WO2023128770A1 - Sistema, dispositivo y método para determinación no invasiva de bioparámetros - Google Patents

Sistema, dispositivo y método para determinación no invasiva de bioparámetros Download PDF

Info

Publication number
WO2023128770A1
WO2023128770A1 PCT/PE2021/000012 PE2021000012W WO2023128770A1 WO 2023128770 A1 WO2023128770 A1 WO 2023128770A1 PE 2021000012 W PE2021000012 W PE 2021000012W WO 2023128770 A1 WO2023128770 A1 WO 2023128770A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
mobile electronic
electronic measuring
bioparameters
positive lens
Prior art date
Application number
PCT/PE2021/000012
Other languages
English (en)
French (fr)
Inventor
Sammy Nazareno MORI CUBAS
Rina Eloha VASQUEZ TARAZONA
Original Assignee
Cjv Soluciones Contables Y Tributarias S.A.C.
Innovaciones Peruanas Ad Hoc S.A.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cjv Soluciones Contables Y Tributarias S.A.C., Innovaciones Peruanas Ad Hoc S.A.C. filed Critical Cjv Soluciones Contables Y Tributarias S.A.C.
Priority to PE2022000087A priority Critical patent/PE20231121A1/es
Priority to PCT/PE2021/000012 priority patent/WO2023128770A1/es
Publication of WO2023128770A1 publication Critical patent/WO2023128770A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1477Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means non-invasive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Definitions

  • the present invention is related to the field of medicine and especially to non-invasive medical electronic systems and devices for the determination of bioparameters in real time.
  • patents are known in the state of the art that show devices capable of measuring one or more of these parameters in living beings.
  • This is the case of patent US7961305 which discloses an apparatus or device that includes a light source to generate a plurality of light beams, each of the plurality of light beams having a different wavelength range.
  • the apparatus also includes an internal reflective light funnel for directing the plurality of light beams to the target area, the light source embedded within the light funnel, and an aperture for directing the plurality of light beams emitting from the target area. to a lens, wherein the lens is configured to collect light rays that are emitted from the target area.
  • the appliance includes a detector comprising a plurality of light detection devices, each configured to detect a beam of light and configured to generate an output signal indicative of a detected light intensity, and a processor for analyzing the output signal and generating measurement data. measurement.
  • WO2019/114270 reports a blood glucose detection device comprising a first light-emitting unit, a second light-emitting unit, a first light-receiving unit and a second unit receiving light, wherein one light-emitting unit is configured to emit light that is insensitive to blood glucose content, while the other light-emitting unit is configured to emit light that is sensitive to blood glucose content .
  • Light that is sensitive to blood glucose would observe a corresponding decrease in transmittance with increasing blood glucose concentration.
  • the first light emitting unit and the second light emitting unit may each comprise an infrared light emitting diode (IR LED).
  • Document W02020/122603 reports an electronic device that can include: a substrate, an optical sensor device that includes at least one light-emitting element and a light-receiving element, the optical sensor device mounted on the substrate, and a lens molded lens attached to the substrate and covering the optical sensor device, where the injection molded lens is separated from the optical sensor device by a set distance, where the patterns are integrally formed on at least a portion of the injection molded lens, the patterns that affect the transmission of light of at least one wavelength band to improve the optical efficiency of the transmitted light.
  • WO2021/110877 describes techniques for acquiring and processing data in combination with a photonic sensor-on-a-chip (SoC) system (1) to provide real-time calibrated concentration levels of an analyte (for example, a molecule constituent within a biological substance).
  • SoC photonic sensor-on-a-chip
  • the sensor chip collects a raw signal to be analyzed by diffuse reflectance or transmittance.
  • the determination of the analyte concentration is based, in part, on the Beer-Lambert principles and is facilitated by applying the dispersion correction to the raw signal prior to decomposition and analysis thereof.
  • the biological substance can be blood, interstitial fluid, tissue, or a combination of substances.
  • the photonic sensor system-on-a-chip (SoC) suite includes a hybrid lll-V and group IV semiconductor array, with the lll-V semiconductor elements providing optical gain and sensing functions, and optical feedback, light routing, filtered out.
  • Blocking and other passive functions are provided within the group IV semiconductor photonic integrated circuit and its purpose is to analyze tissues and the analyte may include blood glucose, blood lactate, ethanol, creatinine, keratin, collagen, urea, serum albumin globulin , troponin, acetone, acetate, hydroxybutyrate, cholesterol, albumin, globulin, ketones-acetone or water among others.
  • document US5823966 teaches a device that continuously measures the infrared radiation naturally emitted by the human body.
  • This infrared radiation contains spectral information of the emitting body tissue.
  • the detector signal is proportional to the intensity of the spectrum emitted by the body passing through a filter with the spectral characteristic of the measured analyte, eg blood glucose.
  • the intensity of the infrared spectrum emitted by the body passes through a filter with spectral characteristics that do not include spectral bands of the analyte and establishes a reference point for more precise measurements.
  • a monitoring device which includes an optical sensor, a temperature sensor, a first electrical contact sensor and a second electrical contact sensor within a monitoring device enclosure.
  • the optical sensor includes a light source and a photodetector positioned adjacent a first surface of the enclosure.
  • the light source may be operated to emit light towards the measurement site and the photodetector may be operated to receive reflected light from the measurement site when the first surface is in contact with a measurement site of a first body part of a user.
  • the device is a portable electronic device that includes an internal optical configuration that can measure lightning of diffuse reflection from LEDs in order to obtain in real time precise measurements of biological parameters such as, for example, blood glucose concentration, among others and whose results can be recorded through a mobile application, on the web and / or in mobile devices, where the system and the device can measure a broader spectrum since it has an optical scheme configuration that includes a distribution of the main components such as the infrared filter, the LEDs, the positive lens, a diffraction grating and a motor, being able to have a broader sweep of the spectrum based on a wavelength analysis that allows to determine the parameters in a more effective way with much greater sensitivity in a more complete way and simultaneously practically in real time.
  • the main components such as the infrared filter, the LEDs, the positive lens, a diffraction grating and a motor
  • the present invention is aimed at a non-invasive monitoring system to measure biological parameters in real time that comprises a mobile electronic meter device (A), a mobile application and a web application or platform (C). It is also directed to the mobile electronic measuring device (A) which is based on diffuse reflectance spectroscopy and to a method for acquiring the information of parameters analyzed through the system according to the present invention.
  • Figure 1 shows the circular distribution of the leds of the mobile electronic measuring device (A) according to the present invention.
  • Figure 2 shows that in the peaks of the graph that has a Gaussian shape is the maximum intensity for each LED that has its wavelength where they are added in order to obtain a light composed of a broader spectrum of wavelengths than They interfere in a positive way, reaching an effect of superimposition at the level of intensity of all the spectrums generated by the LED that illuminates the area of the skin and generates a diffusely reflected light.
  • Figure 3 shows the components of the internal optical scheme and the way in which the rays illuminate or irradiate directly to the skin through the infrared optical filter (8) in an embodiment of the invention where the mobile electronic measuring device (A ) has a stepper motor that moves a structure (11) that supports the photodiode (11.1).
  • Figure 3A shows how the diffuse reflected light enters through the entrance pupil towards the infrared optical filter (8) and towards the positive lens (7) and then through the diffraction grating (9) in the modality of Figure 3 where the mobile electronic measuring device (A) has a stepper motor that moves a structure (11) that supports the photodiode (11.1) of Figure 3.
  • FIG 4 shows a complete schematic of the mobile electronic measuring device (A) according to another embodiment of the invention where the LEDs are focused on the skin through a positive lens (7) that strikes against the skin, wherein the system comprises a stepper motor (10) that moves the structure (11) that supports the photodiode (11.1).
  • Figure 4A shows how the diffuse reflected light enters through the entrance pupil towards a photodiode (11.1) in the modality of figure 4 where the system comprises a stepper motor that moves the structure (11) .
  • FIG. 5 shows the complete schematic of the mobile electronic measuring device (A) according to another embodiment of the invention, where the system does not include the stepper motor (10) and the structure (11) is a fixed structure and where the LEDs are focused using a positive lens (7) and then the reflected diffuse light enters through said positive lens (7) and the pupil where the structure (11) comprises a plurality of photodiodes (11.1) .
  • Figure 5A shows how the diffuse reflected light enters through the positive lens (7) and the pupil towards a photodiode (11.1) in the modality of figure 5 where the system comprises the fixed structure (11).
  • Figure 6 shows an additional modality of the electronic meter device (A) where the LEDs are focused using a positive lens (7), then the reflected diffuse light enters through said positive lens (7) and the pupil where the difference with the modality of figure 5 and 5A in addition to the use of the fixed structure (11) that has multiple photodiodes (11.1), also one or more spherical concave mirrors (14) are added that allow the linearity of the relationship that exists between the position and the evaluated wavelength.
  • Figure 7 shows an embodiment of the invention in which the mobile electronic measuring device (A) has a cylindrical shape and is adapted for the analysis of bioparameters in the area of the fingertips of the hand of a user or another part of the user's body, where the mobile electronic measuring device (A) can be held in one hand and lightly pressed onto the fingertip or any other part of the user's body like a flashlight and does not have a clip or hook (1).
  • Figure 8 shows the components of the internal optical scheme and the way in which the rays illuminate the skin before generating diffuse reflection in the embodiment of the invention of figure 7 where the mobile electronic measuring device (A) has a motor step by step that moves the structure (11).
  • Figure 9 shows another embodiment of the present invention, where the mobile electronic measuring device (A) is adapted for the analysis of bioparameters in the area of the earlobe of a user.
  • Figure 10 shows an embodiment of the invention where the mobile electronic measuring device (A) has an ovoid shape and is adapted for the analysis of bioparameters in the area of the Valley of Mars in the hand of a user.
  • Figure 11 schematically illustrates the method for acquiring the information of the parameters analyzed through the system and mobile electronic measuring device (A) according to the present invention.
  • Figure 12 shows a general flow chart of the operation of the mobile electronic meter device (A) according to the present invention.
  • Figure 13 shows a layout scheme of electronic components in the mobile electronic meter device (A) according to the present invention.
  • FIG 14 schematically shows the system for non-invasive determination of bioparameters according to the present invention, where the interrelation between the device (A) wirelessly with the mobile application (B) and with the application or web platform (C) through the Internet practically and the interaction with the algorithm also through the Internet in real time that is later displayed in the mobile application (B).
  • the present invention refers to a non-invasive monitoring system in real time, where the system can continuously monitor the concentrations of bioparameters, for example glucose (glycemia) and other bioparameters, which consists of a mobile electronic meter device (A), a mobile application (B), an application or web platform (C) and a method of non-invasive monitoring of biological parameters, for example, but not limited to blood glucose, in which an electronic measuring device (A) and a mobile device (B) are involved, which can be, but is not limited to, a cell phone, a tablet, or a laptop.
  • the web application (C) In addition to being in charge of executing a computational algorithm, it also offers the user an interface for managing their measurements and allows the preparation of reports to monitor the concentration of the parameter or parameters, for example, the user's glucose.
  • the present invention refers to a mobile electronic measuring device (A), which optionally comprises a support in the form of a clip or hook (1) and a body (2) with a casing cover ( 2.1) comprising a power button (13), wherein the body (2) in turn comprises inside a main card (3) which includes peripheral modules (3.1), a processing card (3.2) and a communication unit (3.3), wherein said processing unit (3) manages the different functions.
  • the information obtained by the mobile electronic measuring device (A) is sent by means of the communication unit (3.3), the destination of said information can be, for example, a smart cell phone with a mobile application (B).
  • the mobile electronic meter device (A) in the body (2) contains a rechargeable battery (4), a micro-USB port (5) and LED light recharge indicators (4.1) that indicate when the device mobile electronic meter (A) is charged.
  • the mobile electronic measuring device (A) also comprises in said body (2) an internal optical scheme to optimize the measurement process that comprises one or more optoelectronic detectors (photodiodes) that is based on diffuse reflectance spectroscopy.
  • said body (2) can have any shape, for example, but not limited to ovoid, round, semicircular ("C" shape). ), square, triangular, cylindrical and hexagonal, among others, where the body (2) in a modality of the invention, said body (2) is attached to a clip or hook (1) and in another embodiment of the invention said body (2) does not comprise said clip or hook (1).
  • the present invention may comprise any suitable and/or ergonomic shape for the body (2) of the mobile electronic measuring device (A), as long as its interior allows housing the mechatronic components and the optical scheme according to the invention.
  • the mobile electronic meter device (A) is further characterized in that it comprises LED lights (6.1) that are in a configuration of lights (6) in a circular arrangement that corresponds to a PCB or LED socket (6.1) as shown in figure (1 and 13) where the LEDS (6.1) are located perpendicular to said configuration of circular lights (6) and all the LEDs (6.1).
  • the LEDs (6.1) can be inclined towards the central part of the circular light configuration (6) since the LEDS-holder supports (6.2) are at an angle of 45° with respect to the surface of said configuration of circular lights (6) or socket.
  • the LEDS (6.1) light up at the same time, which simulates a source with a greater spectral bandwidth as shown in figure 2 at the spectral level.
  • the LEDs (6.1) irradiate directly to the skin through an optical filter (8) that is suitable for direct exposure to the skin, where the infrared filter (8) sits against the skin and is first or before the circular light pattern (6), the positive lens (7) and the diffraction grating (9). In this mode, then the diffuse reflected light enters through said positive lens (7) and passes through a diffraction grating (9) towards the optoelectronic light detector(s) (photodiodes) (11.1).
  • the positive lens (7) can be replaced by a compound lens. either of two or more lenses whose resultant is positive, but each of them is not necessarily positive independently and can allow the reduction of the device by further simplifying the arrangement of the optical scheme and obtaining a more compact system with focal lengths shorter.
  • the electronic measuring device (A) comprises a positive lens (7) exposed directly on the skin and whose function is that the rays of light from the LED lights (6.1) are focused on the skin, generating a diffuse reflection.
  • Said diffuse reflection generates light rays that pass through the same positive lens (7) and then through an infrared filter (8) held in a separator support (8.1) and through a diffraction grating (9) allowing the separation of light rays by wavelengths, as shown in figures 4 and 4A that are detected by an opto-electronic detector (photodiode) of light (11.1) that is supported on a mobile structure (11) that It comprises a stepper motor (10) for its movement or by a fixed structure (11) comprising a plurality of opto-electronic detectors (photodiodes) of light (11.1) as illustrated in figures 5 and 5A.
  • an opto-electronic detector photodiode
  • a mobile structure (11) that It comprises a stepper motor (10) for its movement or by a fixed structure (11) comprising a plurality of opto-electronic detectors (photodiodes) of light (11.1) as illustrated in figures 5 and 5A.
  • the electronic measuring device (A) has a fixed structure (11) without a stepper motor (10) that supports a plurality of detectors. opto-electronics (photodiodes) of light (11.1).
  • the arrangement of the positive lens (7) and the infrared filter (8) can be reversed so that the infrared filter (8) is directly exposed to be placed on the skin, that is, it is first that the positive lens (7) and then, through a diffraction grating (9) allows the separation of light rays by wavelengths for their detection by means of the opto-electronic detector(s) (light photodiodes (11.1).
  • the mobile electronic measuring device (A) is a portable device that performs non-invasive measurements of various biological parameters.
  • said mobile electronic measuring device (A) can have the shape of a "C" with a support hook (1) for the pinna of the ear and a body (2) arranged as a cavity to house the earlobe, in such a way that it is located between two surfaces.
  • the clip or hook (1) is in contact with the earlobe and, at the same time, with the positive lens (7) or the infrared filter (8) of the optical scheme of the electronic measuring device.
  • said mobile electronic measuring device (A) is intended for application in measurements in the patient's earlobe, it can also be applied to other parts of the body that involve direct contact with the skin, for example, the fingers. , the palm of the hand, the wrist.
  • the person skilled in the art will understand that the most appropriate shape for the body (2) and the presence and position of the clip or hook (1) for the mobile electronic measuring device (A) can be chosen according to physical ergonomics and the shape of the area of the user's body that is to be used for the measurement of bioparameters.
  • the mobile electronic measuring device (A) may or may not comprise a support or clip or hook (1) and a body (2) which comprises at its time a main card (3), a battery (4) and an internal optical scheme that in turn includes a positive lens (7), a configuration of lights (6) with LEDs (6.1) in a circular shape, an infrared filter ( 8), a diffraction grating (9), optionally a stepper reducer motor (10), a structure (11) comprising one or more optoelectronic light detectors (photodiodes) (11.1) and a metal structure (12) coupled to a thermocouple (12.1) that is kept in contact with the skin.
  • a support or clip or hook (1)
  • a body (2) which comprises at its time a main card (3), a battery (4) and an internal optical scheme that in turn includes a positive lens (7), a configuration of lights (6) with LEDs (6.1) in a circular shape, an infrared filter ( 8), a diffraction grating (9), optionally a
  • the structure (11) in relation to the structure (11) previously defined, in an embodiment of the present invention, it can be a sliding structure (11), that is, movable (linear movement) comprising one or more optoelectronic detectors (photodiodes ) of light (11.1) (figures 3, 3A, 4, 4A, 7 and 8), which can be moved by means of the stepper motor with reducer (10) in order to be able to sweep or scan the "stain" of light resulting from diffuse reflectance through the positive lens (7) or infrared filter (8).
  • the structure (11) can be a fixed structure (11) as shown in figures 5 and 5A, for example, a linear structure comprising a plurality of opto-detectors.
  • light electronics (photodiodes) (11.1) located equidistantly between them, using a plurality of opto-electronic detectors (11.1) inclusively greater than 6 of these, where the number of opto-electronic detectors (11.1) used it will depend on the sensitivity that is desired in bioparameter measurements.
  • the electronic measuring device (A) also includes in its internal optical scheme one or more concave hemispherical mirrors (14) as shown in figure 6 that can extend the benefits of the invention to obtain the desired spectrum.
  • This modality that includes mirrors (14) can also be present in the modalities where the device comprises the stepper motor (10) and the modality where the infrared filter (8) is directly facing the skin.
  • the mobile electronic measuring device (A) can have a cylindrical "lantern" type shape in the body (2), without clip or hook (1) and where, as shown in Figures 7 and 8, the LEDs (6.1) are inclined towards the central part of said circular light configuration (6) since the LEDS holder supports (6.2) are at an angle of 45° with respect to the surface of said configuration.
  • the configuration also has the separator support (8.1), which can be made of plastic or another material and separates the zone of the positive lens (7) from the diffraction grating (9); a separator support (8.2) that maintains the distances between the components of the internal optical scheme.
  • the separators serve to define the exact position of the components in the optical scheme, being the same attached components that allow the correct positioning of the main components of the optical scheme. So there can be two or more depending on the requirements of the manufacturing process.
  • the internal operation of the mobile electronic measuring device (A) according to the present invention is based on an optical scheme of diffuse reflectance and absorption of near-infrared light.
  • the purpose of the mobile electronic measuring device (A) of the present invention is to scan the spectrum of infrared light in the wavelength range from 700 to 1650 nm, in order to perform a quantitative analysis of the biological parameters that are possible to measure in said spectral range.
  • the internal optical scheme has a wavelength range of 700 to 1650 nm.
  • the mobile electronic measuring device (A) of the present invention has the capacity to measure bioparameters in any part of the individual's body whose chemical structure interacts with infrared light included in the range of wavelengths in which The mobile electronic meter device (A) works, for example, but not limited to, the mobile electronic meter device (A) according to the present invention can measure biomolecules such as glucose, triglycerides, cholesterol, albumin, hemoglobin, deoxyhemoglobin, creatinine, and urea among others.
  • biomolecules such as glucose, triglycerides, cholesterol, albumin, hemoglobin, deoxyhemoglobin, creatinine, and urea among others.
  • light is emitted in the range of 740 to 960 nm, together with a temporal record of the signal obtained and applying a low-pass filter. of 5Hz to evaluate the component with the highest gain frequency.
  • the ratio of light intensities of circulating oxyhemoglobin and deoxyhemoglobin obtained by the mobile electronic meter (A) is evaluated.
  • a quantitative analysis of the optical density (absorbance) in the range of 700 to 1650 nm is required.
  • the data collected by the electronic meter device (A) is sent from the mobile application (B) to a server or web platform (C). In the web server (C) a set of procedures is carried out until a final result is obtained.
  • the present invention refers to a method for the acquisition of the information of the parameters analyzed through the system and mobile electronic meter device (A) according to the present invention, wherein the method comprises the following steps: a) Activate the process by receiving the start command in the mobile electronic meter device (A) that is based on diffuse reflectance spectroscopy through an optical scheme comprising a positive lens (7), an infrared filter (8), one or more optoelectronic detectors (11.1) and a metallic structure (12) coupled to a thermocouple (12.1 ) where the electronic components are managed through a main card processing unit and a battery charge and discharge system (4) through a voltage regulator (3.6); b) Illuminate the section of skin to be analyzed by turning on all the LED lights (6.1) of the mobile electronic measuring device (A); c) Generating the spatial-spectral distribution of the light beams from step b); d) Scan the luminous intensities that make up the spatial-spectral distribution of the light
  • the method for the acquisition of the information of the parameters analyzed through the system and mobile electronic measuring device (A) comprises the activation of the measurement procedure by receiving the start command in the electronic measuring device mobile (A), then proceed to illuminate the section of skin to be analyzed by turning on all the leds (6.1).
  • a composite infrared light beam is generated, which, after being decomposed by the diffraction grating (9), generates the spatial-spectral distribution of the light beams.
  • the modality of the invention comprises a stepper motor (10) that sweeps the path determined by the structure (11) by means of the optoelectronic detector (photodiodes) (11.1) in order to to analyze the light signal coming from the skin.
  • a stepper motor 10 that sweeps the path determined by the structure (11) by means of the optoelectronic detector (photodiodes) (11.1) in order to to analyze the light signal coming from the skin.
  • the analysis of the light signal coming from the skin is done by means of the plurality of opto-electronic detectors (photodiodes) (11.1) where each of them sweeps an area of the path determined by said structure.
  • the signal is digitally processed to become a collection of data that is sent to the web platform (B) to be processed. said data through an algorithm and finally return the result obtained to the device, for example, a smart cell phone.
  • step b) of the method according to the present invention the process of illuminating the skin due to the light rays of the leds (6.1) that pass through the positive lens (7), is carried out by means of a switching control of the power supply signal of the leds (6.1) that allows modulation by pulse width, where the modulation workload percentage is 60% and the frequency is 120Hz.
  • the LEDs (6.1) have the characteristic that they have a highly directional radiation pattern and due to this, the light rays act as shown in figure (3 and 3A). In this sense, the individual configuration of the leds (6.1) has been contemplated in terms of the level of light power by means of the activation current.
  • the rays that are focused by the infrared filter (8) finally reach the skin, generating diffuse reflection.
  • the diffuse reflection rays are delimited by the field pupil of the positive lens (7), then the infrared optical filter (8) prevents unwanted light rays from passing through and then the rays finally reach the diffraction grating (9).
  • the signal is analyzed by means of the opto-electronic detector (photodiodes) (11.1) that travels the linear direction on the structure (11) with the help of the stepper motor. passage (10) or that cover said distance by means of the plurality of opto-electronic detectors (11.1) when the structure (11) is fixed.
  • the spatial-spectral distribution is covered by the opto-electronic detector(s) (photodiodes) (11.1) in a programmed manner using a stepper motor (10) or said spatial-spectral distribution is covered by the plurality of opto-electronic detectors (photodiodes) (11.1) on the structure (11) in the modality in which the structure (11) is fixed and the signals obtained are used to generate the diffuse reflection spectrum.
  • thermocouple (12.1) that determines the skin temperature
  • the components of the mobile electronic meter device (A) are controlled by the main board processing unit (3), the LED drive processes (6.1) and the stepper motor (10). Likewise, the acquisition of signals by opto-electronic detectors
  • Figure 13 shows a general layout of electronic components in the electronic meter in the mode where the device comprises a stepper motor (10) which is connected to a Driver (10.1) that it has a motor control of the microcontroller (3.4) and then with an adapted signal H motor that communicates with the processing unit of the main card.
  • the circular light configuration (6) with LEDS (6.1) is controlled and monitored through an LEDS driver (6.3) with its own control parameter or other suitable control and is adapted to also be connected to the light processing unit.
  • the main card (3) The temperature sensor (12) also connects to the main board processing unit (3) which goes directly to an internal ADC analog-digital converter.
  • the photodiode (11.1) is directly connected to a high-resolution ADC analog-digital converter (11.2) through a photodiode card (11.3) at its base and goes to the processing card (microcontroller) (3.4).
  • the main card processing unit further comprises a wireless antenna which can be, but is not limited to, Bluetooth type (3.5) or other connections.
  • the Battery Voltage (4) is a voltage adapter that comes from the USB charger (5) and is regulated through a battery adapter (4.2) that is connected through a charge/discharge line with the power button (13).
  • the different components are connected to a voltage regulator (3.6) to provide power to the entire system.
  • the mobile electronic measuring device (A) has a battery (4) required to develop its functions in an adequate period of time and a power button (13).
  • the mobile electronic measuring device (A) can have the body (2) ovoid in shape as shown in Figure 10, where the part comprising the arrangement or internal optical scheme is placed against the palm of the hand (Mars valley of the hand).
  • Example 2
  • the mobile electronic measuring device (A) takes the ergonomic shape to encompass the auricle.

Abstract

La presente invención se encuentra dirigida a un sistema de monitorización no invasivo para medir parámetros biológicos en tiempo real que comprende un dispositivo medidor electrónico móvil (A), una aplicación móvil y una aplicación o plataforma web (C). También se encuentra dirigida al dispositivo medidor electrónico móvil (A) que se basa en la espectroscopia de reflectancia difusa a través de un esquema óptico que comprende una lente positiva (7), un filtro infrarrojo (8), uno o más detectores opto- electrónicos (11.1) y una estructura metálica (12) acoplada a un termopar (12.1); y a un método para la adquisición de la información de parámetros analizados a través del sistema de acuerdo con la presente invención.

Description

SISTEMA, DISPOSITIVO Y MÉTODO PARA DETERMINACIÓN NO INVASIVA DE BIOPARÁMETROS
CAMPO TÉCNICO
[001] La presente invención se relaciona con el campo de la medicina y en especial con sistemas y dispositivos electrónicos médicos no invasivos para la determinación de bioparámetros en tiempo real.
ESTADO DE LA TECNICA
[002] La industria de sistemas y dispositivos para la medición de parámetros biológicos como medición de la concentración de glucosa en sangre, pH de la sangre, la concentración de hemoglobina, triglicéridos y colesterol entre otros parámetros en seres vivos, especialmente en seres humanos, ha tenido un avance importante en la ciencia médica, desde la toma de muestra sanguínea y otros sistemas de medición invasivos hasta dispositivos que puedan medir estos parámetros de manera no invasiva en seres vivos a fin de evaluar estas condiciones de manera eficiente sin tener que invadir el organismo del ser vivo.
[003] En este sentido, se conoce en el estado del arte patentes que muestran dispositivos capaces de medir uno o más de estos parámetros en seres vivos. Es el caso de la patente US7961305, la cual divulga un aparato o dispositivo que incluye una fuente de luz para generar una pluralidad de haces de luz, teniendo cada uno de la pluralidad de haces de luz un rango de longitud de onda diferente. El aparato también incluye un embudo de luz de reflexión interna para dirigir la pluralidad de haces de luz al área objetivo, la fuente de luz incrustada dentro del embudo de luz y una abertura para dirigir la pluralidad de haces de luz que emite desde el área objetivo a una lente, en donde la lente está configurada para recoger los rayos de luz que se emiten desde el área objetivo. El aparato incluye un detector que comprende una pluralidad de dispositivos de detección de luz, cada uno configurado para detectar un haz de luz y configurado para generar una señal de salida indicativa de una intensidad de luz detectada y un procesador para analizar la señal de salida y generar datos de medición.
[004] Por su parte, el documento WO2019/114270 reporta un dispositivo de detección de glucosa en sangre que comprende una primera unidad de emisión de luz, una segunda unidad de emisión de luz, una primera unidad de recepción de luz y una segunda unidad de recepción de luz, en donde una unidad de emisión de luz está configurada para emitir luz que es insensible al contenido de glucosa en sangre, mientras que la otra unidad emisora de luz está configurada para emitir luz que es sensible al contenido de glucosa en sangre. La luz que es sensible a la glucosa en sangre observaría una disminución correspondiente en la transmitancia con el aumento de la concentración de glucosa en sangre. La primera unidad emisora de luz y la segunda unidad emisora de luz pueden comprender cada una un diodo emisor de luz infrarroja (LED IR).
[005] El documento W02020/122603 reporta un dispositivo electrónico que puede incluir: un sustrato, un dispositivo sensor óptico que incluye al menos un elemento emisor de luz y un elemento receptor de luz, el dispositivo sensor óptico montado en el sustrato y una lente moldeada por inyección acoplada al sustrato y cubriendo el dispositivo sensor óptico, donde la lente moldeada por inyección está separada del dispositivo sensor óptico por una distancia establecida, donde los patrones están formados integralmente en al menos una porción de la lente moldeada por inyección, los patrones que afectan la transmisión de luz de al menos una banda de longitud de onda para mejorar la eficiencia óptica de la luz transmitida. [006] La patente WO2021/110877 describe técnicas para adquirir y procesar datos en combinación con un sistema de sensor fotónico en un chip (SoC) (1) para proporcionar niveles de concentración calibrados en tiempo real de un analito (por ejemplo, una molécula constituyente dentro de una sustancia biológica). El chip sensor recoge una señal en bruto a analizar mediante reflectancia difusa o transmitancia. La determinación de la concentración de analito se basa, en parte, en los principios de Beer-Lambert y se facilita aplicando la corrección de dispersión a la señal en bruto antes de la descomposición y análisis de la misma. La sustancia biológica puede ser sangre, líquido intersticial, tejido o una combinación de sustancias. El conjunto de sistema de sensor fotónico en un chip (SoC) incluye un conjunto de semiconductores híbridos lll-V y grupo IV, con los elementos semiconductores lll-V que proporcionan funciones de detección y ganancia óptica, y retroalimentación óptica, enrutamiento de luz, filtrado. El bloqueo y otras funciones pasivas se proporcionan dentro del circuito integrado fotónico semiconductor del grupo IV y su objetivo es analizar tejidos y el analito puede incluir glucosa en sangre, lactato en sangre, etanol, creatinina, queratina, colágeno, urea, globulina de albúmina sérica, troponina, acetona, acetato, hidroxibutirato, colesterol, albúmina, globulina, cetonas-acetona o agua entre otros.
[007] De otra parte, el documento US5823966 enseña un dispositivo que mide continuamente la radiación infrarroja emitida naturalmente por el cuerpo humano. Esta radiación infrarroja contiene información espectral del tejido corporal emisor. La señal del detector es proporcional a la intensidad del espectro emitido por el cuerpo que pasa a través de un filtro con la característica espectral del analito medido, por ejemplo, glucosa en sangre. La intensidad del espectro infrarrojo emitido por el cuerpo pasa a través de un filtro con características espectrales que no incluyen bandas espectrales del analito y establece un punto de referencia para mediciones más precisas. [008] Finalmente, el documento US2020/0060555 divulga un dispositivo de monitorización el cual incluye un sensor óptico, un sensor de temperatura, un primer sensor de contacto eléctrico y un segundo sensor de contacto eléctrico dentro de un recinto del dispositivo de monitorización. El sensor óptico incluye una fuente de luz y un fotodetector colocados junto a una primera superficie del recinto. La fuente de luz puede funcionar para emitir luz hacia el sitio de medición y el fotodetector puede funcionar para recibir luz reflejada desde el sitio de medición cuando la primera superficie está en contacto con un sitio de medición de una primera parte del cuerpo de un usuario.
[009] En este sentido, es claro que existe la necesidad aún no satisfecha de proporcionar un sistema y un dispositivo de medición de bioparámetros en seres vivos, en donde el dispositivo sea un dispositivo electrónico portátil que comprenda una configuración óptica interna que logre medir rayos de reflexión difusa a partir de leds a fin de obtener en tiempo real mediciones precisas de parámetros biológicos tales como, por ejemplo, concentración de glucosa en sangre, entre otros y cuyos resultados puedan ser registrados a través de una aplicación móvil, en la web y/o en dispositivos móviles, en donde el sistema y el dispositivo pueda medir un espectro más amplio ya que cuenta con una configuración de esquema óptico que incluye una distribución de los componentes principales tales como el filtro infrarrojo, los leds, la lente positiva, una rejilla de difracción y un motor, pudiéndose tener un barrido más amplio del espectro basado en un análisis de longitud de onda que permite determinar los parámetros manera más eficaz con mucha mayor sensibilidad de manera más completa y simultáneamente prácticamente en tiempo real.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
[010] La presente invención se encuentra dirigida a un sistema de monitoreo no invasivo para medir parámetros biológicos en tiempo real que comprende un dispositivo medidor electrónico móvil (A), una aplicación móvil y una aplicación o plataforma web (C). También se encuentra dirigida al dispositivo medidor electrónico móvil (A) que se basa en la espectroscopia de reflectancia difusa y a un método para la adquisición de la información de parámetros analizados a través del sistema de acuerdo con la presente invención.
[011] Con la configuración de la presente invención se logra medir rayos de reflexión difusa a partir de leds a fin de obtener en tiempo real mediciones precisas de parámetros biológicos tales como, por ejemplo, concentración de glucosa en sangre, entre otros y cuyos resultados puedan ser registrados a través de una aplicación móvil, en la web y/o en dispositivos móviles.
DESCRIPCIÓN DE LAS FIGURAS
[012] La figura 1 muestra la distribución circular de los leds del dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención.
[013] La figura 2 muestra que en los picos de la gráfica que tiene forma gausiana está la intensidad máxima por cada led que tiene su longitud de onda donde se suman para poder obtener una luz compuesta por un espectro más amplio de longitudes de onda que se interfieren de manera positiva alcanzando un efecto de superposición a nivel de intensidad de todos los espectros generados por losled que ilumina la zona de la piel y genera una luz reflejada de manera difusa.
[014] La figura 3 muestra los componentes del esquema óptico interno y la forma en que los rayos iluminan o irradian directamente a la piel a través del filtro óptico infrarrojo (8) en una modalidad de la invención donde el dispositivo medidor electrónico móvil (A) tiene un motor paso a paso que mueve una estructura (11) que soporta el fotodiodo (11.1). [015] La figura 3A muestra como la luz difusa reflejada ingresa por la pupila de entrada hacia el filtro óptico infrarrojo (8) y hacia la lente positiva (7) y luego a través de la rejilla de difracción (9) en la modalidad de la figura 3 donde el dispositivo medidor electrónico móvil (A) tiene un motor paso a paso que mueve una estructura (11) que soporta el fotodiodo (11.1) de la figura 3.
[016] La figura 4 muestra un esquema completo del dispositivo medidor electrónico móvil (A) de acuerdo con otra modalidad de la invención en donde los LEDs se enfocan sobre la piel a través de una lente positiva (7) que da contra la piel, en donde el sistema comprende un motor paso a paso (10) que mueve la estructura (11) que soporta el fotodiodo (11.1).
[017] La figura 4A muestra como la luz difusa reflejada ingresa a través de la pupila de entrada hacia un fotodiodo (11.1) en la modalidad de la figura 4 en donde el sistema comprende un motor paso a paso que mueve la estructura (11).
[018] La figura 5 muestra el esquema completo del dispositivo medidor electrónico móvil (A) de acuerdo con otra modalidad de la invención, en donde el sistema no comprende el motor de paso a paso (10) y la estructura (11) es una estructura fija y en donde los LEDs se enfocan usando una lente positiva (7) y luego la luz difusa reflejada ingresa a través de dicha lente positiva (7) y la pupila en donde la estructura (11) comprende una pluralidad de fotodiodos (11.1).
[019] La figura 5A muestra como la luz difusa reflejada ingresa a través de la lente positiva (7) y la pupila hacia un fotodiodo (11.1) en la modalidad de la figura 5 en donde el sistema comprende la estructura (11) fija.
[020] La figura 6 muestra una modalidad adicional del dispositivo medidor electrónico (A) en donde los LEDs se enfocan usando una lente positiva (7), luego la luz difusa reflejada ingresa a través de dicha lente positiva (7) y la pupila en donde la diferencia con la modalidad de la figura 5 y 5A además del uso de la estructura (11) fija que posee múltiples fotodiodos (11.1), también se agregan uno o más espejos cóncavos esféricos (14) que permiten la linealidad de la relación que existe entre la posición y la longitud de onda evaluada.
[021] La figura 7 muestra una modalidad de la invención en donde el dispositivo medidor electrónico móvil (A) tiene una forma cilindrica y se adapta para el análisis de bioparámetros en la zona de la yema de los dedos de la mano de un usuario u otra parte del cuerpo del usuario, en donde el dispositivo medidor electrónico móvil (A) puede ser tomado con una mano y ser presionado ligeramente sobre la yema del dedo o sobre cualquier otra parte del cuerpo del usuario como si fuera una linterna y no tiene clip o gancho (1).
[022] La figura 8 muestra los componentes del esquema óptico interno y la forma en que los rayos iluminan la piel antes de generar reflexión difusa en la modalidad de la invención de la figura 7 donde el dispositivo medidor electrónico móvil (A) tiene un motor paso a paso que mueve la estructura (11).
[023] La figura 9 muestra otra modalidad de la presente invención, en donde el dispositivo medidor electrónico móvil (A) se adapta para el análisis de bioparámetros en la zona del lóbulo de la oreja de un usuario.
[024] La figura 10 muestra una modalidad de la invención en donde el dispositivo medidor electrónico móvil (A) tiene una forma ovoide y se adapta para el análisis de bioparámetros en la zona del valle de marte de la mano de un usuario. [025] La figura 11 ¡lustra de manera esquemática el método para la adquisición de la información de los parámetros analizados a través del sistema y dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención.
[026] La figura 12 muestra un flujograma general del funcionamiento del dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención.
[027] La figura 13 muestra un esquema de distribución de componentes electrónicos en el dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención.
[028] La figura 14 muestra de manera esquemática el sistema para determinación no invasiva de bioparámetros de acuerdo con la presente invención, en donde se muestra la interrelación entre el dispositivo (A) de forma inalámbrica con la aplicación móvil (B) y con la aplicación o plataforma web (C) a través de internet prácticamente y la interacción con el algoritmo también por medio de Internet en tiempo real que luego se visualiza en la aplicación móvil (B).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
[029] En un primer aspecto, la presente invención hace referencia a un sistema de monitoreo no invasivo en tiempo real, en donde el sistema puede monitorear de manera continua las concentraciones de bioparámetros por ejemplo de glucosa (glucemia) y otros bioparámetros, el cual se compone de un dispositivo medidor electrónico móvil (A), una aplicación móvil (B), una aplicación o plataforma web (C) y un método de monitoreo no invasivo de parámetros biológicos, por ejemplo, pero sin limitarse a glucemia, en el que intervienen un dispositivo medidor electrónico (A), y un dispositivo móvil (B), el cual puede ser, pero no se limita a un celular, una tablet, una laptop. La aplicación web (C) además de ser la encargada de ejecutar un algoritmo computational, también ofrece al usuario un interfaz de gestión de sus mediciones y permite la elaboración de informes de seguimiento de la concentración del parámetro o los parámetros, por ejemplo, de glucosa del usuario.
[030] En un segundo aspecto, la presente invención hace referencia a un dispositivo medidor electrónico móvil (A), el cual comprende opcionalmente un soporte en forma de clip o gancho (1) y un cuerpo (2) con una tapa de carcasa (2.1) que comprende un botón de encendido (13), en donde el cuerpo (2) comprende a su vez en su interior una tarjeta principal (3) la cual comprende módulos periféricos (3.1), una tarjeta de procesamiento (3.2) y una unidad de comunicación (3.3), en donde dicha unidad de procesamiento (3) maneja las distintas funciones. El envío de la información obtenida por el dispositivo medidor electrónico móvil (A) se realiza mediante la unidad de comunicación (3.3), el destino de dicha información puede ser, por ejemplo, un teléfono celular inteligente con una aplicación móvil (B).
[031] Adicionalmente, el dispositivo medidor electrónico móvil (A) en el cuerpo (2) contiene una batería recargable (4), un puerto micro-USB (5) e indicadores de recarga de luces LED (4.1) que indican cuándo el dispositivo medidor electrónico móvil (A) está cargado. El dispositivo medidor electrónico móvil (A) comprende además en dicho cuerpo (2) un esquema óptico interno para optimizar el proceso de medición que comprende uno o más detectores opto- electrónicos (fotodiodos) que se basa en la espectroscopia de reflectancia difusa.
[032] En relación con el cuerpo (2) del dispositivo medidor electrónico móvil (A), dicho cuerpo (2) puede tener cualquier forma, por ejemplo, pero sin limitarse a forma ovoide, redonda, semi circular (forma de “C”), cuadrada, triangular, cilindrica y hexagonal, entre otras, en donde el cuerpo (2) en una modalidad de la invención, dicho cuerpo (2) está unido a un clip o gancho (1) y en otra modalidad de la invención dicho cuerpo (2) no comprende dicho clip o gancho (1). La presente invención, puede comprender cualquier forma adecuada y/o ergonómica para el cuerpo (2) del dispositivo medidor electrónico móvil (A), en tanto que su interior permita alojar los componentes mecatrónicos y el esquema óptico de acuerdo con la invención.
[033] En este sentido, el dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención se caracteriza además porque comprende luces LED (6.1) que están en una configuración de luces (6) de disposición circular que corresponde a una PCB o Socket de LEDs (6.1) como se muestra en la figura (1 y 13) en donde los LEDS (6.1) se encuentran ubicados perpendicularmente a dicha configuración de luces circular (6) y todos los LEDs (6.1). En otra modalidad de la invención, como se muestra en la figura (3, 3A, 7 y 8) los LEDs (6.1) pueden estar inclinados hacia la parte central de la configuración de luces circular (6) ya que los soportes porta-LEDS (6.2) están en un ángulo de 45° respecto a la superficie de dicha configuración de luces circular (6) o socket. Los LEDS (6.1) se encienden al mismo tiempo con lo cual se simula una fuente de mayor ancho de banda espectral como se muestra en la figura 2 a nivel espectral.
[034] En una modalidad de la invención como se muestra en las figuras 3, 3A, 7 y 8, los LEDs (6.1) irradian directamente a la piel a través de un filtro óptico (8) que es adecuado para estar directamente expuesto a la piel, en donde el filtro infrarrojo (8) se ubica contra la piel y está primero o antes de la configuración de luces circular (6), de la lente positiva (7) y la rejilla de difracción (9). En esta modalidad, luego la luz difusa reflejada ingresa por dicha lente positiva (7) y pasa a través de una rejilla de difracción (9) hacia el o los detectores opto- electrónicos (fotodiodos) de luz (11.1). En una modalidad adicional de la invención, la lente positiva (7) puede ser reemplazada por una lente compuesta ya sea de dos o más lentes cuya resultante sea positiva, pero que no necesariamente sea positiva cada una de ellas de manera independiente y puede permitir la reducción del dispositivo al simplificar aún más la disposición del esquema óptico y obtener un sistema más compacto con distancias focales más cortas.
[035] En otra modalidad de la invención, como se muestra en las figuras 4, 4A, 5 y 5A, el dispositivo medidor electrónico (A) comprende una lente positiva (7) expuesta directamente sobre la piel y cuya función es que los rayos de luz de las luces LED (6.1) se enfoquen en la piel generando una reflexión difusa. Dicha reflexión difusa genera rayos de luz que pasan a través de la misma lente positiva (7) y luego a través de un filtro infrarrojo (8) sostenido en un soporte separador (8.1) y a través de una rejilla de difracción (9) permitiendo la separación de los rayos de luz por longitudes de onda, como se muestra en las figuras 4 y 4A que son detectadas por un detector opto-electrónico (fotodiodo) de luz (11 .1) que está soportado sobre una estructura móvil (11) que comprende un motor paso a paso (10) para su movimiento o por una estructura (11) fija que comprende una pluralidad de detectores opto-electrónicos (fotodiodos) de luz (11.1) como se ¡lustra en las figuras 5 y 5A.
[036] En este sentido, como se ¡lustra en las figuras 5 y 5A, en otra modalidad, el dispositivo medidor electrónico (A) tiene una estructura (11) fija sin motor paso a paso (10) que soporta una pluralidad de detectores opto-electrónicos (fotodiodos) de luz (11.1).
[037] Como se puede apreciar en las figuras 3, 3A, 7 y 8, la disposición de la lente positiva (7) y el filtro infrarrojo (8) se pueden invertir a fin de que el filtro infrarrojo (8) quede directamente expuesto para colocarse sobre la piel, es decir, está primero que la lente positiva (7) y luego, a través de una rejilla de difracción (9) permite la separación de los rayos de luz por longitudes de onda para su detección mediante el o los detectores opto-electrónicos (fotodiodos de luz (11.1).
[038] El dispositivo medidor electrónico móvil (A) es un aparato portátil que realiza mediciones no invasivas de distintos parámetros biológicos. En otra modalidad de la invención, dicho dispositivo medidor electrónico móvil (A) puede tener la forma de “C” con un gancho (1) de soporte para el pabellón de la oreja y un cuerpo (2) dispuesto a manera de cavidad para albergar el lóbulo de la oreja, de tal forma que esté quede ubicado entre dos superficies. En el caso de esta modalidad, el clip o gancho (1) está en contacto con el lóbulo de la oreja y, al mismo tiempo, con la lente positiva (7) o del filtro infrarrojo (8) del esquema óptico del dispositivo medidor electrónico móvil (A). Si bien, dicho dispositivo medidor electrónico móvil (A) está pensado para su aplicación en mediciones en el lóbulo de la oreja del paciente, también puede ser aplicado para otras partes del cuerpo que implique un contacto directo con la piel, por ejemplo, los dedos, la palma de la mano, la muñeca. La persona versada en la materia entenderá que se podrá escoger la forma más adecuada para el cuerpo (2) y la presencia y posición del clip o gancho (1) para el dispositivo medidor electrónico móvil (A) de acuerdo con la ergonomía física y la forma de la zona del cuerpo del usuario que se desea usar para la medición de bioparámetros.
[039] De acuerdo con lo anterior, el dispositivo medidor electrónico móvil (A) de acuerdo con una modalidad de la presente invención puede comprender o no un soporte o clip o gancho (1) y un cuerpo (2) el cual comprende a su vez una tarjeta principal (3), una batería (4) y un esquema óptico interno que a su vez comprende una lente positiva (7), una configuración de luces (6) con LEDs (6.1) en forma circular, un filtro infrarrojo (8), una rejilla de difracción (9), opcionalmente un motor de paso a paso reductor (10), una estructura (11) que comprende uno o más detectores opto-electrónicos (fotodiodos) de luz (11.1) y una estructura metálica (12) acoplada a una termocupla (12.1) que se mantiene en contacto con la piel.
[040] En relación con la estructura (11) anteriormente definida, en una modalidad de la presente invención, puede ser una estructura (11) deslizante, es decir, movible (movimiento lineal) que comprende uno o más detectores opto- electrónicos (fotodiodos) de luz (11.1) (figuras 3, 3A, 4, 4A, 7 y 8), la cual puede ser deslizada mediante el motor de paso a paso con reductor (10) a fin de poder barrer o escanear la “mancha” de luz resultante de la reflectancia difusa a través de la lente positiva (7) o el filtro infrarrojo (8).
[041] En otra modalidad preferida de la presente invención, la estructura (11) puede ser una estructura fija (11) como se muestra en las figuras 5 y 5A, , por ejemplo, una estructura lineal que comprende una pluralidad de detectores opto- electrónicos (fotodiodos) de luz (11.1) ubicados de manera equidistante entre ellos, que emplee una pluralidad de detectores opto-electrónicos (11.1) inclusive mayor a 6 de estos, en donde el número de detectores opto-electrónicos (11.1) que se emplee dependerá de la sensibilidad que se desee en las mediciones de bioparámetros.
[042] En otra modalidad de la presente invención, el dispositivo medidor electrónico (A) comprende además en su esquema óptico interno uno o más espejos semiesféricos cóncavos (14) como se muestra en la figura 6 que puede ampliar las prestaciones de la invención al obtener el espectro deseado. Esta modalidad que incluye espejos (14) puede también estar presente en las modalidades en donde el dispositivo comprende el motor paso a paso (10) y la modalidad en donde el filtro infrarrojo (8) se encuentra directamente de cara a la piel. [043] Aún en otra modalidad de la presente invención, el dispositivo medidor electrónico móvil (A) puede tener una forma cilindrica tipo “linterna” en el cuerpo (2), sin clip o gancho (1) y en donde como se muestra en las figuras 7 y 8, los LEDs (6.1) están inclinados hacia la parte central de dicha configuración de luces circular (6) ya que los soportes porta LEDS (6.2) se encuentran en un ángulo de 45° respecto a la superficie de dicha configuración de luces circular (6) y la configuración, como se mencionó anteriormente, se invierte para que el filtro infrarrojo (8) esté directamente expuesto a la piel y la configuración de luces (6) inclinados en el ángulo anteriormente descrito se encuentran entre dicho filtro infrarrojo (8) y la lente positiva (7) y la estructura (11) que puede ser deslizante o fija se encuentra unida, por ejemplo, por soldadura u otro medio sobre la superficie de la tarjeta principal (3) y puede opcionalmente tener los espejos semicirculares cóncavos (14).
[044] Adicionalmente, en la modalidad de las figuras 7 y 8, la configuración tiene además del soporte separador (8.1), que puede ser en plástico u otro material y separa la zona de la lente positiva (7) de la rejilla de difracción (9); un soporte separador (8.2) que mantiene las distancias entre los componentes del esquema óptico interno. Básicamente los separadores sirven para definir la posición exacta de los componentes en el esquema óptico, siendo los mismos componentes anexos que permiten el correcto posicionamiento de los componentes principales del esquema óptico. Por lo que pueden ser dos o más dependiendo de los requerimientos del proceso de fabricación.
[045] En este sentido, el funcionamiento interno del dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención, se basa en un esquema óptico de reflectancia difusa y absorción de luz de infrarrojo cercano. El dispositivo medidor electrónico móvil (A) de la presente invención tiene como objetivo de barrer el espectro de luz infrarroja en el rango de longitud de onda de 700 a 1650 nm, con la finalidad de realizar un análisis cuantitativo de los parámetros biológicos que son posibles de medir en dicho rango espectral. En este sentido, el esquema óptico interno tiene un rango de longitud de onda de 700 a 1650 nm.
[046] Por tanto, el dispositivo medidor electrónico móvil (A) de la presente invención tiene la capacidad de medir bioparámetros en cualquier parte del cuerpo del individuo cuya estructura química interactúe con la luz infrarroja comprendida en el intervalo de longitudes de onda en el que el dispositivo medidor electrónico móvil (A) trabaja, por ejemplo, pero sin limitarse, el dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención puede medir biomoléculas tales como glucosa, triglicéridos, colesterol, albúmina, hemoglobina, desoxihemoglobina, creatinina y urea entre otros.
[047] Adicionalmente, por ejemplo, para las lecturas que se analizan para la obtención del pulso cardíaco, se emite luz en el rango de los 740 a 960 nm, junto con un registro temporal de la señal obtenida y aplicando un filtro de pasa bajos de 5Hz para evaluar el componente con frecuencia de mayor ganancia.
[048] Adicionalmente, por ejemplo, para las lecturas orientadas a la determinación de oxígeno en la sangre, es evaluada la proporción de intensidades luminosas de la oxihemoglobina y la desoxihemoglobina en circulación obtenidas por el medidor electrónico móvil (A). Finalmente, para la determinación de la glucemia se requiere un análisis cuantitativo de la densidad óptica (absorbancia) en el rango de 700 a 1650 nm. Los datos recolectados por el dispositivo medidor electrónico (A) son enviados desde la aplicación móvil (B) a un servidor o plataforma web (C). En el servidor web (C) se realiza un conjunto de procedimientos hasta obtener un resultado final.
[049] En un tercer aspecto, la presente invención hace referencia a un método para la adquisición de la información de los parámetros analizados a través del sistema y dispositivo medidor electrónico móvil (A) de acuerdo con la presente invención, en donde el método comprende los siguientes pasos: a) Activar el proceso mediante una recepción del comando de inicio en el dispositivo medidor electrónico móvil (A) que se basa en la espectroscopia de reflectancia difusa a través de un esquema óptico que comprende una lente positiva (7), un filtro infrarrojo (8), uno o más detectores opto- electrónicos (11.1) y una estructura metálica (12) acoplada a una termocupla (12.1) en donde los componentes electrónicos se manejan a través de una unidad de procesamiento de una tarjeta principal y un sistema de carga y descarga de batería (4) a través de un regulador de tensión (3.6); b) Iluminar la sección de la piel a analizar mediante el encendido de todas las luces LED (6.1) del dispositivo medidor electrónico móvil (A); c) Generar la distribución espacial-espectral de los haces de luz del paso b); d) Barrer las intensidades luminosas que componen la distribución espacial- espectral de los haces de luz del paso c) determinado por una estructura (11) mediante uno o más detectores opto-electrónicos (fotodiodos) (11.1); e) Procesar de manera digital la señal hasta convertirla en una recopilación de datos, mientras los datos obtenidos en el barrido sean incorrectos, en otras palabras, mientras la programación de la unidad de procesamiento no los designe como valores válidos, entonces el método se vuelve a aplicar desde el paso d) hasta obtener valores correctos. Esta iteración se realiza las veces necesarias, luego de un número determinado de veces, en caso que el resultado siga siendo incorrecto, se muestra un mensaje de error a través de la aplicación; f) Enviar los datos del paso e) a una plataforma web (C); g) Tratar los datos mediante un algoritmo en dicha plataforma web (C); y h) Devolver el resultado obtenido a una aplicación móvil (B) de un dispositivo celular inteligente. [050] Mediante el dispositivo medidor, se obtienen las señales correspondientes al espectro de luz infrarroja analizada, luego mediante el tratamiento de las señales en la programación del algoritmo, se obtiene la representación espectral en función de las longitudes de onda a analizar, para luego ser evaluadas comparativamente con respecto al nivel de concentración del parámetro de interés, por ejemplo, glucemia. En la etapa de corrección de temperatura, los valores del espectro se multiplican por un factor de corrección de temperatura. En la etapa de corrección de error inteligente, se realiza una corrección dependiendo de la clasificación del paciente con respecto a sus datos médicos. Finalmente se obtiene el valor final del parámetro, por ejemplo, glucemia.
[051] En este sentido, el método para la adquisición de la información de los parámetros analizados a través del sistema y dispositivo medidor electrónico móvil (A) comprende la activación del procedimiento de medición mediante la recepción del comando de inicio en el dispositivo medidor electrónico móvil (A), luego se procede a ¡luminar la sección de la piel a analizar encendiendo todos los leds (6.1). Como consecuencia, se genera un haz de luz infrarroja compuesta, que luego al ser descompuesta por la rejilla de difracción (9) se genera la distribución espacial-espectral de los haces de luz. De acuerdo a la figura 3 y 3A, en la modalidad de la invención comprende un motor paso a paso (10) que barre el camino determinado por la estructura (11) mediante el detector opto- electrónico (fotodiodos) (11.1) con el fin de analizar la señal luminosa que proviene de la piel.
[052] En la modalidad de la invención en donde la estructura (11) es una estructura fija (fig. 5 y 5A), el análisis de la señal luminosa que proviene de la piel se hace mediante la pluralidad de los detectores opto-electrónicos (fotodiodos) (11.1) en donde cada uno de ellos barre una zona del camino determinado por dicha estructura. La señal es procesada de manera digital para convertirse en recopilación de datos que son enviados a la plataforma web (B) para ser tratados dichos datos mediante un algoritmo y finalmente devolver el resultado obtenido al dispositivo, por ejemplo, un teléfono celular inteligente.
[053] En el paso b) del método de acuerdo con la presente invención, el proceso de iluminación de la piel debido a los rayos de luz de los leds (6.1) que pasan por la lente positiva (7), se realiza mediante un control de conmutación de la señal de alimentación de los leds (6.1) que permite una modulación por ancho de pulso, en donde el porcentaje de carga de trabajo de la modulación es 60% y la frecuencia es 120Hz. Los leds (6.1) poseen la característica de que tienen un patrón de radiación altamente direccional y debido a ello, los rayos de luz actúan de acuerdo a lo mostrado en la figura (3 y 3A). En este sentido, se tiene contemplada la configuración individual de los leds (6.1) en cuanto al nivel de potencia luminosa mediante la corriente de activación. Los rayos que son enfocados por el filtro infrarrojo (8) finalmente llegan a la piel, generándose reflexión difusa.
[054] De acuerdo a lo mostrado en la figura (4, 4A, 5 y 5A,), los rayos de la reflexión difusa son acotados por la pupila de campo de la lente positiva (7), a continuación, el filtro óptico infrarrojo (8) evita el paso de rayos de luz no deseados y luego los rayos finalmente llegan a la rejilla de difracción (9). De la distribución espacial-espectral obtenida de los máximos de primer orden de difracción, se analiza la señal mediante el detector opto-electrónico (fotodiodos) (11.1) que recorre la dirección lineal sobre la estructura (11) mediante la ayuda del motor paso a paso (10) o que cubren dicha distancia mediante la pluralidad de detectores opto-electrónicos (11.1) cuando la estructura (11) es fija.
[055] En este sentido, la distribución espacial-espectral se recorre mediante el o los detectores opto-electrónicos (fotodiodos) (11.1) de manera programada mediante un motor paso a paso (10) o se cubre dicha distribución espacial- espectral mediante la pluralidad de detectores opto-electrónicos (fotodiodos) (11.1) sobre la estructura (11) en la modalidad en la cual está fija la estructura (11) y las señales obtenidas se emplean para generar el espectro de la reflexión difusa.
[056] En paralelo se dispone de un sensor de temperatura (12) basado en una termocupla (12.1) que determina la temperatura de la piel.
[057] Los componentes del dispositivo medidor electrónico móvil (A) son controlados por la unidad de procesamiento de la tarjeta principal (3), los procesos de accionamiento de los LEDs (6.1) y el motor paso a paso (10). Asimismo, la adquisición de señales por parte de los detectores opto-electrónicos
(11.1), son realizados por los módulos periféricos (3.1) de la tarjeta principal (3).
[058] En la figura 13 se muestra de manera general un esquema de distribución de componentes electrónicos en el medidor electrónico en la modalidad en donde el dispositivo comprende un motor paso a paso (10) el cual está conectado a un Driver (10.1) que tiene un control de motor propio del microcontrolador (3.4) y luego con una señal adaptada H motor que comunica con la unidad de procesamiento de la tarjeta principal. La configuración de luces circular (6) con LEDS (6.1) se controla y monitorea a través de un driver de LEDS (6.3) con un parámetro de control propio u otro control adecuado y se adapta para ser también conectado a la unidad de procesamiento de la tarjeta principal (3). El sensor de temperatura (12) también confluye a la unidad de procesamiento de la tarjeta principal (3) que va directamente a un conversor analógico-digital ADC interno
(12.2). El fotodiodo (11.1) está conectado directamente a un conversor analógico-digital ADC de alta resolución (11.2) a través de una tarjeta de fotodiodo (11.3) en la base del mismo y va hacia la tarjeta de procesamiento (microcontrolador) (3.4). La unidad de procesamiento de la tarjeta principal comprende además una antena inalámbrica la cual puede ser, pero no se limita a tipo Bluetooth (3.5) u otras conexiones. El Voltaje de la batería (4) es un voltaje adaptado que viene del cargador USB (5) y se regula a través de un adaptador de batería (4.2) que está conectado a través de una línea de carga/descarga con el botón de encendido (13). Los diferentes componentes están conectados a un regulador de tensión (3.6) para proporcionar energía a todo el sistema.
[059] Finalmente, cuando se completa el procesamiento de las señales, se procede a dar formato y enviar la información mediante la unidad de comunicación (3.3) de la tarjeta principal (3) ubicada en el dispositivo medidor electrónico móvil (A).
[060] El dispositivo medidor electrónico móvil (A) cuenta con una batería (4) requerida para desarrollar sus funciones en un lapso adecuado y un botón de encendido (13).
[061] Para el proceso de medición se requiere obtener la comparación de espectros evaluados en la misma piel y las respectivas mediciones obtenidas de un método estandarizado de medición de parámetro biológico. La comparación se puede realizar mediante una base de datos y un modelo generalizado del comportamiento del parámetro biológico, basado en herramientas de inteligencia artificial.
EJEMPLOS DE LA MEJOR MANERA DE LLEVAR A CABO LA INVENCIÓN
Ejemplo 1
[062] En una modalidad de la presente invención, el dispositivo medidor electrónico móvil (A) puede tener el cuerpo (2) de forma ovoide como se muestra en la figura 10, en donde la parte que comprende la disposición o esquema óptico interno se coloca contra la palma de la mano (valle de Marte de la mano). Ejemplo 2
[063] En otra modalidad preferida de la presente invención, como se muestra en la figura 9, el dispositivo medidor electrónico móvil (A) toma la forma ergonómica para abarcar el pabellón auricular.

Claims

REIVINDICACIONES
1 . Un sistema de monitoreo no invasivo para medir parámetros biológicos caracterizado porque el sistema comprende: a) Un dispositivo medidor electrónico móvil (A) que se basa en la espectroscopia de reflectancia difusa a través de un esquema óptico que comprende una lente positiva (7), un filtro infrarrojo (8), uno o más detectores opto-electrónicos (11.1) y una estructura metálica (12) acoplada a una termocupla (12.1) en donde los componentes electrónicos se manejan a través de una unidad de procesamiento de una tarjeta principal y un sistema de carga y descarga de batería (4) a través de un regulador de tensión (3.6); b) Una aplicación móvil (B); c) Una aplicación o plataforma web (C); en donde las señales obtenidas por el medidor electrónico (A) son procesadas de manera digital en la aplicación móvil (B) y se convierten en datos que son enviados a la aplicación web (C) en donde se ejecuta un algoritmo computacional.
2. El sistema de monitoreo no invasivo para medir parámetros biológicos de acuerdo con la reivindicación 1 , caracterizado porque la aplicación web (C) gestiona las mediciones y elabora informes de seguimiento de la concentración de cada parámetro medido por el dispositivo medidor electrónico móvil (A).
3. Un método para la adquisición de la información de parámetros analizados a través de un sistema y un dispositivo medidor electrónico móvil (A) caracterizado porque comprende los siguientes pasos: a) Activar el proceso mediante una recepción del comando de inicio en el dispositivo medidor electrónico móvil (A) que se basa en la espectroscopia de reflectancia difusa a través de un esquema óptico que comprende una lente positiva (7), un filtro infrarrojo (8), uno o más detectores opto- electrónicos (11.1) y una estructura metálica (12) acoplada a una termocupla (12.1) en donde los componentes electrónicos se manejan a través de una unidad de procesamiento de una tarjeta principal y un sistema de carga y descarga de batería (4) a través de un regulador de tensión (3.6); b) Iluminar la sección de la piel a analizar mediante el encendido de todas las luces LED (6.1) del dispositivo medidor electrónico móvil (A); c) Generar la distribución espacial-espectral de los haces de luz del paso b); d) Barrer las intensidades luminosas que componen la distribución espacial-espectral de los haces de luz del paso c) determinado por una estructura (11) mediante uno o más detectores opto-electrónicos (fotodiodos) (11.1); e) Procesar de manera digital la señal hasta convertirla en una recopilación de datos; f) Enviar los datos del paso e) a una plataforma web (C); g) Tratar los datos mediante un algoritmo en dicha plataforma web (C); y h) Devolver el resultado obtenido a una aplicación móvil (B) de un dispositivo celular inteligente.
4. El método para la adquisición de la información de parámetros analizados a través del sistema y el dispositivo medidor electrónico móvil (A) de acuerdo con la reivindicación 3, caracterizado porque en el paso b), la iluminación se realiza mediante un control de conmutación de la señal de alimentación de las luces LED (6.1) para una modulación por ancho de pulso, en donde el porcentaje de carga de trabajo de la modulación es 60% y la frecuencia es 120Hz.
5. El método para la adquisición de la información de parámetros analizados a través del sistema y el dispositivo medidor electrónico móvil (A) de acuerdo con la reivindicación 3, caracterizado porque la distribución espacial- espectral se barre o escanea con una pluralidad de detectores opto- electrónicos (fotodiodos) (11.1) ubicados de manera equidistante sobre la estructura (11) fija y las señales obtenidas generan un espectro de reflexión difusa.
6. El método para la adquisición de la información de parámetros analizados a través del sistema y el dispositivo medidor electrónico móvil (A) de acuerdo con la reivindicación 3, caracterizado porque la distribución espacial- espectral se barre de manera programada mediante uno o más detectores opto-electrónicos (fotodiodos) (11.1) ubicados sobre una estructura (11) deslizante mediante un motor paso a paso (10) y las señales obtenidas generan un espectro de reflexión difusa.
7. Un dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros, caracterizado porque el dispositivo comprende un cuerpo (2) el cual comprende a su vez una tarjeta principal (3) que tiene módulos periféricos (3.1), una tarjeta de procesamiento (3.2), una unidad de comunicación (3.3), una batería recargable (4) con indicadores de recarga de luces LED (4.1) y un puerto micro-USB (5) y porque comprende un esquema óptico interno de reflectancia difusa y absorción de infrarrojo cercano que comprende una lente positiva (7), una configuración de luces circular (6) con LEDs (6.1), un filtro infrarrojo (8) una rejilla de difracción (9) ubicada entre dicha configuración de luces circular (6) y una estructura (11) que tiene detectores opto-electrónicos (fotodiodos) (11.1) que se basan en la espectroscopia de reflectancia difusa y una estructura metálica (12) acoplada a una termocupla (12.1) que se mantiene en contacto con la piel en donde los componentes electrónicos se manejan a través de una unidad de procesamiento de una tarjeta principal y un sistema de carga y descarga de batería (4) a través de un regulador de tensión (3.6).
8. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con la reivindicación 7, caracterizado porque el filtro infrarrojo (8) es adecuado para estar directamente expuesto a la piel que se encuentra entre la piel y está primero o antes de la configuración de luces circular (6) y de la lente positiva (7).
9. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con la reivindicación 7, caracterizado porque la lente positiva (7) está contra la piel y el filtro infrarrojo (8) que se encuentra entre dicha lente positiva (7) y la configuración de luces circular (6).
10. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 9 caracterizado porque la estructura (11) es una estructura deslizante y se mueve mediante un motor de paso a paso (10),
11. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 9 caracterizado porque la estructura (11) es una estructura fija.
12. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 11 caracterizado porque comprende además uno o más espejos semiesféricos cóncavos (14).
13. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 12 caracterizado porque la lente positiva (7) se reemplaza por una lente compuesta de dos o más lentes.
14. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 13, caracterizado porque el dispositivo (A) comprende además un clip o gancho (1).
15. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 14, caracterizado porque el esquema óptico interno de reflectancia difusa y absorción de infrarrojo cercano tiene un rango de longitud de onda de 700 a 1650 nm.
16. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 15, caracterizado porque las luces LED (6.1) están en una configuración circular y la configuración de luces circular (6) está inclinada en un ángulo de 45° respecto a la superficie de dicha configuración de luces circular.
17. El dispositivo medidor electrónico móvil (A) portátil para mediciones no invasivas de bioparámetros de acuerdo con cualquiera de las reivindicaciones 7 a 16, caracterizado porque el cuerpo (2) del dispositivo medidor electrónico móvil (A) tiene cualquier forma ergonómica que aloja los componentes mecatrónicos y de esquema óptico del dispositivo medidor electrónico móvil (A).
PCT/PE2021/000012 2021-12-27 2021-12-27 Sistema, dispositivo y método para determinación no invasiva de bioparámetros WO2023128770A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PE2022000087A PE20231121A1 (es) 2021-12-27 2021-12-27 Sistema, dispositivo y metodo para determinacion no invasiva de bioparametros
PCT/PE2021/000012 WO2023128770A1 (es) 2021-12-27 2021-12-27 Sistema, dispositivo y método para determinación no invasiva de bioparámetros

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/PE2021/000012 WO2023128770A1 (es) 2021-12-27 2021-12-27 Sistema, dispositivo y método para determinación no invasiva de bioparámetros

Publications (1)

Publication Number Publication Date
WO2023128770A1 true WO2023128770A1 (es) 2023-07-06

Family

ID=86999827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PE2021/000012 WO2023128770A1 (es) 2021-12-27 2021-12-27 Sistema, dispositivo y método para determinación no invasiva de bioparámetros

Country Status (2)

Country Link
PE (1) PE20231121A1 (es)
WO (1) WO2023128770A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028437A1 (en) * 1996-02-02 1997-08-07 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy
WO2005099567A2 (en) * 2004-04-07 2005-10-27 Sensys Medical, Inc. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
WO2009086473A1 (en) * 2007-12-26 2009-07-09 Veralight, Inc. Improved method and apparatus for determination of a measure of a glycation end-product or disease state using tissue fluorescence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028437A1 (en) * 1996-02-02 1997-08-07 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy
WO2005099567A2 (en) * 2004-04-07 2005-10-27 Sensys Medical, Inc. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
WO2009086473A1 (en) * 2007-12-26 2009-07-09 Veralight, Inc. Improved method and apparatus for determination of a measure of a glycation end-product or disease state using tissue fluorescence

Also Published As

Publication number Publication date
PE20231121A1 (es) 2023-07-19

Similar Documents

Publication Publication Date Title
US9037206B2 (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
US7299080B2 (en) Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US20060281982A1 (en) Method and apparatus for the non-invasive sensing of glucose in a human subject
US9216000B2 (en) Light wavelength selection for avoidance of surgical dyes
CA2700996C (en) Optical device components
US7961305B2 (en) Optical device components
US20070203405A1 (en) Instrument For Noninvasively Measuring Blood Sugar Level
WO2003076883B1 (en) Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
CA2699626C (en) Optical device components
KR20180051196A (ko) 분광기, 생체정보 측정 장치 및 방법
US20120057164A1 (en) Biological information measuring apparatus
Bezuglyi et al. The non-invasive optical glucometer prototype with ellipsoidal reflectors
CN101263388A (zh) 非侵入性检测人类受检体中葡萄糖的方法和设备
US20090253990A1 (en) Optical diagnosis of hemophilic joint effusion
JP2009106376A (ja) 生体表層組織用センシング装置
JP2023550206A (ja) 被分析物の存在または濃度の非侵襲的インビボ(生体内)測定のためのラマンプローブおよび装置および方法
WO2023128770A1 (es) Sistema, dispositivo y método para determinación no invasiva de bioparámetros
US20100096551A1 (en) Spectroscopy measurements
US20180098733A1 (en) Non-invasive glucose monitoring system
KR102348195B1 (ko) 광학적 피분석물 모니터링 시스템 및 방법
US20240148286A1 (en) Optical module
US20220287600A1 (en) Active Miniaturized Sensing System and Method
Kang et al. Thin patch type tissue oximeter with deep light penetration depth by integrating micro lens array (MLA)
EP3777680A1 (en) Active miniaturized sensing system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21970110

Country of ref document: EP

Kind code of ref document: A1