WO2023130319A1 - 升降系统的控制方法、装置、plc和存储介质 - Google Patents

升降系统的控制方法、装置、plc和存储介质 Download PDF

Info

Publication number
WO2023130319A1
WO2023130319A1 PCT/CN2022/070549 CN2022070549W WO2023130319A1 WO 2023130319 A1 WO2023130319 A1 WO 2023130319A1 CN 2022070549 W CN2022070549 W CN 2022070549W WO 2023130319 A1 WO2023130319 A1 WO 2023130319A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
carriage
sliding
frequency converter
stop command
Prior art date
Application number
PCT/CN2022/070549
Other languages
English (en)
French (fr)
Inventor
陈必官
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/070549 priority Critical patent/WO2023130319A1/zh
Priority to CN202280022071.4A priority patent/CN117015508A/zh
Publication of WO2023130319A1 publication Critical patent/WO2023130319A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F7/00Cleaning or disinfecting devices combined with refuse receptacles or refuse vehicles

Definitions

  • the present application relates to the field of lifts, in particular to a control method, device, PLC and computer-readable storage medium for a lift system.
  • the accidental drop of the elevator will cause unpredictable injuries, such as the accidental drop of the load carried by the elevator will cause personal injury and property damage.
  • the load carried by the elevator is usually prevented from dropping unexpectedly by means of a motor brake, so as to ensure the safety of the elevator during the lifting process.
  • the motor brake fails, it will be difficult to ensure the safety of the elevator during the lifting process.
  • the embodiments of the present application provide a control method, device, PLC, and computer-readable storage medium for a lifting system, so that the safety of the lifting process can be guaranteed even in the scenario where the motor brake fails.
  • an embodiment of the present application provides a method for controlling a lifting system, wherein the lifting system includes: a base, a top base, a motor arranged on the top base, a motor located on the base and the top base The column between them, the carriage slidable along the column, the air cylinder arranged on the carriage, the fixed plate arranged along the height direction of the column, the encoder arranged on the carriage, and the The frequency converter connected with the encoder, and the PLC connected with the frequency converter; the fixed plate is provided with a number of anti-fall grooves, and the cylinder is used to insert the anti-fall grooves when it is in the extended state, so as to prevent the The carriage slides; the control method is applied to the PLC, including: during the sliding process of the carriage, obtaining the sliding speed value of the carriage fed back by the encoder; determining the sliding speed value and The sliding speed difference between the given speed values; when it is determined that the sliding speed difference is greater than a first preset threshold, it is determined that the sliding speed difference is
  • the difference between the sliding speed value of the slider fed back by the encoder and the given speed value is greater than the preset threshold
  • the difference between the sliding speed value fed back by the encoder and the given speed value is If the difference is greater than the first preset threshold and the duration is longer than the first preset time, it means that the carriage is in a stall state and the lifting system is in a relatively unsafe state.
  • the cylinder is directly controlled to extend to fit into the anti-fall slot. It is equivalent to starting two protections for the lifting system.
  • the first protection is to control the motor to stop or the motor brake (send a stop command to the inverter, and the stop command is used to control the motor to stop running, that is, the inverter will stop after receiving the stop command. Stop working, and then the motor controlled by the frequency converter will stop moving, and the speed will gradually decrease during the process of the motor stopping, and the brake control will be automatically activated).
  • the second layer of protection is to control the extension of the cylinder to insert into the anti-fall groove, thereby preventing the carriage from sliding.
  • the double protection adopted in the embodiment of this application even if the first protection fails, the second protection can take effect in time, so that Ensure the safety of the lifting system. That is to say, even in the scene where the motor brake fails, the safety during the lifting process of the elevator can be guaranteed.
  • the method further includes: when the first preset condition is met, sending the stop command to the frequency converter; counting from when the stop command is sent, and when the timing reaches the second preset After a long time, control the cylinder to extend so that the cylinder is inserted into the anti-fall groove; wherein, the first preset condition includes: receiving the stop command from the user side; and/or, the The first preset condition includes: determining that the position information of the carriage complies with a preset stop condition; the position information is obtained by the encoder positioning the carriage through a coding ruler, and the uprights include a first upright and a second column, the fixing plate is arranged on the first column, the code bar is arranged on the second column, and the encoder is inserted into the code bar.
  • the first preset condition when the first preset condition is met, that is, the carriage stops normally, it means that the carriage is not in a stall state at this time, and the lifting system is in a relatively safe state.
  • control the cylinder After sending the stop command to the frequency converter, After a second preset time interval, control the cylinder to extend to insert into the anti-fall groove. After the interval of the second preset time, the speed of the motor may have been reduced to a relatively low speed. At this time, control the cylinder to extend to insert into the anti-fall slot
  • the groove is beneficial to ensure the relative safety of the lifting system while avoiding the obvious vibration caused by the cylinder being inserted into the anti-fall groove when the motor speed is high.
  • the position of the carriage is the position of the load placed on the carriage.
  • the position of the load can be directly obtained through the code ruler without using the motion data of the belt, which is beneficial to avoid the deformation of the belt after long-term use when the carriage is controlled by the belt traction. Inaccurate positioning of the load position can effectively improve the accuracy of load positioning.
  • the method further includes: when an external fault signal of the frequency converter is detected, sending the stop command to the frequency converter;
  • the signal output under two preset conditions, the second preset condition includes: when the rotation speed value of the motor is greater than a second preset threshold value, the difference between the rotation speed value of the motor and the second preset threshold value The rotation speed difference is greater than a preset difference, and the second duration during which the rotation speed difference is greater than the preset difference exceeds a third preset duration.
  • the signal output by the frequency converter under the second preset condition is equivalent to the signal output by the frequency converter when it detects that the rotational speed value of the motor is abnormal. It is beneficial to control the motor to stop running in time when the rotational speed value of the motor is abnormal. Considering that when the inverter fails, it will enter power-on inhibition. At this time, the start command sent by the PLC is invalid. It is necessary to give the stop command first, and then give the start command again, so that the inverter will be ready to be powered on. Therefore, after the PLC detects the fault of the frequency converter, it sends a stop command to the frequency converter, which facilitates the subsequent restart of the frequency converter.
  • the method further includes: before the carriage starts to slide, judging whether the air cylinder is not in the retracted state; if so, issuing a fault alarm message and sending the stop command to the frequency converter; If not, execute the step of acquiring the sliding speed value of the carriage fed back by the encoder.
  • the step of obtaining the sliding speed value of the carriage is performed to ensure that the subsequent
  • the extension of the cylinder can be controlled normally to ensure the safety of the lifting system.
  • a fault alarm message and a stop command are sent to the frequency converter, which is conducive to timely detection of faults and troubleshooting, and by sending a stop command to the frequency converter in time, the motor can be activated. Stop in time to avoid the operation of the motor driving the carriage to slide when the cylinder is not in a contracted state, thereby avoiding the potential safety hazard caused by the uncontrollable extension of the cylinder during the sliding process of the carriage.
  • the distance between the solid parts between the adjacent anti-fall grooves is a preset distance
  • the number of the cylinders is at least two
  • the distance between the adjacent cylinders is greater than the preset distance. Set distance.
  • the control device further includes: a delay control module; the delay control module is configured to send the stop command to the frequency converter when the first preset condition is met, and send the stop command from the Start timing when the stop command is given, and after the timing reaches the second preset duration, control the cylinder to extend so that the cylinder is inserted into the anti-fall groove; wherein, the first preset condition includes: receiving the user’s The stop command issued by the side; and/or, the first preset condition includes: determining that the position information of the carriage meets the preset stop condition; the position information is that the encoder passes the code ruler to The carriage is positioned, the upright includes a first upright and a second upright, the fixing plate is arranged on the first upright, the code ruler is arranged on the second upright, and the encoder Insert the coded ruler.
  • the first preset condition includes: receiving the user’s The stop command issued by the side; and/or, the first preset condition includes: determining that the position information of the carriage meets the preset stop condition; the position information is that the
  • control device further includes: a detection and sending module; the detection and sending module is configured to send the stop command to the frequency converter when an external fault signal of the frequency converter is detected ;
  • the external fault signal is a signal output by the frequency converter under a second preset condition
  • the second preset condition includes: when the speed value of the motor is greater than a second preset threshold, The rotational speed difference between the rotational speed value of the motor and the second preset threshold is greater than a predetermined difference, and a second duration during which the rotational speed difference is greater than the preset difference exceeds a third predetermined duration.
  • control device further includes: a cylinder state determination module; the cylinder state determination module is used to determine whether the cylinder is not in the retracted state before the carriage starts to slide; if so, send fault alarm information and send the stop command to the frequency converter; if not, execute the step of obtaining the sliding speed value of the carriage fed back by the encoder.
  • the embodiment of the present application provides a programmable logic controller PLC, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be accessed by the Instructions executed by the at least one processor, the instructions are executed by the at least one processor, so that the at least one processor can execute the method for controlling the lifting system as described in the first aspect.
  • a programmable logic controller PLC including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be accessed by the Instructions executed by the at least one processor, the instructions are executed by the at least one processor, so that the at least one processor can execute the method for controlling the lifting system as described in the first aspect.
  • the embodiment of the present application provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the method for controlling the lifting system as described in the first aspect is implemented.
  • Fig. 1 is a schematic structural diagram of a lifting system disclosed in some embodiments of the present application.
  • Fig. 2 is an implementation flowchart of the control method of the lifting system disclosed in some embodiments of the present application
  • Fig. 3 is an enlarged schematic view of a fixed plate provided with several anti-fall grooves disclosed in some embodiments of the present application;
  • Fig. 4 is an implementation flowchart of the normal stop control method of the lifting system disclosed in some embodiments of the present application.
  • Fig. 5 is an implementation flowchart of a method for motor fault monitoring disclosed in some embodiments of the present application.
  • Fig. 6 is another implementation flowchart of the control method of the lifting system disclosed in some embodiments of the present application.
  • Fig. 7 is a schematic diagram of a control device disclosed in some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of a PLC disclosed in some embodiments of the present application.
  • the motor brake is used for protection. However, if the motor brake fails, it will be difficult to ensure the safety of the elevator during the lifting process.
  • the inventor found that the main reason for the problem that it is difficult to ensure the safety during the lifting process of the elevator is that only one protection is provided for the elevator, that is, the motor brake. Failure, the elevator will be in an unsafe state. If one or more protections can be provided, so that when the motor brake fails, other protection schemes can be adopted, and the safety during the lifting process of the elevator can be guaranteed to a certain extent.
  • the inventor has conducted in-depth research, starting from the setting of double protection, and designed a control method for the lifting system.
  • double protection specifically the two protections of motor lock and cylinder extension, so that even if the protection of the motor lock fails, the protection of cylinder extension can also play a protective role in time, so as to increase the safety during the lifting process of the elevator sex.
  • the control method of the lifting system disclosed in the embodiment of the present application may be used, but not limited to, to control the operation of the lift in construction, transportation and other scenarios.
  • the carriage in the elevator is usually used to transport loads such as batteries, batteries, modules, etc. to a specific location, and the embodiment of this application can be used during the transportation
  • the control method of the lifting system is controlled to ensure the safe operation of the lifting system and ensure that the load is safely transported to a specific location.
  • the electric core wire formation static storage, the lift in the formation capacity process, and the cross-floor transfer lift of the conveyor line can all be controlled by the control method of the lifting system in the embodiment of the application, so as to Reduces accidental falls during lifting of loads and enhances the safety of the lifting system.
  • the control method of the lifting system in the embodiment of the present application is applied to a programmable logic controller (Programmable Logic Controller, PLC), and the control method of the lifting system is realized by the logic inside the PLC.
  • PLC Programmable Logic Controller
  • FIG. 1 is a schematic structural diagram of a lifting system disclosed in some embodiments of the present application.
  • lifting system comprises: base 101, top base 102, the motor 103 that is arranged on the top base 102, the column 104 between base 101 and top base 102, the carriage 105 that slides along column 104, be arranged on The cylinder 106 on the carriage 105, the fixed plate 107 arranged along the height direction of the column 104, the encoder 108 arranged on the carriage 105, the frequency converter 109 connected with the encoder 108, and the PLC110 connected with the frequency converter 109.
  • Fixed plate 107 is provided with some anti-falling grooves 1071, and cylinder 106 is used for inserting anti-falling grooves 1071 when being in extended state, to stop slide frame 105 from sliding.
  • FIG. 2 it is an implementation flowchart of the control method of the lifting system disclosed in some embodiments of the present application. It will be described in conjunction with the lifting system shown in Fig. 1.
  • the specific implementation process of the control method of the lifting system is as follows:
  • Step 201 During the sliding process of the carriage, obtain the sliding speed value of the carriage fed back by the encoder.
  • Step 202 Determine the sliding speed difference between the sliding speed value and the given speed value.
  • Step 203 When it is determined that the sliding speed difference is greater than the first preset threshold, determine a first duration for which the sliding speed difference is greater than the first preset threshold.
  • Step 204 Send a stop command to the frequency converter when it is determined that the first duration is longer than the first preset duration.
  • the stop command is used to control the motor to stop running.
  • Step 205 Control the extension of the air cylinder so that the air cylinder is inserted into the anti-fall groove.
  • the motor 103 in FIG. 1 is connected to the frequency converter 109 through a motor power cable (the dashed connection line in FIG. 1 ), so that the frequency converter 109 can control the running state of the motor 103 .
  • the motor 103 may be an AC asynchronous motor, and the AC asynchronous motor may have a motor shaft encoder 115, and the motor shaft encoder 115 may be an incremental encoder.
  • the motor shaft encoder 115 can be connected to the high threshold logic (High Threshold Logic, HTL) interface of the frequency converter 109 through the encoder cable, and the motor shaft encoder 115 can send the rotational speed value of the motor 103 to the HTL interface through the encoder cable, to The frequency converter 109 can obtain the rotational speed value of the motor 103 , so as to perform closed-loop speed control on the motor 103 .
  • HTL High Threshold Logic
  • the frequency converter 109 and the PLC 110 can be connected through a Profinet cable, so that the frequency converter 109 and the PLC 110 can exchange data.
  • the frequency converter 109 may be a G120 frequency converter.
  • the carriage 105 is used to place loads.
  • the motor 103 rotates, it drives the roller 112 to rotate, thereby driving the belt 114 to move.
  • the belt 114 drives the carriage 105 to slide along the column 104 during the movement, thereby removing the load placed on the carriage 105. Transport to the designated location.
  • the encoder 108 arranged on the carriage 105 is used to acquire the sliding speed value of the carriage 105 . Since the carriage 105 is used to place a load, the position of the carriage 105 can also be understood as the position of the load, and the encoder 108 disposed on the carriage 105 can also be understood as a load-side encoder.
  • the encoder 108 can be connected to the synchronous serial interface (Synchronous Serial Interface, SSI) of the frequency converter 109 by the encoder cable, and the encoder 108 can send the sliding speed value of the carriage 105 to the SSI interface by the encoder cable, so that the frequency conversion
  • the controller 109 can obtain the sliding speed value of the carriage 105.
  • SSI Synchronous Serial Interface
  • the encoder 108 can be a linear measurement encoder, specifically a laser measurement encoder can be used, and the linear measurement encoder can be used to obtain the sliding distance of the carriage 105 more accurately, thereby improving the accuracy of the sliding speed value of the carriage 105 obtained .
  • the fixing plate 107 arranged along the height direction of the column 104 can be a steel plate, and the steel plate can be installed on the column 104 by welding.
  • the column 104 includes a first column 1041 and a second column 1042 , and the steel plate can be installed on the first column 1041 by welding.
  • the anti-fall grooves 1071 provided on the fixing plate 107 can be a row of holes cut on the fixing plate 107, and the shape of the row of holes can be oval or circular, but the shape of the holes is not specifically limited in this embodiment.
  • the fixed plate 107 has a hollow part (the position where the hole is located) and a solid part, and the enlarged schematic view of the fixed plate 107 provided with some anti-fall grooves 1071 can refer to Fig. 3, except that the position of the oval hole is a hollow part in Fig. 3, The rest are solid parts.
  • Several anti-drop grooves 1071 can be evenly distributed on the fixing plate 107 as shown in FIG. 3 , but it is not limited to this in specific
  • the air cylinder 106 is installed on the carriage 105, and the air cylinder 106 has two states, respectively: extended state and retracted state.
  • the carriage 105 cannot slide normally along the column 104, that is, the carriage 105 is prevented from sliding.
  • the air cylinder 106 is in the retracted state, it will not be inserted into the anti-fall groove 1071 , and the carriage 105 can slide normally along the column 104 .
  • the cylinder 106 keeps the retracted position, that is, in a contracted state.
  • the carriage 105 stalls, the cylinder 106 is inserted into the anti-fall groove 1071 immediately to prevent the carriage 105 from continuing to slide.
  • FIG. 3 is an enlarged schematic diagram of a fixed plate provided with several anti-fall grooves disclosed in some embodiments of the present application, and the distance between the solid parts between adjacent anti-fall grooves 1071 is a preset distance , the preset distance is d in the figure, the number of cylinders 106 is at least 2, and the distance between adjacent cylinders is greater than the preset distance.
  • the distance between the two cylinders is greater than the distance between the solid parts between two adjacent anti-fall grooves, so that at least one of the two cylinders can be inserted immediately when the control cylinder is extended Into the anti-fall groove, so that the sliding frame can be controlled to stop sliding immediately, and the speed at which the sliding frame stops sliding can be accelerated, thereby further improving the safety of the lifting system.
  • a counterweight 113 may be provided between the first column 1041 and the second column 1042 , and the counterweight 113 can reduce the power of the motor 103 without a large torque.
  • a backup motor 116 may also be provided on the top base 102, so that the backup motor 116 can be used when the motor 103 fails.
  • step 201 during the sliding process of the carriage 105 , the PLC acquires the sliding speed value of the carriage 105 fed back by the encoder 108 .
  • the encoder 108 can obtain the sliding speed value of the sliding frame 105 in real time during the sliding process of the sliding frame 105.
  • the sliding speed value of the sliding frame 105 is first sent to the frequency converter The converter 109, and the frequency converter 109 sends the sliding speed value to the PLC 110, so that the PLC 110 can obtain the sliding speed value of the carriage 105 fed back by the encoder 108.
  • the frequency converter 109 can feed back the sliding speed value of the carriage 105 to the PLC 110 through the status word of the message.
  • step 202 PLC 110 determines a slip speed difference between a slip speed value and a given speed value.
  • the given speed value can be pre-set and stored in PLC110 according to actual needs, and the given speed value can be a preset desired sliding speed value, and the sliding speed difference between the sliding speed value and the given speed value
  • the value can be understood as: the difference between the current actual sliding speed value and the expected sliding speed value of the carriage 105 .
  • the sliding speed difference in this embodiment may specifically be the absolute value of the sliding speed difference.
  • the unit of the given speed value is r/min
  • the unit of the sliding speed value is LU/min.
  • the given speed value and the sliding speed value can be converted into the same unit, for example, the unit of the given speed value can be converted to LU/min, and the conversion factor a can be calculated as follows:
  • the calculated sliding speed difference V is as follows:
  • V given speed value*a-sliding speed value fed back by the encoder.
  • step 203 when the PLC 110 determines that the sliding speed difference is greater than the first preset threshold, it determines a first duration for which the sliding speed difference is greater than the first preset threshold.
  • the first preset threshold can be set according to actual needs and stored in the PLC 110 .
  • the PLC110 can calculate the sliding speed difference in real time, and when it is determined that the sliding speed difference is greater than the first preset threshold, the accumulated sliding speed difference is greater than the first preset threshold, so as to determine that the sliding speed difference is greater than the first preset threshold The first duration of .
  • step 204 when the PLC 110 determines that the first duration is longer than the first preset duration, it sends a stop command for controlling the motor to stop running to the frequency converter.
  • the first preset duration can be set according to actual needs and stored in the PLC 110 .
  • PLC110 can judge in real time whether the current accumulated duration, that is, the first duration, is greater than the first preset duration, and determine whether the first duration is greater than the first duration.
  • a stop command is sent to the frequency converter 109 .
  • the frequency converter 109 stops working after receiving the stop command, and then the motor 103 controlled by the frequency converter 109 stops moving.
  • the setting of the first preset duration allows the slip speed difference to be greater than the first preset threshold in a short period of time, which is beneficial to avoid sending unnecessary stop commands to the frequency converter 109 due to occasional fluctuations in actual slip speed values or related interference.
  • Sending a stop command for controlling the motor to stop running to the frequency converter can be understood as the first level of protection in this embodiment, that is, the motor brake.
  • the way of the motor brake is to control the rotating shaft to keep the drum still, so that the carriage is still.
  • step 205 PLC 110, after sending the stop command to frequency converter 109, controls cylinder 106 to stretch out, so that cylinder 106 is inserted into anti-fall groove 1071, to prevent slide frame 105 from sliding, then slide frame 105 will not rush to the top with load or come down.
  • Controlling the extension of the air cylinder to insert into the anti-fall groove can be understood as the second layer of protection in this embodiment.
  • the motor coupling breaks the shaft, the motor is running like no-load at this time, but the carriage is in a stall state. At this moment, the motor brake can no longer play the role of keeping the carriage and counterweight stationary.
  • the actual sliding speed value of the sliding carriage fed back to the PLC by the encoder set on the carriage is inconsistent with the given speed value, and the sliding speed difference between the sliding speed value and the given speed value will exceed the first preset threshold, The first duration when the sliding speed difference is greater than the first preset threshold will also be greater than the first preset duration.
  • the cylinder on the carriage is inserted into the anti-fall groove immediately to prevent the carriage from sliding and prevent accidents.
  • the first protection is to control the motor to stop or the motor brake
  • the second protection is to control the extension of the cylinder to insert into the anti-fall groove, thereby preventing the carriage from sliding.
  • the above-mentioned double protection can greatly improve the safety of the lifting system.
  • the double protection adopted in the embodiment of this application even if the first protection fails, the second protection can take effect in time, so that Ensure the safety of the lifting system. That is to say, even in the scene where the motor brake fails, the safety during the lifting process of the elevator can be guaranteed.
  • control method of the lifting system further includes a normal stop control method of the lifting system.
  • a normal stop control method of the lifting system Referring to Figure 4, it is an implementation flowchart of a normal stop control method for a lifting system disclosed in some embodiments of the present application. The specific implementation steps of the method are as follows:
  • Step 401 Send a stop command to the frequency converter when the first preset condition is met.
  • the first preset condition includes: receiving a stop command from the user side. And/or, the first preset condition includes: determining that the position information of the carriage meets a preset stop condition.
  • Step 402 Start timing when the stop command is sent, and after the timing reaches the second preset duration, control the cylinder to extend, so that the cylinder is inserted into the anti-fall groove.
  • step 401 when the PLC 110 determines that the first preset condition is satisfied, a stop command is sent to the frequency converter 109, so that the frequency converter 109 stops working, thereby controlling the motor 103 to stop running.
  • the first preset condition can be that the carriage 105 is normal condition to stop.
  • the first preset condition includes: receiving a stop command issued by the user side, for example, when the maintenance personnel of the lifting system (that is, the user side) want the motor 103 to stop running, the terminal device connected to the PLC110 can Directly send a stop command for controlling the motor 103 to stop running to the PLC110, or directly input a stop command for controlling the motor 103 to stop running on the man-machine interface of the PLC110, so that the PLC110 can receive the stop command issued by the user side.
  • the scenario where the maintenance personnel of the lifting system wish to stop the operation of the motor 103 may be: the scenario where the lifting system needs to be overhauled. In order to ensure that the carriage 105 will not suddenly fall during the To send a stop command to the PLC 110 to control the motor 103 to stop running.
  • the first preset condition includes: determining that the position information of the carriage 105 meets a preset stop condition.
  • the position information is obtained by the encoder 108 through the positioning of the code ruler 111 to the carriage 105
  • the column 104 includes a first column 1041 and a second column 1042
  • the fixed plate 107 is arranged on the first column 1041
  • the code ruler 111 is set On the second column 1042 the encoder 108 is inserted into the code ruler 111 .
  • Encoder 108 can send position information to frequency converter 109 after obtaining the position information of carriage 105, and frequency converter 109 sends position information to PLC110 again, makes PLC110 obtain the position information of carriage 105, thereby carries out the position information of carriage 105 Judging whether the location information meets the preset stop conditions.
  • the preset stop conditions may include: the position information of the carriage 105 is the same as the target position information of the carriage 105, for example, when the lifting system starts to run, the PLC 110 receives the target position information where the carriage 105 is expected to stay in this operation, During the sliding process of the carriage 105, if it is determined that the current position information of the carriage 105 is the same as the target position information, it means that the carriage 105 has slid to the target position where the carriage 105 is expected to stay in this operation. The position information of the rack 105 meets the preset stop condition.
  • the predetermined target position information is the second floor, and when the current position information of the carriage 105 is the second floor, that is, the carriage 105 has slid to the second floor, it can be determined that the position information of the carriage 105 meets the preset stop condition .
  • the position information of the carriage 105 in this embodiment can also be understood as the position information of the load placed on the carriage 105 .
  • the determination of the position information of the carriage 105 is equivalent to an object-oriented detection, that is, the position detection of the object of the carriage 105 is directly performed, and the encoder 108 is directly arranged on the carriage 105 carrying the load.
  • the position of the carriage 105 that is, the position of the load, can be directly obtained through the code ruler 111 .
  • the load positioning method used in this embodiment does not need to use the motion data of the belt 114, which is beneficial to avoid the problem of inaccurate positioning caused by deformation and stretching of the belt 114 due to long-term use, that is, the load positioning method used in this embodiment
  • the positioning method can effectively improve the accuracy of load positioning.
  • PLC 110 may display the position information of the carriage 105 on the man-machine interaction interface after receiving the position information of the carriage 105 , so as to check the actual position of the current load at any time, that is, the actual position of the carriage 105 .
  • the first preset condition includes: receiving a stop command from the user side and determining that the position information of the carriage 105 meets the preset stop condition. That is to say, after PLC 110 receives the stop command issued by the user side, it will send a stop command to frequency converter 109, and after PLC 110 determines that the position information of carriage 105 meets the preset stop condition, it will also send a stop command to frequency converter 109. stop order.
  • the PLC 110 starts timing from the time point of the stop command sent when the first preset condition is met, and after the timing duration reaches the second preset duration, the control cylinder 106 is extended so that the cylinder 106 is inserted into the anti- Drop slot 1071.
  • the second preset duration can be set according to actual needs, for example, it can be set according to the time required for the rotation speed value of the motor 103 to drop to the preset rotation speed value, and the second preset duration can be greater than or equal to the rotation speed of the motor 103 The time it takes for the value to decrease to the preset speed value.
  • the carriage stops normally when the first preset condition is met, that is, the carriage stops normally, it means that the carriage is not in a stall state at this time, and the lifting system is in a relatively safe state.
  • the speed of the motor After the second preset time interval, the speed of the motor may have been reduced to a relatively low speed.
  • control the cylinder to extend to insert into the anti-fall groove which is beneficial While ensuring the relative safety of the lifting system, avoid the obvious vibration caused by the insertion of the cylinder into the anti-fall groove when the motor speed is high.
  • the position of the carriage is the position of the load placed on the carriage.
  • the position of the load can be directly obtained through the code ruler without using the motion data of the belt, which is beneficial to avoid the deformation of the belt after long-term use when the carriage is controlled by the belt traction. Inaccurate positioning of the load position can effectively improve the accuracy of load positioning.
  • the control method of the lifting system further includes: when an external fault signal of the frequency converter 109 is detected, sending a stop command to the frequency converter 109 .
  • the external fault signal is a signal output by the frequency converter 109 under a second preset condition
  • the second preset condition includes: when the speed value of the motor 103 is greater than a second preset threshold, the speed value of the motor 103 is the same as the first The rotation speed difference between the two preset thresholds is greater than the preset difference, and the second duration during which the rotation speed difference is greater than the preset difference exceeds a third preset duration.
  • the second preset threshold can be understood as a given rotational speed value
  • the second preset threshold, the preset difference, and the third preset duration can all be set according to actual needs and stored in the frequency converter 109 .
  • the motor shaft encoder 115 can obtain the rotational speed value of the motor 103 in real time, and send the rotational speed value of the motor 103 to the frequency converter 109, and the frequency converter 109 monitors the running state of the motor 103 according to the rotational speed value of the motor 103, if according to the rotational speed value of the motor 103 Speed value, if the motor is faulty, it will output an external fault signal.
  • FIG. 5 it is an implementation flowchart of a method for motor fault monitoring, and the specific implementation process of the method is as follows:
  • Step 500 The frequency converter acquires the current rotational speed value of the motor in real time.
  • Step 501 The frequency converter determines whether the rotational speed of the motor is greater than a second preset threshold. If yes, execute step 502 , otherwise, execute step 500 .
  • Step 502 The frequency converter judges whether the difference between the rotation speed of the motor and the second preset threshold is greater than the preset difference. If yes, execute step 503 , otherwise, execute step 500 .
  • Step 503 The frequency converter determines a second duration for which the rotational speed difference is greater than a preset difference.
  • Step 504 The frequency converter judges whether the second duration exceeds the third preset duration. If yes, execute step 505 , otherwise, execute step 500 .
  • Step 505 The frequency converter outputs an external fault signal.
  • step 505 the frequency converter 109 outputs an external fault signal, so that the frequency converter 109 stops outputting signals to the motor 103, the brake coil of the motor 103 is released, and the motor 103 is in a braking state.
  • the 8th status word When the frequency converter 109 is running normally, the 8th status word is true, when the frequency converter 109 outputs an external fault signal, the 8th status word becomes false, so PLC110 can detect the frequency converter through the change of the 8th status word 109 output external fault signal. When PLC110 detects the external fault signal of the inverter 109, it sends a stop command to the inverter 109.
  • the signal output by the frequency converter under the second preset condition is equivalent to the signal output by the frequency converter when it detects that the rotational speed value of the motor is abnormal.
  • the motor is controlled to stop running in time. Considering that when the inverter fails, it will enter power-on inhibition. At this time, the start command sent by the PLC is invalid. It is necessary to give the stop command first, and then give the start command again, so that the inverter will be ready to be powered on. Therefore, after the PLC detects the fault of the frequency converter, it sends a stop command to the frequency converter, which facilitates the subsequent restart of the frequency converter.
  • control method of the lifting system further includes: before the sliding frame 105 starts to slide, judging whether the cylinder 106 is not in a retracted state. If so, send fault alarm information and send a stop command to the frequency converter 109 . If not, execute the step of acquiring the sliding speed value of the carriage 105 fed back by the encoder 108 .
  • the PLC 110 judges whether the air cylinder 106 is not in the retracted state, that is, judges whether the air cylinder 106 is in the extended state.
  • a magnetic ring may be provided on the air cylinder 106, and whether the state of the air cylinder 106 is extended or contracted can be determined by detecting the position of the magnetic ring. That is to say, in this embodiment, when it is determined that the state of the air cylinder 106 is contracted, the carriage 105 is allowed to start sliding, and thus the step of obtaining the sliding speed value of the carriage 105 fed back by the encoder 108 is performed.
  • the fault alarm information sent by PLC110 can be displayed on the man-machine interface or sent out in the form of voice to remind the maintenance personnel of the lifting system to deal with the fault in time.
  • the step of obtaining the sliding speed value of the carriage is performed to ensure that the extension of the cylinder needs to be controlled later.
  • the extension of the cylinder can be normally controlled to ensure the safety of the lifting system.
  • a fault alarm message and a stop command are sent to the frequency converter, which is conducive to timely detection of faults and troubleshooting, and by sending a stop command to the frequency converter in time, the motor can be activated. Stop in time to avoid the operation of the motor driving the carriage to slide when the cylinder is not in a contracted state, thereby avoiding the potential safety hazard caused by the uncontrollable extension of the cylinder during the sliding process of the carriage.
  • FIG. 6 it is an implementation flow chart of another lifting system control method disclosed in some embodiments of the present application. It will be described in conjunction with the lifting system shown in FIG. 1 .
  • the specific implementation process of the control method of the lifting system is as follows:
  • Step 601 Judging whether the cylinder is not in contraction state. If yes, go to step 608, otherwise go to step 602.
  • Step 602 Determine that the lifting system is operable. That is, the PLC can control the lifting system to start running.
  • Step 603 Obtain the sliding speed value of the carriage fed back by the encoder, and determine the sliding speed difference between the sliding speed value and a given speed value.
  • Step 604 Determine whether the sliding speed difference is greater than a first preset threshold. If yes, go to step 605, otherwise go to step 602.
  • Step 605 Determine whether the first duration for which the sliding speed difference is greater than the first preset threshold is greater than the first preset duration. If yes, execute step 606 and step 608, otherwise enter step 602.
  • Step 606 Send a stop command for controlling the motor to stop running to the frequency converter.
  • Step 607 Control the extension of the two air cylinders so that at least one air cylinder is inserted into the anti-fall groove.
  • Step 608 Send fault alarm information.
  • Step 609 Send a stop command to the frequency converter when the first preset condition is met.
  • Step 610 Obtain the timing duration obtained from timing when the stop command is sent.
  • Step 611 Determine whether the timing duration reaches a second preset duration. If yes, go to step 607, otherwise go to step 610.
  • the stall flag when the judgment result of step 605 is yes, can be set to "TRUE", and the stall flag can be set to "FALSE" when the first preset condition is met, which means that the carriage stops normally. . If the stall flag is "TRUE” when sending the stop command to the inverter, the PLC can immediately control the extension of the two cylinders so that at least one cylinder is inserted into the anti-fall groove. If the stall flag is "FALSE" when the stop command is sent to the inverter, the PLC can start the timer to start timing, and when the timing reaches the second preset time, it will control the extension of the two cylinders so that at least one cylinder is inserted Anti-fall groove.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. . Adding insignificant modifications to the algorithm or process or introducing insignificant designs without changing the core design of the algorithm and process are all within the protection scope of the patent.
  • FIG. 1 it is a schematic structural diagram of a lifting system disclosed in some embodiments of the present application.
  • the motor 103 that is arranged on the top seat 102, the column 104 between the base 101 and the top seat 102, the slidable carriage 105 along the column 104, the cylinder 106 that is arranged on the carriage 105, the cylinder 106 along the column 104
  • the fixed plate 107 that height direction is arranged, the encoder 108 that is arranged on the carriage 105, the frequency converter 109 that is connected with encoder 108, the PLC110 that is connected with frequency converter 109, are provided with some anti-fall grooves 1071 on the fixed plate 107, cylinder 106 is used for inserting into the anti-drop groove 1071 when it is in the extended state, so as to prevent the sliding frame 105 from sliding.
  • Fig. 7 it is a schematic diagram of the control device of the lifting system disclosed in some embodiments of the present application.
  • the control device includes:
  • the acquisition module 701 is configured to acquire the sliding speed value of the carriage 105 fed back by the encoder 108 during the sliding process of the carriage 105 .
  • the first determining module 702 is configured to determine a sliding speed difference between a sliding speed value and a given speed value.
  • the second determining module 703 is configured to determine a first duration for which the sliding speed difference is greater than the first preset threshold when it is determined that the sliding speed difference is greater than the first preset threshold.
  • the judging and sending module 704 is configured to send a stop command to the frequency converter 109 when it is judged that the first duration is longer than the first preset duration.
  • the stop command is used to control the motor 103 to stop running.
  • the control module 705 is used to control the extension of the cylinder 106 so that the cylinder 106 is inserted into the anti-fall groove 1071.
  • the distance between the solid parts of adjacent anti-fall grooves 1071 is a preset distance
  • the number of cylinders 106 is at least two
  • the distance between adjacent cylinders 106 is greater than the preset distance
  • FIG. 3 is an enlarged schematic diagram of a fixed plate provided with several anti-fall grooves disclosed in some embodiments of the present application, and the preset distance is d in the figure.
  • the number of cylinders 106 is two. The distance between adjacent cylinders is greater than the preset distance d. In a specific implementation, the number of cylinders 106 may also be greater than 2 according to actual needs, but it is not limited thereto.
  • the distance between the two cylinders is greater than the distance between the solid parts between two adjacent anti-fall grooves, so that at least one of the two cylinders can be inserted immediately when the control cylinder is extended Into the anti-fall groove, so that the sliding frame can be controlled to stop sliding immediately, and the speed at which the sliding frame stops sliding can be accelerated, thereby further improving the safety of the lifting system.
  • the safety of the lifting system can be improved while ensuring that the cost will not be too high.
  • the number of air cylinders is greater than 2, the more air cylinders are set, the higher the success rate of successfully controlling the slide frame to stop sliding immediately after multiple air cylinders stretch out, which can greatly improve the safety of the lifting system.
  • the control device further includes: a delay control module.
  • the delay control module is used to send a stop command to the frequency converter 109 when the first preset condition is met, and start counting when the stop command is sent, and after the timing reaches the second preset duration, control the cylinder 106 to extend, so that The air cylinder 106 is inserted into the fall prevention groove 1071 .
  • the first preset condition includes: receiving a stop command from the user side.
  • the first preset condition includes: determining that the position information of the carriage 105 meets a preset stop condition.
  • the position information is obtained by the encoder 108 positioning the carriage 105 through the code ruler 111.
  • the column 104 includes a first column 1041 and a second column 1042.
  • the fixing plate 107 is arranged on the first column 1041, and the code ruler 111 is arranged on the second column. At 1042, the encoder 108 is inserted into the code ruler 111.
  • the control device further includes: a detecting and sending module.
  • the detection and sending module is configured to send a stop command to the frequency converter 109 when an external fault signal of the frequency converter 109 is detected.
  • the external fault signal is a signal output by the frequency converter 109 under a second preset condition
  • the second preset condition includes: when the speed value of the motor 103 is greater than a second preset threshold, the speed value of the motor 103 is the same as the first
  • the rotation speed difference between the two preset thresholds is greater than the preset difference, and the second duration during which the rotation speed difference is greater than the preset difference exceeds a third preset duration.
  • the control device further includes: a cylinder state determination module.
  • the air cylinder state determination module is used for determining whether the air cylinder 106 is not in a retracted state before the carriage 105 starts to slide. If so, send fault alarm information and send a stop command to the frequency converter 109 . If not, execute the step of acquiring the sliding speed value of the carriage 105 fed back by the encoder 108 .
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in this application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • a PLC is provided.
  • FIG. 8 is a schematic structural diagram of a PLC disclosed in some embodiments of the present application.
  • the PLC includes: at least one processor 801 .
  • a memory 802 communicatively connected to the at least one processor 801 .
  • the memory 802 stores instructions that can be executed by the at least one processor 801, and the instructions are executed by the at least one processor 801, so that the at least one processor 801 can execute the lifting system as described above. control method.
  • the memory 802 and the processor 801 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 801 and various circuits of the memory 802 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 801 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 801 .
  • the processor 801 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management and other control functions. And the memory 802 may be used to store data used by the processor 801 when performing operations.
  • a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

本申请涉及升降机领域,提供一种升降系统的控制方法、装置、PLC和计算机可读存储介质,升降系统包括:沿立柱可滑动的滑架、设置在滑架上的气缸、沿立柱设置的固定板,固定板上设置有若干防坠落槽,气缸用于在处于伸出状态时插入防坠落槽,以阻止滑架滑动;控制方法包括:在滑架滑动的过程中,获取编码器反馈的滑架的滑动速度值;确定滑动速度值与给定速度值之间的滑动速度差值;当滑动速度差值大于第一预设阈值时,确定滑动速度差值大于第一预设阈值的第一持续时长;当第一持续时长大于第一预设时长时,向变频器发送停止命令;控制气缸伸出使气缸插入防坠落槽,使得即使在电机抱闸失效的场景下,也能保证升降机升降过程中的安全性。

Description

升降系统的控制方法、装置、PLC和存储介质 技术领域
本申请涉及升降机领域,特别是涉及一种升降系统的控制方法、装置、PLC和计算机可读存储介质。
背景技术
升降机的意外下降会造成无法预估的伤害,如升降机所承载的负载的意外下降会导致人员伤害和财产损失。目前,通常通过电机抱闸的方式,阻止升降机所承载的负载意外下降,以确保升降机在升降过程中的安全性,然而,如果电机抱闸失效,将难以保证升降机升降过程中的安全性。
发明内容
鉴于上述问题,本申请实施例提供一种升降系统的控制方法、装置、PLC和计算机可读存储介质,使得即使在电机抱闸失效的场景下,也能保证升降机升降过程中的安全性。
第一方面,本申请实施例提供了一种升降系统的控制方法,其中,所述升降系统包括:底座、顶座、设置在所述顶座上的电机、位于所述底座和所述顶座之间的立柱、沿所述立柱可滑动的滑架、设置在所述滑架上的气缸、沿所述立柱的高度方向设置的固定板、设置在所述滑架上的编码器、与所述编码器连接的变频器、与所述变频器连接的PLC;所述固定板上设置有若干防坠落槽,所述气缸用于在处于伸出状态时插入所述防坠落槽,以阻止所述滑架滑动;所述控制方法应用于所述PLC,包括:在所述滑架滑动的过程中,获取所述编码器反馈的所述滑架的滑动速度值;确定所述滑动速度值与给定速度值之间的滑动速度差值;当判定所述滑动速度 差值大于第一预设阈值时,确定所述滑动速度差值大于第一预设阈值的第一持续时长;当判定所述第一持续时长大于第一预设时长时,向所述变频器发送停止命令;其中,所述停止命令用于控制所述电机停止运行;控制所述气缸伸出,使得所述气缸插入所述防坠落。
本申请实施例的技术方案中,当判定编码器反馈的滑架的滑动速度值与给定速度值的滑动速度差值大于预设阈值,且编码器反馈的滑动速度值与给定速度值的差值大于第一预设阈值的持续时长大于第一预设时长,说明滑架处于失速状态,升降系统处于相对不安全的状态,此时在向变频器发送停止命令后,直接控制气缸伸出以插入防坠落槽。相当于对升降系统启动了两重保护,第一重保护即为控制电机停止或电机抱闸(向变频器发送停止命令,停止命令用于控制电机停止运行,即变频器收到停止命令后会停止工作,随之受变频器控制的电机停止运动,电机停止运动的过程中速度逐渐降低,会自动启动抱闸控制)。第二重保护为控制气缸伸出以插入防坠落槽,从而阻止滑架滑动。上述两重保护能够极大的提高升降系统的安全性。另外,考虑到滑架处于失速状态时第一重保护失效的可能性较大,因此本申请实施例中采用的两重保护,即使第一重保护失效,第二重保护也能够及时生效,以保证升降系统的安全性。也就是说,即使在电机抱闸失效的场景下,也能保证升降机升降过程中的安全性。
在一些实施例中,所述方法还包括:当满足第一预设条件时,向所述变频器发送所述停止命令;从发送所述停止命令时开始计时,在计时时长达到第二预设时长后,控制所述气缸伸出,使得所述气缸插入所述防坠落槽;其中,所述第一预设条件包括:接收到用户侧下发的所述停止命令;和/或,所述第一预设条件包括:确定所述滑架的位置信息符合预设的停止条件;所述位置信息为所述编码器通过编码尺对所述滑架定位获得的,所述立柱包括第一立柱和第二立柱,所述固定板设置在所述第一立柱上,所述编码尺设置在所述第二立柱上,所述编码器插入所述编码尺。
本申请实施例的技术方案中,当满足第一预设条件即滑架正常停止,说明此时滑架不处于失速状态,升降系统处于相对安全的状态,则在向变频器发送停止命令后,间隔第二预设时长再控制气缸伸出以插入防坠 落槽,间隔第二预设时长后,电机的速度可能已经降低到一个相对较低的速度,此时再控制气缸伸出以插入防坠落槽,有利于在确保升降系统相对安全的同时,避免在电机速度较高的情况下气缸插入防坠落槽造成的明显抖动。滑架的位置即滑架上放置的负载的位置,通过编码尺直接得到负载的位置,不需要使用皮带的运动数据,有利于避免通过皮带曳引控制滑架移动时,皮带长期使用变形后导致对负载的位置定位不准确,可以有效的提高负载定位的准确度。
在一些实施例中,所述方法还包括:当检测到所述变频器的外部故障信号时,向所述变频器发送所述停止命令;其中,所述外部故障信号为所述变频器在第二预设条件下输出的信号,所述第二预设条件包括:在所述电机的转速值大于第二预设阈值的情况下,所述电机的转速值与所述第二预设阈值的转速差值大于预设差值,且所述转速差值大于预设差值的第二持续时长超过第三预设时长。
本申请实施例的技术方案中,相当于对电机的转速值进行闭环监控,变频器在第二预设条件下输出的信号相当于变频器在检测到电机的转速值异常时输出的信号,有利于在电机的转速值异常时,及时控制电机停止运行。考虑到变频器故障时,会进入上电抑制,此时PLC发送启动命令是无效的,需要先给停止命令,再重新给启动命令,变频器才会好准备好上电。因此,PLC检测到变频器的故障后,向变频器发送停止命令,方便了后续变频器的重新启动。
在一些实施例中,所述方法还包括:在所述滑架开始滑动之前,判断所述气缸是否不处于收缩状态;若是,则发出故障报警信息并向所述变频器发送所述停止命令;若否,则执行获取所述编码器反馈的所述滑架的滑动速度值的步骤。
本申请实施例的技术方案中,在滑架开始滑动之前,先进行气缸是否不处于收缩状态的判断,确定气缸处于收缩状态时,再执行获取滑架的滑动速度值的步骤,确保后续在需要控制气缸伸出时,能够正常控制气缸的伸出,以确保升降系统的安全性。而当确定气缸不处于收缩状态即气缸 处于伸长状态时,发出故障报警信息并向变频器发送停止命令,有利于及时发现故障并解决故障,且通过及时向变频器发送停止命令,使得电机能够及时停止,避免在气缸不处于收缩状态的情况下,电机的运行带动滑架滑动,从而避免滑架在滑动过程中,因无法控制气缸伸出而带来的安全隐患。
第二方面,本申请实施例提供了一种升降系统的控制装置,其中,所述升降系统包括:底座、顶座、设置在所述顶座上的电机、位于所述底座和所述顶座之间的立柱、沿所述立柱可滑动的滑架、设置在所述滑架上的气缸、沿所述立柱的高度方向设置的固定板、设置在所述滑架上的编码器、与所述编码器连接的变频器、与所述变频器连接的PLC,所述固定板上设置有若干防坠落槽,所述气缸用于在处于伸出状态时插入所述防坠落槽,以阻止所述滑架滑动;所述控制装置包括:获取模块,用于在所述滑架滑动的过程中,获取所述编码器反馈的所述滑架的滑动速度值;第一确定模块,用于确定所述滑动速度值与给定速度值之间的滑动速度差值;第二确定模块,用于确定所述滑动速度差值大于第一预设阈值的第一持续时长;判定与发送模块,用于当判定滑动速度差值大于第一预设阈值,且所述第一持续时长大于第一预设时长时,向所述变频器发送停止命令;其中,所述停止命令用于控制所述电机停止运行;控制模块,用于控制所述气缸伸出,使得所述气缸插入所述防坠落槽。
在一些实施例中,相邻的所述防坠落槽之间的实心部分的距离为预设距离,所述气缸的数量至少为2个,相邻的所述气缸之间的距离大于所述预设距离。
本申请实施例的技术方案中,通过设置至少2个气缸,且2个气缸之间的距离大于相邻的2个防坠落槽之间的实心部分的距离,使得在控制气缸伸出时,2个气缸中至少有一个能立即插入到防坠落槽中,从而能够控制滑架立即停止滑动,加快滑架停止滑动的速度,从而进一步提高升降系统的安全性。
在一些实施例中,所述控制装置还包括:延时控制模块;所述延时 控制模块,用于当满足第一预设条件时,向所述变频器发送所述停止命令,从发送所述停止命令时开始计时,在计时时长达到第二预设时长后,控制所述气缸伸出,使得所述气缸插入所述防坠落槽;其中,所述第一预设条件包括:接收到用户侧下发的所述停止命令;和/或,所述第一预设条件包括:确定所述滑架的位置信息符合预设的停止条件;所述位置信息为所述编码器通过编码尺对所述滑架定位获得的,所述立柱包括第一立柱和第二立柱,所述固定板设置在所述第一立柱上,所述编码尺设置在所述第二立柱上,所述编码器插入所述编码尺。
在一些实施例中,所述控制装置还包括:检测与发送模块;所述检测与发送模块,用于当检测到所述变频器的外部故障信号时,向所述变频器发送所述停止命令;其中,所述外部故障信号为所述变频器在第二预设条件下输出的信号,所述第二预设条件包括:在所述电机的转速值大于第二预设阈值的情况下,所述电机的转速值与所述第二预设阈值的转速差值大于预设差值,且所述转速差值大于预设差值的第二持续时长超过第三预设时长。
在一些实施例中,所述控制装置还包括:气缸状态确定模块;所述气缸状态确定模块,用于在所述滑架开始滑动之前,确定所述气缸是否不处于收缩状态;若是,则发出故障报警信息并向所述变频器发送所述停止命令;若否,则执行获取所述编码器反馈的所述滑架的滑动速度值的步骤。
第三方面,本申请实施例提供了一种可编程逻辑控制器PLC,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如第一方面所述的升降系统的控制方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的升降系统的控制方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例公开的升降系统的结构示意图;
图2是本申请一些实施例公开的升降系统的控制方法的一种实施流程图;
图3是本申请一些实施例公开的设置有若干防坠落槽的固定板的放大示意图;
图4是本申请一些实施例公开的升降系统的正常停止控制方法的实施流程图;
图5是本申请一些实施例公开的电机故障监测的方法的实施流程图;
图6是本申请一些实施例公开的升降系统的控制方法的另一种实施流程图;
图7是本申请一些实施例公开的控制装置的示意图;
图8是本申请一些实施例公开的PLC的结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
目前,从市场形势的发展来看,升降机的应用场景越加广泛,尤其是在高空作业的场景下,比如,在建筑、运输等场景中,升降机都发挥着重要的作用。随着升降机应用场景的不断扩大,其市场的需求量也在不断地扩增。
本发明人注意到,升降机的意外下降会造成无法预估的伤害,如升降机所承载的负载的意外下降会导致人员伤害和财产损失。目前,为了确保升降机在升降过程中的安全性,通过电机抱闸进行保护,然而如果电机抱闸失效,将难以保证升降机升降过程中的安全性。
为了保证升降机升降过程中的安全性,发明人研究发现,造成难以保证升降机升降过程中的安全性的问题的主要原因在于:对于升降机仅提 供了一重保护,即电机抱闸,如果电机抱闸一旦失效,升降机将处于不安全的状态。如果能够再提供一重或多重保护,从而在电机抱闸失效时,可以采用其他保护方案,则可以在一定程度上保证升降机升降过程中的安全性。
基于以上考虑,为了解决如果电机抱闸失效,将难以保证升降机升降过程中的安全性的问题,发明人经过深入研究,从设置双重保护着手,设计了一种升降系统的控制方法,通过为升降机提供双重保护,具体为电机抱闸和气缸伸出这两重保护,使得即使电机抱闸这一重保护失效,气缸伸出这一重保护也能及时起到保护作用,以增加升降机升降过程中的安全性。
本申请实施例公开的升降系统的控制方法,可以但不限于用于对建筑、运输等场景中的升降机的运行进行控制。针对电池领域,生产制造电池的过程中,通常会使用升降机中的滑架将电池、电芯、模组等负载运送到某个特定的位置,在运送的过程中即可以采用本申请实施例中的升降系统的控制方法进行控制,以保证升降系统的安全运行,确保负载安全的被运送到特定位置。具体的,在电池生产工艺中,电芯线的化成静置库及化成容量工序的升降机和输送线的跨楼层的转运升降机都可应用本申请实施例中的升降系统的控制方法进行控制,以降低提升负载过程中的意外坠落情况,增强升降系统的安全性。
本申请实施例中的升降系统的控制方法,应用于可编程逻辑控制器(Programmable Logic Controller,PLC),由PLC内部的逻辑实现该升降系统的控制方法。
根据本申请的一些实施例,参阅图1所示,为本申请一些实施例公开的升降系统的结构示意图。图1中,升降系统包括:底座101、顶座102、设置在顶座102上的电机103、位于底座101和顶座102之间的立柱104、沿立柱104可滑动的滑架105、设置在滑架105上的气缸106、沿立柱104的高度方向设置的固定板107、设置在滑架105上的编码器108、与编码器108连接的变频器109、与变频器109连接的PLC110。固定板107上设置有若干防坠落槽1071,气缸106用于在处于伸出状态时插入防 坠落槽1071,以阻止滑架105滑动。
参阅图2所示,为本申请一些实施例公开的升降系统的控制方法的一种实施流程图,结合图1所示的升降系统进行说明,升降系统的控制方法的具体实施流程如下:
步骤201:在滑架滑动的过程中,获取编码器反馈的滑架的滑动速度值。
步骤202:确定滑动速度值与给定速度值之间的滑动速度差值。
步骤203:当判定滑动速度差值大于第一预设阈值时,确定滑动速度差值大于第一预设阈值的第一持续时长。
步骤204:当判定第一持续时长大于第一预设时长时,向变频器发送停止命令。其中,停止命令用于控制电机停止运行。
步骤205:控制气缸伸出,使得气缸插入防坠落槽。
图1中的电机103与变频器109通过电机动力电缆(图1中的虚线连接线)连接,从而使得变频器109可以对电机103的运行状态进行控制。电机103可以为交流异步电机,该交流异步电机可以带有电机轴编码器115,电机轴编码器115可以为增量编码器。电机轴编码器115可以通过编码器电缆连接至变频器109的高阈值逻辑(High Threshold Logic,HTL)接口,电机轴编码器115可以将电机103的转速值通过编码器电缆发送至HTL接口,以使得变频器109可以得到电机103的转速值,从而对电机103进行闭环速度控制。
变频器109和PLC110可以通过Profinet电缆连接,从而使得变频器109和PLC110可以进行数据交互。在具体实现中,变频器109可以采用G120变频器。
滑架105上用于放置负载,电机103转动时,带动滚筒112转动,从而带动皮带114运动,皮带114在运动的过程中带动滑架105沿立柱104滑动,从而将滑架105上放置的负载运输至指定的位置。
设置在滑架105上的编码器108,用于获取滑架105的滑动速度值。由于滑架105上用于放置负载,因此滑架105的位置也可以理解为负载的位置,设置在滑架105上的编码器108也可以理解为负载侧编码器。 编码器108可以通过编码器电缆连接至变频器109的同步串行接口(Synchronous Serial Interface,SSI),编码器108可以将滑架105的滑动速度值通过编码器电缆发送至SSI接口,以使得变频器109可以得到滑架105的滑动速度值。
编码器108可以为线性测量编码器,具体的可以采用激光测量编码器,采用线性测量编码器可以更加准确的得到滑架105的滑动距离,从而提高获取的滑架105的滑动速度值的准确性。
沿立柱104的高度方向设置的固定板107可以为钢板,钢板可以通过焊接的方式安装在立柱104上。图1中,立柱104包括第一立柱1041和第二立柱1042,钢板可以通过焊接的方式安装在第一立柱1041上。固定板107上设置的若干防坠落槽1071可以为在固定板107上切割的一排孔,这一排孔的形状可以为椭圆形、圆形,然而本实施例对孔的形状不作具体限定。固定板107有空心部分(即孔所在的位置)和实心部分,设置有若干防坠落槽1071的固定板107的放大示意图可以参考图3,图3中除了椭圆形孔所在的位置为空心部分,其余部分均为实心部分。若干防坠落槽1071可以如图3所示均匀分布在固定板107上,然而在具体实现中并不以此为限。
气缸106安装在滑架105上,气缸106具有两种状态,分别为:伸出状态和收缩状态。当气缸106处于伸出状态时,插入防坠落槽1071,滑架105不能沿立柱104正常滑动,即阻止滑架105滑动。当气缸106处于收缩状态时,不会插入防坠落槽1071,滑架105可以沿立柱104正常滑动。当滑架105正常滑动时,气缸106始终保持缩回位置,即处于收缩状态,当滑架105失速时,气缸106立即插入防坠落槽1071,以阻止滑架105继续滑动。
在一个例子中,参阅图3所示,为本申请一些实施例公开的设置有若干防坠落槽的固定板的放大示意图,相邻的防坠落槽1071之间的实心部分的距离为预设距离,预设距离即为图中的d,气缸106的数量至少为2个,相邻的气缸之间的距离大于预设距离。通过设置至少2个气缸,且2个气缸之间的距离大于相邻的2个防坠落槽之间的实心部分的距离,使 得在控制气缸伸出时,2个气缸中至少有一个能立即插入到防坠落槽中,从而能够控制滑架立即停止滑动,加快滑架停止滑动的速度,从而进一步提高升降系统的安全性。
在一个例子中,第一立柱1041和第二立柱1042之间还可以设置配重113,配重113使得电机103不需要很大的扭矩,就可以把电机103的功率降下来。
在一个例子中,顶座102上还可以设置备用电机116,以在电机103故障时,可以使用备用电机116。
在步骤201中,在滑架105滑动的过程中,PLC获取编码器108反馈的滑架105的滑动速度值。其中,编码器108在滑架105滑动的过程中,可以实时获取滑架105的滑动速度值,编码器108得到滑架105的滑动速度值后,先将滑架105的滑动速度值发送给变频器109,变频器109再将该滑动速度值发送给PLC110,从而使得PLC110能够获取到编码器108反馈的滑架105的滑动速度值。其中,变频器109可以将滑架105的滑动速度值通过报文的状态字反馈给PLC110。
在步骤202中,PLC110确定滑动速度值与给定速度值之间的滑动速度差值。其中,给定速度值可以根据实际需要预先设定好并存储在PLC110中,该给定速度值可以为预设的期望滑动速度值,则滑动速度值与给定速度值之间的滑动速度差值可以理解为:滑架105当前的实际滑动速度值与期望滑动速度值之间的差值。本实施例中的滑动速度差值可以具体为滑动速度差值的绝对值。
在一个例子中,给定速度值的单位为r/min,滑动速度值的单位为LU/min。为计算给定速度值和滑动速度值的滑动速度差值,可以将给定速度值与滑动速度值转换为相同的单位,比如可以将给定速度值的单位转换为LU/min,转换系数a的计算方式可以如下:
首先,计算滚筒滚动一周,升降系统的负载侧移动的距离h=π*d。其中,d为滚筒直径,当d=0.32m时,h=π*0.32m=1.005390m。
接着,根据负载侧移动的距离h,计算负载每转LU数。假设,LU=1μm,1米=1000000LU,则负载每转LU数m=1005309LU。
最后,根据电机的额定转速n1、减速机额定转速n2和负载每转LU数m,确定转换系数a=(n2*m)/n1。
比如,n1=1455r/min,n2=40r/min,m=1005309LU,则当电机的额定转速为1455r/min时,编码器实际反馈的滑动速度值如下:
40r/min*1005309LU=40212360LU/min。
在上述基础上,转换系数a=40212360(LU/min)/1455(r/min)。
根据计算得到的转速系数a,计算得到的滑动速度差值V如下:
V=给定速度值*a-编码器反馈的滑动速度值。
在步骤203中,当PLC110判定滑动速度差值大于第一预设阈值时,确定滑动速度差值大于第一预设阈值的第一持续时长。其中,第一预设阈值可以根据实际需要进行设置,并存储在PLC110中。PLC110可以实时计算滑动速度差值,并在判定滑动速度差值大于第一预设阈值时,累计滑动速度差值大于第一预设阈值的时长,以确定滑动速度差值大于第一预设阈值的第一持续时长。
在步骤204中,当PLC110判定第一持续时长大于第一预设时长时,向变频器发送用于控制电机停止运行的停止命令。其中,第一预设时长可以根据实际需要进行设置,并存储在PLC110中。在PLC110累计滑动速度差值大于第一预设阈值的时长的过程中,PLC110可以实时判断当前累计的时长即第一持续时长是否大于第一预设时长,并在判定第一持续时长大于第一预设时长时,向变频器109发送停止命令。变频器109收到停止命令后停止工作,随之受变频器109控制的电机103停止运动。电机103停止运动的过程中,电机103的转速值逐渐降低,会自动启动抱闸控制。第一预设时长的设置使得允许短时间内滑动速度差值大于第一预设阈值,有利于避免因实际滑动速度值的偶尔波动或相关干扰而向变频器109发送没有必要的停止命令。
向变频器发送用于控制电机停止运行的停止命令可以理解为本实施例中的第一重保护,即电机抱闸。电机抱闸的方式即控制旋转轴保持滚筒静止,从而滑架静止。
在步骤205中,PLC110在向变频器109发送停止命令后,控制气 缸106伸出,使得气缸106插入防坠落槽1071,以阻止滑架105滑动,则滑架105带着负载就不会冲顶或者坠落。
控制气缸伸出以插入防坠落槽可以理解为本实施例中的第二重保护。比如,当电机联轴器断轴时,此时电机类似于空载运转,但是滑架处于失速状态,此刻电机抱闸已经起不到维持滑架和配重保持静止的作用。滑架上设置的的编码器反馈给PLC的滑架的实际滑动速度值与给定速度值不一致,且滑动速度值与给定速度值之间的滑动速度差值将超过第一预设阈值,滑动速度差值大于第一预设阈值的第一持续时长也将大于第一预设时长,此时滑架上的气缸立即插入防坠落槽,阻止滑架滑动,防止意外的发生。
本实施例的技术方案中,当判定编码器反馈的滑架的滑动速度值与给定速度值的滑动速度差值大于预设阈值,且编码器反馈的滑动速度值与给定速度值的差值大于第一预设阈值的持续时长大于第一预设时长,说明滑架处于失速状态,升降系统处于相对不安全的状态,此时在向变频器发送停止命令后,直接控制气缸伸出以插入防坠落槽。相当于对升降系统启动了两重保护,第一重保护即为控制电机停止或电机抱闸,第二重保护为控制气缸伸出以插入防坠落槽,从而阻止滑架滑动。上述两重保护能够极大的提高升降系统的安全性。另外,考虑到滑架处于失速状态时第一重保护失效的可能性较大,因此本申请实施例中采用的两重保护,即使第一重保护失效,第二重保护也能够及时生效,以保证升降系统的安全性。也就是说,即使在电机抱闸失效的场景下,也能保证升降机升降过程中的安全性。
根据本申请的一些实施例,升降系统的控制方法还包括升降系统的正常停止控制方法。参阅图4所示,为本申请一些实施例公开的一种升降系统的正常停止控制方法的实施流程图,该方法的具体实施步骤如下:
步骤401:当满足第一预设条件时,向变频器发送停止命令。
其中,第一预设条件包括:接收到用户侧下发的停止命令。和/或,第一预设条件包括:确定滑架的位置信息符合预设的停止条件。
步骤402:从发送停止命令时开始计时,在计时时长达到第二预设 时长后,控制气缸伸出,使得气缸插入防坠落槽。
在步骤401中,当PLC110确定满足第一预设条件时,向变频器109发送停止命令,以使变频器109停止工作,从而控制电机103停止运行,第一预设条件可以为滑架105正常停止的条件。
在一个例子中,第一预设条件包括:接收到用户侧下发的停止命令,比如,当升降系统的维护人员(即用户侧)希望电机103停止运行时,可以通过与PLC110连接的终端设备直接向PLC110发送用于控制电机103停止运行的停止命令,或者直接在PLC110的人机交互界面上输入用于控制电机103停止运行的停止命令,使得PLC110能够接收到用户侧下发的停止命令。在具体实现中,升降系统的维护人员希望电机103停止运行的场景可能为:需要对升降系统进行检修的场景,为了保证检修过程中滑架105不会突然掉下来,维护人员可以通过上面所提到的方式向PLC110发送停止命令,以控制电机103停止运行。
在一个例子中,第一预设条件包括:确定滑架105的位置信息符合预设的停止条件。参阅图1,位置信息为编码器108通过编码尺111对滑架105定位获得的,立柱104包括第一立柱1041和第二立柱1042,固定板107设置在第一立柱上1041,编码尺111设置在第二立柱1042上,编码器108插入编码尺111。编码器108在得到滑架105的位置信息后,可以将位置信息发送给变频器109,变频器109再将位置信息发送给PLC110,使得PLC110得到滑架105的位置信息,从而进行滑架105的位置信息是否符合预设的停止条件的判断。
预设的停止条件可以包括:滑架105的位置信息与滑架105的目标位置信息相同,比如,升降系统在开始运行时,PLC110接收到本次运行希望滑架105所停留的目标位置信息,在滑架105滑动的过程中,如果确定滑架105当前的位置信息和目标位置信息相同,说明滑架105已经滑动到本次运行希望滑架105所停留的目标位置,此时PLC110可以确定滑架105的位置信息符合预设的停止条件。比如,预先确定的目标位置信息为2楼,当滑架105当前的位置信息为2楼时,即滑架105已经滑动至2楼,则可以确定滑架105的位置信息符合预设的停止条件。
本实施例中滑架105的位置信息也可以理解为放置在滑架105上的负载的位置信息。本实施例中对于滑架105的位置信息的确定相当于是一种对象化的检测,即直接对滑架105这一对象进行位置检测,将编码器108直接设置在承载负载的滑架105上,通过编码尺111可以直接得到滑架105的位置即负载的位置。本实施例中采用的负载定位方式,不需要使用皮带114的运动数据,有利于避免因皮带114长时间使用可能会存在变形拉伸导致的定位不准确的问题,即本实施例中采用的负载定位方式可以有效的提高负载定位的准确度。
在一个例子中,PLC110接收到滑架105的位置信息后可以在人机交互界面上显示,便于随时查看当前负载的实际位置即滑架105的实际位置。
在一个例子中,第一预设条件包括:接收到用户侧下发的停止命令和确定滑架105的位置信息符合预设的停止条件。也就是说,PLC110在接收到用户侧下发的停止命令后,会向变频器109发送停止命令,PLC110在确定滑架105的位置信息符合预设的停止条件后,也会向变频器109发送停止命令。
在步骤402中,PLC110从在满足第一预设条件的情况下,发送的停止命令的时间点开始计时,在计时时长达到第二预设时长后,控制气缸106伸出,使得气缸106插入防坠落槽1071。其中,第二预设时长可以可以根据实际需要进行设置,比如可以根据电机103的转速值降低到预设转速值所需的时间来进行设置,第二预设时长可以大于或等于电机103的转速值降低到预设转速值所需的时间。
本实施例中,当满足第一预设条件即滑架正常停止,说明此时滑架不处于失速状态,升降系统处于相对安全的状态,则在向变频器发送停止命令后,间隔第二预设时长再控制气缸伸出以插入防坠落槽,间隔第二预设时长后,电机的速度可能已经降低到一个相对较低的速度,此时再控制气缸伸出以插入防坠落槽,有利于在确保升降系统相对安全的同时,避免在电机速度较高的情况下气缸插入防坠落槽造成的明显抖动。滑架的位置即滑架上放置的负载的位置,通过编码尺直接得到负载的位置,不需要使 用皮带的运动数据,有利于避免通过皮带曳引控制滑架移动时,皮带长期使用变形后导致对负载的位置定位不准确,可以有效的提高负载定位的准确度。
根据本申请的一些实施例,升降系统的控制方法还包括:当检测到变频器109的外部故障信号时,向变频器109发送停止命令。其中,外部故障信号为变频器109在第二预设条件下输出的信号,第二预设条件包括:在电机103的转速值大于第二预设阈值的情况下,电机103的转速值与第二预设阈值的转速差值大于预设差值,且转速差值大于预设差值的第二持续时长超过第三预设时长。
其中,第二预设阈值可以理解为给定转速值,第二预设阈值、预设差值以及第三预设时长均可以根据实际需要设定好并存储在变频器109中。
电机轴编码器115可以实时获取电机103的转速值,并将电机103的转速值发送给变频器109,变频器109根据电机103的转速值对电机103的运行状态进行监测,若根据电机103的转速值,确定电机出现故障,则输出外部故障信号。
参阅图5所示,为一种电机故障监测的方法的实施流程图,该方法的具体实施流程如下:
步骤500:变频器实时获取电机当前的转速值。
步骤501:变频器判断电机的转速值是否大于第二预设阈值。如果是,则执行步骤502,否则,执行步骤500。
步骤502:变频器判断电机的转速值与第二预设阈值的转速差值是否大于预设差值。如果是,则执行步骤503,否则,执行步骤500。
步骤503:变频器确定转速差值大于预设差值的第二持续时长。
步骤504:变频器判断第二持续时长是否超过第三预设时长。如果是,则执行步骤505,否则,执行步骤500。
步骤505:变频器输出外部故障信号。
在步骤505中,变频器109输出外部故障信号,从而变频器109停止对电机103输出信号,电机103制动器线圈释放,电机103处于制动状 态。
在变频器109正常运行时,第8位状态字为true,当变频器109输出外部故障信号后,第8位状态字变为false,从而PLC110通过第8位状态字的变化可以检测到变频器109输出的外部故障信号。PLC110在检测到变频器109的外部故障信号时,向变频器109发送停止命令。
本申请实施例中,相当于对电机的转速值进行闭环监控,变频器在第二预设条件下输出的信号相当于变频器在检测到电机的转速值异常时输出的信号,有利于在电机的转速值异常时,及时控制电机停止运行。考虑到变频器故障时,会进入上电抑制,此时PLC发送启动命令是无效的,需要先给停止命令,再重新给启动命令,变频器才会好准备好上电。因此,PLC检测到变频器的故障后,向变频器发送停止命令,方便了后续变频器的重新启动。
根据本申请的一些实施例,升降系统的控制方法还包括:在滑架105开始滑动之前,判断气缸106是否不处于收缩状态。若是,则发出故障报警信息并向变频器109发送停止命令。若否,则执行获取编码器108反馈的滑架105的滑动速度值的步骤。
PLC110在滑架105开始滑动之前,判断气缸106是否不处于收缩状态,即判断气缸106是否处于伸长状态。气缸106上可以设置有磁环,通过检测磁环的位置可以确定气缸106的状态是伸长状态还是收缩状态。也就是说,本实施例中在确定气缸106的状态为收缩状态时,才会允许滑架105开始滑动,从而执行获取编码器108反馈的滑架105的滑动速度值的步骤。
PLC110发出的故障报警信息可以在人机交互界面上显示或是以语音的形式发出,以提醒升降系统的维护人员对该故障及时进行处理。
本实施例中,在滑架开始滑动之前,先进行气缸是否不处于收缩状态的判断,确定气缸处于收缩状态时,再执行获取滑架的滑动速度值的步骤,确保后续在需要控制气缸伸出时,能够正常控制气缸的伸出,以确保升降系统的安全性。而当确定气缸不处于收缩状态即气缸处于伸长状态时,发出故障报警信息并向变频器发送停止命令,有利于及时发现故障并 解决故障,且通过及时向变频器发送停止命令,使得电机能够及时停止,避免在气缸不处于收缩状态的情况下,电机的运行带动滑架滑动,从而避免滑架在滑动过程中,因无法控制气缸伸出而带来的安全隐患。
参阅图6所示,为本申请一些实施例公开的另一种升降系统的控制方法的实施流程图,结合图1所示的升降系统进行说明,升降系统的控制方法的具体实施流程如下:
步骤601:判断气缸是否不处于收缩状态。如果是,则执行步骤608,否则执行步骤602。
步骤602:确定升降系统可运行。即PLC可以控制升降系统开始运行。
步骤603:获取编码器反馈的滑架的滑动速度值,并确定滑动速度值与给定速度值之间的滑动速度差值。
步骤604:判断滑动速度差值是否大于第一预设阈值。如果是,则执行步骤605,否则进入执行步骤602。
步骤605:确定滑动速度差值大于第一预设阈值的第一持续时长是否大于第一预设时长。如果是,则执行步骤606和步骤608,否则进入步骤602。
步骤606:向变频器发送用于控制电机停止运行的停止命令。
步骤607:控制两个气缸伸出,使得至少一个气缸插入防坠落槽。
步骤608:发出故障报警信息。
步骤609:当满足第一预设条件时,向变频器发送停止命令。
步骤610:获取从发送停止命令时开始计时得到的计时时长。
步骤611:判断计时时长是否达到第二预设时长。如果是,则执行步骤607,否则执行步骤610。
在具体实现中,当步骤605的判断结果为是时,可以将失速标志位设置为“TRUE”,当满足第一预设条件即表明滑架正常停止时可以将失速标志位设置为“FALSE”。如果在向变频器发送停止命令时,失速标志位为“TRUE”,则PLC可以立即控制两个气缸伸出,使得至少一个气 缸插入防坠落槽。如果在向变频器发送停止命令时,失速标志位为“FALSE”,则PLC可以启动定时器开始计时,当计时时长达到第二预设时长后再控制两个气缸伸出,使得至少一个气缸插入防坠落槽。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内。对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
根据本申请的一些实施例,提供了一种升降系统的控制装置,参阅图1所示,为本申请一些实施例公开的升降系统的结构示意图,图1中,升降系统包括:底座101、顶座102、设置在顶座102上的电机103、位于底座101和顶座102之间的立柱104、沿立柱104可滑动的滑架105、设置在滑架105上的气缸106、沿立柱104的高度方向设置的固定板107、设置在滑架105上的编码器108、与编码器108连接的变频器109、与变频器109连接的PLC110,固定板107上设置有若干防坠落槽1071,气缸106用于在处于伸出状态时插入防坠落槽1071,以阻止滑架105滑动。
参阅图7所示,为本申请一些实施例公开的升降系统的控制装置的示意图,图7中,控制装置包括:
获取模块701,用于在滑架105滑动的过程中,获取编码器108反馈的滑架105的滑动速度值。
第一确定模块702,用于确定滑动速度值与给定速度值之间的滑动速度差值。
第二确定模块703,用于当判定滑动速度差值大于第一预设阈值时,确定滑动速度差值大于第一预设阈值的第一持续时长。
判定与发送模块704,用于当判定第一持续时长大于第一预设时长时,向变频器109发送停止命令。其中,停止命令用于控制电机103停止运行。
控制模块705,用于控制气缸106伸出,使得气缸106插入防坠 落槽1071。
根据本申请的一些实施例,相邻的防坠落槽1071之间的实心部分的距离为预设距离,气缸106的数量至少为2个,相邻的气缸106之间的距离大于预设距离。
参阅图3所示,为本申请一些实施例公开的设置有若干防坠落槽的固定板的放大示意图,预设距离即为图中的d。参阅图1所示,气缸106的数量为2个。相邻的气缸之间的距离大于预设距离d。在具体实现中,根据实际需要气缸106的数量也可以大于2个,然而并不以此为限。
通过设置至少2个气缸,且2个气缸之间的距离大于相邻的2个防坠落槽之间的实心部分的距离,使得在控制气缸伸出时,2个气缸中至少有一个能立即插入到防坠落槽中,从而能够控制滑架立即停止滑动,加快滑架停止滑动的速度,从而进一步提高升降系统的安全性。当设置2个气缸时,可以在提高升降系统的安全性的同时,保证成本不会过高。当设置气缸的数量大于2个时,设置的气缸数量越多,多个气缸伸出后能够成功控制滑架立即停止滑动的成功率越高,可以极大的提高升降系统的安全性。
根据本申请的一些实施例,控制装置还包括:延时控制模块。延时控制模块,用于当满足第一预设条件时,向变频器109发送停止命令,从发送停止命令时开始计时,在计时时长达到第二预设时长后,控制气缸106伸出,使得气缸106插入防坠落槽1071。其中,第一预设条件包括:接收到用户侧下发的停止命令。和/或,第一预设条件包括:确定滑架105的位置信息符合预设的停止条件。位置信息为编码器108通过编码尺111对滑架105定位获得的,立柱104包括第一立柱1041和第二立柱1042,固定板107设置在第一立柱1041上,编码尺111设置在第二立柱1042上,编码器108插入编码尺111。
根据本申请的一些实施例,控制装置还包括:检测与发送模块。检测与发送模块,用于当检测到变频器109的外部故障信号时,向变频器109发送停止命令。其中,外部故障信号为变频器109在第二预设条件下输出的信号,第二预设条件包括:在电机103的转速值大于第二预设阈值 的情况下,电机103的转速值与第二预设阈值的转速差值大于预设差值,且转速差值大于预设差值的第二持续时长超过第三预设时长。
根据本申请的一些实施例,控制装置还包括:气缸状态确定模块。气缸状态确定模块,用于在滑架105开始滑动之前,确定气缸106是否不处于收缩状态。若是,则发出故障报警信息并向变频器109发送停止命令。若否,则执行获取编码器108反馈的滑架105的滑动速度值的步骤。
不难发现,控制装置的实施例与上述控制方法的实施例相对应。上述控制方法的实施例提到的相关技术细节和技术效果在控制装置的实施例中依然有效,为了减少重复,这里不再赘述。相应地,控制装置的实施例中提到的相关技术细节和技术效果也可应用在上述控制方法的实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本发明的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
根据本申请的一些实施例,提供了一种PLC,参阅图8所示,为本申请一些实施例公开的PLC的结构示意图,图8中,PLC包括:至少一个处理器801。以及,与所述至少一个处理器801通信连接的存储器802。其中,所述存储器802存储有可被所述至少一个处理器801执行的指令,所述指令被所述至少一个处理器801执行,以使所述至少一个处理器801能够执行如上述的升降系统的控制方法。
其中,存储器802和处理器801采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器801和存储器802的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发 送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器801处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器801。
处理器801负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器802可以被用于存储处理器801在执行操作时所使用的数据。
根据本申请的一些实施例,提供了一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种升降系统的控制方法,其中,所述升降系统包括:底座、顶座、设置在所述顶座上的电机、位于所述底座和所述顶座之间的立柱、沿所述立柱可滑动的滑架、设置在所述滑架上的气缸、沿所述立柱的高度方向设置的固定板、设置在所述滑架上的编码器、与所述编码器连接的变频器、与所述变频器连接的PLC;所述固定板上设置有若干防坠落槽,所述气缸用于在处于伸出状态时插入所述防坠落槽,以阻止所述滑架滑动;所述控制方法应用于所述PLC,包括:
    在所述滑架滑动的过程中,获取所述编码器反馈的所述滑架的滑动速度值;
    确定所述滑动速度值与给定速度值之间的滑动速度差值;
    当判定所述滑动速度差值大于第一预设阈值时,确定所述滑动速度差值大于所述第一预设阈值的第一持续时长;
    当判定所述第一持续时长大于第一预设时长时,向所述变频器发送停止命令;其中,所述停止命令用于控制所述电机停止运行;
    控制所述气缸伸出,使得所述气缸插入所述防坠落槽。
  2. 根据权利要求1所述的升降系统的控制方法,其中,所述方法还包括:
    当满足第一预设条件时,向所述变频器发送所述停止命令;
    从发送所述停止命令时开始计时,在计时时长达到第二预设时长后,控制所述气缸伸出,使得所述气缸插入所述防坠落槽;
    其中,所述第一预设条件包括:接收到用户侧下发的所述停止命令;和/或,
    所述第一预设条件包括:确定所述滑架的位置信息符合预设的停止条 件;所述位置信息为所述编码器通过编码尺对所述滑架定位获得的,所述立柱包括第一立柱和第二立柱,所述固定板设置在所述第一立柱上,所述编码尺设置在所述第二立柱上,所述编码器插入所述编码尺。
  3. 根据权利要求1或2所述的升降系统的控制方法,其中,所述方法还包括:
    当检测到所述变频器的外部故障信号时,向所述变频器发送所述停止命令;
    其中,所述外部故障信号为所述变频器在第二预设条件下输出的信号,所述第二预设条件包括:在所述电机的转速值大于第二预设阈值的情况下,所述电机的转速值与所述第二预设阈值的转速差值大于预设差值,且所述转速差值大于预设差值的第二持续时长超过第三预设时长。
  4. 根据权利要求1至3任一项所述的升降系统的控制方法,其中,所述方法还包括:
    在所述滑架开始滑动之前,判断所述气缸是否不处于收缩状态;
    若是,则发出故障报警信息并向所述变频器发送所述停止命令;
    若否,则执行所述获取所述编码器反馈的所述滑架的滑动速度值的步骤。
  5. 一种升降系统的控制装置,其中,所述升降系统包括:底座、顶座、设置在所述顶座上的电机、位于所述底座和所述顶座之间的立柱、沿所述立柱可滑动的滑架、设置在所述滑架上的气缸、沿所述立柱的高度方向设置的固定板、设置在所述滑架上的编码器、与所述编码器连接的变频器、与所述变频器连接的PLC,所述固定板上设置有若干防坠落槽,所述气缸用于在处于伸出状态时插入所述防坠落槽,以阻止所述滑架滑动;所述控制装置包括:
    获取模块,用于在所述滑架滑动的过程中,获取所述编码器反馈的所 述滑架的滑动速度值;
    第一确定模块,用于确定所述滑动速度值与给定速度值之间的滑动速度差值;
    第二确定模块,用于当判定所述滑动速度差值大于第一预设阈值时,确定所述滑动速度差值大于第一预设阈值的第一持续时长;
    判定与发送模块,用于当判定所述第一持续时长大于第一预设时长时,向所述变频器发送停止命令;其中,所述停止命令用于控制所述电机停止运行;
    控制模块,用于控制所述气缸伸出,使得所述气缸插入所述防坠落槽。
  6. 根据权利要求5所述的升降系统的控制装置,其中,相邻的所述防坠落槽之间的实心部分的距离为预设距离,所述气缸的数量至少为2个,相邻的所述气缸之间的距离大于所述预设距离。
  7. 根据权利要求5或6所述的升降系统的控制装置,其中,所述控制装置还包括:延时控制模块;
    所述延时控制模块,用于当满足第一预设条件时,向所述变频器发送所述停止命令,从发送所述停止命令时开始计时,在计时时长达到第二预设时长后,控制所述气缸伸出,使得所述气缸插入所述防坠落槽;
    其中,所述第一预设条件包括:接收到用户侧下发的所述停止命令;和/或,
    所述第一预设条件包括:确定所述滑架的位置信息符合预设的停止条件;所述位置信息为所述编码器通过编码尺对所述滑架定位获得的,所述立柱包括第一立柱和第二立柱,所述固定板设置在所述第一立柱上,所述编码尺设置在所述第二立柱上,所述编码器插入所述编码尺。
  8. 根据权利要求5至7任一项所述的升降系统的控制装置,其中,所述控制装置还包括:检测与发送模块;
    所述检测与发送模块,用于当检测到所述变频器的外部故障信号时,向所述变频器发送所述停止命令;
    其中,所述外部故障信号为所述变频器在第二预设条件下输出的信号,所述第二预设条件包括:在所述电机的转速值大于第二预设阈值的情况下,所述电机的转速值与所述第二预设阈值的转速差值大于预设差值,且所述转速差值大于预设差值的第二持续时长超过第三预设时长。
  9. 根据权利要求5至8任一项所述的升降系统的控制装置,其中,所述控制装置还包括:气缸状态确定模块;
    所述气缸状态确定模块,用于在所述滑架开始滑动之前,确定所述气缸是否不处于收缩状态;若是,则发出故障报警信息并向所述变频器发送所述停止命令;若否,则执行所述获取所述编码器反馈的所述滑架的滑动速度值的步骤。
  10. 一种可编程逻辑控制器PLC,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至4中任一所述的升降系统的控制方法。
  11. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至4中任一所述的升降系统的控制方法。
PCT/CN2022/070549 2022-01-06 2022-01-06 升降系统的控制方法、装置、plc和存储介质 WO2023130319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/070549 WO2023130319A1 (zh) 2022-01-06 2022-01-06 升降系统的控制方法、装置、plc和存储介质
CN202280022071.4A CN117015508A (zh) 2022-01-06 2022-01-06 升降系统的控制方法、装置、plc和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070549 WO2023130319A1 (zh) 2022-01-06 2022-01-06 升降系统的控制方法、装置、plc和存储介质

Publications (1)

Publication Number Publication Date
WO2023130319A1 true WO2023130319A1 (zh) 2023-07-13

Family

ID=87072933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070549 WO2023130319A1 (zh) 2022-01-06 2022-01-06 升降系统的控制方法、装置、plc和存储介质

Country Status (2)

Country Link
CN (1) CN117015508A (zh)
WO (1) WO2023130319A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005280902A (ja) * 2004-03-29 2005-10-13 Takayuki Ebinuma エレベーター落下防止器の電気検知装置
CN103569918A (zh) * 2012-07-31 2014-02-12 湖北三江航天红阳机电有限公司 一种自动检测防坠落安全装置
CN108547440A (zh) * 2018-05-18 2018-09-18 重庆睿豪科技发展有限公司 建筑用脚手架升降装置
CN110002361A (zh) * 2019-04-30 2019-07-12 中建八局第一建设有限公司 一种带超载预警装置的集成式升降料台
CN112027849A (zh) * 2020-08-11 2020-12-04 苏州承儒信息科技有限公司 一种带有逃生教学功能的智能电梯防护方法及其系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005280902A (ja) * 2004-03-29 2005-10-13 Takayuki Ebinuma エレベーター落下防止器の電気検知装置
CN103569918A (zh) * 2012-07-31 2014-02-12 湖北三江航天红阳机电有限公司 一种自动检测防坠落安全装置
CN108547440A (zh) * 2018-05-18 2018-09-18 重庆睿豪科技发展有限公司 建筑用脚手架升降装置
CN110002361A (zh) * 2019-04-30 2019-07-12 中建八局第一建设有限公司 一种带超载预警装置的集成式升降料台
CN112027849A (zh) * 2020-08-11 2020-12-04 苏州承儒信息科技有限公司 一种带有逃生教学功能的智能电梯防护方法及其系统

Also Published As

Publication number Publication date
CN117015508A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
RU2353568C2 (ru) Способ управления скоростью и количеством движения передвижного блока для предотвращения столкновения с наголовником и настилом установки для ремонта скважин
WO2009003333A1 (fr) Procédé de commande électrique pour grue avec de multiples points levés
JP5196369B2 (ja) エレベータのメンテナンスシステム
WO2023130319A1 (zh) 升降系统的控制方法、装置、plc和存储介质
CN104609311A (zh) 一种用于起重机的双卷扬同步控制系统及方法
CN104355235B (zh) 起升机构的控制方法、控制装置和起升机构
JP2009221009A (ja) エレベータの制御装置
CN113247809A (zh) 吊车型振冲器卷扬控制系统及控制方法
CN104386583A (zh) 一种施工立井吊盘稳车运行故障监测系统及方法
CN103466490B (zh) 基于图像处理的起重机控制方法、系统以及起重机
CN108706481B (zh) 吊钩悬停控制方法、装置和变频器
CN114084799A (zh) 一种塔机多起升同步安全性控制的三重保护系统及方法
CN103466480B (zh) 监测吊钩位置及防止吊钩冲顶的方法、系统及起重机
CN110683474A (zh) 一种起重机双卷扬起升系统的同步控制方法及装置
CN111362170B (zh) 吊具电缆卷盘的控制方法、装置及起重机
CN103482513A (zh) 一种卷筒防乱绳控制方法、系统以及工程机械
KR101715351B1 (ko) 호이스트 무선 제어 시스템
WO2023088449A1 (zh) 一种塔机多机构双闭环主从同步控制系统
CN107585652B (zh) 一种电梯坠落智能对重减速装置
CN216711289U (zh) 一种基于智慧工地项目的升降机安全监测系统
CN215666853U (zh) 一种对起重机械的超速保护功能进行检测的系统
CN114035487A (zh) 一种新型的智能升降梯的安全监控系统及其监控方法
CN205312850U (zh) 具有防反向进入提示功能的自动扶梯方向指示器
KR102591247B1 (ko) 한쌍의 마스트를 이용한 대용량 건설용 리프트와 로드 셀을 이용한 건설용 리프트 장치
KR20140030857A (ko) 무대장치의 와이어로프 탈선 시 모터 및 부하 보호 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022071.4

Country of ref document: CN