WO2023128374A1 - 레이저 가공 장치 및 방법 - Google Patents

레이저 가공 장치 및 방법 Download PDF

Info

Publication number
WO2023128374A1
WO2023128374A1 PCT/KR2022/019941 KR2022019941W WO2023128374A1 WO 2023128374 A1 WO2023128374 A1 WO 2023128374A1 KR 2022019941 W KR2022019941 W KR 2022019941W WO 2023128374 A1 WO2023128374 A1 WO 2023128374A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
axis
scanner
laser
moving
Prior art date
Application number
PCT/KR2022/019941
Other languages
English (en)
French (fr)
Inventor
이석준
Original Assignee
주식회사 아이티아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티아이 filed Critical 주식회사 아이티아이
Publication of WO2023128374A1 publication Critical patent/WO2023128374A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laser processing apparatus and method, and more particularly, to a laser processing apparatus and method for processing an object transported by a high-speed roll apparatus by irradiating a laser beam thereon.
  • a secondary battery is a battery that converts chemical energy into electrical energy to supply power to an external circuit, receives external power when discharged, converts electrical energy into chemical energy, and stores electricity.
  • Nickel-cadmium, lithium ion , nickel-hydrogen and lithium polymer are examples of nickel-cadmium, lithium ion , nickel-hydrogen and lithium polymer.
  • an anode and a cathode are formed by coating an active material on the surface of an electrode current collector, and an electrode assembly is formed by interposing a separator therebetween, and then placed inside a pouch-type case of a cylindrical or prismatic metal can or aluminum laminate sheet. mounted, and is manufactured by injecting or impregnating the electrode assembly with a liquid electrolyte or using a solid electrolyte.
  • charging and discharging are performed by moving ions of the electrolyte injected between the positive electrode and the negative electrode insulated by the separator to move between the positive electrode and the negative electrode.
  • Electrodes used for the positive and negative electrodes of these secondary batteries include an electrode body constituting the electrode and an electrode active material coated on the electrode body.
  • the electrode body may generally be formed by processing a metal having excellent conductivity, such as aluminum (Al) or copper (Cu), in the form of a sheet, thin plate, or foil.
  • a metal having excellent conductivity such as aluminum (Al) or copper (Cu)
  • An electrode film for forming an electrode assembly is manufactured in a form in which an active material is coated on a portion and the electrode body is exposed on the remaining portion.
  • the exposed portion of the electrode body is processed to function as an electrode terminal for connecting the positive electrode and the negative electrode to the outside when configuring the electrode assembly (anode, cathode, and separator).
  • the electrode film is cut into a length suitable for the size of the electrode assembly and divided into terminal portions of the positive electrode and the negative electrode through a cutting process.
  • a notching device is used for cutting such an electrode film.
  • the notching device is a device for forming a terminal portion by cutting an electrode film, and cuts an exposed portion of the electrode film and a portion of the portion coated with the active material using a press or a laser.
  • Patent Document 1 and Patent Document 2 below disclose a configuration of a laser notching apparatus using a laser according to the prior art.
  • the laser notching device should be efficiently arranged in consideration of the path of the laser, but the conventional laser notching device has a problem in that laser efficiency is lowered because such a consideration is not taken into account.
  • Patent Document 3 discloses an electrode notching device configuration in which notching by a laser is performed by arranging a laser and an electrode film to be notched in a vertical movement method.
  • an object to be processed such as an electrode film
  • a laser beam is processed by a laser beam while moving toward a winding roll provided on the other side while being wound around a supply roll.
  • the electrode film is processed while moving at a high speed of several meters to several hundred per minute.
  • a high-performance scanner In order to irradiate and process a laser beam on an object moving at high speed, a high-performance scanner must be applied to a laser processing device.
  • Patent Document 1 Korean Patent Registration No. 10-1761973 (published on July 26, 2017)
  • Patent Document 2 Korean Patent Registration No. 10-1958881 (published on March 15, 2019)
  • Patent Document 3 Korean Patent Registration No. 10-2270797 (published on June 30, 2021)
  • An object of the present invention is to solve the above problems, and to provide a laser processing apparatus and method for cutting a part of a processing object moving at high speed by irradiating a laser beam thereon.
  • Another object of the present invention is to minimize the irradiation area of the scanner by hardware-adjusting the position of a scanner that irradiates a laser beam on a processing object moving at high speed, and to precisely control the size of a laser beam to prevent damage to the processing object. It is to provide a laser processing apparatus and method capable of doing so.
  • the laser processing apparatus includes a transfer unit for transferring an object to be processed from a supply unit to a recovery unit, a laser generator for generating a laser beam, and a laser beam output from the laser generator to the position of the object to be processed. and irradiation conditions of the laser beam based on a scanner for processing a part of the object to be processed by irradiating the object in conjunction with speed, a movement module for moving the scanner in the X-axis and Y-axis directions, and the moving speed of the object to be processed; It is characterized in that it includes a control unit for controlling to adjust the speed of the scanner, the movement module, and the transfer unit.
  • the laser processing method includes (a) transferring an object to be processed from a supply unit to a recovery unit using a transfer unit, (b) generating a laser beam from a laser generator , (c) processing a part of the object to be processed by irradiating the laser beam output from the laser generator in the scanner to the object to be processed in conjunction with the position and speed of the object to be processed, (d) using the moving module to move the scanner to X Adjusting the irradiation position of the laser beam by moving it in the axial and Y-axis directions, and (e) controlling the irradiation condition of the laser beam and the speed of the scanner, the moving module, and the transfer unit based on the moving speed of the object to be processed in the control unit. It is characterized in that it includes the step of controlling.
  • the laser processing apparatus and method according to the present invention it is possible to obtain an effect that a part of the object can be cut by irradiating a laser beam to a processing object moving at high speed.
  • an effect of being able to adjust the position of a scanner for irradiating a laser beam to an object moving at high speed using a moving module is obtained.
  • the present invention it is possible to minimize the irradiation area of the scanner and precisely control the size of the laser beam to prevent damage to the object to be processed.
  • FIG. 1 is a block diagram of a laser processing apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram of the laser processing apparatus shown in FIG. 1;
  • 3 is an exemplary view showing an electrode film processed by a laser beam
  • FIG. 4 is a view explaining the size and focal depth of a condensing spot irradiated to an electrode film
  • FIG. 5 is a flowchart illustrating a laser processing method using a laser processing apparatus according to a preferred embodiment of the present invention step by step.
  • FIG. 1 is a block configuration diagram of a laser processing apparatus according to a preferred embodiment of the present invention
  • FIG. 2 is a detailed configuration diagram of the laser processing apparatus shown in FIG. 1
  • FIG. 3 shows an electrode film processed by a laser beam.
  • is an example 4 is a diagram explaining the size and focal depth of a condensing spot irradiated to an electrode film.
  • the laser processing apparatus 10 includes a transfer unit 15 for transferring an object 16 from a supply unit 11 to a recovery unit 12, A laser generator 20 that generates a laser beam, and a laser beam output from the laser generator 20 is irradiated to the object 16 in conjunction with the position and speed of the object 16 to be processed, thereby removing a part of the object 16. It includes a scanner 30 for cutting and a moving module 40 for moving the scanner 30 in the X-axis and Y-axis directions.
  • the laser processing apparatus 10 may further include a control unit 50 for controlling driving of each device and a power supply unit 60 for supplying power to each device.
  • the object to be processed 16 to be subjected to laser processing may be provided with an electrode film.
  • the transfer unit 15 transfers the electrode film wound around the outer circumferential surface of the supply roll 13 provided in the supply unit 11 to the recovery unit 12, and the electrode film is partially cut and processed by a laser beam during the transfer process and then recovered. It can be wound on the outer circumferential surface of the recovery roll 14 provided in the portion 12.
  • One or more support rollers are further installed between the supply unit 11 and the recovery unit 12 to support the moving electrode film 16, and the control unit 50 includes the supply roll 13 and the recovery roll.
  • the control unit 50 includes the supply roll 13 and the recovery roll.
  • a driving module (not shown) generating a driving force, such as a motor provided in the transfer unit 15.
  • the laser generator 20 generates a laser beam according to a signal from the control unit 50, and the laser beam output from the laser generator 20 is disposed between the laser generator 20 and the scanner 30 to form a beam delivery path. It may be transmitted to the scanner 30 through an optical member (not shown) including any one or more of an optical mirror, a beam dump, and a beam expander.
  • the scanner 30 may adjust the shape and size of the laser beam by driving a lens and a mirror provided therein.
  • the electrode film 16 can move from left to right along the direction of the arrow shown in FIGS. 1 and 2 at a high speed, for example, about 90 m/min.
  • the movement module 40 includes an X-axis stage 41 that moves the scanner 30 in the X-axis direction shown in FIG. 3 and a Y-axis stage 42 that moves the X-axis stage 41 in the Y-axis direction. can do.
  • the laser beam is irradiated to the electrode film 16 while moving in the X-axis and Y-axis directions by the moving module 40 and the scanner 30, and one side of the electrode film 16, as seen in FIG. 3, the laser beam is on the lower end. As a result, a substantially rectangular processing region 17 may be formed.
  • Equations 1 and 2 As the electrode film 16 moves from left to right, the lower end of the electrode film 16 is approximately trapezoidal by Equations 1 and 2 below, as shown in (a) of FIG. A processing region 17 having a shape may be formed.
  • the final displacement in the X-axis direction is shown by a green solid line
  • the displacement of the electrode film 16 in the X-axis direction, the displacement of the X-axis stage 41 and the displacement in the X-axis direction of the laser beam by the scanner 30 are respectively It is shown as a blue dotted line, a yellow dotted line and a red double dotted line.
  • the final displacement of the processing area 17 formed on the electrode film 16 in the X-axis direction is the amount of movement of the electrode film 16 in the X-axis direction, the displacement of the X-axis stage 41 and the laser beam by the scanner 30. is equal to the sum of displacements in the X-axis direction of
  • the final displacement (green solid line) of the processing area 17 formed on the electrode film 16 in the Y-axis direction is the Y-axis direction movement amount (blue dotted line) of the electrode film 16 and the displacement of the Y-axis stage 42 (yellow line). chain line) and the Y-direction displacement of the laser beam by the scanner 30 (red double-dot chain line).
  • the processing area 17 may be formed in a trapezoidal shape with both sides inclined toward the supply unit 11 by the movement of the electrode film 16 .
  • the processing region 17 formed on the electrode film 16 may be formed in a substantially inverted trapezoidal shape or a substantially rectangular shape as shown in (b) and (c) of FIG. 3 as well as a trapezoidal shape.
  • both sides of the processing area 17 are shown. As shown in (b) of 3, it may be formed inclined in the reverse direction. Due to this, the processing area 17 can be formed in a substantially inverted polygonal shape.
  • both sides of the processing area are almost perpendicular to the upper and lower sides, as shown in (c) of FIG. can be formed. Due to this, the processing area 17 can be formed in a substantially rectangular shape.
  • control unit 50 moves the X-axis and Y-axis stages 41 and 42 so as to be almost close to the final position in the X-axis and Y-axis directions of the processing area 17, and is spaced apart by a preset distance from the final position.
  • the laser beam can be controlled to move in the X-axis and Y-axis directions using the scanner 30 .
  • the set position may be set to a final position and a preset distance, for example, about 0.1 mm to 2 mm.
  • the present invention is not necessarily limited to this, and the setting position can be changed and set in various ways according to the standard of the electrode film 16 and the size and shape of the processing area 17 .
  • the control unit 50 may control to adjust the irradiation conditions of the laser beam and the speed of the scanner 30, the moving module 40, and the transfer unit 15 based on the moving speed of the electrode film 16.
  • the irradiation condition of the laser beam may include one or more of a laser beam output, a beam shape, and a focal position.
  • the controller 50 is a position calculation unit for calculating the position where the laser beam is irradiated based on the position of the movement module 40 in the X-axis and Y-axis directions and the position of the laser beam irradiated from the scanner 30 ( 51) and a signal generator 52 for generating a control signal to irradiate a laser beam to the calculated position.
  • the position calculation unit 51 measures the position of the movement module 40 in the X-axis and Y-axis directions and the position of the laser beam irradiated from the scanner 30 in real time, and moves at high speed based on each measured position.
  • the irradiated position of the electrode film 16 to be irradiated can be calculated.
  • the signal generator 52 may generate a control signal to adjust one or more of the output, beam shape, and focus position of the laser beam irradiated to the electrode film 16 from the scanner 30 .
  • the signal generating unit 52 considers the laser beam absorption of the object to be processed 16 melted by the laser beam as the absorption rate of the laser beam varies depending on the material of the object 16 to be processed. It may be controlled to adjust one or more of the output, beam shape, and focal position of .
  • the size of the condensing spot is am.
  • is the wavelength of the laser beam
  • d is the diameter of the laser beam
  • f is the focal length of the lens.
  • DOF Depth of Focus
  • is the wavelength of the laser beam
  • is the density
  • d is the diameter of the laser beam
  • f is the focal length of the lens.
  • a part of the object can be cut by irradiating a laser beam to the object moving at high speed.
  • the present invention can adjust the position of a scanner for irradiating a laser beam to an object moving at high speed using a moving module.
  • the laser beam most of the entire amount of movement of the laser beam is moved using the movement module, and when it approaches the final position, the laser beam can be moved using the scanner.
  • the present invention minimizes the irradiation area of the scanner and precisely controls the size of the laser beam to prevent damage to the object to be processed.
  • FIG. 5 is a flowchart illustrating a laser processing method using a laser processing apparatus according to a preferred embodiment of the present invention step by step.
  • the power supply unit 60 converts the voltage level of commercial power supplied from the outside and supplies driving power to each device. Then, the control unit 50 initializes each device provided in the laser processing device 10, and prepares an operation for processing the object 16, that is, the electrode film by irradiating the laser beam while transferring the electrode film at high speed.
  • step S12 the transfer unit 15 is driven according to the control signal of the control unit 50 to rotate the supply roll 13 and the recovery roll 14. Then, the electrode film 16 wound around the supply roll 13 moves from the left side to the right side from the supply unit 11 toward the recovery unit 13 .
  • step S14 the laser generator 20 generates a laser beam according to the control signal of the control unit 50, and the scanner 30 irradiates the electrode film 16 with the laser beam transmitted through the optical member.
  • the control unit 50 calculates the location where the laser beam is irradiated based on the location of the movement module 40 in the X-axis and Y-axis directions and the location of the laser beam irradiated from the scanner 30 . That is, the position calculation unit 51 measures the position of the X-axis and Y-axis directions of the X-axis and Y-axis stages 41 and 42 and the position of the laser beam irradiated from the scanner 30 in real time, and measures the measured Based on each position, a position irradiated to the electrode film 16 moving at high speed is calculated (S16).
  • the position calculation unit 51 moves only the X-axis stage 41 in the X-axis direction or the opposite direction when forming the substantially trapezoidal processing area 17 as shown in (a) of FIG.
  • the location where the laser beam is irradiated is calculated so as to form the substantially trapezoidal processing region 17 .
  • the position calculation unit 51 in the case of forming the processing area 17 having a substantially inverted trapezoidal shape, in a state in which the moving speed of the electrode film 16 is adjusted slowly, X A laser beam is irradiated so as to move the axis stage 41 in the X-axis direction or the opposite direction and move the Y-axis stage 42 in the Y-axis direction to form a substantially inverted trapezoidal processing area 17.
  • the position calculation unit 51 when forming the substantially rectangular processing area 17, the X-axis at a speed corresponding to the moving speed of the electrode film 16 And the Y-axis stages 41 and 42 are moved obliquely to calculate the position where the laser beam is irradiated so as to form the substantially rectangular processing area 17 .
  • the signal generating unit 52 adjusts one or more of the irradiation conditions of the laser beam, that is, the output of the laser beam, the beam shape, and the focus position, so as to irradiate the laser beam to the electrode film 16 based on the calculated position. generate a control signal.
  • the signal generating unit 52 considers the laser beam absorption of the object to be processed 16 melted by the laser beam as the absorption rate of the laser beam varies depending on the material of the object 16 to be irradiated with the laser beam. It can also be controlled to adjust.
  • the scanner 30 irradiates the laser beam to the electrode film 16 moving at high speed according to the control signal received from the signal generator 52 while moving in the X-axis and Y-axis directions by the moving module 40. do.
  • the laser beam is irradiated to the electrode film 16 while moving in the X-axis and Y-axis directions by the moving module 40 and the scanner 30, and the scanner 30 irradiates one side of the electrode film 16.
  • a substantially rectangular processing region 17 is formed by the laser beam to be formed (S18).
  • step S20 the control unit 50 inspects whether the entire electrode film 16 has been processed, and repeatedly performs steps S14 to S20 until the entire electrode film 16 is completely processed.
  • step S20 If, as a result of the inspection in step S20, the processing of the entire electrode film 16 is completed, the control unit 50 stops and ends the driving of each device.
  • a laser beam may be irradiated to an object to be processed that moves at high speed, and a portion thereof may be cut.
  • the present invention can adjust the position of a scanner for irradiating a laser beam to an object moving at high speed using a moving module.
  • the laser beam most of the entire amount of movement of the laser beam is moved using the movement module, and when it approaches the final position, the laser beam can be moved using the scanner.
  • the present invention minimizes the irradiation area of the scanner and precisely controls the size of the laser beam to prevent damage to the object to be processed.
  • the present invention is applied to a laser processing apparatus and method technology for cutting a part of an object to be processed by irradiating a laser beam on an object moving at high speed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)

Abstract

레이저 가공장치 및 방법에 관한 것으로, 가공 대상물을 공급부에서 회수부로 이송하는 이송부, 레이저 빔을 발생하는 레이저 발생기, 상기 레이저 발생기로부터 출력되는 레이저 빔을 가공 대상물의 위치 및 속도에 연동해서 가공 대상물에 조사하여 가공 대상물의 일부분을 가공하는 스캐너, 상기 스캐너를 X축 및 Y축 방향으로 이동시키는 이동 모듈 및 가공 대상물의 이동 속도에 기초해서 레이저 빔의 조사 조건과, 상기 스캐너, 이동 모듈 및 이송부의 속도를 조절하도록 제어하는 제어부를 포함하는 구성을 마련하여, 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 가공 대상물의 일부분을 가공할 수 있으며, 스캐너의 조사 영역을 최소화하고, 레이저 빔의 사이즈를 정밀하게 제어하여 가공 대상물의 손상을 방지할 수 있다.

Description

레이저 가공 장치 및 방법
본 발명은 레이저 가공 장치 및 방법에 관한 것으로, 더욱 상세하게는 고속 롤 장치에 의해 이송되는 가공 대상물에 레이저 빔을 조사해서 가공하는 레이저 가공 장치 및 방법에 관한 것이다.
이차전지는 화학적 에너지를 전기적 에너지로 변환시켜 외부의 회로에 전원을 공급하고, 방전되었을 때 외부의 전원을 공급받아 전기적 에너지를 화학적 에너지로 바꾸어 전기를 저장할 수 있는 전지로서, 니켈-카드뮴, 리튬 이온, 니켈-수소 및 리튬 폴리머 등 다양한 종류가 있다.
이러한 이차전지는 전극 집전체의 표면에 활물질을 도포하여 양극과 음극을 구성하고, 그 사이에 분리막을 개재하여 전극조립체를 만든 후, 원통형 또는 각형의 금속 캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착되며, 상기 전극 조립체에 주로 액체 전해질을 주입 또는 함침 시키거나, 고체 전해질을 사용하여 제조된다.
그래서 이차전지는 분리막에 의해 절연된 양극과 음극 사이에 투입되는 전해질의 이온이 양극과 음극 사이를 이동하도록 함으로써 충전과 방전이 이루어진다.
이러한 이차전지의 양극 및 음극에 사용되는 전극은 전극을 구성하는 전극체와 전극체 상에 도포된 전극 활물질을 포함한다.
상기 전극체는 일반적으로 알루미늄(Al), 구리(Cu)와 같은 전도성이 우수한 금속을 시트(Sheet), 박판(Thin plate), 포일(Foil) 형태로 가공한 것일 수 있다.
전극조립체를 형성하기 위한 전극 필름은 일부분에 활물질이 도포되고, 나머지 부분에서는 전극체를 노출시킨 형태로 제조된다.
상기 전극체가 노출된 노출부는 전극조립체(양극, 음극 및 세퍼레이트)의 구성시 양극과 음극을 외부와 연결하기 위한 전극단자의 기능을 하도록 가공된다.
이러한 전극 필름은 절삭 과정을 거쳐 양극 및 음극의 단자부가 형성되고, 전극조립체의 크기에 적합한 길이로 절단되어 분할된다.
이와 같은 전극 필름의 절삭 작업에는 노칭장치가 이용된다.
상기 노칭장치는 전극 필름을 절삭하여 단자부를 형성하는 장치로서, 전극 필름의 노출부와 활물질이 도포된 부분 일부를 프레스나 레이저를 이용하여 절삭한다.
종래에는 펀칭을 이용한 노칭 장치가 주로 이용되었으나, 최근에는 레이저를 이용한 장치가 노칭을 위해 사용되고 있으며, 전극의 손상이 펀칭에 비해 적고 효율적인 생산이 가능하여 레이저를 이용한 노칭장치의 이용 비중이 증대되고 있다.
예를 들어, 하기의 특허문헌 1 및 특허문헌 2에는 종래기술에 따른 레이저를 이용한 레이저 노칭장치 구성이 개시되어 있다.
상기 레이저 노칭장치는 기존 펀칭 장치와는 달리, 레이저의 경로를 고려하여 효율적인 작업의 배치가 이루어져야 하나, 종래의 레이저 노칭장치는 이러한 고려가 되지 않아 레이저 효율이 저하되는 문제점이 있었다.
또한, 작업 대상 외에 레이저가 노출되는 경우가 빈번하게 발생되어 작업기의 고장이 빈번하게 발생하고, 이를 관리하기 위한 비용이 불필요하게 증가하는 문제점이 있었다.
이러한 문제점을 해소하기 위해, 하기의 특허문헌 3에는 레이저와 노칭 대상이 되는 전극 필름을 수직 이동 방식으로 배치하여 레이저에 의한 노칭이 이루어지는 전극 노칭 장치구성이 개시되어 있다.
한편, 전극 필름과 같은 가공 대상물은 공급롤에 권취된 상태에서 타측에 마련된 권취롤을 향해 이동하는 과정에서 레이저 빔에 의해 가공된다.
최근에는 전극 필름의 가공 속도를 높이기 위해, 분당 수 m 내지 수백의 고속으로 전극 필름을 이동시키면서 가공한다.
이와 같이 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 가공하기 위해서는 레이저 가공장치에 고성능의 스캐너를 적용해야 한다.
그러나, 스캐너의 성능을 높이기 위해서는 스캐너 내부에 고배율의 렌즈를 적용함에 따라 스캐너의 제조 비용이 상승하는 문제점이 있었다.
또한, 고속 가공을 위해 레이저 빔의 출력을 높이는 경우, 전극 필름 등의 가공 대상물에 조사되는 레이저 빔의 사이즈가 과도하게 커짐에 따라, 레이저 빔에 의한 가공면이 불균일해지거나, 심한 경우 가공 대상물의 손상이 발생하는 문제점이 있었다.
따라서 가공 대상물에 레이저 빔을 조사하는 스캐너의 위치를 이동시키는 이동 모듈를 적용해서 스캐너의 조사 영역을 최소화하고, 레이저 빔의 사이즈를 정밀하게 제어하여 가공 대상물의 손상을 방지할 수 있는 기술의 개발이 요구되고 있다.
(특허문헌 1) 대한민국 특허 등록번호 10-1761973호(2017년 7월 26일 공고)
(특허문헌 2) 대한민국 특허 등록번호 10-1958881호(2019년 3월 15일 공고)
(특허문헌 3) 대한민국 특허 등록번호 10-2270797호(2021년 6월 30일 공고)
본 발명의 목적은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 일부분을 절삭 가공하는 레이저 가공장치 및 방법을 제공하는 것이다.
본 발명의 다른 목적은 고속으로 이동하는 가공 대상물에 레이저 빔을 조사하는 스캐너의 위치를 하드웨어적으로 조정해서 스캐너의 조사 영역을 최소화하고, 레이저 빔의 사이즈를 정밀하게 제어하여 가공 대상물의 손상을 방지할 수 있는 레이저 가공장치 및 방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 레이저 가공장치는 가공 대상물을 공급부에서 회수부로 이송하는 이송부, 레이저 빔을 발생하는 레이저 발생기, 상기 레이저 발생기로부터 출력되는 레이저 빔을 가공 대상물의 위치 및 속도에 연동해서 가공 대상물에 조사하여 가공 대상물의 일부분을 가공하는 스캐너, 상기 스캐너를 X축 및 Y축 방향으로 이동시키는 이동 모듈 및 가공 대상물의 이동 속도에 기초해서 레이저 빔의 조사 조건과, 상기 스캐너, 이동 모듈 및 이송부의 속도를 조절하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.
또한, 상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 레이저 가공방법은 (a) 이송부를 이용해서 가공 대상물을 공급부에서 회수부로 이송하는 단계, (b) 레이저 발생기에서 레이저빔을 발생하는 단계, (c) 스캐너에서 상기 레이저 발생기로부터 출력되는 레이저 빔을 가공 대상물의 위치 및 속도에 연동해서 가공 대상물에 조사하여 가공 대상물의 일부분을 가공하는 단계, (d) 이동 모듈을 이용해서 상기 스캐너를 X축 및 Y축 방향으로 이동시켜 레이저 빔의 조사위치를 조절하는 단계 및 (e) 제어부에서 가공 대상물의 이동 속도에 기초해서 레이저 빔의 조사 조건과, 상기 스캐너, 이동 모듈 및 이송부의 속도를 조절하도록 제어하는 단계를 포함하는 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 레이저 가공장치 및 방법에 의하면, 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 일부분을 절삭 가공할 수 있다는 효과가 얻어진다.
그리고 본 발명에 의하면, 이동 모듈을 이용해서 고속으로 이동하는 가공 대상물에 레이저 빔을 조사하는 스캐너의 위치를 조정할 수 있다는 효과가 얻어진다.
즉, 본 발명에 의하면, 레이저 빔이 이동할 전체 이동량 중에서 대부분을 이동모듈을 이용해서 이동시키고, 최종 위치에 근접하면 스캐너를 이용해서 레이저 빔을 이동시킬 수 있다는 효과가 얻어진다.
이에 따라, 본 발명에 의하면, 스캐너의 조사 영역을 최소화하고, 레이저 빔의 사이즈를 정밀하게 제어하여 가공 대상물의 손상을 방지할 수 있다는 효과가 얻어진다.
도 1은 본 발명의 바람직한 실시 예에 따른 레이저 가공장치의 블록 구성도,
도 2는 도 1에 도시된 레이저 가공장치의 상세 구성도,
도 3은 레이저 빔에 의해 가공되는 전극 필름을 보인 예시도,
도 4는 전극 필름에 조사되는 집광 스폿의 크기와 초점 깊이를 설명하는 도면,
도 5는 본 발명의 바람직한 실시 예에 따른 레이저 가공장치를 이용한 레이저 가공방법을 단계별로 설명하는 흐름도.
이하 본 발명의 바람직한 실시 예에 따른 레이저 가공장치 및 방법을 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 바람직한 실시 예에 따른 레이저 가공장치의 블록 구성도이고, 도 2는 도 1에 도시된 레이저 가공장치의 상세 구성도이며, 도 3은 레이저 빔에 의해 가공되는 전극 필름을 보인 예시도이다. 그리고 도 4는 전극 필름에 조사되는 집광 스폿의 크기와 초점 깊이를 설명하는 도면이다.
이하에서는 '좌측', '우측', '전방', '후방', '상방' 및 '하방'과 같은 방향을 지시하는 용어들은 각 도면에 도시된 상태를 기준으로 각각의 방향을 지시하는 것으로 정의한다.
본 발명의 바람직한 실시 예에 따른 레이저 가공장치(10)는 도 1 및 도 2에 도시된 바와 같이, 가공 대상물(16)을 공급부(11)에서 회수부(12)로 이송하는 이송부(15), 레이저 빔을 발생하는 레이저 발생기(20), 레이저 발생기(20)로부터 출력되는 레이저 빔을 가공 대상물(16)의 위치 및 속도에 연동해서 가공 대상물(16)에 조사하여 가공 대상물(16)의 일부분을 절삭 가공하는 스캐너(30) 그리고 스캐너(30)를 X축 및 Y축 방향으로 이동시키는 이동 모듈(40)를 포함한다.
그리고 본 발명의 바람직한 실시 예에 따른 레이저 가공장치(10)는 각 장치의 구동을 제어하는 제어부(50) 및 각 장치에 전원을 공급하는 전원 공급부(60)를 더 포함할 수 있다.
본 실시 예에서 레이저 가공을 수행하고자 하는 가공 대상물(16)은 전극 필름으로 마련될 수 있다.
이송부(15)는 공급부(11)에 마련된 공급롤(13)의 외주면에 감긴 전극 필름을 회수부(12) 측으로 이송하고, 전극 필름은 이송되는 과정에서 레이저 빔에 의해 일부분이 절삭 가공된 후 회수부(12)에 마련된 회수롤(14)의 외주면에 감길 수 있다.
공급부(11)와 회수부(12) 사이에는 이동하는 전극 필름(16)을 지지하기 위한 하나 이상의 지지롤러(도면 미도시)가 더 설치되고, 제어부(50)는 공급롤(13)과 회수롤(14)을 회전시키기 위해, 이송부(15)에 마련되는 모터와 같이 구동력을 발생하는 구동모듈(도면 미도시)의 구동을 제어할 수 있다.
레이저 발생기(20)는 제어부(50)의 신호에 따라 레이저 빔을 발생하고, 레이저 발생기(20)에서 출력된 레이저 빔은 레이저 발생기(20)와 스캐너(30) 사이에 배치되어 빔 전달경로를 형성하는 광학 거울, 빔 덤프 및 빔 익스팬더 중 어느 하나 이상을 포함하는 광학부재(도면 미도시)를 통해 스캐너(30)로 전달될 수 있다.
스캐너(30)는 내부에 마련된 렌즈와 미러를 구동해서 레이저 빔의 형상과 크기를 조절할 수 있다.
전극 필름(16)은 도 1 및 도 2에 도시된 화살표 방향을 따라 좌측에 우측으로 고속, 예컨대 약 90m/min의 이동 속도로 이동할 수 있다.
이동 모듈(40)은 스캐너(30)를 도 3에 도시된 X축 방향으로 이동시키는 X축 스테이지(41)과 X축 스테이지(41)를 Y축 방향으로 이동시키는 Y축 스테이지(42)를 포함할 수 있다.
레이저 빔은 이동 모듈(40) 및 스캐너(30)에 의해 X축 및 Y축 방향으로 이동하면서 전극 필름(16)에 조사되고, 전극 필름(16)의 일측, 도 3에서 보았을 때 하단부에는 레이저 빔에 의해 대략 사각 형상의 가공 영역(17)이 형성될 수 있다.
도 3에서, 전극 필름(16)은 좌측에서 우측으로 이동함에 따라, 전극 필름(16)의 하단부에는 도 3의 (a)에 도시된 바와 같이 아래의 수학식 1 및 수학식 2에 의해 대략 사다리꼴 형상을 갖는 가공 영역(17)이 형성될 수 있다.
Figure PCTKR2022019941-appb-img-000001
Figure PCTKR2022019941-appb-img-000002
여기서, X축 방향 최종 변위는 녹색 실선으로 도시되어 있고, 전극 필름(16)의 X축 방향 이동량과 X축 스테이지(41)의 변위 및 스캐너(30)에 의한 레이저 빔의 X축 방향 변위는 각각 청색 점선, 황색 일점쇄선 및 적색 이점쇄선으로 도시되어 있다.
즉, 전극 필름(16)에 형성되는 가공 영역(17)의 X축 방향 최종 변위는 전극 필름(16)의 X축 방향 이동량과 X축 스테이지(41)의 변위 및 스캐너(30)에 의한 레이저 빔의 X축 방향 변위의 합과 같다.
그리고 전극 필름(16)에 형성되는 가공 영역(17)의 Y축 방향 최종 변위(녹색 실선)는 전극 필름(16)의 Y축 방향 이동량(청색 점선)과 Y축 스테이지(42)의 변위(황색 일점쇄선) 및 스캐너(30)에 의한 레이저 빔의 Y축 방향 변위(적색 이점쇄선)의 합과 같다.
그래서 가공 영역(17)은 전극 필름(16)의 이동에 의해 양측변이 각각 공급부(11) 측으로 경사진 사다리꼴 형상으로 형성될 수 있다.
한편, 전극 필름(16)에 형성되는 가공 영역(17)은 사다리꼴 형상뿐만 아니라, 도 3의 (b)와 (c)에 도시된 바와 같이 대략 역사다리꼴 형상이나 대략 직사각형 형상으로 형성될 수도 있다.
즉, 전극 필름(16)의 이동 속도에 비해 레이저 빔이 X축 및 Y축 방향으로 이동하는 속도가 빨라질수록, 가공 영역(17)의 양측변은 도 3에서 X축에 대한 경사각도가 커진다.
따라서 전극 필름(16)의 이동 속도를 느리게 변경하고, 레이저 빔이 X축 및 Y축 방향으로 이동하는 속도를 전극 필름(16)의 이동 속도보다 빠르게 하면, 가공 영역(17)의 양측변은 도 3의 (b)에 도시된 바와 같이 역 방향으로 경사지게 형성될 수 있다. 이로 인해, 가공 영역(17)은 대략 역사다꼴 형상으로 형성될 수 있다.
그리고 전극 필름의 이동 속도와 레이저 빔이 X축 및 Y축 방향으로 이동하는 속도가 동일하면, 가공 영역의 양측변은 도 3의 (c)에 도시된 바와 같이, 상변 및 하변과 거의 직각에 근접하게 형성될 수 있다. 이로 인해, 가공 영역(17)은 대략 직사각형 형상으로 형성될 수 있다.
여기서, 제어부(50)는 가공 영역(17)의 X축 및 Y축 방향 최종 위치에 거의 근접하도록 X축 및 Y축 스테이지(41,42)를 이동시키고, 상기 최종 위치에서 미리 설정된 거리만큼 이격된 설정위치에 도달하면, 스캐너(30)를 이용해서 레이저 빔을 X축 및 Y축 방향으로 이동시키도록 제어할 수 있다.
상기 설정위치는 최종 위치와 미리 설정된 거리, 예컨대 약 0.1㎜ 내지 2㎜로 설정될 수 있다.
물론, 본 발명은 반드시 이에 한정되는 것은 아니며, 전극 필름(16)의 규격, 가공 영역(17)의 크기 및 형상에 따라 상기 설정위치를 다양하게 변경해서 설정할 수 있다.
제어부(50)는 전극 필름(16)의 이동 속도에 기초해서 레이저 빔의 조사 조건과, 스캐너(30), 이동 모듈(40) 및 이송부(15)의 속도를 조절하도록 제어할 수 있다. 여기서, 상기 레이저 빔의 조사 조건은 레이저 빔의 출력, 빔 형상 및 초점 위치 중에서 하나 이상을 포함할 수 있다.
이를 위해, 제어부(50)는 이동 모듈(40)의 X축 및 Y축 방향의 위치와 스캐너(30)에서 조사되는 레이저 빔의 위치에 기반해서 레이저 빔이 조사되는 위치를 산출하는 위치 산출부(51)와 산출된 위치에 레이저 빔을 조사하도록 제어 신호를 발생하는 신호 발생부(52)를 포함할 수 있다.
위치 산출부(51)는 이동 모듈(40)의 X축 및 Y축 방향의 위치와, 스캐너(30)에서 조사되는 레이저 빔의 위치를 실시간으로 측정하고, 측정된 각 위치를 기반으로 고속으로 이동하는 전극 필름(16)에 조사되는 위치를 산출할 수 있다.
신호 발생부(52)는 스캐너(30)에서 전극 필름(16)에 조사되는 레이저 빔의 출력, 빔 형상 및 초점 위치 중에서 하나 이상을 조절하도록 제어신호를 발생할 수 있다.
이때, 신호 발생부(52)는 가공 대상물(16)의 재질에 따라 레이저 빔의 흡수율이 달라짐에 따라, 레이저 빔에 의해 용융된 가공 대상물(16)의 레이저 빔 흡수율을 고려하여 레이저 빔의 레이저 빔의 출력, 빔 형상 및 초점 위치 중에서 하나 이상을 조절하도록 제어할 수도 있다.
도 4를 참조해서 집광 스폿의 크기와 초점 깊이를 설명한다.
집광 스폿의 크기는
Figure PCTKR2022019941-appb-img-000003
이다.
여기서, λ는 레이저 빔의 파장, d는 레이저 빔의 직경, f는 렌즈의 초점거리이다.
초점깊이(Depth of Focus, DOF)는
Figure PCTKR2022019941-appb-img-000004
이다.
여기서, λ는 레이저 빔의 파장, ρ는 밀도, d는 레이저 빔의 직경, f는 렌즈의 초점거리이다.
이와 같이, 본 발명은 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 일부분을 절삭 가공할 수 있다.
그리고 본 발명은 이동모듈을 이용해서 고속으로 이동하는 가공 대상물에 레이저 빔을 조사하는 스캐너의 위치를 조정할 수 있다.
즉, 본 발명은 레이저 빔이 이동할 전체 이동량 중에서 대부분을 이동모듈을 이용해서 이동시키고, 최종 위치에 근접하면 스캐너를 이용해서 레이저 빔을 이동시킬 수 있다.
이에 따라, 본 발명은 스캐너의 조사 영역을 최소화하고, 레이저 빔의 사이즈를 정밀하게 제어하여 가공 대상물의 손상을 방지할 수 있다.
다음, 도 5를 참조해서 본 발명의 바람직한 실시 예에 따른 레이저 가공장치를 이용한 레이저 가공방법을 상세하게 설명한다.
도 5는 본 발명의 바람직한 실시 예에 따른 레이저 가공장치를 이용한 레이저 가공방법을 단계별로 설명하는 흐름도이다.
도 5의 S10단계에서 전원 스위치(도면 미도시)가 온(ON) 조작되면, 전원 공급부(60)는 외부에서 공급되는 상용전원의 전압레벨을 변환해서 각 장치에 구동전원을 공급한다. 그러면, 제어부(50)는 레이저 가공장치(10)에 마련된 각 장치를 초기화하고, 가공 대상물(16), 즉 전극 필름을 고속으로 이송하면서 레이저 빔을 조사하여 가공하기 위한 동작을 준비한다.
S12단계에서 이송부(15)는 제어부(50)의 제어신호에 따라 구동되어 공급롤(13) 및 회수롤(14)을 회전시킨다. 그러면, 공급롤(13)에 감긴 전극 필름(16)은 공급부(11)에서 회수부(13)를 향해 좌측에서 우측으로 이동한다.
S14단계에서 레이저 발생기(20)는 제어부(50)의 제어신호에 따라 레이저 빔을 발생하고, 스캐너(30)는 광학부재를 통해 전달된 레이저 빔을 전극 필름(16)에 조사한다.
이때, 제어부(50)는 이동 모듈(40)의 X축 및 Y축 방향의 위치와 스캐너(30)에서 조사되는 레이저 빔의 위치에 기반해서 레이저 빔이 조사되는 위치를 산출한다. 즉, 위치 산출부(51)는 X축 및 Y축 스테이지(41,42)의 X축 및 Y축 방향의 위치와, 스캐너(30)에서 조사되는 레이저 빔의 위치를 실시간으로 측정하고, 측정된 각 위치를 기반으로 고속으로 이동하는 전극 필름(16)에 조사되는 위치를 산출한다(S16).
즉, 위치 산출부(51)는 도 3의 (a)에 도시된 바와 같이 대략 사다리꼴 형상의 가공 영역(17)을 형성하는 경우, X축 스테이지(41)만을 X축 방향 또는 반대 방향으로 이동시켜 대략 사다리꼴 형상의 가공 영역(17)을 형성하도록, 레이저 빔이 조사되는 위치를 산출한다.
그리고 위치 산출부(51)는 도 3의 (b)에 도시된 바와 같이, 대략 역 사다리꼴 형상의 가공 영역(17)을 형성하는 경우, 전극 필름(16)의 이동 속도를 느리게 조절한 상태에서 X축 스테이지(41)를 X축 방향 또는 반대 방향으로 이동시킴과 동시에, Y축 스테이지(42)를 Y축 방향으로 이동시켜 대략 역 사다리꼴 형상의 가공 영역(17)을 형성하도록, 레이저 빔이 조사되는 위치를 산출한다.
또한, 위치 산출부(51)는 도 3의 (c)에 도시된 바와 같이, 대략 직사각형 형상의 가공 영역(17)을 형성하는 경우, 전극 필름(16)의 이동 속도에 대응되는 속도로 X축 및 Y축 스테이지(41,42)를 경사지게 이동시켜 대략 직사각형 형상의 가공 영역(17)을 형성하도록, 레이저 빔이 조사되는 위치를 산출한다.
한편, 신호 발생부(52)는 산출된 위치에 기반해서 전극 필름(16)에 레이저 빔을 조사하도록, 레이저 빔의 조사 조건, 즉 레이저 빔의 출력, 빔 형상 및 초점 위치 중에서 하나 이상을 조절하도록 제어신호를 발생한다. 이때, 신호 발생부(52)는 가공 대상물(16)의 재질에 따라 레이저 빔의 흡수율이 달라짐에 따라, 레이저 빔에 의해 용융된 가공 대상물(16)의 레이저 빔 흡수율을 고려하여 레이저 빔의 조사 조건을 조절하도록 제어할 수도 있다.
그러면, 스캐너(30)는 이동 모듈(40)에 의해 X축 및 Y축 방향으로 이동하면서 신호 발생부(52)에서 수신된 제어신호에 따라 레이저 빔을 고속으로 이동하는 전극 필름(16)에 조사한다.
이에 따라, 레이저 빔은 이동 모듈(40) 및 스캐너(30)에 의해 X축 및 Y축 방향으로 이동하면서 전극 필름(16)에 조사되고, 전극 필름(16)의 일측에는 스캐너(30)에서 조사되는 레이저 빔에 의해 대략 사각 형상의 가공 영역(17)이 형성된다(S18).
S20단계에서 제어부(50)는 전체 전극 필름(16)의 가공이 완료되었는지를 검사하고, 전체 전극 필름(16)의 가공이 완료될 때까지 S14단계 내지 S20단계를 반복 수행한다.
만약, S20단계의 검사결과 전체 전극 필름(16)의 가공이 완료되면, 제어부(50)는 각 장치의 구동을 중지하고 종료한다.
상기한 바와 같은 과정을 통해, 본 발명은 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 일부분을 절삭 가공할 수 있다.
그리고 본 발명은 이동모듈을 이용해서 고속으로 이동하는 가공 대상물에 레이저 빔을 조사하는 스캐너의 위치를 조정할 수 있다.
즉, 본 발명은 레이저 빔이 이동할 전체 이동량 중에서 대부분을 이동모듈을 이용해서 이동시키고, 최종 위치에 근접하면 스캐너를 이용해서 레이저 빔을 이동시킬 수 있다.
이에 따라, 본 발명은 스캐너의 조사 영역을 최소화하고, 레이저 빔의 사이즈를 정밀하게 제어하여 가공 대상물의 손상을 방지할 수 있다.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고, 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.
본 발명은 고속으로 이동하는 가공 대상물에 레이저 빔을 조사해서 가공 대상물의 일부분을 절삭 가공하는 레이저 가공장치 및 방법 기술에 적용된다.

Claims (4)

  1. 가공 대상물(16)을 공급부(11)에서 회수부(12)로 이송하는 이송부(15),
    레이저 빔을 발생하는 레이저 발생기(20),
    상기 레이저 발생기(20)로부터 출력되는 레이저 빔을 가공 대상물(16)의 위치 및 속도에 연동해서 가공 대상물(16)에 조사하여 가공 대상물(16)의 일부분을 가공하는 스캐너(30),
    상기 스캐너(30)를 X축 및 Y축 방향으로 이동시키는 이동 모듈(40) 및
    가공 대상물(16)의 이동 속도에 기초해서 레이저 빔의 조사 조건과, 상기 스캐너(30), 이동 모듈(40) 및 이송부(15)의 속도를 조절하도록 제어하는 제어부(50)를 포함하며,
    상기 이동 모듈(40)은 상기 스캐너(30)를 X축 방향으로 이동시키는 X축 스테이지(41)와,
    상기 X축 스테이지(41)를 Y축 방향으로 이동시키는 Y축 스테이지(42)를 포함하고,
    상기 제어부(50)는 상기 이동 모듈(40)의 X축 및 Y축 방향의 위치와, 상기 스캐너(30)에서 조사되는 레이저 빔의 위치를 실시간으로 측정하며, 측정된 각 위치를 기반으로 이동하는 가공 대상물(16)에 레이저 빔이 조사되는 위치를 산출하여 상기 가공 대상물(16)을 가공해서 형성되는 가공 영역(17)의 X축 및 Y축 방향 최종 위치에 근접하도록 상기 X축 및 Y축 스테이지(41,42)를 이동시키고,
    상기 스캐너(30)의 조사 영역을 최소화하고, 상기 레이저 빔의 사이즈를 제어하여 가공 대상물(16)의 손상을 방지하도록, 상기 최종 위치에서 미리 설정된 거리만큼 이격된 설정위치에 도달하면, 상기 스캐너(30)를 이용해서 레이저 빔을 X축 및 Y축 방향으로 이동시키도록 제어하는 것을 특징으로 하는 레이저 가공장치.
  2. 제1항에 있어서,
    상기 레이저 빔의 조사 조건은 레이저 빔의 출력, 빔 형상 및 초점 위치 중에서 하나 이상을 포함하는 것을 특징으로 하는 레이저 가공장치.
  3. 제1항 또는 제2항에 기재된 레이저 가공장치를 이용한 레이저 가공방법에 있어서,
    (a) 이송부(15)를 이용해서 가공 대상물(16)을 공급부(11)에서 회수부(12)로 이송하는 단계,
    (b) 레이저 발생기(20)에서 레이저 빔을 발생하는 단계,
    (c) 스캐너(30)에서 상기 레이저 발생기(20)로부터 출력되는 레이저 빔을 가공 대상물(16)의 위치 및 속도에 연동해서 가공 대상물(16)에 조사하여 가공 대상물(16)의 일부분을 가공하는 단계,
    (d) 이동 모듈(40)을 이용해서 상기 스캐너(30)를 X축 및 Y축 방향으로 이동시켜 레이저 빔의 조사위치를 조절하는 단계 및
    (e) 제어부(50)에서 가공 대상물(16)의 이동 속도에 기초해서 레이저 빔의 조사 조건과, 상기 스캐너(30), 이동 모듈(30) 및 이송부(15)의 속도를 조절하도록 제어하는 단계를 포함하며,
    상기 (c)단계와 (d)단계에서 상기 제어부(50)는 상기 이동 모듈(40)의 X축 및 Y축 방향의 위치와, 상기 스캐너(30)에서 조사되는 레이저 빔의 위치를 실시간으로 측정하고, 측정된 각 위치를 기반으로 이동하는 가공 대상물(16)에 레이저 빔이 조사되는 위치를 산출하여 레이저 빔의 조사 위치를 조절하며,
    상기 (d)단계는 (d1) 상기 이동모듈을 이용해서 가공 대상물(16)을 가공해서 형성되는 가공 영역(17)의 X축 및 Y축 방향 최종 위치에 근접하도록 상기 스캐너(30)를 X축 및 Y축 방향으로 이동시키는 단계 및
    (d2) 상기 최종 위치에서 미리 설정된 거리만큼 이격된 설정위치에 도달하면, 상기 스캐너(30)의 조사 영역을 최소화하고, 상기 레이저 빔의 사이즈를 제어하여 가공 대상물(16)의 손상을 방지하도록, 상기 스캐너(30)를 이용해서 레이저 빔을 X축 및 Y축 방향으로 이동시키는 단계를 포함하는 것을 특징으로 하는 레이저 가공방법.
  4. 제3항에 있어서,
    상기 레이저 빔의 조사 조건은 레이저 빔의 출력, 빔 형상 및 초점 위치 중에서 하나 이상을 포함하는 것을 특징으로 하는 레이저 가공방법.
PCT/KR2022/019941 2021-12-28 2022-12-08 레이저 가공 장치 및 방법 WO2023128374A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0189471 2021-12-28
KR1020210189471A KR102386895B1 (ko) 2021-12-28 2021-12-28 레이저 가공 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2023128374A1 true WO2023128374A1 (ko) 2023-07-06

Family

ID=81212167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019941 WO2023128374A1 (ko) 2021-12-28 2022-12-08 레이저 가공 장치 및 방법

Country Status (3)

Country Link
KR (1) KR102386895B1 (ko)
TW (1) TW202333878A (ko)
WO (1) WO2023128374A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386895B1 (ko) * 2021-12-28 2022-04-15 주식회사 아이티아이 레이저 가공 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083432B1 (ko) * 2010-01-20 2011-11-14 (주)하드램 Co2 레이저를 이용한 도광판 패턴 형성 장치
JP2019098355A (ja) * 2017-11-30 2019-06-24 日東電工株式会社 長尺フィルムのレーザ加工方法
KR102213923B1 (ko) * 2019-11-04 2021-02-08 (주)에이치피케이 레이저 가공 시스템 및 그 방법
KR102281466B1 (ko) * 2021-03-25 2021-07-26 유일에너테크(주) 레이저 노칭 장치
KR102302902B1 (ko) * 2020-01-30 2021-09-17 주식회사 제이스텍 디스플레이 사이드 레이저 패턴설비의 얼라인 공정개선구조
KR102386895B1 (ko) * 2021-12-28 2022-04-15 주식회사 아이티아이 레이저 가공 장치 및 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761973B1 (ko) 2013-11-29 2017-07-26 주식회사 엘지화학 레이저 노칭장치
KR101958881B1 (ko) 2018-12-06 2019-03-15 (주)하나기술 이차전지 전극 노칭시스템
KR102270797B1 (ko) 2019-05-21 2021-06-30 주식회사 디이엔티 전극 노칭 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083432B1 (ko) * 2010-01-20 2011-11-14 (주)하드램 Co2 레이저를 이용한 도광판 패턴 형성 장치
JP2019098355A (ja) * 2017-11-30 2019-06-24 日東電工株式会社 長尺フィルムのレーザ加工方法
KR102213923B1 (ko) * 2019-11-04 2021-02-08 (주)에이치피케이 레이저 가공 시스템 및 그 방법
KR102302902B1 (ko) * 2020-01-30 2021-09-17 주식회사 제이스텍 디스플레이 사이드 레이저 패턴설비의 얼라인 공정개선구조
KR102281466B1 (ko) * 2021-03-25 2021-07-26 유일에너테크(주) 레이저 노칭 장치
KR102386895B1 (ko) * 2021-12-28 2022-04-15 주식회사 아이티아이 레이저 가공 장치 및 방법

Also Published As

Publication number Publication date
KR102386895B1 (ko) 2022-04-15
TW202333878A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2023128374A1 (ko) 레이저 가공 장치 및 방법
WO2015030541A1 (ko) 이차전지의 전극탭 용접방법 및 이를 이용하여 제조된 전극조립체
WO2021080207A1 (ko) 이차전지 탭 레이저 용접을 위한 밀착 지그 및 용접 방법
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2018131899A1 (ko) 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
WO2021145624A1 (ko) 전극 탭 절곡 장치 및 방법
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2018008806A1 (ko) 대기압 유전체 장벽 방전 플라즈마를 이용한 이차전지의 분리막 처리 방법
KR100635707B1 (ko) 이차 전지용 전극판 권취장치
WO2021080186A1 (ko) 레이저 식각을 이용한 전극 제조방법 및 이를 수행하는 전극 제조설비
WO2022055317A1 (ko) 초음파 절삭기를 포함하는 전극조립체 제조장치 및 이를 이용한 전극조립체 제조방법
WO2017099407A2 (ko) 전극의 식각 방법 및 상기 식각 방법으로 식각된 전극을 포함하는 이차 전지
WO2022019637A1 (ko) 카트리지형 전극 컷팅 장치
WO2021080101A1 (ko) 각형 이차전지 셀 제조 장비에서 분리막의 접힘성을 향상시키기 위한 장치 및 방법
WO2022149952A1 (ko) 커팅장치, 그를 포함하는 이차전지용 라미네이션 설비 및 방법
WO2021235911A1 (ko) 전극, 이차 전지, 전극 제조 장치 및 방법
WO2023128373A1 (ko) 복수 레이저를 이용한 가공장치 및 방법
WO2022139286A1 (ko) 노칭 장치
WO2022177289A1 (ko) 이차전지용 아크 용접 장치 및 이를 이용한 용접 방법
WO2023003300A1 (ko) 전극의 제조 방법 및 이 방법에 사용되는 전극 제조 시스템
WO2023153591A1 (ko) 전고체 전지
WO2023229205A1 (ko) 레이저 노칭 장치
WO2024019595A1 (ko) 이차전지 제조장치, 이를 이용한 이차전지 제조방법 및 이를 이용하여 제조된 이차전지
WO2023003247A1 (ko) 전극 시트 가공 방법 및 가공 장치
WO2024049243A1 (ko) 플라즈마 처리 장치 및 이를 포함하는 이차 전지용 라미네이션 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916520

Country of ref document: EP

Kind code of ref document: A1