WO2023127834A1 - 電磁干渉抑制材料 - Google Patents

電磁干渉抑制材料 Download PDF

Info

Publication number
WO2023127834A1
WO2023127834A1 PCT/JP2022/048036 JP2022048036W WO2023127834A1 WO 2023127834 A1 WO2023127834 A1 WO 2023127834A1 JP 2022048036 W JP2022048036 W JP 2022048036W WO 2023127834 A1 WO2023127834 A1 WO 2023127834A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic interference
inorganic particles
core
interference suppression
particles
Prior art date
Application number
PCT/JP2022/048036
Other languages
English (en)
French (fr)
Inventor
洋知 西原
栄吉 吉田
健 内田
Original Assignee
京セラ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 国立大学法人東北大学 filed Critical 京セラ株式会社
Publication of WO2023127834A1 publication Critical patent/WO2023127834A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present disclosure relates to electromagnetic interference suppression materials.
  • Patent Document 1 there is disclosed a material in which soft magnetic metal powder such as a powder of a metal selected from Fe, Ni, Co and V or an alloy composed of two or more of these metals is dispersed in a rubber or plastic matrix. Electromagnetic wave shielding materials formed into sheets have been proposed.
  • Patent Document 2 proposes a sheet-like radio wave absorber in which a radio wave absorbing layer formed of a radio wave absorbing material in which silicon carbide powder is dispersed in a matrix resin is laminated on the surface of a metal body.
  • Patent Document 3 discloses a dielectric layer made of a matrix containing a carbon material, a divided conductive film layer laminated on one side of the dielectric layer, and an electromagnetic wave reflecting layer laminated on the other side of the dielectric layer.
  • the present disclosure has been made in view of such circumstances, and aims to provide an electromagnetic interference suppressing material that has good electromagnetic wave absorption performance and electromagnetic interference suppression performance, and that has better electromagnetic interference reduction performance.
  • an electromagnetic interference suppressing material containing a base material containing at least one selected from organic substances and inorganic substances and a predetermined carbon composite material has electromagnetic wave absorption performance. And it was found that the electromagnetic interference suppression performance is high and the electromagnetic interference reduction performance is higher.
  • the present disclosure has been completed based on such findings.
  • An electromagnetic interference suppressing material comprising a base material containing at least one selected from organic substances and inorganic substances, and a carbon composite material
  • the carbon composite material includes core-shell particles in which a coating layer made of graphene having an average number of layers of 4 or less is coated on the surface of inorganic particles, and a coating layer of graphene having an average number of layers of 4 or less on the surface of a connected body of inorganic particles. is at least one selected from coated core-shell linked bodies, An electromagnetic interference suppressing material having a volume resistivity of 10 3 ⁇ cm or more.
  • the inorganic particles possessed by the core-shell particles and the inorganic particles possessed by the core-shell linked body contain at least one selected from alumina, silica, magnesium oxide, tungsten carbide, and aluminum nitride, above [1] to The electromagnetic interference suppressing material according to any one of [3].
  • the magnetic substance contains at least one selected from magnetic metals, magnetic metal alloys, and magnetic oxides, and the magnetic oxide is at least one selected from ferrite and magnetite. ].
  • an electromagnetic interference suppression material that has high electromagnetic wave absorption performance and electromagnetic interference suppression performance, and that has higher electromagnetic interference reduction performance.
  • XX to YY means “XX or more and YY or less”.
  • the lower and upper limits described stepwise for numerical ranges can be independently combined.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the term “electromagnetic interference suppression material” refers to a material that can attenuate near-field electromagnetic fields and electromagnetic waves by utilizing its loss characteristics (magnetic loss, dielectric loss, electrical resistance, etc.).
  • graphene means "a sheet-like material of up to 10 layers of sp2- bonded carbon atoms".
  • volume resistance refers to volume resistivity, which can be measured according to JIS K-6911:2006, specifically by the method described in Examples.
  • the electromagnetic interference suppression material of the present disclosure includes a base material containing at least one selected from organic substances and inorganic substances, and a carbon composite material.
  • the carbon composite material includes core-shell particles in which the surface of the inorganic particles is coated with a coating layer made of graphene having an average number of layers of 4 or less, and graphene having an average number of layers of 4 or less on the surface of the connecting body of the inorganic particles.
  • the electromagnetic interference suppressing material is at least one selected from core-shell connected bodies coated with a coating layer, and has a volume resistivity of 1.0 ⁇ 10 3 ⁇ cm or more.
  • the carbon composite material includes core-shell particles in which the surface of the inorganic particles is coated with a coating layer made of graphene having an average number of layers of 4 or less, and a graphene coating layer having an average number of layers of 4 or less on the surface of the linked body of the inorganic particles.
  • the surfaces of inorganic particles are coated with a coating layer made of graphene having an average number of layers of 4 or less.
  • graphene sheets (shells) having an average number of three-dimensionally continuous layers of 4 or less are formed on the surfaces of inorganic particles (cores). Therefore, the carbon composite material has a large specific surface area as a carbon composite material and high radio wave absorption performance per unit volume. Due to such a large specific surface area, the carbon composite material of the present disclosure can improve the volume resistance compared to the case where the same amount of other carbon composite materials are contained. It is believed that the carbon composite material of the present disclosure has high electromagnetic wave absorption performance and electromagnetic interference suppression performance due to such a large specific surface area and an effect of improving volume resistance.
  • the coating layer of the core-shell particles and the coating layer of the core-shell connected body may be made of graphene.
  • the average number of graphene layers may be less than 4 or may be 3 or less. It may be 5 or less, 2.0 or less, or 1.9 or less.
  • the electromagnetic interference suppression material of the present disclosure has a volume resistivity of 1.0 ⁇ 10 3 ⁇ cm or more. It is generally said that it is difficult for an electromagnetic interference suppression material to combine insulation, electromagnetic absorption performance, and electromagnetic interference suppression performance.
  • the electromagnetic interference suppressing material of the present disclosure includes the carbon composite material, it has high insulating properties (volume resistivity), and also has high electromagnetic wave absorption performance and electromagnetic interference suppression performance.
  • the volume resistance may be 10 6 ⁇ cm or more, 10 8 ⁇ cm or more, or 10 10 ⁇ cm or more. There may be. There is no particular upper limit, but it may be 1.0 ⁇ 10 16 ⁇ cm or less.
  • the electromagnetic interference suppressing material may be 0.1 to 10.0 W/m K, or 0.5 to 8.0 W/m K, It may be 1.0 to 6.0 W/m ⁇ K.
  • the thermal conductivity is obtained by comparing the temperature gradient when heat flow energy is applied with a heat wire to a sample with a known thermal conductivity, the heat wire method, and applying high energy instantaneously to a homogeneous substance with a laser or the like. Based on the thermal diffusivity and specific heat measured at that time, the thermal conductivity can be calculated by a laser flash method or the like. Specifically, it can be measured by the method described in Examples.
  • module-type electronic component packages are asymmetrically thin and have a large area.
  • packaging processes such as FOWLP (Fan Out Wafer Level Package), in which electronic components on a large-sized base material are sealed together on one side and then singulated, it is necessary to reduce warpage.
  • FOWLP Full Wafer Level Package
  • the coefficient of thermal expansion ( ⁇ 1: the coefficient of thermal expansion between room temperature (25° C.) and the glass transition temperature) of the electromagnetic interference suppressing material is 1 ppm/deg. 3 ppm/deg. or more. Also, the coefficient of thermal expansion of the electromagnetic interference suppressing material is 40 ppm/deg. or less, 35 ppm/deg. It may be below.
  • the thermal expansion coefficient of the electromagnetic interference suppression material is 22 ppm/deg. 20 ppm/deg. It may be below.
  • the coefficient of thermal expansion can be obtained from the slope of the tangential line at 25 to 60° C. on a TMA chart obtained by thermal mechanical analysis (TMA). Specifically, it can be measured by the method described in Examples.
  • the carbon composite material of the present disclosure includes core-shell particles in which the surface of inorganic particles is coated with a coating layer made of graphene having an average number of layers of 4 or less, and graphene having an average number of layers of 4 or less on the surface of a linked body of inorganic particles. It is at least one selected from core-shell connected bodies coated with a coating layer.
  • the carbon composite material of the present disclosure also includes those in which the insides of pores of inorganic particles are coated with carbon and those in which the insides of pores of inorganic particles are filled with carbon.
  • the average particle size of the core-shell particles may be 0.0005 to 100 ⁇ m, or may be 0.1 to 50 ⁇ m, from the viewpoint of ease of production and further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance. , 0.5 to 20 ⁇ m.
  • the average particle size of the core-shell particles is a value obtained from the following formula, assuming cylindrical pores.
  • Average particle size of core-shell particles (m) 6/[specific surface area (m 2 /g) ⁇ true density of core-shell particles (g/m 3 )]
  • the specific surface area refers to the BET specific surface area, and is a value obtained by measurement by a BET multipoint method (eg, 5 to 6 points) using nitrogen adsorption.
  • the average particle size of the core-shell connected body may be 0.0005 to 100 ⁇ m, or 0.1 to 50 ⁇ m, from the viewpoint of facilitating production and further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance. It may well be 0.5-20 ⁇ m.
  • the average particle diameter of the core-shell connected body can be estimated by using a laser diffraction particle size distribution analyzer.
  • the average particle size of the carbon composite material may be 100 ⁇ m or less from the viewpoint of further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance.
  • the "average particle size of the carbon composite material” refers to the average particle size of the primary particles when the carbon composite material is not aggregated and is primary particles, and the carbon composite material is aggregated. However, when secondary particles are formed, it refers to the average particle size of the secondary particles.
  • the method for measuring the average particle size of the carbon composite material is calculated from the volume and specific surface area of the pores, estimated by a laser diffraction particle size distribution meter, or scanned with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). ) is a value calculated as the average particle size of particles observed in 20 to 100 visual fields.
  • the term "particle size” means the maximum distance between any two points passing through the center of the particle and on the contour line of the particle.
  • the specific surface area of the carbon composite material may be 800 m 2 /g or less, 780 m 2 /g or less, or 600 m 2 /g from the viewpoint of further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance. It may be below. There is no particular lower limit, but it may be 1 m 2 /g or more, 5 m 2 /g or more, or 10 m 2 /g or more.
  • the specific surface area refers to the BET specific surface area and is a value measured by the BET multipoint method using nitrogen adsorption.
  • the content (% by mass) of the carbon composite material in the electromagnetic interference suppressing material is not particularly limited because it varies greatly depending on the application and the base material.
  • the content (% by mass) of the carbon composite material in the electromagnetic interference suppression material is 0.1 to 90% by mass with respect to the total amount of the electromagnetic interference suppression material from the viewpoint of further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance. 0.5 to 35% by mass, or 1 to 30% by mass.
  • the core-shell particles and core-shell linked bodies of the present disclosure have inorganic particles.
  • the inorganic particles contained in the core-shell particles and the inorganic particles contained in the core-shell linked body are not particularly limited.
  • inorganic particles such as alumina, silica, magnesium oxide, tungsten carbide, aluminum nitride, cerium oxide, titanium oxide and calcium carbonate, magnetic materials such as pure iron and other magnetic metals, amorphous magnetic metal alloys, and Ni--Fe alloys.
  • soft steel silicon steel (Fe--Si alloys), Fe--Al alloys, Fe--Si--Al alloys (sendust), Co--Fe alloys and other magnetic metal alloys, magnetic materials, carbonyl iron, Magnetic materials such as magnetic oxides such as magnetite and ferrite are included.
  • the ferrite examples include Mn—Zn ferrite, Ni—Zn ferrite, Cu—Zn ferrite, Cu—Zn—Mg ferrite, Mn—Mg—Al ferrite, Y-type hexagonal ferrite, Z-type hexagonal crystal ferrite, M-type hexagonal ferrite, and the like.
  • the magnetic metal and the magnetic metal alloy may have a flat shape.
  • Inorganic particles may be selected according to the application of the electromagnetic interference suppressing material.
  • the inorganic particles may contain at least one selected from alumina, silica, magnesium oxide, tungsten carbide, and aluminum nitride from the viewpoint of improving volume resistance, and at least one selected from alumina, silica, and magnesium oxide. may contain alumina.
  • the inorganic particles may contain silica from the viewpoint of coefficient of thermal expansion.
  • the inorganic particles may contain one selected from alumina, magnesium oxide, and aluminum nitride, and may contain alumina.
  • the inorganic particles may be a magnetic material from the viewpoint of improving the electromagnetic wave absorption capacity in a wide frequency range as well as improving the thermal conductivity.
  • the magnetic metal alloy may contain at least one selected from substances, may contain amorphous magnetic metal alloys, may contain at least one selected from Fe-Si-Al alloy (sendust), ferrite, and magnetite, ferrite, and At least one selected from magnetite may be included.
  • the inorganic particles may consist of only one type, or may contain two or more types.
  • the inorganic particles may be nanoparticles from the viewpoint of further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance.
  • the graphene of the present disclosure is a sheet material having a hexagonal lattice structure in which carbon atoms are bonded.
  • Graphene may be in the state of a single layer having a layer thickness of one carbon atom, or may be in the state of multiple layers of two or more layers.
  • Graphene may contain an oxygen atom, a hydrogen atom, a boron atom, a nitrogen atom, a sulfur atom, a phosphorus atom, etc. in addition to the carbon atom.
  • the content (% by mass) of graphene in the core-shell particles and the core-shell connected body is not particularly limited. From the viewpoint of further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance, it may be 0.1 to 70% by mass, 0.5 to 45% by mass, or 1 to 20% by mass. good.
  • the content (% by mass) of graphene in the electromagnetic interference suppression material is not particularly limited. From the viewpoint of further improving electromagnetic wave absorption performance and electromagnetic interference suppression performance, it may be 0.001 to 30% by mass, may be 0.01 to 20% by mass, or may be 0.05 to 15% by mass. may
  • the base material of the present disclosure contains at least one selected from organic substances and inorganic substances.
  • the base material may contain only an organic substance, may contain only an inorganic substance, or may contain an organic substance and an inorganic substance.
  • the organic matter contained in the base material is not particularly limited, and examples thereof include thermosetting resins and thermoplastic resins.
  • thermosetting resins include epoxy resins, phenol resins, imide resins, and the like.
  • Thermoplastic resins include polyolefin resins, vinyl resins, styrene/acrylic resins, ethylene/acrylic acid ester resins, ethylene/methacrylic acid ester resins, diene resins, terpene resins, petroleum resins, cellulose resins, and polyamide resins. , polyurethane resins, polyester resins, polycarbonate resins, polyimide resins, fluorine resins, and the like.
  • the organic substance may be a thermosetting resin from the viewpoint of the reliability of the molded article using the electromagnetic interference suppressing material, and from the viewpoint of electrical insulation and heat resistance of the molded article using the electromagnetic interference suppressing material. , an epoxy resin, or an imide resin. From the viewpoint of ease of production and ease of processing, thermoplastic resin may be used, and from the viewpoint of durability and weather resistance, polyurethane may be used. For outdoor use, polycarbonate-based resin having good hydrolysis resistance It may be polyurethane.
  • the molded body refers to a molded body manufactured by being put in a mold such as a casting mold or a metal mold. One type of the organic matter may be used, or two or more types may be used in combination.
  • the epoxy resin used as an organic substance has two or more epoxy groups in one molecule and is not particularly limited in molecular structure, molecular weight, etc., as long as it is commonly used in electronic parts.
  • the epoxy resins include, for example, phenol novolac type epoxy resins, cresol novolak type epoxy resins, aliphatic epoxy resins such as dicyclopentadiene derivatives, and aromatic epoxy resins such as biphenyl type, biphenyl aralkyl type, naphthyl type and bisphenol type epoxy resins. is mentioned. These epoxy resins may be used alone or in combination of two or more. There are no particular restrictions on the properties, and it may be liquid or solid at room temperature (25°C).
  • the epoxy resin may be a solid cresol novolak type epoxy resin.
  • the solid cresol novolac type epoxy resin can be obtained as a commercial product, and examples thereof include N670 (manufactured by DIC Corporation).
  • the epoxy resin may be a liquid epoxy resin, and specific examples thereof include bisphenol A type and bisphenol F type.
  • the liquid epoxy resin may be a liquid bisphenol A type epoxy resin.
  • Liquid bisphenol A type epoxy resins are commercially available, and examples thereof include Epomic (registered trademark) R140 (manufactured by Mitsui Chemicals, Inc.).
  • a liquid epoxy resin refers to an epoxy resin that exhibits a liquid state at 25°C.
  • the epoxy equivalent of the epoxy resin may be 140 or more from the viewpoint of thermomechanical properties of the molded article. From the viewpoint of electromagnetic wave absorption performance, it may be 200 or more.
  • the upper limit of the epoxy equivalent may be 400 or less or 380 or less from the viewpoint of thermomechanical properties.
  • the epoxy resin may be an epoxy resin having a polyoxyalkylene structure represented by (R 1 O)m and a polyoxyalkylene structure represented by (R 2 O)n.
  • R 1 and R 2 each independently represent an alkylene group having 1 or more carbon atoms.
  • m+n may be 1 or more and 50 or less, or 1 or more and 20 or less.
  • m may be 0 or more and 49 or less, or may be 0 or more and 19 or less.
  • n may be 1 or more and 50 or less, or 1 or more and 20 or less.
  • the alkylene group represented by R 1 and R 2 includes, for example, an alkylene group having 1 to 6 carbon atoms, specifically a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a hexa A methylene group etc. are mentioned. From the viewpoint of electromagnetic wave absorption performance, the alkylene group may be a methylene group or an ethylene group.
  • m R 1 O groups a plurality of R 1 may be the same alkylene group or alkylene groups having different carbon numbers.
  • n R 2 O groups a plurality of R 2 may be the same alkylene group or alkylene groups with different carbon numbers.
  • Examples of epoxy resins having a polyoxyalkylene structure include liquid epoxy resins having a bisphenol A skeleton, polyethylene glycol diglycidyl ether, and the like.
  • Commercially available liquid epoxy resins having a bisphenol A skeleton include Licaresin BEO-60E (manufactured by Shin Nippon Rika Co., Ltd.) represented by the following general formula (1), and commercially available polyethylene glycol diglycidyl ethers. Examples thereof include Epolite 400E (manufactured by Kyoeisha Chemical Co., Ltd.) containing a compound represented by the following general formula (2) as a main component.
  • examples of imide resins used as organic substances include bisallyl nadimide and the like.
  • Bisallyl nadimide is commercially available, and examples thereof include BANI-M (manufactured by Maruzen Petrochemical Co., Ltd.) and BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.).
  • the content (% by mass) of the organic substance in the electromagnetic interference suppression material is 0.1 to 40 mass with respect to the total amount of the electromagnetic interference suppression material from the viewpoint of further improving the electromagnetic wave absorption performance and the electromagnetic interference suppression performance. %, 1 to 30% by mass, 3 to 25% by mass, or 5 to 20% by mass.
  • the electromagnetic interference suppressing material of the present disclosure may further include a curing agent, a curing accelerator, and the like.
  • a curing agent include aliphatic amines, aromatic amines, dicyandiamides, dihydrazide compounds, acid anhydrides, and phenol resins. These may be used alone or in combination of two or more.
  • the curing accelerator examples include organic peroxides such as dicumyl peroxide and dibutyl peroxide; imidazole compounds such as 2-methylimidazole and 2-ethylimidazole; Organophosphorus compounds; diazabicycloalkene compounds such as 1,8-diazabicyclo[5,4,0]undecene-7 (DBU) and 1,5-diazabicyclo(4,3,0)nonene-5; 2-ethyl Tetraphenyl boron compounds such as -4-methylimidazole tetraphenyl borate, and the like. These may be used alone or in combination of two or more.
  • organic peroxides such as dicumyl peroxide and dibutyl peroxide
  • imidazole compounds such as 2-methylimidazole and 2-ethylimidazole
  • Organophosphorus compounds diazabicycloalkene compounds such as 1,8-diazabicyclo[5,4,0]undecene-7 (D
  • the content when the electromagnetic interference suppression material of the present disclosure contains a curing agent, the content may be 0 to 150% by mass with respect to 100% by mass of the thermosetting resin, and 0 to 120% by mass. % by mass, or 0 to 100% by mass. In another aspect of the present disclosure, when the electromagnetic interference suppressing material of the present disclosure contains a curing agent, the content thereof may be 1 to 20% by mass relative to the total amount of the electromagnetic interference suppressing material, and may be 2 to 18% by mass. % by mass, or 3 to 15% by mass.
  • the content may be 0.01 to 10% by mass, and 0.05 to 5% by mass with respect to the total amount of the electromagnetic interference suppressing material. %, or 0.1 to 3% by mass.
  • the electromagnetic interference suppression material of the present disclosure may further contain a dispersing aid.
  • the dispersion aid is not particularly limited as long as it is a material for stably and highly dispersing the fine particles in the matrix resin.
  • a surfactant having different reactive functional groups in one molecule, a coupling agent, or the like is generally used.
  • the dispersion aid include surfactants such as anionic surfactants such as carboxylates and cationic surfactants such as quaternary ammonium salts; coupling agents having an amine functional group and a sulfide functional group; A cellulose nanofiber etc. are mentioned.
  • the cellulose nanofibers are bipolar fine solids, and improve the dispersibility of the filler by surface-active action.
  • Cellulose nanofibers may already be highly dispersed in liquids such as water or thermosetting resin oligomers.
  • the average fiber length of the cellulose nanofibers may be 1 ⁇ m or more and 100 ⁇ m or less, or 5 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of workability and fluidity.
  • the average fiber diameter of the cellulose nanofibers, including aggregates may be 1 nm or more and 1000 nm or less, or may be 4 nm or more and 500 nm or less.
  • the average fiber length and average fiber diameter of cellulose nanofibers can be measured using a scanning electron microscope (SEM) in the same manner as the average fiber length and average fiber diameter of carbon nanotubes. .
  • Examples of commercially available coupling agents having the amine-based functional group and the sulfide-based functional group include SUMILINK (registered trademark) 100 (manufactured by Sumitomo Chemical Co., Ltd.).
  • Examples of commercially available cellulose nanofibers include ELLEX-S (manufactured by Daio Paper Co., Ltd.).
  • the content is 0.1 to 30% by mass based on the total amount of the electromagnetic interference suppressing material from the viewpoint of dispersibility and thermomechanical property retention. , 0.2 to 10% by mass, or 0.3 to 5% by mass.
  • the electromagnetic interference suppressing material of the present disclosure includes synthetic waxes, natural waxes, higher fatty acids, and higher fatty acids that are generally blended in this type of electromagnetic interference suppressing material within the scope of the present disclosure.
  • release agents such as esters of fatty acids; colorants such as cobalt blue; modifiers such as silicone oil and silicone rubber; hydrotalcites; It can be blended as needed.
  • Each of these additives may be used alone or in combination of two or more.
  • the content of each of these additives in the electromagnetic interference suppression material of the present disclosure may be 0.05 to 30% by mass as the total amount of each additive with respect to the total amount of the electromagnetic interference suppression material. , 0.2 to 20% by mass.
  • the inorganic substance contained in the base material is not particularly limited as long as it is an inorganic substance used in electronic parts, and examples thereof include the inorganic substance (A) and the inorganic substance (B) described below. These may be used alone or in combination of two or more.
  • the inorganic substance (A) includes inorganic fillers such as silica, alumina, magnesium oxide, titanium oxide, barium titanate, silicon nitride, aluminum nitride, silicon carbide and tungsten carbide, amorphous magnetic metal alloys, Ni—Fe alloys, Pure iron, mild steel, silicon steel (Fe-Si alloys), Fe-Al alloys, Fe-Si-Al alloys, Co-Fe alloys, soft magnetic materials such as carbonyl iron, magnetic oxidation such as magnetite and ferrite It is at least one selected from magnetic substances such as substances, etc., and is an inorganic substance other than the inorganic substance (B) described later.
  • inorganic fillers such as silica, alumina, magnesium oxide, titanium oxide, barium titanate, silicon nitride, aluminum nitride, silicon carbide and tungsten carbide, amorphous magnetic metal alloys, Ni—Fe alloys, Pure iron, mild steel, silicon steel (Fe
  • the inorganic substance (A) may be used together with an organic substance.
  • an organic substance from the viewpoint of reducing the expansion coefficient of the electromagnetic interference suppression material and improving the thermal conductivity, at least one selected from silica and alumina may be used, or silica may be used.
  • at least one selected from ferrite and amorphous magnetic metal alloys may be used.
  • the shape of the inorganic substance (A) is not particularly limited, examples thereof include spherical, flaky, and fibrous shapes.
  • the shape of the inorganic substance may be spherical, or may be other than spherical.
  • the average particle size of the inorganic substance (A) is not particularly limited, but may be 0.1 ⁇ m or more and 100 ⁇ m or less, may be 0.2 ⁇ m or more and 75 ⁇ m or less, or may be 0.2 ⁇ m or more and 50 ⁇ m or less. good too.
  • the average particle size is the volume average particle size
  • the average particle size of the inorganic substance (A) is the average length of the particles measured using a laser diffraction particle size distribution analyzer. It can be calculated as a value.
  • the electromagnetic interference suppression material of the present disclosure contains the inorganic substance (A), from the viewpoint of further improving the electromagnetic wave absorption performance and the electromagnetic interference suppression performance, the content is 20 to 95 masses relative to the total amount of the electromagnetic interference suppression material. %, 30 to 90% by mass, or 35 to 85% by mass.
  • the electromagnetic interference suppressing material of the present disclosure is used as a semiconductor encapsulant, metal foreign matter is removed in the process of manufacturing the semiconductor encapsulant. When metal foreign matter is removed using a magnet, the magnetic material is regarded as foreign matter and removed, resulting in a poor yield.
  • the content of the magnetic substance is 1% by mass or less with respect to the total amount of the electromagnetic interference suppression material. It may be 0.5% by mass or less, or may be 0% by mass.
  • the content of the magnetic material may be equal to or less than the above value from the viewpoint of reducing the weight of the molded product to be obtained.
  • Inorganic substance (B) Inorganic substance (B) are ceramics.
  • the ceramics are not particularly limited, but specific examples include sintered bodies containing metal oxides, nitrides, carbides, etc. as main components.
  • Specific examples of the metal oxide include alumina, zirconia, and magnesium oxide.
  • Specific examples of the metal nitride include aluminum nitride, boron nitride, and silicon nitride.
  • Specific examples of the metal carbide include silicon carbide and boron carbide.
  • the ceramic may be at least one sintered body selected from alumina and aluminum nitride.
  • the carbon composite material according to the present disclosure can be produced, for example, by coating inorganic particles with a carbon layer.
  • Inorganic particles include the inorganic particles described in [Inorganic particles] above.
  • the inorganic particles of the present embodiment may stably maintain their original structure during the CVD process or the like when the carbon layer is coated by the CVD process or the like. Therefore, it may have high heat resistance.
  • the inorganic particles may be a material having a uniform structure and composition with a uniform particle size, and may be a material that can control the average number of graphene layers to be obtained to 4 or less in order to have a high specific surface area. good.
  • the inorganic particles may be at least one selected from alumina, silica, magnesium oxide, tungsten carbide, aluminum nitride, and magnetic substances such as magnetic metals, magnetic metal alloys, and magnetic oxides. . Further, from the viewpoint of improving electrical insulation performance, alumina or silica may be used. ), ferrite, and magnetite.
  • the average particle size of the inorganic particles is not particularly limited, the average particle size may be 0.0005 to 100 ⁇ m, 0.1 to 50 ⁇ m, or 0.5 to 20 ⁇ m. If the average particle diameter is 0.0005 ⁇ m or more, the handling is easy and the carbon coverage is good. In addition, since the gas permeability of the carbon source is improved when the carbon source is coated, uniform carbon coating is facilitated. On the other hand, if the average particle diameter is 100 ⁇ m or less, a carbon composite material with a high specific surface area (BET specific surface area) can be obtained.
  • BET specific surface area a carbon composite material with a high specific surface area
  • the inorganic particles may be used by being mixed with a granular spacer.
  • a spacer By using a spacer, it is possible to secure an appropriate gap between the particles and prevent the particles from being too densely packed to increase the pressure loss.
  • the spacer may be particles having an average particle size of, for example, 100 to 5000 ⁇ m.
  • the material of the spacer is not particularly limited as long as it can be sieved after carbon coating, and it may be one that does not decompose at 900 to 1000°C.
  • the compounding ratio of the particles and spacers is not particularly limited, but for example, the mass ratio of (particles:spacers) may be from 0.1:10 to 10:10, or from 1:10 to 10:10. There may be. Within the above range, the carbon composite material can be obtained with a high yield.
  • the method for coating the surface of the inorganic particles with the carbon layer is not particularly limited, and either a wet method or a dry method can be applied. From the viewpoint of making the average number of graphene layers 4 or less, a chemical vapor deposition (CVD) method or a method of introducing naphthalene molecules to the surface of inorganic particles such as silica by chemical modification and then firing may be used. good.
  • CVD chemical vapor deposition
  • the CVD method which is used to introduce an organic compound and deposit a carbon layer on inorganic particles, is an industrial technique for creating a thin film of a specific element or elemental composition (for example, a thin film of carbon) on a substrate made of inorganic particles. is. Normally, when a gas containing a raw material is given energy by heat or light, or turned into plasma by high frequency, the raw material becomes radical and highly reactive due to chemical reaction or thermal decomposition, and the raw material becomes highly reactive on the substrate. It is a technology that utilizes adsorption and deposition.
  • the organic compound used in the CVD method may be gaseous at room temperature or may be vaporizable. Vaporization methods include a method of heating to a boiling point or higher, a method of reducing the pressure of the atmosphere, and the like.
  • the organic compound to be used can be appropriately selected from carbon source substances and used. In particular, it may be a compound that thermally decomposes by heating, or a compound that can deposit a carbon layer on the surface of the inorganic particles.
  • the organic compound used may be an organic compound containing hydrogen, oxygen, nitrogen, boron, sulfur, phosphorus, or the like.
  • the organic compound may be an organic compound containing unsaturated or saturated hydrocarbons, or a mixture thereof.
  • the organic compound to be used may be an unsaturated linear or branched hydrocarbon having a double bond and/or a triple bond, a saturated linear or branched hydrocarbon, or the like, and a saturated cyclic hydrocarbon. , benzene, toluene, and other aromatic hydrocarbons.
  • alcohols such as methanol and ethanol, or nitrogen-containing compounds such as acetonitrile and acrylonitrile may be used.
  • organic compounds examples include acetylene, methylacetylene, ethylene, propylene, isoprene, cyclopropane, methane, ethane, propane, benzene, toluene, vinyl compounds, ethylene oxide, methanol, ethanol, acetonitrile, acrylonitrile and the like.
  • An organic compound may be used individually by 1 type, and may be used in combination of 2 or more types. Among them, the organic compound to be used may be one that can enter the voids between particles, such as acetylene, ethylene, propylene, methane, ethane, etc. From the viewpoint of depositing highly crystalline carbon, methane, propylene , and benzene may be used.
  • Methane may also be used from the viewpoint of obtaining carbon with high thermal decomposition temperature and high crystallinity.
  • the organic compounds used for CVD at higher temperatures and those used for CVD at lower temperatures may be the same or different.
  • acetylene, ethylene, etc. may be used for low-temperature CVD
  • propylene, isoprene, benzene, etc. may be used for high-temperature CVD.
  • the inorganic particles When the organic compound is introduced onto the inorganic particles, the inorganic particles may be previously decompressed, or the system itself may be decompressed. Any method that deposits carbon by CVD may be used. For example, carbon produced by chemical reaction or thermal decomposition of an organic compound may be deposited (or adsorbed) on alumina nanoparticles to coat the alumina nanoparticles with a carbon layer.
  • the pressure during the CVD process is not particularly limited, and may be, for example, 1 kPa to 200 kPa, or 50 to 150 kPa.
  • the heating temperature for the CVD treatment may be any condition that allows formation of several carbon layers or less on the inorganic particles, and an appropriate temperature can be selected depending on the organic compound used.
  • the heating temperature may be 400 to 1500°C, 450 to 1100°C, or 550 to 950°C.
  • the temperature when propylene is used as the organic compound, the temperature may be 700 to 900°C, and when methane is used, the temperature may be 900 to 1100°C.
  • a temperature about 50 to 200° C. lower than the decomposition temperature of the organic compound is suitable.
  • vapor phase carbon deposition becomes significant, but by doing so, for example, unevenness in the amount of carbon deposited on the surface and inside of the inorganic particles can be prevented, and the deposition can be performed uniformly. be able to.
  • the heating temperature can be appropriately selected according to the CVD processing time and/or the pressure in the reaction system.
  • the product may be analyzed and the temperature required to achieve the desired number of layers may be set based on the results.
  • the rate of temperature increase during the CVD process is not particularly limited, but may be 1 to 50° C./min, or may be 5 to 20° C./min.
  • the treatment time in the CVD treatment (the CVD treatment time at a predetermined heating temperature) is sufficient as long as the graphene having an average number of layers of 4 or less can be obtained, and an appropriate time can be selected depending on the organic compound used and the temperature.
  • the processing time in CVD processing may be 5 minutes to 8 hours, 0.5 to 6 hours, or 1 to 5 hours.
  • the product may be analyzed and the time required for sufficient carbon deposition may be set based on the results.
  • the CVD treatment may be performed under reduced pressure, vacuum, or pressure, or in an inert gas atmosphere.
  • examples of the inert gas include nitrogen, helium, neon, argon, etc. Nitrogen may be used.
  • carbon can be easily deposited or adsorbed on the particles in the gas phase by heating the gaseous organic compound together with a carrier gas while circulating it so as to contact the particles.
  • the type of carrier gas, flow rate, flow rate and heating temperature are appropriately adjusted depending on the type of organic compound used.
  • the carrier gas includes, for example, the above inert gases, and may be nitrogen, or a mixture with oxygen gas or hydrogen gas.
  • the flow rate of the carrier gas may be, for example, 0.05 to 1.0 m/min, or may be 0.32 to 0.64 m/min.
  • the amount of the organic compound introduced may be 1 to 30% by volume or 5 to 20% by volume with respect to the total amount of the carrier gas and the organic compound.
  • an organic compound may be introduced by a wet method such as an impregnation method and carbonized. Also, before introducing the organic compound and performing the CVD, the material may be impregnated with the organic compound and carbonized.
  • a thermopolymerizable monomer such as furfuryl alcohol having a high carbonization yield can be used.
  • the method for impregnating the organic compound with the organic compound if the organic compound is liquid, it is used as it is, or if it is solid, it is mixed with a solvent, and if it is solid, it is dissolved in the solvent and brought into contact with the inorganic particles.
  • the carbon-coated inorganic particles may be heat treated to carbonize the carbon layer and deposit highly crystalline carbon on the surfaces of the inorganic particles.
  • the resulting carbon composite material has higher crystallinity and a higher specific surface area.
  • the heat treatment may be performed during the CVD process or by other methods.
  • the heat treatment method is not particularly limited, and the heat treatment may be performed using a high-frequency induction heating furnace or the like.
  • the electromagnetic interference suppressing material of the present disclosure is obtained by sufficiently uniformly mixing the carbon composite material and other components that are optionally blended with a mixer or the like, followed by dispersing, kneading, three-roll mill, biaxial heating roll, It may be obtained by kneading with a twin-screw heating extrusion kneader or the like.
  • the kneading treatment may be performed by heating.
  • the temperature at that time may be 70° C. or higher and 150° C. or lower, or may be 75° C. or higher and 120° C. or lower.
  • the electromagnetic interference suppression material of the present disclosure is, for example, cooled and solidified after the kneading treatment, and pulverized to an appropriate size by a cutting mill, ball mill, cyclone mill, hammer mill, vibration mill, cutter mill, grinder mill, speed mill, etc. may be used as
  • the mixture obtained after the kneading treatment may be pressed into a sheet by a molding machine under the conditions of a temperature of 50° C. or higher and 100° C. or lower and a pressure of 0.5 MPa or higher and 1.5 MPa or lower.
  • the electromagnetic interference suppression material of the present disclosure can be used as a radio wave absorber, a noise suppression sheet, a semiconductor sealing material, a sealing sheet, a wire coating material, and the like.
  • a resin-encapsulated electronic component is obtained by encapsulating a semiconductor element fixed on a substrate with a semiconductor element encapsulant containing the electromagnetic interference suppressing material of the present disclosure. be able to.
  • a known molding method is used without particular limitation. The most common molding method is low-pressure transfer molding, but molding by injection molding, cast molding, compression molding, etc. is also possible.
  • a heat treatment is performed in the mold by a transfer molding machine at a temperature of 150° C. to 200° C. for a time of 20 seconds to 200 seconds, and the molded product is removed from the mold to complete curing.
  • Heat treatment may be performed at a temperature of 150° C. to 200° C. for 2 hours to 12 hours.
  • the compression molding method first, a substrate on which a semiconductor element is mounted is supplied to the upper mold of the mold, and the electromagnetic interference suppressing material of the present disclosure is supplied into the cavity of the lower mold. Next, by clamping both the upper and lower molds with a required mold clamping pressure, the substrate with the semiconductor element mounted thereon is immersed in the electromagnetic interference suppressing material heated and melted in the cavity of the lower mold. After that, the electromagnetic interference suppressing material heated and melted in the lower mold cavity is pressed by the cavity bottom member, a required pressure is applied under reduced pressure, and compression molding is performed.
  • the molding conditions may be a temperature of 120° C. or higher and 200° C. or lower and a pressure of 2 MPa or higher and 20 MPa or lower.
  • DN 2,3-dihydroxynaphthalene
  • SO--C1 dried silica
  • the acetone was evaporated at 95°C.
  • the mixture residue of DN and silica is heat-treated at 573° C. for 1 hour under a nitrogen stream to react the silica surface with DN, and then heat-treated at 800° C. for 4 hours under a nitrogen stream to obtain carbon-coated silica particles ( A-1) was obtained.
  • alumina and quartz sand manufactured by Sendai Wako Pure Chemical Industries, Ltd.
  • the mixture of alumina and quartz sand prepared above was heated from room temperature to 900°C at a temperature elevation rate of 10°C/min under conditions in which the flow rate of N2 gas was adjusted to 224 ml/min, After holding at 900° C. for 30 minutes, N 2 gas (carrier gas) and methane gas were introduced into the reaction tube, and chemical vapor deposition (CVD) treatment was performed at 900° C. for 2 hours.
  • the amount of methane gas was 20% by volume with respect to the total amount of N2 gas and methane gas, the flow rate of methane gas was 45 ml /min, and the flow rate of N2 gas was 179 ml.
  • Mesoporous silica was prepared by a sol-gel method. Specifically, it was prepared by the following method. First, using a 500 mL beaker, 15 g of surfactant (P-123) was dissolved in 360 mL of pure water, 33 g of tetraethoxysilane (TEOS) was added, and the mixture was stirred for 5 minutes. Subsequently, 60 mL of 36% by mass hydrochloric acid was added dropwise over 30 minutes, stirred at 35° C. for 20 hours, and then stirred at 95° C. for 24 hours. The resulting white precipitate was dried at 80° C. for 12 hours and then calcined in air at 550° C.
  • P-123 surfactant
  • TEOS tetraethoxysilane
  • Carbon-coated magnesium oxide particles (A-4) were obtained in the same manner as in Production Example 2, except that magnesium oxide was used instead of alumina as the inorganic particles.
  • Carbon-coated ferrite particles (A-6) were obtained in the same manner as in Production Example 2, except that ferrite was used as the inorganic particles instead of alumina.
  • Average number of layers of graphene amount of carbon supported per area (g/m 2 )/(mass of graphene per area [g/m 2 ])
  • amount of carbon supported per area (g/m 2 ) refers to the amount of carbon supported per mass (g) of the carbon composite material determined by the above-described method of the inorganic particles possessed by the core-shell particles or the core-shell linked body. It is a value obtained by dividing by the specific surface area (m 2 /g).
  • Carbon content (graphene content) carbon surface density of graphene (g/m 2 ) ⁇ specific surface area (m 2 /g) of inorganic particles possessed by core-shell particles or core-shell linkages ⁇ average number of layers of graphene Carbon surface of graphene The density was set to 7.61 ⁇ 10 ⁇ 4 g/m 2 .
  • Ethylene-ethyl acrylate copolymer MB-870; Nihon Unicar Co., Ltd.
  • Lubricant stearic acid; NOF Corporation [inorganic] ⁇ Silica: FB105; manufactured by Denka Co., Ltd., average particle size: 12 ⁇ m ⁇ Alumina: DAW07; manufactured by Denka Co., Ltd., average particle size: 8 ⁇ m, maximum particle size: 50 ⁇ m
  • Examples 1 to 7 and Comparative Examples 1 to 3> Each component of the type and compounding amount shown in Table 2 was put into a Henschel mixer, mixed, then put into a twin-screw roll kneading device heated to 110° C., and heated and kneaded until uniform. Next, the resulting hot kneaded material was put into a cold roll, stretched into a sheet, and then pulverized to obtain an electromagnetic interference suppressing material composition. The resulting electromagnetic interference suppressing material composition was compression molded into a compact having a thickness of 0.5 mm, 1.0 mm or 25 mm (temperature: 175°C, pressure: 10 MPa) to obtain an electromagnetic interference suppressing material.
  • Examples 8 to 10 Each component having the type and compounding amount shown in Table 2 was extruded into a 0.5 mmt tube by an extruder heated to 180°C, and rolled into a plate by a rolling mill to obtain an electromagnetic interference suppressing material composition. rice field. The resulting electromagnetic interference suppressing material composition was compression molded into a compact having a thickness of 0.5 mm, 1.0 mm or 25 mm (temperature: 190°C, pressure: 15 MPa) to obtain an electromagnetic interference suppressing material.
  • Example 11 After mixing 56 parts by mass of the carbon-coated alumina particles (A-2) obtained in Production Example 2 and 104 parts by mass of a mixed solution containing phenolic resin, methanol and acetone (solid content concentration 43%), a doctor blade method was performed. After forming a sheet with a thickness of 0.15 mm and laminating and pressing a plurality of the sheets, heat treatment is performed at 150 ° C. for 2 hours, and a sheet sample (20 mm ⁇ 20 mm) with a thickness of 0.5 mm is obtained. Obtained.
  • Example 12 a sheet with a thickness of 0.15 mm was formed by a doctor blade method, and a plurality of sheets were laminated and pressed, followed by heat treatment at 150 ° C. for 2 hours to obtain a thickness of 0.9 mm.
  • a sheet sample was obtained by the same operation except that a sheet sample (20 mm ⁇ 20 mm) was obtained.
  • Thermal conductivity One surface of the electromagnetic interference suppressing material, which is a molded product with a thickness of 1.0 mm obtained in the example, is irradiated with a laser beam to provide heat flow energy whose intensity is periodically modulated. , the phase difference of the temperature response on the other surface of the molded body was detected, the thermal diffusivity and the specific heat were determined, and the thermal conductivity was calculated.
  • the temperature is raised by the TMA method using a thermal analysis device "SSC/5200" (manufactured by Seiko Instruments Inc.). The temperature was raised from room temperature (25° C.) to 300° C. at a rate of 5° C./min. From the obtained TMA chart, the slope of the part closest to the straight line from 25 to 60° C. was defined as the coefficient of thermal expansion.
  • volume resistivity (volume resistivity)> The volume resistivity at 150° C. was measured according to JIS K-6911:2006 using the electromagnetic interference suppressing material obtained in the example and having a thickness of 1.0 mm.
  • Electromagnetic wave absorption performance (frequency 10 GHz, near-field measurement system)> An electromagnetic interference suppressing material molded to a thickness of 0.5 mm is placed between a high-frequency oscillation device and a receiving antenna, and an electromagnetic wave intensity when an electromagnetic wave having a frequency of 10 GHz is generated is measured with and without the molded body.
  • the ratio (the electromagnetic wave intensity when the electromagnetic interference suppressing material absorbs the electromagnetic wave/the electromagnetic wave intensity when the electromagnetic interference suppressing material is absent) was defined as the electromagnetic wave absorption performance in dB.
  • the electromagnetic wave intensity was measured according to "The Institute of Electronics, Information and Communication Engineers Journal B Vol.J97-B No.3 pp.279-285".
  • Electromagnetic wave absorption performance (frequency 5 GHz, far field measurement system)> A 1 mm thick copper plate (600 mm x 600 mm) was placed on the antireflection radio wave absorber, and an electromagnetic interference suppression material (440 mm x 440 mm) molded to a thickness of 25 mm was placed on the metal plate.
  • an antenna is attached to the network analyzer via a cable, an electromagnetic wave with a frequency of 5 GHz is transmitted from one antenna, reflected by the electromagnetic interference suppression material or radio wave absorber and a metal plate placed below it, and the other The strength of the electromagnetic wave was measured by receiving it with an antenna. Further, the electromagnetic wave intensity was measured by radiating electromagnetic waves in the same manner as described above without placing the electromagnetic interference suppressing material on the metal plate.
  • the ratio of these was defined as the electromagnetic wave absorption performance in dB.
  • the electromagnetic wave intensity was measured according to "Kagoshima Prefectural Industrial Technology Center Research Report No. 15 (2001), pp. 53-61".
  • the electromagnetic interference suppression materials of Examples 1 to 10 have good radio wave absorption performance. Moreover, since it has a high volume resistance, it can be said that the performance of suppressing electromagnetic interference in the near field is good. Furthermore, it also has high thermal conductivity.
  • the sheet samples of Examples 11 and 12 showed small Rtp at 3 GHz, while Rtp at 30 GHz and 45 GHz showed large values exceeding 20 dB, respectively.
  • the sheet sample of Comparative Example 4 exhibited a larger Rtp at 3 GHz than the sheet samples of Examples 11 and 12, and a smaller value at 45 GHz than those of Examples 11 and 12.
  • the voltage standing wave ratio VSWR of all samples was 1.5 or less, but the values of the sheet samples of Examples 11 and 12 at 30 GHz and 5 GHz showed a very small value of 1.1.
  • the configuration of the present disclosure is an effective means for suppressing electromagnetic interference generated in the microwave band (3 GHz to 30 GHz) and the high frequency region exceeding 30 GHz, and high frequency noise suppression used in the near field such as inside a mobile phone It can be said that it is effective as a sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

有機物及び無機物から選ばれる少なくとも1種を含む母材と、炭素複合材料とを含む電磁干渉抑制材料であって、前記炭素複合材料は、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子、及び無機粒子の連結体の表面に平均層数が4以下のグラフェンの被覆層が被覆されたコアシェル連結体から選ばれる少なくとも1種であり、体積抵抗が10Ω・cm以上である、電磁干渉抑制材料。

Description

電磁干渉抑制材料
 本開示は、電磁干渉抑制材料に関する。
 近年、電磁ノイズによる機器の誤作動、情報漏洩、干渉による情報通信速度の低下等の電磁障害を低減することを目的として、様々な対策が行われている。電磁障害を低減する手段としては、電磁波を反射により遮る方法又は、電磁波を吸収する方法が提案されている。
 例えば、特許文献1には、Fe,Ni,Co及びVから選んだ金属またはこれら金属の2種以上からなる合金の粉末等の軟磁性金属粉末をゴムまたはプラスチックのマトリクス中に分散させたものをシート状に成形してなる電磁波シールド材が提案されている。特許文献2には、炭化ケイ素粉末をマトリクス樹脂中に分散させてなる電波吸収材料によって形成された電波吸収層を金属体の表面に積層したシート状の電波吸収体が提案されている。特許文献3には、カーボン材料を含むマトリックスからなる誘電体層と、前記誘電体層の一方の面に積層された分割導電膜層と、前記誘電体層の他方の面に積層された電磁波反射層と、を有する、5~7GHzの周波数帯域における電磁波吸収シート等が提案されている。
特開2001-68889号公報 特開2005-57093号公報 特開2012-209515号公報
 従来から、上記特許文献1~3に記載の電磁波シールド材、電波吸収体、及び電磁波吸収シート等のように、多くの電磁障害低減を目的とした提案がされている。しかし、近年の通信機器の高性能化、多様化に伴い、電磁障害の低減が十分ではない場合があり、さらなる改善が求められていた。
 また、金属等により電磁波を反射により遮る方法は、自家中毒が避けられないという課題もあった。
 本開示は、このような実情に鑑みてなされたものであり、電磁波吸収性能及び電磁干渉抑制性能がよく、より電磁障害の低減性能のある電磁干渉抑制材料を提供することを目的とする。
 本発明者らは、前記の課題を解決するべく鋭意検討した結果、有機物及び無機物から選ばれる少なくとも1種を含む母材と、所定の炭素複合材料とを含む電磁干渉抑制材料が、電磁波吸収性能及び電磁干渉抑制性能が高く、より電磁障害の低減性能があることを見出した。
 本開示は、かかる知見に基づいて完成したものである。
 すなわち、本開示は、以下に関する。
[1] 有機物及び無機物から選ばれる少なくとも1種を含む母材と、炭素複合材料とを含む電磁干渉抑制材料であって、
 前記炭素複合材料は、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子、及び無機粒子の連結体の表面に平均層数が4以下のグラフェンの被覆層が被覆されたコアシェル連結体から選ばれる少なくとも1種であり、
 体積抵抗が10Ω・cm以上である、電磁干渉抑制材料。
[2] 前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子の平均粒径が、100μm以下である、上記[1]に記載の電磁干渉抑制材料。
[3] 前記電磁干渉抑制材料中のグラフェンの含有量が、電磁干渉抑制材料全体に対して0.001~30質量%である、上記[1]又は[2]のいずれかに記載の電磁干渉抑制材料。
[4] 前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子が、アルミナ、シリカ、酸化マグネシウム、炭化タングステン、窒化アルミニウムから選ばれる少なくとも1種を含む、上記[1]~[3]のいずれかに記載の電磁干渉抑制材料。
[5] 前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子が、磁性体である、上記[1]~[3]のいずれかに記載の電磁干渉抑制材料。
[6] 前記磁性体が、磁性金属、磁性金属合金、及び磁性酸化物から選ばれる少なくとも1種を含み、前記磁性酸化物が、フェライト、及びマグネタイトから選ばれる少なくとも1種である、上記[5]に記載の電磁干渉抑制材料。
[7] 前記磁性金属および磁性金属合金が扁平形状である、上記[6]に記載の電磁干渉抑制材料。
[8] 前記有機物が熱硬化性樹脂である、上記[1]~[7]のいずれかに記載の電磁干渉抑制材料。
[9] 前記有機物が熱可塑性樹脂である、上記[1]~[7]のいずれかに記載の電磁干渉抑制材料。
[10] 前記無機物が、セラミックスである、上記[1]~[9]に記載の電磁干渉抑制材料。
 本開示によれば、電磁波吸収性能及び電磁干渉抑制性能が高く、より電磁障害の低減性能がある電磁干渉抑制材料を提供することができる。
 以下、本開示について、一実施形態を参照しながら詳細に説明する。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。また、本明細書において、数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせ得る。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値または下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、「電磁干渉抑制材料」とは、損失特性(磁気損失、誘電損失、電気抵抗等)を利用し、近傍電磁界および電磁波を減衰させうる材料を指す。
 本明細書において、「グラフェン」とは、「10層以下のsp結合炭素原子のシート状物質」を意味する。
 本明細書において、グラフェンの「平均層数」とは、下記式により求められる値である。具体的には、後述する実施例に記載の方法により求められる。
グラフェンの平均層数=面積当たりの炭素担持量(g/m)/(面積当たりのグラフェンの質量[g/m])
 なお、「面積当たりの炭素担持量(g/m)」は、熱重量分析により求められる質量当たりの炭素複合材料の炭素担持量(g)を、コアシェル粒子が有する無機粒子、またはコアシェル連結体が有する無機粒子の比表面積(m/g)で除して得られる値である。熱重量分析により求められる質量当たりの炭素複合材料の炭素担持量(g)は、具体的には、実施例に記載の方法により求められる。
 前記比表面積とは、BET比表面積を指し、窒素吸着によるBET 多点法(例えば5~6点)により測定して得られる値である。
 本明細書において、「体積抵抗」とは体積抵抗率を指し、JIS K-6911:2006に準じて測定することができ、具体的には実施例に記載の方法により測定することができる。
[電磁干渉抑制材料]
 本開示の電磁干渉抑制材料は、有機物及び無機物から選ばれる少なくとも1種を含む母材と、炭素複合材料とを含む。そして、前記炭素複合材料は、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子、及び無機粒子の連結体の表面に平均層数が4以下のグラフェンの被覆層が被覆されたコアシェル連結体から選ばれる少なくとも1種であり、前記電磁干渉抑制材料は、体積抵抗が1.0×10Ω・cm以上である。
 前記炭素複合材料が、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子、及び無機粒子の連結体の表面に平均層数が4以下のグラフェンの被覆層が被覆されたコアシェル連結体から選ばれる少なくとも1種であることで、得られる電磁干渉抑制材料は、電磁波吸収性能及び電磁干渉抑制性能が高く、より電磁障害の低減性能のあるものとなる。その理由は定かではないが、次のように考えられる。
 本開示の炭素複合材料は、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されている。言い換えると、本開示の炭素複合材料は、無機粒子(コア)の表面に、3次元的に連続した平均層数が4以下のグラフェンシート(シェル)が構成されている。そのため、前記炭素複合材料は、炭素複合材料としては比表面積が大きく、単位体積当たりの電波吸収性能が高い。このように比表面積が大きいことで、本開示の炭素複合材料は、他の炭素複合材料を同一量含有した場合に比べ、体積抵抗を向上させることができる。このように比表面積が大きく、かつ体積抵抗向上効果を有することで、本開示の炭素複合材料は、電磁波吸収性能及び電磁干渉抑制性能が高くなると考えられる。
 前記コアシェル粒子が有する被覆層及びコアシェル連結体が有する被覆層は、グラフェンからなるものでもよい。前記炭素複合材料の比表面積を大きくし、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、グラフェンの平均層数は4未満であってもよく、3以下であってもよく、2.5以下であってもよく、2.0以下であってもよく、1.9以下であってもよい。
 本開示の電磁干渉抑制材料は、体積抵抗が1.0×10Ω・cm以上である。
 電磁干渉抑制材料は、一般的に、絶縁性と、電磁吸収性能と、電磁干渉抑制性能とを兼ね備えることが困難と言われている。しかしながら、本開示の電磁干渉抑制材料は、前記炭素複合材料を含むことで、高い絶縁性(体積抵抗率)を有すると共に、電磁波吸収性能及び電磁干渉抑制性能が高くなる。
 本開示の一態様において、絶縁性を確保する観点から、体積抵抗は、10Ω・cm以上であってもよく、10Ω・cm以上であってもよく、1010Ω・cm以上であってもよい。上限は特に設けないが、1.0×1016Ωcm以下であってもよい。
 通信機器は大きな発熱を伴うものもあり、一般に放熱シート等を併用した放熱機構が必要とされる。電磁干渉抑制材料が、電磁障害を低減するだけでなく、熱伝導率が高く、放熱性も有していれば、放熱シート等他の機構を併用する必要性がなくなる。電子部品の小型化及び軽量化に加え、組み立て工数の削減もできるため有用である。このような観点から、電磁干渉抑制材料の熱伝導率は、0.1~10.0W/m・Kであってもよく、0.5~8.0W/m・Kであってもよく、1.0~6.0W/m・Kであってもよい。
 なお、前記熱伝導率は、熱流エネルギーを熱線で与えた時の温度勾配を熱伝導率が既知の試料と比較して求める熱線法、均質な物質にレーザー等で瞬間的に高エネルギーを与え、その際測定される熱拡散率及び比熱をもとに熱伝導率を算出するレーザーフラッシュ法等により求めることができる。具体的には実施例に記載の方法により測定することができる。
 通信機器は小型化及び軽量化が進み、電磁干渉抑制材料を用いたパッケージング材料に求められている。例えば、モジュールタイプの電子部品のパッケージは非対称薄型で面積の大きなものもある。FOWLP(Fan Out Wafer Level Package)に代表されるような大判基材上の電子部品を片面一括封止してから個片化するパッケージングプロセスでは、反りを低減する必要がある。このような場合、熱膨張係数の低いインサートに電磁干渉抑制材料の熱膨張をできるだけ近づける、すなわち電磁干渉抑制材料の低熱膨張化が有用である。このような観点から、前記電磁干渉抑制材料の熱膨張率(α1:常温(25℃)からガラス転移温度までの間の熱膨張係数)は、1ppm/deg.以上であってもよく、3ppm/deg.以上であってもよい。また、前記電磁干渉抑制材料の熱膨張率は、40ppm/deg.以下であってもよく、35ppm/deg.以下であってもよい。前記電磁干渉抑制材料を封止材として用いる場合、前記電磁干渉抑制材料の熱膨張率は、22ppm/deg.以下であってもよく、20ppm/deg.以下であってもよい。
 なお、前記熱膨張係数は、熱機械分析(Thermal Mechanical Analysis:TMA)による測定で得られるTMAチャートにおいて、25~60℃の接線の傾きから求めることができる。具体的には実施例に記載の方法により測定することができる。
<炭素複合材料>
 本開示の炭素複合材料は、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子、及び無機粒子の連結体の表面に平均層数が4以下のグラフェンの被覆層が被覆されたコアシェル連結体から選ばれる少なくとも1種である。
 なお、本開示の炭素複合材料には、無機粒子が有する細孔内部を炭素被覆したものや、無機粒子の細孔内部に炭素が充填されたものも含む。
 前記コアシェル粒子の平均粒径は、製造容易性、並びに電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、0.0005~100μmであってもよく、0.1~50μmであってもよく、0.5~20μmであってもよい。
 なお、前記コアシェル粒子の平均粒径は、シリンダー状細孔を仮定し、下記式より求められる値である。
コアシェル粒子の平均粒径(m)=6/[比表面積(m/g)×コアシェル粒子の真密度(g/m)]
 前記比表面積とは、BET比表面積を指し、窒素吸着によるBET 多点法(例えば5~6点)により測定して得られる値である。
 前記コアシェル連結体の平均粒径は、製造容易性、並びに電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、0.0005~100μmであってもよく、0.1~50μmであってもよく、0.5~20μmであってもよい。
 なお、前記コアシェル連結体の平均粒径は、レーザー回折式の粒度分布計を使うことで見積もることができる。
 前記炭素複合材料の平均粒径は、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、100μm以下であってもよい。なお、本明細書において、「炭素複合材料の平均粒径」とは、炭素複合材料が凝集しておらず1次粒子である場合は1次粒子の平均粒径を指し、炭素複合材料が凝集し2次粒子を形成している場合は2次粒子の平均粒径を指す。
 なお、前記炭素複合材料の平均粒径の測定方法は、孔の容積と比表面積からの算出、レーザー回折式の粒度分布計により見積る、もしくは走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)の観察手段を用い、20~100視野中に観察される粒子の粒径の平均値として算出される値である。また、「粒径」とは、粒子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。
 前記炭素複合材料の比表面積は、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、800m/g以下であってもよく、780m/g以下であってもよく、600m/g以下であってもよい。下限は特に設けないが、1m/g以上であってもよく、5m/g以上であってもよく、10m/g以上であってもよい。
 なお、前記比表面積は、BET比表面積を指し、窒素吸着によるBET 多点法により測定した値である。
 本開示において、電磁干渉抑制材料中の前記炭素複合材料の含有量(質量%)は、用途及び母材により大きく異なるため、特に限定されない。電磁干渉抑制材料中の前記炭素複合材料の含有量(質量%)は、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、電磁干渉抑制材料全量に対し、0.1~90質量%であってもよく、0.5~35質量%であってもよく、1~30質量%であってもよい。
〔無機粒子〕
 本開示のコアシェル粒子及びコアシェル連結体は、無機粒子を有する。前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子(以下、これらをまとめて「無機粒子」とも言う。)は、特に制限されない。例えば、アルミナ、シリカ、酸化マグネシウム、炭化タングステン、窒化アルミニウム、酸化セリウム、酸化チタン及び炭酸カルシウム等の無機粒子、純鉄等の磁性金属である磁性体、アモルファス磁性金属合金類、Ni-Fe系合金類、軟鋼、ケイ素鋼(Fe-Si合金類)、Fe-Al合金類、Fe-Si-Al合金(センダスト)類、Co-Fe系合金類等の磁性金属合金である磁性体、カーボニル鉄、マグネタイト及びフェライト等の磁性酸化物である磁性体等が挙げられる。
 前記フェライトとして、具体的には、Mn-Zn系フェライト、Ni-Zn系フェライト、Cu-Zn系フェライト、Cu-Zn-Mgフェライト、Mn-Mg-Alフェライト、Y型六方晶フェライト、Z型六方晶フェライト、M型六方晶フェライト等が挙げられる。
 前記磁性金属及び前記磁性金属合金は、扁平形状であってもよい。
 前記無機粒子は、電磁干渉抑制材料の用途に応じて無機粒子を選択してもよい。
 前記無機粒子は、体積抵抗向上の観点から、アルミナ、シリカ、酸化マグネシウム、炭化タングステン、及び窒化アルミニウムから選ばれる少なくとも1種を含んでもよく、アルミナ、シリカ、及び酸化マグネシウムから選ばれる少なくとも1種を含んでもよく、アルミナを含んでもよい。
 また、前記無機粒子は、熱膨張率の観点から、シリカを含んでもよい。
 また、前記無機粒子は、熱伝導率の観点から、アルミナ、酸化マグネシウム、及び窒化アルミニウムから選ばれる1種を含んでもよく、アルミナを含んでもよい。
 また、前記無機粒子は、熱伝導率の向上とともに、広範囲の周波数領域で電磁波吸収能が向上する観点から、磁性体であってもよく、該磁性体が磁性金属、磁性金属合金、及び磁性酸化物から選ばれる少なくとも1種を含んでもよく、アモルファス磁性金属合金類を含んでもよく、Fe-Si-Al合金(センダスト)、フェライト、及びマグネタイトから選ばれる少なくとも1種を含んでもよく、フェライト、及びマグネタイトから選ばれる少なくとも1種を含んでもよい。
 前記無機粒子は、1種のみからなるものであってもよく、2種以上を含んでもよい。
 前記無機粒子は、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、ナノ粒子であってもよい。
〔グラフェン〕
 本開示のグラフェンは、炭素原子が結合した六角形格子構造を有するシート状物質である。グラフェンは、炭素原子1個分の層厚みを有する単層の状態であってもよく、2層以上の多層の状態であってもよい。グラフェンは、炭素原子の他に、酸素原子、水素原子、ホウ素原子、窒素原子、硫黄原子、リン原子等を含んでもよい。
 前記コアシェル粒子中及び前記コアシェル連結体中のグラフェンの含有量(質量%)は、特に制限されない。電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、0.1~70質量%であってもよく、0.5~45質量%であってもよく、1~20質量%であってもよい。
 前記電磁干渉抑制材料中のグラフェンの含有量(質量%)は、特に制限ない。電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、0.001~30質量%であってもよく、0.01~20質量%であってもよく、0.05~15質量%であってもよい。
<母材>
 本開示の母材は、有機物及び無機物から選ばれる少なくとも1種を含む。母材は、有機物のみを含んでもよく、無機物のみを含んでもよく、有機物と無機物とを含んでもよい。
〔有機物〕
 母材に含まれる有機物は、特に制限されないが、例えば、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、イミド樹脂等が挙げられる。
 熱可塑性樹脂としては、ポリオレフィン系樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、エチレン・アクリル酸エステル樹脂、エチレン・メタクリル酸エステル樹脂、ジエン系樹脂、テルペン樹脂、石油樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド系樹脂、フッ素樹脂等が挙げられる。
 前記有機物は、電磁干渉抑制材料を用いた成形体の信頼性の観点から、熱硬化性樹脂であってもよく、電磁干渉抑制材料を用いた成形体の電気絶縁性、及び耐熱性の観点から、エポキシ樹脂であってもよく、イミド樹脂であってもよい。製造の容易さ及び加工の容易さの観点から、熱可塑性樹脂であってもよく、耐久性及び耐候性の観点からポリウレタンでもよく、屋外で利用する場合には、耐加水分解性がよいポリカーボネート系ポリウレタンであってもよい。なお、成形体とは、鋳型や金型等の型に入れて製造するモールド体を指す。
 前記有機物は、1種を用いてもよく、2種以上を組み合わせて使用してもよい。
 本開示において、有機物として用いられるエポキシ樹脂は、一分子中に2個以上のエポキシ基を有し、電子部品で一般に用いられているものであれば、分子構造、分子量等は特に制限されない。
 前記エポキシ樹脂は、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン誘導体等の脂肪族系エポキシ樹脂、ビフェニル型、ビフェニルアラルキル型、ナフチル型及びビスフェノール型等の芳香族系エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は1種のみで用いてもよいし、2種以上混合して用いてもよい。性状も特に制限はなく常温(25℃)で液状、固形のいずれであっても構わない。例えば、前記エポキシ樹脂は、固形クレゾールノボラック型エポキシ樹脂であってもよい。前記固形クレゾールノボラック型エポキシ樹脂は、市販品として入手することができ、例えば、N670(DIC(株)製)等が挙げられる。また、例えば、前記エポキシ樹脂は、液状エポキシ樹脂であってもよく、具体的には、ビスフェノールA型及びビスフェノールF型等が挙げられる。液状エポキシ樹脂は、液状ビスフェノールA型エポキシ樹脂であってもよい。液状ビスフェノールA型エポキシ樹脂は、市販品として入手することができ、例えば、エポミック(登録商標)R140(三井化学(株)製)等が挙げられる。
 なお、本開示において、液状エポキシ樹脂とは、25℃において液状を呈するエポキシ樹脂を指す。
 前記エポキシ樹脂のエポキシ当量は、成形体の熱機械的性質の観点から140以上であってもよい。また電磁波吸収性能の観点からは200以上であってもよい。前記エポキシ当量の上限値としては、熱機械的性質の観点から、400以下であってもよく、380以下であってもよい。
 前記エポキシ樹脂は、(RO)mで表されるポリオキシアルキレン構造及び(RO)nで表されるポリオキシアルキレン構造を有するエポキシ樹脂であってもよい。
 ここで、R及びRはそれぞれ独立に、炭素数1以上のアルキレン基を示す。m+nは、1以上50以下であってもよく、1以上20以下であってもよい。また、mは0以上49以下であってもよく、0以上19以下であってもよい。nは1以上50以下であってもよく、1以上20以下であってもよい。
 R及びRで示されるアルキレン基としては、例えば、炭素数1以上6以下のアルキレン基が挙げられ、具体的には、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基等が挙げられる。前記アルキレン基は、電磁波吸収性能の観点から、メチレン基であってもよく、エチレン基であってもよい。
 m個のRO基において、複数のRは互いに同一のアルキレン基でもよく、炭素数の異なるアルキレン基であってもよい。また、n個のRO基において、複数のRは互いに同一のアルキレン基でもよく、炭素数の異なるアルキレン基であってもよい。
 前記ポリオキシアルキレン構造を有するエポキシ樹脂としては、例えば、ビスフェノールA骨格を有する液状エポキシ樹脂、ポリエチレングリコールジグリシジルエーテル等が挙げられる。ビスフェノールA骨格を有する液状エポキシ樹脂の市販品としては、下記一般式(1)で表されるリカレジン BEO-60E(新日本理化(株)製)等が挙げられ、ポリエチレングリコールジグリシジルエーテルの市販品としては、下記一般式(2)で表される化合物を主成分とするエポライト400E(共栄社化学(株)製)等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本開示において、有機物として用いられるイミド樹脂としては、例えば、ビスアリルナジイミド等が挙げられる。ビスアリルナジイミドは市販品として入手することができ、例えば、BANI-M(丸善石油化学(株)製)、BANI-X(丸善石油化学(株)製)等が挙げられる。
 本開示において、電磁干渉抑制材料中の前記有機物の含有量(質量%)は、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、電磁干渉抑制材料全量に対し、0.1~40質量%であってもよく、1~30質量%であってもよく、3~25質量%であってもよく、5~20質量%であってもよい。
 前記有機物として熱硬化性樹脂を含む場合、本開示の電磁干渉抑制材料は、さらに硬化剤及び硬化促進剤等を含有してもよい。
 前記硬化剤としては、例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール樹脂等が挙げられる。これらは1種を用いてもよく、2種以上を組み合わせて使用してもよい。
 前記硬化促進剤としては、ジクミルパーオキサイド、ジブチルパーオキサイド等の有機過酸化物;2-メチルイミダゾール、2-エチルイミダゾール等のイミダゾール化合物、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の有機リン系化合物;1,8‐ジアザビシクロ[5,4,0]ウンデセン‐7(DBU)、1,5‐ジアザビシクロ(4,3,0)ノネン‐5等のジアザビシクロアルケン化合物;2‐エチル‐4‐メチルイミダゾールテトラフェニルボレート等のテトラフェニルボロン系化合物等が挙げられる。これらは1種を用いてもよく、2種以上を組み合わせて使用してもよい。
 本開示の一態様において、本開示の電磁干渉抑制材料が硬化剤を含有する場合、その含有量は熱硬化性樹脂100質量%に対して0~150質量%であってもよく、0~120質量%であってもよく、0~100質量%であってもよい。
 本開示の他の態様において、本開示の電磁干渉抑制材料が硬化剤を含有する場合、その含有量は該電磁干渉抑制材料全量に対し、1~20質量%であってもよく、2~18質量%であってもよく、3~15質量%であってもよい。
 また、本開示の電磁干渉抑制材料が硬化促進剤を含有する場合、その含有量は該電磁干渉抑制材料全量に対し、0.01~10質量%であってもよく、0.05~5質量%であってもよく、0.1~3質量%であってもよい。
 本開示の電磁干渉抑制材料は、さらに分散助剤を含んでもよい。分散助剤は、マトリクス樹脂に微粒子を安定的に高分散させるための材料であれば特に制限されない。分散剤は一般には一分子中に異なる反応性の官能基を併せ持つ界面活性剤、及びカップリング剤等が用いられる。前記分散助剤としては、カルボン酸塩等のアニオン系界面活性剤、4級アンモニウム塩等のカチオン系界面活性剤等の界面活性剤;アミン系官能基とスルフィド系官能基を持つカップリング剤、セルロースナノファイバー等が挙げられる。
 前記セルロースナノファイバーは、両極性の微小固体で界面活性的な作用でフィラーの分散性を向上させる。セルロースナノファイバーは、水又は熱硬化性樹脂オリゴマー等の液体中にすでに高分散されたものであってもよい。
 前記セルロースナノファイバーの平均繊維長さは、作業性及び流動性の観点から、1μm以上100μm以下であってもよく、5μm以上50μm以下であってもよい。
 前記セルロースナノファイバーの平均繊維径は、凝集体も含め、1nm以上1000nm以下であってもよく、4nm以上500nm以下であってもよい。前記平均繊維径が上記範囲にあることで、前記炭素複合材料の分散性を上げることができ、その結果、電磁干渉抑制性能をより向上させることができる。
 なお、セルロースナノファイバーの平均繊維長さ及び平均繊維径は、走査型電子顕微鏡(SEM)を用いて、前述のカーボンナノチューブの平均繊維長さ及び平均繊維径と同一の操作により測定することができる。
 前記アミン系官能基とスルフィド系官能基を持つカップリング剤の市販品としては、SUMILINK(登録商標)100(住友化学(株)製)等が挙げられる。前記セルロースナノファイバーの市販品としては、ELLEX-S(大王製紙(株)製)等が挙げられる。
 本開示の電磁干渉抑制材料に前記分散助剤が含まれる場合、その含有量は、分散性及び熱機械的特性保持の観点から、該電磁干渉抑制材料全量に対し、0.1~30質量%であってもよく、0.2~10質量%であってもよく、0.3~5質量%であってもよい。
 本開示の電磁干渉抑制材料には、以上の各成分の他、本開示の要旨を逸脱しない範囲で、この種の電磁干渉抑制材料に一般に配合される、合成ワックス、天然ワックス、高級脂肪酸、高級脂肪酸のエステル等の離型剤;コバルトブルー等の着色剤;シリコーンオイル、シリコーンゴム等の改質剤;ハイドロタルサイト類;イオン捕捉剤;帯電制御剤;フォスファゼン等の難燃剤等の添加剤を必要に応じて配合することができる。これらの各添加剤はいずれも1種を用いてもよく、2種以上を混合して使用してもよい。
 本開示の電磁干渉抑制材料における、これらの各添加剤の含有量は、該電磁干渉抑制材料の全量に対して、各添加剤の合計量として、0.05~30質量%であってもよく、0.2~20質量%であってもよい。
〔無機物〕
 母材に含まれる無機物は、電子部品で使用される無機物であれば特に制限されないが、後述の無機物(A)、及び無機物(B)が挙げられる。
これらは1種を用いてもよく、2種以上を組み合わせて使用してもよい。
(無機物(A))
 無機物(A)は、シリカ、アルミナ、酸化マグネシウム、酸化チタン、チタン酸バリウム、窒化珪素、窒化アルミニウム、炭化ケイ素及び炭化タングステン等の無機充填材、アモルファス磁性金属合金類、Ni-Fe系合金類、純鉄、軟鋼、ケイ素鋼(Fe-Si合金類)、Fe-Al合金類、Fe-Si-Al合金類、Co-Fe系合金類、カーボニル鉄等の軟磁性材、マグネタイト及びフェライト等磁性酸化物等の磁性体等から選ばれる少なくとも1種であり、後述の無機物(B)以外の無機物である。
 前記無機物(A)は、有機物と一緒に用いてもよい。電磁干渉抑制材の膨張係数の低減や熱伝導率向上の観点から、シリカ、アルミナから選ばれる少なくとも1種であってもよく、シリカであってもよい。また、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、フェライト、アモルファス磁性金属合金類から選ばれる少なくとも1種であってもよい。
 前記無機物(A)の形状は特に制限されないが、例えば、球状、フレーク状、繊維状等が挙げられる。前記無機物の形状は球状であってもよく、球状以外であってもよい。
 前記無機物(A)の平均粒径としては、特に制限されないが、0.1μm以上100μm以下であってもよく、0.2μm以上75μm以下であってもよく、0.2μm以上50μm以下であってもよい。
 なお、本明細書において、平均粒径とは、体積平均粒子径のことであり、無機物(A)の平均粒径は、レーザー回折式粒度分布測定装置を用いて測定した、粒子の長径の平均値として算出することができる。
 本開示の電磁干渉抑制材料に前記無機物(A)が含まれる場合、電磁波吸収性能及び電磁干渉抑制性能をより向上させる観点から、その含有量は電磁干渉抑制材料の全量に対し、20~95質量%であってもよく、30~90質量%であってもよく、35~85質量%であってもよい。
 本開示の電磁干渉抑制材料が半導体用封止材として用いられる場合、半導体用封止材を製造する過程で、金属異物除去が行われる。金属異物除去が磁石を用いて行われる場合、磁性体は異物とみなされ、除去され歩留まりが悪くなる。このような観点から、本開示の電磁干渉抑制材料が半導体用封止材として用いられる場合、前記磁性体の含有量は、該電磁干渉抑制材料の全量に対し、1質量%以下であってもよく、0.5質量%以下であってもよく、0質量%であってもよい。また、前記磁性体は比重が大きいため、得られる成形体の軽量化の観点からも前記磁性体の含有量は前記値以下であってもよい。
(無機物(B))
 無機物(B)は、セラミックスである。
 前記セラミックスとしては、特に限定されないが、具体的には、金属の酸化物、窒化物、炭化物等を主成分とする焼結体が挙げられる。
 前記金属の酸化物として、具体的には、アルミナ、ジルコニア、酸化マグネシウム等が挙げられる。
 前記金属の窒化物として、具体的には、窒化アルミニウム、窒化ホウ素、窒化ケイ素等が挙げられる。
 前記金属の炭化物として、具体的には、炭化ケイ素、炭化ホウ素等が挙げられる。
 前記セラミックスは、アルミナ、窒化アルミニウムから選ばれる少なくとも1種の焼結体であってもよい。
[炭素複合材料の製造方法]
 以下、本開示の炭素複合材料の製造方法の一形態を説明するが、本開示は下記形態に限定されない。
 本開示による炭素複合材料は、例えば、無機粒子に炭素層を被覆する方法によって製造することができる。
(無機粒子)
 本開示による無機粒子としては、上述の〔無機粒子〕に記載の無機粒子が挙げられる。
 本実施形態の無機粒子としては、CVD処理等により炭素層を被覆する場合、CVD処理等の際に元の構造を安定に保ってもよい。このため、耐熱性が高いものであってもよい。
 無機粒子は粒子サイズのそろった構造及び組成が均一な材料であってもよく、また、高比表面積とするために、得られるグラフェンの平均層数を4以下に制御しうる材料であってもよい。
 このような観点から、無機粒子は、アルミナ、シリカ、酸化マグネシウム、炭化タングステン、窒化アルミニウム、並びに磁性金属、磁性金属合金、及び磁性酸化物等の磁性体から選ばれる少なくとも1種であってもよい。また、電気絶縁性能向上の観点から、アルミナ又はシリカであってもよく、熱伝導率を向上させ、放熱性を向上させる観点から、磁性体であってもよく、Fe-Si-Al合金(センダスト)類、フェライト、及びマグネタイトから選ばれる少なくとも1種であってもよい。
 前記無機粒子の平均粒径は特に限定されないが、平均粒径が0.0005~100μmであってもよく、0.1~50μmであってもよく、0.5~20μmであってもよい。平均粒径が0.0005μm以上であれば、取扱いが容易で、炭素被覆性が良好である。また、炭素源を被覆する際の炭素源のガス透過性が良好になるため、均一な炭素被覆が容易になる。一方、平均粒径が100μm以下であれば、比表面積(BET比表面積)の高い炭素複合材料が得られうる。
 前記無機粒子は、粒状のスペーサーと混合して用いてもよい。スペーサーを用いることで、粒子同士の間に適度に空隙を確保することができ、粒子が密に詰まり過ぎて圧損が大きくなってしまうことを防ぐことができる。スペーサーとしては、平均粒径が、例えば、100~5000μmの粒子であってもよい。スペーサーの材質としては、炭素被覆後に篩分けできるものであれば特に制限されず、900~1000℃で分解しないものであってもよい。
 前記粒子とスペーサーとの配合比は特に制限されないが、例えば、(粒子:スペーサー)が、質量比で、0.1:10~10:10であってもよく、1:10~10:10であってもよい。上記範囲であれば、前記炭素複合材料が高い収率で得られうる。
(炭素層の被覆)
 無機粒子表面に炭素層を被覆する方法は特に制限されず、湿式法、乾式法のいずれも適用できる。グラフェンの平均層数を4以下とする観点から、化学気相成長法(Chemical Vapor Deposition:CVD)、または化学修飾でシリカ等の無機粒子表面にナフタレン分子を導入した後に焼成する方法を用いてもよい。
 有機化合物を導入し、無機粒子上に炭素層を堆積させるために用いるCVD法は、無機粒子等の基板上に特定の元素または元素組成からなる薄膜(例えば炭素からなる薄膜)を作る工業的手法である。通常、原料物質を含むガスに熱や光によってエネルギーを与たり、高周波でプラズマ化することにより、化学反応や熱分解によって原料物質がラジカル化して反応性に富むようになり、基板上に原料物質が吸着して堆積することを利用する技術である。
 CVD法で用いる有機化合物は、常温で気体であるか、または気化できるものであってもよい。気化の方法は、沸点以上に熱する方法や雰囲気を減圧にする方法等がある。用いる有機化合物は、炭素源物質の中から適宜選択して使用できる。特に、加熱により熱分解する化合物であってもよく、無機粒子の表面に炭素層を堆積することができる化合物であってもよい。
 また、用いる有機化合物は、水素、酸素、窒素、ホウ素、硫黄、リン等を含む有機化合物であってもよい。この有機化合物は、不飽和または飽和の炭化水素を含む有機化合物であってもよく、これらの混合物であってもよい。
 用いる有機化合物としては、二重結合及び/または三重結合を有する不飽和直鎖または分枝鎖の炭化水素、飽和直鎖または分枝鎖の炭化水素等であってもよく、飽和環式炭化水素、ベンゼン、トルエン等の芳香族炭化水素等であってもよい。有機化合物として、メタノール、エタノール等のアルコール類またはアセトニトリル、アクリロニトリル等の窒素を含む化合物を用いてもよい。有機化合物は、例えば、アセチレン、メチルアセチレン、エチレン、プロピレン、イソプレン、シクロプロパン、メタン、エタン、プロパン、ベンゼン、トルエン、ビニル化合物、エチレンオキサイド、メタノール、エタノール、アセトニトリル、アクリロニトリル等が挙げられる。有機化合物は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、用いる有機化合物は、粒子間の空隙に入り込むことが可能なもの、例えばアセチレン、エチレン、プロピレン、メタン、エタン等を用いてもよく、結晶性の高い炭素を析出させる観点から、メタン、プロピレン、及びベンゼンを用いてもよい。また、熱分解温度が高く高結晶性の炭素が得られる観点から、メタンを用いてもよい。
 有機化合物は、より高温でのCVDに用いるものと、より低温でCVDに用いるものとでは互いに同一のものであっても異なっていてもよい。例えば、低温でのCVDではアセチレン、エチレン等を用い、高温でのCVDにはプロピレン、イソプレン、ベンゼン等を用いてもよい。
 前記無機粒子上に有機化合物を導入する際は、無機粒子を予め減圧にしてもよく、系自体を減圧下にしてもよい。CVDにより炭素が堆積する方法であれば如何なる方法を用いてもよい。例えば、アルミナナノ粒子上に有機化合物の化学反応または熱分解で生成した炭素を堆積(または吸着)させ、アルミナナノ粒子上に炭素層を被覆してもよい。
 CVD処理を行う際の圧力は特に制限されず、例えば、1kPa~200kPaであってもよく、50~150kPaであってもよい。CVD処理を行う際の加熱温度は、無機粒子上に数層以下の炭素層を形成することができる条件であればよく、使用する有機化合物によって適宜適切な温度を選択できる。加熱温度は、400~1500℃であってもよく、450~1100℃であってもよく、550~950℃であってもよい。例えば、有機化合物としてプロピレンを用いる場合は、700~900℃であってもよく、メタンを用いる場合は、900~1100℃であってもよい。ただし、有機化合物の分解温度よりも50~200℃程度低い温度が好適である。有機化合物の分解温度以上に加熱すると気相炭素析出が顕著になるが、上記のようにすることで、例えば前記無機粒子表面と内部とで炭素堆積量のむらが生じることを防ぎ、均一に堆積させることができる。
 また、加熱温度はCVD処理時間及び/または反応系内の圧力に応じて適宜適切な温度を選択することができる。また、生成物を分析し、その結果に基づいて所望の積層数とするために要求される温度を設定してもよい。
 CVD処理を行う際の昇温速度も特に制限されないが、1~50℃/分であってもよく、5~20℃/分であってもよい。CVD処理における処理時間(所定
の加熱温度でのCVD処理時間)は、平均層数が4以下のグラフェンが得られる時間であればよく、使用する有機化合物や温度によって適宜適切な時間を選択できる。例えば、CVD処理における処理時間は、5分~8時間であってもよく、0.5~6時間であってもよく、1~5時間であってもよい。また、生成物を分析し、その結果に基づいて十分な炭素堆積に要求される時間を設定してもよい。
 CVD処理は、減圧下で行ってもよく、真空下で行ってもよく、加圧下で行ってもよく、また、不活性ガス雰囲気下で行ってもよい。不活性ガス雰囲気下で行う場合、不活性ガスとしては、例えば窒素、ヘリウム、ネオン、アルゴン等が挙げられ、窒素を用いてもよい。
 CVD法では、通常、気体状の有機化合物をキャリアガスと共に粒子に接触させるように流通させながら加熱することで、容易に気相中で粒子上に炭素を堆積ないし吸着させることができる。キャリアガスの種類、流速、流量及び加熱温度は使用する有機化合物の種類によって適宜調節する。キャリアガスは、例えば上記の不活性ガス等が挙げられ、窒素であってもよく、また、酸素ガスまたは水素ガスとの混合物であってもよい。
 グラフェンの平均層数を4以下とする観点から、キャリアガスの流速は、例えば、0.05~1.0m/分であってもよく、0.32~0.64m/分であってもよい。また、有機化合物の導入量を、キャリアガスと有機化合物との合計量に対して、1~30体積%であってもよく、5~20体積%であってもよい。
 前記無機粒子上に炭素層を被覆する方法として、有機化合物を含浸法等の湿式法で導入して炭化してもよい。また、有機化合物を導入してCVDを行う前に、有機化合物を含浸して炭化してもよい。含浸する有機化合物としては、例えば、炭化歩留まりの高いフルフリルアルコール等の熱重合性モノマーが用いられうる。有機化合物の含浸方法は、有機化合物が液体であればそのまま、または溶媒と混合して、固体であれば溶媒に溶解して無機粒子と接触させる等、公知の手段を採用することができる。
 第1工程の後、炭素被覆した無機粒子を熱処理して、炭素層を炭化させ、無機粒子の表面に高結晶性の炭素を析出させてもよい。このようにすることで、得られる炭素複合材料は、より高結晶性かつ高比表面積となる。
 炭素層の炭化は、CVD処理によっても進行しうるため、前記熱処理は、CVD処理時に行ってもよく、他の方法で行ってもよい。
 熱処理する方法は、特に制限されず、高周波誘導加熱炉等を用いて熱処理を行ってもよい。
 上記方法により、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子及びコアシェル連結体、すなわち炭素複合材料を得ることができる。
[電磁干渉抑制材料の製造方法]
 本開示の電磁干渉抑制材料は、炭素複合材料と、必要に応じて配合されるその他の成分を、ミキサー等によって十分均一に混合した後、ディスパース、ニーダー、3本ロールミル、二軸加熱ロール、二軸加熱押出し混練装置等により混練処理を行うことで得てもよい。混練処理は加熱して行ってもよい。その際の温度は、70℃以上150℃以下であってもよく、75℃以上120℃以下であってもよい。
 本開示の電磁干渉抑制材料は、例えば、前記混練処理後、冷却固化させ、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインダーミル、スピードミル等により適当な大きさに粉砕して用いてもよい。
 また、前記混練処理後に得られる混合物を、成形機にて50℃以上100℃以下の温度、圧力0.5MPa以上1.5MPa以下の条件でプレスしてシート状に成形してもよい。
 本開示の電磁干渉抑制材料は、電波吸収材、ノイズ抑制シート、半導体封止材、封止シート、電線の被覆材等として用いることができる。
 本開示の一実施形態として、例えば、基板上に固定された半導体素子を、本開示の電磁干渉抑制材料を含む半導体素子封止材で封止することにより、樹脂封止型の電子部品を得ることができる。
 なお、電子部品を得るには、公知の成形方法が特に限定されずに用いられる。最も一般的な成形方法としては低圧トランスファー成形が挙げられるが、射出成形、注型成形、圧縮成形等による成形も可能である。
 例えば、トランスファー成形法の場合、トランスファー成形機により成形金型内で温度150℃以上200℃以下、時間20秒以上200秒以下で加熱処理を行い、成形金型から成型品を取り出し、硬化を完了させるための加熱処理を、温度150℃以上200℃以下、2時間以上12時間以下で行ってもよい。
 また、圧縮成形法の場合、まず、成形型の上型に半導体素子を実装した基板を供給するとともに、下型のキャビティ内に本開示の電磁干渉抑制材料を供給する。次いで、上下両型を所要の型締圧力にて型締めすることにより、下型キャビティ内で加熱溶融された電磁干渉抑制材料に半導体素子を実装した基板を浸漬する。その後、下型キャビティ内の加熱溶融された電磁干渉抑制材料をキャビティ底面部材で押圧し、減圧下、所要の圧力を加え、圧縮成形する。成形条件は、温度120℃以上200℃以下、圧力2MPa以上20MPa以下であってもよい。
 次に実施例により、本開示を具体的に説明するが、本開示は、これらの例によってなんら限定されるものではない。
[炭素複合材料の製造]
 炭素複合材料の製造に用いた表1及び2に記載の無機粒子の詳細は以下のとおりである。
・シリカ:SO-C1;(株)アドマテックス製、平均粒径:0.3μm
・アルミナ:Puralox SBa-200;サソール社製、平均粒径(1次粒子径):7nm
・メソポーラスシリカ:SBA-15(後述の方法により調製)
・酸化マグネシウム:イーエムジャパン(株)製、平均粒径(1次粒子径):10nm
・センダスト(Fe-Si-Al合金):山陽特殊製鋼(株)、平均粒径:40μm、扁平形状
・フェライト(Mn-Zn系):パウダーテック(株)、平均粒径:5~10μm、
<製造例1>
 アセトン5mlに、2,3-dihydroxynaphthalene(DN)2.3gを溶解させ、さらに乾燥させたシリカ(SO-C1)0.47gを添加し、混合液を得た。この混合液を室温で2時間撹拌した後、95℃でアセトンを蒸発させた。DNとシリカの混合物残渣を、573℃の窒素気流下で1時間熱処理を行い、シリカ表面とDNを反応させた後、800℃の窒素気流下で4時間熱処理を行い、炭素被覆したシリカ粒子(A-1)を得た。
<製造例2>
 アルミナ(Puralox SBa-200)と、スペーサーとしての石英砂(仙台和光純薬株式会社製)とを、質量比3:20(アルミナナノ:石英砂)で混合した。この際、石英砂は、1M塩酸に12時間浸け、マッフル炉で、空気中にて800℃で2時間加熱し、180μm間隔のふるいにかけたものを使用した。上記で調製したアルミナと石英砂との混合物を反応管(内径37mm)に入れ、メタンを炭素源とする化学気相成長CVD(メタンCVD)を行った。具体的には、Nガスの流量を224ml/分に調節した条件下で、上記で調製したアルミナと石英砂との混合物を10℃/分の昇温速度で室温から900℃まで加熱し、900℃で30分間保持した後、Nガス(キャリアガス)とメタンガスを反応管に導入して、900℃で2時間、化学気相成長(CVD)処理を行った。なお、Nガスとメタンガスを反応管に導入する際、Nガスとメタンガスとの合計量に対してメタンガスの量を20体積%、メタンガスの流量を45ml/分、Nガスの流量を179ml/分に調節した。
 CVD処理後、メタンガスの導入を停止し、Nガスの流量を224ml/分に調節した条件下で、900℃で30分間保持した後、冷却して、炭素被覆したアルミナ粒子(A-2)を得た。
<製造例3>
 メソポーラスシリカ(SBA-15)をゾルゲル法により調製した。具体的には、次の方法により調製した。まず、500mLビーカーを用いて、界面活性剤(P-123)15gを純水360mLに溶解させ、テトラエトキシシラン(TEOS)33gを添加し、5分撹拌した。続いて、36質量%の塩酸60mLを30分かけて滴下し、35℃で20時間撹拌した後、95℃で24時間撹拌した。得られた白色の沈殿物を、80℃で12時間乾燥させた後、空気下にて550℃で6時間焼成することにより、SBA-15を得た。
 続いて、製造例1において、無機粒子としてシリカの代わりにメソポーラスシリカ(SBA-15)を用いたこと以外は同一の操作にて、炭素被覆したシリカ粒子(A-3)を得た。
<製造例4>
 製造例2において、無機粒子としてアルミナの代わりに酸化マグネシウムを用いたこと以外は同一の操作にて、炭素被覆した酸化マグネシウム粒子(A-4)を得た。
<製造例5>
 結晶規則度を高めると共に、表面にSiとAlの酸化物層を形成することを目的として、センダストをAr雰囲気下で700℃にて5時間加熱し、その後大気中で150℃にて5時間加熱した。
 続いて、製造例1において、無機粒子としてシリカの代わりに得られたセンダストを用いたこと以外は同一の操作にて、炭素被覆したセンダスト粒子(A-5)を得た。
<製造例6>
 製造例2において、無機粒子としてアルミナの代わりにフェライトを用いたこと以外は同一の操作にて、炭素被覆したフェライト粒子(A-6)を得た。
[炭素複合材料の測定評価]
 得られた炭素複合材料について、以下の項目の測定評価を行った。これらの測定評価結果を、表1にまとめて示す。
<比表面積(BET比表面積)>
 得られた炭素複合材料を、150℃で6時間真空加熱乾燥した後、高精度自動ガス/蒸気吸着量測定装置「BEL SORP MAX」(日本ベル株式会社製)を用いて測定した窒素吸着等温線より、多点法(5点)で比表面積を求めた。
<炭素担持量(炭素複合材料中の炭素含有量)>
 得られた炭素複合材料の炭素担持量を、示差熱・熱重量同時測定装置「DTG-60/60H」(株式会社島津製作所製)を用いて測定した。具体的には、得られた炭素複合材料を、質量を測定しつつ、合成空気流通下(50cc/分)で10℃/分で120℃まで昇温し、30分間保持し、次いで5℃/分で800℃まで昇温して1時間保持し、-10℃/分で120℃まで冷却して30分間保持した。800℃に加熱する前の120℃で保持した際の平均質量と、800℃に加熱する後の120℃で保持した際の平均質量の差から、質量当たりの炭素担持量を求めた。
<グラフェンの平均層数>
 前述の方法により求めた比表面積と炭素担持量から、下記式によりグラフェンの平均層数を求めた。
グラフェンの平均層数=面積当たりの炭素担持量(g/m)/(面積当たりのグラフェンの質量[g/m])
 なお、「面積当たりの炭素担持量(g/m)」は、前述の方法により求めた質量当たりの炭素複合材料の炭素担持量(g)を、コアシェル粒子またはコアシェル連結体が有する無機粒子の比表面積(m/g)で除して得られる値である。
<炭素含有率(グラフェン含有率)>
 炭素複合材料中の炭素含有率は、下記式により求めた。
炭素含有率(%)=グラフェンの炭素面密度(g/m)×コアシェル粒子またはコアシェル連結体が有する無機粒子の比表面積(m/g)×グラフェンの平均層数
 なお、グラフェンの炭素面密度は、7.61×10-4g/mとした。
Figure JPOXMLDOC01-appb-T000003

 
[電磁干渉抑制材料の製造]
 電磁干渉抑制材料の製造に用いた表2に記載の各成分の詳細は以下のとおりである。
〔有機物〕
・エポキシ樹脂:EPICLON N670;クレゾールノボラック型エポキシ樹脂;DIC(株)製、エポキシ当量:210
・フェノール樹脂:PC-25;住友ベークライト(株)
・硬化剤:BRG-557;フェノールノボラック樹脂;アイカ工業(株)製
・硬化促進剤:キュアゾールC17Z;イミダゾール化合物;四国化成(株)製
・難燃剤:ラビトル(フォスファゼン系難燃剤)FP100;三井化学ファイン(株)製
・エチレン-アクリル酸エチル共重合体:MB-870;日本ユニカー(株)製
・滑剤:ステアリン酸;日油(株)製
〔無機物〕
・シリカ:FB105;デンカ(株)製、平均粒径:12μm
・アルミナ:DAW07;デンカ(株)製、平均粒径:8μm、最大粒径:50μm
〔炭素材料〕
・カーボンブラック(CB):TPK1227R;キャボット社製、平均粒径:0.1μm
・カーボンナノチューブ(CNT):LUCAN;LG製、平均繊維長さ:30μm、平均繊維径:0.02μm、アスペクト比:1500
〔その他〕
・Fe基合金粉末:Fe含有量?95wt%(残Si、Cr)、BET比表面積:5m/g
<実施例1~7及び比較例1~3>
 表2に記載の種類及び配合量の各成分をヘンシェルミキサーに投入し、混合した後、110℃に加熱された二軸ロール混練装置に投入し、均一になるまで加熱混練作業を行った。次に、得られた加熱混練物を冷間ロールに投入し、シート状に引き伸ばした後に粉砕して、電磁干渉抑制材料組成物を得た。得られた電磁干渉抑制材料組成物を厚さ0.5mm、1.0mm又は25mmの成形体に圧縮成形し(温度;175℃、圧力;10MPa)、電磁干渉抑制材料を得た。
<実施例8~10>
 表2に記載の種類及び配合量の各成分を180℃に加熱された押出機により0.5mmtのチューブ状に押出し、圧延機にて板状に圧延して、電磁干渉抑制材料組成物を得た。得られた電磁干渉抑制材料組成物を厚さ0.5mm、1.0mm又は25mmの成形体に圧縮成形し(温度;190℃、圧力;15MPa)、電磁干渉抑制材料を得た。
<実施例11>
 製造例2で得られた炭素被覆したアルミナ粒子(A-2)56質量部と、フェノール樹脂とメタノールとアセトンを含む混合溶液104質量部(固形分濃度43%)を混合した後、ドクターブレード法にて、厚さ0.15mmのシートを製膜し、そのシートを複数枚積層プレスした後、150℃で2時間加熱処理を行い、厚さが0.5mmのシート試料(20mm×20mm)を得た。
<実施例12>
 実施例11において、ドクターブレード法にて、厚さ0.15mmのシートを製膜し、そのシートを複数枚積層プレスした後、150℃で2時間加熱処理を行い、厚さが0.9mmのシート試料(20mm×20mm)を得たこと以外は同一の操作にて、シート試料を得た。
<比較例4>
 Fe基合金粉末70質量部と、フェノール樹脂とメタノールとアセトンを含む混合溶液150質量部(固形分濃度43%)を混合した後、ドクターブレード法にて、厚さ0.15mmのシートを製膜し、そのシートを複数枚積層プレスした後、150℃で2時間加熱処理を行い、厚さが0.5mmのシート試料(20mm×20mm)を得た。
Figure JPOXMLDOC01-appb-T000004
[電磁干渉抑制材料の測定評価]
 実施例1~10及び比較例1~3で得られた電磁干渉抑制材料について、熱伝導率、熱膨張係数、体積抵抗(体積抵抗率)、電磁波吸収性能(周波数10GHz、近傍界測定系)、及び電磁波吸収性能(周波数5GHz、遠方界測定系)の測定評価を行った。これらの測定評価結果を、表3にまとめて示す。
 実施例11及び12、並びに比較例4で得られたシート試料(電磁干渉抑制材料)について、表面抵抗、透過減衰比(Transmission Attenuation Ratio:Rtp)、及び電圧定在波比(VSWR)の測定評価を行った。これらの測定評価結果を、表4にまとめて示す。
<熱伝導率>
 実施例で得られた厚さ1.0mmの成形体である電磁干渉抑制材料の一方の面に、レーザー光を照射し、強度を周期的に変調させた熱流エネルギーを与え、温度センサを用いて、前記成形体の他方の面における温度応答の位相差を検出し、熱拡散率及び比熱を求め、熱伝導率を算出した。
<熱膨張係数>
 実施例で得られた厚さ1.0mmの成形体である電磁干渉抑制材料を用いてTMA法により、熱分析装置「SSC/5200」(セイコーインスツル(株)製)を用いて、昇温速度5℃/分として室温(25℃)から300℃まで昇温させ、得られたTMAチャートから、25~60℃の最も直線に近い部分の傾きを熱膨張係数とした。
<体積抵抗(体積抵抗率)>
 実施例で得られた厚さ1.0mmの成形体である電磁干渉抑制材料を用いて、JIS K-6911:2006に準じて、150℃における体積抵抗を測定した。
<電磁波吸収性能(周波数10GHz、近傍界測定系)>
 厚さ0.5mmに成形した電磁干渉抑制材料を高周波発振デバイスと受信用アンテナの間に設置し、周波数10GHzの電磁波を発生させたときの電磁波強度を前記成形体がある場合とない場合とで測定し、その比(電磁干渉抑制材料で電磁波吸収した時の電磁波強度/電磁干渉抑制材料が無い時の電磁波強度)をdB単位で電磁波吸収性能とした。
 なお、電磁波強度は「電子情報通信学会論文誌 B Vol.J97-B No.3 pp.279-285」に準じて測定した。
<電磁波吸収性能(周波数5GHz、遠方界測定系)>
 反射防止用電波吸収体の上に、厚さ1mmの銅板(600mm×600mm)を設置し、金属板上に、厚さ25mmに成形した電磁干渉抑制材料(440mm×440mm)を設置した。次いで、ネットワークアナライザにケーブルを介してアンテナを取り付け、一方のアンテナから周波数5GHzの電磁波を送信し、前記電磁干渉抑制材料又は電波吸収体とその下に置かれた金属板で反射させ、もう一方のアンテナで受信することで電磁波強度を測定した。また、金属板上に前記前記電磁干渉抑制材料を設置せず、上記と同一の方法で電磁波を輻射し電磁波強度を測定した。これらの比(電磁干渉抑制材料で電磁波吸収した時の電磁波強度/電磁干渉抑制材料が無い時の電磁波強度)をdB単位で電磁波吸収性能とした。
 なお、電磁波強度は「鹿児島県工業技術センター研究報告 No.15(2001),pp53-61」に準じて測定した。
<表面抵抗>
 JIS K-6911:2006に準じて、抵抗計の探針を間隔1cmで測定した表面抵抗を測定した。
<伝送減衰率(Rtp)及び電圧定在波比(VSWR)>
 IEC 62333-2 Transmission Attenuation Ratioの測定法において、同法に用いられるマイクロストリップ線路の代わりに、線路幅が0.6mmのコプレーナ線路に代えた以外は同法に準拠して、表4に記載する周波数帯におけるシート試料のRtp、及び電圧定在波比(VSWR)を測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3に示したように、実施例1~10の電磁干渉抑制材料は、電波吸収性能がよい。また、高い体積抵抗を有することから、近傍界での電磁干渉抑制性能がよいと言える。さらに、高い熱伝導率も兼ね備えている。
 表4で示したように、実施例11及び12のシート試料は、3GHzにおけるRtpは小さい一方、30GHz及び45GHzにおけるRtpは、それぞれ20dBを超える大きな値を示した。
 一方、比較例4のシート試料は、3GHzにおけるRtpが実施例11及び12のシート試料に比べて大きく、45GHzでは実施例11及び12のシート試料よりも小さい値を示した。
 電圧定在波比VSWRについては、いずれの試料も1.5以下であったが、実施例11及び12のシート試料の30GHz及び5GHzにおける値は、1.1と非常に小さな値を示した。
 以上の結果より、実施例11及び12のシート試料は、周波数選択性に優れ、30GHz以上の高周波領域では、VSWRの悪化を伴うことなく大きな電磁干渉抑制効果を示すものと言える。
 よって、本開示の構成は、マイクロ波帯(3GHz~30GHz)及び30GHzを超える高周波領域にて発生する電磁干渉の抑制に有効な手段であり、携帯電話機内部のような近傍界で用いる高周波ノイズ抑制シートとして有効であると言える。

Claims (10)

  1.  有機物及び無機物から選ばれる少なくとも1種を含む母材と、炭素複合材料とを含む電磁干渉抑制材料であって、
     前記炭素複合材料は、無機粒子の表面に平均層数が4以下のグラフェンからなる被覆層が被覆されたコアシェル粒子、及び無機粒子の連結体の表面に平均層数が4以下のグラフェンの被覆層が被覆されたコアシェル連結体から選ばれる少なくとも1種であり、
     体積抵抗が10Ω・cm以上である、電磁干渉抑制材料。
  2.  前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子の平均粒径が、100μm以下である、請求項1に記載の電磁干渉抑制材料。
  3.  前記電磁干渉抑制材料中のグラフェンの含有量が、前記電磁干渉抑制材料全体に対して0.001~30質量%である、請求項1又は2のいずれかに記載の電磁干渉抑制材料。
  4.  前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子が、アルミナ、シリカ、酸化マグネシウム、炭化タングステン、窒化アルミニウムから選ばれる少なくとも1種を含む、請求項1~3のいずれかに記載の電磁干渉抑制材料。
  5.  前記コアシェル粒子が有する前記無機粒子、及び前記コアシェル連結体が有する前記無機粒子が、磁性体である、請求項1~3のいずれかに記載の電磁干渉抑制材料。
  6.  前記磁性体が、磁性金属、磁性金属合金、及び磁性酸化物から選ばれる少なくとも1種を含み、前記磁性酸化物が、フェライト、及びマグネタイトから選ばれる少なくとも1種である、請求項5に記載の電磁干渉抑制材料。
  7.  前記磁性金属が扁平形状である、請求項6に記載の電磁干渉抑制材料。
  8.  前記有機物が熱硬化性樹脂である、請求項1~7のいずれかに記載の電磁干渉抑制材料。
  9.  前記有機物が熱可塑性樹脂である、請求項1~7のいずれかに記載の電磁干渉抑制材料。
  10.  前記無機物が、セラミックスである、請求項1~9に記載の電磁干渉抑制材料。
PCT/JP2022/048036 2021-12-28 2022-12-26 電磁干渉抑制材料 WO2023127834A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-215112 2021-12-28
JP2021215112 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127834A1 true WO2023127834A1 (ja) 2023-07-06

Family

ID=86998918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048036 WO2023127834A1 (ja) 2021-12-28 2022-12-26 電磁干渉抑制材料

Country Status (2)

Country Link
TW (1) TW202335000A (ja)
WO (1) WO2023127834A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195756A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 樹脂組成物およびその製造方法
JP2016108214A (ja) * 2014-11-28 2016-06-20 川研ファインケミカル株式会社 グラフェン被覆アルミナ、グラフェン被覆アルミナの集合物、グラフェン被覆アルミナ含有の電子材料、及び表面疎水化処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195756A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 樹脂組成物およびその製造方法
JP2016108214A (ja) * 2014-11-28 2016-06-20 川研ファインケミカル株式会社 グラフェン被覆アルミナ、グラフェン被覆アルミナの集合物、グラフェン被覆アルミナ含有の電子材料、及び表面疎水化処理方法

Also Published As

Publication number Publication date
TW202335000A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Wang et al. Interfacially engineered sandwich‐like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber
Kumar Ultrathin 2D nanomaterials for electromagnetic interference shielding
Bhattacharjee et al. Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives
Yang et al. Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity
Chen et al. γ-Fe 2 O 3–MWNT/poly (p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability
Gao et al. Significant promotion of porous architecture and magnetic Fe 3 O 4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption
Huang et al. A novel h-BN–RGO hybrids for epoxy resin composites achieving enhanced high thermal conductivity and energy density
Peng et al. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption
Fang et al. High-thermally conductive AlN-based microwave attenuating composite ceramics with spherical graphite as attenuating agent
Du et al. Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band
Zachariah et al. Hybrid materials for electromagnetic shielding: A review
Han et al. Efficient microwave absorption with Vn+ 1CnTx MXenes
WO2007046412A1 (ja) 電磁波吸収体
Mou et al. Optimizing impedance matching and interfacial characteristics of aromatic polyimide/graphene by molecular layer deposition for heat-conducting microwave absorption
Hou et al. Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe 3 Si nanoparticles in an amorphous SiCO ceramic matrix
Xue et al. Crystallization Mechanism of CVD Si3N4–Si CN Composite Ceramics Annealed in N2 Atmosphere and Their Excellent EMW Absorption Properties
Qian et al. Multifunctional epoxy‐based electronic packaging material MDCF@ LDH/EP for electromagnetic wave absorption, thermal management, and flame retardancy
Yu et al. A 3D α-Fe 2 O 3 nanoflake urchin-like structure for electromagnetic wave absorption
Belaabed et al. X-band microwave absorbing properties of epoxy resin composites containing magnetized PANI-coated magnetite
Heng et al. Fe/nanoporous carbon hybrid derived from metal–organic framework for highly effective microwave absorption
JP5567243B2 (ja) 多層プリント回路基板およびその製造方法
Su et al. Magnetic‐Dielectric Complementary Fe‐Co‐Ni Alloy/Carbon Composites for High‐Attenuation C‐Band Microwave Absorption via Carbothermal Reduction of Solid‐Solution Precursor
Jiang et al. Fabrication of very effective ferroferric oxide and multiwalled carbon nanotubes@ polyetherimide/poly (ether ether ketone) electromagnetic interference shielding composites
Du et al. FeCo/Graphene nanocomposites for applications as electromagnetic wave-absorbing materials
Gui et al. Microwave absorbing properties and magnetic properties of different carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916057

Country of ref document: EP

Kind code of ref document: A1