WO2023128566A1 - Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method therefor - Google Patents

Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method therefor Download PDF

Info

Publication number
WO2023128566A1
WO2023128566A1 PCT/KR2022/021417 KR2022021417W WO2023128566A1 WO 2023128566 A1 WO2023128566 A1 WO 2023128566A1 KR 2022021417 W KR2022021417 W KR 2022021417W WO 2023128566 A1 WO2023128566 A1 WO 2023128566A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
porous
cancer
cells
microsphere
Prior art date
Application number
PCT/KR2022/021417
Other languages
French (fr)
Korean (ko)
Inventor
박우람
최성욱
김찬
전홍재
배가현
류영현
고은진
Original Assignee
가톨릭대학교 산학협력단
의료법인 성광의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단, 의료법인 성광의료재단 filed Critical 가톨릭대학교 산학협력단
Publication of WO2023128566A1 publication Critical patent/WO2023128566A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to porous microspheres capable of loading anti-cancer bacteria and the like, a manufacturing method thereof, and a use thereof.
  • Cancer is the leading cause of death worldwide, accounting for 7.6 million deaths in 2008 (about 13% of all deaths). Cancer is a general term for a large group of diseases that can affect specific areas of the body. Other terms used are malignancy and neoplasia. Cancer is the uncontrolled growth and spread of abnormal cells. Growths often invade surrounding tissue and can metastasize to distant sites. Metastasis is the leading cause of death from cancer. Cancer-related deaths worldwide continue to rise and are estimated to kill 13.1 million people by 2030.
  • Cancer treatment requires careful selection of one or more interventions such as surgery, radiotherapy and/or chemotherapy.
  • the goal is to cure disease or significantly prolong life while improving the quality of life of patients.
  • Various forms of radiation such as X-rays, gamma-rays, UV-rays, laser light, microwaves, electron beams and particle beams of eg neutrons, carbon ions and protons have been used to treat malignant diseases. Some of these radiations have been used in these applications, along with radiation sensitizers.
  • Electromagnetic and ionizing radiation can actually protect cells from growth and differentiation by destroying their "DNA" molecules. This effect can be explained by the action of particles or waves that will move within a defined volume and create ionization that releases electrons and free radicals that create energetic deposits into that volume.
  • Nano Technology is a technology for manipulating nanometer- sized materials, which is one billionth of a meter. It refers to the technology of synthesizing, assembling, controlling, or measuring and identifying the properties of atomic , molecular and supramolecular materials. Nanotechnology is included in various scientific fields such as surface science, organic chemistry, molecular biology, semiconductor physics, and microfabrication, and has a very wide range of applications.
  • the present inventors developed porous microspheres loaded with anticancer bacteria and magnetic nanoparticles, and completed the present invention by confirming that the microspheres can target and control tumor sites for effective cancer treatment.
  • porous microspheres comprising a biocompatible polymer and a cationic polymer.
  • Another aspect is 1) preparing a first solution containing a biocompatible polymer and a pore-forming agent; 2) preparing a second solution containing a surfactant; 3) preparing microspheres using the first solution and the second solution; and 4) removing the pore-forming agent from the prepared microspheres.
  • anticancer microspheres comprising the porous microspheres and oncolytic bacteria or spores thereof.
  • Another aspect provides a pharmaceutical composition for treating or preventing cancer, including the anticancer microspheres.
  • Another aspect provides a method for treating or preventing cancer, comprising administering the pharmaceutical composition for treating or preventing cancer to a subject.
  • One aspect is to provide porous microspheres comprising a biocompatible polymer and a cationic polymer.
  • microspheres used herein generally means a material in the form of a sphere having a diameter of 1 to 1000 ⁇ m.
  • the sphere can be used in the sense of encompassing not only the sphere of mathematical definition, which is a three-dimensional shape consisting of all points at the same distance from one point, but also those of an outwardly round shape. That is, it may include an error range generated during the measurement or manufacturing process.
  • biocompatible polymer refers to a polymer having in vivo safety that does not cause high cytotoxicity and inflammatory reactions when administered in vivo, and may refer to a biodegradable polymer. there is.
  • the biocompatible polymer is polylactic acid (PLA), polyglycolic acid (PGA), polylactide-co-glycolide (PLGA), polycaprolactone (PCL), polyethylene glycol (PEG), polyamino acid, polylactite, polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, polyorthoester, polyhydroxyvalate, polyhydroxybutyrate, hyaluronic acid, cellulose, heparin, collagen, alginate, chondroitin sulfate, pullulan and Any one selected from chitosan; a polymer in which two or more of these are blended; And it may be selected from the group consisting of these two or more copolymers, but is not limited thereto.
  • the biocompatible polymer may include polylactic acid (PLA).
  • PLA polylactic acid
  • the porous microspheres may further include magnetic nanoparticles.
  • hydrophilic amine-coated magnetic nanoparticle refers to a nanometer-sized structure or material exhibiting magnetic properties.
  • magnetism refers to the magnetic properties exhibited by a material. All materials interact with a magnetic field to generate an attractive or repulsive force. That is, when a magnetic field is applied to a material, it is magnetized, and the material is classified into a ferromagnetic material, a paramagnetic material, a diamagnetic material, a ferrimagnetic material, and the like, depending on how the material is magnetized.
  • nanoparticle refers to a structure or material having a size of nanometers (nm). The size of a nanometer is a reduction of the size of a micron meter (10-6) to 1/1,000, and when the size of a material is reduced to the nanometer level, it exhibits various and unique physical, chemical, mechanical and electronic properties.
  • the magnetic nanoparticles may be one or two or more selected from the group consisting of iron, cobalt, nickel, oxides thereof, and alloys thereof, but are not limited thereto.
  • the magnetic nanoparticles are composed of iron, iron oxide selected from among Fe 2 O 3 , Fe 3 O 4 , Fe 4 O 5 , Fe 5 O 6 , Fe 5 O 7 , Fe 13 O 19 , and Fe 25 O 32 and CoFe 2 It may be at least one selected from the group consisting of ferrite selected from O 4 , and MnFe 2 O 4 .
  • the porous microspheres may include a cationic polymer, and specifically, a surface of the porous microspheres may be coated or modified with the cationic polymer.
  • the cationic polymer is polyethylenimine (PEI), polyamidoamine (PAA), poly-L-lysine (PLL), poly-D-lysine (PDL), protamine, poly [2-(N,N-dimethylamino)ethyl methacrylate] (Poly[2-(N,N-dimethylamino)ethyl methacrylate], (PDMAEMA)), Poly(amino-co-ester, PAE ), chitosan, dextran, cationic gelatin, cationic cyclodextrin, and polypropylenimine.
  • PEI polyethylenimine
  • PAA polyamidoamine
  • PLA poly-L-lysine
  • PDL poly-D-lysine
  • protamine poly [2-(N,N-dimethylamino)ethyl methacrylate]
  • Poly[2-(N,N-dimethylamino)ethyl methacrylate] Poly[
  • the cationic polymer may be polyethyleneimine (polyethylenimine, PEI).
  • the microspheres are porous microspheres having a porous structure.
  • the size of the pores of the porous microspheres may be 1 to 10 ⁇ m, specifically, the size of the pores is 1 to 10 ⁇ m, 1 to 8 ⁇ m, 1 to 6 ⁇ m, 1 to 5 ⁇ m, 1 to 4 ⁇ m, 1 to 10 ⁇ m. It may be 3 ⁇ m, 1 to 2 ⁇ m, 2 to 10 ⁇ m, 2 to 8 ⁇ m, 2 to 6 ⁇ m, 2 to 5 ⁇ m, 2 to 4 ⁇ m, or 2 to 3 ⁇ m.
  • the number of open pores/area per 100 ⁇ m 2 of the porous microsphere may be 0.1 to 6, specifically 0.1 to 6, 0.1 to 5, 0.1 to 4, 0.1 to 3, 0.1 to 2, 0.1 to 1, 0.5 to 6, 0.5 to 5, 0.5 to 4, 0.5 to 3, 0.5 to 2, 0.5 to 1, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or 0.5 to can be 1
  • the particle size (diameter) of the porous microspheres may be 50 to 500 ⁇ m, specifically, 50 to 500 ⁇ m, 50 to 400 ⁇ m, 50 to 300 ⁇ m, 50 to 250 ⁇ m, 50 to 200 ⁇ m, 100 to 500 ⁇ m. ⁇ m, 100 to 400 ⁇ m, 100 to 300 ⁇ m, 100 to 250 ⁇ m, 100 to 200 ⁇ m, 150 to 500 ⁇ m, 150 to 400 ⁇ m, 150 to 300 ⁇ m, 150 to 250 ⁇ m, or 150 to 200 ⁇ m.
  • the size of the pores of the microspheres may be large enough to enclose bacteria or bacterial spores.
  • the microspheres may encapsulate bacteria, their dead cells, their dried products, and/or their spores, and may be encapsulated in the pores of the microspheres.
  • the bacterium is a bacterium having anticancer activity, and specifically, may be an oncolytic bacterium.
  • the oncolytic bacteria are Clostridium perfringens, Clostridium histolyticus, Clostridium butyricum , Clostridium oncolyticum, Clostridium oncolyticum , and Clostridium oncolyticum.
  • Lithium sporogenes Clostridium sporogenes
  • Clostridium novyi Clostridium novyi
  • Clostridium novyi -NT Clostridium novyi -NT
  • the microspheres may have movement and/or position of particles controlled by an external magnetic field such as a magnet.
  • the microspheres can be identified and located through magnetic resonance imaging (MRI), and specifically, they can be identified and/or located in vivo.
  • MRI magnetic resonance imaging
  • the movement of the particles can be controlled by an external magnetic field, and the position in the living body can be determined through magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • the porous microspheres may be provided in a form included in a dispersion, and the dispersion may have a concentration capable of maintaining a properly dispersed state of the microspheres.
  • the dispersion may include one or more selected from carboxymethyl cellulose (CMC) and alginate (Alg).
  • the concentration of the dispersion may be 3 wt% or less, specifically 0.1 to 3 wt%, 0.1 to 2.5 wt%, 0.1 to 2 wt%, 0.5 to 3 wt%, 0.5 to 2.5 wt%, 0.5 to 2 wt% %, 1 to 3 wt%, 1 to 2.5 wt% or 1 to 2 wt%.
  • the porous microspheres may be prepared by the method described below.
  • Another aspect is 1) preparing a first solution containing a biocompatible polymer and a pore-forming agent; 2) preparing a second solution containing a surfactant; 3) preparing microspheres using the first solution and the second solution; and 4) removing the pore forming agent from the prepared microspheres.
  • the same parts as described above are also applied to the method.
  • step 1) may be a step of preparing an oil phase (first solution) by mixing and/or dissolving the biocompatible polymer and the pore-forming agent in an organic solvent.
  • the organic solvent may be used without limitation as long as it can mix and/or dissolve the biocompatible polymer and the pore-forming agent, and a highly hydrophobic and volatile organic solvent may be used as a preferred organic solvent.
  • the organic solvent may be one selected from the group consisting of chloroform, dichloromethane, dimethylformamide, ethyl acetate, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, and mixed solvents thereof.
  • the content of the organic solvent may be 1 to 99% by weight based on the weight of the total oil phase, but is not limited thereto.
  • the pore-forming agent is added to impart an open pore structure to the finally prepared porous microspheres, and is not particularly limited as long as it can be removed after manufacturing the microspheres.
  • the pore formers are camphene, camphor, naphthalene, menthol, thymol, coumarin, vanillin, salicylamide, 2-aminopyridine, t-butanol, trichloro-t-butanol, imidazole, dimethylsulfone, urea, 2- It may contain one or more selected from the group consisting of amidopyridine and undecane (UD).
  • the pore former may be undecane.
  • the first solution may include 0.1 to 5 wt% (mass percentage) of a biocompatible polymer, specifically, the biocompatible polymer is 0.1 to 5 wt%, 0.1 to 4 wt%, 0.1 to 3 wt%, 0.1 to 2 wt%, 0.1 to 1 wt%, 0.5 to 5 wt%, 0.5 to 4 wt%, 0.5 to 3 wt%, 0.5 to 2 wt%, 0.5 to 1 wt%, 0.6 to 2 wt% or 0.6 to 2 wt% It may be included in a concentration of 1 wt%.
  • the first solution may include 0.1 to 10 wt% of the pore former, and specifically, 0.1 to 10 wt%, 0.1 to 8 wt%, 0.1 to 6 wt%, or 0.1 to 4 wt% of the pore former. %, 1 to 10 wt%, 1 to 8 wt%, 1 to 6 wt%, 1 to 4 wt%, 2 to 10 wt%, 2 to 8 wt%, 2 to 6 wt% or 2 to 4 wt% It may be included in concentration.
  • the pore structure of the porous microspheres can be controlled by adjusting the content of the pore-forming agent, specifically, the ratio of the pore-forming agent and the biocompatible polymer.
  • the first solution may include the pore-forming agent and the biocompatible polymer in a ratio (w:w) of 1:1 to 6:1, specifically 1:1 to 6:1, 1 :1 to 5.83:1, 1:1 to 5.5:1, 1:1 to 5:1, 1:1 to 4.5:1, 1:1 to 4:1, 1:1 to 3.5:1, 1:1 to 3:1, 2:1 to 6:1, 2:1 to 5.83:1, 2:1 to 5.5:1, 2:1 to 5:1, 2:1 to 4.5:1, 2:1 to 4 :1, 2:1 to 3.5:1, 2:1 to 3:1, 2.5:1 to 6:1, 2.5:1 to 5.83:1, 2.5:1 to 5.5:1, 2.5:1 to 5:1 , 2.5:1 to 4.5:1, 2.5:1 to 4:1, 2.5:1 to 3.5:1, 2.5:1 to 3:1, 3:1 to 6:1, 3:1 to 5.83:1, 3 :1 to 5.5:1, 3:1 to 5:1, 3:1 to 4.5:1, 3:1 to 4:1, or 3:1 to 3.5:1.
  • the first solution may further include magnetic nanoparticles.
  • the first solution may contain 0.01 to 0.1 wt% of magnetic nanoparticles, and specifically, 0.01 to 0.1 wt%, 0.01 to 0.08 wt%, 0.01 to 0.06 wt%, or 0.01 to 0.04 wt% of the magnetic nanoparticles. %, it may be included in a concentration of 0.02 to 0.1 wt%, 0.02 to 0.08 wt%, 0.02 to 0.06 wt% or 0.02 to 0.04 wt%.
  • the first solution may include a biocompatible polymer, a pore forming agent, an organic solvent, and magnetic nanoparticles.
  • step 2) may be a step of preparing an aqueous phase (second solution) by mixing and/or dissolving a surfactant in a hydrophilic solvent.
  • the hydrophilic solvent may be water, C1-4 alcohol or a mixed solvent thereof, but is not limited thereto.
  • the second solution is an aqueous phase and may contain a surfactant to adjust the interface between the oil phase polymer solution and the hydrophilic solvent.
  • a surfactant any surfactant having a hydrophilic-lipophilic balance (HLB) value of 10 or more may be used.
  • the surfactant may include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl butyral, polyvinyl methyl ether, polyvinyl ether, and mixtures thereof, and may specifically include polyvinyl alcohol.
  • the amount of the surfactant may be preferably 0.1 to 10% by weight in the aqueous phase in consideration of the particle size of the porous microspheres to be produced.
  • the second solution may include 0.1 to 5 wt% of a surfactant, specifically, the surfactant is 0.1 to 5 wt%, 0.1 to 4 wt%, 0.1 to 3 wt%, 0.1 to 2 wt%, 0.1 to 1 wt%, 0.5 to 5 wt%, 0.5 to 4 wt%, 0.5 to 3 wt%, 0.5 to 2 wt%, 0.5 to 1 wt%, 1 to 5 wt%, 1 to 4 wt%, 1 to 2 wt% It may be included in a concentration of 3 wt% or 1 to 2 wt%.
  • the surfactant is 0.1 to 5 wt%, 0.1 to 4 wt%, 0.1 to 3 wt%, 0.1 to 2 wt%, 0.1 to 1 wt%, 0.5 to 5 wt%, 0.5 to 4 wt%, 0.5 to 3 wt%, 0.5 to 2 wt%, 0.5 to
  • the second solution may include a hydrophilic solvent and a surfactant.
  • Steps 1) and 2) may be performed sequentially, in reverse order, or simultaneously.
  • step 3) is to prepare microspheres using the first solution and the second solution, and specifically, a) mixing the first solution and the second solution to form an emulsion, and b) ) obtaining microspheres from the emulsion.
  • the step a) may be to prepare oil-in-water emulsions by using the first solution as a discontinuous phase and flowing the second solution into a fluid device as a continuous phase.
  • the flow rate of the discontinuous phase may be set to 0.01 to 1 mL/min, specifically 0.01 to 1 mL/min, 0.01 to 0.8 mL/min, 0.01 to 0.5 mL/min, and 0.01 to 0.3 mL/min.
  • the flow rate of the continuous phase may be set to 0.5 to 5 mL/min, specifically 0.5 to 5 mL/min, 0.5 to 4 mL/min, 0.5 to 3 mL/min, and 0.5 to 2 mL/min.
  • the step b) is to prepare microspheres including the biocompatible polymer and the pore-forming agent by removing the organic solvent from the emulsion, and the organic solvent may be removed by evaporation.
  • Step 4) may include forming pores on the surface and/or inside of the body of the microspheres by removing the pore-forming agent from the microspheres containing the biocompatible polymer and the pore-forming agent.
  • Removal and/or elution of the pore-forming agent from the microspheres may include lyophilization, sublimation under atmospheric conditions, and/or a solvent capable of dissolving the pore-forming agent.
  • the step of removing the pore forming agent may be performed for 10 minutes to 100 hours, but is not limited thereto.
  • the method may further include drying the obtained porous microspheres, and the drying may include lyophilization.
  • the method may further include modifying or coating the surface of the prepared microspheres with a cationic polymer.
  • Microspheres prepared by the above method can effectively enclose bacteria or bacterial spores. Accordingly, the method may further include encapsulating bacteria or bacterial spores.
  • Another aspect is 1) the porous microspheres; and 2) anticancer microspheres comprising oncolytic bacteria or their spores.
  • the same parts as described above also apply to the microspheres.
  • the anticancer microspheres may have a form in which tumor lytic bacteria and/or their spores are encapsulated in pores of the porous microspheres.
  • the porous microspheres have excellent encapsulation efficiency of oncolytic bacteria and/or their spores, and can also effectively release tumor lytic bacteria and/or their spores.
  • Another aspect is to provide a pharmaceutical composition for treating or preventing cancer comprising the anticancer microspheres.
  • the same parts as described above also apply to the composition.
  • the term "cancer” refers to a tumor that grows abnormally due to uncontrolled excessive growth of body tissue, or a disease that forms a tumor.
  • the cancer is gastric cancer (intestinal gastric cancer, diffuse gastric cancer), liver cancer, lung cancer, pancreatic cancer, non-small cell lung cancer, colon cancer, bone cancer, skin cancer, head or neck cancer, skin or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, colon Cancer, perianal cancer, colon cancer, breast cancer, cervical cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, Soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureteral cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system
  • treatment refers to all activities that improve or beneficially change the symptoms of cancer disease by administration of the composition of the present invention.
  • prevention refers to any activity that suppresses or delays the onset of a cancer disease or disease by administration of the composition of the present invention.
  • the composition may include a dispersion, and the dispersion may have a concentration capable of maintaining an appropriately dispersed state of the microspheres.
  • the dispersion may include one or more selected from carboxymethyl cellulose (CMC) and alginate (Alg).
  • the concentration of the dispersion may be 3 wt% or less, specifically 0.1 to 3 wt%, 0.1 to 2.5 wt%, 0.1 to 2 wt%, 0.5 to 3 wt%, 0.5 to 2.5 wt%, 0.5 to 2 wt% %, 1 to 3 wt%, 1 to 2.5 wt% or 1 to 2 wt%.
  • the pharmaceutical composition may include a pharmaceutically acceptable carrier.
  • the "pharmaceutically acceptable carrier” may refer to a carrier or diluent that does not inhibit the biological activity and properties of the compound to be injected without irritating living organisms.
  • the meaning of “pharmaceutically acceptable” means that the application (prescription) does not have toxicity more than is adaptable without inhibiting the activity of the active ingredient.
  • Any type of carrier that can be used in the pharmaceutical composition may be used as long as it is commonly used in the art and is pharmaceutically acceptable.
  • Non-limiting examples of the carrier include lactose, dextrose, maltodextrin, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, glycerol, ethanol, starch, gum acacia, alginates, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, or Mineral oil etc. are mentioned.
  • the pharmaceutical composition may be prepared as an oral formulation or parenteral formulation according to the route of administration by a conventional method known in the art, including a pharmaceutically acceptable carrier in addition to the active ingredient.
  • the pharmaceutical composition may be formulated and used in the form of oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories or sterile injection solutions according to conventional methods.
  • the pharmaceutical composition When formulating the pharmaceutical composition, it may be prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, or surfactants, but may not be limited thereto.
  • diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, or surfactants, but may not be limited thereto.
  • suitable pharmaceutically acceptable carriers include sugars such as lactose, glucose, sucrose, dextrose, sorbitol, mannitol, and xylitol, starches such as corn starch, potato starch, and wheat starch, cellulose, methylcellulose, ethylcellulose, Celluloses such as sodium carboxymethylcellulose and hydroxypropylmethylcellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate, mineral oil, malt, gelatin, talc, polyol, vegetable oil etc. are mentioned.
  • diluents and/or excipients such as fillers, extenders, binders, wetting agents,
  • the pharmaceutical composition When the pharmaceutical composition is prepared as a parenteral formulation, it may be formulated in the form of injection, transdermal administration, nasal inhalation, and suppository along with a suitable carrier according to a method known in the art.
  • suitable carriers include sterile water, ethanol, polyols such as glycerol or propylene glycol, or mixtures thereof, preferably Ringer's solution, PBS (phosphate buffered saline) containing triethanolamine or sterilization for injection water, isotonic solutions such as 5% dextrose, and the like can be used.
  • transdermal formulation When formulated as a transdermal formulation, it may be formulated in the form of ointments, creams, lotions, gels, external solutions, pastas, liniments, air rolls, and the like.
  • a suitable propellant such as dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, etc.
  • the base when formulated into suppositories, the base is Witepsol ( witepsol), tween 61, polyethylene glycols, cacao fat, laurin fat, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearates, sorbitan fatty acid esters, and the like may be used.
  • the pharmaceutical composition may be administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat or prevent a disease with a reasonable benefit/risk ratio applicable to medical treatment or prevention, and the effective dose level is dependent on the severity of the disease, the activity of the drug, and the patient's Age, weight, health, sex, sensitivity to the drug of the patient, administration time of the composition of the present invention used, route of administration and excretion rate, treatment period, factors including drugs used in combination or simultaneous use with the composition of the present invention used, and others It can be determined according to factors well known in the medical field.
  • the pharmaceutical composition of the present invention may be administered alone or in combination with components known to exhibit therapeutic effects on known cancer diseases. It is important to administer the amount that can obtain the maximum effect with the minimum amount without side effects in consideration of all the above factors.
  • the dose of the pharmaceutical composition can be determined by those skilled in the art in consideration of the purpose of use, the degree of addiction of the disease, the patient's age, weight, sex, history, or the type of substance used as an active ingredient.
  • the pharmaceutical composition of the present invention can be administered at about 0.1 ng to about 1,000 mg/kg, preferably 1 ng to about 100 mg/kg per adult, and the frequency of administration of the composition herein is particularly Although not limited, it may be administered once a day or administered several times by dividing the dose.
  • the dosage or frequency of administration is not intended to limit the scope of the present application in any way.
  • Another aspect is to provide a method for treating or preventing cancer, comprising administering the anti-cancer microspheres or pharmaceutical composition to a subject.
  • the same parts as described above are also applied to the method.
  • the term "subject” may include, without limitation, mammals, birds, reptiles, farmed fish, etc., including dogs, cats, mice, livestock, humans, etc. that have or are at risk of developing cancer diseases, and , the subject may be a human.
  • the pharmaceutical composition may be administered singly or in multiple doses in a pharmaceutically effective amount.
  • the composition may be formulated and administered in the form of a liquid, powder, aerosol, injection, infusion (intravenous gel), capsule, pill, tablet, suppository or patch.
  • the administration route of the anticancer microspheres or the pharmaceutical composition containing them may be administered through any general route as long as it can reach the target tissue.
  • the pharmaceutical composition is not particularly limited thereto, but as desired, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, transdermal patch administration, oral administration, intranasal administration, intrapulmonary administration, intrarectal administration, etc. It can be administered through the route of.
  • oral administration can be administered in an unformulated form, and since the active ingredients of the pharmaceutical composition can be denatured or decomposed by gastric acid, the oral composition is formulated to coat the active agent or protect it from degradation in the stomach. It can also be administered orally in the form of a localized form or an oral patch.
  • the composition may be administered by any device capable of transporting active substances to target cells.
  • Porous microspheres according to one aspect have excellent bacterial spore encapsulation efficiency, and due to the magnetic nanoparticles contained therein, they can improve targeting ability to tumor sites using an external magnetic field induction device and monitor movement in the human body through bio-imaging. there is.
  • 1 is a diagram showing SEM images of microspheres according to the UD/PLA ratio.
  • n 100, *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001; ns, not significant ).
  • 3 is a view showing SEM images of microsphere pores according to the UD/PLA ratio.
  • 4A is a diagram showing the pore size of the microspheres
  • FIG. 5 shows brightfield and SEM images of C. novyi -NT spores separated by a Percoll density gradient.
  • FIG. 6 is a view showing the reactivity of microspheres containing magnetic nanoparticles to a magnet.
  • FIG. 7 is a diagram showing the mobility of microspheres including magnetic nanoparticles by a magnet.
  • FIG. 8 is a diagram showing a T2-weighted magnetic resonance (MR) phantom image of microspheres including magnetic nanoparticles.
  • MR magnetic resonance
  • FIG. 9 is a diagram showing a T2-weighted magnetic resonance (MR) phantom image of microspheres not containing magnetic nanoparticles.
  • FIG. 10 shows T2-weighted MR images of CT26 tumor-bearing mice before (top) and after (bottom) intratumoral injection of microspheres containing magnetic nanoparticles. Red arrows indicate the MR signal of microspheres at the tumor site.
  • 11 is a view showing the results of confirming the dispersion force of microspheres in CMC.
  • FIG. 12 is a view showing the results of confirming the dispersion force of microspheres in alginate.
  • FIG. 14 is a diagram showing the encapsulation efficiency of FITC-labeled bacterial spores through fluorescence images (MS: non-porous microspheres, PMS: porous microspheres, PEI-PMS: porous microspheres modified with cationic polymers).
  • 15 is a diagram confirming spore germination efficiency after 24 hours in microspheres encapsulated with bacterial spores.
  • 16 is a view confirming the level of colonies of spores released from microspheres.
  • 17A is a diagram showing the result of confirming the cytotoxicity of PEI-PMS to CT26 cells
  • B is a diagram showing the result of confirming the cytotoxicity of C. novyi -NT supernatant to CT26 cells
  • C is a diagram showing the result of confirming the cytotoxicity of C. novyi -NT supernatant to CT26 cells.
  • 18A is E. coli DH5 ⁇
  • B is a diagram showing the result of confirming the cytotoxicity of the supernatant to CT26 cells
  • 19 is a view showing images of live and dead cells according to C. novyi -NT supernatant treatment in CT26 cells.
  • 20A and B are views showing the results of confirming cell viability of CT26 cells according to C. novyi -NT supernatant treatment by colony formation assay.
  • 21 is a view showing the apoptotic/necrotic cell population (%) of CT26 cells treated with C. novyi -NT supernatant as a result of flow cytometry.
  • FIG. 22 is a graph showing the results of apoptotic/necrotic cell population (%) of CT26 cells treated with C. novyi -NT supernatant.
  • 23A is a diagram showing the result of analyzing the ATP released by treating CT26 cells with C. novyi -NT supernatant
  • 24A shows the result of analyzing CD80-expressing cells according to C. novyi -NT supernatant treatment in indirect co-culture of CT26 cells and RAW264.7 cells
  • B shows the result of analyzing CD86-expressing cells
  • 25 is a schematic diagram of the initiation of an immune response by C. novyi -NT spores.
  • 26 is a schematic diagram of microspheres using electrostatic attraction between cationic polymers and bacterial spores.
  • FIG. 27 is a diagram showing the tumor-targeting functionality of the microspheres of the present invention by an external magnetic field.
  • a fluidic device for fabricating microspheres is Tygon tube (inner diameter 1/32 inch, outer diameter 3/32 inch), glass capillary tube (5922-10, 5 IN PIPETS microcapillary, Ace Glass, USA) ), and a needle (30 G).
  • UD/PLA ratio (w:w) UD (wt.%) PLA (wt.%) IONP (wt.%) 0 0 One 0.03 3 3 One 0.03 3.5 3.5 One 0.03 4.375 3.5 0.8 0.03 5 3.5 0.7 0.03 5.83 3.5 0.6 0.03
  • a syringe pump was used to set flow rates of the discontinuous phase and the continuous phase to 0.1 mL/min and 1.5 mL/min, respectively.
  • the emulsion collected in the collection phase was converted to UD/PLA microspheres by evaporating the DCM overnight, and the microspheres were washed three times with deionized water (DW) to remove residual UD and PVA.
  • DW deionized water
  • the UD/PLA microspheres were gently agitated with ethanol to infiltrate the ethanol to dissolve and remove the UD. Thereafter, the microspheres were lyophilized to finally prepare porous PLA microspheres.
  • iron oxide nanoparticles 423.6 mg of iron(III) acetylacetonate and 120 mg of zinc chloride were mixed in a 50 mL round bottom flask to synthesize iron oxide nanoparticles (IONP). put in Then, 1.2 mL of oleic acid, 4.8 mL of oleylamine, and 4.8 mL of trioctylamine were added to the flask. The flask inlet was connected to a nitrogen gas inlet and stirred at 300 rpm for 3 minutes. A flask connected to a heating mantle was gradually heated at 200° C. for 25 minutes and maintained at a constant temperature of 200° C. for 1 hour.
  • IONP iron oxide nanoparticles
  • FIG. 1 shows that uniform porous microspheres were prepared by the O/W emulsion method using a fluidic device.
  • the microsphere size and pore size can be controlled through the ratio of UD/PLA, and specifically, as the ratio of UD in UD/PLA increases, the size of microspheres and pore size increase can (Fig. 2).
  • the size of bacterial spores is generally about 1.5 um (Fig. 5), microspheres having a stable and uniform pore size and a UD/PLA ratio of 3 (UD/PLA) having a pore size capable of sufficient spore encapsulation It can be seen that PLA 3) is suitable.
  • a mouse tumor model was prepared by subcutaneously inoculating CT26 colorectal cancer cells into mice. After 8 days, when the tumors grew, porous microspheres containing magnetic nanoparticles were intratumorally injected, followed by magnetic resonance imaging. As a result, it was confirmed that a T2-weighted signal was seen when porous microspheres containing magnetic nanoparticles were injected into the tumor (FIG. 10).
  • Example 5 Evaluation of dispersion force of microspheres having a porous structure
  • UD/PLA 3 microspheres were sterilized by soaking in 70% ethanol for 24 hours, ethanol was replaced with distilled water, and the process of washing the ethanol through ultrasonic waves was repeated three times. Finally, various concentrations of carboxymethyl cellulose (CMC), alginate , Alg) microspheres at a concentration of 10 mg/mL were dispersed in the solution.
  • CMC carboxymethyl cellulose
  • the microspheres could not be dispersed through voltexing, and were dispersed using ultrasonic waves.
  • ultrasonic waves it was confirmed that the concentration of CMC and alginate should be carried out at a maximum of 2% or less because there is a concern that bacteria may be eliminated during subsequent bacterial encapsulation.
  • the time at which the microspheres in the dispersed state start to sink was shown (red arrow), and it was confirmed that the sinking time was delayed as the concentration of the dispersion increased (FIG. 11 and FIG. 12).
  • Example 6 Fabrication of porous microspheres coated with cationic polymers
  • PEI polyethyleneimine
  • porous microspheres were dispersed in a 10 wt % PEI aqueous solution and coated for 1 hour at room temperature.
  • the PEI coated porous microspheres were washed 5 times with distilled water.
  • the surface morphology of the microspheres was observed with a scanning electron microscope (S-4800, HITACHI, JAPAN), and the average size of particles and pores was calculated by analyzing at least 100 microspheres for each sample using ImageJ software (USA). did.
  • Example 7 Evaluation of bacterial encapsulation efficiency and release performance of porous microspheres modified with cationic polymers
  • the UD/PLA 3 condition was determined as a carrier model in order to prepare uniformly porous microspheres having pores larger than bacterial spores.
  • MS non-porous microspheres
  • PMS UD / PLA 3 porous microspheres
  • PEI-PMS UD / PLA 3 porous microspheres
  • Clostridium novyi -NT Clostridium novyi -NT, C. novyi -NT
  • C. novyi -NT spores were 5 g Na 2 HPO 4 per 1 L, 30 g peptone, They were cultured anaerobically and at 37 °C in a sporulation medium containing 0.5 g L-cysteine, 10 g maltose and 5% wt/vol cooked meat particles (Difco). Spores cultured for at least 2 weeks were isolated by percoll density gradients (55 and 70%).
  • FITC-labeled C. novyi -NT spores 100 uL FITC DMSO solution (1 mg/mL) was added to 1 mL C. novyi -NT solution (1 ⁇ 10 9 spores) and stirred overnight at 25 °C. . Thereafter, the reaction solution was centrifuged at 4 °C and 8000 rpm for 10 minutes and washed three times with PBS.
  • the spore-encapsulated PEI-PMS microsphere suspension was inoculated into the RCM broth. After removing the supernatant containing unencapsulated spores, the microspheres were re-dispersed in 1 mL of PBS, inoculated into RCM liquid medium, and absorbance was measured after 24 hours.
  • an anaerobic bacterium, EC-oxyrase (Oxyrase Inc.) was added to RCM broth at 10% v/v and then cultured in BD GasPak. Then, after 4, 8, and 12 hours, 200 uL of the culture medium was spread on RCM solid medium, and colony images were obtained after 24 hours.
  • Example 8 Cytotoxicity evaluation of porous microspheres encapsulated with bacterial spores
  • CT26 cells (3 ⁇ 10 5 cells/mL) or RAW264.7 cells (4 ⁇ 10 5 cells/mL) were seeded in a 24-well plate and cultured overnight. Thereafter, the C. novyi -NT supernatant and the E. coli DH5 ⁇ supernatant were treated at the same concentration. After 4 hours, cells were washed with PBS and CCK-8 solution was added. After 1 hour, cytotoxicity was assessed using a microplate reader with the CCK-8 assay.
  • CT26 cells (3 ⁇ 10 5 cells/mL) were seeded in a 12-well plate and cultured overnight. Thereafter, the cells were treated with C. novyi -NT culture medium at different concentrations. After 4 hours, cells were stained using the FITC Annexin V Apoptosis Detection Kit with 7-AAD (Biolegend) and then analyzed by flow cytometry (CytoFLEX S, Beckman Coulter, Miami, FL, USA).
  • CT26 cells (3 ⁇ 10 5 cells/mL) were seeded in a 12-well plate and cultured overnight. Thereafter, the cells were treated with C. novyi -NT culture medium at different concentrations. After 4 hours, the cell pellet was washed with PBS and stained with Alexa Fluor 488-conjugated calreticulin antibody (dilution 1:500) at 4°C for 30 minutes to stain the calreticulin molecule expressed on the cell surface. processed. After washing the cells with PBS, the cells were redispersed in a PBS solution containing 2% FBS and analyzed by flow cytometry.
  • CT26 cells (3 ⁇ 10 5 cells/mL) were seeded in a 12-well plate and cultured overnight. Thereafter, the cells were treated with C. novyi -NT culture medium at different concentrations. After 1 hour, the amount of ATP released from the cell medium was measured using an ATP bioluminescence kit.
  • M1 macrophages are known to play a positive role in the elimination of pathogens and tumor cells and to activate the adaptive immune response by expressing high levels of antigen-presenting MHC complexes.
  • CT26 colorectal cancer cells (3 ⁇ 10 5 cells/mL) and RAW264.7 cells (3.5 ⁇ 10 5 cells/mL) were seeded in a 12-well plate and indirectly co-cultured.
  • CT26 colorectal cancer cells were treated with C. novyi -NT supernatant at each concentration and cultured for 4 hours. Thereafter, the culture medium of CT26 colorectal cancer cells was treated with RAW264.7 cells and cultured for 24 hours.
  • the cell pellet was washed with PBS, blocked with Fc receptors for 10 minutes at 4° C., and the cells were washed with PBS.
  • CD80 and CD86 molecules expressed on the cell surface were treated with APC-conjugated CD80 antibody, PE-conjugated CD86 antibody and zombie aqua dye (diluted 1:500) for 1 hour at 4°C for staining. did After washing the cells with PBS, the cells were redispersed in a PBS solution containing 2% FBS and analyzed by flow cytometry.
  • Bacterial-mediated tumor treatment which applies oncolytic bacteria to cancer treatment, has a disadvantage in that the proportion of spores delivered to the tumor is small, and when the delivered spores escape into the bloodstream, they can cause harmful side effects such as systemic infection. Therefore, it is important to control the concentration of bacteria and target them to tumors for the therapeutic effect and reduction of side effects of the bacteria-mediated tumor treatment.
  • the surface of the porous microspheres of the present invention is modified with a cationic polymer, negatively charged bacterial spores can be effectively encapsulated through electrostatic attraction (FIG. 26).
  • the microsphere of the present invention contains magnetic nanoparticles, it has the advantage of being controllable with an external magnetic field and confirming its location in the living body through MRI (FIG. 27).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a porous microsphere having anticancer bacteria, etc. loaded thereto and a use thereof. A porous microsphere according to an aspect has excellent bacterial spore encapsulation efficiency and exhibits improved ability to targeting tumor sites due to the magnetic nanoparticle loaded therein with the aid of an external magnetic navigation system, and its movement in the human body can be monitored by bio-imaging.

Description

항암 박테리아 및 자성 나노입자를 포함하는 마이크로 로봇 및 이의 제조방법Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method thereof
본 발명은 항암 박테리아 등을 탑재할 수 있는 다공성 마이크로스피어, 이의 제조방법 및 이의 용도에 관한 것이다.The present invention relates to porous microspheres capable of loading anti-cancer bacteria and the like, a manufacturing method thereof, and a use thereof.
암은 2008년에 760만명의 사망(모든 사망의 약 13%)을 차지하는, 전세계 사망의 주요 원인이다. 암은 신체의 특정 부위에 영향을 미칠 수 있는 질병의 거대 그룹에 대한 일반적인 용어이다. 사용된 다른 용어는 악성 종양 및 신생물이다. 암은 비정상적인 세포의 조절되지 않은 성장 및 확산이다. 성장은 흔히 주변 조직을 침해하여 먼 부위로 전이될 수 있다. 전이는 암에 의한 사망의 주요 원인이다. 전세계 암에 의한 사망은 지속적으로 증가되어 2030년에는 1310만명을 사망에 이르게 할 것으로 추정된다.Cancer is the leading cause of death worldwide, accounting for 7.6 million deaths in 2008 (about 13% of all deaths). Cancer is a general term for a large group of diseases that can affect specific areas of the body. Other terms used are malignancy and neoplasia. Cancer is the uncontrolled growth and spread of abnormal cells. Growths often invade surrounding tissue and can metastasize to distant sites. Metastasis is the leading cause of death from cancer. Cancer-related deaths worldwide continue to rise and are estimated to kill 13.1 million people by 2030.
암 치료는 수술, 방사선치료요법 및/또는 화학치료요법과 같은 하나 이상의 중재의 조심스러운 선택을 필요로 한다. 당해 목표는 환자의 삶의 질을 개선시키는 한편 질병을 치유하거나 수명을 상당히 연장시키는 것이다. X-선, 감마-선, UV-선, 레이저 광, 극초단파, 전자 빔 및 예를 들면, 중성자, 탄소 이온 및 양성자의 입자 빔과 같은 다양한 형태의 방사선을 사용하여 악성 질병을 치료하여 왔다. 이러한 방사선 중 일부는 방사선 감작화제와 함께, 이러한 적용에 사용되어 왔다. 전자기 및 이온화 방사선은 실제로 세포의 DNA 분자를 파괴함으로써 성장 및 분화로부터 상기 세포를 보호할 수 있다. 당해 효과는 규정된 용적내에서 이동하여 당해 용적내로 에너지 침착물을 생성하는 전자 및 유리 라디칼을 방출하는 이온화를 생성할 입자 또는 파동의 작용에 의해 설명될 수 있다.Cancer treatment requires careful selection of one or more interventions such as surgery, radiotherapy and/or chemotherapy. The goal is to cure disease or significantly prolong life while improving the quality of life of patients. Various forms of radiation such as X-rays, gamma-rays, UV-rays, laser light, microwaves, electron beams and particle beams of eg neutrons, carbon ions and protons have been used to treat malignant diseases. Some of these radiations have been used in these applications, along with radiation sensitizers. Electromagnetic and ionizing radiation can actually protect cells from growth and differentiation by destroying their "DNA" molecules. This effect can be explained by the action of particles or waves that will move within a defined volume and create ionization that releases electrons and free radicals that create energetic deposits into that volume.
한편, 나노기술(Nano Technology; NT)은 10억분의 1미터인 나노미터 크기의 물질을 조작하는 기술이다. 원자, 분자 및 초분자 물질을 합성하고, 조립, 제어하며 혹은 그 성질을 측정, 규명하는 기술을 말한다. 나노 기술은 표면 과학(Surface Science), 유기 화학(Organic Chemistry), 분자 생물학(Molecular Biology), 반도체 물리학(Semiconductor Physics), 미세 제조(Microfabrication) 등의 다양한 과학 분야에 포함되어 이용 범위가 매우 넓다. On the other hand, Nano Technology (NT) is a technology for manipulating nanometer- sized materials, which is one billionth of a meter. It refers to the technology of synthesizing, assembling, controlling, or measuring and identifying the properties of atomic , molecular and supramolecular materials. Nanotechnology is included in various scientific fields such as surface science, organic chemistry, molecular biology, semiconductor physics, and microfabrication, and has a very wide range of applications.
이에, 본 발명자들은 항암 박테리아 및 자성 나노입자가 탑재된 다공성 마이크로스피어를 개발하였으며, 상기 마이크로스피어는 효과적인 암 치료를 위해 종양 부위를 표적 및 제어할 수 있음을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors developed porous microspheres loaded with anticancer bacteria and magnetic nanoparticles, and completed the present invention by confirming that the microspheres can target and control tumor sites for effective cancer treatment.
일 양상은 생체적합성 고분자 및 양이온성 고분자를 포함하는, 다공성 마이크로스피어를 제공한다.One aspect provides porous microspheres comprising a biocompatible polymer and a cationic polymer.
다른 양상은 1) 생체적합성 고분자 및 기공형성제를 포함하는 제1 용액을 제조하는 단계; 2) 계면활성제를 포함하는 제2 용액 제조하는 단계; 3) 상기 제1 용액 및 제2 용액을 이용하여 마이크로스피어를 제조하는 단계; 및 4) 상기 제조된 마이크로스피어에서 기공형성제를 제거하는 단계를 포함하는, 다공성 마이크로스피어 제조방법을 제공한다.Another aspect is 1) preparing a first solution containing a biocompatible polymer and a pore-forming agent; 2) preparing a second solution containing a surfactant; 3) preparing microspheres using the first solution and the second solution; and 4) removing the pore-forming agent from the prepared microspheres.
또 다른 양상은 상기 다공성 마이크로스피어 및 종양용해(oncolytic) 박테리아 또는 이의 포자를 포함하는, 항암 마이크로스피어를 제공한다.Another aspect provides anticancer microspheres comprising the porous microspheres and oncolytic bacteria or spores thereof.
또 다른 양상은 상기 항암 마이크로스피어를 포함하는, 암 치료 또는 예방용 약학 조성물을 제공한다.Another aspect provides a pharmaceutical composition for treating or preventing cancer, including the anticancer microspheres.
또 다른 양상은 상기 암 치료 또는 예방용 약학 조성물을 개체에 투여하는 단계를 포함하는, 암을 치료 또는 예방하는 방법을 제공한다.Another aspect provides a method for treating or preventing cancer, comprising administering the pharmaceutical composition for treating or preventing cancer to a subject.
일 양상은 생체적합성 고분자 및 양이온성 고분자를 포함하는, 다공성 마이크로스피어를 제공하는 것이다.One aspect is to provide porous microspheres comprising a biocompatible polymer and a cationic polymer.
본 명세서에서의 용어 "마이크로스피어(microspheres)"는 일반적으로 1 내지 1000 ㎛의 직경을 가지는 구의 형태를 이루는 물질을 의미한다. 이때 구는 한 점에서 같은 거리에 있는 모든 점으로 이루어진 입체 모양이라는 수학적 정의의 구뿐 아니라, 외견상 둥글게 생긴 형상의 것을 모두 포괄하는 의미로 사용될 수 있다. 즉, 측정 내지 제조 과정에서 발생되는 오차 범위를 포함할 수 있다. The term "microspheres" used herein generally means a material in the form of a sphere having a diameter of 1 to 1000 μm. At this time, the sphere can be used in the sense of encompassing not only the sphere of mathematical definition, which is a three-dimensional shape consisting of all points at the same distance from one point, but also those of an outwardly round shape. That is, it may include an error range generated during the measurement or manufacturing process.
본 명세서에서의 용어 "생체적합성 고분자(biocompatible polymer)"는 생체 내에 투여하였을 때 높은 세포독성 및 염증반응 등을 유발하지 않는 생체 내 안전성이 확보된 고분자를 의미하며, 생분해성 고분자를 의미하는 것일 수 있다.As used herein, the term "biocompatible polymer" refers to a polymer having in vivo safety that does not cause high cytotoxicity and inflammatory reactions when administered in vivo, and may refer to a biodegradable polymer. there is.
상기 생체적합성 고분자는 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리락타이드-코-글리콜라이드(PLGA), 폴리카프로락톤(PCL), 폴리에틸렌글리콜 (PEG), 폴리아미노산, 폴리락타이트, 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리언하이드라이드, 폴리오르소에스테르, 폴리히드록시발레이트, 폴리히드록시부티레이트, 히아루론산, 셀룰로오스, 헤파린, 콜라겐, 알지네이트, 황산 콘드로이친, 풀루란 및 키토산 중에서 선택되는 어느 하나; 이들 둘 이상이 블랜딩된 고분자; 및 이들 둘 이상의 공중합체로 이루어진 군 중에서 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다. The biocompatible polymer is polylactic acid (PLA), polyglycolic acid (PGA), polylactide-co-glycolide (PLGA), polycaprolactone (PCL), polyethylene glycol (PEG), polyamino acid, polylactite, polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, polyorthoester, polyhydroxyvalate, polyhydroxybutyrate, hyaluronic acid, cellulose, heparin, collagen, alginate, chondroitin sulfate, pullulan and Any one selected from chitosan; a polymer in which two or more of these are blended; And it may be selected from the group consisting of these two or more copolymers, but is not limited thereto.
일 구현예에 있어서, 상기 생체적합성 고분자는 폴리락트산(PLA)을 포함하는 것일 수 있다.In one embodiment, the biocompatible polymer may include polylactic acid (PLA).
상기 다공성 마이크로스피어는 자성 나노 입자를 추가로 포함하는 것일 수 있다.The porous microspheres may further include magnetic nanoparticles.
본 명세서에서의 용어 "자성 나노입자(hydrophilic amine-coated magnetic nanoparticle)"는 자성을 띄는 나노미터 크기의 구조 또는 물질을 의미한다. 상기 용어 "자성"은 물질이 나타내는 자기적인 성질을 의미한다. 모든 물질은 자기장(magnetic field)과 상호작용하여 인력(attractive force) 또는 척력(repulsive force)이 발생된다. 즉, 물질에 자기장을 가하면 자화(magnetization)되고, 상기 물체가 자화되는 양상에 따라 강자성체, 상자성체, 반자성체, 페리자성체 등으로 구분된다. 상기 용어 "나노입자"는 나노미터(nm)의 크기를 갖는 구조 또는 물질을 의미한다. 나노미터의 크기란 마이크론 미터(10-6) 크기를 1,000 분의 1로 축소한 것으로, 물질의 크기가 나노미터 수준으로 작아지면 다양하고 특이한 물리적, 화학적, 기계적 및 전자적 특성을 나타내게 된다.The term "hydrophilic amine-coated magnetic nanoparticle" used herein refers to a nanometer-sized structure or material exhibiting magnetic properties. The term "magnetism" refers to the magnetic properties exhibited by a material. All materials interact with a magnetic field to generate an attractive or repulsive force. That is, when a magnetic field is applied to a material, it is magnetized, and the material is classified into a ferromagnetic material, a paramagnetic material, a diamagnetic material, a ferrimagnetic material, and the like, depending on how the material is magnetized. The term "nanoparticle" refers to a structure or material having a size of nanometers (nm). The size of a nanometer is a reduction of the size of a micron meter (10-6) to 1/1,000, and when the size of a material is reduced to the nanometer level, it exhibits various and unique physical, chemical, mechanical and electronic properties.
상기 자성 나노입자는 철, 코발트, 니켈, 그의 산화물 및 그들의 합금으로 이루어진 군으로부터 선택된 1종 또는 2종 이상 선택될 수 있으며, 이에 제한되는 것은 아니다.The magnetic nanoparticles may be one or two or more selected from the group consisting of iron, cobalt, nickel, oxides thereof, and alloys thereof, but are not limited thereto.
상기 자성 나노입자는 철로 구성된 것으로서, Fe2O3, Fe3O4, Fe4O5, Fe5O6, Fe5O7, Fe13O19, 및 Fe25O32 중에서 선택된 산화철 및 CoFe2O4, 및 MnFe2O4중에서 선택된 페라이트(ferrite)로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다. The magnetic nanoparticles are composed of iron, iron oxide selected from among Fe 2 O 3 , Fe 3 O 4 , Fe 4 O 5 , Fe 5 O 6 , Fe 5 O 7 , Fe 13 O 19 , and Fe 25 O 32 and CoFe 2 It may be at least one selected from the group consisting of ferrite selected from O 4 , and MnFe 2 O 4 .
상기 다공성 마이크로스피어는 양이온성 고분자를 포함하는 것일 수 있으며, 구체적으로 상기 다공성 마이크로스피어의 표면은 양이온성 고분자로 코팅 또는 개질된 것일 수 있다.The porous microspheres may include a cationic polymer, and specifically, a surface of the porous microspheres may be coated or modified with the cationic polymer.
상기 양이온성 고분자(cationic polymer)는 폴리에틸렌이민 (polyethylenimine, PEI), 폴리아미도아민 (polyamidoamine, PAA), 폴리-L-라이신(PLL), 폴리-D-라이신(PDL), 프로타민(protamine), 폴리[2-(N,N-디메틸아미노)에틸 메타크릴산 에스테르(Poly[2-(N,N-dimethylamino)ethyl methacrylate], (PDMAEMA)), 폴리아미노에스테르(Poly(amino-co-ester, PAE), 키토산(Chitosan), 덱스트란(Dextran), 양이온성 젤라틴(Cationic gelatin), 양이온성 사이클로덱스트린(Cationic cyclodextrin) 및 폴리프로필렌이민(polypropylenimine)으로 구성된 군에서 선택된 하나 이상일 수 있다.The cationic polymer is polyethylenimine (PEI), polyamidoamine (PAA), poly-L-lysine (PLL), poly-D-lysine (PDL), protamine, poly [2-(N,N-dimethylamino)ethyl methacrylate] (Poly[2-(N,N-dimethylamino)ethyl methacrylate], (PDMAEMA)), Poly(amino-co-ester, PAE ), chitosan, dextran, cationic gelatin, cationic cyclodextrin, and polypropylenimine.
일 구현예이 있어서, 상기 양이온성 고분자는 폴리에틸렌이민 (polyethylenimine, PEI)일 수 있다.In one embodiment, the cationic polymer may be polyethyleneimine (polyethylenimine, PEI).
상기 마이크로스피어는 다공성 구조를 갖는 다공성 마이크로스피어이다.The microspheres are porous microspheres having a porous structure.
상기 다공성 마이크로스피어의 기공의 크기는 1 내지 10 ㎛일 수 있으며, 구체적으로 기공의 크기는 1 내지 10 ㎛, 1 내지 8 ㎛, 1 내지 6 ㎛, 1 내지 5 ㎛, 1 내지 4 ㎛, 1 내지 3 ㎛, 1 내지 2 ㎛, 2 내지 10 ㎛, 2 내지 8 ㎛, 2 내지 6 ㎛, 2 내지 5 ㎛, 2 내지 4 ㎛ 또는 2 내지 3 ㎛일 수 있다.The size of the pores of the porous microspheres may be 1 to 10 μm, specifically, the size of the pores is 1 to 10 μm, 1 to 8 μm, 1 to 6 μm, 1 to 5 μm, 1 to 4 μm, 1 to 10 μm. It may be 3 μm, 1 to 2 μm, 2 to 10 μm, 2 to 8 μm, 2 to 6 μm, 2 to 5 μm, 2 to 4 μm, or 2 to 3 μm.
상기 다공성 마이크로스피어의 면적 100 ㎛2 당 열린 공극(open pore/area)의 수는 0.1 내지 6일 수 있으며, 구체적으로 0.1 내지 6, 0.1 내지 5, 0.1 내지 4, 0.1 내지 3, 0.1 내지 2, 0.1 내지 1, 0.5 내지 6, 0.5 내지 5, 0.5 내지 4, 0.5 내지 3, 0.5 내지 2, 0.5 내지 1, 1 내지 6, 1 내지 5, 1 내지 4, 1 내지 3, 1 내지 2 또는 0.5 내지 1일 수 있다.The number of open pores/area per 100 μm 2 of the porous microsphere may be 0.1 to 6, specifically 0.1 to 6, 0.1 to 5, 0.1 to 4, 0.1 to 3, 0.1 to 2, 0.1 to 1, 0.5 to 6, 0.5 to 5, 0.5 to 4, 0.5 to 3, 0.5 to 2, 0.5 to 1, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or 0.5 to can be 1
상기 다공성 마이크로스피어의 입자 크기(직경)는 50 내지 500 ㎛ 일 수 있으며, 구체적으로, 50 내지 500 ㎛, 50 내지 400 ㎛, 50 내지 300 ㎛, 50 내지 250 ㎛, 50 내지 200 ㎛, 100 내지 500 ㎛, 100 내지 400 ㎛, 100 내지 300 ㎛, 100 내지 250 ㎛, 100 내지 200 ㎛, 150 내지 500 ㎛, 150 내지 400 ㎛, 150 내지 300 ㎛, 150 내지 250 ㎛ 또는 150 내지 200 ㎛일 수 있다.The particle size (diameter) of the porous microspheres may be 50 to 500 μm, specifically, 50 to 500 μm, 50 to 400 μm, 50 to 300 μm, 50 to 250 μm, 50 to 200 μm, 100 to 500 μm. μm, 100 to 400 μm, 100 to 300 μm, 100 to 250 μm, 100 to 200 μm, 150 to 500 μm, 150 to 400 μm, 150 to 300 μm, 150 to 250 μm, or 150 to 200 μm.
일 구현예에 있어서, 상기 마이크로스피어의 기공의 크기는 박테리아 또는 박테리아 포자가 봉입되기 충분한 크기일 수 있다.In one embodiment, the size of the pores of the microspheres may be large enough to enclose bacteria or bacterial spores.
상기 마이크로스피어는 박테리아, 이의 사균체, 이의 건조물 및/또는 이의 포자를 봉입할 수 있는 것일 수 있으며, 상기 마이크로스피어의 기공에 봉입하는 것일 수 있다.The microspheres may encapsulate bacteria, their dead cells, their dried products, and/or their spores, and may be encapsulated in the pores of the microspheres.
상기 박테리아는 항암 활성을 갖는 박테리아로서, 구체적으로, 종양 용해성(oncolytic) 박테리아일 수 있다.The bacterium is a bacterium having anticancer activity, and specifically, may be an oncolytic bacterium.
상기 종양 용해성 박테리아는 클로스트리듐 퍼프리젠스(Clostridium perfringens), 클로스트리듐 히스토리시쿠스(Clostridium histolyticus), 클로스트리듐 부티리큠(Clostridium butyricum), 클로스트리듐 온코리티큠(Clostridium oncolyticum), 클로스트리듐 스포로게네스(Clostridium sporogenes), 클로스트리듐 노비(Clostridium novyi) 및 클로스트리듐 노비-NT(Clostridium novyi-NT)로 구성된 군에서 선택된 하나 이상을 포함하는 것일 수 있으며, 구체적으로 클로스트리듐 노비-NT(Clostridium novyi-NT)일 수 있다.The oncolytic bacteria are Clostridium perfringens, Clostridium histolyticus, Clostridium butyricum , Clostridium oncolyticum, Clostridium oncolyticum , and Clostridium oncolyticum. Lithium sporogenes ( Clostridium sporogenes ), Clostridium novyi ( Clostridium novyi ) and Clostridium novyi -NT ( Clostridium novyi -NT) may include one or more selected from the group consisting of, specifically Clostridium It may be novyi-NT ( Clostridium novyi -NT).
상기 마이크로스피어는 자석 등의 외부 자기장에 의해 입자의 움직임 및/또는 위치가 제어되는 것일 수 있다. 또한, 상기 마이크로스피어는 자기공명영상(MRI)을 통해 식별이 가능하여 위치를 파악할 수 있으며, 구체적으로 생체 내에서의 식별 및/또는 위치 파악이 가능한 것일 수 있다.The microspheres may have movement and/or position of particles controlled by an external magnetic field such as a magnet. In addition, the microspheres can be identified and located through magnetic resonance imaging (MRI), and specifically, they can be identified and/or located in vivo.
일 구현예에 있어서, 상기 마이크로스피어는 자성 나노입자를 포함하고 있으므로, 외부 자기장에 의해 입자의 움직임이 제어될 수 있을 뿐만 아니라, 자기공명영상(MRI)를 통해 생체 내 위치의 파악이 가능하다는 장점이 있다.In one embodiment, since the microspheres contain magnetic nanoparticles, the movement of the particles can be controlled by an external magnetic field, and the position in the living body can be determined through magnetic resonance imaging (MRI). there is
상기 다공성 마이크로스피어는 분산액에 포함된 형태로 제공되는 것일 수 있으며, 상기 분산액은 마이크로스피어가 적절히 분산된 상태를 유지할 수 있는 농도일 수 있다. 구체적으로, 상기 분산액은 carboxymethyl cellulose (CMC) 및 알지네이트(alginate, Alg) 중 선택된 하나 이상을 포함하는 것일 수 있다. 또한, 상기 분산액의 농도는 3 wt% 이하일 수 있으며, 구체적으로 0.1 내지 3 wt%, 0.1 내지 2.5 wt%, 0.1 내지 2 wt%, 0.5 내지 3 wt%, 0.5 내지 2.5 wt%, 0.5 내지 2 wt%, 1 내지 3 wt%, 1 내지 2.5 wt% 또는 1 내지 2 wt%일 수 있다.The porous microspheres may be provided in a form included in a dispersion, and the dispersion may have a concentration capable of maintaining a properly dispersed state of the microspheres. Specifically, the dispersion may include one or more selected from carboxymethyl cellulose (CMC) and alginate (Alg). In addition, the concentration of the dispersion may be 3 wt% or less, specifically 0.1 to 3 wt%, 0.1 to 2.5 wt%, 0.1 to 2 wt%, 0.5 to 3 wt%, 0.5 to 2.5 wt%, 0.5 to 2 wt% %, 1 to 3 wt%, 1 to 2.5 wt% or 1 to 2 wt%.
상기의 다공성 마이크로스피어는 하기에 기술된 방법으로 제조되는 것일 수 있다.The porous microspheres may be prepared by the method described below.
다른 양상은 1) 생체적합성 고분자 및 기공형성제를 포함하는 제1 용액을 제조하는 단계; 2) 계면활성제를 포함하는 제2 용액 제조하는 단계; 3) 상기 제1 용액 및 제2 용액을 이용하여 마이크로스피어를 제조하는 단계; 및4) 상기 제조된 마이크로스피어에서 기공형성제를 제거하는 단계를 포함하는, 다공성 마이크로스피어 제조방법을 제공하는 것이다. 상기에서 설명한 내용과 동일한 부분은 상기 방법에도 공히 적용된다.Another aspect is 1) preparing a first solution containing a biocompatible polymer and a pore-forming agent; 2) preparing a second solution containing a surfactant; 3) preparing microspheres using the first solution and the second solution; and 4) removing the pore forming agent from the prepared microspheres. The same parts as described above are also applied to the method.
상기 방법에 있어서, 상기 1) 단계는 생체적합성 고분자 및 기공형성제를 유기 용매와 혼합하거나 및/또는 용해시켜 유상(제1 용액)을 제조하는 단계일 수 있다.In the method, step 1) may be a step of preparing an oil phase (first solution) by mixing and/or dissolving the biocompatible polymer and the pore-forming agent in an organic solvent.
상기 유기 용매는 생체적합성 고분자 및 기공형성제를 혼합 및/또는 용해시킬 수 있는 것이면 제한없이 사용 가능하며, 바람직한 유기 용매로 소수성 및 휘발성이 강한 것을 사용할 수 있다. 구체적으로, 상기 유기 용매는 클로로포름, 디클로로메탄, 디메틸포름아미드, 에틸 아세테이트, 아세토니트릴, 테트라하이드로퓨란, 디메틸설폭사이드 및 이들의 혼합용매로 이루어진 군에서 선택되는 1종을 사용할 수 있다. 이때 유기 용매의 함량은 전체 유상의 중량 기준으로 1 내지 99 중량%일 수 있으나, 이에 제한되는 것은 아니다.The organic solvent may be used without limitation as long as it can mix and/or dissolve the biocompatible polymer and the pore-forming agent, and a highly hydrophobic and volatile organic solvent may be used as a preferred organic solvent. Specifically, the organic solvent may be one selected from the group consisting of chloroform, dichloromethane, dimethylformamide, ethyl acetate, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, and mixed solvents thereof. At this time, the content of the organic solvent may be 1 to 99% by weight based on the weight of the total oil phase, but is not limited thereto.
상기 기공형성제는 최종적으로 제조되는 다공성 마이크로스피어에 열린 기공 구조를 부여하기 위해 첨가되는 것으로, 마이크로스피어를 제작한 후 제거될 수 있는 것이면 특별히 제한되지 않는다. The pore-forming agent is added to impart an open pore structure to the finally prepared porous microspheres, and is not particularly limited as long as it can be removed after manufacturing the microspheres.
상기 기공형성제는 캄펜, 캠포르, 나프탈렌, 멘톨, 티몰, 쿠마린, 바닐린, 살리실아미드, 2-아미노피리딘, t-부탄올, 트리클로로-t-부탄올, 이미다졸, 디메틸설폰, 우레아, 2-아미도피리딘, 운데케인(undecane, UD)으로 이루어진 군에서 선택된 하나 이상을 포함하는 것일 수 있다.The pore formers are camphene, camphor, naphthalene, menthol, thymol, coumarin, vanillin, salicylamide, 2-aminopyridine, t-butanol, trichloro-t-butanol, imidazole, dimethylsulfone, urea, 2- It may contain one or more selected from the group consisting of amidopyridine and undecane (UD).
일 구현예에 있어서, 상기 기공형성제는 운데케인일 수 있다.In one embodiment, the pore former may be undecane.
상기 제1 용액은 0.1 내지 5 wt%(질량백분율)의 생체적합성 고분자를 포함하는 것일 수 있으며, 구체적으로 상기 생체적합성 고분자는 0.1 내지 5 wt%, 0.1 내지 4 wt%, 0.1 내지 3 wt%, 0.1 내지 2 wt%, 0.1 내지 1 wt%, 0.5 내지 5 wt%, 0.5 내지 4 wt%, 0.5 내지 3 wt%, 0.5 내지 2 wt%, 0.5 내지 1 wt%, 0.6 내지 2 wt% 또는 0.6 내지 1 wt%의 농도로 포함되는 것일 수 있다.The first solution may include 0.1 to 5 wt% (mass percentage) of a biocompatible polymer, specifically, the biocompatible polymer is 0.1 to 5 wt%, 0.1 to 4 wt%, 0.1 to 3 wt%, 0.1 to 2 wt%, 0.1 to 1 wt%, 0.5 to 5 wt%, 0.5 to 4 wt%, 0.5 to 3 wt%, 0.5 to 2 wt%, 0.5 to 1 wt%, 0.6 to 2 wt% or 0.6 to 2 wt% It may be included in a concentration of 1 wt%.
상기 제1 용액은 0.1 내지 10 wt%의 기공형성제를 포함하는 것일 수 있으며, 구체적으로 상기 기공형성제는 0.1 내지 10 wt%, 0.1 내지 8 wt%, 0.1 내지 6 wt%, 0.1 내지 4 wt%, 1 내지 10 wt%, 1 내지 8 wt%, 1 내지 6 wt%, 1 내지 4 wt%, 2 내지 10 wt%, 2 내지 8 wt%, 2 내지 6 wt% 또는 2 내지 4 wt%의 농도로 포함되는 것일 수 있다.The first solution may include 0.1 to 10 wt% of the pore former, and specifically, 0.1 to 10 wt%, 0.1 to 8 wt%, 0.1 to 6 wt%, or 0.1 to 4 wt% of the pore former. %, 1 to 10 wt%, 1 to 8 wt%, 1 to 6 wt%, 1 to 4 wt%, 2 to 10 wt%, 2 to 8 wt%, 2 to 6 wt% or 2 to 4 wt% It may be included in concentration.
상기 방법에 있어서, 기공형성제의 함량, 구체적으로는 기공형성제 및 생체적합성 고분자의 비율을 조절함으로써 다공성 마이크로스피어의 기공 구조를 조절할 수 있다.In the above method, the pore structure of the porous microspheres can be controlled by adjusting the content of the pore-forming agent, specifically, the ratio of the pore-forming agent and the biocompatible polymer.
상기 방법에 있어서, 상기 제1 용액은 기공형성제 및 생체적합성 고분자를 1:1 내지 6:1의 비율(w:w)로 포함하는 것일 수 있으며, 구체적으로 1:1 내지 6:1, 1:1 내지 5.83:1, 1:1 내지 5.5:1, 1:1 내지 5:1, 1:1 내지 4.5:1, 1:1 내지 4:1, 1:1 내지 3.5:1, 1:1 내지 3:1, 2:1 내지 6:1, 2:1 내지 5.83:1, 2:1 내지 5.5:1, 2:1 내지 5:1, 2:1 내지 4.5:1, 2:1 내지 4:1, 2:1 내지 3.5:1, 2:1 내지 3:1, 2.5:1 내지 6:1, 2.5:1 내지 5.83:1, 2.5:1 내지 5.5:1, 2.5:1 내지 5:1, 2.5:1 내지 4.5:1, 2.5:1 내지 4:1, 2.5:1 내지 3.5:1, 2.5:1 내지 3:1, 3:1 내지 6:1, 3:1 내지 5.83:1, 3:1 내지 5.5:1, 3:1 내지 5:1, 3:1 내지 4.5:1, 3:1 내지 4:1 또는 3:1 내지 3.5:1의 비율로 포함하는 것일 수 있다.In the above method, the first solution may include the pore-forming agent and the biocompatible polymer in a ratio (w:w) of 1:1 to 6:1, specifically 1:1 to 6:1, 1 :1 to 5.83:1, 1:1 to 5.5:1, 1:1 to 5:1, 1:1 to 4.5:1, 1:1 to 4:1, 1:1 to 3.5:1, 1:1 to 3:1, 2:1 to 6:1, 2:1 to 5.83:1, 2:1 to 5.5:1, 2:1 to 5:1, 2:1 to 4.5:1, 2:1 to 4 :1, 2:1 to 3.5:1, 2:1 to 3:1, 2.5:1 to 6:1, 2.5:1 to 5.83:1, 2.5:1 to 5.5:1, 2.5:1 to 5:1 , 2.5:1 to 4.5:1, 2.5:1 to 4:1, 2.5:1 to 3.5:1, 2.5:1 to 3:1, 3:1 to 6:1, 3:1 to 5.83:1, 3 :1 to 5.5:1, 3:1 to 5:1, 3:1 to 4.5:1, 3:1 to 4:1, or 3:1 to 3.5:1.
상기 제1 용액은 자성 나노입자를 추가로 포함하는 것일 수 있다.The first solution may further include magnetic nanoparticles.
상기 제1 용액은 0.01 내지 0.1 wt%의 자성 나노입자를 포함하는 것일 수 있으며, 구체적으로 상기 자성 나노입자는 0.01 내지 0.1 wt%, 0.01 내지 0.08 wt%, 0.01 내지 0.06 wt%, 0.01 내지 0.04 wt%, 0.02 내지 0.1 wt%, 0.02 내지 0.08 wt%, 0.02 내지 0.06 wt% 또는 0.02 내지 0.04 wt%의 농도로 포함되는 것일 수 있다.The first solution may contain 0.01 to 0.1 wt% of magnetic nanoparticles, and specifically, 0.01 to 0.1 wt%, 0.01 to 0.08 wt%, 0.01 to 0.06 wt%, or 0.01 to 0.04 wt% of the magnetic nanoparticles. %, it may be included in a concentration of 0.02 to 0.1 wt%, 0.02 to 0.08 wt%, 0.02 to 0.06 wt% or 0.02 to 0.04 wt%.
일 구현예에 있어서, 상기 제1 용액은 생체적합성 고분자, 기공형성제, 유기 용매 및 자성 나노입자를 포함하는 것일 수 있다.In one embodiment, the first solution may include a biocompatible polymer, a pore forming agent, an organic solvent, and magnetic nanoparticles.
상기 방법에 있어서, 상기 2) 단계는 계면활성제를 친수성 용매와 혼합하거나 및/또는 용해시켜 수상(제2 용액)을 제조하는 단계일 수 있다.In the method, step 2) may be a step of preparing an aqueous phase (second solution) by mixing and/or dissolving a surfactant in a hydrophilic solvent.
상기 친수성 용매는 물, C1-4 알코올 또는 이의 혼합용매일 수 있으나, 이에 제한되는 것은 아니다.The hydrophilic solvent may be water, C1-4 alcohol or a mixed solvent thereof, but is not limited thereto.
상기 제2 용액은 수상으로서, 유상인 고분자 용액과 친수성 용매 사이의 계면을 조정하기 위해 계면활성제를 포함할 수 있다. 상기 계면활성제는 hydrophilic-lipophilic balance (HLB) 값이 10 이상인 것이면 어떠한 것이든 사용할 수 있다. The second solution is an aqueous phase and may contain a surfactant to adjust the interface between the oil phase polymer solution and the hydrophilic solvent. As the surfactant, any surfactant having a hydrophilic-lipophilic balance (HLB) value of 10 or more may be used.
상기 계면활성제는 폴리비닐알코올, 폴리비닐피롤리돈, 폴리비닐부티럴, 폴리비닐메틸에테르, 폴리비닐에테르 및 이들의 혼합물 등이 가능하며, 구체적으로, 폴리비닐알코올을 포함하는 것일 수 있다. 상기 계면활성제의 사용량은 제조되는 다공성 마이크로스피어의 입경을 고려하여 수상 중 0.1 내지 10 중량%가 바람직할 수 있다.The surfactant may include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl butyral, polyvinyl methyl ether, polyvinyl ether, and mixtures thereof, and may specifically include polyvinyl alcohol. The amount of the surfactant may be preferably 0.1 to 10% by weight in the aqueous phase in consideration of the particle size of the porous microspheres to be produced.
상기 제2 용액은 0.1 내지 5 wt%의 계면활성제를 포함하는 것일 수 있으며, 구체적으로 상기 계면활성제는 0.1 내지 5 wt%, 0.1 내지 4 wt%, 0.1 내지 3 wt%, 0.1 내지 2 wt%, 0.1 내지 1 wt%, 0.5 내지 5 wt%, 0.5 내지 4 wt%, 0.5 내지 3 wt%, 0.5 내지 2 wt%, 0.5 내지 1 wt%, 1 내지 5 wt%, 1 내지 4 wt%, 1 내지 3 wt% 또는 1 내지 2 wt%의 농도로 포함되는 것일 수 있다.The second solution may include 0.1 to 5 wt% of a surfactant, specifically, the surfactant is 0.1 to 5 wt%, 0.1 to 4 wt%, 0.1 to 3 wt%, 0.1 to 2 wt%, 0.1 to 1 wt%, 0.5 to 5 wt%, 0.5 to 4 wt%, 0.5 to 3 wt%, 0.5 to 2 wt%, 0.5 to 1 wt%, 1 to 5 wt%, 1 to 4 wt%, 1 to 2 wt% It may be included in a concentration of 3 wt% or 1 to 2 wt%.
일 구현예에 있어서, 상기 제2 용액은 친수성 용매 및 게면활성제를 포함하는 것일 수 있다. In one embodiment, the second solution may include a hydrophilic solvent and a surfactant.
상기 1) 단계 및 2) 단계는 순차적으로, 역순으로 또는 동시에 수행될 수 있다.Steps 1) and 2) may be performed sequentially, in reverse order, or simultaneously.
상기 방법에 있어서, 상기 3) 단계는 상기 제1 용액 및 제2 용액을 이용하여 마이크로스피어를 제조하는 것으로서, 구체적으로 a) 상기 제1 용액 및 제2 용액을 혼합하여 에멀젼을 형성시키는 단계 및 b) 상기 에멀젼으로부터 마이크로스피어를 수득하는 단계를 포함하는 것일 수 있다.In the method, step 3) is to prepare microspheres using the first solution and the second solution, and specifically, a) mixing the first solution and the second solution to form an emulsion, and b) ) obtaining microspheres from the emulsion.
상기 a) 단계는 제1 용액을 불연속상으로 사용하고, 제2 용액을 연속상으로 사용하여 유체 장치에 흘려주어 수중유형 에멀젼(oil-in-water emulsions)을 제조하는 것일 수 있다.The step a) may be to prepare oil-in-water emulsions by using the first solution as a discontinuous phase and flowing the second solution into a fluid device as a continuous phase.
상기 a) 단계에서 불연속상의 유속은 0.01 내지 1 mL/min로 설정하여 수행하는 것일 수 있으며, 구체적으로 0.01 내지 1 mL/min, 0.01 내지 0.8 mL/min, 0.01 내지 0.5 mL/min, 0.01 내지 0.3 mL/min, 0.01 내지 0.2 mL/min, 0.01 내지 0.1 mL/min, 0.05 내지 1 mL/min, 0.05 내지 0.8 mL/min, 0.05 내지 0.5 mL/min, 0.05 내지 0.3 mL/min, 0.05 내지 0.2 mL/min, 0.05 내지 0.1 mL/min, 0.1 내지 1 mL/min, 0.1 내지 0.8 mL/min, 0.1 내지 0.5 mL/min, 0.1 내지 0.3 mL/min 또는 0.1 내지 0.2 mL/min로 설정하여 수행하는 것일 수 있다.In step a), the flow rate of the discontinuous phase may be set to 0.01 to 1 mL/min, specifically 0.01 to 1 mL/min, 0.01 to 0.8 mL/min, 0.01 to 0.5 mL/min, and 0.01 to 0.3 mL/min. mL/min, 0.01 to 0.2 mL/min, 0.01 to 0.1 mL/min, 0.05 to 1 mL/min, 0.05 to 0.8 mL/min, 0.05 to 0.5 mL/min, 0.05 to 0.3 mL/min, 0.05 to 0.2 mL /min, 0.05 to 0.1 mL/min, 0.1 to 1 mL/min, 0.1 to 0.8 mL/min, 0.1 to 0.5 mL/min, 0.1 to 0.3 mL/min, or 0.1 to 0.2 mL/min. can
상기 a) 단계에서 연속상의 유속은 0.5 내지 5 mL/min로 설정하여 수행하는 것일 수 있으며, 구체적으로 0.5 내지 5 mL/min, 0.5 내지 4 mL/min, 0.5 내지 3 mL/min, 0.5 내지 2 mL/min, 0.5 내지 1.5 mL/min, 1 내지 5 mL/min, 1 내지 4 mL/min, 1 내지 3 mL/min, 1 내지 2 mL/min, 1 내지 1.5 mL/min, 1.3 내지 5 mL/min, 1.3 내지 4 mL/min, 1.3 내지 3 mL/min, 1.3 내지 2 mL/min 또는 1.3 내지 1.5 mL/min로 설정하여 수행하는 것일 수 있다.In step a), the flow rate of the continuous phase may be set to 0.5 to 5 mL/min, specifically 0.5 to 5 mL/min, 0.5 to 4 mL/min, 0.5 to 3 mL/min, and 0.5 to 2 mL/min. mL/min, 0.5 to 1.5 mL/min, 1 to 5 mL/min, 1 to 4 mL/min, 1 to 3 mL/min, 1 to 2 mL/min, 1 to 1.5 mL/min, 1.3 to 5 mL /min, 1.3 to 4 mL/min, 1.3 to 3 mL/min, 1.3 to 2 mL/min, or 1.3 to 1.5 mL/min.
상기 b) 단계는 상기 에멀젼으로부터 유기 용매를 제거하여 생체적합성 고분자 및 기공형성제를 포함하는 마이크로스피어를 제조하는 것으로서, 상기 유기 용매는 증발에 의해 제거되는 것일 수 있다.The step b) is to prepare microspheres including the biocompatible polymer and the pore-forming agent by removing the organic solvent from the emulsion, and the organic solvent may be removed by evaporation.
상기 4) 단계는 생체적합성 고분자 및 기공형성제를 포함하는 마이크로스피어에서 기공형성제를 제거하여 마이크로스피어의 몸체 표면 및/또는 내부에 기공을 형성시키는 것을 포함하는 것일 수 있다.Step 4) may include forming pores on the surface and/or inside of the body of the microspheres by removing the pore-forming agent from the microspheres containing the biocompatible polymer and the pore-forming agent.
상기 마이크로스피어로부터 기공형성제를 제거 및/또는 용출시키는 것은 동결건조, 대기조건에서의 승화 및/또는 기공형성제를 용해시킬 수 있는 용매를 이용할 수 있다.Removal and/or elution of the pore-forming agent from the microspheres may include lyophilization, sublimation under atmospheric conditions, and/or a solvent capable of dissolving the pore-forming agent.
또한, 상기 기공형성제를 제거하는 단계는 10분 내지 100시간 동안 수행할 수 있으나, 이에 제한되는 것은 아니다.In addition, the step of removing the pore forming agent may be performed for 10 minutes to 100 hours, but is not limited thereto.
상기 방법은 수득한 다공성 마이크로스피어를 건조시키는 단계를 추가로 포함하는 것일 수 있으며, 상기 건조는 동결건조를 포함하는 것일 수 있다.The method may further include drying the obtained porous microspheres, and the drying may include lyophilization.
상기 방법은 제조된 마이크로스피어의 표면을 양이온성 고분자로 개질 또는 코팅하는 단계를 추가로 포함하는 것일 수 있다.The method may further include modifying or coating the surface of the prepared microspheres with a cationic polymer.
상기 방법으로 제조된 마이크로스피어는 박테리아 또는 박테리아 포자를 효과적으로 봉입할 수 있다. 따라서, 상기 방법은 박테리아 또는 박테리아 포자를 봉입하는 단계를 추가로 포함할 수 있다.Microspheres prepared by the above method can effectively enclose bacteria or bacterial spores. Accordingly, the method may further include encapsulating bacteria or bacterial spores.
또 다른 양상은 1) 상기 다공성 마이크로스피어; 및 2) 종양 용해(oncolytic) 박테리아 또는 이의 포자를 포함하는, 항암 마이크로스피어를 제공하는 것이다. 상기에서 설명한 내용과 동일한 부분은 상기 마이크로스피어에도 공히 적용된다.Another aspect is 1) the porous microspheres; and 2) anticancer microspheres comprising oncolytic bacteria or their spores. The same parts as described above also apply to the microspheres.
상기 항암 마이크로스피어는 상기 다공성 마이크로스피어의 기공에 종양 용해 박테리아 및/또는 이의 포자가 봉입된 형태일 수 있다.The anticancer microspheres may have a form in which tumor lytic bacteria and/or their spores are encapsulated in pores of the porous microspheres.
일 실시예에 따르면, 상기 다공성 마이크로스피어는 종양 용해 박테리아 및/또는 이의 포자의 봉입 효율이 우수하며, 종양 표적부위에서 방출 또한 효과적으로 수행될 수 있음을 확인하였다.According to one embodiment, it was confirmed that the porous microspheres have excellent encapsulation efficiency of oncolytic bacteria and/or their spores, and can also effectively release tumor lytic bacteria and/or their spores.
또 다른 양상은 상기 항암 마이크로스피어를 포함하는 암 치료 또는 예방용 약학 조성물을 제공하는 것이다. 상기에서 설명한 내용과 동일한 부분은 상기 조성물에도 공히 적용된다.Another aspect is to provide a pharmaceutical composition for treating or preventing cancer comprising the anticancer microspheres. The same parts as described above also apply to the composition.
본 명세서에서의 용어 "암"은 신체 조직의 조절되지 않는 과잉 성장에 의해 비정상적으로 자라난 종양, 또는 종양을 형성하는 병을 의미한다. 상기 암은 위암(장형 위암, 미만형 위암), 간암, 폐암, 췌장암, 비소세포성 폐암, 결장암, 골암, 피부암, 두부 또는 경부 암, 피부 또는 안구내 흑색종, 자궁암, 난소암, 직장암, 대장암, 항문부근암, 결장암, 유방암, 자궁경부암, 나팔관암종, 자궁내막암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종일 수 있다.As used herein, the term "cancer" refers to a tumor that grows abnormally due to uncontrolled excessive growth of body tissue, or a disease that forms a tumor. The cancer is gastric cancer (intestinal gastric cancer, diffuse gastric cancer), liver cancer, lung cancer, pancreatic cancer, non-small cell lung cancer, colon cancer, bone cancer, skin cancer, head or neck cancer, skin or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, colon Cancer, perianal cancer, colon cancer, breast cancer, cervical cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, Soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureteral cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system It may be a lymphoma, a spinal cord tumor, a brainstem glioma or a pituitary adenoma.
본 명세서에서의 용어 "치료"는, 본 발명의 조성물의 투여에 의해 암 질환의 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미한다.As used herein, the term "treatment" refers to all activities that improve or beneficially change the symptoms of cancer disease by administration of the composition of the present invention.
본 명세서에서의 용어 "예방"은, 본 발명의 조성물의 투여에 의해 암 질환 또는 질환의 발병 가능성이 억제되거나 지연되는 모든 행위를 의미한다.As used herein, the term "prevention" refers to any activity that suppresses or delays the onset of a cancer disease or disease by administration of the composition of the present invention.
상기 조성물은 분산액을 포함하는 것일 수 있으며, 상기 분산액은 마이크로스피어가 적절히 분산된 상태를 유지할 수 있는 농도일 수 있다. 구체적으로, 상기 분산액은 carboxymethyl cellulose (CMC) 및 알지네이트(alginate, Alg) 중 선택된 하나 이상을 포함하는 것일 수 있다. 또한, 상기 분산액의 농도는 3 wt% 이하일 수 있으며, 구체적으로 0.1 내지 3 wt%, 0.1 내지 2.5 wt%, 0.1 내지 2 wt%, 0.5 내지 3 wt%, 0.5 내지 2.5 wt%, 0.5 내지 2 wt%, 1 내지 3 wt%, 1 내지 2.5 wt% 또는 1 내지 2 wt%일 수 있다.The composition may include a dispersion, and the dispersion may have a concentration capable of maintaining an appropriately dispersed state of the microspheres. Specifically, the dispersion may include one or more selected from carboxymethyl cellulose (CMC) and alginate (Alg). In addition, the concentration of the dispersion may be 3 wt% or less, specifically 0.1 to 3 wt%, 0.1 to 2.5 wt%, 0.1 to 2 wt%, 0.5 to 3 wt%, 0.5 to 2.5 wt%, 0.5 to 2 wt% %, 1 to 3 wt%, 1 to 2.5 wt% or 1 to 2 wt%.
상기 약학적 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. 상기 "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않으면서, 주입되는 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미할 수 있다. 여기서 "약학적으로 허용되는"의 의미는 유효성분의 활성을 억제하지 않으면서 적용(처방) 대상이 적응 가능한 이상의 독성을 지니지 않는다는 의미이다. 상기 약학적 조성물에 사용 가능한 상기 담체의 종류는 당해 기술 분야에서 통상적으로 사용되고 약학적으로 허용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로는, 락토스, 덱스트로스, 말토 덱스트린, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 글리세롤, 에탄올, 전분, 아카시아 고무, 알기네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로스, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트, 또는 광물유 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다. 상기 약학적 조성물은 유효성분 이외에 약학적으로 허용되는 담체를 포함하여 당업계에 공지된 통상의 방법으로 투여 경로에 따라 경구용 제형 또는 비경구용 제형으로 제조될 수 있다. 상기 약학적 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제제화하여 사용될 수 있다. The pharmaceutical composition may include a pharmaceutically acceptable carrier. The "pharmaceutically acceptable carrier" may refer to a carrier or diluent that does not inhibit the biological activity and properties of the compound to be injected without irritating living organisms. Here, the meaning of "pharmaceutically acceptable" means that the application (prescription) does not have toxicity more than is adaptable without inhibiting the activity of the active ingredient. Any type of carrier that can be used in the pharmaceutical composition may be used as long as it is commonly used in the art and is pharmaceutically acceptable. Non-limiting examples of the carrier include lactose, dextrose, maltodextrin, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, glycerol, ethanol, starch, gum acacia, alginates, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, or Mineral oil etc. are mentioned. These may be used alone or in combination of two or more. The pharmaceutical composition may be prepared as an oral formulation or parenteral formulation according to the route of administration by a conventional method known in the art, including a pharmaceutically acceptable carrier in addition to the active ingredient. The pharmaceutical composition may be formulated and used in the form of oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories or sterile injection solutions according to conventional methods.
상기 약학적 조성물을 제제화할 경우, 일반적으로 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 또는 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있으나, 이에 제한되지 않을 수 있다.When formulating the pharmaceutical composition, it may be prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, or surfactants, but may not be limited thereto.
상기 약학적 조성물이 경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 분말, 과립, 정제, 환제, 당의정제, 캡슐제, 액제, 겔제, 시럽제, 현탁액, 웨이퍼 등의 제형으로 제조될 수 있다. 이때 약학적으로 허용되는 적합한 담체의 예로서는 락토스, 글루코스, 슈크로스, 덱스트로스, 솔비톨, 만니톨, 자일리톨 등의 당류, 옥수수 전분, 감자 전분, 밀 전분 등의 전분류, 셀룰로오스, 메틸셀룰로오스, 에틸셀룰로오스, 나트륨 카르복시메틸셀룰로오스, 하이드록시프로필메틸셀룰로오스 등의 셀룰로오스류, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 마그네슘 스테아레이트, 광물유, 맥아, 젤라틴, 탈크, 폴리올, 식물성유 등을 들 수 있다. 제제화활 경우 필요에 따라 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 및/또는 부형제를 포함하여 제제화할 수 있다.When the pharmaceutical composition is prepared as an oral dosage form, powders, granules, tablets, pills, dragees, capsules, liquids, gels, syrups, suspensions, wafers, etc. It can be made into a formulation. Examples of suitable pharmaceutically acceptable carriers include sugars such as lactose, glucose, sucrose, dextrose, sorbitol, mannitol, and xylitol, starches such as corn starch, potato starch, and wheat starch, cellulose, methylcellulose, ethylcellulose, Celluloses such as sodium carboxymethylcellulose and hydroxypropylmethylcellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate, mineral oil, malt, gelatin, talc, polyol, vegetable oil etc. are mentioned. In the case of formulation, if necessary, diluents and/or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants may be included.
상기 약학적 조성물이 비경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 주사제, 경피 투여제, 비강 흡입제 및 좌제의 형태로 제제화될 수 있다. 주사제로 제제화활 경우 적합한 담체로서는 멸균수, 에탄올, 글리세롤이나 프로필렌 글리콜 등의 폴리올 또는 이들의 혼합물을 들 수 있으며, 바람직하게는 링거 용액, 트리에탄올 아민이 함유된 PBS(phosphate buffered saline)나 주사용 멸균수, 5% 덱스트로스 같은 등장 용액 등을 사용할 수 있다. 경피 투여제로 제제화할 경우 연고제, 크림제, 로션제, 겔제, 외용액제, 파스타제, 리니멘트제, 에어롤제 등의 형태로 제제화될 수 있다. 비강 흡입제의 경우 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 등의 적합한 추진제를 사용하여 에어로졸 스프레이 형태로 제제화될 수 있으며, 좌제로 제제화할 경우 그 기제로는 위텝솔(witepsol), 트윈(tween) 61, 폴리에틸렌글리콜류, 카카오지, 라우린지, 폴리옥시에틸렌 소르비탄 지방산 에스테르류, 폴리옥시에틸렌 스테아레이트류, 소르비탄 지방산 에스테르류 등이 사용될 수 있다.When the pharmaceutical composition is prepared as a parenteral formulation, it may be formulated in the form of injection, transdermal administration, nasal inhalation, and suppository along with a suitable carrier according to a method known in the art. In the case of formulation as an injection, suitable carriers include sterile water, ethanol, polyols such as glycerol or propylene glycol, or mixtures thereof, preferably Ringer's solution, PBS (phosphate buffered saline) containing triethanolamine or sterilization for injection water, isotonic solutions such as 5% dextrose, and the like can be used. When formulated as a transdermal formulation, it may be formulated in the form of ointments, creams, lotions, gels, external solutions, pastas, liniments, air rolls, and the like. In the case of nasal inhalation, it can be formulated in the form of an aerosol spray using a suitable propellant such as dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, etc., and when formulated into suppositories, the base is Witepsol ( witepsol), tween 61, polyethylene glycols, cacao fat, laurin fat, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearates, sorbitan fatty acid esters, and the like may be used.
상기 약학적 조성물은 약학적으로 유효한 양으로 투여될 수 있다. 상기 용어 "약학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 단독으로 투여하거나 공지된 암 질환에 대한 치료 효과를 나타내는 것으로 알려진 성분과 병용하여 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.The pharmaceutical composition may be administered in a pharmaceutically effective amount. The term "pharmaceutically effective amount" means an amount sufficient to treat or prevent a disease with a reasonable benefit/risk ratio applicable to medical treatment or prevention, and the effective dose level is dependent on the severity of the disease, the activity of the drug, and the patient's Age, weight, health, sex, sensitivity to the drug of the patient, administration time of the composition of the present invention used, route of administration and excretion rate, treatment period, factors including drugs used in combination or simultaneous use with the composition of the present invention used, and others It can be determined according to factors well known in the medical field. The pharmaceutical composition of the present invention may be administered alone or in combination with components known to exhibit therapeutic effects on known cancer diseases. It is important to administer the amount that can obtain the maximum effect with the minimum amount without side effects in consideration of all the above factors.
상기 약학적 조성물의 투여량은 사용목적, 질환의 중독도, 환자의 연령, 체중, 성별, 기왕력, 또는 유효성분으로서 사용되는 물질의 종류 등을 고려하여 당업자가 결정할 수 있다. 예를 들어, 본 발명의 약학적 조성물은 성인 1인당 약 0.1ng 내지 약 1,000 mg/kg, 바람직하게는 1 ng 내지 약 100 mg/kg로 투여할 수 있고, 본원의 조성물의 투여빈도는 특별히 이에 제한되지 않으나, 1일 1회 투여하거나 또는 용량을 분할하여 수회 투여할 수 있다. 상기 투여량 또는 투여횟수는 어떠한 면으로든 본원의 범위를 한정하는 것은 아니다.The dose of the pharmaceutical composition can be determined by those skilled in the art in consideration of the purpose of use, the degree of addiction of the disease, the patient's age, weight, sex, history, or the type of substance used as an active ingredient. For example, the pharmaceutical composition of the present invention can be administered at about 0.1 ng to about 1,000 mg/kg, preferably 1 ng to about 100 mg/kg per adult, and the frequency of administration of the composition herein is particularly Although not limited, it may be administered once a day or administered several times by dividing the dose. The dosage or frequency of administration is not intended to limit the scope of the present application in any way.
또 다른 양상은 상기 항암 마이크로스피어 또는 약학 조성물을 개체에 투여하는 단계를 포함하는, 암을 치료 또는 예방하는 방법을 제공하는 것이다. 상기에서 설명한 내용과 동일한 부분은 상기 방법에도 공히 적용된다.Another aspect is to provide a method for treating or preventing cancer, comprising administering the anti-cancer microspheres or pharmaceutical composition to a subject. The same parts as described above are also applied to the method.
본 명세서에서 사용되는 용어 "개체"는 암 질환이 발병되거나 발병할 위험이 있는 개, 고양이, 쥐, 가축, 인간 등을 포함하는 포유동물, 조류, 파충류, 양식어류 등을 제한 없이 포함할 수 있으며, 상기 개체는 인간일 수 있다.As used herein, the term "subject" may include, without limitation, mammals, birds, reptiles, farmed fish, etc., including dogs, cats, mice, livestock, humans, etc. that have or are at risk of developing cancer diseases, and , the subject may be a human.
상기 약학적 조성물은 약학적으로 유효한 양으로 단일 또는 다중 투여될 수 있다. 이때, 조성물은 액제, 산제, 에어로졸, 주사제, 수액제(링겔), 캡슐제, 환제, 정제, 좌제 또는 패치의 형태로 제형화되어 투여할 수 있다. 상기 항암 마이크로스피어 또는 이를 포함하는 약학 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여도 투여될 수 있다.The pharmaceutical composition may be administered singly or in multiple doses in a pharmaceutically effective amount. At this time, the composition may be formulated and administered in the form of a liquid, powder, aerosol, injection, infusion (intravenous gel), capsule, pill, tablet, suppository or patch. The administration route of the anticancer microspheres or the pharmaceutical composition containing them may be administered through any general route as long as it can reach the target tissue.
상기 약학적 조성물은 특별히 이에 제한되지 않으나, 목적하는 바에 따라 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경피패치투여, 경구 투여, 비내 투여, 폐내 투여, 직장내 투여 등의 경로를 통해 투여될 수 있다. 다만, 경구 투여 시에는 제형화되지 않은 형태로도 투여할 수 있고, 위산에 의하여 상기 약학 조성물의 유효성분이 변성 또는 분해될 수 있기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화된 형태 또는 경구용 패치형태로 구강내에 투여할 수도 있다. 또한, 상기 조성물은 활성 물질이 표적세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.The pharmaceutical composition is not particularly limited thereto, but as desired, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, transdermal patch administration, oral administration, intranasal administration, intrapulmonary administration, intrarectal administration, etc. It can be administered through the route of. However, oral administration can be administered in an unformulated form, and since the active ingredients of the pharmaceutical composition can be denatured or decomposed by gastric acid, the oral composition is formulated to coat the active agent or protect it from degradation in the stomach. It can also be administered orally in the form of a localized form or an oral patch. In addition, the composition may be administered by any device capable of transporting active substances to target cells.
일 양상에 따른 다공성 마이크로스피어는 박테리아 포자 봉입 효율이 우수하며, 함유된 자성 나노 입자로 인해 외부 자기장 유도 장치를 이용하여 종양 부위로의 표적능을 향상시키고 생체 이미징을 통해 인체 내 움직임을 모니터링 할 수 있다.Porous microspheres according to one aspect have excellent bacterial spore encapsulation efficiency, and due to the magnetic nanoparticles contained therein, they can improve targeting ability to tumor sites using an external magnetic field induction device and monitor movement in the human body through bio-imaging. there is.
도 1은 UD/PLA 비율에 따른 마이크로스피어의 SEM 이미지를 나타낸 도면이다.1 is a diagram showing SEM images of microspheres according to the UD/PLA ratio.
도 2는 상기 마이크로스피어의 크기 및 기공 크기를 나타낸 도면이다 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).2 is a diagram showing the size and pore size of the microspheres (n = 100, *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001; ns, not significant ).
도 3은 UD/PLA 비율에 따른 마이크로스피어 기공의 SEM 이미지를 나타낸 도면이다.3 is a view showing SEM images of microsphere pores according to the UD/PLA ratio.
도 4의 A는 상기 마이크로스피어의 기공 크기를 나타낸 도면이고, B는 상기 마이크로스피어의 면적 100 ㎛2 당 열린 공극 수를 나타낸 도면이다 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).4A is a diagram showing the pore size of the microspheres, and B is a diagram showing the number of open pores per 100 μm 2 area of the microspheres (n = 100, *p <0.05, **p <0.01, ***p < 0.001, ****p <0.0001; ns, not significant).
도 5는 Percoll 밀도 구배에 의해 분리된 C. novyi-NT 포자의 명시야 이미지 및 SEM 이미지를 나타낸 도면이다. FIG. 5 shows brightfield and SEM images of C. novyi -NT spores separated by a Percoll density gradient.
도 6은 자성 나노입자를 포함하는 마이크로스피어의 자석에 대한 반응성을 나타낸 도면이다.6 is a view showing the reactivity of microspheres containing magnetic nanoparticles to a magnet.
도 7은 자성 나노입자를 포함하는 마이크로스피어의 자석에 의한 이동성을 나타낸 도면이다.7 is a diagram showing the mobility of microspheres including magnetic nanoparticles by a magnet.
도 8은 자성 나노입자를 포함하는 마이크로스피어의 T2 강조 자기공명(MR) 팬텀 이미지를 나타낸 도면이다.8 is a diagram showing a T2-weighted magnetic resonance (MR) phantom image of microspheres including magnetic nanoparticles.
도 9는 자성 나노입자를 포함하지 않은 마이크로스피어의 T2 강조 자기공명(MR) 팬텀 이미지를 나타낸 도면이다.9 is a diagram showing a T2-weighted magnetic resonance (MR) phantom image of microspheres not containing magnetic nanoparticles.
도 10은 자성 나노입자를 포함하는 마이크로스피어의 종양내 주사 전(위쪽) 및 후(아래쪽)의 CT26 종양 보유 마우스의 T2 강조 MR 이미지를 나타낸 도면이다. 빨간색 화살표는 종양 부위에서 마이크로스피어의 MR 신호를 나타낸다.10 shows T2-weighted MR images of CT26 tumor-bearing mice before (top) and after (bottom) intratumoral injection of microspheres containing magnetic nanoparticles. Red arrows indicate the MR signal of microspheres at the tumor site.
도 11은 마이크로스피어의 CMC에서의 분산력을 확인한 결과를 나타낸 도면이다.11 is a view showing the results of confirming the dispersion force of microspheres in CMC.
도 12는 마이크로스피어의 알지네이트에서의 분산력을 확인한 결과를 나타낸 도면이다.12 is a view showing the results of confirming the dispersion force of microspheres in alginate.
도 13은 양이온성 고분자 개질에 따른 박테리아 포자 봉입 효율을 확인한 결과를 나타낸 도면이다 (MS: 비다공성 마이크로스피어, PMS: 다공성 마이크로스피어, PEI-PMS: 양이온성 고분자로 개질된 다공성 마이크로스피어) (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).13 is a view showing the results of confirming the bacterial spore encapsulation efficiency according to cationic polymer modification (MS: non-porous microspheres, PMS: porous microspheres, PEI-PMS: porous microspheres modified with cationic polymers) (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).
도 14는 FITC-표지된 박테리아 포자의 봉입 효율을 형광 이미지를 통해 관찰한 도면이다(MS: 비다공성 마이크로스피어, PMS: 다공성 마이크로스피어, PEI-PMS: 양이온성 고분자로 개질된 다공성 마이크로스피어).14 is a diagram showing the encapsulation efficiency of FITC-labeled bacterial spores through fluorescence images (MS: non-porous microspheres, PMS: porous microspheres, PEI-PMS: porous microspheres modified with cationic polymers).
도 15는 박테리아 포자가 봉입된 마이크로스피어에서의 24시간 후 포자 발아 효율을 확인한 도면이다.15 is a diagram confirming spore germination efficiency after 24 hours in microspheres encapsulated with bacterial spores.
도 16은 마이크로스피어에서 방출된 포자의 콜로니 수준을 확인한 도면이다.16 is a view confirming the level of colonies of spores released from microspheres.
도 17의 A는 PEI-PMS의 CT26 세포에 대한 세포 독성을 확인한 결과를 나타낸 도면이고, B는 C. novyi-NT 상청액의 CT26 세포에 대한 세포 독성을 확인한 결과를 나타낸 도면이고, C는 C. novyi-NT 상청액의 RAW264.7 세포에 대한 세포 독성을 확인한 결과를 나타낸 도면이다 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant). 17A is a diagram showing the result of confirming the cytotoxicity of PEI-PMS to CT26 cells, B is a diagram showing the result of confirming the cytotoxicity of C. novyi -NT supernatant to CT26 cells, and C is a diagram showing the result of confirming the cytotoxicity of C. novyi -NT supernatant to CT26 cells. This is a diagram showing the results of confirming the cytotoxicity of the novyi -NT supernatant to RAW264.7 cells (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <0.0001; ns, not significant).
도 18의 A는 E. coli DH5α 상청액의 CT26 세포에 대한 세포 독성을 확인한 결과를 나타낸 도면이고, B는 열처리하여 불활성화된 C. novyi-NT 상청액의 CT26 세포에 대한 세포 독성을 확인한 결과를 나타낸 도면이다 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).18A is E. coli DH5α B is a diagram showing the result of confirming the cytotoxicity of the supernatant to CT26 cells, and B is a diagram showing the result of confirming the cytotoxicity of the heat-inactivated C. novyi -NT supernatant to CT26 cells (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <0.0001; ns, not significant).
도 19는 CT26 세포에 C. novyi-NT 상청액 처리에 따른 살아있는 세포(live) 및 죽은 세포(dead) 이미지를 나타낸 도면이다.19 is a view showing images of live and dead cells according to C. novyi -NT supernatant treatment in CT26 cells.
도 20의 A 및 B는 C. novyi-NT 상청액 처리에 따른 CT26 세포의 세포 생존능(cell viability)을 콜로니 형성 어세이로 확인한 결과를 나타낸 도면이다.20A and B are views showing the results of confirming cell viability of CT26 cells according to C. novyi -NT supernatant treatment by colony formation assay.
도 21은 C. novyi-NT 상청액 처리에 의한 CT26 세포의 세포사멸/괴사(apoptotic/necrotic) 세포 집단(%)을 유세포 분석 결과로 나타낸 도면이다.21 is a view showing the apoptotic/necrotic cell population (%) of CT26 cells treated with C. novyi -NT supernatant as a result of flow cytometry.
도 22는 C. novyi-NT 상청액 처리에 의한 CT26 세포의 세포사멸/괴사(apoptotic/necrotic) 세포 집단(%) 결과를 그래프로 나타낸 도면이다.22 is a graph showing the results of apoptotic/necrotic cell population (%) of CT26 cells treated with C. novyi -NT supernatant.
도 23의 A는 CT26 세포에 C. novyi-NT 상청액 처리에 따른 방출된 ATP를 분석한 결과를 나타낸 도면이고, B는 CRT(calreticulin) 발현된 세포를 분석한 결과를 나타낸 도면이다 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).23A is a diagram showing the result of analyzing the ATP released by treating CT26 cells with C. novyi -NT supernatant, and B is a diagram showing the result of analyzing the cells expressing calreticulin (CRT) (n = 100 , *p < 0.05, **p < 0.01, ***p < 0.001, ****p <0.0001; ns, not significant).
도 24의 A는 CT26 세포 및 RAW264.7 세포의 간접적 공배양에서 C. novyi-NT 상청액 처리에 따른 CD80이 발현된 세포를 분석한 결과를 나타내고, B는 CD86이 발현된 세포를 분석한 결과를 나타내고, C는 CD80 및 CD86이 발현된 세포를 분석한 결과를 나타낸다 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).24A shows the result of analyzing CD80-expressing cells according to C. novyi -NT supernatant treatment in indirect co-culture of CT26 cells and RAW264.7 cells, and B shows the result of analyzing CD86-expressing cells. and C shows the results of analyzing cells expressing CD80 and CD86 (n = 100, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <0.0001; ns, not significant).
도 25는 C. novyi-NT 포자에 의한 면역 반응 개시에 대한 개략도를 나타낸 도면이다.25 is a schematic diagram of the initiation of an immune response by C. novyi -NT spores.
도 26은 양이온성 고분자와 박테리아 포자 사이의 정전기적 인력을 이용한 마이크로스피어에 대한 개략도를 나타낸 도면이다.26 is a schematic diagram of microspheres using electrostatic attraction between cationic polymers and bacterial spores.
도 27은 본 발명의 마이크로스피어의 외부 자기장에 의한 종양 표적화 기능성을 나타낸 도면이다.27 is a diagram showing the tumor-targeting functionality of the microspheres of the present invention by an external magnetic field.
이하 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.It will be described in more detail through the following examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1: 다기능성을 갖는 다공성 마이크로스피어 제작Example 1: Fabrication of porous microspheres with multifunctionality
본 발명의 다기능성을 갖는 다공성 마이크로스피어 제작하기 위해, 하기와 같은 실험을 수행하였다.In order to fabricate the porous microspheres having multifunctionality according to the present invention, the following experiments were conducted.
구체적으로, 마이크로스피어를 제작하기 위한 유체 장치(fluidic device)를 Tygon tube (내부직경 1/32 인치, 외부직경 3/32 인치), 유리 모세관 (5922-10, 5 IN PIPETS microcapillary, Ace Glass, USA), 및 니들 (30 G)을 이용하여 제작하였다. Specifically, a fluidic device for fabricating microspheres is Tygon tube (inner diameter 1/32 inch, outer diameter 3/32 inch), glass capillary tube (5922-10, 5 IN PIPETS microcapillary, Ace Glass, USA) ), and a needle (30 G).
폴리락트산(poly lactic acid, PLA), 운데케인(undecane, UD) 및 자성나노입자로서 산화철 나노입자(0.03 wt%)를 포함하는 디클로로메탄 (dichloromethane, DCM) 용액을 불연속상 (discontinuous phase)으로 주입하였다. 또한, 2 wt% 폴리비닐알코올(polyvinyl alcohol, PVA) 수용액은 연속상(continuous phase) 및 수집상(collection phase)에 사용하였다. PLA, UD 및 자성나노입자(IONP)의 비율은 하기 표 1에 구체적으로 기재하였다.Injection of a dichloromethane (DCM) solution containing polylactic acid (PLA), undecane (UD) and iron oxide nanoparticles (0.03 wt%) as magnetic nanoparticles as a discontinuous phase did In addition, a 2 wt% polyvinyl alcohol (PVA) aqueous solution was used for the continuous phase and the collection phase. The ratios of PLA, UD, and magnetic nanoparticles (IONP) are specifically described in Table 1 below.
UD/PLA ratio (w:w)UD/PLA ratio (w:w) UD (wt.%)UD (wt.%) PLA (wt.%)PLA (wt.%) IONP (wt.%)IONP (wt.%)
00 00 1One 0.030.03
33 33 1One 0.030.03
3.53.5 3.53.5 1One 0.030.03
4.3754.375 3.53.5 0.80.8 0.030.03
55 3.53.5 0.70.7 0.030.03
5.835.83 3.53.5 0.60.6 0.030.03
다음으로, 수중유형 에멀젼(oil-in-water emulsions)을 제조하기 위해, 실린지 펌프를 사용하여 불연속상 및 연속상의 유속을 각각 0.1 mL/min 및 1.5 mL/min로 설정하여 수행하였다. Next, in order to prepare oil-in-water emulsions, a syringe pump was used to set flow rates of the discontinuous phase and the continuous phase to 0.1 mL/min and 1.5 mL/min, respectively.
수집상(collection phase)에 모아진 에멀젼은 DCM을 밤새 증발시켜 UD/PLA 마이크로스피어가 되었으며, 상기 마이크로스피어를 탈이온수(DW)로 3회 세척하여 잔여 UD 및 PVA를 제거했다. 다음으로, UD/PLA 마이크로스피어를 에탄올과 함께 부드럽게 교반하여 에탄올에 침투시켜 UD를 용해시켜 제거하였다. 이 후 상기 마이크로스피어를 동결건조시켜 최종적으로 다공성 PLA 마이크로스피어를 제조하였다.The emulsion collected in the collection phase was converted to UD/PLA microspheres by evaporating the DCM overnight, and the microspheres were washed three times with deionized water (DW) to remove residual UD and PVA. Next, the UD/PLA microspheres were gently agitated with ethanol to infiltrate the ethanol to dissolve and remove the UD. Thereafter, the microspheres were lyophilized to finally prepare porous PLA microspheres.
실시예 2: 자성 나노입자 합성Example 2: Synthesis of Magnetic Nanoparticles
본 발명의 다기능성을 갖는 다공성 마이크로스피어 제작하기 위해, 하기와 같은 실험을 수행하였다.In order to fabricate the porous microspheres having multifunctionality according to the present invention, the following experiments were performed.
구체적으로, 자성 나노입자로서, 산화철 나노입자(Iron oxide nanoparticle, IONP)를 합성하기 위해 철(III) 아세틸아세토네이트(iron(III) acetylacetonate) 423.6 mg과 염화아연 120 mg을 50 mL 둥근 바닥 플라스크에 넣었다. 그리고 올레산(oleic acid) 1.2 mL와 올레일아민(oleylamine) 4.8 mL, 트리옥틸아민(trioctylamine) 4.8 mL를 플라스크에 넣었다. 플라스크 주입구를 질소 가스 유입구에 연결하고 300 rpm에서 3분 동안 교반하였다. 가열 맨틀에 연결된 플라스크를 200 ℃에서 25분 동안 점차적으로 가열하고, 200 ℃의 일정한 온도에서 1시간 동안 유지하였다. 그 후, 다시 330 ℃에서 1시간 동안 서서히 가열하고 330 ℃에서 1시간 동안 유지하였다. 그런 다음 실온에서 1시간 동안 천천히 냉각시켰다. 반응 후 1.92 mL의 톨루엔과 30 mL의 에탄올을 용액에 첨가하였다. 용액을 50 mL 원심분리 튜브로 옮기고 실온에서 5분 동안 1600 g에서 원심분리한 후, 상청액을 버리고 8 mL의 톨루엔과 30 uL의 올레일아민을 첨가하여 펠렛을 재분산시켰다. 분산된 용액을 실온에서 3분 동안 650 g에서 원심분리하고 상청액을 수집한 후, 상기 상청액에 에탄올 4 mL를 넣고 상온에서 5분 동안 1600g에서 원심분리하였다. 이 후, 상등액을 버리고 4 mL의 DCM에 재분산하여 최종 입자를 얻었다.Specifically, as magnetic nanoparticles, 423.6 mg of iron(III) acetylacetonate and 120 mg of zinc chloride were mixed in a 50 mL round bottom flask to synthesize iron oxide nanoparticles (IONP). put in Then, 1.2 mL of oleic acid, 4.8 mL of oleylamine, and 4.8 mL of trioctylamine were added to the flask. The flask inlet was connected to a nitrogen gas inlet and stirred at 300 rpm for 3 minutes. A flask connected to a heating mantle was gradually heated at 200° C. for 25 minutes and maintained at a constant temperature of 200° C. for 1 hour. Then, it was slowly heated again at 330 °C for 1 hour and maintained at 330 °C for 1 hour. It was then cooled slowly at room temperature for 1 hour. After the reaction, 1.92 mL of toluene and 30 mL of ethanol were added to the solution. After transferring the solution to a 50 mL centrifuge tube and centrifuging at 1600 g for 5 min at room temperature, the supernatant was discarded and the pellet was redispersed by adding 8 mL of toluene and 30 uL of oleylamine. After the dispersed solution was centrifuged at 650 g for 3 minutes at room temperature and the supernatant was collected, 4 mL of ethanol was added to the supernatant and centrifuged at 1600 g for 5 minutes at room temperature. After this, the supernatant was discarded and redispersed in 4 mL of DCM to obtain final particles.
실시예 3: 다공성 마이크로스피어 특성 평가Example 3: Evaluation of porous microsphere properties
상기 실시예 1에서 제작한 다공성 마이크로스피어의 특성을 평가하기 위해, 하기와 같은 실험을 수행하였다.In order to evaluate the characteristics of the porous microspheres prepared in Example 1, the following experiments were performed.
먼저, 도 1은 유체 장치를 사용하여 O/W 에멀젼 방법으로 균일한 다공성 마이크로스피어를 제조했음을 보여준다. 또한, 마이크로스피어의 크기 및 기공 크기는 UD/PLA의 비율을 통해 조절할 수 있음을 알 수 있으며, 구체적으로 UD/PLA에서 UD의 비율이 증가할수록 마이크로스피어의 크기 및 기공의 크기가 증가하였음을 알 수 있다(도 2).First, FIG. 1 shows that uniform porous microspheres were prepared by the O/W emulsion method using a fluidic device. In addition, it can be seen that the microsphere size and pore size can be controlled through the ratio of UD/PLA, and specifically, as the ratio of UD in UD/PLA increases, the size of microspheres and pore size increase can (Fig. 2).
다만, UD/PLA 비율이 5.83을 초과하면(PLA 0.6%, UD 3.5%), 공극이 너무 많아 마이크로스피어의 기계적 물성에 악영향을 미쳐 형태적 불안정성을 초래하는 것을 확인하였다. 또한, UD의 비율이 증가할수록 면적 100 ㎛2 당 열린 공극의 수가 증가하였음을 알 수 있다(도 3 및 도 4A 내지 4B). However, it was confirmed that when the UD/PLA ratio exceeds 5.83 (PLA 0.6%, UD 3.5%), too many pores adversely affect the mechanical properties of the microspheres, resulting in morphological instability. In addition, it can be seen that the number of open pores per area of 100 μm 2 increased as the ratio of UD increased ( FIGS. 3 and 4A to 4B ).
한편, 박테리아 포자의 크기는 일반적으로 약 1.5 um임을 확인하였는 바 (도 5), 기공 크기가 안정적이고 균일하며 충분한 포자 봉입이 가능한 기공 크기를 갖는, UD/PLA 비율이 3인 마이크로스피어(UD/PLA 3)가 적합하다는 것을 알 수 있다.On the other hand, as it was confirmed that the size of bacterial spores is generally about 1.5 um (Fig. 5), microspheres having a stable and uniform pore size and a UD/PLA ratio of 3 (UD/PLA) having a pore size capable of sufficient spore encapsulation It can be seen that PLA 3) is suitable.
실시예 4: 다공성 마이크로스피어의 자성 평가Example 4: Magnetic Evaluation of Porous Microspheres
상기 실시예 1에서 제작한 다공성 마이크로스피어의 자성을 평가하기 위해, 하기와 같은 실험을 수행하였다.In order to evaluate the magnetism of the porous microspheres prepared in Example 1, the following experiment was performed.
구체적으로, 상기 실시예 1에서 제조된 다공성 마이크로스피어를 증류수에 분산시킨 후 영구 자석을 이용하여 상기 다공성 마이크로스피어가 자성을 갖는 것을 확인하였으며(도 6), 3D 프린터 (Ender-5, China, Creality)를 사용하여 제조한 미로에 자성을 가진 다공성 마이크로스피어를 놓고, 자석을 이용하여 원하는 대로 움직일 수 있음을 확인하였다(도 7).Specifically, after dispersing the porous microspheres prepared in Example 1 in distilled water, it was confirmed that the porous microspheres had magnetism using a permanent magnet (FIG. 6), and a 3D printer (Ender-5, China, Creality) ), it was confirmed that the porous microspheres with magnetism could be moved as desired using a magnet (FIG. 7).
다음으로, 자기 공명(MR) 이미징 및 정량적 평가를 위해 상기 다공성 마이크로스피어를 아가로즈 겔에 다양한 농도로 분산시켰다. 그 결과, 자성 나노입자가 포함되지 않은 마이크로스피어에서는 T2 강조 MR 신호(T2-weighted MR signal)가 검출되지 않는 반면(도 8), 자성 나노입자를 포함하는 다공성 마이크로스피어에서는 입자 농도가 증가함에 따라 T2 강조 MR 신호가 증가하는 것을 확인하였다(도 9).Next, the porous microspheres were dispersed at various concentrations in an agarose gel for magnetic resonance (MR) imaging and quantitative evaluation. As a result, a T2-weighted MR signal was not detected in microspheres without magnetic nanoparticles (FIG. 8), whereas in porous microspheres containing magnetic nanoparticles, as the particle concentration increased, It was confirmed that the T2-weighted MR signal increased (FIG. 9).
다음으로, 생체 내에서 상기 다공성 마이크로스피어의 자기 공명 영상 성능을 평가하고자 하였다. 이를 위해, CT26 대장암 세포를 마우스에 피하 접종하여 마우스 종양 모델을 제작하였으며, 8일 후 종양이 자라면 자성 나노 입자 포함한 다공성 마이크로스피어를 종양 내 주사한 다음 자기 공명 영상화를 수행하였다. 그 결과, 자성 나노입자를 포함하는 다공성 마이크로스피어를 종양에 주입한 경우 T2 강조 신호가 보이는 것을 확인하였다(도 10).Next, the magnetic resonance imaging performance of the porous microspheres in vivo was evaluated. To this end, a mouse tumor model was prepared by subcutaneously inoculating CT26 colorectal cancer cells into mice. After 8 days, when the tumors grew, porous microspheres containing magnetic nanoparticles were intratumorally injected, followed by magnetic resonance imaging. As a result, it was confirmed that a T2-weighted signal was seen when porous microspheres containing magnetic nanoparticles were injected into the tumor (FIG. 10).
실시예 5: 다공성 구조를 갖는 마이크로스피어의 분산력 평가Example 5: Evaluation of dispersion force of microspheres having a porous structure
상기 실시예 1에서 제작한 다공성 마이크로스피어의 균일한 주입을 위해, 분산된 상태를 유지하고 작은 주사바늘을 통과하는 적절한 분산액 농도를 찾기 위한 실험을 수행하였다.For uniform injection of the porous microspheres prepared in Example 1, an experiment was conducted to find an appropriate concentration of the dispersion while maintaining a dispersed state and passing through a small injection needle.
구체적으로, UD/PLA 3 마이크로스피어를 이용하여 분산력 확인 실험을 수행하였다. 상기 마이크로스피어는 70% 에탄올에 24시간동안 침윤시켜 멸균하였으며, 에탄올을 증류수로 치환하여 초음파를 통해 에탄올을 씻어내는 과정을 3번 반복하였고, 최종적으로 다양한 농도의 carboxymethyl cellulose (CMC), 알지네이트(alginate, Alg) 용액에 10 mg/mL 농도의 마이크로스피어를 분산시켰다.Specifically, a dispersion force confirmation experiment was performed using UD/PLA 3 microspheres. The microspheres were sterilized by soaking in 70% ethanol for 24 hours, ethanol was replaced with distilled water, and the process of washing the ethanol through ultrasonic waves was repeated three times. Finally, various concentrations of carboxymethyl cellulose (CMC), alginate , Alg) microspheres at a concentration of 10 mg/mL were dispersed in the solution.
그 결과, 3 wt% 및 4 wt%의 CMC와 3 wt% 및 5 wt%의 Alg 분산액에서 마이크로스피어는 볼텍싱(voltexing) 방식을 통해 분산이 불가능하였으며, 초음파를 통해 분산시켰다. 초음파를 사용할 경우 추후 박테리아 봉입 시 박테리아가 탈락될 우려가 있기 때문에 CMC 와 알지네이트의 농도는 최대 2% 이하로 진행하여야 하는 것을 확인하였다. 또한, 분산 상태의 마이크로스피어가 가라앉기 시작하는 시간을 나타내었으며(빨간 화살표 표시), 분산액의 농도가 높을수록 가라앉는 시간이 늦춰지는 것을 확인하였다(도 11 및 도 12).As a result, in the 3 wt% and 4 wt% CMC and 3 wt% and 5 wt% Alg dispersions, the microspheres could not be dispersed through voltexing, and were dispersed using ultrasonic waves. When ultrasonic waves are used, it was confirmed that the concentration of CMC and alginate should be carried out at a maximum of 2% or less because there is a concern that bacteria may be eliminated during subsequent bacterial encapsulation. In addition, the time at which the microspheres in the dispersed state start to sink was shown (red arrow), and it was confirmed that the sinking time was delayed as the concentration of the dispersion increased (FIG. 11 and FIG. 12).
실시예 6: 양이온성 고분자로 코팅된 다공성 마이크로스피어 제작Example 6: Fabrication of porous microspheres coated with cationic polymers
상기 실시예 1에서 제작한 다공성 마이크로스피어를 양이온성 고분자로 코딩하기 위해, 하기와 같은 실험을 수행하였다.In order to encode the porous microspheres prepared in Example 1 with a cationic polymer, the following experiment was performed.
구체적으로, 양이온성 고분자의 예로서 폴리에틸렌이민 (polyethyleneimine, PEI)을 사용하였으며, 다공성 마이크로스피어를 10wt% PEI 수용액에 분산시키고 상온에서 1시간 동안 코팅하였다. PEI 코팅된 다공성 마이크로스피어를 증류수로 5회 세척하였다. 마이크로스피어의 표면 형태는 주사전자현미경(S-4800, HITACHI, JAPAN)으로 관찰하였으며, ImageJ 소프트웨어(USA)를 사용하여 각 샘플에 대해 최소 100개의 마이크로스피어를 분석하여 입자 및 기공의 평균 크기를 계산했다.Specifically, polyethyleneimine (PEI) was used as an example of a cationic polymer, and porous microspheres were dispersed in a 10 wt % PEI aqueous solution and coated for 1 hour at room temperature. The PEI coated porous microspheres were washed 5 times with distilled water. The surface morphology of the microspheres was observed with a scanning electron microscope (S-4800, HITACHI, JAPAN), and the average size of particles and pores was calculated by analyzing at least 100 microspheres for each sample using ImageJ software (USA). did.
실시예 7: 양이온성 고분자로 개질된 다공성 마이크로스피어의 박테리아 봉입 효율 및 방출능 평가Example 7: Evaluation of bacterial encapsulation efficiency and release performance of porous microspheres modified with cationic polymers
양이온성 고분자로 개질한 마이크로스피어의 박테리아 포자의 봉입능과 봉입된 박테리아 포자의 방출 거동을 평가하기 위해, 하기와 같은 실험을 수행하였다. 이때, 박테리아 포자보다 큰 기공을 갖는 균일한 다공성 마이크로스피어를 제조하기 위해 UD/PLA 3 조건을 캐리어 모델로 결정하였다. 또한, 구체적으로, 비다공성 마이크로스피어(MS)를 대조군으로 사용하였고, PEI로 코팅을 하지 않은 UD/PLA 3 다공성 마이크로스피어(PMS) 및 PEI 코팅을 한 UD/PLA 3 다공성 마이크로스피어(PEI-PMS)를 실험군으로 선정하였다.In order to evaluate the encapsulation ability of the microspheres modified with the cationic polymer and the release behavior of the encapsulated bacterial spores, the following experiment was performed. At this time, the UD/PLA 3 condition was determined as a carrier model in order to prepare uniformly porous microspheres having pores larger than bacterial spores. In addition, specifically, non-porous microspheres (MS) were used as a control, UD / PLA 3 porous microspheres (PMS) not coated with PEI and UD / PLA 3 porous microspheres (PEI-PMS) coated with PEI ) was selected as the experimental group.
7-1: 박테리아 포자 준비7-1: Preparation of bacterial spores
박테리아 포자의 일 예로서, 클로스트리디움 노비-NT (Clostridium novyi-NT, C. novyi-NT) 포자를 준비하였으며, C. novyi-NT 포자는 1L 당 5 g Na2HPO4, 30 g 펩톤, 0.5 g L-시스테인, 10 g 말토오스 및 5 % wt/vol cooked meat particles (Difco)를 포함하는 포자 형성 배지에서 혐기성 및 37 ℃조건에서 배양되었다. 최소 2주동안 배양된 포자는 퍼콜 밀도 구배(percoll density gradients) (55 및 70%)에 의해 분리되었다.As an example of bacterial spores, Clostridium novyi -NT ( Clostridium novyi -NT, C. novyi -NT) spores were prepared, C. novyi -NT spores were 5 g Na 2 HPO 4 per 1 L, 30 g peptone, They were cultured anaerobically and at 37 °C in a sporulation medium containing 0.5 g L-cysteine, 10 g maltose and 5% wt/vol cooked meat particles (Difco). Spores cultured for at least 2 weeks were isolated by percoll density gradients (55 and 70%).
또한, FITC 표지된 C. novyi-NT 포자를 제조하기 위해, 100 uL FITC DMSO 용액(1 mg/mL)을 1 mL C. novyi-NT 용액(1Х109 포자)에 첨가하고 25 ℃에서 밤새 교반하였다. 그 후, 반응액을 4 ℃, 8000 rpm에서 10분간 원심분리하여 PBS로 3회 세척하였다.In addition, to prepare FITC-labeled C. novyi -NT spores, 100 uL FITC DMSO solution (1 mg/mL) was added to 1 mL C. novyi -NT solution (1Х10 9 spores) and stirred overnight at 25 °C. . Thereafter, the reaction solution was centrifuged at 4 °C and 8000 rpm for 10 minutes and washed three times with PBS.
7-2: 박테리아 포자 봉입 효율 평가7-2: Evaluation of bacterial spore encapsulation efficiency
양이온성 고분자로 개질된 다공성 마이크로스피어의 박테리아 포자 봉입 효율을 확인하기 위해, 하기와 같은 실험을 수행하였다.In order to confirm the bacterial spore encapsulation efficiency of porous microspheres modified with cationic polymers, the following experiment was performed.
구체적으로, MS, PMS 또는 PEI-PMS 10 mg을 PBS에 분산시킨 후 1 Х 108 FITC 표지된 C. novyi-NT 포자를 넣고, 진공을 가한 후, 4시간동안 섞어주었다. 이 후, 자성을 이용하여 마이크로스피어를 분리하고 상층액의 일부를 따서 각각의 형광감도를 측정하였다. 상층액의 형광감도는 마이크로스피어 내부로 봉입되지 않은 물질의 양으로 보고, 대조군으로부터 그 값을 빼주어 봉입률을 구하였다.Specifically, after dispersing 10 mg of MS, PMS or PEI-PMS in PBS, 1 Х 10 8 FITC-labeled C. novyi -NT spores were added, vacuum was applied, and the mixture was mixed for 4 hours. Thereafter, the microspheres were separated using magnetism, and a portion of the supernatant was taken to measure the fluorescence sensitivity of each. The fluorescence sensitivity of the supernatant was regarded as the amount of material not encapsulated into the microspheres, and the encapsulation rate was obtained by subtracting the value from the control group.
그 결과, MS군에서는 정전기 인력과 기공이 모두 없기 때문에 포자가 전혀 봉입되지 않았으며, PMS 군에서는 약 20%가 봉입되었고, PEI-PMS군에서는 내부 기공과 정전기적 인력에 의해 PMS와 비교하여 2배 이상 봉입이 이루어짐을 확인하였다(도 13). 또한, 각 마이크로스피어 내로 봉입된 박테리아 포자를 형광현미경으로 관찰한 결과 기공의 존재와 양이온성 고분자로의 표면 개질에 따라서 봉입 효율이 향상되는 것을 확인하였다(도 14).As a result, in the MS group, no spores were encapsulated at all because there was no electrostatic attraction and stomata. In the PMS group, about 20% were encapsulated. It was confirmed that the encapsulation was performed twice or more (FIG. 13). In addition, as a result of observing the bacterial spores encapsulated into each microsphere with a fluorescence microscope, it was confirmed that the encapsulation efficiency was improved according to the presence of pores and surface modification with cationic polymers (FIG. 14).
7-3: 박테리아 포자 방출능 평가7-3: Evaluation of bacterial spore release ability
양이온성 고분자로 개질된 다공성 마이크로스피어의 박테리아 포자 방출능을 확인하기 위해, 하기와 같은 실험을 수행하였다. 이는, 내부 기공과 정전기적 인력에 의해 입자에 봉입된 포자가 생체 내에서 목표 부위로 안전하게 이동한 후, 저산소 환경에서 효과적으로 방출되어 발아하는지 확인하기 위해 수행되었다.In order to confirm the ability of the porous microspheres modified with cationic polymers to release bacterial spores, the following experiment was performed. This was done to confirm that the spores encapsulated in the particles by internal pores and electrostatic attraction safely move to the target site in vivo and then are effectively released and germinate in a hypoxic environment.
구체적으로, 포자가 봉입된 PEI-PMS 마이크로스피어 현탁액을 RCM 브로스에 접종했다. 봉입되지 않은 포자를 포함하는 상등액을 제거한 후, 마이크로스피어를 1 mL의 PBS에 재분산하고, 이를 RCM 액체 배지에 접종하고 24시간 후에 흡광도를 측정하였다. 또한, 혐기성 세균인 C. novyi-NT의 포자를 발아시키기 위해, EC-oxyrase(Oxyrase Inc.)를 RCM 브로쓰에 10% v/v로 첨가한 후, BD GasPak에서 배양하였다. 이후 4, 8, 및 12시간 후 배양액 200 uL를 취하여 RCM 고체배지에 도말하고, 24시간 후에 콜로니 이미지를 수득하였다.Specifically, the spore-encapsulated PEI-PMS microsphere suspension was inoculated into the RCM broth. After removing the supernatant containing unencapsulated spores, the microspheres were re-dispersed in 1 mL of PBS, inoculated into RCM liquid medium, and absorbance was measured after 24 hours. In addition, in order to germinate spores of C. novyi -NT, an anaerobic bacterium, EC-oxyrase (Oxyrase Inc.) was added to RCM broth at 10% v/v and then cultured in BD GasPak. Then, after 4, 8, and 12 hours, 200 uL of the culture medium was spread on RCM solid medium, and colony images were obtained after 24 hours.
그 결과, 포자가 봉입되지 않은 PEI-PMS군(대조군)은 발아가 이루어지지 않은 반면, 포자가 배지에서 천천히 방출되면서 발아가 일어나는 것을 확인하였다(도 15). 또한, 포자를 포함하는 마이크로스피어를 RCM 배지에 접종하고, 배양액을 4, 8, 12시간마다 채취하여 RCM oxyrase agar plate에 도말한 결과, 시간 경과에 따라 포자가 지속적으로 방출되고 있음을 확인하였다(도 16).As a result, it was confirmed that the PEI-PMS group (control group) in which spores were not encapsulated did not germinate, while germination occurred while the spores were slowly released from the medium (FIG. 15). In addition, microspheres containing spores were inoculated into the RCM medium, and the culture medium was collected every 4, 8, and 12 hours and spread on an RCM oxyrase agar plate. As a result, it was confirmed that the spores were continuously released over time ( Figure 16).
상기 결과를 토대로, 마이크로스피어의 기공과 정전기적 인력 유도에 의해 박테리아 포자를 효과적으로 봉입할 수 있고, 봉입된 포자가 입자에 의한 기능적 제한이나 간섭 없이 적절한 환경에서 방출되고 발아될 수 있음을 알 수 있다.Based on the above results, it can be seen that bacterial spores can be effectively encapsulated by the induction of electrostatic attraction with the pores of microspheres, and the encapsulated spores can be released and germinated in an appropriate environment without functional limitations or interference by the particles. .
실시예 8: 박테리아 포자가 봉입된 다공성 마이크로스피어의 세포 독성 평가Example 8: Cytotoxicity evaluation of porous microspheres encapsulated with bacterial spores
박테리아 포자가 봉입된 다공성 마이크로스피어의 세포 독성 및 항 종양 효과를 확인하기 위해, 하기와 같은 실험을 수행하였다.In order to confirm the cytotoxic and antitumor effects of the porous microspheres encapsulated with bacterial spores, the following experiments were performed.
8-1: 다공성 마이크로스피어의 세포 독성 평가8-1: Evaluation of cytotoxicity of porous microspheres
다공성 마이크로스피어의 자체의 세포 독성 여부를 확인하기 위해, PEI-PMS를 CT26 세포를 처리한 결과 대조군과 비교하여 독성이 없는 것으로 나타났다(도 17A).In order to confirm whether the porous microspheres themselves are cytotoxic, when CT26 cells were treated with PEI-PMS, it was found to be non-toxic compared to the control group (FIG. 17A).
8-2: 박테리아 포자의 세포 독성 평가 8-2: Evaluation of cytotoxicity of bacterial spores
C. novyi-NT의 세포 독성을 평가하기 위해, 하기와 같은 실험을 수행하였다.In order to evaluate the cytotoxicity of C. novyi -NT, the following experiment was performed.
구체적으로, CT26 세포(3Х105개 세포/mL) 또는 RAW264.7 세포(4Х105개 세포/mL)를 24-웰 플레이트에 접종하고 하룻밤동안 배양하였다. 이 후, C. novyi-NT 상등액과 E. coli DH5α 상등액을 동일한 농도로 처리하였다. 4시간 후 세포를 PBS로 세척하고 CCK-8 용액을 첨가하였다. 1시간 후, CCK-8 분석법으로 마이크로플레이트 판독기를 사용하여 세포 독성을 평가하였다.Specifically, CT26 cells (3Х10 5 cells/mL) or RAW264.7 cells (4Х10 5 cells/mL) were seeded in a 24-well plate and cultured overnight. Thereafter, the C. novyi -NT supernatant and the E. coli DH5α supernatant were treated at the same concentration. After 4 hours, cells were washed with PBS and CCK-8 solution was added. After 1 hour, cytotoxicity was assessed using a microplate reader with the CCK-8 assay.
그 결과, C. novyi-NT 배양 상등액의 농도 의존적으로 사멸 효과가 나타나는 것을 확인하였으며, 5 mg/mL의 C. novyi-NT 포자 배양 상등액으로 처리한 경우, 대부분의 세포가 사멸되는 것이 관찰되었다(도 17B 및 C).As a result, it was confirmed that the killing effect appeared in a concentration-dependent manner of the C. novyi -NT culture supernatant, and when treated with 5 mg/mL of C. novyi -NT spore culture supernatant, it was observed that most cells were killed ( 17B and C).
다음으로, 상기 독성이 C. novyi-NT 포자의 특이적인 특성인지 확인하기 위해, 대장균 DH5α 균주의 배양 상등액을 동일한 농도로 처리한 결과, 대장균 DH5α 균주는 독성을 나타내지 않는 것으로 확인되었다(도 18A).Next, in order to confirm that the toxicity is a specific characteristic of C. novyi -NT spores, the culture supernatant of the E. coli DH5α strain was treated at the same concentration, and it was confirmed that the E. coli DH5α strain did not exhibit toxicity (FIG. 18A). .
다음으로, C. novyi-NT에서 분비되는 리포소마아제(liposomase)가 독성을 유발하는 것인지 확인하기 위해, C. novyi-NT 배양 상등액을 열처리하여 불활성화한 후, CT26 세포에 처리한 결과, 열처리한 경우에는 독성을 나타내지 않는 것을 확인하였다(도 18B).Next, in order to confirm whether the liposomase secreted from C. novyi -NT induces toxicity, the C. novyi -NT culture supernatant was inactivated by heat treatment, and then CT26 cells were treated with heat treatment. In one case, it was confirmed that there was no toxicity (FIG. 18B).
다음으로, 생존 및 사멸 분석(live and dead assay)과 콜로니 형성 분석(colony formation assay)에서 C. novyi-NT 배양 상등액의 농도가 증가함에 따라 죽은 세포의 비율이 증가하는 것이 확인하였다(도 19, 도 20A 및 20B). Next, in the live and dead assay and colony formation assay, it was confirmed that the proportion of dead cells increased as the concentration of the C. novyi -NT culture supernatant increased (FIG. 19, 20A and 20B).
8-3: 박테리아 포자에 의한 세포 사멸 메커니즘 분석8-3: Analysis of cell death mechanism by bacterial spores
C. novyi-NT 배양에 의한 세포 사멸을 분석하기 위해, 하기와 같은 실험을 수행하였다.In order to analyze cell death by C. novyi -NT culture, the following experiment was performed.
구체적으로, CT26 세포(3Х105개 세포/mL)를 12-웰 플레이트에 접종하고, 하룻밤동안 배양하였다. 이 후 상기 세포에 C. novyi-NT 배양 배지를 농도별로 처리하였다. 4시간 후, 7-AAD (Biolegend)가 포함된 FITC Annexin V Apoptosis Detection Kit를 사용하여 세포를 염색한 다음, 유세포 분석기(CytoFLEX S, Beckman Coulter, Miami, FL, USA)로 분석했다.Specifically, CT26 cells (3Х10 5 cells/mL) were seeded in a 12-well plate and cultured overnight. Thereafter, the cells were treated with C. novyi -NT culture medium at different concentrations. After 4 hours, cells were stained using the FITC Annexin V Apoptosis Detection Kit with 7-AAD (Biolegend) and then analyzed by flow cytometry (CytoFLEX S, Beckman Coulter, Miami, FL, USA).
그 결과, C. novyi-NT 배양 상등액의 농도가 증가함에 따라 후기 사멸/괴사 세포(late apoptotic/necrotic cells)의 비율이 증가하는 것을 확인하였다(도 21 및 도 22).As a result, it was confirmed that the ratio of late apoptotic/necrotic cells increased as the concentration of the C. novyi -NT culture supernatant increased (FIGS. 21 and 22).
상기 결과들을 토대로 박테리아 포자가 분비하는 지질 분해 단백질(liposomase)들이 직접적으로 암세포 사멸을 일으키며, 이를 이용하여 박테리아 기반의 항 종양 치료를 진행할 수 있음을 알 수 있다.Based on the above results, it can be seen that liposomes secreted by bacterial spores directly cause cancer cell death, and bacteria-based anti-tumor treatment can be performed using this.
실시예 9: 박테리아 포자에 의한 면역 활성화 평가Example 9: Assessment of immune activation by bacterial spores
박테리아 포자로 인한 면역 활성화를 평가하기 위해, 하기와 같은 실험을 수행하였다. In order to evaluate immune activation due to bacterial spores, the following experiment was performed.
9.1: DAMP 발현 분석9.1: DAMP expression analysis
박테리아 포자에 의한 ICD (immunogenic cell death)-관련 손상 관련 분자 패턴(Damage-associated molecular patterns, DAMP)를 확인하기 위해, 하기와 같은 실험을 수행하였다.In order to confirm immunogenic cell death (ICD)-associated molecular patterns (Damage-associated molecular patterns, DAMPs) caused by bacterial spores, the following experiment was performed.
구체적으로, CT26 세포(3Х105개 세포/mL)를 12-웰 플레이트에 접종하고, 하룻밤동안 배양하였다. 이 후 상기 세포에 C. novyi-NT 배양 배지를 농도별로 처리하였다. 4시간 후, 세포 펠릿을 PBS로 세척하고, 세포 표면에 발현된 칼레티쿨린(calreticulin) 분자를 염색하기 위해 4 ℃에서 30분 동안 Alexa Fluor 488-접합 칼레티쿨린 항체(희석 1:500)로 처리하였다. 세포를 PBS로 세척한 후, 세포를 2% FBS를 포함하는 PBS 용액에 재분산시키고 유세포 분석기로 분석하였다.Specifically, CT26 cells (3Х10 5 cells/mL) were seeded in a 12-well plate and cultured overnight. Thereafter, the cells were treated with C. novyi -NT culture medium at different concentrations. After 4 hours, the cell pellet was washed with PBS and stained with Alexa Fluor 488-conjugated calreticulin antibody (dilution 1:500) at 4°C for 30 minutes to stain the calreticulin molecule expressed on the cell surface. processed. After washing the cells with PBS, the cells were redispersed in a PBS solution containing 2% FBS and analyzed by flow cytometry.
다음으로, CT26 세포(3Х105개 세포/mL)를 12-웰 플레이트에 접종하고, 하룻밤동안 배양하였다. 이 후 상기 세포에 C. novyi-NT 배양 배지를 농도별로 처리하였다. 1시간 후, ATP 생물발광 키트(ATP bioluminescence kit)를 사용하여 세포 배지에서 방출된 ATP의 양을 측정했다.Next, CT26 cells (3Х10 5 cells/mL) were seeded in a 12-well plate and cultured overnight. Thereafter, the cells were treated with C. novyi -NT culture medium at different concentrations. After 1 hour, the amount of ATP released from the cell medium was measured using an ATP bioluminescence kit.
그 결과, C. novyi-NT 상등액 처리 농도가 증가할수록 ATP 방출량이 증가하였으며, 5 mg/mL 처리한 경우 ATP 방출량이 대조군에 비해 약 12배 증가하였고, calreticulin(CRT)가 발현된 세포의 백분율(%)은 약 37배 증가했다 (도 23A 및 B).As a result, as the concentration of C. novyi -NT supernatant treatment increased, the ATP release increased. In the case of 5 mg/mL treatment, the ATP release increased about 12 times compared to the control group, and the percentage of cells expressing calreticulin (CRT) ( %) increased about 37-fold (Fig. 23A and B).
9.2: 면역세포 활성화 평가9.2: Assessment of immune cell activation
박테리아 포자에 의해 사멸된 암세포에 의한 면역세포 활성을 평가하기 위해(M0 대식세포의 M1 분극화 정도를 평가), 하기와 같은 실험을 수행하였다. M1 대식세포는 병원균과 종양 세포의 제거에 긍정적인 역할을 하며, 항원 제시 MHC 복합체를 높은 수준으로 발현하여 적응 면역 반응을 활성화하는 것으로 알려져 있다.In order to evaluate the activity of immune cells by cancer cells killed by bacterial spores (evaluating the degree of M1 polarization of M0 macrophages), the following experiment was performed. M1 macrophages are known to play a positive role in the elimination of pathogens and tumor cells and to activate the adaptive immune response by expressing high levels of antigen-presenting MHC complexes.
구체적으로, CT26 대장암 세포(3Х105 cells/mL) 및 RAW264.7 세포(3.5Х105 cells/mL)를 12-웰 플레이트에 접종하여 간접적으로 공배양시켰다. 먼저, CT26 대장암 세포에 C. novyi-NT 상등액을 농도별로 처리하고 4시간동안 배양하였다. 이 후, CT26 대장암 세포의 배양액을 RAW264.7 세포에 처리하고 24시간 동안 배양하였다. 다음으로, 세포 펠릿을 PBS로 세척하고, 4 ℃에서 10분동안 Fc 수용체로 블락킹하고, 세포를 PBS로 세척하였다. 그런 다음, 세포 표면에 발현된 CD80 및 CD86 분자를 APC-접합 CD80 항체, PE-접합 CD86 항체 및 좀비 아쿠아 염료(zombie aqua dye)(1:500로 희석)로 4 ℃에서 1시간 동안 처리하여 염색하였다. 세포를 PBS로 세척한 후, 세포를 2% FBS를 포함하는 PBS 용액에 재분산시키고 유세포 분석기로 분석하였다.Specifically, CT26 colorectal cancer cells (3Х10 5 cells/mL) and RAW264.7 cells (3.5Х10 5 cells/mL) were seeded in a 12-well plate and indirectly co-cultured. First, CT26 colorectal cancer cells were treated with C. novyi -NT supernatant at each concentration and cultured for 4 hours. Thereafter, the culture medium of CT26 colorectal cancer cells was treated with RAW264.7 cells and cultured for 24 hours. Next, the cell pellet was washed with PBS, blocked with Fc receptors for 10 minutes at 4° C., and the cells were washed with PBS. Then, CD80 and CD86 molecules expressed on the cell surface were treated with APC-conjugated CD80 antibody, PE-conjugated CD86 antibody and zombie aqua dye (diluted 1:500) for 1 hour at 4°C for staining. did After washing the cells with PBS, the cells were redispersed in a PBS solution containing 2% FBS and analyzed by flow cytometry.
그 결과, C. novyi-NT 상등액 처리 농도가 증가함에 따라 CD80 및 CD86 양성 세포의 비율이 유의하게 증가하였다(도 24A 내지 C).As a result, as the concentration of C. novyi -NT supernatant treatment increased, the ratio of CD80 and CD86 positive cells significantly increased (FIGS. 24A to C).
상기 결과들을 토대로 박테리아 포자에 의해 파괴된 암세포가 종양 항원 또는 DAMP를 방출하여 면역 세포를 활성화한다는 것을 알 수 있다(도 25).Based on the above results, it can be seen that cancer cells destroyed by bacterial spores activate immune cells by releasing tumor antigens or DAMPs (FIG. 25).
종양 용해성 박테리아를 암 치료에 적용하는 박테리아-매개 종양 치료의 경우 종양에 전달되는 포자의 비율이 적고, 전달된 포자가 혈류로 빠져나가면 전신 감염과 같은 유해한 부작용을 일으킬 수 있다는 단점이 있다. 따라서, 상기 박테리아-매개 종양 치료의 치료 효과와 부작용 감소를 위해 박테리아 농도를 조절하고 종양에 표적화하는 것이 중요하다.Bacterial-mediated tumor treatment, which applies oncolytic bacteria to cancer treatment, has a disadvantage in that the proportion of spores delivered to the tumor is small, and when the delivered spores escape into the bloodstream, they can cause harmful side effects such as systemic infection. Therefore, it is important to control the concentration of bacteria and target them to tumors for the therapeutic effect and reduction of side effects of the bacteria-mediated tumor treatment.
본 발명의 다공성 마이크로스피어는 양이온성 고분자로 표면을 개질하였는 바, 음전하를 갖는 박테리아 포자를 정전기적 인력을 통해 효과적으로 봉입할 수 있다(도 26). 또한, 본 발명의 마이크로스피어는 자성 나노입자를 포함하고 있는 바, 외부 자기장으로 제어가 가능할뿐만 아니라, MRI를 통해 생체 내 위치를 확인할 수 있다는 장점이 있다(도 27).Since the surface of the porous microspheres of the present invention is modified with a cationic polymer, negatively charged bacterial spores can be effectively encapsulated through electrostatic attraction (FIG. 26). In addition, since the microsphere of the present invention contains magnetic nanoparticles, it has the advantage of being controllable with an external magnetic field and confirming its location in the living body through MRI (FIG. 27).
진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The description of the present invention described above is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting.

Claims (13)

  1. 생체적합성 고분자 및 양이온성 고분자를 포함하는, 다공성 마이크로스피어.Porous microspheres comprising biocompatible polymers and cationic polymers.
  2. 청구항 1에 있어서, 상기 마이크로스피어는 자성 나노입자를 추가로 포함하는 것인, 다공성 마이크로스피어.The porous microsphere of claim 1 , wherein the microsphere further comprises magnetic nanoparticles.
  3. 청구항 1에 있어서, 상기 마이크로스피어의 표면은 양이온성 고분자로 개질된 것인, 다공성 마이크로스피어.The porous microsphere of claim 1, wherein the surface of the microsphere is modified with a cationic polymer.
  4. 청구항 1에 있어서, 상기 마이크로스피어는 박테리아 또는 박테리아 포자를 봉입할 수 있는 것인, 다공성 마이크로스피어.The porous microsphere of claim 1, wherein the microsphere is capable of encapsulating bacteria or bacterial spores.
  5. 청구항 1에 있어서, 상기 마이크로스피어의 기공의 크기는 1 내지 10 ㎛인 것인, 다공성 마이크로스피어.The porous microsphere of claim 1, wherein the microsphere has a pore size of 1 to 10 μm.
  6. 청구항 1에 있어서, 상기 마이크로스피어의 면적 100㎛2 당 열린 공극(open pore/area)의 수는 0.1 내지 6인 것인, 다공성 마이크로스피어.The porous microsphere of claim 1, wherein the number of open pores/area per 100 μm 2 of the microsphere is 0.1 to 6.
  7. 1) 생체적합성 고분자 및 기공형성제를 포함하는 제1 용액을 제조하는 단계;1) preparing a first solution containing a biocompatible polymer and a pore forming agent;
    2) 계면활성제를 포함하는 제2 용액 제조하는 단계;2) preparing a second solution containing a surfactant;
    3) 상기 제1 용액 및 제2 용액을 이용하여 마이크로스피어를 제조하는 단계; 및3) preparing microspheres using the first solution and the second solution; and
    4) 상기 제조된 마이크로스피어에서 기공형성제를 제거하는 단계4) removing the pore forming agent from the prepared microspheres
    를 포함하는, 다공성 마이크로스피어 제조방법.A method for producing porous microspheres comprising a.
  8. 청구항 7에 있어서, 상기 제1 용액은 기공형성제 및 생체적합성 고분자를 1:1 내지 6:1의 비율(w:w)로 포함하는 것인, 제조방법.The method according to claim 7, wherein the first solution includes the pore-forming agent and the biocompatible polymer in a ratio (w:w) of 1:1 to 6:1.
  9. 청구항 7에 있어서, 상기 제1 용액은 자성 나노입자를 추가로 포함하는 것인, 제조방법.The method according to claim 7, wherein the first solution further comprises magnetic nanoparticles.
  10. 청구항 7에 있어서, 상기 방법은 제조된 다공성 마이크로스피어의 표면을 양이온성 고분자로 개질하는 단계를 추가로 포함하는 것인, 다공성 마이크로스피어 제조방법.The method of claim 7 , wherein the method further comprises modifying the surface of the porous microspheres with a cationic polymer.
  11. 청구항 7에 있어서, 상기 방법은 제조된 다공성 마이크로스피어에 박테리아 또는 박테리아 포자를 봉입하는 단계를 추가로 포함하는 것인, 다공성 마이크로스피어 제조방법.The method according to claim 7, wherein the method further comprises encapsulating bacteria or bacterial spores in the porous microspheres.
  12. 1) 청구항 1 내지 6 중 한 항의 다공성 마이크로스피어; 및 1) the porous microspheres of any one of claims 1 to 6; and
    2) 종양 용해(oncolytic) 박테리아 또는 이의 포자2) Oncolytic bacteria or their spores
    를 포함하는, 항암 마이크로스피어.Including, anti-cancer microspheres.
  13. 청구항 12의 항암 마이크로스피어를 포함하는, 암 치료 또는 예방용 약학 조성물.A pharmaceutical composition for treating or preventing cancer, comprising the anticancer microspheres of claim 12.
PCT/KR2022/021417 2021-12-28 2022-12-27 Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method therefor WO2023128566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0190411 2021-12-28
KR20210190411 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023128566A1 true WO2023128566A1 (en) 2023-07-06

Family

ID=86999944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021417 WO2023128566A1 (en) 2021-12-28 2022-12-27 Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20230101729A (en)
WO (1) WO2023128566A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058466A1 (en) * 2000-02-08 2001-08-16 Institute Of Molecular Agrobiology Biodegradable and biocompatible polymeric microspheres encapsulating salmonella enteritidisbacteria
KR100951109B1 (en) * 2009-09-07 2010-04-07 서현화 A microorganism carrier and its manufacturing method
KR20110007672A (en) * 2009-07-17 2011-01-25 단국대학교 산학협력단 Porous microsphere and manufacturing method thereof
KR20130050579A (en) * 2011-11-08 2013-05-16 전남대학교산학협력단 Bacterium-based microrobot comprising magnetic particles
KR20200015174A (en) * 2018-08-03 2020-02-12 이동희 Support for three dimensional cell culutre and culturing compostion for stem cells having the support
KR20210062378A (en) * 2019-11-21 2021-05-31 (주)바이오트코리아 Functional microscaffold for magnetic drive and the process thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058466A1 (en) * 2000-02-08 2001-08-16 Institute Of Molecular Agrobiology Biodegradable and biocompatible polymeric microspheres encapsulating salmonella enteritidisbacteria
KR20110007672A (en) * 2009-07-17 2011-01-25 단국대학교 산학협력단 Porous microsphere and manufacturing method thereof
KR100951109B1 (en) * 2009-09-07 2010-04-07 서현화 A microorganism carrier and its manufacturing method
KR20130050579A (en) * 2011-11-08 2013-05-16 전남대학교산학협력단 Bacterium-based microrobot comprising magnetic particles
KR20200015174A (en) * 2018-08-03 2020-02-12 이동희 Support for three dimensional cell culutre and culturing compostion for stem cells having the support
KR20210062378A (en) * 2019-11-21 2021-05-31 (주)바이오트코리아 Functional microscaffold for magnetic drive and the process thereof

Also Published As

Publication number Publication date
KR20230101729A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
Ektate et al. Chemo-immunotherapy of colon cancer with focused ultrasound and Salmonella-laden temperature sensitive liposomes (thermobots)
Sadeghzadeh et al. The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells
WO2020096318A1 (en) Ph-sensitive carbon nanoparticles, preparation method therefor, and drug delivery using same
Wan et al. Sequential depletion of myeloid-derived suppressor cells and tumor cells with a dual-pH-sensitive conjugated micelle system for cancer chemoimmunotherapy
WO2018186725A1 (en) Pharmaceutical composition for cancer treatment
WO2013089411A1 (en) Gene nanocomposite, and cellular internalization method of gene using same
WO2019182372A1 (en) Bacterial extracellular vesicles having reduced toxicity and use thereof
WO2017204475A1 (en) Intranasal pharmaceutical composition comprising anticancer drug-containing nanoparticles for treating brain diseases
Zeng et al. Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle
WO2023128566A1 (en) Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method therefor
WO2020171439A1 (en) Immunocyte-based medical microrobot
US20040053972A1 (en) Medicinal compositions having improved absorbability
Karimitabar et al. Use of the quantum dot-labeled solid lipid nanoparticles for delivery of streptomycin and hydroxychloroquine: A new therapeutic approach for treatment of intracellular Brucella abortus infection
Jani et al. Formulation and characterization of oleic acid magnetic PEG PLGA nanoparticles for targeting glioblastoma multiforme
Perera et al. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery
KR101671376B1 (en) Sustained-Release Preparations for preventing or treating porcine Salmonella typhimurium infection and PRRS Virus and Method of Preparing the Same
WO2021141319A2 (en) Nanoparticles for drug delivery surface-modified with peptide for targeting brain cancer cells, method for preparing same, and use thereof
WO2020017756A1 (en) Orally administered pharmaceutical composition comprising fab i inhibitors and method for preparing same
WO2014051251A1 (en) Pvax copolymer and pvax microparticles comprising the same
WO2024049167A1 (en) Novel salt of niclosamide, molecular aggregate thereof, and pharmaceutical composition containing same
Kanelli et al. Co-encapsulation of violacein and iron oxide in poly (lactic acid) nanoparticles for simultaneous antibacterial and anticancer applications
Bao et al. Bacteria− based synergistic therapy in the backdrop of synthetic biology
WO2019190176A1 (en) Glycyrrhizin-glycol chitosan conjugate-coated iron oxide nanoparticles and use thereof
KR20200102358A (en) Composition for inducing differentiation into dendritic cells
WO2024039148A1 (en) Method for preparing superparamagnetic iron oxide nanoparticles for immunotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE