WO2023128028A1 - 선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램 - Google Patents

선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램 Download PDF

Info

Publication number
WO2023128028A1
WO2023128028A1 PCT/KR2021/020347 KR2021020347W WO2023128028A1 WO 2023128028 A1 WO2023128028 A1 WO 2023128028A1 KR 2021020347 W KR2021020347 W KR 2021020347W WO 2023128028 A1 WO2023128028 A1 WO 2023128028A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
ship
vessel
speed reduction
reduction curve
Prior art date
Application number
PCT/KR2021/020347
Other languages
English (en)
French (fr)
Inventor
김영도
Original Assignee
주식회사 웨더아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 웨더아이 filed Critical 주식회사 웨더아이
Publication of WO2023128028A1 publication Critical patent/WO2023128028A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B51/00Marking of navigation route
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Definitions

  • the present invention relates to a server, method and computer program for deriving an optimal route for a ship.
  • the ship speed reduction algorithm (SRA, Speed Reduction Algorithm) is used to calculate the ship's position by analyzing the ship's speed reduction due to the influence of weather factors and current factors.
  • the ship speed reduction algorithm is also used to evaluate ship performance speed.
  • a method of analyzing the speed down curve during the entire voyage is used, which is a method of calculating how much the ship's speed is affected by weather and ocean current factors.
  • the vessel speed reduction algorithm is used to calculate the vessel performance speed and the position of the vessel, which is the main data for determining the vessel's route.
  • the key is the accuracy of the ship's speed reduction curve.
  • prior art No. 10-2006925 discloses a device for determining the route and speed of the ship, a method for determining the route and speed of the ship, and a recording medium.
  • the first corrected ship speed excluding the effect of the ocean current is derived from the ship's speed
  • the first corrected ship speed obtained by subtracting the effect of the ocean current from the first corrected ship speed is derived
  • each position is calculated from the first corrected ship speed. It is intended to provide a server, method, and computer program for deriving a third corrected ship speed considering the influence of waves at each position on the second corrected ship speed and the first corrected ship speed considering the influence of wind in .
  • a first speed reduction curve for wind and a second speed reduction curve for waves are derived based on the basic speed of the vessel, the second corrected vessel speed and the third corrected vessel speed, and the first speed reduction curve or the second speed reduction curve It is intended to provide a server, method, and computer program for deriving an optimal route for a ship using a ship speed reduction algorithm to which a curve is applied.
  • an embodiment of the present invention includes wind, wave height, and sea current for each time and position included in navigation data for each operation obtained from a ship automatic identification device installed on the ship.
  • a storage unit that matches and stores marine data, derives a first corrected ship speed excluding the effect of ocean current from the ship's speed for each operation, and takes into account the effect of wind at each position on the first corrected ship speed 2 a correction vessel speed derivation unit for deriving a correction vessel speed and a third correction vessel speed considering the influence of waves at each position on the first correction vessel speed, the basic speed of the vessel, the second correction vessel speed and the A speed reduction curve derivation unit for deriving a first speed reduction curve for wind and a second speed reduction curve for waves based on a third corrected vessel speed, and a vessel to which the first speed reduction curve or the second speed reduction curve is applied It is possible to provide an optimal route derivation server including a route determination unit for deriving an optimal route for the ship using a speed reduction algorithm.
  • Another embodiment of the present invention is a step of matching and storing marine data including wind, wave height, and ocean current for each time and position included in navigation data for each operation obtained from an automatic ship identification device installed on the ship, and storing each of the above
  • a first corrected vessel speed obtained by excluding the influence of the ocean current from the speed of the vessel for each operation is derived, and a second corrected vessel speed considering the effect of wind at each position on the first corrected vessel speed and the first corrected vessel speed
  • a route derivation method can be provided.
  • a first corrected ship speed is derived by excluding the effect of the ocean current from the ship's speed for each operation, and a second correction considering the effect of wind at each location on the first corrected ship speed
  • a third corrected vessel speed considering the influence of waves at each position on the ship speed and the first corrected ship speed, based on the basic speed of the ship, the second corrected ship speed, and the third corrected ship speed to derive a first speed reduction curve for wind and a second speed reduction curve for waves, and use a ship speed reduction algorithm to which the first speed reduction curve or the second speed reduction curve is applied Optimum route for the vessel It is possible to provide a computer program stored on a computer readable recording medium containing a sequence of instructions to derive.
  • any one of the above-described problem solving means of the present invention by matching marine data including wind, wave height and current for each time and position included in the navigation data for each operation obtained from the automatic ship identification device installed on the ship By storing, it is possible to provide a server, method, and computer program that provide an optimal route considering the operation characteristics of each ship through matching between navigation data that is large in amount of data and easy to collect and use and location-based marine data. .
  • the first corrected ship speed excluding the influence of the current from the ship's speed is derived, and the second corrected ship speed considering the effect of wind at each location on the first corrected ship speed and the third correction considering the effect of waves
  • a server, method and computer program for deriving vessel speed can be provided.
  • a first speed reduction curve for wind and a second speed reduction curve for waves are derived based on the basic speed of the vessel, the second corrected vessel speed and the third vessel speed, and the first speed reduction curve or the second speed reduction curve
  • FIG. 1 is a configuration diagram of an optimal route derivation server according to an embodiment of the present invention.
  • FIG. 2 is an exemplary diagram for explaining a process of deriving a first speed reduction curve according to an embodiment of the present invention.
  • FIG 3 is an exemplary diagram for explaining a process of deriving a second speed reduction curve according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method of deriving an optimal route for a ship performed by an optimal route derivation server according to an embodiment of the present invention.
  • a "unit” includes a unit realized by hardware, a unit realized by software, and a unit realized using both. Further, one unit may be realized using two or more hardware, and two or more units may be realized by one hardware.
  • some of the operations or functions described as being performed by a terminal or device may be performed instead by a server connected to the terminal or device.
  • some of the operations or functions described as being performed by the server may also be performed in a terminal or device connected to the corresponding server.
  • the optimal route derivation server 100 may include a storage unit 110, a correction vessel speed derivation unit 120, a speed reduction curve derivation unit 130, and a route determination unit 140.
  • the optimal route derivation server 100 derives a second corrected ship speed considering the effect of wind on the ship's speed for each operation and a third corrected ship speed considering the effect of waves, and based on this, the first corrected ship speed for the wind
  • an optimal route for the vessel may be derived using a vessel speed reduction algorithm to which the first speed reduction curve or the second speed reduction curve is applied.
  • a process of deriving an optimal route for a ship through each unit of the optimal route derivation server 100 will be described.
  • the storage unit 110 matches and stores marine data including wind, wave height, and current for each time and position included in navigation data for each operation acquired from an automatic identification system (AIS) installed on the ship.
  • AIS automatic identification system
  • the automatic ship identification device is an automatic tracking system using a transceiver installed on a ship, and is mainly used in a ship traffic service.
  • the automatic ship identification device can prevent collisions between ships at sea by allowing a satellite to detect the signature of the automatic ship identification device of the ship.
  • Such an automatic ship identification device may display, for example, the name, location, speed, ship type, expected departure time, and expected arrival time at the port of entry.
  • the navigation data may include the location, course, speed, and the like of the ship for each navigation.
  • the corrected vessel speed derivation unit 120 may derive a first corrected vessel speed obtained by excluding the effect of the ocean current from the vessel speed for each operation.
  • the corrected vessel speed deriving unit 120 may calculate the first corrected vessel speed through Equation 1 below, for example.
  • the ship's speed may mean speed through water, which is the ship's speed on the sea measured by satellites.
  • the current factor means the number of currents encountered by a ship during a route, and by analyzing the current at each location along the ship's route, the effect of the current on the ship at each location can be identified.
  • Such an ocean current can be calculated through, for example, V current cos( ⁇ ).
  • the reason for deriving the first corrected ship speed excluding the effect of the ocean current from the ship's speed is to analyze only the effects of wind and waves on the ship's speed.
  • the correction vessel speed derivation unit 120 determines the second correction vessel speed considering the effect of wind at each position on the first correction vessel speed and the third correction vessel speed considering the effect of waves at each position on the first correction vessel speed. can be derived.
  • the speed reduction curve derivation unit 130 may derive a first speed reduction curve for wind and a second speed reduction curve for waves based on the basic speed of the vessel, the second corrected vessel speed, and the third corrected vessel speed. .
  • the process of deriving the first speed reduction curve and the second speed reduction curve will be described in detail with reference to FIGS. 2 and 3 .
  • the corrected vessel speed derivation unit 120 may derive a second corrected vessel speed 200 based on the wind direction and speed at each location.
  • the corrected vessel speed derivation unit 120 may derive the second corrected vessel speed 200 according to wind speed 201 (W p , Wind's speed) and wind direction 202 (Wind's angle on the bow). For example, the corrected vessel speed derivation unit 120 may derive the second corrected vessel speed 200 as 80 kn when the wind direction 202 is 0° and the wind speed 201 is 50 kn. For another example, the corrected vessel speed derivation unit 120 may derive the second corrected vessel speed 200 as 103 kn when the wind direction 202 is 180° and the wind speed 201 is 20 kn.
  • the speed reduction curve derivation unit 130 may derive a first speed reduction curve 210 for wind based on the basic speed of the vessel and the second corrected vessel speed 200 .
  • the speed reduction curve derivation unit 130 is a first speed reduction curve including a ratio 211 of the first corrected vessel speed to the basic speed (eg, 100 kn) of the vessel for each wind direction 203 (210) can be derived.
  • the corrected vessel speed derivation unit 120 may derive a third corrected vessel speed 300 based on the wave direction and wave height at each location.
  • the corrected vessel speed derivation unit 120 may derive the third corrected vessel speed 300 according to the wave height 301 and the wave direction 302 and the wave's angle on the bow. For example, when the wave direction 302 is 0° and the wave height 301 is 10h, the corrected vessel speed derivation unit 120 may derive the third corrected vessel speed 300 as 40 kn. As another example, the corrected vessel speed derivation unit 120 may derive the third corrected vessel speed 300 as 96 kn when the wave direction 302 at the bow is 180 ° and the wave height 301 is 4h. .
  • the speed reduction curve derivation unit 130 may derive a second speed reduction curve 310 for waves based on the basic speed of the vessel and the third corrected vessel speed 300 .
  • the speed reduction curve derivation unit 130 is a second speed reduction curve including a ratio 311 of the first corrected vessel speed to the basic speed (eg, 100 kn) of the vessel for each wave direction 303 can be derived (310).
  • the route determining unit 140 may derive an optimal route for the ship using a ship speed reduction algorithm to which the first speed reduction curve or the second speed reduction curve is applied.
  • the route determining unit 140 may derive the order of influence on the first speed reduction curve and the second speed reduction curve through comparison between the second and third correction vessel speeds at each location. For example, the route determination unit 140 reduces the first speed based on whether the speed of the ship is further influenced by wind or waves through comparison between the second corrected ship speed and the third corrected ship speed at each location. The influence on the curve and the second speed reduction curve may also be prioritized.
  • the route determination unit 140 derives the priority order of influence for the first speed reduction curve and the second speed reduction curve for each of the plurality of navigation segments, or the first speed reduction curve and the second speed reduction curve for the entire navigation segment. 2 Effects on the speed reduction curve can also be prioritized.
  • the route determining unit 140 may derive an optimal route for the ship using a ship speed reduction algorithm to which either the first speed reduction curve or the second speed reduction curve is applied based on the derived influence priority order. For example, the route determining unit 140 has a greater influence on the speed of the ship than the wind when the derived priority order of influence is, for example, the first speed reduction curve > the second speed reduction curve. As a result, an optimal route for the ship may be derived using a ship speed reduction algorithm to which the first speed reduction curve is applied. For another example, the route determining unit 140 determines that the effect of the waves on the speed of the ship is greater than that of the wind when the derived influence priority is, for example, the second speed reduction curve > the first speed reduction curve. Since it is large, an optimal route for the ship can be derived using a ship speed reduction algorithm to which the second speed reduction curve is applied.
  • the route determination unit 140 may derive an optimal route for each route by using a ship speed reduction algorithm to which either the first speed reduction curve or the second speed reduction curve is applied for each route.
  • the route determining unit 140 uses a ship speed reduction algorithm to which the first speed reduction curve is applied. to derive an optimal route for the first voyage section, and for the second voyage section, if the second speed reduction curve has a higher priority than the first speed reduction curve, the route determination unit 140 determines the second speed reduction
  • An optimal route for the second voyage section may be derived using a ship speed reduction algorithm to which a curve is applied.
  • the storage unit 110 may update the first speed reduction curve and the second speed reduction curve for each operation. For example, the storage unit 110 whenever the navigation data obtained through the operation of the ship is stored, when the first speed reduction curve and the second reduction curve are derived by the speed reduction curve derivation unit 130, By updating the first speed reduction curve and the second speed reduction curve, an optimized route of the vessel may be provided and the accuracy of the optimal route may be improved.
  • the present invention is applied to various ships by using the navigation data generated through the actual navigation of the ship without receiving the ship's operation report from the shipping company, taking advantage of the fact that the amount of data is vast and easy to collect and use. It can offer the advantage of being possible. In addition, it is free to converge and match with location-based global ocean data, providing the advantage of high utilization.
  • the optimal route derivation server 100 may be executed by a computer program stored in a medium including a sequence of instructions for deriving an optimal route for a ship.
  • the marine data including wind, wave height, and current is matched and stored at each time and position included in the navigation data for each operation acquired from the automatic vessel identification device installed on the ship, and each The first corrected ship speed excluding the influence of the ocean current from the ship's speed for each operation is derived, and the second corrected ship speed considering the effect of the wind at each position on the first corrected ship speed and the first corrected ship speed at each position
  • a third corrected vessel speed considering the influence of waves in is derived, and a first speed reduction curve for wind and a second speed due to waves based on the basic speed of the vessel, the second corrected vessel speed, and the third corrected vessel speed It may include a sequence of instructions for deriving a reduction curve and deriving an optimal route for a vessel using a vessel speed reduction algorithm to which the first or second speed reduction curve is applied.
  • the method of deriving an optimal route for a ship performed by the optimal route derivation server 100 includes steps processed time-sequentially according to the embodiment shown in FIGS. 1 to 3 . Therefore, even if the contents are omitted below, they are also applied to the method of deriving the optimal route for the ship performed in the optimal route derivation server 100 according to the embodiment shown in FIGS. 1 to 3 .
  • the optimal route derivation server 100 may match and store marine data including wind, wave height, and current for each time and position included in the navigation data for each navigation obtained from the automatic ship identification device installed in the ship. .
  • step S420 the optimal route derivation server 100 derives a first corrected ship speed excluding the effect of the ocean current from the ship's speed for each operation, and performs a second correction considering the effect of the wind at each location on the first corrected ship speed.
  • a third corrected vessel speed considering the influence of waves at each position on the vessel speed and the first corrected vessel speed may be derived.
  • step S430 the optimal route derivation server 100 derives a first speed reduction curve for wind and a second speed reduction curve for waves based on the basic speed of the vessel, the second corrected vessel speed, and the third corrected vessel speed.
  • the optimal route derivation server 100 may derive an optimal route for the ship using a ship speed reduction algorithm to which the first speed reduction curve or the second speed reduction curve is applied.
  • steps S410 to S440 may be further divided into additional steps or combined into fewer steps, depending on an embodiment of the present invention. Also, some steps may be omitted as needed, and the order of steps may be switched.
  • the method for deriving the optimal route for a ship performed by the optimal route derivation server described with reference to FIGS. 1 to 4 is in the form of a computer program stored in a medium executed by a computer or a recording medium including instructions executable by the computer. can also be implemented.
  • the method for deriving the optimal route for a ship performed by the optimal route derivation server described with reference to FIGS. 1 to 4 may be implemented in the form of a computer program stored in a medium executed by a computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Also, computer readable media may include computer storage media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Mathematical Optimization (AREA)
  • Operations Research (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mechanical Engineering (AREA)
  • Development Economics (AREA)
  • Evolutionary Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Algebra (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)

Abstract

선박의 최적 항로를 도출하는 최적 항로 도출 서버는 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하는 저장부, 상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 보정 선박 속도 도출부, 상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하는 속도 감소 곡선 도출부 및 상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 항로 결정부를 포함한다.

Description

선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램
본 발명은 선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램에 관한 것이다.
선박 속도 감소 알고리즘(SRA, Speed Reduction Algorithm)은 날씨 요소(Weather Factor)와 해류 요소(Current Factor)의 영향에 의한 선박의 속도 감소를 분석하여 선박의 위치를 계산하는데 이용된다.
또한, 선박 속도 감소 알고리즘은 선박 성능 속도(Ship Performance Speed)를 평가하는 데도 사용된다. 선박 성능 속도를 계산하기 위해서 전체 항해에서 속도 감소 곡선(Speed Down Curve)을 분석하는 방법이 사용되며, 이는 선박의 속도가 날씨 요소와 해류 요소의 영향을 얼마나 받았는지를 계산하는 방법이다.
즉, 선박 속도 감소 알고리즘은 선박 성능 속도 및 선박의 위치를 계산하는데 이용되고, 이는 선박의 항로를 결정하기 위한 주요 자료가 된다. 이 때, 선박 성능 속도 및 선박의 위치를 정확히 계산하기 위해서는 선박의 속도 감소 곡선의 정확도가 관건이다.
이러한 선박의 속도를 분석하여 선박의 항로를 제공하는 기술과 관련하여, 선행기술인 제10-2006925호는 선박 항로 및 속도 결정 장치, 선박 항로 및 속도 결정 방법, 기록 매체를 개시하고 있다.
종래에는 개별 선박마다 바람, 파도, 해류에 의해 영향을 받는 정도가 다름에도, 각 선박에 대하여 고정된 속도 감소 곡선을 일률적으로 반영하여 추천 항로가 제공되고 있다. 즉, 개별 선박에 대한 속도 감소 곡선이 아닌 선박 유형 또는 자매 선박(동일 선종 또는 선단)에 해당하는 속도 감소 곡선이 소정 비율로 조정되어 이용됨에 따라, 각 선박의 항해 특성을 반영한 최적의 추천 항로가 제공되지 못하였다.
또한, 종래에는 선사를 통해 개별 선박에 대한 운항 리포트를 수신해야 선박의 위치 및 항해 정보를 획득할 수 있어, 기존의 속도 감소 알고리즘에서 크게 변형되지 못한 알고리즘이 이용될 수 밖에 없었다.
이와 같이, 종래에는 개별 선박의 실제 항해 특성을 반영하지 못함에 따라, 선박의 최적의 추천 항로에 대한 정확도가 낮다는 단점을 가지고 있었다.
선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하는 서버, 방법 및 컴퓨터 프로그램을 제공하고자 한다.
각 운항마다 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 제 1 보정 선박 속도에 해류의 영향을 베재한 제 1 보정 선박 속도를 도출하고, 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 제 1 보정 선박 속도에 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 서버, 방법 및 컴퓨터 프로그램을 제공하고자 한다.
선박의 기본 속도, 제 2 보정 선박 속도 및 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하고, 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램을 제공하고자 한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 기술적 과제를 달성하기 위한 수단으로서, 본 발명의 일 실시예는, 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하는 저장부, 상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 보정 선박 속도 도출부, 상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하는 속도 감소 곡선 도출부 및 상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 항로 결정부를 포함하는 최적 항로 도출 서버를 제공할 수 있다.
본 발명의 다른 실시예는, 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하는 단계, 상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 단계, 상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하는 단계 및 상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 단계를 포함하는 최적 항로 도출 방법을 제공할 수 있다.
본 발명의 또 다른 실시예는, 컴퓨터 프로그램은 컴퓨팅 장치에 의해 실행될 경우, 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하고, 상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하고, 상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하고, 상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하도록 하는 명령어들의 시퀀스를 포함하는 컴퓨터 판독가능 기록매체에 저장된 컴퓨터 프로그램을 제공할 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 실시예가 존재할 수 있다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장함으로써, 자료의 양이 방대하고 수집 및 이용이 용이한 운항 데이터와 위치 기반의 해양 데이터 간의 매칭을 통해 선박별 운항 특성이 고려된 최적 항로를 제공하는 서버, 방법 및 컴퓨터 프로그램을 제공할 수 있다.
각 운항마다 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 서버, 방법 및 컴퓨터 프로그램을 제공할 수 있다.
선박의 기본 속도, 제 2 보정 선박 속도 및 제 3 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하고, 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출함으로써, 선박의 운항 특성이 고려된 고유의 속도 감소 곡선을 이용하여 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 최적 항로 도출 서버의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 제 1 속도 감소 곡선을 도출하는 과정을 설명하기 위한 예시적인 도면이다.
도 3은 본 발명의 일 실시예에 따른 제 2 속도 감소 곡선을 도출하는 과정을 설명하기 위한 예시적인 도면이다.
도 4는 본 발명의 일 실시예에 따른 최적 항로 도출 서버에서 수행되는 선박의 최적 항로를 도출하는 방법의 순서도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에 있어서 '부(部)'란, 하드웨어에 의해 실현되는 유닛(unit), 소프트웨어에 의해 실현되는 유닛, 양방을 이용하여 실현되는 유닛을 포함한다. 또한, 1 개의 유닛이 2 개 이상의 하드웨어를 이용하여 실현되어도 되고, 2 개 이상의 유닛이 1 개의 하드웨어에 의해 실현되어도 된다.
본 명세서에 있어서 단말 또는 디바이스가 수행하는 것으로 기술된 동작이나 기능 중 일부는 해당 단말 또는 디바이스와 연결된 서버에서 대신 수행될 수도 있다. 이와 마찬가지로, 서버가 수행하는 것으로 기술된 동작이나 기능 중 일부도 해당 서버와 연결된 단말 또는 디바이스에서 수행될 수도 있다.
이하 첨부된 도면을 참고하여 본 발명의 일 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 최적 항로 도출 서버의 구성도이다. 도 1을 참조하면, 최적 항로 도출 서버(100)는 저장부(110), 보정 선박 속도 도출부(120), 속도 감소 곡선 도출부(130) 및 항로 결정부(140)를 포함할 수 있다. 여기서, 최적 항로 도출 서버(100)는 각 운항마다 선박의 속도에서 바람의 영향을 고려한 제 2 보정 선박 속도 및 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하고, 이에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출함으로써, 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출할 수 있다. 이하에서는, 최적 항로 도출 서버(100)의 각 부를 통해 선박에 대한 최적 항로를 도출하는 과정에 대해 설명하도록 한다.
저장부(110)는 선박에 설치된 선박 자동 식별 장치(AIS, Automatic Identification System)로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장할 수 있다. 여기서, 선박 자동 식별 장치란 선박에 설치된 송수신기를 이용하는 자동 추적 시스템으로, 주로 선박 교통 서비스에서 이용된다. 예를 들어, 선박 자동 식별 장치는 위성이 선박의 선박 자동 식별 장치 서명을 탐지하도록 하여, 해상에서 선박들 간의 충돌을 방지하도록 할 수 있다. 이러한 선박 자동 식별 장치는 예를 들어, 선명, 위치, 속력, 선종, 출항 예상 시간, 입항항 예상 도착 시간 등을 표시할 수 있다. 운항 데이터는 각 운항에 대한 선박의 위치, 침로, 속력 등을 포함할 수 있다.
보정 선박 속도 도출부(120)는 각 운항마다 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출할 수 있다. 보정 선박 속도 도출부(120)는 예를 들어, 다음의 수학식 1을 통해 제 1 보정 선박 속도를 산출할 수 있다.
Figure PCTKR2021020347-appb-img-000001
수학식 1을 참조하면, 선박의 속도(SOG)는 위성에 의해 측정된 해상에서의 선박의 속력인 대수속력을 의미할 수 있다. 해류(Current Factor)는 항로 중 선박이 조우하는 해류 수치를 의미하는 것으로, 선박의 항로를 따라 각 위치에서 해류를 분석함으로써, 각 위치에서 해류가 선박에 미치는 영향이 파악될 수 있다. 이러한 해류는 예를 들어, Vcurentcos(φ)를 통해 산출될 수 있다. 여기서, 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하는 이유는, 선박의 속도에 대한 바람과 파도에 의한 영향만을 분석하기 위함이다.
보정 선박 속도 도출부(120)는 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 제 1 보정 선박 속도에 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출할 수 있다.
속도 감소 곡선 도출부(130)는 선박의 기본 속도, 제 2 보정 선박 속도 및 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출할 수 있다. 여기서, 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선을 도출하는 과정에 대해서는 도 2 및 도 3을 통해 상세히 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 제 1 속도 감소 곡선을 도출하는 과정을 설명하기 위한 예시적인 도면이다. 도 2를 참조하면, 보정 선박 속도 도출부(120)는 각 위치에서의 풍향 및 풍속에 기초하여 제 2 보정 선박 속도(200)를 도출할 수 있다.
예를 들어, 보정 선박 속도 도출부(120)는 풍속(201, Wp, Wind's speed) 및 풍향(202, Wind's angle on the bow)에 따른 제 2 보정 선박 속도(200)를 도출할 수 있다. 예를 들어, 보정 선박 속도 도출부(120)는 풍향(202)이 0°일 때, 풍속(201)이 50kn인 경우, 제 2 보정 선박 속도(200)를 80kn으로 도출할 수 있다. 다른 예를 들어, 보정 선박 속도 도출부(120)는 풍향(202)이 180°일 때, 풍속(201)이 20kn인 경우, 제 2 보정 선박 속도(200)를 103kn으로 도출할 수 있다.
속도 감소 곡선 도출부(130)는 선박의 기본 속도, 제 2 보정 선박 속도(200)에 기초하여 바람에 대한 제 1 속도 감소 곡선(210)을 도출할 수 있다. 예를 들어, 속도 감소 곡선 도출부(130)는 각 풍향(203)마다 선박의 기본 속도(예를 들어, 100kn)에 대한 제 1 보정 선박 속도의 비율(211)을 포함하는 제 1 속도 감소 곡선(210)을 도출할 수 있다.
도 3은 본 발명의 일 실시예에 따른 제 2 속도 감소 곡선을 도출하는 과정을 설명하기 위한 예시적인 도면이다. 도 3을 참조하면, 보정 선박 속도 도출부(120)는 각 위치에서의 파향 및 파고에 기초하여 제 3 보정 선박 속도(300)를 도출할 수 있다.
예를 들어, 보정 선박 속도 도출부(120)는 파고(301, Wave's height) 및 파향(302, wave's angle on the bow) 및)에 따른 제 3 보정 선박 속도(300)를 도출할 수 있다. 예를 들어, 보정 선박 속도 도출부(120)는 파향(302)이 0°일 때, 파고(301)가 10h인 경우, 제 3 보정 선박 속도(300)를 40kn으로 도출할 수 있다. 다른 예를 들어, 보정 선박 속도 도출부(120)는 선수에서 파향(302)이 180°일 때, 파고(301)가 4h인 경우, 제 3 보정 선박 속도(300)를 96kn으로 도출할 수 있다.
속도 감소 곡선 도출부(130)는 선박의 기본 속도, 제 3 보정 선박 속도(300)에 기초하여 파도에 대한 제 2 속도 감소 곡선(310)을 도출할 수 있다. 예를 들어, 속도 감소 곡선 도출부(130)는 각 파향(303)마다 선박의 기본 속도(예를 들어, 100kn)에 대한 제 1 보정 선박 속도의 비율(311)을 포함하는 제 2 속도 감소 곡선을 도출(310)할 수 있다.
다시 도 1로 돌아와서, 항로 결정부(140)는 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출할 수 있다.
항로 결정부(140)는 각 위치에서의 제 2 보정 선박 속도 및 제 3 보정 선박 속도 간의 비교를 통해 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선에 대한 영향도 우선 순위를 도출할 수 있다. 예를 들어, 항로 결정부(140)는 각 위치에서의 제 2 보정 선박 속도 및 제 3 보정 선박 속도 간의 비교를 통해 선박의 속도가 바람 또는 파도에 영향을 더 받는지 여부에 기초하여 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선에 대한 영향도 우선 순위를 도출할 수 있다.
예를 들어, 항로 결정부(140)는 복수의 행해 구간 각각에 대해서 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선에 대한 영향도 우선 순위를 도출하거나 전체 항해 구간에 대해서 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선에 대한 영향도 우선 순위를 도출할 수 있다.
항로 결정부(140)는 도출된 영향도 우선 순위에 기초하여 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선 중 어느 하나를 적용한 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출할 수 있다. 예를 들어, 항로 결정부(140)는 도출된 영향도 우선 순위가 예를 들어, 제 1 속도 감소 곡선>제 2 속도 감소 곡선인 경우, 선박의 속도에 대해 파도보다 바람이 미치는 영향이 더 크므로, 제 1 속도 감소 곡선을 적용한 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출할 수 있다. 다른 예를 들어, 항로 결정부(140)는 도출된 영향도 우선 순위가 예를 들어, 제 2 속도 감소 곡선>제 1 속도 감소 곡선인 경우, 선박의 속도에 대해 바람보다 파도가 미치는 영향이 더 크므로, 제 2 속도 감소 곡선을 적용한 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출할 수 있다.
또 다른 예를 들어, 항로 결정부(140)는 각 행해 구간마다 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선 중 어느 하나를 적용한 선박 속도 감소 알고리즘을 이용하여 각 행해 구간에 대한 최적 항로를 도출할 수 있다.
예를 들어, 제 1 항해 구간에 대해서는 제 1 속도 감소 곡선이 제 2 속도 감소 곡선보다 영향도 우선 순위가 높은 경우, 항로 결정부(140)는 제 1 속도 감소 곡선을 적용한 선박 속도 감소 알고리즘을 이용하여 제 1 항해 구간에 대한 최적 항로를 도출하고, 제 2 항해 구간에 대해서는 제 2 속도 감소 곡선이 제 1 속도 감소 곡선보다 영향도 우선 순위가 높은 경우, 항로 결정부(140)는 제 2 속도 감소 곡선을 적용한 선박 속도 감소 알고리즘을 이용하여 제 2 항해 구간에 대한 최적 항로를 도출할 수 있다.
저장부(110)는 각 운항마다 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선을 갱신할 수 있다. 예를 들어, 저장부(110)는 선박의 운항을 통해 획득된 운항 데이터가 저장될 때마다, 속도 감소 곡선 도출부(130)에 의해 제 1 속도 감소 곡선 및 제 2 감소 곡선이 도출된 경우, 제 1 속도 감소 곡선 및 제 2 속도 감소 곡선을 갱신시킴으로써, 선박의 최적화된 항로를 제공하고, 최적 항로의 정확도가 향상되도록 할 수 있다.
이를 통해, 본 발명은 선사로부터 선박의 운항 리포트의 수신 없이 해당 선박이 실제 운항을 통해 생성된 운항 데이터를 이용함으로써, 자료의 양이 방대하고 수집 및 이용이 용이한 점을 이용하여 다양한 선박에 적용 가능하다는 장점을 제공할 수 있다. 또한, 위치 기반의 전세계 해양 데이터와 융합 및 매칭이 자유로워 활용도가 높은 장점을 제공할 수 있다.
이러한 최적 항로 도출 서버(100)는 선박의 최적 항로를 도출하는 명령어들의 시퀀스를 포함하는 매체에 저장된 컴퓨터 프로그램에 의해 실행될 수 있다. 컴퓨터 프로그램은 컴퓨팅 장치에 의해 실행될 경우, 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하고, 각 운항마다 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하고, 선박의 기본 속도, 제 2 보정 선박 속도 및 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하고, 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출하도록 하는 명령어들의 시퀀스를 포함할 수 있다.
도 4는 본 발명의 일 실시예에 따른 최적 항로 도출 서버에서 수행되는 선박의 최적 항로를 도출하는 방법의 순서도이다. 도 4를 참조하면, 최적 항로 도출 서버(100)에서 수행되는 선박의 최적 항로를 도출하는 방법은 도 1 내지 도 3에 도시된 실시예에 따라 시계열적으로 처리되는 단계들을 포함한다. 따라서, 이하 생략된 내용이라고 하더라도 도 1 내지 도 3에 도시된 실시예에 따라 최적 항로 도출 서버(100)에서 수행되는 선박의 최적 항로를 도출하는 방법에도 적용된다.
단계 S410에서 최적 항로 도출 서버(100)는 선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장할 수 있다.
단계 S420에서 최적 항로 도출 서버(100)는 각 운항마다 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 제 1 보정 선박 속도에 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출할 수 있다.
단계 S430에서 최적 항로 도출 서버(100)는 선박의 기본 속도, 제 2 보정 선박 속도 및 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출할 수 있다.
단계 S440에서 최적 항로 도출 서버(100)는 제 1 속도 감소 곡선 또는 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 선박에 대한 최적 항로를 도출할 수 있다.
상술한 설명에서, 단계 S410 내지 S440은 본 발명의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 전환될 수도 있다.
도 1 내지 도 4를 통해 설명된 최적 항로 도출 서버에서 수행되는 선박의 최적 항로를 도출하는 방법은 컴퓨터에 의해 실행되는 매체에 저장된 컴퓨터 프로그램 또는 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 또한, 도 1 내지 도 4를 통해 설명된 최적 항로 도출 서버에서 수행되는 선박의 최적 항로를 도출하는 방법 컴퓨터에 의해 실행되는 매체에 저장된 컴퓨터 프로그램의 형태로도 구현될 수 있다.
컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체를 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 선박의 최적 항로를 도출하는 최적 항로 도출 서버에 있어서,
    선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하는 저장부;
    상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 보정 선박 속도 도출부;
    상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하는 속도 감소 곡선 도출부; 및
    상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 항로 결정부
    를 포함하는 것인, 최적 항로 도출 서버.
  2. 제 1 항에 있어서,
    상기 보정 선박 속도 도출부는 상기 각 위치에서의 풍향 및 풍속에 기초하여 상기 제 2 보정 선박 속도를 도출하고, 상기 각 위치에서의 파향 및 파고에 기초하여 상기 제 3 보정 선박 속도를 도출하는 것인, 최적 항로 도출 서버.
  3. 제 1 항에 있어서,
    상기 속도 감소 곡선 도출부는 각 풍향마다 풍속별 상기 선박의 기본 속도에 대한 상기 제 1 보정 선박 속도의 비율을 포함하는 상기 제 1 속도 감소 곡선을 도출하고, 각 파향마다 파고별상기 선박의 기본 속도에 대한 상기 제 1 보정 선박 속도의 비율을 포함하는 상기 제 2 속도 감소 곡선을 도출하는 것인, 최적 항로 도출 서버.
  4. 제 1 항에 있어서,
    상기 항로 결정부는 상기 각 위치에서의 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도 간의 비교를 통해 상기 제 1 속도 감소 곡선 및 상기 제 2 속도 감소 곡선에 대한 영향도 우선 순위를 도출하고,
    상기 도출된 영향도 우선 순위에 기초하여 상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선 중 어느 하나를 적용한 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 것인, 최적 항로 도출 서버.
  5. 제 1 항에 있어서,
    상기 저장부는 상기 각 운항마다 상기 제 1 속도 감소 곡선 및 상기 제 2 속도 감소 곡선을 갱신하는 것인, 최적 항로 도출 서버.
  6. 제 1 항에 있어서,
    상기 운항 데이터는 상기 각 운항에 대한 상기 선박의 위치, 침로, 속력 중 적어도 하나를 포함하는 것인, 최적 항로 도출 서버.
  7. 최적 항로 도출 서버에서 선박의 최적 항로를 도출하는 방법에 있어서,
    선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하는 단계;
    상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하는 단계;
    상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하는 단계; 및
    상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 단계
    를 포함하는 것인, 최적 항로 도출 방법.
  8. 제 7 항에 있어서,
    상기 보정 선박 속도를 도출하는 단계는,
    상기 각 위치에서의 풍향 및 풍속에 기초하여 상기 제 2 보정 선박 속도를 도출하는 단계; 및
    상기 각 위치에서의 파향 및 파고에 기초하여 상기 제 3 보정 선박 속도를 도출하는 단계를 포함하는 것인, 최적 항로 도출 방법.
  9. 제 7 항에 있어서,
    상기 속도 감소 곡선을 도출하는 단계는,
    각 풍향마다 풍속별 상기 선박의 기본 속도에 대한 상기 제 1 보정 선박 속도의 비율을 포함하는 상기 제 1 속도 감소 곡선을 도출하는 단계; 및
    각 파향마다 파고별 상기 선박의 기본 속도에 대한 상기 제 1 보정 선박 속도의 비율을 포함하는 상기 제 2 속도 감소 곡선을 도출하는 단계를 포함하는 것인, 최적 항로 도출 방법.
  10. 제 7 항에 있어서,
    상기 최적 항로를 도출하는 단계는,
    상기 각 위치에서의 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도 간의 비교를 통해 상기 제 1 속도 감소 곡선 및 상기 제 2 속도 감소 곡선에 대한 영향도 우선 순위를 도출하는 단계; 및
    상기 도출된 영향도 우선 순위에 기초하여 상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선 중 어느 하나를 적용한 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하는 단계를 포함하는 것인, 최적 항로 도출 방법.
  11. 제 7 항에 있어서,
    상기 각 운항마다 상기 제 1 속도 감소 곡선 및 상기 제 2 속도 감소 곡선을 갱신하는 단계를 더 포함하는 것인, 최적 항로 도출 방법.
  12. 제 7 항에 있어서,
    상기 운항 데이터는 상기 각 운항에 대한 상기 선박의 위치, 침로, 속력 중 적어도 하나를 포함하는 것인, 최적 항로 도출 방법.
  13. 선박의 최적 항로를 도출하는 명령어들의 시퀀스를 포함하는 컴퓨터 판독가능 기록매체에 저장된 컴퓨터 프로그램에 있어서,
    상기 컴퓨터 프로그램은 컴퓨팅 장치에 의해 실행될 경우,
    선박에 설치된 선박 자동 식별 장치로부터 획득된 각 운항에 대한 운항 데이터에 포함된 시간과 위치마다 바람, 파고 및 해류를 포함하는 해양 데이터를 매칭하여 저장하고,
    상기 각 운항마다 상기 선박의 속도에서 해류의 영향을 배제한 제 1 보정 선박 속도를 도출하고, 상기 제 1 보정 선박 속도에 각 위치에서의 바람의 영향을 고려한 제 2 보정 선박 속도 및 상기 제 1 보정 선박 속도에 상기 각 위치에서의 파도의 영향을 고려한 제 3 보정 선박 속도를 도출하고,
    상기 선박의 기본 속도, 상기 제 2 보정 선박 속도 및 상기 제 3 보정 선박 속도에 기초하여 바람에 대한 제 1 속도 감소 곡선 및 파도에 의한 제 2 속도 감소 곡선을 도출하고,
    상기 제 1 속도 감소 곡선 또는 상기 제 2 속도 감소 곡선이 적용된 선박 속도 감소 알고리즘을 이용하여 상기 선박에 대한 최적 항로를 도출하도록 하는 명령어들의 시퀀스를 포함하는, 컴퓨터 판독가능 기록매체에 저장된 컴퓨터 프로그램.
PCT/KR2021/020347 2021-12-28 2021-12-31 선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램 WO2023128028A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210189761A KR20230100133A (ko) 2021-12-28 2021-12-28 선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램
KR10-2021-0189761 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023128028A1 true WO2023128028A1 (ko) 2023-07-06

Family

ID=86999338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020347 WO2023128028A1 (ko) 2021-12-28 2021-12-31 선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램

Country Status (2)

Country Link
KR (1) KR20230100133A (ko)
WO (1) WO2023128028A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110103082A (ko) * 2010-03-12 2011-09-20 울산대학교 산학협력단 선박 항로 제공방법 및 선박 항로 제공 시스템
JP2014013145A (ja) * 2012-06-27 2014-01-23 Mitsui Eng & Shipbuild Co Ltd 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
KR102109571B1 (ko) * 2018-08-22 2020-05-12 대우조선해양 주식회사 선박의 최적항로 도출 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
KR20200061679A (ko) * 2018-11-26 2020-06-03 한국해양과학기술원 최적 항로 예측 지원 시스템 및 그 방법
WO2021106096A1 (ja) * 2019-11-27 2021-06-03 株式会社アース・ウェザー 船舶のルーティング予測システム、及び当該ルーティング予測システムに用いるプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110103082A (ko) * 2010-03-12 2011-09-20 울산대학교 산학협력단 선박 항로 제공방법 및 선박 항로 제공 시스템
JP2014013145A (ja) * 2012-06-27 2014-01-23 Mitsui Eng & Shipbuild Co Ltd 船舶の最適航路計算システム、船舶の運航支援システム、船舶の最適航路計算方法、及び船舶の運航支援方法
KR102109571B1 (ko) * 2018-08-22 2020-05-12 대우조선해양 주식회사 선박의 최적항로 도출 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
KR20200061679A (ko) * 2018-11-26 2020-06-03 한국해양과학기술원 최적 항로 예측 지원 시스템 및 그 방법
WO2021106096A1 (ja) * 2019-11-27 2021-06-03 株式会社アース・ウェザー 船舶のルーティング予測システム、及び当該ルーティング予測システムに用いるプログラム

Also Published As

Publication number Publication date
KR20230100133A (ko) 2023-07-05

Similar Documents

Publication Publication Date Title
CN110617827B (zh) 一种主辅路绘制方法、装置、服务器和存储介质
KR101103455B1 (ko) 선박의 ais를 이용한 선박 항로 안내 시스템
WO2023128028A1 (ko) 선박의 최적 항로를 도출하는 서버, 방법 및 컴퓨터 프로그램
CN110244337B (zh) 一种隧道内目标对象的定位方法及装置
WO2022139021A1 (ko) 증강현실을 이용한 선박 안전운항 관리시스템
CN101145037A (zh) 渔船动态监控查询验证系统
CN105825715A (zh) 一种基于移动终端的船舶防碰撞的优化方法及系统
JPWO2004019302A1 (ja) 操船支援システム
CN113962473A (zh) 船舶航线规划方法、装置、电子设备和存储介质
WO2016047865A1 (ko) 이동체의 기준 경로 계산 장치 및 방법
WO2021221334A1 (ko) Gps정보 및 라이다 신호를 기초로 형성되는 컬러 맵 생성 장치 및 그 제어방법
JPS62120574A (ja) ベクトル処理装置
WO2012050253A1 (ko) 초음파 선박 항로 유도 시스템 및 장치
CN115577868B (zh) 在途船舶的目的港预测方法、装置、可读存储介质和船舶
CN116226633A (zh) 一种船只数据实时融合识别的方法、系统、装置和介质
CN117029816A (zh) 基于多海图数据源的海图选择方法、装置和计算设备
Jie et al. Study on safety monitoring system for submarine power cable on the basis of AIS and radar technology
WO2022139022A1 (ko) 전방위 카메라를 이용한 증강현실기반의 선박 안전운항관리 시스템
WO2022114302A1 (ko) 선박의 항로를 결정하는 서버 및 방법
CN113191266B (zh) 船舶动力装置远程监控管理方法及系统
WO2021242048A1 (ko) 객체의 번호판 정보를 인식하는 장치 및 방법
CN105717516B (zh) Gnss数据同步方法和装置
JP3995462B2 (ja) Aisデータ処理装置
KR20070087831A (ko) 네트워크를 이용한 항해자료 기록장치
CN113192234B (zh) 船舶动力装置故障检测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21970097

Country of ref document: EP

Kind code of ref document: A1