹凸槽结构的表面的清洗效率进行测量。清洗效率定义为单位时间内清洗的凹凸槽结构的表面面积。炮管的测量结果见表1。网格辊的测量结果见表2。
对清洗后的凹凸槽结构的表面进行粗糙度测试及光洁度测试。粗糙度测试采用的仪器为Mitutoyo的SJ-210。光洁度测试采用的仪器 为CHN Spec的CS-380。炮管的测量结果见表1。网格辊的测量结果见表2。
表1炮管内壁的试验数据
Figure PCTCN2022118215-appb-000001
炮管内壁的试验过程为将炮管做切片然后对切片上的炮管内壁一侧进行粗糙度及光洁度测试。粗糙度主要是表征被测表面的微小峰谷的不平度。光洁度主要是表征被测表面的平整度的视觉效果。通过粗糙度表征及光洁度表征的结合,用以更加准确的判定凹凸槽结构的表面是否被清洗干净。经过多次试验,当粗糙度小于10μm且当光洁度大于150GU时,炮管内壁的基底完全暴露,炮管内壁为被清洗干净状态。
实施例1-实施例4,切片粗糙度均小于10μm,且光洁度均大于150GU,表明炮管内壁的基底完全暴露,炮管内壁为被清洗干净状态。
实施例1-实施例4,通过将清洗后炮管内壁与没有污染层的炮管内壁的基底进行对比,结果为无色差,表明清洗后的炮管内壁的基底没有被破坏。
实施例1-实施例4,在炮管内壁清洗干净的情况下,实施例1的清洗效率最高。
实施例5,粗糙度均大于10μm,且光洁度均小于150GU,表明炮管内壁的基底未有完全暴露,炮管内壁还附着有污染物。
实施例6、7,通过观测,炮管内壁有熔化的痕迹,表明炮管内壁基底被激光破坏。
表2网格辊外壁的试验数据
Figure PCTCN2022118215-appb-000002
网格辊外壁的试验过程为将网格辊做切片然后对切片上的网格辊内壁一侧进行粗糙度及光洁度测试。粗糙度主要是表征被测表面的微小峰谷的不平度。光洁度主要是表征被测表面的平整度的视觉效果。通过粗糙度表征及光洁度表征的结合,用以更加准确的判定凹凸槽结构的表面是否被清洗干净。经过多次试验,当粗糙度小于15μm且当光洁度大于150GU时,网格辊外壁的基底完全暴露,网格辊外壁为被清洗干净状态。
实施例1-实施例4,切片粗糙度均小于15μm,且光洁度均大于150GU,表明网格辊外壁的基底完全暴露,网格辊外壁为被清洗干净状态。
实施例1-实施例4,通过将清洗后网格辊外壁与没有污染层的网 格辊外壁的基底进行对比,结果为无色差,表明清洗后的网格辊外壁的基底没有被破坏。
实施例1-实施例4,在网格辊外壁清洗干净的情况下,实施例1的清洗效率最高。
实施例5,粗糙度均大于15μm,且光洁度均小于150GU,表明网格辊外壁的基底未有完全暴露,网格辊外壁还附着有污染物。
实施例6、7,通过观测,网格辊外壁有熔化的痕迹,表明网格辊外壁基底被激光破坏。
以上对本申请实施例所提供的环形光斑激光器在清洗凹凸槽结构中的应用进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种环形光斑激光器在清洗凹凸槽结构中的应用,所述环形光斑激光器包括:脉冲激光器,用以发射脉冲激光;连续激光器,用以发射连续激光;和合束器,用以对所述脉冲激光和所述连续激光进行合束以形成激光束;其中,所述激光束的光斑包括:
    第一光斑,为所述脉冲激光形成的光斑;和
    第二光斑,为所述连续激光形成的光斑;
    其中,所述第一光斑为圆形光斑,所述第二光斑的外缘环绕所述第一光斑的外缘;将所述激光束在所述凹凸槽结构的待清洗面沿着扫描路径移动以清洗所述待清洗面;
    所述脉冲激光的光功率为243W至297W;所述连续激光的光功率为1008W至1232W;所述脉冲激光的脉冲频率为22.5千赫兹至27.5千赫兹;所述脉冲激光的脉冲宽度为120纳秒至150纳秒;所述激光束的扫描速率为5850毫米/秒至7150毫米/秒;
    所述激光束的光斑重叠率为40%至60%;光斑重叠率的定义:脉冲激光与连续激光合束之后形成的激光束经过准直聚焦之后形成的聚焦光斑在移动过程中的重叠程度。
  2. 根据权利要求1所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,在所述激光束经准直聚焦之前:所述激光束的光斑的直径为300微米;所述脉冲激光形成的所述第一光斑的直径为100微米;所述连续激光形成的所述第二光斑的内径为130微米、外径为300微米;
    在所述激光束经准直聚焦之后:所述脉冲激光与所述连续激光合束形成合束光斑,所述合束光斑的直径为60微米至270微米。
  3. 根据权利要求2所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束通过准直镜进行准直,通过聚焦镜进行聚焦;所述准直镜的焦距为50mm、75mm或90mm;所述聚焦镜的焦距为 100mm、160mm、170mm、175mm、180mm、200mm或254mm。
  4. 根据权利要求1所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,在所述激光束经准直聚焦之前:所述激光束的光斑的直径为400微米;所述脉冲激光形成的所述第一光斑的直径为150微米;所述连续激光形成的所述第二光斑的内径为200微米、外径为400微米;
    在所述激光束经准直聚焦之后:所述脉冲激光与所述连续激光合束形成合束光斑,所述合束光斑的直径为44微米至132微米。
  5. 根据权利要求4所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束通过准直镜进行准直,通过聚焦镜进行聚焦;所述准直镜的焦距为50mm、75mm或90mm;所述聚焦镜的焦距为100mm、160mm、170mm、175mm、180mm、200mm或254mm。
  6. 根据权利要求1所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束入射所述凹凸槽结构的表面的入射角为10°至20°。
  7. 一种环形光斑激光器在清洗凹凸槽结构中的应用,所述环形光斑激光器包括:脉冲激光器,用以发射脉冲激光;连续激光器,用以发射连续激光;和合束器,用以对所述脉冲激光和所述连续激光进行合束以形成激光束;其中,所述激光束的光斑包括:
    第一光斑,为所述脉冲激光形成的光斑;和
    第二光斑,为所述连续激光形成的光斑;
    其中,所述第一光斑为圆形光斑,所述第二光斑的外缘环绕所述第一光斑的外缘;将所述激光束在所述凹凸槽结构的待清洗面沿着扫描路径移动以清洗所述待清洗面。
  8. 根据权利要求7所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述脉冲激光的光功率为240W至300W;所述连续激光的光功率为960W至1280W;所述脉冲激光的脉冲频率为20千赫兹至 30千赫兹;所述脉冲激光的脉冲宽度为80纳秒至200纳秒;所述激光束的扫描速率为5000毫米/秒至8000毫米/秒。
  9. 根据权利要求8所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述脉冲激光的光功率为243W至297W;所述连续激光的光功率为1008W至1232W;所述脉冲激光的脉冲频率为22.5千赫兹至27.5千赫兹;所述脉冲激光的脉冲宽度为120纳秒至150纳秒;所述激光束的扫描速率为5850毫米/秒至7150毫米/秒。
  10. 根据权利要求8所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束的光斑重叠率为40%至60%;光斑重叠率的定义:脉冲激光与连续激光合束之后形成的激光束经过准直聚焦之后形成的聚焦光斑在移动过程中的重叠程度。
  11. 根据权利要求10所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束的所述光斑重叠率为45%至55%。
  12. 根据权利要求8所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,在所述激光束经准直聚焦之前:所述激光束的光斑的直径为300微米;所述脉冲激光形成的所述第一光斑的直径为100微米;所述连续激光形成的所述第二光斑的内径为130微米、外径为300微米。
  13. 根据权利要求12所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,在所述激光束经准直聚焦之后:所述脉冲激光与所述连续激光合束形成合束光斑,所述合束光斑的直径为60微米至270微米。
  14. 根据权利要求13所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束通过准直镜进行准直,通过聚焦镜进行聚焦;所述准直镜的焦距为50mm、75mm或90mm;所述聚焦镜的焦距为100mm、160mm、170mm、175mm、180mm、200mm或254mm。
  15. 根据权利要求8所述的环形光斑激光器在清洗凹凸槽结构中 的应用,其中,在所述激光束经准直聚焦之前:所述激光束的光斑的直径为400微米;所述脉冲激光形成的所述第一光斑的直径为150微米;所述连续激光形成的所述第二光斑的内径为200微米、外径为400微米。
  16. 根据权利要求15所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,在所述激光束经准直聚焦之后:所述脉冲激光与所述连续激光合束形成合束光斑,所述合束光斑的直径为44微米至132微米。
  17. 根据权利要求16所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束通过准直镜进行准直,通过聚焦镜进行聚焦;所述准直镜的焦距为50mm、75mm或90mm;所述聚焦镜的焦距为100mm、160mm、170mm、175mm、180mm、200mm或254mm。
  18. 根据权利要求8所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述激光束入射所述凹凸槽结构的表面的入射角为10°至20°。
  19. 根据权利要求7所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述脉冲激光器的最大输出功率为P max1,所述脉冲激光器的脉冲激光的光功率可以为80%*P max1至100%*P max1
  20. 根据权利要求7所述的环形光斑激光器在清洗凹凸槽结构中的应用,其中,所述连续激光器的最大输出功率为P max2,所述连续激光器的连续光的光功率可以为60%*P max1至80%*P max1
PCT/CN2022/118215 2022-01-06 2022-09-09 环形光斑激光器在清洗凹凸槽结构中的应用 WO2023130757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22865872.0A EP4230316A4 (en) 2022-01-06 2022-09-09 USING A RING POINT LASER TO CLEAN A CONCAVE-CONVEX GROOVE STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210008950.3A CN114247706B (zh) 2022-01-06 2022-01-06 环形光斑激光器在清洗凹凸槽结构中的应用
CN202210008950.3 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023130757A1 true WO2023130757A1 (zh) 2023-07-13

Family

ID=80799446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118215 WO2023130757A1 (zh) 2022-01-06 2022-09-09 环形光斑激光器在清洗凹凸槽结构中的应用

Country Status (3)

Country Link
EP (1) EP4230316A4 (zh)
CN (1) CN114247706B (zh)
WO (1) WO2023130757A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114247706B (zh) * 2022-01-06 2023-03-10 武汉锐科光纤激光技术股份有限公司 环形光斑激光器在清洗凹凸槽结构中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217427A (ja) * 2014-05-21 2015-12-07 日産自動車株式会社 レーザクリーニング方法
CN110116117A (zh) * 2019-06-06 2019-08-13 哈尔滨工业大学 一种激光复合清洗系统及方法
CN113020129A (zh) * 2021-02-26 2021-06-25 苏州大学 一种复合激光清洗光头及复合式激光清洗方法
CN113522887A (zh) * 2021-08-23 2021-10-22 武汉锐科光纤激光技术股份有限公司 激光清洗方法
CN114247706A (zh) * 2022-01-06 2022-03-29 武汉锐科光纤激光技术股份有限公司 环形光斑激光器在清洗凹凸槽结构中的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159514A (ja) * 1982-03-18 1983-09-21 Toshiba Corp レ−ザビ−ム空間分布形成方法
CN204504505U (zh) * 2015-04-17 2015-07-29 温州职业技术学院 一种双光束组合式激光加工头
US20170082124A1 (en) * 2015-06-18 2017-03-23 Kevin Kremeyer Directed Energy Deposition to Facilitate High Speed Applications
CN104959349B (zh) * 2015-07-27 2017-09-01 苏州市星科四达激光科技有限公司 激光清洗装置
CN108687056B (zh) * 2017-04-05 2021-08-17 大族激光科技产业集团股份有限公司 一种激光清洗设备及方法
CN107030403B (zh) * 2017-06-12 2019-01-18 中南大学 纯金属或合金产品微孔加工系统
WO2019158511A1 (de) * 2018-02-14 2019-08-22 Basf Se Verfahren zur reinigung von lochplatten
CN109590290A (zh) * 2019-01-14 2019-04-09 青岛理工大学 一种能够适用多种孔径、孔型的孔洞激光清洗装置
CN209680715U (zh) * 2019-01-24 2019-11-26 武汉锐科光纤激光技术股份有限公司 激光清洗装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217427A (ja) * 2014-05-21 2015-12-07 日産自動車株式会社 レーザクリーニング方法
CN110116117A (zh) * 2019-06-06 2019-08-13 哈尔滨工业大学 一种激光复合清洗系统及方法
CN113020129A (zh) * 2021-02-26 2021-06-25 苏州大学 一种复合激光清洗光头及复合式激光清洗方法
CN113522887A (zh) * 2021-08-23 2021-10-22 武汉锐科光纤激光技术股份有限公司 激光清洗方法
CN114247706A (zh) * 2022-01-06 2022-03-29 武汉锐科光纤激光技术股份有限公司 环形光斑激光器在清洗凹凸槽结构中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230316A4 *

Also Published As

Publication number Publication date
CN114247706B (zh) 2023-03-10
EP4230316A1 (en) 2023-08-23
EP4230316A4 (en) 2024-06-12
CN114247706A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023130757A1 (zh) 环形光斑激光器在清洗凹凸槽结构中的应用
US5023424A (en) Shock wave particle removal method and apparatus
Crawford et al. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses
CN1826206A (zh) 光束的双焦点聚焦
JP3292294B2 (ja) レーザを用いたマーキング方法及びマーキング装置
Katayama et al. Deep penetration welding with high-power laser under vacuum
Staggs et al. In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings
CN113102884B (zh) 一种热力复合水下激光冲击的材料表面改性方法
CN111805438A (zh) 大面积去除铁锈或氧化层的喷砂-激光抛光复合系统及方法
Mitko et al. Properties of high-frequency sub-wavelength ripples on stainless steel 304L under ultra short pulse laser irradiation
JP2018525233A (ja) 透明な材料を加工する方法及び装置
Schaffer et al. Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water
US5837329A (en) Method for machining rollers and other objects using laser light and equipment for machining
CN111992543A (zh) 一种激光等离子体光丝清洗法
CN112255191A (zh) 激光诱导击穿光谱与声反射结合的在线监测系统及方法
CN108732185B (zh) 一种非球面光学元件表面紫外预处理轨迹的规划方法
CN115922112B (zh) 用于气膜孔加工的四光楔和振镜一体化加工方法
CN212351666U (zh) 大面积去除铁锈或氧化层的喷砂-激光抛光复合系统
Stolz et al. Engineering meter-scale laser resistant coatings for the near IR
Haehnel et al. Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength
Hu et al. LIPSS formed on the sidewalls of microholes in stainless steel trepanned by a circularly polarized femtosecond laser
TWI756071B (zh) 清潔石墨的方法及其設備
CN114689564B (zh) 一种激光除锈状态探测方法
CN216051352U (zh) 一种多功能金属清洗无损检测系统
Narazaki et al. ICT data-driven active laser processing

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022865872

Country of ref document: EP

Effective date: 20230313

NENP Non-entry into the national phase

Ref country code: DE