WO2023130697A1 - Scr混合器和发动机 - Google Patents

Scr混合器和发动机 Download PDF

Info

Publication number
WO2023130697A1
WO2023130697A1 PCT/CN2022/103695 CN2022103695W WO2023130697A1 WO 2023130697 A1 WO2023130697 A1 WO 2023130697A1 CN 2022103695 W CN2022103695 W CN 2022103695W WO 2023130697 A1 WO2023130697 A1 WO 2023130697A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow guide
urea
cylinder
guide
scr mixer
Prior art date
Application number
PCT/CN2022/103695
Other languages
English (en)
French (fr)
Inventor
石代龙
张晓丽
李建文
王建东
吕健健
张汝晓
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023130697A1 publication Critical patent/WO2023130697A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the application belongs to the technical field of engines, and in particular relates to an SCR mixer.
  • the present application also relates to an engine.
  • the role of the SCR (Selective Catalytic Reduction) mixer is to mix urea with exhaust gas to improve the conversion efficiency.
  • the existing SCR mixer has limited mixing space, and the mixing path of urea and exhaust gas is short, resulting in insufficient time for urea to fully mix with exhaust gas. Mixing, the NH 3 in the mixed gas is unevenly distributed, which affects its reaction effect with the catalyst, which in turn leads to a decrease in the SCR conversion efficiency.
  • the purpose of this application is to at least solve the problem that the poor mixing uniformity of the SCR mixer in the prior art leads to the reduction of SCR conversion efficiency. This purpose is achieved through the following technical solutions:
  • the first aspect of the application proposes an SCR mixer comprising:
  • a first flow guide the first flow guide is arranged inside the cylinder and connected to an opening at one end of the cylinder, the inside of the first flow guide forms a first flow guide cavity, the The first guide chamber is tapered and communicates with the mixing chamber;
  • the second flow guide the second flow guide is arranged inside the cylinder and connected to the other end opening of the cylinder, the inside of the second flow guide forms a second flow guide cavity, so The second guide chamber is tapered and communicated with the mixing chamber;
  • the inner wall of the barrel is surrounded by the outer wall of the first flow guide and the outer wall of the second flow guide to form a zigzag flow guide channel.
  • the SCR mixer proposed in this application has a zigzagging guide channel, and under the guide action of the first guide piece, the mixing chamber and the second guide piece, the exhaust gas flows through a longer path in the original limited mixing space
  • the urea droplets have enough time to fully mix with the exhaust gas and evaporate and decompose, so as to achieve the purpose of improving the NH3 mixing uniformity and anti-crystallization performance of the aftertreatment system, and solve the problem of urea crystallization in the SCR aftertreatment of the engine under low speed and low load conditions and NOX emission substandard issues;
  • this application can also realize the modular design of the structure, which can be applied to engines of different displacements, and the structures of the first flow guide and the second flow guide can be reasonably adjusted according to different specifications after treatment, so as to realize the perfect match with the engine. match. No complex connection installation structure, high reliability.
  • the SCR mixer according to the present application can also have the following additional technical features:
  • the SCR mixer further includes at least one urea breaking plate, and the urea breaking plate is arranged in the flow guide channel and opposite to the injection path of the urea nozzle.
  • the SCR mixer is arranged with a plurality of urea crushing plates at intervals along the injection path of the urea nozzle, and some of the urea crushing plates are at an angle to the axial direction of the cylinder The other part of the urea crushing plate is arranged parallel to the axial direction of the cylinder.
  • the length of the urea crushing plate along the axial direction of the cylinder is positively correlated with the distance between the urea crushing plate and the nozzle seat hole, and the urea crushing plate is The radial direction of the cylinder is arranged in steps.
  • the first deflector is tapered, the large-diameter end of the first deflector is connected to the opening at the one end of the cylinder, and the first deflector The small-diameter end of the second deflector extends into the mixing chamber, the second deflector is tapered, the large-diameter end of the second deflector is connected to the opening of the other end of the cylinder, and the first The small-diameter ends of the two flow guides protrude into the mixing chamber.
  • the small-diameter end of the first flow guide is arranged close to the nozzle seat hole, the first flow guide is provided with a gap corresponding to the position of the nozzle seat hole, and the second The small-diameter end of the flow guide is arranged on a side of the mixing chamber away from the nozzle seat hole.
  • the SCR mixer further includes a third flow guide and a fourth flow guide arranged in the mixing chamber, the third flow guide is located between the barrel and the Between the second flow guides, the fourth flow guides are located between the first flow guides and the second flow guides.
  • the guide channel is S-shaped.
  • the first guide member is further provided with a flow sensor installation hole.
  • the engine proposed in the second aspect of the present application has the same beneficial effect as that of the SCR mixer proposed in the first aspect of the present application, which will not be repeated here.
  • Fig. 1 schematically shows a schematic structural view of an SCR mixer according to an embodiment of the present application
  • Fig. 2 schematically shows a schematic cross-sectional structure diagram of an SCR mixer according to an embodiment of the present application
  • Fig. 3 schematically shows a schematic view of the structure of a first deflector according to an embodiment of the present application at a first viewing angle
  • Fig. 4 schematically shows a schematic structural diagram of a second viewing angle of a first deflector according to an embodiment of the present application
  • Fig. 5 schematically shows a schematic structural diagram of a second deflector according to an embodiment of the present application
  • Fig. 6 schematically shows a schematic structural view of a first viewing angle of a urea crushing plate according to an embodiment of the present application
  • Fig. 7 schematically shows a structural schematic view of a second viewing angle of a urea crushing plate according to an embodiment of the present application.
  • spatial relative terms may be used herein to describe the relationship of one element or feature as shown in the figures with respect to another element or feature, such as “inner”, “outer”, “inner”. ", “Side”, “Below”, “Below”, “Above”, “Above” and so on.
  • Such spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “beneath” the other elements or features. feature above”. Thus, the example term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • an SCR mixer including:
  • the first flow guide 11 is located inside the cylinder 10 and is connected with an opening at one end of the cylinder 10, the inside of the first flow guide 11 forms a tapered first flow guide cavity, the first flow guide cavity and the mixing chamber Communication;
  • the second flow guide 12 is located inside the cylinder 10 and connected to the other end opening of the cylinder 10, the inside of the second flow guide 12 forms a tapered second flow guide cavity, the second flow guide cavity and
  • the mixing chamber is connected; the inner wall of the cylinder body 10 is surrounded by the outer wall of the first flow guiding element 11 and the outer wall of the second flow guiding element 12 to form a zigzagging flow guiding channel.
  • the cylinder body 10 can be a cylindrical structure or a square barrel structure, and its interior is a cavity.
  • the first end of the cylinder body 10 is used to receive engine exhaust gas, and the second end of the cylinder body 10 is used to discharge mixed gas.
  • the first deflector 11 and the second deflector 12 can be designed as a funnel-shaped structure for the convenience of forming a tapered deflector chamber, which can be made by sheet metal stamping.
  • the meandering flow guiding channel can be S-shaped or Z-shaped, etc., and it is only necessary to construct a meandering path through the cylinder body 10 and the first flow-guiding member 11 and the second flow-guiding member 12 in a limited space.
  • the outer edges of the first flow guide 11 and the second flow guide 12 are connected to the barrel 10 by welding or clamping.
  • the urea nozzle is installed on the nozzle seat hole 101.
  • the exhaust gas from the engine enters the mixing chamber through the first flow guide 11. Affected by the cone shape, the flow velocity of the exhaust gas gradually increases, which improves the fluidity of the exhaust gas.
  • the exhaust gas and The urea is mixed in the mixing chamber and flows along the tortuous guide channel to realize the growth of the mixing path, so that the urea and the exhaust gas are fully mixed, and finally the mixed gas flows out from the second guide member 12 .
  • the SCR mixer proposed in this application has a zigzag guide channel. Under the guide action of the first guide piece 11, the mixing chamber and the second guide piece 12, the exhaust gas flows through the original limited mixing space for a longer period of time.
  • the path ensures that the urea droplets have enough time to fully mix with the exhaust gas and evaporate and decompose, so as to achieve the purpose of improving the NH3 mixing uniformity and anti-crystallization performance of the aftertreatment system, and solve the problem of SCR aftertreatment of urea under low engine speed and low load conditions. Crystallization problems and NOX emission substandard problems;
  • the present application can also realize the modular design of the structure, which can be applied to engines of different displacements, and the structures of the first flow guide 11 and the second flow guide 12 can be rationally adjusted according to different specifications of the post-processing, so as to achieve the same effect as the engine. the perfect match. No complex connection installation structure, high reliability.
  • the SCR mixer further includes at least one urea breaking plate 15, which is arranged in the guide channel and opposite to the urea nozzle.
  • the urea crushing plate 15 can be designed as a square or a circle, and can also be irregular shapes such as a star, and a through hole array can be set on the urea crushing plate 15, so that the urea is further broken.
  • the urea crushing plate 15 can be installed on the first flow guide 11 or the cylinder 10 by welding or clamping, preferably the urea crushing plate 15 is inserted into the slot 112 of the first flow guide 11 .
  • the SCR mixer is arranged with a plurality of urea crushing plates 15 at intervals along the injection path of the urea nozzle. 15 is arranged parallel to the axial direction of the barrel 10 .
  • the injection direction of the urea nozzle is generally perpendicular to the exhaust gas intake direction, and the urea crushing plate 15 arranged parallel to the axial direction of the cylinder 10 can, on the one hand, break up the injected urea and make the urea form smaller droplets and fully mix with the exhaust gas , on the other hand, it plays the role of rectification, so that the exhaust gas intake is guided by the urea crushing plate 15, and the flow is more stable and fast.
  • the part of the urea crushing plate 15 arranged at an angle to the axial direction of the cylinder 10 can make the urea sputtering direction more diverse, and further make the urea fully mix with the exhaust gas.
  • the length of the urea crushing plate 15 along the axial direction of the cylinder 10 is positively correlated with the distance between the urea crushing plate 15 and the nozzle seat hole, and the urea crushing plate 15 is along the radial direction of the cylinder 10 Arranged in steps.
  • Engine exhaust gas enters from the first air guide 11 , and its flow velocity gradually increases with the decrease of the flow cross-sectional area of the first air guide 11 , and reaches the maximum value at the outlet of the first air guide 11 .
  • the urea solution After the urea solution is sprayed from the direction of the urea nozzle, it hits the urea crushing plate 15 below, and part of the droplets bounces and breaks into the exhaust gas again, and is entrained by the high-temperature exhaust gas to flow forward;
  • the high-speed gas at the outlet of the flow element 11 is purged and stripped, and then enters the high-temperature exhaust gas again, and is entrained by the high-temperature exhaust gas to flow forward.
  • the first deflector 11 is tapered, the large-diameter end of the first deflector 11 is connected to the opening of one end of the cylinder 10, and the small-diameter end of the first deflector 11 extends into the In the mixing chamber, the second deflector 12 is tapered, the large diameter end of the second deflector 12 is connected to the other end opening of the barrel 10, and the small diameter end of the second deflector 12 protrudes into the mixing chamber.
  • Both the first flow guide 11 and the second flow guide 12 are arranged inside the barrel 10 so that the overall structure of the mixer is compact, and the first flow guide 11 and the second flow guide 12 can be formed into a cone shape by sheet metal stamping structure, the first flow guide 11 and the second flow guide 12 can be connected to the cylinder 10 by welding or clipping.
  • the dimensions such as the outlet diameter and the inlet diameter of the first air guide 11 and the second air guide 12 can also be adjusted reasonably to achieve a perfect match with the engine. No complex connection installation structure, high reliability.
  • the small-diameter end of the first flow guide 11 is arranged close to the nozzle seat hole 101, the position of the first flow guide 11 corresponding to the nozzle seat hole 101 is provided with a gap, and the small diameter of the second flow guide 12 The end is arranged on the side of the mixing chamber away from the nozzle seat hole 101 .
  • the axial direction of cylinder 10 is generally parallel to the horizontal direction, and the urea spray is sprayed into the mixing chamber from top to bottom.
  • the speed-up exhaust gas flow of a deflector 11 is rapidly mixed with the urea spray to improve the mixing uniformity.
  • the second flow guide 12 is arranged away from the urea nozzle, which can increase the mixing path, increase the mixing time of urea and exhaust gas, and further improve the mixing uniformity.
  • the SCR mixer further includes a third flow guide 13 and a fourth flow guide 14 arranged in the mixing chamber, the third flow guide 13 is located in the barrel 10 and the second flow guide 12 , the fourth flow guide 14 is located between the first flow guide 11 and the second flow guide 12 .
  • the third flow guide 13 is arranged between the cylinder body 10 and the second flow guide 12, so that the air flow is blocked by the third flow guide 13, avoiding the flow of the air flow to the dead corner, increasing the flow speed of the air flow, and then improving the urea and exhaust gas. Mixing uniformity.
  • the third deflector 13 can be designed as an arc-shaped plate structure, and is connected with the barrel body 10 and the second deflector 12 by welding or clamping.
  • the function and structure of the fourth air guiding element 14 are the same as those of the third air guiding element 13 , and will not be repeated here.
  • the guide channel is S-shaped or Z-shaped, which is surrounded by the inner wall of the cylinder 10, the outer wall of the first guide member 11 and the outer wall of the second guide member 12, the first The outlet of the flow guide 11 is set corresponding to the urea nozzle, and the inlet of the second flow guide 12 also extends to the position of the urea nozzle, so that the exhaust gas is initially mixed with urea at the outlet of the first flow guide 11, and then flows forward and is passed by the third Blocked by the flow guide 13 , continue to flow to a position between the first flow guide 11 and the second flow guide 12 , continue to flow blocked by the fourth flow guide 14 , and finally flow out of the mixer from the second flow guide 12 .
  • the tortuous guide channel makes the flow path of the exhaust gas as long as possible in the limited space of the mixing chamber, thereby prolonging the mixing time of the exhaust gas and urea spray, thereby improving the mixing uniformity of the exhaust gas and urea.
  • a flow sensor installation hole 111 is further provided on the first flow guiding member 11 . It is used to install the SCR upstream temperature sensor.
  • the SCR upstream temperature sensor can be electrically connected to the ECU. Its function is to monitor the exhaust gas temperature upstream of the SCR (that is, upstream of the mixer) and control the timing of urea injection.
  • the engine proposed in the second aspect of the present application has the same beneficial effect as that of the SCR mixer proposed in the first aspect of the present application, which will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种SCR混合器和一种发动机,SCR混合器包括筒体(10),第一导流件(11)和第二导流件(12),筒体(10)的内部形成混合腔,筒体(10)上设有用于连接尿素喷嘴的喷嘴座孔(101);筒体(10)的两端开口,第一导流件(11)与筒体(10)的一端开口连接,第一导流件(11)的内部形成锥形的第一导流腔,第一导流腔与混合腔连通;第二导流件(12)与筒体(10)的另一端开口连接,第二导流件(12)的内部形成锥形的第二导流腔,第二导流腔与混合腔连通;筒体(10)的内壁与第一导流件(11)的外壁以及第二导流件(12)外壁合围形成曲折型的导流通道。

Description

SCR混合器和发动机
相关申请的交叉引用
本申请基于申请号为202210010899.X、申请日为2022年1月5日的中国专利申请提出,并要求该中国专利申请的优先权权益,该中国专利申请的全部内容在此通过引用结合在本申请中。
技术领域
本申请属于发动机技术领域,具体涉及一种SCR混合器。本申请还涉及一种发动机。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
SCR(Selective Catalytic Reduction)混合器的作用是将尿素与废气混合以提高转化效率,而现有的SCR混合器混合空间有限,尿素与废气的混合路径较短,导致尿素没有足够的时间与废气充分混合,混合后的混合气中的NH 3分布不均匀,影响其与催化剂的反应效果,进而导致SCR转化效率降低。
发明内容
本申请的目的是至少解决现有技术中SCR混合器混合均匀性不佳导致SCR转化效率降低的问题,该目的是通过以下技术方案实现的:
本申请的第一方面提出了一种SCR混合器,包括:
筒体,所述筒体的内部形成混合腔,所述筒体的两端开口,所述筒体上设有用于连接尿素喷嘴的喷嘴座孔;
第一导流件,所述第一导流件设于所述筒体的内部并与所述筒体的一端开口连接,所述第一导流件的内部形成第一导流腔,所述第一导流腔呈锥形并且与所述混合腔连通;
第二导流件,所述第二导流件设于所述筒体的内部并与所述筒体的另一端 开口连接,所述第二导流件的内部形成第二导流腔,所述第二导流腔呈锥形并且与所述混合腔连通;
所述筒体的内壁与所述第一导流件的外壁以及所述第二导流件外壁合围形成曲折型的导流通道。
本申请提出的SCR混合器具有曲折型的导流通道,在第一导流件、混合腔和第二导流件的导流作用下,废气在原本有限的混合空间内流经更长的路径,保证尿素液滴有足够的时间与废气充分混合、蒸发分解,从而达到提高后处理系统NH3混合均匀性及抗结晶性能的目的,解决发动机低速、低负荷工况下SCR后处理的尿素结晶问题和NOX排放不达标问题;
而且,本申请还可实现结构的模块化设计,应用于不同排量的发动机,根据不同规格后处理,对第一导流件和第二导流件的结构进行合理调整,实现与发动机的完美匹配。无复杂连接安装结构,可靠性高。
另外,根据本申请的SCR混合器,还可具有如下附加的技术特征:
在本申请的一些实施例中,所述SCR混合器还包括至少一个尿素破碎板,所述尿素破碎板设置在所述导流通道内并与所述尿素喷嘴的喷射路径上相对设置。
在本申请的一些实施例中,所述SCR混合器沿所述尿素喷嘴的喷射路径间隔布置有多个所述尿素破碎板,部分所述尿素破碎板与所述筒体的轴向方向呈角度布置,另一部分所述尿素破碎板与所述筒体的轴向方向平行布置。
在本申请的一些实施例中,所述尿素破碎板沿所述筒体的轴向方向的长度与所述尿素破碎板与所述喷嘴座孔的距离呈正相关,并且所述尿素破碎板沿所述筒体的径向方向呈台阶型布置。
在本申请的一些实施例中,所述第一导流件呈锥型,所述第一导流件的大径端与所述筒体的所述一端开口连接,所述第一导流件的小径端伸入至所述混合腔中,所述第二导流件呈锥型,所述第二导流件的大径端与所述筒体的所述另一端开口连接,所述第二导流件的小径端伸入至所述混合腔中。
在本申请的一些实施例中,所述第一导流件的小径端靠近所述喷嘴座孔设置,所述第一导流件对应所述喷嘴座孔的位置设有缺口,所述第二导流件的小径端设于所述混合腔远离所述喷嘴座孔的一侧。
在本申请的一些实施例中,所述SCR混合器还包括设置在所述混合腔内的第三导流件和第四导流件,所述第三导流件位于所述筒体和所述第二导流件之间,所述第四导流件位于所述第一导流件和所述第二导流件之间。
在本申请的一些实施例中,所述导流通道呈S形。
在本申请的一些实施例中,所述第一导流件上还设有流量传感器安装孔。
本申请第二方面提出的发动机具有和本申请第一方面提出的SCR混合器相同的有益效果,在此不再赘述。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的附图标记表示相同的部件。在附图中:
图1示意性地示出了根据本申请实施方式的SCR混合器的结构示意图;
图2示意性地示出了根据本申请实施方式的SCR混合器的剖视结构示意图;
图3示意性地示出了根据本申请实施方式的第一导流件的第一视角的结构示意图;
图4示意性地示出了根据本申请实施方式的第一导流件的第二视角的结构示意图;
图5示意性地示出了根据本申请实施方式的第二导流件的结构示意图;
图6示意性地示出了根据本申请实施方式的尿素破碎板的第一视角的结构示意图;
图7示意性地示出了根据本申请实施方式的尿素破碎板的第二视角的结构示意图。
附图中各标记表示如下:
10:筒体、101:喷嘴座孔、11:第一导流件、111:流量传感器安装孔、112:插槽、12:第二导流件、13:第三导流件、14:第四导流件、15:尿素破碎板。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
尽管可以在文中使用术语、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。因此,以下讨论的元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内部”、“外部”、“内侧”、“侧”、“下面”、“下方”、“上面”、“上方”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应地进行解释。
如图1至图7所示,本申请的第一方面提出了一种SCR混合器,包括:
筒体10、第一导流件11和第二导流件12,筒体10的内部形成混合腔,筒体10上设有用于连接尿素喷嘴的喷嘴座孔101,筒体10的两端开口;第一导流件11设于筒体10的内部并且与筒体10的一端开口连接,第一导流件11的内部形成锥形的第一导流腔,第一导流腔与混合腔连通;第二导流件12设于筒体10的内部并且与筒体10的另一端开口连接,第二导流件12的内部形成锥形的第二导流腔,第二导流腔与混合腔连通;筒体10的内壁与第一导流件11的外壁以及第二导流件12外壁合围形成曲折型的导流通道。
需要说明的是,筒体10可以是圆筒形结构或者是方桶型结构,其内部呈空腔,筒体10的第一端用于接收发动机废气,筒体10的第二端用于排出混合气。第一导流件11和第二导流件12为方便形成锥形的导流腔可设计为漏斗形结构,其可通过钣金冲压制成。曲折型的导流通道可以是S型或者Z型等,只需在有限的空间内通过筒体10和第一导流件11及第二导流件12构建出曲折的路径即可。第一导流件11和第二导流件12的外缘通过焊接或者卡接的方式与筒体10连接。尿素喷嘴安装在喷嘴座孔101上,来自发动机的废气通过第一导流件11进入混合腔,受锥形影响,废气的流速逐渐增大,使得废气流动性提高,随尿素喷入,废气与尿素在混合腔内混合,沿曲折型的导流通道流动,实现混合路径的增长,使得尿素与废气充分混合,最后混合气自第二导流件12流出。
本申请提出的SCR混合器具有曲折型的导流通道,在第一导流件11、混合腔和第二导流件12的导流作用下,废气在原本有限的混合空间内流经更长的路径,保证尿素液滴有足够的时间与废气充分混合、蒸发分解,从而达到提高后处理系统NH3混合均匀性及抗结晶性能的目的,解决发动机低速、低负荷工况下SCR后处理的尿素结晶问题和NOX排放不达标问题;
而且,本申请还可实现结构的模块化设计,应用于不同排量的发动机,根据不同规格后处理,对第一导流件11和第二导流件12的结构进行合理调整,实现与发动机的完美匹配。无复杂连接安装结构,可靠性高。
在本申请的一些实施例中,SCR混合器还包括至少一个尿素破碎板15,尿素破碎板15设置在导流通道内并且与尿素喷嘴的相对设置。尿素破碎板15可设计为方形或者圆形,还可以是星型等不规则形状,尿素破碎板15上可设置通 孔阵列,使得尿素被进一步打碎。尿素破碎板15可以通过焊接或者卡接的方式安装在第一导流件11上或者筒体10上,优选为尿素破碎板15插接在第一导流件11的插槽112中。
在本申请的一些实施例中,SCR混合器沿尿素喷嘴的喷射路径间隔布置有多个尿素破碎板15,部分尿素破碎板15与筒体10的轴向方向呈角度布置,另一部分尿素破碎板15与筒体10的轴向方向平行布置。尿素喷嘴的喷射方向一般与废气进气方向垂直,与筒体10的轴向方向平行设置的尿素破碎板15一方面能够使喷射到的尿素破碎,使尿素形成更小的液滴与废气充分混合,另一方面起到整流的作用,使得废气进气被尿素破碎板15导流,流动更加平稳快速。而与筒体10的轴向方向呈角度布置的部分尿素破碎板15能够使得尿素的溅射方向更加多样,进而使尿素与废气充分混合。
在本申请的一些实施例中,尿素破碎板15沿筒体10的轴向方向的长度与尿素破碎板15与喷嘴座孔的距离呈正相关,并且尿素破碎板15沿筒体10的径向方向呈台阶型布置。发动机废气从第一导流件11进入,其流速随第一导流件11的流通截面积减小而逐渐增大,在第一导流件11的出口处达到最大值。尿素溶液从尿素喷嘴方向喷射后撞击下方尿素破碎板15,部分液滴反弹破碎再次进入废气,被高温废气裹挟向前流动;部分液滴沉积在尿素破碎板15表面,但随即便被第一导流件11的出口的高速气体吹扫剥离,再次进入高温废气,被高温废气裹挟向前流动。
在本申请的一些实施例中,第一导流件11呈锥型,第一导流件11的大径端与筒体10的一端开口连接,第一导流件11的小径端伸入至混合腔中,第二导流件12呈锥型,第二导流件12的大径端与筒体10的另一端开口连接,第二导流件12的小径端伸入至混合腔中。第一导流件11和第二导流件12均设置在筒体10的内部使得混合器整体结构紧凑,第一导流件11和第二导流件12可通过钣金冲压成型形成锥形结构,第一导流件11和第二导流件12可通过焊接或卡接的方式与筒体10连接。另外,还可以对第一导流件11和第二导流件12的出口直径和入口直径等尺寸进行合理调整,实现与发动机的完美匹配。无复杂连接安装结构,可靠性高。
在本申请的一些实施例中,第一导流件11的小径端靠近喷嘴座孔101设置, 第一导流件11对应喷嘴座孔101的位置设有缺口,第二导流件12的小径端设于混合腔远离喷嘴座孔101的一侧。筒体10的轴向一般与水平方向平行,尿素喷雾自上至下喷入混合腔中,此时将第一导流件11的出口端,即小径端靠近尿素喷嘴处设置,可使得通过第一导流件11提速的废气气流与尿素喷雾迅速混合,提高其混合均匀性。并且,第二导流件12远离尿素喷嘴设置,可使得混合路径增长,提高尿素与废气的混合时间,进一步提高其混合均匀性。
在本申请的一些实施例中,SCR混合器还包括设置在混合腔内的第三导流件13和第四导流件14,第三导流件13位于筒体10和第二导流件12之间,第四导流件14位于第一导流件11和第二导流件12之间。由于第一导流件11和第二导流件12呈锥形,其与筒体10之间的部分可能会形成流动死区,导致气流流动缓慢,进而导致尿素在该处碰壁形成结晶,将第三导流件13设置在筒体10和第二导流件12之间,使得气流被第三导流件13所阻挡,避免气流流向死角处,提高气流流动速度,进而提高尿素与废气的混合均匀性。第三导流件13可设计为弧形板结构,通过焊接或者卡接的方式与筒体10和第二导流件12连接。第四导流件14的作用及结构同第三导流件13,在此不再赘述。
在本申请的一些实施例中,导流通道呈S形或者Z型,其由筒体10的内壁和第一导流件11的外壁以及第二导流件12的外壁所合围成,第一导流件11的出口对应尿素喷嘴设置,第二导流件12的进口也伸入至尿素喷嘴的位置,使得废气在第一导流件11出口处于尿素初次混合,然后向前流动被第三导流件13阻挡,继续流至第一导流件11和第二导流件12之间的位置,继续流动被第四导流件14阻挡,最后自第二导流件12流出混合器。上述曲折的导流通道使得废气流动路径在有限的混合腔空间内尽可能延长,从而使废气与尿素喷雾的混合时间得到延长,进而使得废气与尿素的混合均匀性得到提高。
在本申请的一些实施例中,第一导流件11上还设有流量传感器安装孔111。用于安装SCR上游温度传感器,SCR上游温度传感器可与ECU电连接,其作用是监测SCR上游(即混合器上游)废气温度,控制尿素起喷时刻。
本申请第二方面提出的发动机具有和本申请第一方面提出的SCR混合器相同的有益效果,在此不再赘述。
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种SCR混合器,其特征在于,包括:
    筒体,所述筒体的内部形成混合腔,所述筒体的两端开口,所述筒体上设有用于连接尿素喷嘴的喷嘴座孔;
    第一导流件,所述第一导流件设于所述筒体的内部并与所述筒体的一端开口连接,所述第一导流件的内部形成第一导流腔,所述第一导流腔呈锥形并且与所述混合腔连通;
    第二导流件,所述第二导流件设于所述筒体的内部并与所述筒体的另一端开口连接,所述第二导流件的内部形成第二导流腔,所述第二导流腔呈锥形并且与所述混合腔连通;
    所述筒体的内壁与所述第一导流件的外壁以及所述第二导流件外壁合围形成曲折型的导流通道。
  2. 根据权利要求1所述的SCR混合器,其特征在于,所述SCR混合器还包括至少一个尿素破碎板,所述尿素破碎板设置在所述导流通道内并与所述尿素喷嘴相对设置。
  3. 根据权利要求2所述的SCR混合器,其特征在于,所述SCR混合器沿所述尿素喷嘴的喷射路径间隔布置有多个所述尿素破碎板,部分所述尿素破碎板与所述筒体的轴向方向呈角度布置,另一部分所述尿素破碎板与所述筒体的轴向方向平行布置。
  4. 根据权利要求3所述的SCR混合器,其特征在于,所述尿素破碎板沿所述筒体的轴向方向的长度与所述尿素破碎板与所述喷嘴座孔的距离呈正相关,并且沿所述筒体的径向方向设有呈台阶型布置的多个所述尿素破碎板。
  5. 根据权利要求1所述的SCR混合器,其特征在于,所述第一导流件呈锥型,所述第一导流件的大径端与所述筒体的所述一端开口连接,所述第一导流件的小径端伸入至所述混合腔中,所述第二导流件呈锥型,所述第二导流件的大径端与所述筒体的所述另一端开口连接,所述第二导流件的小径端伸入至所述混合腔中。
  6. 根据权利要求5所述的SCR混合器,其特征在于,所述第一导流件的小径端靠近所述喷嘴座孔设置,所述第一导流件对应所述喷嘴座孔的位置设有缺口,所述第二导流件的小径端设于所述混合腔远离所述喷嘴座孔的一侧。
  7. 根据权利要求1所述的SCR混合器,其特征在于,所述SCR混合器还包括设置在所述混合腔内的第三导流件和第四导流件,所述第三导流件位于所述筒体和所述第二导流件之间,所述第四导流件位于所述第一导流件和所述第二导流件之间。
  8. 根据权利要求1所述的SCR混合器,其特征在于,所述导流通道呈S形。
  9. 根据权利要求1至8任一项所述的SCR混合器,其特征在于,所述第一导流件上还设有流量传感器安装孔。
  10. 一种发动机,其特征在于,包括权利要求1至9任一项所述的SCR混合器。
PCT/CN2022/103695 2022-01-05 2022-07-04 Scr混合器和发动机 WO2023130697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210010899.X 2022-01-05
CN202210010899.XA CN114458428B (zh) 2022-01-05 2022-01-05 Scr混合器和发动机

Publications (1)

Publication Number Publication Date
WO2023130697A1 true WO2023130697A1 (zh) 2023-07-13

Family

ID=81410012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103695 WO2023130697A1 (zh) 2022-01-05 2022-07-04 Scr混合器和发动机

Country Status (2)

Country Link
CN (1) CN114458428B (zh)
WO (1) WO2023130697A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412620B (zh) * 2021-12-21 2023-08-18 潍柴动力股份有限公司 Scr混合器及车辆
CN114458428B (zh) * 2022-01-05 2023-07-18 潍柴动力股份有限公司 Scr混合器和发动机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029809A1 (de) * 2008-06-24 2009-12-31 Emcon Technologies Germany (Augsburg) Gmbh Statisches Mischelement
CN108087068A (zh) * 2017-12-31 2018-05-29 潍坊倍力汽车零部件有限公司 涡流式尿素喷射混合装置
US20210062703A1 (en) * 2018-05-16 2021-03-04 Nissin Kogyo Co., Ltd. Exhaust Gas Purification Device
CN114458428A (zh) * 2022-01-05 2022-05-10 潍柴动力股份有限公司 Scr混合器和发动机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664494B1 (ko) * 2010-07-08 2016-10-13 두산인프라코어 주식회사 요소 수용액과 엔진 배기가스의 혼합을 위한 정적 혼합기
US10086332B2 (en) * 2015-05-07 2018-10-02 Ford Global Technologies, Llc Exhaust flow device
CN106523092B (zh) * 2016-10-24 2019-04-23 无锡威孚力达催化净化器有限责任公司 两页锥面式旋流尿素混合装置
CN208122919U (zh) * 2017-12-31 2018-11-20 无锡威孚力达催化净化器有限责任公司 一种旋转导流与孔管横置结合的混合装置
CN109505686B (zh) * 2019-01-28 2024-06-21 凯龙高科技股份有限公司 一种用于柴油机尾气后处理的尿素喷射混合单元
CN209637853U (zh) * 2019-03-11 2019-11-15 无锡威孚力达催化净化器有限责任公司 筒式旋流混合器
CN210948852U (zh) * 2019-10-31 2020-07-07 武汉旭清工程技术有限公司 一种scr系统尿素混合器
CN211397693U (zh) * 2020-01-20 2020-09-01 佛吉亚排气控制技术开发(上海)有限公司 混合器以及发动机排气后处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029809A1 (de) * 2008-06-24 2009-12-31 Emcon Technologies Germany (Augsburg) Gmbh Statisches Mischelement
CN108087068A (zh) * 2017-12-31 2018-05-29 潍坊倍力汽车零部件有限公司 涡流式尿素喷射混合装置
US20210062703A1 (en) * 2018-05-16 2021-03-04 Nissin Kogyo Co., Ltd. Exhaust Gas Purification Device
CN114458428A (zh) * 2022-01-05 2022-05-10 潍柴动力股份有限公司 Scr混合器和发动机

Also Published As

Publication number Publication date
CN114458428A (zh) 2022-05-10
CN114458428B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2023130697A1 (zh) Scr混合器和发动机
US10711677B2 (en) Exhaust aftertreatment system having mixer assembly
EP1712753B1 (en) Module and method for introducing a urea solution into the exhaust gas of an engine
JP4949152B2 (ja) 内燃機関の排気浄化装置
EP3279440B1 (en) Exhaust purification unit
JP5937517B2 (ja) 尿素ベースの還元剤を排気ガス流へ投与する投与モジュール
RU2541087C2 (ru) Форсунка для подачи восстановителя и устройство для снижения токсичности отработавших газов
EP2339139B1 (en) Method for dosing an urea based reducing agent into a gas exhaust stream
WO2018068667A1 (zh) 尾气后处理装置
CN108194178B (zh) 一种用于混合排气和还原剂流体的径向喷射混合器
WO2023138342A1 (zh) Scr系统和发动机
CN212744129U (zh) 混合器以及包括其的排气系统
US10066526B2 (en) Exhaust gas line section for supplying liquid additive
JP2015528543A (ja) 排気ガス流分配システム
WO2023115905A1 (zh) Scr混合器及车辆
CN211819593U (zh) 一种scr排气混合装置
CN103998736B (zh) 具有均衡的流量分配的流体喷枪
EP3379046B1 (en) Exhaust gas aftertreatment system
US10273849B2 (en) Injection module and exhaust system having an injection module
US9416703B2 (en) Mixer configuration for reducing agent preparation and motor vehicle having a mixer configuration
WO2019011035A1 (zh) 尾气后处理混合装置及其封装
CN111742123B (zh) 用于配量液态的废气后处理剂的废气后处理装置
US20180142596A1 (en) Injection module and exhaust system having an injection module
JP2013217351A (ja) 排ガス浄化装置
US11767778B1 (en) Urea solution mixing chamber for diesel vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918153

Country of ref document: EP

Kind code of ref document: A1