WO2023128687A1 - Nickel alloy composition for copper-bonding layer for copper-bonded nitride substrate - Google Patents

Nickel alloy composition for copper-bonding layer for copper-bonded nitride substrate Download PDF

Info

Publication number
WO2023128687A1
WO2023128687A1 PCT/KR2022/021694 KR2022021694W WO2023128687A1 WO 2023128687 A1 WO2023128687 A1 WO 2023128687A1 KR 2022021694 W KR2022021694 W KR 2022021694W WO 2023128687 A1 WO2023128687 A1 WO 2023128687A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
layer
nitride substrate
substrate
bonded
Prior art date
Application number
PCT/KR2022/021694
Other languages
French (fr)
Korean (ko)
Inventor
배진원
김건호
Original Assignee
주식회사 큐프럼 머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220189272A external-priority patent/KR102606192B1/en
Application filed by 주식회사 큐프럼 머티리얼즈 filed Critical 주식회사 큐프럼 머티리얼즈
Priority to CN202280086499.5A priority Critical patent/CN118574800A/en
Publication of WO2023128687A1 publication Critical patent/WO2023128687A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals

Definitions

  • the present application relates to a nitride substrate such as AlN, Si 3 N 4 to which a copper layer is bonded, and more particularly, to a composition of a copper bonding layer formed to increase bonding strength and thermoelectric properties between a nitride substrate and a copper layer, and a laminated substrate , It relates to a manufacturing method of the substrate.
  • Circuit substrates used in power modules, etc. are made of alumina, zirconium toughened alumina, silicon nitride (Si 3 N 4 ), and aluminum nitride (AlN) for reasons such as thermal conductivity, cost, and safety. Ceramic substrates such as these are mainly used. These ceramic substrates are used as circuit boards by bonding metal circuit boards or heat sinks such as copper or aluminum. These are used as substrates for mounting electronic components with high heat dissipation due to their excellent insulating properties and heat dissipation properties with respect to resin substrates or metal substrates using a resin layer as an insulating material.
  • a ceramic circuit board in which a metal circuit board is bonded to the surface of a ceramic substrate with an active metal solder material and a semiconductor element is mounted at a predetermined position on the metal circuit board is used.
  • a ceramic substrate of an aluminum nitride sintered body or a silicon nitride sintered body having high thermal conductivity has been used in response to an increase in the amount of heat generated from the semiconductor device due to high integration, high frequency, and high output of the semiconductor device.
  • the aluminum nitride substrate has high thermal conductivity but low mechanical strength or toughness, it has a disadvantage in that cracks are easily generated when cracks occur due to tightening in an assembly process or when a thermal cycle is added.
  • power modules applied under severe load and thermal conditions such as automobiles, electric railways, machine tools, and robots, these disadvantages become remarkable.
  • silicon nitride substrates have lower thermal conductivity than AlN but have high durability, so high durability is required for electric vehicles and the like, and are suitable as ceramic circuit boards for mounting electronic components with high heat dissipation.
  • a ceramic circuit board using such a nitride ceramic substrate is produced by an active metal bonding (AMB) method.
  • AMB active metal bonding
  • Such an active metal method is a method of bonding a metal plate on a ceramic substrate through a solder material layer containing an active metal such as a group 4A element or a group 5A element.
  • a silver-copper-titanium solder material is applied to the silicon nitride substrate
  • the main surface is screen-printed, a metal circuit board and a metal heat sink are placed on the printed surface, and the ceramic substrate and the metal plate are bonded by heat treatment at an appropriate temperature.
  • a surface conductor layer In order to use the sintered nitride ceramics as a substrate for semiconductors, a surface conductor layer must be formed and wired.
  • Methods for forming this surface conductor layer include an active metal method in which a copper plate or the like is integrally joined as a conductor layer using an active metal to a sintered substrate, or a conductor on a ceramic substrate using a printing paste containing copper and glass frit.
  • There is a paste sintering method in which a pattern is formed and fired at a high temperature to form a substrate and a conductor layer.
  • the paste sintering method in which metal powder particles are fired at high temperatures, is being studied in order to expand its use, but it has disadvantages in bonding strength and electrical resistance (conductivity) and needs improvement.
  • a plate or paste with an AgCuTiSn composition was used with a thickness of 10um as AMB (active metal bonding).
  • AMB active metal bonding
  • Ag-containing The material cost of the AMB plate is high, and the process cost is cheap in the case of AMB paste, but the organic solvent evaporates at a high temperature and voids between the copper and the active layer frequently occur, which reduces durability and yield.
  • titanium used among active metals forms TiO2, which is titanium oxide, in AlN, which is effective for interfacial bonding, but it is difficult to form TiO 2 in Si 3 N 4 and has a disadvantage in that bonding properties are poor.
  • the diffusion bonding method which primarily forms IMC (intermetallic compound) at the interface between copper and ceramic substrate at high temperature and performs a heat treatment process, has excellent interfacial bonding properties.
  • IMC intermetallic compound
  • diffusion bonding is possible for a copper-bonded AlN substrate bonded by CuO generated at the Cu/AlN interface, but in the case of a Si 3 N 4 substrate in which CuO is not formed, it is difficult to manufacture a copper-bonded ceramic substrate having excellent bonding strength.
  • the inventors of the present invention formed a thin sputter layer with improved bonding strength and thermoelectric properties at the interface so that bonding strength between the Si 3 N 4 substrate and the copper layer on the substrate is improved, thereby forming a copper-bonded silicon nitride substrate having excellent thermal durability.
  • a nickel alloy composition for a copper bonding layer for a Si 3 N 4 substrate, a laminated substrate, and a method for manufacturing the substrate were developed.
  • Patent Document 0001 Korea Patent Registration No. 10-2339805
  • a composition of a copper bonding layer formed to increase the bonding strength and thermoelectric properties between the nitride substrate and the copper layer, a laminated substrate, and the substrate It is an object to provide a manufacturing method of.
  • a first aspect of the present application provides a copper bonding layer nickel alloy composition for a copper bonding nitride substrate.
  • a second aspect of the present application provides a method for manufacturing a copper bonded nitride substrate.
  • a third aspect of the present application provides a copper bonded nitride laminated board.
  • a copper bonding nitride substrate having improved bonding strength may be manufactured by forming an alloy metal layer between the nitride and the copper layer.
  • FIG. 1 is a diagram showing the structure of a test specimen of the present invention.
  • FIG. 2 is a flowchart illustrating a heat dissipation substrate manufacturing process applied to a power semiconductor and a driving semiconductor for a vehicle.
  • FIG. 3 is a diagram showing a high-temperature and low-temperature rising rate and temperature holding time for a thermal shock test prior to evaluating the bondability of a copper-bonded ceramic substrate manufactured according to the present invention.
  • FIG. 4 is a view showing photographs of a copper-bonded silicon nitride substrate on which micropatterns are formed using the nickel-chrome bonding layer of the present application before and after a thermal shock test.
  • FIG. 5 is a view showing photographs of test samples of cylinder and square pillar patterns manufactured by the manufacturing method of the present invention for interfacial bonding force test of copper bonded nitride substrates.
  • FIG. 6 is a view showing the results of confirming the bonding force with the Si 3 N 4 substrate, the thermal conductivity, and the etching characteristics in the copper etchant according to the composition of the NiCr binary copper underlayer (copper bonding layer).
  • FIG. 7 is a view showing the result of confirming the bonding force for each condition of FIG. 6 using a die shear device.
  • FIG. 8 is a diagram showing the results of measuring the thermal conductivity of each sample to determine the thermal conductivity of copper formed on a ceramic substrate.
  • the term “combination(s) of these” included in the expression of the Markush form means a mixture or combination of one or more selected from the group consisting of the components described in the expression of the Markush form, It means including one or more selected from the group consisting of the above components.
  • a first aspect of the present application provides a copper underlayer nickel alloy composition for a copper junction nitride substrate.
  • the copper underlayer nickel alloy composition for a copper-bonded nitride substrate of the present application may form a thin film deposited by sputtering capable of improving bonding strength and thermoelectric characteristics at an interface.
  • copper junction layer used throughout the present specification is a thin film deposited by a sputtering method, and refers to a film (copper lower film) positioned below the copper layer in the laminated substrate structure of the present application.
  • Nickel alloy which is the copper bonding layer, may be raised by various methods such as electrolysis, electroless plating, chemical vapor deposition, and evaporation in addition to sputtering.
  • sputtering used throughout the present specification means that particles with high energy collide with the surface of a target material (metal) to transfer energy to target atoms on the surface, and the target atoms are emitted. tell how to deposit
  • the sputtering (sputtering) deposited thin film (copper bonding layer) of the present application can be improved bonding strength between the upper copper and the lower substrate by containing Ni as a main component and a small amount of Cr.
  • the composition of the Ni-Cr alloy may be 95 wt % to 70 wt % of Ni and 5 wt % to 30 wt % of Cr.
  • the bonding strength is increased by 300% or more compared to when pure copper is used alone.
  • CuO 0.3 ⁇ m crystal sizes
  • CuO 0.3 ⁇ m crystal sizes
  • a second aspect of the present application provides a method for manufacturing a copper bonded nitride substrate. Content overlapping with the first aspect is also applied to the manufacturing method of the second aspect.
  • the present application includes forming a curve on the surface of a nitride substrate; Depositing a copper bonding layer (Tie-coat layer) on the nitride substrate by a sputtering method; depositing copper (Cu) on the copper junction layer to form a copper seed layer; forming a patterned mask on the copper seed layer; Performing electrolytic plating using a high speed copper plating bath; and removing a tie-coat layer and a copper seed layer through an etching process (see FIG. 2 ).
  • the nitride substrate may include AlN or Si 3 N 4 but is not limited thereto.
  • the contact area between the substrate and the adhesive layer increases, thereby improving the adhesion of the substrate.
  • the depositing of the copper bonding layer may be performed using the composition of the first aspect, but is not limited thereto.
  • the depositing of the copper junction layer may be depositing a copper junction layer to a thickness of 1 nm to 60 nm, preferably 5 nm to 50 nm.
  • the step of forming the copper seed layer may be depositing a copper seed layer thickness of 200 nm to 600 nm, preferably 300 nm to 500 nm.
  • a third aspect of the present application provides a copper bonded nitride laminated board. Contents overlapping with those of the first and second sides are also applied to the substrate of the third side.
  • the laminated substrate of the present application is a nitride substrate; a copper bonding layer laminated on a nitride substrate by a sputtering method using the composition of the first side; and a copper layer formed on the copper bonding layer, but is not limited thereto.
  • the nitride substrate may include AlN or Si 3 N 4 but is not limited thereto.
  • Example 3 showed a higher bonding strength than Example 2. That is, as the content of chromium in the nickel-chromium alloy increased, the bonding strength was improved. On the other hand, when the chromium content was excessively high, such as 40 wt%, as in Comparative Example 2, the bonding strength was rather deteriorated. , it was found that the thermal stress due to the difference in the thermal expansion coefficient of copper was generated at the interface and the bonding strength at the interface was deteriorated. As in Comparative Example 3, when only copper was loaded without an interlayer bonding material, the interfacial bonding force was measured to be very weak compared to the sample with a nickel-chromium alloy bonding material. When the number of thermal shocks increased more than 50 times, some test patterns were lost.
  • thermal conductivity of copper formed on a ceramic substrate was measured at 25 °C and 180 °C using Laser Flash Apparatus equipment from NETZCH.
  • the thermal conductivity tended to decrease when the chromium content increased.
  • the value was 130 W/m.k or less at room temperature.
  • etching property is one of the important process factors in a copper etchant.
  • an etching test was performed on the Si 3 N 4 substrate/copper bonding layer/copper specimen using a ferric chloride (FeCl 3 ) etchant. The etching test was performed by depositing about 10 to 50 nm of copper bonding composition on a ceramic substrate through a sputtering process, forming a 1000 nm copper layer thereon, forming a pattern, and then using a spray etching method.
  • Thermal conductivity was marked as O when it was 130 W/m*K or more at room temperature (acceptable), and X when it was less than 130 W/m*K (unsuitable).
  • etching property (etching rate) was 20 A/sec or more, it was marked as O (suitable), and when it was less than 20 A/sec, it was marked as X (unsuitable).
  • NiCr when Ni exceeds 95 wt % in the composition of the Ni-Cr alloy (Cr is less than 5 wt %), bonding strength and thermal conductivity are significantly reduced, while Ni is less than 70 wt % (Cr is less than 5 wt %). When it exceeds 30 wt %), it was confirmed that bonding strength, thermal conductivity, and etching properties are all deteriorated (see FIG. 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

The present application relates to a nitride substrate such as AlN and Si3N4 having a copper layer bonded thereto and, more specifically, to a composition for a copper-bonding layer, a laminate substrate, and a manufacturing method of the substrate, the composition enhancing the bond strength and thermoelectric properties between the nitride substrate and the copper layer. By using the nickel alloy composition for a copper-bonding layer for a copper-bonded nitride substrate of the present application, a copper-bonded nitride substrate having enhanced bonding force may be manufactured by forming an alloy metal layer between a nitride and a copper layer.

Description

구리 접합 질화물 기판용 구리 접합층 니켈 합금 조성물Copper bonding layer nickel alloy composition for copper bonding nitride substrate
본원은, 구리층이 접합된 AlN, Si3N4 등의 질화물 기판에 관한 것으로, 보다 상세하게는 질화물 기판과 구리층 사이의 접합 강도 및 열전 특성을 높이기 위해 형성된 구리 접합층의 조성물 및 적층 기판, 그 기판의 제조방법에 관한 것이다.The present application relates to a nitride substrate such as AlN, Si 3 N 4 to which a copper layer is bonded, and more particularly, to a composition of a copper bonding layer formed to increase bonding strength and thermoelectric properties between a nitride substrate and a copper layer, and a laminated substrate , It relates to a manufacturing method of the substrate.
파워 모듈 등에 이용되는 회로용 기판으로는 열전도율이나 비용, 안전성 등의 이유로 알루미나(alumina), 지르코늄강화알루미늄산화물(Zirconia toughened alumina), 질화 규소(Silicon nitride, Si3N4), 질화알루미늄(AlN) 등의 세라믹스 기판이 주로 이용되고 있다. 이들 세라믹스 기판은 구리나 알루미늄 등의 금속 회로판이나 방열판을 접합하여 회로 기판으로서 이용된다. 이들은 수지 기판이나 수지층을 절연재로 하는 금속기판에 대해 우수한 절연성 및 방열성 등의 특성으로 인해 고 방열성 전자 부품을 탑재하기 위한 기판으로서 사용되고 있다. 그리고 엘리베이터, 차량, 하이브리드카 등의 파워 모듈 용도로는 세라믹스 기판의 표면에 금속 회로판을 활성 금속 땜납재로 접합하고, 나아가 금속 회로판의 소정의 위치에 반도체 소자를 탑재한 세라믹 회로 기판이 이용되고 있다. Circuit substrates used in power modules, etc., are made of alumina, zirconium toughened alumina, silicon nitride (Si 3 N 4 ), and aluminum nitride (AlN) for reasons such as thermal conductivity, cost, and safety. Ceramic substrates such as these are mainly used. These ceramic substrates are used as circuit boards by bonding metal circuit boards or heat sinks such as copper or aluminum. These are used as substrates for mounting electronic components with high heat dissipation due to their excellent insulating properties and heat dissipation properties with respect to resin substrates or metal substrates using a resin layer as an insulating material. In addition, for power modules such as elevators, vehicles, and hybrid cars, a ceramic circuit board in which a metal circuit board is bonded to the surface of a ceramic substrate with an active metal solder material and a semiconductor element is mounted at a predetermined position on the metal circuit board is used. .
최근에는 반도체 소자의 고집적화, 고주파화, 고출력화 등에 따른 반도체 소자로부터의 발열량 증가에 대해 높은 열전도율을 갖는 질화 알루미늄 소결체나 질화규소 소결체의 세라믹스 기판이 사용되고 있다. 질화 알루미늄 기판은 높은 열전도율을 갖는 반면 기계적 강도나 인성 등이 낮기 때문에 어셈블리 공정에서의 조임에 의해 갈라짐이 발생하거나 열 사이클이 부가되었을 때에 크랙이 발생하기 쉬운 단점을 갖고 있다. 특히, 자동차나 전기 철도, 공작 기계나 로봇 등의 가혹한 하중, 열적 조건 하에서 적용되는 파워 모듈에 적용될 경우에는 이러한 단점이 현저해진다. 반면, 질화규소 기판은 열전도율은 AlN에 비해서 낮지만 내구성이 높기 때문에 전기자동차등의 고내구성이 요구되며, 고방열성 전자 부품을 탑재하기 위한 세라믹스 회로기판으로서 적합하다. 이러한 질화물 세라믹스 기판을 사용한 세라믹스 회로 기판은 활성 금속 접합법(AMB: Active metal bonding)에 의해 제작된다. 이와 같은 활성 금속법은 4A족 원소나 5A족 원소와 같은 활성 금속을 포함하는 땜납재층을 통해 세라믹스 기판 상에 금속판을 접합하는 방법으로, 일반적으로 은-구리-티탄계 땜납재를 질화규소 기판의 양 주요면에 스크린 인쇄하고, 이 인쇄면 상에 금속 회로판 및 금속 방열판을 배치하고 적당한 온도로 가열 처리함으로써 세라믹스 기판과 금속판을 접합한다. In recent years, a ceramic substrate of an aluminum nitride sintered body or a silicon nitride sintered body having high thermal conductivity has been used in response to an increase in the amount of heat generated from the semiconductor device due to high integration, high frequency, and high output of the semiconductor device. Since the aluminum nitride substrate has high thermal conductivity but low mechanical strength or toughness, it has a disadvantage in that cracks are easily generated when cracks occur due to tightening in an assembly process or when a thermal cycle is added. In particular, when applied to power modules applied under severe load and thermal conditions, such as automobiles, electric railways, machine tools, and robots, these disadvantages become remarkable. On the other hand, silicon nitride substrates have lower thermal conductivity than AlN but have high durability, so high durability is required for electric vehicles and the like, and are suitable as ceramic circuit boards for mounting electronic components with high heat dissipation. A ceramic circuit board using such a nitride ceramic substrate is produced by an active metal bonding (AMB) method. Such an active metal method is a method of bonding a metal plate on a ceramic substrate through a solder material layer containing an active metal such as a group 4A element or a group 5A element. Generally, a silver-copper-titanium solder material is applied to the silicon nitride substrate The main surface is screen-printed, a metal circuit board and a metal heat sink are placed on the printed surface, and the ceramic substrate and the metal plate are bonded by heat treatment at an appropriate temperature.
질화물 세라믹스 소결체를 반도체용 기판으로 사용하려면 표면 도체층을 형성하여 배선해야 한다. 이 표면 도체층을 형성하는 방법에는 소결 후의 기판에 활성 금속을 이용해 동판 등을 도체층으로서 일체로 접합하는 활성 금속법이나 구리 및 글래스 프릿(glass frit)을 함유하는 인쇄용 페이스트를 사용해 세라믹 기판위에 도체 패턴을 형성하고 고온에서 소성해 기판과 도체층을 형성하는 페이스트 소결법 등이 있다. 고온에서 금속분말입자를 소성하는 페이스트 소결법에 대해서는 용도 확대를 도모하기 위해 검토되고 있지만 접합 강도나 전기 저항값 (도전성)에 있어서 단점이 있어 개선이 필요하다. In order to use the sintered nitride ceramics as a substrate for semiconductors, a surface conductor layer must be formed and wired. Methods for forming this surface conductor layer include an active metal method in which a copper plate or the like is integrally joined as a conductor layer using an active metal to a sintered substrate, or a conductor on a ceramic substrate using a printing paste containing copper and glass frit. There is a paste sintering method in which a pattern is formed and fired at a high temperature to form a substrate and a conductor layer. The paste sintering method, in which metal powder particles are fired at high temperatures, is being studied in order to expand its use, but it has disadvantages in bonding strength and electrical resistance (conductivity) and needs improvement.
상기 언급한 바와 같이 기존에는 Si3N4와 구리와의 열응력을 낮추기 위해서 AgCuTiSn 조성등의 판재나 페이스트(paste)를 AMB(active metal bonding)로 10um 두께로 사용하고 있었는데, 이 경우 Ag함유된 AMB판재의 재료비용이 비쌀 뿐더러, AMB 패이스트의 경우 공정비용은 싸지만 유기 용매가 고온에서 증발하면서 구리와 활성층(active layer)간의 보이드(void) 형성이 자주 발생하여 내구성 및 수율이 저하된다는 문제점이 있다. 또한 활성금속중에 사용되는 티타늄은 AlN에서는 산화티타늄인 TiO2를 형성하여 계면접합력에 효과적이나 Si3N4에서는 TiO2를 형성하기 어려워 접합성이 떨어지는 단점이 있다.As mentioned above, in the past, in order to lower the thermal stress between Si 3 N 4 and copper, a plate or paste with an AgCuTiSn composition was used with a thickness of 10um as AMB (active metal bonding). In this case, Ag-containing The material cost of the AMB plate is high, and the process cost is cheap in the case of AMB paste, but the organic solvent evaporates at a high temperature and voids between the copper and the active layer frequently occur, which reduces durability and yield. there is In addition, titanium used among active metals forms TiO2, which is titanium oxide, in AlN, which is effective for interfacial bonding, but it is difficult to form TiO 2 in Si 3 N 4 and has a disadvantage in that bonding properties are poor.
은과 같은 고가의 활성금속을 사용하는 접합법 대신 고온에서 구리와 세라믹기판의 계면에 IMC(intermetallic compound)를 일차적으로 형성하고, 열처리 공정을 수행하는 확산 접합 (diffusion bonding) 방식은 계면 접합성이 우수하다는 장점이 있다. 그러나 Cu/AlN 계면에서CuO가 생성되어 접합되는 구리접합 AlN기판은 확산 접합이 가능하나, CuO가 형성되지않는 Si3N4기판의 경우 접합력이 우수한 구리 접합 세라믹기판을 제조하기 어려운 문제점이 있다. Instead of the bonding method using expensive active metals such as silver, the diffusion bonding method, which primarily forms IMC (intermetallic compound) at the interface between copper and ceramic substrate at high temperature and performs a heat treatment process, has excellent interfacial bonding properties. There are advantages. However, diffusion bonding is possible for a copper-bonded AlN substrate bonded by CuO generated at the Cu/AlN interface, but in the case of a Si 3 N 4 substrate in which CuO is not formed, it is difficult to manufacture a copper-bonded ceramic substrate having excellent bonding strength.
이에 본 발명자들은 Si3N4 기판과 기판상에 있는 구리층의 접합력이 좋아지도록 계면에서의 접합력 및 열전 특성을 향상시킨 얇은 스퍼터(sputter) 층을 형성하여 우수한 열적 내구성을 가지는 구리접합 규소질화물 기판을 제조하였다. 본 발명에서는 Si3N4기판용 구리 접합층 니켈 합금 조성물 및 적층 기판, 그 기판의 제조방법을 개발하였다.Accordingly, the inventors of the present invention formed a thin sputter layer with improved bonding strength and thermoelectric properties at the interface so that bonding strength between the Si 3 N 4 substrate and the copper layer on the substrate is improved, thereby forming a copper-bonded silicon nitride substrate having excellent thermal durability. was manufactured. In the present invention, a nickel alloy composition for a copper bonding layer for a Si 3 N 4 substrate, a laminated substrate, and a method for manufacturing the substrate were developed.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 한국등록특허공보 10-2339805호(Patent Document 0001) Korea Patent Registration No. 10-2339805
본원은 구리층이 접합된 Si3N4 등의 질화물 기판에 있어서, 질화물 기판과 구리층 사이의 접합 강도 및 열전 특성을 높이기 위해 형성된 구리접합층(구리 하부막)의 조성물 및 적층 기판, 그 기판의 제조방법을 제공하는 것을 목적으로 한다.In the present application, in a nitride substrate such as Si 3 N 4 to which a copper layer is bonded, a composition of a copper bonding layer (copper lower film) formed to increase the bonding strength and thermoelectric properties between the nitride substrate and the copper layer, a laminated substrate, and the substrate It is an object to provide a manufacturing method of.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본원의 제1측면은, 구리 접합 질화물 기판용 구리 접합층 니켈 합금 조성물을 제공한다.A first aspect of the present application provides a copper bonding layer nickel alloy composition for a copper bonding nitride substrate.
본원의 제2측면은, 구리 접합 질화물 기판 제조 방법을 제공한다.A second aspect of the present application provides a method for manufacturing a copper bonded nitride substrate.
본원의 제3측면은, 구리 접합 질화물 적층 기판을 제공한다.A third aspect of the present application provides a copper bonded nitride laminated board.
본원의 구리 접합 질화물 기판용 구리 접합층 니켈 합금 조성물을 이용하면 질화물과 구리층 사이에 합금 금속층을 형성하여 접합력이 향상된 구리 접합 질화물 기판을 제조할 수 있다.Using the copper bonding layer nickel alloy composition for a copper bonding nitride substrate of the present disclosure, a copper bonding nitride substrate having improved bonding strength may be manufactured by forming an alloy metal layer between the nitride and the copper layer.
도 1은, 본원 발명의 시험 시편의 구조를 나타낸 도면이다.1 is a diagram showing the structure of a test specimen of the present invention.
도 2는, 전력 반도체 및 차량용 구동 반도체에 적용되는 방열 기판 제작 공정에 대한 순서도를 나타낸 도면이다.2 is a flowchart illustrating a heat dissipation substrate manufacturing process applied to a power semiconductor and a driving semiconductor for a vehicle.
도 3은, 본원에 의해 제작된 구리접합 세라믹 기판의 접합성 평가 전 열충격 테스트를 위한 고온, 저온 상승속도 및 온도유지 시간을 나타낸 도면이다.FIG. 3 is a diagram showing a high-temperature and low-temperature rising rate and temperature holding time for a thermal shock test prior to evaluating the bondability of a copper-bonded ceramic substrate manufactured according to the present invention.
도 4는, 열충격 테스트를 진행하기 전후의 본원의 니켈크롬 접합층을 사용하여 미세패턴이 형성된 구리 접합 규소 질화물 기판 사진을 나타낸 도면이다.4 is a view showing photographs of a copper-bonded silicon nitride substrate on which micropatterns are formed using the nickel-chrome bonding layer of the present application before and after a thermal shock test.
도 5는, 구리 접합 질화물 기판의 계면 접합력 테스트를 위해 본원의 제조방법으로 제조한 원기둥 및 사각형 기둥 패턴의 테스트 샘플 사진을 나타낸 도면이다.5 is a view showing photographs of test samples of cylinder and square pillar patterns manufactured by the manufacturing method of the present invention for interfacial bonding force test of copper bonded nitride substrates.
도 6은, NiCr 이원계 구리하부막(구리접합층)의 조성에 따른 Si3N4기판과의 접합력 및 열전도율, 구리에천트에서의 에칭특성을 확인한 결과를 나타낸 도면이다.FIG. 6 is a view showing the results of confirming the bonding force with the Si 3 N 4 substrate, the thermal conductivity, and the etching characteristics in the copper etchant according to the composition of the NiCr binary copper underlayer (copper bonding layer).
도 7은, Die shear장비를 사용하여 도 6의 조건별 접합력을 확인한 결과를 나타낸 도면이다. 7 is a view showing the result of confirming the bonding force for each condition of FIG. 6 using a die shear device.
도 8은, 세라믹 기판 위 형성된 구리의 열전도도(thermal conductivity)를 알아보기 위해 각 샘플의 열전도도를 측정한 결과를 나타낸 도면이다.8 is a diagram showing the results of measuring the thermal conductivity of each sample to determine the thermal conductivity of copper formed on a ceramic substrate.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, embodiments of the present application will be described in detail so that those skilled in the art can easily practice with reference to the accompanying drawings. However, the present disclosure may be implemented in many different forms and is not limited to the embodiments described herein. And in order to clearly describe the present application in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the present specification, when a member is said to be located “on” another member, this includes not only a case where a member is in contact with another member, but also a case where another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함” 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~ 를 위한 단계”를 의미하지 않는다.Throughout the specification, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated. As used throughout this specification, the terms "about", "substantially", and the like, are used at or approximating that number when manufacturing and material tolerances inherent in the stated meaning are given, and do not convey the understanding of this application. Accurate or absolute figures are used to help prevent exploitation by unscrupulous infringers of the disclosed disclosure. The term "step of (doing)" or "step of" as used throughout the present specification does not mean "step for".
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합(들)”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term “combination(s) of these” included in the expression of the Markush form means a mixture or combination of one or more selected from the group consisting of the components described in the expression of the Markush form, It means including one or more selected from the group consisting of the above components.
본원 명세서 전체에서, “A 및/또는 B”의 기재는 “A 또는 B, 또는 A 및 B”를 의미한다.Throughout this specification, reference to “A and/or B” means “A or B, or A and B”.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되지 않을 수 있다.Hereinafter, embodiments and embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. However, the disclosure may not be limited to these embodiments and examples and drawings.
본원의 제 1 측면은, 구리 접합 질화물 기판용 구리 하부막 니켈 합금 조성물을 제공한다.A first aspect of the present application provides a copper underlayer nickel alloy composition for a copper junction nitride substrate.
본원의 일 구현예에 따르면, 본원의 구리 접합 질화물 기판용 구리 하부막 니켈 합금 조성물은 계면에서의 접합력과 열전 특성을 향상시킬 수 있는 스퍼터링(sputtering) 증착된 얇은 막을 형성할 수 있다.According to one embodiment of the present application, the copper underlayer nickel alloy composition for a copper-bonded nitride substrate of the present application may form a thin film deposited by sputtering capable of improving bonding strength and thermoelectric characteristics at an interface.
본원 명세서 전체에서 사용되는 용어 "구리접합층"은 스퍼터링 방법으로 증착된 얇은 막으로서, 본원의 적층 기판 구조에서 구리층의 하부에 위치하는 막(구리 하부막)을 말한다. 상기 구리접합층인 니켈합금은 스퍼터링법 외에 전해, 무전해도금, 화학기상증착법, 증발(evaporation) 등의 다양한 방법으로 올릴 수 있다.The term "copper junction layer" used throughout the present specification is a thin film deposited by a sputtering method, and refers to a film (copper lower film) positioned below the copper layer in the laminated substrate structure of the present application. Nickel alloy, which is the copper bonding layer, may be raised by various methods such as electrolysis, electroless plating, chemical vapor deposition, and evaporation in addition to sputtering.
본원 명세서 전체에서 사용되는 용어 "스퍼터링(sputtering)"은 높은 에너지를 가진 입자들이 타켓 물질(금속) 표면에 충돌하여 표면에 있는 타겟 원자에 에너지를 전달해줌으로써 타겟 원자들이 방출되는 현상을 이용하여 기판에 증착하는 방법을 말한다.The term "sputtering" used throughout the present specification means that particles with high energy collide with the surface of a target material (metal) to transfer energy to target atoms on the surface, and the target atoms are emitted. tell how to deposit
본원의 일 구현예에 따르면, 본원의 스퍼터링(sputtering) 증착된 얇은 막(구리접합층)은 Ni 주성분으로 하고 Cr을 소량 함유함으로써 상부 구리와 하부 기판과의 접합력이 향상될 수 있다. 이때 Ni-Cr 합금의 조성은 Ni가 95 wt % 내지 70 wt % 이고 Cr은 5 wt % 내지 30 wt % 일 수 있다.According to one embodiment of the present application, the sputtering (sputtering) deposited thin film (copper bonding layer) of the present application can be improved bonding strength between the upper copper and the lower substrate by containing Ni as a main component and a small amount of Cr. In this case, the composition of the Ni-Cr alloy may be 95 wt % to 70 wt % of Ni and 5 wt % to 30 wt % of Cr.
본원의 일 구현예에 따르면, 본원의 Ni-Cr 이원계(binary)를 사용했을 때가 순수 구리를 단독으로 사용했을 경우에 비해 접합력이 300% 이상 높아짐을 확인할 수 있다. 순수 구리의 경우 기판과 접착하는 표면에서 다공성의 작은 구리산화물인 CuO (0.3 μm crystal sizes)를 형성하여 낮은 접착력을 나타내는 반면, Ni-Cr 합금을 사용할 경우 세라믹 기판과 합금 사이에 CrN, Cr2N와 같은 강한 결합을 형성하기 때문에 강도의 분산 없이 균일한 고강도 접합면을 얻을 수 있다.According to one embodiment of the present application, it can be confirmed that when the Ni-Cr binary of the present application is used, the bonding strength is increased by 300% or more compared to when pure copper is used alone. In the case of pure copper, CuO (0.3 μm crystal sizes), which is a small porous copper oxide, is formed on the surface to be bonded to the substrate, resulting in low adhesive strength. Since it forms a strong bond, it is possible to obtain a uniform high-strength bonding surface without dispersion of strength.
본원의 제 2 측면은, 구리 접합 질화물 기판 제조 방법을 제공한다. 제1측면과 중복되는 내용은 제2측면의 제조 방법에도 공히 적용된다.A second aspect of the present application provides a method for manufacturing a copper bonded nitride substrate. Content overlapping with the first aspect is also applied to the manufacturing method of the second aspect.
본원의 일 구현예에 따르면, 본원은 질화물 기판 표면에 굴곡을 형성하는 단계; 상기 질화물 기판에 스퍼터링(Sputtering) 방법으로 구리접합층(Tie-coat layer)을 증착하는 단계; 상기 구리접합층 상에 구리(Cu)를 증착하여 구리 시드(seed)층을 형성하는 단계; 상기 구리 시드(seed)층 상에 패턴 마스크를 형성하는 단계; 구리 고속 도금액(high speed copper plating bath)을 이용하여 전해도금을 하는 단계; 및 에칭 공정을 통해 구리접합층(Tie-coat layer) 및 구리 시드(seed)층을 제거하는 단계를 포함하는 구리 접합 질화물 기판 제조 방법을 제공한다(도 2 참조).According to one embodiment of the present application, the present application includes forming a curve on the surface of a nitride substrate; Depositing a copper bonding layer (Tie-coat layer) on the nitride substrate by a sputtering method; depositing copper (Cu) on the copper junction layer to form a copper seed layer; forming a patterned mask on the copper seed layer; Performing electrolytic plating using a high speed copper plating bath; and removing a tie-coat layer and a copper seed layer through an etching process (see FIG. 2 ).
본원의 일 구현예에 있어서, 질화물 기판은 AlN 또는 Si3N4를 포함할 수 있으나 이에 제한되는 것은 아니다.In one embodiment of the present application, the nitride substrate may include AlN or Si 3 N 4 but is not limited thereto.
본원의 일 구현예에 있어서, Si3N4 세라믹 기판 표면에 굴곡을 형성할 경우 기판과 접착층 사이의 접촉 면적이 증가하여 기판의 접착력을 향상시킬 수 있다.In one embodiment of the present application, when the curved surface of the Si 3 N 4 ceramic substrate is formed, the contact area between the substrate and the adhesive layer increases, thereby improving the adhesion of the substrate.
본원의 일 구현예에 있어서, 상기 구리 접합층을 증착하는 단계는 제 1측면의 조성물을 이용하여 이루어지는 것일 수 있으나 이에 제한되는 것은 아니다.In one embodiment of the present application, the depositing of the copper bonding layer may be performed using the composition of the first aspect, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 구리접합층을 증착하는 단계는 구리 접합층 두께를 1nm 내지 60nm 로 증착하는 것일 수 있으며, 바람직하게는 5nm 내지 50nm 로 증착하는 것일 수 있다.In one embodiment of the present application, the depositing of the copper junction layer may be depositing a copper junction layer to a thickness of 1 nm to 60 nm, preferably 5 nm to 50 nm.
본원의 일 구현예에 있어서, 상기 구리 시드(seed)층을 형성하는 단계는 구리 시드층 두께를 200nm 내지 600nm 증착하는 것일 수 있으며, 바람직하게는 300nm 내지 500nm 증착하는 것일 수 있다.In one embodiment of the present application, the step of forming the copper seed layer may be depositing a copper seed layer thickness of 200 nm to 600 nm, preferably 300 nm to 500 nm.
본원의 제3측면은, 구리 접합 질화물 적층 기판을 제공한다. 제1측면 및 제2측면과 중복되는 내용은 제3측면의 기판에도 공히 적용된다.A third aspect of the present application provides a copper bonded nitride laminated board. Contents overlapping with those of the first and second sides are also applied to the substrate of the third side.
본원의 일 구현예에 있어서, 본원의 적층 기판은 질화물 기판; 질화물 기판 위에 제 1측면의 조성물을 이용하여 스퍼터링(Sputtering) 방법으로 적층되는 구리접합층; 및 상기 구리접합층 위에 형성되는 구리층을 포함할 수 있으나 이에 제한되는 것은 아니다.In one embodiment of the present application, the laminated substrate of the present application is a nitride substrate; a copper bonding layer laminated on a nitride substrate by a sputtering method using the composition of the first side; and a copper layer formed on the copper bonding layer, but is not limited thereto.
본원의 일 구현예에 있어서, 질화물 기판은 AlN 또는 Si3N4를 포함할 수 있으나 이에 제한되는 것은 아니다.In one embodiment of the present application, the nitride substrate may include AlN or Si 3 N 4 but is not limited thereto.
이하, 본원의 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 본원의 이해를 돕기 위하여 예시하는 것일뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples of the present application, but the following examples are only illustrative to aid understanding of the present application, and the content of the present application is not limited to the following examples.
[실험예][Experimental Example]
[니켈합금 접합층의 접합력 비교 실험][Comparative test of bonding force of nickel alloy bonding layer]
Si3N4 기판(2.5cm x 2.5cm 기판)에 플라즈마 설비 활용 접합층 및 구리(400um) 직경 5mm 원패턴 형성 후 열충격 실험(-50도~180도 300회 진행)을 진행 후, Nordson 사의 die shear test장비를 활용하여 접합력 테스트 장비를 사용하여 구리접합층(Tie-coat layer, 접합층) 합금의 접합력을 확인하였다 (도 7 참조).After forming a bonding layer using plasma facilities and a copper (400um) circle pattern with a diameter of 5mm on a Si 3 N 4 substrate (2.5cm x 2.5cm substrate), after conducting a thermal shock test (300 times at -50 degrees to 180 degrees), Nordson's die The bonding strength of the copper bonding layer (tie-coat layer, bonding layer) alloy was confirmed using the bonding force test equipment using the shear test equipment (see FIG. 7).
접합력의 경우, 실시예 2보다 실시예 3이 더 높은 접합력을 보여줬다. 즉 니켈크롬 합금에서 크롬의 함량이 증가할수록 접합력은 향상되었으며, 반면에 비교예2와 같이 크롬함량이 40wt% 처럼 지나치게 높아질 경우 오히려 접합력이 저하되었는데, 이는 고온에서 열처리하는 과정에서 기판과 니켈크롬 합금, 구리의 열팽창계수의 차이로 인한 열응력이 계면에서 발생하여 계면에서의 접합력이 열화되는 것으로 파악되었다. 비교예3과 같이 층간접합물질이 없이 구리만을 올린 경우에는 니켈크롬 합금 접합물질이 있는 샘플에 비해서 계면 접합력이 매우 약하게 측정되었다. 열충격횟수가 50회이상 증가할 경우에는 일부 테스트 패턴이 유실되는 현상이 발생하기도 하였다. In the case of bonding strength, Example 3 showed a higher bonding strength than Example 2. That is, as the content of chromium in the nickel-chromium alloy increased, the bonding strength was improved. On the other hand, when the chromium content was excessively high, such as 40 wt%, as in Comparative Example 2, the bonding strength was rather deteriorated. , it was found that the thermal stress due to the difference in the thermal expansion coefficient of copper was generated at the interface and the bonding strength at the interface was deteriorated. As in Comparative Example 3, when only copper was loaded without an interlayer bonding material, the interfacial bonding force was measured to be very weak compared to the sample with a nickel-chromium alloy bonding material. When the number of thermal shocks increased more than 50 times, some test patterns were lost.
또한, 열충격 실험을 진행하기 전후에 본원의 니켈크롬 접합층을 사용하여 미세패턴이 형성된 구리 접합 규소 질화물 기판을 비교하였다(도 4 참조). 0.3mm 두께의 Si3N4기판위 니켈크롬 접합층은 수십nm, 구리층은 400um 형성되었다.In addition, copper-bonded silicon nitride substrates on which micropatterns were formed using the nickel-chromium bonding layer of the present application were compared before and after the thermal shock test (see FIG. 4). On a Si 3 N 4 substrate with a thickness of 0.3 mm, a nickel-chromium bonding layer was formed by several tens of nm and a copper layer by 400 um.
[열전도도 확인 실험][Thermal conductivity confirmation experiment]
세라믹 기판 위 형성된 구리의 열전도도(thermal conductivity)를 알아보기 위해 NETZCH 사의 Laser Flash Apparatus 장비를 사용하여 온도 25℃, 180℃에서 각 샘플의 열전도도를 측정하였다.To examine the thermal conductivity of copper formed on a ceramic substrate, the thermal conductivity of each sample was measured at 25 °C and 180 °C using Laser Flash Apparatus equipment from NETZCH.
하기 열전도도 특성(thermal conductivity) 그래프(도 8 참조)에서 보는 바와 같이 크롬의 함량이 증가할 경우 열전도도 특성은 감소하는 경향을 보였다. 특히 니켈에 비해서 상대적으로 크롬함량이 높은 비교예 2의 경우에는 상온에서 130 W/m.k 이하의 값을 보였다.As shown in the following thermal conductivity graph (see FIG. 8), the thermal conductivity tended to decrease when the chromium content increased. In particular, in the case of Comparative Example 2 having a relatively high chromium content compared to nickel, the value was 130 W/m.k or less at room temperature.
[단일 금속 및 합금의 에칭 특성 확인 실험][Experiment to confirm etching characteristics of single metals and alloys]
구리접합층은 구리와 동시에 에칭이 가능하여야만 구리배선 패턴을 형성할 수 있으므로, 구리 에천트에서 에칭성이 중요한 공정 요소 중의 하나이다. 구리접합층으로 사용된 합금의 에칭 특성을 알아보기 위해 Si3N4기판/구리접합층/구리 시편을을 염화제이철(FeCl3) 식각액을 사용하여 식각 테스트를 진행하였다. 식각 테스트는 세라믹 기판 위에 구리접합 조성물을 스퍼터링 공정으로 약 10~50nm 증착하고, 상부에 구리층을 1000nm 형성한 후, 패턴 형성 후 스프레이 에칭 방법으로 진행하였다.Since a copper wiring pattern can be formed only when the copper bonding layer can be etched simultaneously with copper, etching property is one of the important process factors in a copper etchant. In order to examine the etching characteristics of the alloy used as the copper bonding layer, an etching test was performed on the Si 3 N 4 substrate/copper bonding layer/copper specimen using a ferric chloride (FeCl 3 ) etchant. The etching test was performed by depositing about 10 to 50 nm of copper bonding composition on a ceramic substrate through a sputtering process, forming a 1000 nm copper layer thereon, forming a pattern, and then using a spray etching method.
실험 결과, NiCr 합금의 식각 속도는 Cr 함량이 증가할수록 느려지는 것을 확인할 수 있었다. Cr의 함량이 50퍼센트를 넘어서면 잔사가 남는다는 단점이 있는 반면 50퍼센트 미만의 이원계 합금의 경우 빠른 식각 속도를 나타내기 때문에 에칭 잔사 없이 패턴을 형성할 수 있었다.As a result of the experiment, it was confirmed that the etching rate of the NiCr alloy slowed down as the Cr content increased. While there is a disadvantage that residues remain when the Cr content exceeds 50%, a pattern can be formed without etching residues because the binary alloy with less than 50% Cr exhibits a fast etching rate.
상기 모든 실험 결과들을 토대로 구리접합층으로 사용된 니켈 합금층의 조성에 따른 계면 접합력, 열전도도, 에칭특성을 하기와 같이 정리하였다(도 6 참조).Based on all the above experimental results, interfacial bonding strength, thermal conductivity, and etching characteristics according to the composition of the nickel alloy layer used as the copper bonding layer were summarized as follows (see FIG. 6).
계면접합력이 30 kgf이상일 경우 O로 표시하였고(적합), 30kgf 미만일 경우 X로 표시하였다(부적합).When the interfacial bonding force was greater than 30 kgf, it was marked as O (suitable), and when it was less than 30 kgf, it was marked as X (unsuitable).
열전도도는 상온에서 130 W/m*K 이상일 경우 O로 표시하였고(적합), 130 W/m*K 미만일 경우 X로 표시하였다(부적합).Thermal conductivity was marked as O when it was 130 W/m*K or more at room temperature (acceptable), and X when it was less than 130 W/m*K (unsuitable).
또한, 에칭성(식각속도)이 20 A/sec이상일 경우 O로 표시하였고(적합), 20 A/sec 미만일 경우 X로 표시하였다(부적합).In addition, when the etching property (etching rate) was 20 A/sec or more, it was marked as O (suitable), and when it was less than 20 A/sec, it was marked as X (unsuitable).
결과적으로, NiCr에 있어서 Ni-Cr 합금의 조성에서 Ni가 95 wt %을 초과하는 경우(Cr은 5 wt % 미만일 경우) 접합력 및 열전도성이 현저히 떨어지는 한편, Ni이 70 wt % 미만일 경우(Cr이 30 wt %을 초과할 경우) 접합력, 열전도성 및 에칭성이 모두 떨어지는 것을 확인할 수 있었다(도 6 참조).As a result, in NiCr, when Ni exceeds 95 wt % in the composition of the Ni-Cr alloy (Cr is less than 5 wt %), bonding strength and thermal conductivity are significantly reduced, while Ni is less than 70 wt % (Cr is less than 5 wt %). When it exceeds 30 wt %), it was confirmed that bonding strength, thermal conductivity, and etching properties are all deteriorated (see FIG. 6).
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is for illustrative purposes, and those skilled in the art will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.

Claims (9)

  1. NiCr을 포함하는 구리 접합 질화물 기판용 구리 하부막 니켈 합금 조성물.A copper underlayer nickel alloy composition for a copper bonded nitride substrate comprising NiCr.
  2. 제 1 항에 있어서,According to claim 1,
    상기 NiCr의 Ni-Cr 합금의 조성은 Ni가 95 wt % 내지 70 wt % 이고 Cr은 5 wt % 내지 30 wt % 인 것인,The composition of the Ni-Cr alloy of NiCr is 95 wt % to 70 wt % of Ni and 5 wt % to 30 wt % of Cr,
    구리 접합 질화물 기판용 구리 하부막 니켈 합금 조성물.A copper underlayer nickel alloy composition for copper bonded nitride substrates.
  3. 질화물 기판 표면에 굴곡을 형성하는 단계;Forming curves on the surface of the nitride substrate;
    상기 질화물 기판에 스퍼터링(Sputtering) 방법으로 구리접합층(Tie-coat layer)을 증착하는 단계; Depositing a copper bonding layer (Tie-coat layer) on the nitride substrate by a sputtering method;
    상기 구리접합층 상에 구리(Cu)를 증착하여 구리 시드(seed)층을 형성하는 단계;depositing copper (Cu) on the copper junction layer to form a copper seed layer;
    상기 구리 시드(seed)층 상에 패턴 마스크를 형성하는 단계;forming a patterned mask on the copper seed layer;
    구리 고속 도금액(high speed copper plating bath)을 이용하여 전해도금을 하는 단계; 및Performing electrolytic plating using a high speed copper plating bath; and
    에칭 공정을 통해 구리접합층(Tie-coat layer) 및 구리 시드(seed)층을 제거하는 단계를 포함하는, 구리 접합 질화물 기판 제조 방법.A method of manufacturing a copper bonded nitride substrate comprising the step of removing a copper bond layer and a copper seed layer through an etching process.
  4. 제 3항에 있어서,According to claim 3,
    상기 질화물 기판은 AlN 또는 Si3N4인 것인,Wherein the nitride substrate is AlN or Si 3 N 4
    구리 접합 질화물 기판 제조 방법.A method for manufacturing copper-bonded nitride substrates.
  5. 제 3항에 있어서, According to claim 3,
    상기 구리접합층(Tie-coat layer)을 증착하는 단계는 제 1항 또는 제 2항의 조성물을 이용하여 스퍼터링 방법으로 이루어지는 것인 구리 접합 질화물 기판 제조 방법.The step of depositing the copper bonding layer (tie-coat layer) is a method of manufacturing a copper bonded nitride substrate made by a sputtering method using the composition of claim 1 or claim 2.
  6. 제 3항에 있어서,According to claim 3,
    상기 구리접합층(Tie-coat layer)을 증착하는 단계는 구리접합층(Tie-coat layer) 두께를 5nm 내지 50nm 로 증착하는 것인, 구리 접합 질화물 기판 제조 방법.The step of depositing the copper bonding layer (Tie-coat layer) is to deposit a copper bonding layer (Tie-coat layer) thickness to 5nm to 50nm, copper bonded nitride substrate manufacturing method.
  7. 제 3항에 있어서,According to claim 3,
    상기 구리 시드(seed)층을 형성하는 단계는 구리 시드층 두께를 300nm 내지 500nm가 되도록 증착하는 것인, 구리 접합 질화물 기판 제조 방법.In the step of forming the copper seed layer, the copper seed layer is deposited to have a thickness of 300 nm to 500 nm.
  8. 질화물 기판; 상기 질화물 기판 상에 제 1항 또는 제 2항의 조성물을 이용하여 스퍼터링 방법으로 적층되는 구리접합층; 및 상기 구리접합층 상에 형성되는 구리층을 포함하는 구리 접합 질화물 적층 기판.nitride substrate; A copper bonding layer laminated on the nitride substrate by a sputtering method using the composition of claim 1 or 2; and a copper layer formed on the copper junction layer.
  9. 제 8항에 있어서,According to claim 8,
    상기 질화물 기판은 AlN 또는 Si3N4인 것인,Wherein the nitride substrate is AlN or Si 3 N 4
    구리 접합 질화물 적층 기판.Copper bonded nitride laminated board.
PCT/KR2022/021694 2021-12-30 2022-12-30 Nickel alloy composition for copper-bonding layer for copper-bonded nitride substrate WO2023128687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280086499.5A CN118574800A (en) 2021-12-30 2022-12-30 Copper bonding layer nickel alloy composition for copper bonding nitride substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0192899 2021-12-30
KR20210192899 2021-12-30
KR10-2022-0189272 2022-12-29
KR1020220189272A KR102606192B1 (en) 2021-12-30 2022-12-29 Nickel alloy composition of copper adhesion layer for copper bonded nitride substrate

Publications (1)

Publication Number Publication Date
WO2023128687A1 true WO2023128687A1 (en) 2023-07-06

Family

ID=86999771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021694 WO2023128687A1 (en) 2021-12-30 2022-12-30 Nickel alloy composition for copper-bonding layer for copper-bonded nitride substrate

Country Status (1)

Country Link
WO (1) WO2023128687A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891346B1 (en) * 2007-06-19 2009-04-01 주식회사 나디스 Probe card and method thereof
KR20090113995A (en) * 2008-04-29 2009-11-03 주식회사 피앤아이 Board for the use of electroplating including metal catalyst layer and metal seed layer, and fabrication method of printed circuit board using the board
KR101199816B1 (en) * 2007-12-27 2012-11-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing double layer copper clad laminated board, and double layer copper clad laminated board
KR20130078280A (en) * 2011-12-30 2013-07-10 삼성전자주식회사 Nitride baced semiconductor device and method for manufacturing thereof
KR20170133996A (en) * 2016-05-27 2017-12-06 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891346B1 (en) * 2007-06-19 2009-04-01 주식회사 나디스 Probe card and method thereof
KR101199816B1 (en) * 2007-12-27 2012-11-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing double layer copper clad laminated board, and double layer copper clad laminated board
KR20090113995A (en) * 2008-04-29 2009-11-03 주식회사 피앤아이 Board for the use of electroplating including metal catalyst layer and metal seed layer, and fabrication method of printed circuit board using the board
KR20130078280A (en) * 2011-12-30 2013-07-10 삼성전자주식회사 Nitride baced semiconductor device and method for manufacturing thereof
KR20170133996A (en) * 2016-05-27 2017-12-06 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETEVES, S.D.: "Joining Nitride Ceramics", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 22, no. 6, 1 January 1996 (1996-01-01), NL , pages 527 - 533, XP004040629, ISSN: 0272-8842, DOI: 10.1016/0272-8842(95)00134-4 *

Similar Documents

Publication Publication Date Title
US11570890B2 (en) Ceramic circuit board and module using same
JP2007201346A (en) Ceramics circuit board and its manufacturing method
TWI665766B (en) Ceramic circuit board
US11430727B2 (en) Ceramic circuit substrate
US6485816B2 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
JP2014118310A (en) Ceramic circuit board
EP3341345A1 (en) Thick-film paste mediated ceramics bonded with metal or metal hybrid foils
WO2023128687A1 (en) Nickel alloy composition for copper-bonding layer for copper-bonded nitride substrate
CN106888551A (en) A kind of ceramic base copper-clad plate and its preparation technology
CA1260337A (en) Secondary metallization by glass displacement in ceramic substrate
JPH0679989B2 (en) Method for forming copper electrode on aluminum nitride
WO2020009338A1 (en) Metallized ceramic substrate and method for manufacturing same
US6013357A (en) Power module circuit board and a process for the manufacture thereof
KR102606192B1 (en) Nickel alloy composition of copper adhesion layer for copper bonded nitride substrate
RU2384027C2 (en) Method of chip fabrication
JP6936040B2 (en) Metallized substrate and its manufacturing method
JP2989975B2 (en) Method for manufacturing aluminum nitride substrate
US3664868A (en) Gold metallizing of refractory metals on ceramic substrates
CN118574800A (en) Copper bonding layer nickel alloy composition for copper bonding nitride substrate
EP4235773A2 (en) Conductive thick film paste for silicon nitride and other substrates
WO2017065407A1 (en) Ceramic circuit board and manufacturing method therefor
EP1131168B1 (en) Methods of forming metal contact pads on a metal support substrate
JPH05144316A (en) Conductive paste composition
JPH05191038A (en) Ceramic board with metallic layer and manufacturing method thereof
WO2017122966A1 (en) Ceramic circuit board and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE