WO2023127775A1 - Composition, polishing agent and method for polishing base material - Google Patents

Composition, polishing agent and method for polishing base material Download PDF

Info

Publication number
WO2023127775A1
WO2023127775A1 PCT/JP2022/047825 JP2022047825W WO2023127775A1 WO 2023127775 A1 WO2023127775 A1 WO 2023127775A1 JP 2022047825 W JP2022047825 W JP 2022047825W WO 2023127775 A1 WO2023127775 A1 WO 2023127775A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
polishing
mass
poly
acid amide
Prior art date
Application number
PCT/JP2022/047825
Other languages
French (fr)
Japanese (ja)
Inventor
篤 菅原
淳 小西
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023127775A1 publication Critical patent/WO2023127775A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • composition containing abrasive grains and poly-N-vinylcarboxylic acid amide which is not easily denatured by heat.
  • CMP Chemical Mechanical Polishing
  • polishing liquids frequently used in CMP technology include silica-based polishing liquids containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • Silica-based polishing liquids are highly versatile, and can polish a wide variety of materials, including insulating materials and conductive materials, by appropriately selecting the content of abrasive grains, pH, additives, and the like.
  • the demand for a polishing liquid containing cerium compound particles as abrasive grains is increasing as a polishing liquid mainly intended for insulating materials such as silicon oxide.
  • a cerium oxide-based polishing liquid containing cerium oxide particles as abrasive grains can polish at a high speed even with a lower abrasive grain content than a silica-based polishing liquid.
  • Patent Documents 1 to 4 are examples of poly-N-vinylcarboxylic acid amides used for polishing liquids and cleaning agents.
  • Patent Document 1 describes a protective film agent for laser dicing using poly-N-vinylacetamide.
  • Patent Document 2 describes a method for reducing the CMP polishing rate by using a water-soluble polymer having a solubility parameter of 9.0 to 14.0 and containing a heteroatom together with an abrasive. and poly-N-vinylacetamide is also mentioned as a water-soluble polymer containing heteroatoms.
  • Patent Document 3 discloses a cleaning liquid used for cleaning the surface of a substrate that has been polished with a CMP polishing liquid containing cerium compound particles, in which poly-N-vinylacetamide is used as a nonionic water-soluble polymer. is stated.
  • Patent Document 4 discloses a polishing composition containing an oxidizing agent containing a halogen atom and an organic compound (poly-N-vinylacetamide) containing an amide bond having a heterocyclic structure, and a group IV material. Disclosed is a polishing composition suitable for polishing an object having a layer containing and capable of preventing dissolution of a group IV material.
  • polishing scratches that occur during polishing have become a problem. If many coarse particles are present during polishing, polishing scratches tend to increase during polishing.
  • a polishing liquid slurry
  • a film to be polished on a substrate attached to a spindle head is pressed against the polishing pad on the surface plate. , rotating the surface plate and the spindle head to polish the film to be polished on the substrate.
  • the polishing agent used in CMP is generally a polishing liquid containing water, abrasive grains, and, if necessary, dispersants and water-soluble polymers.
  • the polishing liquid is supplied to the polishing disk again and reused after removing the foreign matter. Since the polishing is carried out in a state where the polishing liquid is in a state where the polishing liquid is heated, heat is generated due to frictional heat, and repeated use tends to increase the heat history of the polishing liquid.
  • the dispersing power of abrasive grains and the film properties do not change.
  • the dispersant and water-soluble polymer contained in the polishing liquid are degraded due to the heat history during polishing, and the abrasive grains aggregate in the polishing liquid, resulting in an increase in particle size and contributing to polishing scratches.
  • Patent Documents 1 to 4 do not describe heat resistance in a liquid state such as an aqueous solution or slurry.
  • poly-N-vinylcarboxylic acid amide originally has dispersibility in low-molecular-weight products, and film-forming properties in high-molecular-weight products.
  • polishing can be performed even in the CMP field, which has a large thermal history.
  • the inventors have found that the dispersion state of the agent can be maintained and the coating properties on the non-polishing layer are not impaired, and polishing accuracy can be maintained, leading to the completion of the present invention.
  • the configuration of the present invention is as follows. [1] A composition containing water, abrasive grains and poly-N-vinylcarboxylic acid amide, The poly-N-vinylcarboxylic acid amide has a weight average molecular weight of 1,000 to 5,000,000, A composition wherein the pH of said composition is from 6.0 to 14.0. [2] The composition according to [1], wherein the poly-N-vinylcarboxylic acid amide is poly-N-vinylacetamide. [3] The composition according to [1] or [2], wherein the increase rate of the 10% diameter in the cumulative particle size distribution based on volume is 100% or less after heat history of the composition at 90° C. for 10 days. .
  • the composition according to . [5] The composition according to any one of [1] to [4], wherein the abrasive grains are cerium.
  • [6] The composition according to any one of [1] to [5], wherein the water content in the composition is 50 to 90% by mass.
  • a polishing agent comprising the composition according to any one of [1] to [6].
  • a method for polishing a substrate comprising the step of polishing the substrate using a polishing pad to which the composition according to any one of [1] to [6] is adhered.
  • Poly-N-vinylcarboxylic acid amide has high heat resistance in an aqueous solution state, and can maintain the dispersed state of abrasive grains even when used as a polishing liquid in the field of CMP, etc., which has a large thermal history in an aqueous solution.
  • FIG. 1 is a photograph showing the appearance of a composition after a heat dispersion retention test in Example 1.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Example 2.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Example 3.
  • FIG. 1 is a photograph showing the appearance of a composition after a heat dispersion retention test in Comparative Example 1.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 2.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 3.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 4.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 4.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 5.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 6.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 7.
  • FIG. 4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 8.
  • FIG. 1 is photographs showing changes in the appearance of compositions in Examples 4 and 5 and Comparative Examples 9 to 13 as a result of a heat re-dissolution test.
  • the composition of this embodiment contains water, abrasive grains and poly-N-vinylcarboxylic acid amide, and has a pH of 6.0 to 14.0.
  • abrasive grains used in the composition of the present invention are not particularly limited, oxides of at least one metal element selected from aluminum, silicon, titanium, cerium, zirconium and magnesium are preferred. These may be chemically modified.
  • the abrasive grains are preferably at least one selected from alumina, silica, titanium oxide, cerium, zirconia, and magnesium oxide, more preferably silica or cerium.
  • silica colloidal silica is preferably used, although dry powder can be used.
  • Cerium oxide is more preferable, and even with a low content, the substrate can be polished at high speed.
  • cerium is not particularly limited, cerium oxide is preferred.
  • the average particle size of the abrasive grains is preferably 10-1000 nm, more preferably 20-500 nm. If the average particle size of the abrasive grains is 10 nm or more, a good polishing rate tends to be obtained, and if it is 1000 nm or less, the object to be polished tends to be less likely to be scratched.
  • the average particle size of the abrasive grains is evaluated by d50 (median diameter of volume distribution, cumulative median value) measured by a laser diffraction particle size distribution meter.
  • the surface of the abrasive grains may be modified with a silane coupling agent or the like.
  • the content of abrasive grains is appropriately selected depending on the abrasive grains used.
  • silica silica solid content in the case of colloidal silica
  • it is preferably 25% by mass or less, more preferably 20% by mass or less, and 15% by mass or less, based on the total mass of the composition. is more preferred.
  • cerium it is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more, based on the total mass of the composition. In the case of cerium, it is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less, based on the total mass of the composition.
  • Water is preferably ion-exchanged water, and more preferably ultrapure water. Ultrapure water refers to water having an electrical conductivity of 0.1 mS/m or less at 25°C.
  • the content of water in the composition is 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more, based on the total mass of the composition.
  • the upper limit is 90% by mass or less, preferably 85% by mass or less, and more preferably 80% by mass or less.
  • the content of water includes the amount of dispersion medium for colloidal silica.
  • Water is used as a dispersion medium for the composition.
  • Water may also contain a small amount of an organic solvent for the purpose of improving the dispersing effect, and the organic solvent is not particularly limited as long as it is compatible with water, but alcohol is preferred, and isopropyl alcohol is more preferred.
  • a small amount is preferably 40% by mass or less, more preferably 10% by mass or less, and still more preferably 3% by mass or less based on the total amount of the dispersion medium. 0.1% by mass or more of the organic solvent is preferable.
  • poly-N-vinylcarboxylic acid amide a polymer of N-vinylcarboxylic acid amide (referred to as poly-N-vinylcarboxylic acid amide) is used as the water-soluble polymer.
  • Poly-N-vinylcarboxylic acid amide is obtained by polymerizing the N-vinylcarboxylic acid amide monomer represented by formula (1).
  • R 1 is any one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 6 carbon atoms;
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms; group.
  • R 1 may form a ring structure with NR 2.
  • N-vinylcarboxylic acid amide monomers include N-vinylformamide, N-vinylacetamide, N-vinylpropionamide, N-vinylbenzamide, N-vinyl-N-methylformamide, N-vinyl -N-ethylformamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide and the like.
  • N-vinylacetamide is particularly preferred from the viewpoint of the balance between hydrophilicity and hydrophobicity of the polymer.
  • N-vinylcarboxylic acid amides may be used alone or in combination.
  • the N-vinylcarboxylic acid amide of the present invention preferably does not have a ring structure.
  • the poly-N-vinylcarboxylic acid amide used in this embodiment is preferably a polymer of only N-vinylcarboxylic acid amide.
  • monomers copolymerizable with the N-vinylcarboxylic acid amide may also be included.
  • Other monomers are selected from the group consisting of unsaturated carboxylic acid monomers, salts of unsaturated carboxylic acid monomers, unsaturated carboxylic acid ester monomers, vinyl ester monomers, unsaturated nitrile monomers. At least one selected monomer. Of these, (meth)acrylic acid and salts thereof are more preferred, and sodium acrylate is even more preferred.
  • (meth)acrylic acid” means acrylic acid and methacrylic acid.
  • Poly-N-vinylcarboxylic acid amide is a structural unit derived from other monomers (hereinafter also referred to as "other structural units") when the structural unit derived from N-vinylcarboxylic acid amide is set to 1.00. is less than 0.250, the solubility in water is obtained, which is preferable.
  • the N-vinylcarboxylic acid amide polymer preferably has a molar ratio of other structural units of 0.150 or less, more preferably 0.
  • the weight average molecular weight of the poly-N-vinylcarboxylic acid amide used in the present embodiment is 1000 to 5000000, preferably 2000 to 3000000, more preferably 3000 to 1000000, still more preferably 5000 to 500000. is.
  • the weight-average molecular weight is within the above range, the dispersibility of the abrasive grains is high, and the heat resistance when made into an aqueous solution is high.
  • the viscosity of a 5% by mass aqueous solution of poly-N-vinylcarboxylic acid amide at 20° C. is preferably 10 mPa ⁇ s or more and 5000 mPa ⁇ s or less, more preferably 20 mPa ⁇ s or more and 2000 mPa ⁇ s or less, and still more preferably 30 mPa ⁇ s. s or more and 100 mPa ⁇ s or less.
  • Such a poly-N-vinylcarboxylic acid amide has extremely high heat resistance in an aqueous solution state, and can maintain the state of dispersion of polishing abrasive grains and high coating properties on abrasive grains.
  • the concentration of the poly-N-vinylcarboxylic acid amide in the composition is appropriately selected according to the application for which the composition is used, the coating method, the viscosity of the coating solution, and the like. , preferably 0.01 to 10.0% by mass, more preferably 0.05 to 5.0% by mass, and still more preferably 0.1 to 1.0% by mass. Within this range, it is possible to maintain a good dispersion state of the abrasive grains, and to obtain coating properties according to the molecular weight of the poly-N-vinylcarboxylic acid amide used.
  • Poly-N-vinylcarboxylic acid amides having different molecular weights can be used in combination depending on the purpose.
  • chelating agents, metal anticorrosive agents, metal oxidizing agents, viscosity modifiers, surfactants, and the like can optionally be added to the composition.
  • chelating agent for example, carbonyl compounds such as acetylacetonate are preferred.
  • Viscosity modifiers include, for example, urethane polymers and acrylates.
  • surfactants include cationic surfactants, anionic surfactants, anionic polyelectrolytes, nonionic surfactants, amphoteric surfactants, fluorinated surfactants, and mixtures thereof. be able to.
  • the metal anticorrosive is at least selected from the group consisting of triazole compounds, pyridine compounds, pyrazole compounds, pyrimidine compounds, imidazole compounds, guanidine compounds, thiazole compounds, tetrazole compounds, triazine compounds, and hexamethylenetetramine.
  • One type can be used.
  • the metal oxidizing agent is preferably an oxidizing agent containing no non-volatile components, such as hydrogen peroxide.
  • the pH of the composition according to this embodiment ranges from 6.0 to 14.0, preferably from 6.0 to 13.0, and more preferably from 8.0 to 10.0. Within this pH range, the heat resistance of the poly-N-vinylcarboxylic acid amide in the aqueous solution is high, and the dispersibility of the abrasive grains is improved, so that the polishing of silicon wafers and the like can be performed efficiently. can be done. In addition, it defines as pH in the liquid temperature of 25 degreeC. pH can be measured with a pH meter.
  • the pH of the composition according to the present embodiment is derived from poly-N-vinylcarboxylic acid amide, and can be adjusted to a desired pH by further adjusting the content of additives.
  • the pH of the composition according to this embodiment can also be adjusted by adding alkaline components such as amino acids, ammonia, amines, and tetramethylammonium hydroxide.
  • alkaline components such as amino acids, ammonia, amines, and tetramethylammonium hydroxide.
  • a component containing an alkali (earth) metal element it is preferable not to add.
  • the 10% diameter increase rate of the composition after heat history for 10 days at 90°C is preferably 100% or less, more preferably 70% or less, and still more preferably 50% or less.
  • the residual rate in a re-dissolution test by water immersion is preferably 10% by mass or less, more preferably 5% or less, and even more preferably 3% or less.
  • the composition of the present embodiment can be suitably used as a polishing liquid, and the composition of the present embodiment is used in a step of removing at least part of a substrate containing a material to be polished (e.g., insulating material) by CMP. be able to.
  • a method for polishing a substrate it can be used in a step of polishing a substrate having a material to be polished (insulating material) on its surface.
  • a polishing pad is brought into contact with the composition described above, and the polishing pad is moved relative to the substrate to abrade at least a portion of the substrate and polish the substrate.
  • a substrate is employed that can be planarized or polished with the composition with any suitable polishing pad.
  • the base material not only a silicon base material but also a base material to which polishing treatment can be applied, such as a silicon base material on which a polysilicon film, a SiO 2 film, or a metal wiring film is formed, can be applied.
  • polishing pad for example, a woven or non-woven polishing pad can be preferably used.
  • Suitable polishing pads specifically comprise polymers such as polyvinyl chloride, polyvinyl fluoride, nylon, fluorocarbons, polycarbonates, polyesters, polyacrylates, polyethers, Mention may be made of polyethylene, polyamide, polyurethane, polystyrene, polypropylene, co-formed products thereof, and mixtures thereof.
  • a polishing apparatus As a polishing apparatus, a general polishing apparatus having a holder for holding a substrate having a material to be polished, etc., and a polishing surface plate to which a motor or the like capable of changing the number of revolutions is attached and to which a polishing pad can be attached. Equipment is available. As the polishing apparatus, model numbers EPO-111 and F-REX300 manufactured by Ebara Corporation; product names Mirra and Reflexion manufactured by Applied Materials, etc. can be used.
  • Polishing conditions are not limited, but the rotational speed of the polishing surface plate is preferably a low rotation speed of 200 rpm or less so that the substrate does not pop out, and the pressure (processing load) applied to the substrate is such that scratches are not generated after polishing. 100 kPa or less is preferable from the viewpoint that it is difficult to generate.
  • the composition can be continuously supplied to the polishing pad, such as by a pump. The amount supplied is not limited, but it is preferred that the surface of the polishing pad is always covered with the composition.
  • the substrate after polishing is thoroughly washed in running water, and then dried by using a spin dryer or the like to shake off water droplets adhering to the substrate.
  • Water-soluble polymer (1) Poly-N-vinylacetamide (PNVA (registered trademark)) GE-191-103 manufactured by Showa Denko Co., Ltd., solid content 10% by mass, viscosity 14000 to 20000 mPa s GE-191-104 manufactured by Showa Denko Co., Ltd., solid content 10% by mass, viscosity 1500 to 3000 mPa s GE-191-107 manufactured by Showa Denko Co., Ltd., solid content 10% by mass, viscosity 50 mPa s GE-191-053 manufactured by Showa Denko Co., Ltd., solid content 5% by mass, viscosity 8000 to 15000 mPa s (2) DMAA Polymerization was performed using N,N-dimethylacrylamide (Fuji Film Wako Pure Chemical Industries, Ltd.) as a raw material.
  • PNVA registered trademark
  • Solid content concentration 10% aqueous solution polymer (3) ACMO Polymerization was carried out using 4-acryloylmorpholine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a raw material. Solid content concentration 10% aqueous solution polymer (4) Polyvinylpyrrolidone PVP K-90 Nippon Shokubai Co., Ltd. (5) Polyethylene glycol PEG20000 FUJIFILM Wako Pure Chemical Industries, Ltd. (6) Polyvinyl alcohol PVA, average degree of polymerization n 1500 to 1800 Fuji Film Wako Pure Chemical Co., Ltd.
  • cerium slurry an aqueous solution of cerium (hereinafter referred to as cerium slurry) was placed in a glass bottle having a capacity of 50 ml for preparation of the composition.
  • a glass bottle containing the polymer-added cerium slurry was sealed, mixed, and then allowed to stand in a constant temperature bath at 20°C for 20 hours to prepare a composition.
  • SUS vat stainless steel vat (hereinafter also referred to as "SUS vat") (length 30 cm, width 20 cm, height 10 cm) and put it in an air oven (DN-41 manufactured by Yamato Scientific Co., Ltd.) at 90 ° C. under air. , to stand for a period of 10 days.
  • SUS vat stainless steel vat
  • the pH of the composition was measured at a temperature of 25° C. using a pH meter (F-70 manufactured by Horiba, Ltd.).
  • ⁇ Weight average molecular weight The weight average molecular weight of the water-soluble polymer is poly-N-vinyl
  • the acetamide concentration was adjusted to 0.05% by mass and allowed to stand for 20 hours. This was filtered through a membrane filter with a pore size of 0.45 ⁇ m, and the weight-average molecular weight of the filtrate was measured by GPC-MALS. Analyzer and measurement conditions GPC: SHODEX (registered trademark), SYSTEM-21 manufactured by Showa Denko K.K.
  • Measurement conditions Silicon photodetector ⁇ Batch cell unit ⁇ Liquid temperature: 25°C ⁇ Amount of sample 0.5ml dispersed in 5ml of dispersion medium (ion-exchanged water) The 10% diameter (hereinafter “d10 ”).
  • Table 1 and Figure 1 show the properties of the composition and the results of the heat dispersion retention test.
  • compositions The composition is applied on a remelting test glass plate with a spatula or dropper.
  • the coated material is placed on a SUS vat and heated at 200°C for 2 hours in an air oven (DN-41 manufactured by Yamato Scientific Co., Ltd.).
  • Residual rate (%) (mass before drying - mass after drying) / (mass before drying) x 100
  • ⁇ : Severely colored Table 2 shows the results of the re-dissolution test.
  • the residual rate of each example was 3% by mass or less, which was lower than that of the comparative example. This indicates that it was almost dissolved by immersion after heating.
  • the comparative example had a residual rate of over 90% and was hardly dissolved. This indicates that the polymer had lost its water solubility.
  • the change in appearance was large in the comparative example (for example, change in shape such as yellowing and cracking), and it was presumed to be deteriorated by heating.

Abstract

[Problem] To provide a composition which maintains the hydrophilicity and does not lose dispersibility or film properties even in an environment having a thermal history, while being adaptable to the heat generation during polishing. [Solution] A composition which contains water, abrasive grains and a poly-N-vinyl carboxylic acid amide, wherein: the poly-N-vinyl carboxylic acid amide has a weight average molecular weight of 1,000 to 5,000,000; and the composition has a pH of 6.0 to 14.0.

Description

組成物、研磨剤および基材の研磨方法Composition, abrasive and method for polishing substrate
 熱により変性しにくい、研磨砥粒およびポリ-N-ビニルカルボン酸アミドを含有する組成物を提供する。 To provide a composition containing abrasive grains and poly-N-vinylcarboxylic acid amide, which is not easily denatured by heat.
 半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、基板上に形成された段差(表面凹凸)を平坦化する技術として重要性が増している。 In the manufacturing process of semiconductor devices, the importance of processing technology for high density and miniaturization is increasing. CMP (Chemical Mechanical Polishing) technology, which is one of the processing technologies, is gaining importance as a technology for flattening the steps (surface unevenness) formed on the substrate in the manufacturing process of semiconductor devices. ing.
 CMP技術に多用されている研磨液としては、例えば、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨液が挙げられる。シリカ系研磨液は、汎用性が高く、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。一方で、主に酸化珪素等の絶縁材料を対象とした研磨液として、セリウム化合物粒子を砥粒として含む研磨液の需要も拡大している。例えば、セリウム酸化物粒子を砥粒として含むセリウム酸化物系研磨液は、シリカ系研磨液よりも低い砥粒含有量でも高速に研磨できる。 Examples of polishing liquids frequently used in CMP technology include silica-based polishing liquids containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains. Silica-based polishing liquids are highly versatile, and can polish a wide variety of materials, including insulating materials and conductive materials, by appropriately selecting the content of abrasive grains, pH, additives, and the like. On the other hand, the demand for a polishing liquid containing cerium compound particles as abrasive grains is increasing as a polishing liquid mainly intended for insulating materials such as silicon oxide. For example, a cerium oxide-based polishing liquid containing cerium oxide particles as abrasive grains can polish at a high speed even with a lower abrasive grain content than a silica-based polishing liquid.
 このような研磨液や研磨後の洗浄剤には、砥粒と密着性が高く、それ自体の耐熱性も高いポリ-N-ビニルカルボン酸アミドなどの水溶性高分子を含有させることが着目されている。 Attention has been paid to the inclusion of water-soluble polymers such as poly-N-vinylcarboxylic acid amides, which have high adhesion to abrasive grains and high heat resistance themselves, in such polishing liquids and post-polishing cleaning agents. ing.
 研磨液・洗浄剤などの用途にポリ-N-ビニルカルボン酸アミドを用いたものとして、たとえば特許文献1~4などが挙げられる。 Patent Documents 1 to 4, for example, are examples of poly-N-vinylcarboxylic acid amides used for polishing liquids and cleaning agents.
 特許文献1にはポリ-N-ビニルアセトアミドを使用したレーザーダイシング用保護膜剤が記載されている。特許文献2には、研磨剤とともに、溶解度パラメータが9.0~14.0であって、ヘテロ原子を含有する水溶性高分子を、使用することでCMP研磨レートを低下させる方法について述べられており、そのヘテロ原子を含有する水溶性高分子としてポリ-N-ビニルアセトアミドも挙げられている。特許文献3には、セリウム化合物粒子を含むCMP研磨液により研磨された基体の被研磨面の洗浄に用いられる洗浄液であり、非イオン性の水溶性ポリマーとして、ポリ-N-ビニルアセトアミドを使用することが記載されている。特許文献4には、ハロゲン原子を含有する酸化剤と、ヘテロ環構造を有するアミド結合を含有する有機化合物(ポリ-N-ビニルアセトアミド)とを含む、研磨用組成物が開示され、IV族材料を含む層を有する研磨対象物の研磨に好適であり、かつIV族材料の溶解を防止することができる研磨用組成物が開示されている。 Patent Document 1 describes a protective film agent for laser dicing using poly-N-vinylacetamide. Patent Document 2 describes a method for reducing the CMP polishing rate by using a water-soluble polymer having a solubility parameter of 9.0 to 14.0 and containing a heteroatom together with an abrasive. and poly-N-vinylacetamide is also mentioned as a water-soluble polymer containing heteroatoms. Patent Document 3 discloses a cleaning liquid used for cleaning the surface of a substrate that has been polished with a CMP polishing liquid containing cerium compound particles, in which poly-N-vinylacetamide is used as a nonionic water-soluble polymer. is stated. Patent Document 4 discloses a polishing composition containing an oxidizing agent containing a halogen atom and an organic compound (poly-N-vinylacetamide) containing an amide bond having a heterocyclic structure, and a group IV material. Disclosed is a polishing composition suitable for polishing an object having a layer containing and capable of preventing dissolution of a group IV material.
特開2015-134373号公報JP 2015-134373 A 特開2014-216464号公報JP 2014-216464 A 特許第6641951号公報Japanese Patent No. 6641951 特開2015-193714号公報JP 2015-193714 A
 近年、半導体素子の製造工程では、更なる配線の微細化が求められており、研磨時に発生する研磨傷が問題となっている。研磨時に多くの粗大粒子が存在すると、研磨時に発生する研磨傷が増加する傾向がある。 In recent years, there has been a demand for further miniaturization of wiring in the manufacturing process of semiconductor devices, and polishing scratches that occur during polishing have become a problem. If many coarse particles are present during polishing, polishing scratches tend to increase during polishing.
 通常、CMPでは、定盤に貼り付けられた研磨パッドに研磨液(スラリー)を供給しつつ、スピンドルヘッドに取り付けられた基材の被研磨膜を定盤上の研磨パッドに押し当て、この状態で定盤及びスピンドルヘッドを回転し、基材上の被研磨膜を研磨することにより行われる。 Normally, in CMP, a polishing liquid (slurry) is supplied to a polishing pad attached to a surface plate, and a film to be polished on a substrate attached to a spindle head is pressed against the polishing pad on the surface plate. , rotating the surface plate and the spindle head to polish the film to be polished on the substrate.
 CMPに用いられる研磨剤は、一般には水、砥粒、および必要に応じて分散剤や水溶性高分子を含む研磨液である。 The polishing agent used in CMP is generally a polishing liquid containing water, abrasive grains, and, if necessary, dispersants and water-soluble polymers.
 このようなCMP技術においては、研磨液は、異物を除いたのち、再度研磨盤に供給され再使用されるが、研磨は、基材及び被研磨膜と研磨布とが機械的物理的に接触した状態で行われるため、摩擦熱による発熱を生じ、繰り返し使用することにより研磨液の熱履歴が増大する傾向がある。 In such a CMP technique, the polishing liquid is supplied to the polishing disk again and reused after removing the foreign matter. Since the polishing is carried out in a state where the polishing liquid is in a state where the polishing liquid is heated, heat is generated due to frictional heat, and repeated use tends to increase the heat history of the polishing liquid.
 研磨液には、繰り返し利用に際して効果を持続させるために、砥粒などの分散力や皮膜性が変化しないことが望まれる。しかしながら、研磨時の熱履歴により研磨液中に含まれる分散剤や水溶性高分子が変質し、研磨液中で砥粒が凝集することによって粒子径が大きくなり、研磨傷の一因となって、対象部材へ悪影響を与えるだけではなく、研磨液の劣化の要因ともなり、製品の歩留まりへ影響することなども危惧されている。  In order to maintain the effect of the polishing liquid during repeated use, it is desirable that the dispersing power of abrasive grains and the film properties do not change. However, the dispersant and water-soluble polymer contained in the polishing liquid are degraded due to the heat history during polishing, and the abrasive grains aggregate in the polishing liquid, resulting in an increase in particle size and contributing to polishing scratches. In addition to adversely affecting the target member, it is also a cause of deterioration of the polishing liquid, and there is a concern that it will affect the yield of the product.
 なお、特許文献1~4には、水溶液やスラリーなどの液状態での耐熱性について全く記載されていない。 Patent Documents 1 to 4 do not describe heat resistance in a liquid state such as an aqueous solution or slurry.
 このため、熱履歴のある環境下においても、その親水性を保持し、分散力や皮膜性を失うことが無く、研磨時の発熱でも変性しにくい組成物を提供する。 For this reason, it provides a composition that maintains its hydrophilicity even in an environment with a heat history, does not lose its dispersing power and film properties, and is resistant to denaturation even with heat generated during polishing.
 熱分解温度が高い水溶性高分子であっても、水に溶解している状態、即ち、水溶液状態下では耐熱性が著しく落ちる材料が多い。これは水溶液状態では分子鎖が水中で広がっている状態となることから、凝集状態である乾燥品とは受ける熱自体が異なると考えている。 Even with water-soluble polymers that have a high thermal decomposition temperature, there are many materials whose heat resistance drops significantly when dissolved in water, that is, in an aqueous solution state. This is because the molecular chains in the aqueous solution are spread out in the water, so it is considered that the heat itself received is different from that of the dry product, which is in the aggregated state.
 このような水溶液状態での熱履歴による劣化は、水溶性高分子が親水性を失うことにつながり、分子内の親水と疎水のバランスが崩れることにより砥粒など研磨剤の分散不良や皮膜性の低下などを生じることになる。 Such deterioration due to heat history in an aqueous solution leads to the loss of hydrophilicity of the water-soluble polymer, and the balance between hydrophilicity and hydrophobicity in the molecule is disturbed. This will result in a decline, etc.
 このような従来の水溶性高分子に対して、ポリ-N-ビニルカルボン酸アミドは元来、低分子量品は分散性を有しており、高分子量品では皮膜性を有している。 In contrast to such conventional water-soluble polymers, poly-N-vinylcarboxylic acid amide originally has dispersibility in low-molecular-weight products, and film-forming properties in high-molecular-weight products.
 そして、水溶液状態での耐熱性が非常に高いポリ-N-ビニルカルボン酸アミドを組成物に適用し、組成物のpHを所定の範囲に調整することで、熱履歴の大きなCMP分野においても研磨剤の分散状態を保持、かつ研磨非対象層への皮膜性も損なわれず、研磨精度を維持することが可能となることを見出し、本発明を完成するに至った。 Then, by applying poly-N-vinylcarboxylic acid amide, which has extremely high heat resistance in an aqueous solution state, to the composition and adjusting the pH of the composition to a predetermined range, polishing can be performed even in the CMP field, which has a large thermal history. The inventors have found that the dispersion state of the agent can be maintained and the coating properties on the non-polishing layer are not impaired, and polishing accuracy can be maintained, leading to the completion of the present invention.
 本発明の構成は以下の通りである。
[1]水、研磨砥粒およびポリ-N-ビニルカルボン酸アミドを含有する組成物であり、
 前記ポリ-N-ビニルカルボン酸アミドの重量平均分子量が1000から5000000であり、
 前記組成物のpHが6.0~14.0である組成物。
[2]前記ポリ-N-ビニルカルボン酸アミドが、ポリ-N-ビニルアセトアミドである、[1]に記載の組成物。
[3]前記組成物の90℃、10日間の熱履歴後の、体積基準による累積粒度分布における10%径の増加率が100%以下である、[1]または[2]に記載の組成物。
[4]前記組成物を200℃、2時間で乾燥した後、さらに水に浸漬させたのち乾燥した際の残存率が10質量%以下である、[1]~[3]のいずれか1項に記載の組成物。
[5]前記研磨砥粒がセリウムである、[1]~[4]のいずれか1項に記載の組成物。
[6]前記組成物中の水の含有量が50~90質量%である、[1]~[5]のいずれか1項に記載の組成物。
[7][1]~[6]のいずれか1項に記載の組成物からなる研磨剤。
[8][1]~[6]のいずれか1項に記載の組成物を付着させた研磨パッドを用いて基材を研磨する工程を含む基材の研磨方法。
The configuration of the present invention is as follows.
[1] A composition containing water, abrasive grains and poly-N-vinylcarboxylic acid amide,
The poly-N-vinylcarboxylic acid amide has a weight average molecular weight of 1,000 to 5,000,000,
A composition wherein the pH of said composition is from 6.0 to 14.0.
[2] The composition according to [1], wherein the poly-N-vinylcarboxylic acid amide is poly-N-vinylacetamide.
[3] The composition according to [1] or [2], wherein the increase rate of the 10% diameter in the cumulative particle size distribution based on volume is 100% or less after heat history of the composition at 90° C. for 10 days. .
[4] Any one of [1] to [3], wherein the composition is dried at 200° C. for 2 hours, then immersed in water and then dried, and the residual rate is 10% by mass or less. The composition according to .
[5] The composition according to any one of [1] to [4], wherein the abrasive grains are cerium.
[6] The composition according to any one of [1] to [5], wherein the water content in the composition is 50 to 90% by mass.
[7] A polishing agent comprising the composition according to any one of [1] to [6].
[8] A method for polishing a substrate, comprising the step of polishing the substrate using a polishing pad to which the composition according to any one of [1] to [6] is adhered.
 ポリ-N-ビニルカルボン酸アミドは水溶液状態での耐熱性が高く、水溶液で熱履歴の大きなCMP分野などの研磨液として使用しても、砥粒の分散状態を保持できる。かつ研磨非対象層への皮膜性も損なわれず、研磨精度を維持することが可能であるとともに、製品の歩留まりも高くできる。このため、特に半導体分野で、生産効率を大きく向上させることが可能となる。 Poly-N-vinylcarboxylic acid amide has high heat resistance in an aqueous solution state, and can maintain the dispersed state of abrasive grains even when used as a polishing liquid in the field of CMP, etc., which has a large thermal history in an aqueous solution. In addition, it is possible to maintain the polishing accuracy without impairing the coating properties on the non-polishing layer, and to increase the yield of the product. Therefore, particularly in the field of semiconductors, it is possible to greatly improve production efficiency.
実施例1における耐熱分散保持試験後の組成物の外観を示す写真である。1 is a photograph showing the appearance of a composition after a heat dispersion retention test in Example 1. FIG. 実施例2における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Example 2. FIG. 実施例3における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Example 3. FIG. 比較例1における耐熱分散保持試験後の組成物の外観を示す写真である。1 is a photograph showing the appearance of a composition after a heat dispersion retention test in Comparative Example 1. FIG. 比較例2における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 2. FIG. 比較例3における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 3. FIG. 比較例4における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 4. FIG. 比較例5における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 5. FIG. 比較例6における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 6. FIG. 比較例7における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 7. FIG. 比較例8における耐熱分散保持試験後の組成物の外観を示す写真である。4 is a photograph showing the appearance of the composition after the heat dispersion retention test in Comparative Example 8. FIG. 実施例4および5、比較例9~13における加熱再溶解性試験による組成物の外観の変化を示す写真である。1 is photographs showing changes in the appearance of compositions in Examples 4 and 5 and Comparative Examples 9 to 13 as a result of a heat re-dissolution test.
 以下、本実施形態について具体的に説明する。 The present embodiment will be specifically described below.
 本実施形態の組成物は、水、研磨砥粒およびポリ-N-ビニルカルボン酸アミドを含み、かつ、組成物のpHが6.0~14.0である。
(研磨砥粒)
 本発明の組成物に使用する研磨砥粒としては特に限定されないが、アルミニウム、ケイ素、チタン、セリウム、ジルコニウム、マグネシウムから選ばれる少なくとも1つの金属元素の酸化物が好ましい。これらは化学修飾されていてもよい。
The composition of this embodiment contains water, abrasive grains and poly-N-vinylcarboxylic acid amide, and has a pH of 6.0 to 14.0.
(polishing grain)
Although the abrasive grains used in the composition of the present invention are not particularly limited, oxides of at least one metal element selected from aluminum, silicon, titanium, cerium, zirconium and magnesium are preferred. These may be chemically modified.
 研磨砥粒は具体的には、アルミナ、シリカ、酸化チタン、セリウム、ジルコニア、酸化マグネシウムより選ばれた少なくとも1種であることが好ましく、シリカまたはセリウムがより好ましい。シリカを使用する場合、乾粉でも使用可能であるが、コロイダルシリカを使用することが好ましい。さらに好ましいのは酸化セリウムであり、低含有量でも高速に基材を研磨できる。セリウムとしては特に限定されないが、酸化セリウムが好ましい。 Specifically, the abrasive grains are preferably at least one selected from alumina, silica, titanium oxide, cerium, zirconia, and magnesium oxide, more preferably silica or cerium. When silica is used, colloidal silica is preferably used, although dry powder can be used. Cerium oxide is more preferable, and even with a low content, the substrate can be polished at high speed. Although cerium is not particularly limited, cerium oxide is preferred.
 研磨砥粒の平均粒径は、10~1000nmが好ましく、20~500nmがより好ましい。砥粒の平均粒径が10nm以上であれば、良好な研磨速度が得られやすい傾向があり、1000nm以下であれば、被研磨物に傷がつきにくくなる傾向がある。ここで、研磨砥粒の平均粒径は、レーザー回折式粒度分布計によるd50(体積分布のメジアン径、累積中央値)で評価される。 The average particle size of the abrasive grains is preferably 10-1000 nm, more preferably 20-500 nm. If the average particle size of the abrasive grains is 10 nm or more, a good polishing rate tends to be obtained, and if it is 1000 nm or less, the object to be polished tends to be less likely to be scratched. Here, the average particle size of the abrasive grains is evaluated by d50 (median diameter of volume distribution, cumulative median value) measured by a laser diffraction particle size distribution meter.
 研磨砥粒の表面は、シランカップリング剤などで変性されていてもよい。 The surface of the abrasive grains may be modified with a silane coupling agent or the like.
 研磨砥粒の含有量は、用いる砥粒によって適宜選択される。たとえばシリカ(コロダイルシリカの場合はシリカ固形分)は、良好な研磨速度が得られやすいなどの観点から、組成物の全質量基準で、2.5質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましい。また、粒子の凝集が抑制されて被研磨膜に傷がつきにくくなるなどの観点から、組成物の全質量基準で、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下が更に好ましい。 The content of abrasive grains is appropriately selected depending on the abrasive grains used. For example, silica (silica solid content in the case of colloidal silica) is preferably 2.5% by mass or more, and 5% by mass or more, based on the total mass of the composition, from the viewpoint of easily obtaining a good polishing rate. More preferably, 10% by mass or more is even more preferable. In addition, from the viewpoint of suppressing particle agglomeration and making the film to be polished less likely to be scratched, it is preferably 25% by mass or less, more preferably 20% by mass or less, and 15% by mass or less, based on the total mass of the composition. is more preferred.
 セリウムの場合は、組成物の全質量基準で、5質量%以上が好ましく、より好ましくは10質量%以上であり、更に好ましくは15質量%以上である。セリウムの場合は、組成物の全質量基準で、30質量%以下が好ましく、より好ましくは25質量%以下であり、更に好ましくは20質量%以下である。
(水)
 水は、イオン交換水が好ましく、中でも超純水が好ましい。超純水は、25℃における電気伝導率が0.1mS/m以下のものを言う。
In the case of cerium, it is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more, based on the total mass of the composition. In the case of cerium, it is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less, based on the total mass of the composition.
(water)
Water is preferably ion-exchanged water, and more preferably ultrapure water. Ultrapure water refers to water having an electrical conductivity of 0.1 mS/m or less at 25°C.
 組成物中の水の含有量は、組成物の全質量基準で50質量%以上であり、好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。上限は、90質量%以下であり、好ましくは85質量%以下であり、さらに好ましくは80質量%以下である。なお、コロイダルシリカの場合、水の含有量にコロイダルシリカの分散媒の量も含まれる。 The content of water in the composition is 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more, based on the total mass of the composition. The upper limit is 90% by mass or less, preferably 85% by mass or less, and more preferably 80% by mass or less. In the case of colloidal silica, the content of water includes the amount of dispersion medium for colloidal silica.
 水は組成物の分散媒として用いる。また水には分散効果の改善を目的に少量の有機溶媒が含まれる場合もあり、有機溶媒としては水と相溶すれば特に限定されないが、アルコールが好ましく、イソプロピルアルコールがより好ましい。ここで少量とは、分散媒の全量を基準として40質量%以下が好ましく、より好ましくは10質量%以下であり、更に好ましくは3質量%以下である。有機溶媒は、0.1質量%以上が好ましい。
(ポリ-N-ビニルカルボン酸アミド)
 本発明では、水溶性高分子としてN-ビニルカルボン酸アミドの重合体(ポリ-N-ビニルカルボン酸アミドという)が使用される。
Water is used as a dispersion medium for the composition. Water may also contain a small amount of an organic solvent for the purpose of improving the dispersing effect, and the organic solvent is not particularly limited as long as it is compatible with water, but alcohol is preferred, and isopropyl alcohol is more preferred. Here, a small amount is preferably 40% by mass or less, more preferably 10% by mass or less, and still more preferably 3% by mass or less based on the total amount of the dispersion medium. 0.1% by mass or more of the organic solvent is preferable.
(poly-N-vinylcarboxylic acid amide)
In the present invention, a polymer of N-vinylcarboxylic acid amide (referred to as poly-N-vinylcarboxylic acid amide) is used as the water-soluble polymer.
 ポリ-N-ビニルカルボン酸アミドは、式(1)に示されるN-ビニルカルボン酸アミド単量体を重合したものである。 Poly-N-vinylcarboxylic acid amide is obtained by polymerizing the N-vinylcarboxylic acid amide monomer represented by formula (1).
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、R1は水素原子および炭素数1~6の炭化水素基からなる群より選ばれるいずれか1種である。R2は水素原子または炭素数1~6の炭化水素基を示す。R1は、NR2と環構造を形成してもよい。)
 N-ビニルカルボン酸アミド単量体としては、具体例には、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルプロピオンアミド、N-ビニルベンズアミド、N-ビニル-N-メチルホルムアミド、N-ビニル-N-エチルホルムアミド、N-ビニル-N-メチルアセトアミド、N-ビニル-N-エチルアセトアミドなどが挙げられる。このうち、重合体の親水性と疎水性とのバランスから、N-ビニルアセトアミドが特に好ましい。N-ビニルカルボン酸アミドは、単独で或いは複数を組み合わせて用いて構わない。本発明のN-ビニルカルボン酸アミドには、環構造を持たないものが好ましい。
Figure JPOXMLDOC01-appb-C000001
(In general formula (1), R 1 is any one selected from the group consisting of a hydrogen atom and a hydrocarbon group having 1 to 6 carbon atoms; R 2 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms; group. R 1 may form a ring structure with NR 2. )
Specific examples of N-vinylcarboxylic acid amide monomers include N-vinylformamide, N-vinylacetamide, N-vinylpropionamide, N-vinylbenzamide, N-vinyl-N-methylformamide, N-vinyl -N-ethylformamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide and the like. Among these, N-vinylacetamide is particularly preferred from the viewpoint of the balance between hydrophilicity and hydrophobicity of the polymer. N-vinylcarboxylic acid amides may be used alone or in combination. The N-vinylcarboxylic acid amide of the present invention preferably does not have a ring structure.
 本実施形態で使用されるポリ-N-ビニルカルボン酸アミドは、N-ビニルカルボン酸アミドのみの重合体が好ましい。一方でN-ビニルカルボン酸アミド以外に、N-ビニルカルボン酸アミドと共重合可能な単量体(以下、「他の単量体」という場合がある。)を含んでいてもよい。他の単量体は、不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体である。このうち更に好ましくは、(メタ)アクリル酸およびその塩であり、より更に好ましくは、アクリル酸ナトリウムである。なお本明細書にいて、「(メタ)アクリル酸」とは、アクリル酸およびメタクリル酸を意味する。 The poly-N-vinylcarboxylic acid amide used in this embodiment is preferably a polymer of only N-vinylcarboxylic acid amide. On the other hand, in addition to the N-vinylcarboxylic acid amide, monomers copolymerizable with the N-vinylcarboxylic acid amide (hereinafter sometimes referred to as "other monomers") may also be included. Other monomers are selected from the group consisting of unsaturated carboxylic acid monomers, salts of unsaturated carboxylic acid monomers, unsaturated carboxylic acid ester monomers, vinyl ester monomers, unsaturated nitrile monomers. At least one selected monomer. Of these, (meth)acrylic acid and salts thereof are more preferred, and sodium acrylate is even more preferred. In addition, in this specification, "(meth)acrylic acid" means acrylic acid and methacrylic acid.
 ポリ-N-ビニルカルボン酸アミドは、N-ビニルカルボン酸アミド由来の構成単位を1.00とした場合の、他の単量体由来の構成単位(「以下、他の構成単位」ともいう)のモル数の比が0.250未満であれば、水に対する溶解性が得られ好ましい。N-ビニルカルボン酸アミド重合体は、他の構成単位のモル数の比が0.150以下のものであることがより好ましく、0であることが更に好ましい。 Poly-N-vinylcarboxylic acid amide is a structural unit derived from other monomers (hereinafter also referred to as "other structural units") when the structural unit derived from N-vinylcarboxylic acid amide is set to 1.00. is less than 0.250, the solubility in water is obtained, which is preferable. The N-vinylcarboxylic acid amide polymer preferably has a molar ratio of other structural units of 0.150 or less, more preferably 0.
 本実施形態で使用されるポリ-N-ビニルカルボン酸アミドの重量平均分子量は、1000~5000000であり、好ましくは2000~3000000であり、より好ましくは3000~1000000であり、さらに好ましくは5000~500000である。重量平均分子量が前記範囲にあるものは、砥粒の分散性が高く、水溶液にした時の耐熱性が高い。 The weight average molecular weight of the poly-N-vinylcarboxylic acid amide used in the present embodiment is 1000 to 5000000, preferably 2000 to 3000000, more preferably 3000 to 1000000, still more preferably 5000 to 500000. is. When the weight-average molecular weight is within the above range, the dispersibility of the abrasive grains is high, and the heat resistance when made into an aqueous solution is high.
 ポリ-N-ビニルカルボン酸アミドの5質量%水溶液の20℃における粘度が、10mPa・s以上5000mPa・s以下が好ましく、より好ましくは20mPa・s以上2000mPa・s以下であり、更に好ましくは30mPa・s以上100mPa・s以下である。 The viscosity of a 5% by mass aqueous solution of poly-N-vinylcarboxylic acid amide at 20° C. is preferably 10 mPa·s or more and 5000 mPa·s or less, more preferably 20 mPa·s or more and 2000 mPa·s or less, and still more preferably 30 mPa·s. s or more and 100 mPa·s or less.
 このようなポリ-N-ビニルカルボン酸アミドは、水溶液状態での耐熱性が非常に高く、研磨砥粒の分散状態や砥粒への被膜性を高く保持できる。 Such a poly-N-vinylcarboxylic acid amide has extremely high heat resistance in an aqueous solution state, and can maintain the state of dispersion of polishing abrasive grains and high coating properties on abrasive grains.
 組成物中のポリ-N-ビニルカルボン酸アミドの濃度は、組成物が使用される用途や塗工方法、塗工液の粘度などに応じて適宜選択されるが、組成物の総重量に対し、好ましくは0.01~10.0質量%、より好ましくは0.05~5.0質量%、さらに好ましくは0.1~1.0質量%の範囲にあることが望ましい。この範囲にあると、砥粒の分散状態を良好に保つことが可能であり、かつ使用するポリ-N-ビニルカルボン酸アミドの分子量に応じた被覆性を得ることが可能となる。 The concentration of the poly-N-vinylcarboxylic acid amide in the composition is appropriately selected according to the application for which the composition is used, the coating method, the viscosity of the coating solution, and the like. , preferably 0.01 to 10.0% by mass, more preferably 0.05 to 5.0% by mass, and still more preferably 0.1 to 1.0% by mass. Within this range, it is possible to maintain a good dispersion state of the abrasive grains, and to obtain coating properties according to the molecular weight of the poly-N-vinylcarboxylic acid amide used.
 また、ポリ―N-ビニルカルボン酸アミドは異なる分子量のものを目的に応じて数種類組み合わせて使用する事も可能である。
(その他成分)
 さらに本実施形態においては任意的にキレート化剤、金属防食剤、金属酸化剤、粘度調整剤、界面活性剤などを組成物に添加することができる。
Poly-N-vinylcarboxylic acid amides having different molecular weights can be used in combination depending on the purpose.
(Other ingredients)
Further, in this embodiment, chelating agents, metal anticorrosive agents, metal oxidizing agents, viscosity modifiers, surfactants, and the like can optionally be added to the composition.
 キレート化剤としては、例えば、アセチルアセトナートなどのカルボニル化合物が好ましい。粘度調整剤としては、例えば、ウレタンポリマー、アクリル酸塩を挙げることができる。界面活性剤としては、例えば、カチオン性界面活性剤、アニオン性界面活性剤、アニオン性高分子電解質、非イオン性界面活性剤、両性界面活性剤、フッ素化界面活性剤、それらの混合物などを挙げることができる。 As the chelating agent, for example, carbonyl compounds such as acetylacetonate are preferred. Viscosity modifiers include, for example, urethane polymers and acrylates. Examples of surfactants include cationic surfactants, anionic surfactants, anionic polyelectrolytes, nonionic surfactants, amphoteric surfactants, fluorinated surfactants, and mixtures thereof. be able to.
 金属防食剤としては、具体的には、トリアゾール化合物、ピリジン化合物、ピラゾール化合物、ピリミジン化合物、イミダゾール化合物、グアニジン化合物、チアゾール化合物、テトラゾール化合物、トリアジン化合物、及び、ヘキサメチレンテトラミンからなる群より選ばれる少なくとも1種を用いることができる。 Specifically, the metal anticorrosive is at least selected from the group consisting of triazole compounds, pyridine compounds, pyrazole compounds, pyrimidine compounds, imidazole compounds, guanidine compounds, thiazole compounds, tetrazole compounds, triazine compounds, and hexamethylenetetramine. One type can be used.
 金属酸化剤は、不揮発成分を含まない酸化剤が好ましく、たとえば過酸化水素である。
(組成物の特性)
 本実施形態に係る組成物のpHは、6.0~14.0であり、好ましくは6.0~13.0の範囲であり、より好ましくは8.0~10.0である。このpHの範囲にあると、ポリ―N-ビニルカルボン酸アミドの水溶液中での耐熱性が高くなり、また、砥粒の分散性が向上し、シリコンウェーハなどの研磨処理を効率的に行うことができる。なお、液温25℃におけるpHと定義する。pHは、pHメーターで測定することができる。
The metal oxidizing agent is preferably an oxidizing agent containing no non-volatile components, such as hydrogen peroxide.
(Characteristics of composition)
The pH of the composition according to this embodiment ranges from 6.0 to 14.0, preferably from 6.0 to 13.0, and more preferably from 8.0 to 10.0. Within this pH range, the heat resistance of the poly-N-vinylcarboxylic acid amide in the aqueous solution is high, and the dispersibility of the abrasive grains is improved, so that the polishing of silicon wafers and the like can be performed efficiently. can be done. In addition, it defines as pH in the liquid temperature of 25 degreeC. pH can be measured with a pH meter.
 本実施形態に係る組成物のpHは、ポリ-N-ビニルカルボン酸アミドに由来するが、さらに添加剤の含有量を調整することで所望のpHに調整することができる。 The pH of the composition according to the present embodiment is derived from poly-N-vinylcarboxylic acid amide, and can be adjusted to a desired pH by further adjusting the content of additives.
 また、本実施形態に係る組成物のpHは、たとえばアミノ酸、アンモニア、アミン類、テトラメチルアンモニウムヒドロキシド等のアルカリ成分を添加することによっても調整可能である。一方で基材を変化させない点から、アルカリ(土類)金属元素を含む成分は添加しないことが好ましい。 Further, the pH of the composition according to this embodiment can also be adjusted by adding alkaline components such as amino acids, ammonia, amines, and tetramethylammonium hydroxide. On the other hand, from the viewpoint of not changing the base material, it is preferable not to add a component containing an alkali (earth) metal element.
 前記組成物の90℃にて10日間の熱履歴後の10%径の増加率が好ましくは100%以下、より好ましくは70%以下、さらに好ましくは50%以下である。 The 10% diameter increase rate of the composition after heat history for 10 days at 90°C is preferably 100% or less, more preferably 70% or less, and still more preferably 50% or less.
 また、前記組成物を200℃にて2時間乾燥した後、水浸漬による再溶解試験の残存率が好ましくは10質量%以下、より好ましくは5%以下、さらに好ましくは3%以下である。
(研磨方法)
 本実施形態の組成物は、研磨液として好適に使用でき、本実施形態に係る組成物を、被研磨材料(例えば絶縁材料)を含む基材の少なくとも一部をCMPによって除去する工程に使用することができる。例えば、基材の研磨方法として、表面に被研磨材料(絶縁材料)を有する基材を研磨する工程に使用できる。
In addition, after drying the composition at 200° C. for 2 hours, the residual rate in a re-dissolution test by water immersion is preferably 10% by mass or less, more preferably 5% or less, and even more preferably 3% or less.
(polishing method)
The composition of the present embodiment can be suitably used as a polishing liquid, and the composition of the present embodiment is used in a step of removing at least part of a substrate containing a material to be polished (e.g., insulating material) by CMP. be able to. For example, as a method for polishing a substrate, it can be used in a step of polishing a substrate having a material to be polished (insulating material) on its surface.
 研磨パッドを上で説明した組成物と接触させ、前記基材に対して前記研磨パッドを動かして、前記基材の少なくとも一部をすり減らして前記基材を研磨する。 A polishing pad is brought into contact with the composition described above, and the polishing pad is moved relative to the substrate to abrade at least a portion of the substrate and polish the substrate.
 基材は、任意の好適な研磨パッドとともに組成物で平坦化又は研磨することができるものが採用される。たとえば基材としては、シリコン基材だけでなく、ポリシリコン膜、SiO2膜又は金属配線膜が形成されたシリコン基材など、研磨処理が適用できる基材について適用することができる。 A substrate is employed that can be planarized or polished with the composition with any suitable polishing pad. For example, as the base material, not only a silicon base material but also a base material to which polishing treatment can be applied, such as a silicon base material on which a polysilicon film, a SiO 2 film, or a metal wiring film is formed, can be applied.
 研磨パッドとしては、例えば、織布及び不織布の研磨パッドを好ましく使用することができる。好適な研磨パッドは、具体的には、ポリマーを含むものであり、好適なポリマーとしては、例えば、ポリ塩化ビニル、ポリフッ化ビニル、ナイロン、フッ化炭素、ポリカーボネート、ポリエステル、ポリアクリレート、ポリエーテル、ポリエチレン、ポリアミド、ポリウレタン、ポリスチレン、ポリプロピレン、それらの共形成製品、及びそれらの混合物を挙げることができる。 As the polishing pad, for example, a woven or non-woven polishing pad can be preferably used. Suitable polishing pads specifically comprise polymers such as polyvinyl chloride, polyvinyl fluoride, nylon, fluorocarbons, polycarbonates, polyesters, polyacrylates, polyethers, Mention may be made of polyethylene, polyamide, polyurethane, polystyrene, polypropylene, co-formed products thereof, and mixtures thereof.
 研磨装置としては、被研磨材料を有する基材等を保持するホルダーと、回転数が変更可能なモータ等が取り付けてあると共に研磨パッドを貼り付け可能な研磨定盤と、を有する一般的な研磨装置が使用できる。研磨装置としては、(株)荏原製作所製の型番EPO-111、F-REX300;Applied Materials社製の商品名Mirra、Reflexion等を使用できる。 As a polishing apparatus, a general polishing apparatus having a holder for holding a substrate having a material to be polished, etc., and a polishing surface plate to which a motor or the like capable of changing the number of revolutions is attached and to which a polishing pad can be attached. Equipment is available. As the polishing apparatus, model numbers EPO-111 and F-REX300 manufactured by Ebara Corporation; product names Mirra and Reflexion manufactured by Applied Materials, etc. can be used.
 研磨条件に制限はないが、研磨定盤の回転速度は、基材が飛び出さないように200回転/分以下の低回転が好ましく、基材にかける圧力(加工荷重)は、研磨後に傷が発生しづらい観点から、100kPa以下が好ましい。研磨している間は、研磨パッドに組成物をポンプ等で連続的に供給することができる。この供給量に制限はないが、研磨パッドの表面が常に組成物で覆われていることが好ましい。 Polishing conditions are not limited, but the rotational speed of the polishing surface plate is preferably a low rotation speed of 200 rpm or less so that the substrate does not pop out, and the pressure (processing load) applied to the substrate is such that scratches are not generated after polishing. 100 kPa or less is preferable from the viewpoint that it is difficult to generate. During polishing, the composition can be continuously supplied to the polishing pad, such as by a pump. The amount supplied is not limited, but it is preferred that the surface of the polishing pad is always covered with the composition.
 研磨終了後の基材は、流水中でよく洗浄後、スピンドライヤ等を用いて、基材上に付着した水滴を払い落として、乾燥させることが好ましい。 It is preferable that the substrate after polishing is thoroughly washed in running water, and then dried by using a spin dryer or the like to shake off water droplets adhering to the substrate.
 このように被研磨材料を研磨することによって、表面の凹凸を解消して基材全面にわたって平滑な面を得ることができる。 By polishing the material to be polished in this way, it is possible to eliminate unevenness on the surface and obtain a smooth surface over the entire surface of the substrate.
 以下、実施例により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
 実施例で使用した試料は以下の通りである。
水溶性高分子
(1)ポリ-N-ビニルアセトアミド(PNVA(登録商標))
 昭和電工(株)製 GE-191-103、固形分10質量%、粘度14000~20000mPa・s
 昭和電工(株)製 GE-191-104、固形分10質量%、粘度1500~3000mPa・s
 昭和電工(株)製 GE-191-107、固形分10質量%、粘度50mPa・s
 昭和電工(株)製 GE-191-053、固形分5質量%、粘度8000~15000mPa・s
(2)DMAA
 N,N-ジメチルアクリルアミド(富士フイルム和光純薬(株))を原料に、重合を行った。固形分濃度10%水溶液ポリマー
(3)ACMO
 4-アクリロイルモルホリン(富士フイルム和光純薬(株)製)を原料に、重合を行った。固形分濃度10%水溶液ポリマー
(4)ポリビニルピロリドン
 PVP K-90 日本触媒(株)
(5)ポリエチレングリコール
 PEG20000 富士フイルム和光純薬(株)
(6)ポリビニルアルコール
  PVA、平均重合度n=1500~1800 富士フイルム和光純薬(株)製
(7)カルボキシメチルセルロース
 CMC MAC350HC 日本製紙製
(8)ポリアクリル酸Na
 昭和電工(株)製 ビスコメート(登録商標)F-480SS
研磨剤
(1)セリウム
 セリウム水分散液:セリウムスラリー OPSN-0090 濃度15質量% 粒径 0. 5μm 純水スラリー  分散剤 (株)アウトライン製品
(2)コロイダルシリカ
 プレシ社製 AQ12045 粒径0.03μm 濃度45質量%
(3)その他成分
・塩酸
 比較例8は、塩酸(純正化学株式会社製)5質量%に希釈した液を、記載の表1記載のpHになるまで添加した。
[実施例1~3、比較例1~8]
組成物の調製
 容量50mlのガラスビンへセリウム水溶液(以下、セリウムスラリー)を40g入れ、表1のように各水溶性高分子が固形分でセリウムスラリー(100質量部)に対して0.2質量部となるよう添加する。
The samples used in the examples are as follows.
Water-soluble polymer (1) Poly-N-vinylacetamide (PNVA (registered trademark))
GE-191-103 manufactured by Showa Denko Co., Ltd., solid content 10% by mass, viscosity 14000 to 20000 mPa s
GE-191-104 manufactured by Showa Denko Co., Ltd., solid content 10% by mass, viscosity 1500 to 3000 mPa s
GE-191-107 manufactured by Showa Denko Co., Ltd., solid content 10% by mass, viscosity 50 mPa s
GE-191-053 manufactured by Showa Denko Co., Ltd., solid content 5% by mass, viscosity 8000 to 15000 mPa s
(2) DMAA
Polymerization was performed using N,N-dimethylacrylamide (Fuji Film Wako Pure Chemical Industries, Ltd.) as a raw material. Solid content concentration 10% aqueous solution polymer (3) ACMO
Polymerization was carried out using 4-acryloylmorpholine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a raw material. Solid content concentration 10% aqueous solution polymer (4) Polyvinylpyrrolidone PVP K-90 Nippon Shokubai Co., Ltd.
(5) Polyethylene glycol PEG20000 FUJIFILM Wako Pure Chemical Industries, Ltd.
(6) Polyvinyl alcohol PVA, average degree of polymerization n = 1500 to 1800 Fuji Film Wako Pure Chemical Co., Ltd. (7) Carboxymethyl cellulose CMC MAC350HC Nippon Paper Industries (8) Na polyacrylate
Viscomate (registered trademark) F-480SS manufactured by Showa Denko K.K.
Abrasive (1) Cerium Cerium aqueous dispersion: Cerium slurry OPSN-0090 Concentration 15% by mass Particle size 0. 5 μm Pure water slurry Dispersant Outline Co., Ltd. product (2) Colloidal silica Preci AQ12045 Particle size 0.03 μm Concentration 45% by mass
(3) Other components/hydrochloric acid In Comparative Example 8, a solution diluted to 5% by mass of hydrochloric acid (manufactured by Junsei Chemical Co., Ltd.) was added until the pH was as shown in Table 1.
[Examples 1 to 3, Comparative Examples 1 to 8]
40 g of an aqueous solution of cerium (hereinafter referred to as cerium slurry) was placed in a glass bottle having a capacity of 50 ml for preparation of the composition. Add so that
 粉体ポリマーであるPVP、PEG、PVAは10gをイオン交換水95gに溶解し、CMCは2gをイオン交換水98gに溶解し、水溶液状態として添加する。なおDMAA,ACMOは固形分濃度を10質量%に調整した水溶液のポリマーである。  10 g of the powder polymers PVP, PEG, and PVA are dissolved in 95 g of ion-exchanged water, and 2 g of CMC is dissolved in 98 g of ion-exchanged water, and added as an aqueous solution. DMAA and ACMO are polymers in aqueous solutions adjusted to a solid concentration of 10% by mass.
 ポリマー添加したセリウムスラリーのガラスビンに密栓し、混合したのち、20℃恒温槽で20時間静置して、組成物を調製した。 A glass bottle containing the polymer-added cerium slurry was sealed, mixed, and then allowed to stand in a constant temperature bath at 20°C for 20 hours to prepare a composition.
 得られた組成物に対して、以下の評価を行った。
・耐熱分散保持試験方法
 恒温槽から取り出し、粒径分布測定用の石英セル(奥行0.5cm)にイオン交換水を5gと撹拌用小型スターラーチップを入れ、セリウムスラリーをパスツールピペットにて添加する。
The following evaluations were performed on the obtained compositions.
・Method of heat-resistant dispersion retention test Remove from the constant temperature bath, put 5 g of ion-exchanged water and a small stirrer tip into a quartz cell (depth 0.5 cm) for particle size distribution measurement, and add cerium slurry with a Pasteur pipette. .
 粒径分布測定装置に石英セルをセットし、初期粒径(10%径)を測定する。 Set the quartz cell in the particle size distribution measuring device and measure the initial particle size (10% diameter).
 その後、ステンレススチール鋼製バット(以下「SUSバット」ともいう)(縦30cm、横20cm、高さ10cm)へ入れ、エアオーブン(ヤマト科学(株)製 DN-41)にて空気下、90℃、10日の期間静置する。 After that, put it in a stainless steel vat (hereinafter also referred to as "SUS vat") (length 30 cm, width 20 cm, height 10 cm) and put it in an air oven (DN-41 manufactured by Yamato Scientific Co., Ltd.) at 90 ° C. under air. , to stand for a period of 10 days.
 10日経過したところで、サンプルを取り出し初期測定時と同様に測定する。また、目視による外観の評価を行った。
変色:〇:変化なし、△:やや変色、×:黄変
団塊化:〇:変化なし、△:小塊がみられる、×:凝集が多数みられる
 初期10%径に対して90℃、10日後の10%径の値の増加率を以下の式で算出する。
After 10 days, the sample is taken out and measured in the same manner as the initial measurement. Moreover, the appearance was evaluated by visual observation.
Discoloration: 〇: No change, △: Slightly discolored, ×: Yellowing nodule formation: 〇: No change, △: Small lumps are observed, ×: Many aggregations are observed. The rate of increase in the 10% diameter value after days is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
 組成物の評価は以下のようにして行った。
・pH
 組成物のpHは、pH計((株)堀場製作所製F-70)を用い、温度25℃にて測定した。
・重量平均分子量
 水溶性高分子の重量平均分子量は、0.1mol/Lリン酸バッファー(リン酸水素ナトリウム0.1mol/L+リン酸水素二ナトリウム0.1mol/L)溶液にポリ-N-ビニルアセトアミド濃度が0.05質量%となるように調整し、20時間静置した。これを孔径0.45μmメンブレンフィルターにて濾過し、濾液を用いてGPC-MALSにて重量平均分子量の測定を実施した。
分析装置及び測定条件
GPC : 昭和電工(株)製SHODEX(登録商標),SYSTEM-21
カラム : 昭和電工(株)製SHODEX(登録商標)
 SB807、SB807およびSB807が直列に接続したものを使用。
カラム温度 : 40℃
溶離液 : 0.1mol/L NaH2PO4+0.1mol/L Na2HPO4(pH=6.8)
流速 : 0.7 mL/min
試料注入量 : 100μL
MALS(多角度光散乱)検出器 : Wyatt Technology,DAWN DSP
レーザー波長 : 633nm
多角度フィット法 : Berry法
解析プログラム ASTRA7.2.2
10%径(d10)
・レーザー光粒度分布測定機   HORIBA LA-350 (株)堀場製作所製
測定条件
・検出器:シリコンフォトディテクタ
・バッチセルユニット
・液温 25℃
・サンプル量 0.5mlを分散媒(イオン交換水)5mlに分散させた
 上記にて得られた粒子径を、体積基準で小さい側から累積10%となった点を10%径(以下「d10」ともいう)とした。
Figure JPOXMLDOC01-appb-M000002
Evaluation of the composition was performed as follows.
・pH
The pH of the composition was measured at a temperature of 25° C. using a pH meter (F-70 manufactured by Horiba, Ltd.).
・Weight average molecular weight The weight average molecular weight of the water-soluble polymer is poly-N-vinyl The acetamide concentration was adjusted to 0.05% by mass and allowed to stand for 20 hours. This was filtered through a membrane filter with a pore size of 0.45 μm, and the weight-average molecular weight of the filtrate was measured by GPC-MALS.
Analyzer and measurement conditions GPC: SHODEX (registered trademark), SYSTEM-21 manufactured by Showa Denko K.K.
Column: SHODEX (registered trademark) manufactured by Showa Denko K.K.
SB807, SB807 and SB807 connected in series are used.
Column temperature: 40°C
Eluent: 0.1 mol/L NaH2PO4 + 0.1 mol /L Na2HPO4 ( pH = 6.8)
Flow rate: 0.7 mL/min
Sample injection volume: 100 μL
MALS (multi-angle light scattering) detector: Wyatt Technology, DAWN DSP
Laser wavelength: 633nm
Multi-angle fitting method: Berry method analysis program ASTRA7.2.2
10% diameter (d10)
・Laser light particle size distribution analyzer HORIBA LA-350, manufactured by HORIBA, Ltd. Measurement conditions ・Detector: Silicon photodetector ・Batch cell unit ・Liquid temperature: 25°C
・Amount of sample 0.5ml dispersed in 5ml of dispersion medium (ion-exchanged water) The 10% diameter (hereinafter “d10 ”).
 組成物の特性および耐熱分散保持試験の結果を、表1および図1に示す。 Table 1 and Figure 1 show the properties of the composition and the results of the heat dispersion retention test.
Figure JPOXMLDOC01-appb-T000003
 耐熱分散保持試験では実施例1、2、3のみ加熱後の10%径において増加率が47.8%以下と低く、かつ外観の変化がない。比較例は10%径の増加率も実施例より大きく、かつ外観の変化から劣化の度合いが大きいことが推測される。
[実施例4~5、比較例9~13]
組成物の調製
 表2の水溶性高分子をポリプロピレン製ポリビンへ入れ、イオン交換水を添加、密栓し手動にて振とうし、水溶液を調製する。(CMC、PAS:2.0質量% PVP、PVA、PEG、PNVA:10.0質量%)
 それぞれの水溶性高分子溶液にコロイダルシリカを、SiO2の固形分で10質量%となるように添加する。
Figure JPOXMLDOC01-appb-T000003
In the heat dispersion retention test, only Examples 1, 2, and 3 show a low increase rate of 47.8% or less at 10% diameter after heating, and there is no change in appearance. The 10% diameter increase rate of the comparative example is larger than that of the example, and it is presumed that the degree of deterioration is large from the change in appearance.
[Examples 4-5, Comparative Examples 9-13]
Preparation of composition The water-soluble polymer shown in Table 2 is placed in a polypropylene polyethylene bottle, ion-exchanged water is added thereto, and the bottle is sealed and shaken manually to prepare an aqueous solution. (CMC, PAS: 2.0% by mass PVP, PVA, PEG, PNVA: 10.0% by mass)
Colloidal silica is added to each water-soluble polymer solution so that the solid content of SiO 2 is 10% by mass.
 密栓し、混合したのち20℃にて18時間静置して、組成物を調製した。 After sealing and mixing, the mixture was allowed to stand at 20°C for 18 hours to prepare a composition.
 得られた組成物を用いて、以下の試験を行った。
再溶解試験
 ガラス板上に組成物を薬さじまたはスポイトにて塗布する。
The following tests were conducted using the obtained compositions.
The composition is applied on a remelting test glass plate with a spatula or dropper.
 塗布物をSUSバットに静置し200℃、2時間、空気下、エアオーブン(ヤマト科学(株)製 DN-41)加熱する。 The coated material is placed on a SUS vat and heated at 200°C for 2 hours in an air oven (DN-41 manufactured by Yamato Scientific Co., Ltd.).
 取り出し冷却後、質量を測定、その後、室温のイオン交換水に2時間浸漬したのち、取り出し、105℃、1時間 乾燥した。 After taking it out and cooling it, the mass was measured, then it was immersed in ion-exchanged water at room temperature for 2 hours, then taken out and dried at 105°C for 1 hour.
 乾燥後、質量を測定し、残存率を測定した。 After drying, the mass was measured and the residual rate was measured.
 残存率(%)=(乾燥前の質量―乾燥後の質量)÷(乾燥前の質量)×100
 また、調整直後、200℃、2時間加熱後、加熱後さらにイオン交換水に浸漬・乾燥後の生成物については、外観を以下の観点で比較、写真にて記録した。
〇:外観上の変化なし △:やや着色  ×:着色激しい
 再溶解試験の、結果を表2に示す。
Residual rate (%) = (mass before drying - mass after drying) / (mass before drying) x 100
The appearances of the products immediately after adjustment, after heating at 200° C. for 2 hours, after heating and after immersion in deionized water and drying were compared and photographed from the following viewpoints.
◯: No change in appearance △: Slightly colored ×: Severely colored Table 2 shows the results of the re-dissolution test.
Figure JPOXMLDOC01-appb-T000004
 加熱再溶解性試験についてはいずれの実施例の残存率が3質量%以下と、比較例のそれより低かった。これは加熱後の浸漬でほぼ溶解したことを示す。一方で、比較例は残存率が90%超であり、ほとんど溶解しなかった。これは、ポリマーの水溶性が失われていたことを示す。さらに外観上の変化も比較例では大きく(例えば黄変や、割れ等の形状の変化)、加熱により劣化していることが推測される結果となった。
Figure JPOXMLDOC01-appb-T000004
As for the heat re-dissolution test, the residual rate of each example was 3% by mass or less, which was lower than that of the comparative example. This indicates that it was almost dissolved by immersion after heating. On the other hand, the comparative example had a residual rate of over 90% and was hardly dissolved. This indicates that the polymer had lost its water solubility. Furthermore, the change in appearance was large in the comparative example (for example, change in shape such as yellowing and cracking), and it was presumed to be deteriorated by heating.

Claims (8)

  1.  水、研磨砥粒およびポリ-N-ビニルカルボン酸アミドを含有する組成物であり、
     前記ポリ-N-ビニルカルボン酸アミドの重量平均分子量が1000から5000000であり、
     前記組成物のpHが6.0~14.0である組成物。
    A composition containing water, abrasive grains and poly-N-vinylcarboxylic acid amide,
    The poly-N-vinylcarboxylic acid amide has a weight average molecular weight of 1,000 to 5,000,000,
    A composition wherein the pH of said composition is from 6.0 to 14.0.
  2.  前記ポリ-N-ビニルカルボン酸アミドが、ポリ-N-ビニルアセトアミドである、請求項1に記載の組成物。 The composition according to claim 1, wherein the poly-N-vinylcarboxylic acid amide is poly-N-vinylacetamide.
  3.  前記組成物の90℃、10日間の熱履歴後の、体積基準による累積粒度分布における10%径の増加率が100%以下である、請求項1に記載の組成物。 The composition according to claim 1, wherein the increase rate of the 10% diameter in the cumulative particle size distribution based on volume after the composition has been subjected to heat history at 90°C for 10 days is 100% or less.
  4.  前記組成物を200℃、2時間で乾燥した後、さらに水に浸漬させたのち乾燥した際の残存率が10質量%以下である、請求項1に記載の組成物。 The composition according to claim 1, wherein the composition has a residual rate of 10% by mass or less when the composition is dried at 200°C for 2 hours, immersed in water, and then dried.
  5.  前記研磨砥粒がセリウムである、請求項1に記載の組成物。 The composition according to claim 1, wherein the abrasive grains are cerium.
  6.  前記組成物中の水の含有量が50~90質量%である、請求項1に記載の組成物。 The composition according to claim 1, wherein the water content in the composition is 50 to 90% by mass.
  7.  請求項1~6のいずれか1項に記載の組成物からなる研磨剤。 A polishing agent made of the composition according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項に記載の組成物を付着させた研磨パッドを用いて基材を研磨する工程を含む基材の研磨方法。 A method for polishing a substrate, comprising the step of polishing the substrate using a polishing pad to which the composition according to any one of claims 1 to 6 is adhered.
PCT/JP2022/047825 2021-12-28 2022-12-26 Composition, polishing agent and method for polishing base material WO2023127775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021214676 2021-12-28
JP2021-214676 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127775A1 true WO2023127775A1 (en) 2023-07-06

Family

ID=86999249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047825 WO2023127775A1 (en) 2021-12-28 2022-12-26 Composition, polishing agent and method for polishing base material

Country Status (2)

Country Link
TW (1) TW202342661A (en)
WO (1) WO2023127775A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141687A1 (en) * 2014-03-17 2015-09-24 日本キャボット・マイクロエレクトロニクス株式会社 Slurry composition and method for polishing substrate
WO2015151673A1 (en) * 2014-03-31 2015-10-08 株式会社フジミインコーポレーテッド Polishing composition
WO2019181016A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
WO2020255862A1 (en) * 2019-06-17 2020-12-24 日本キャボット・マイクロエレクトロニクス株式会社 Chemical-mechanical polishing composition, rinse composition, chemical-mechanical polishing method, and rinsing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141687A1 (en) * 2014-03-17 2015-09-24 日本キャボット・マイクロエレクトロニクス株式会社 Slurry composition and method for polishing substrate
WO2015151673A1 (en) * 2014-03-31 2015-10-08 株式会社フジミインコーポレーテッド Polishing composition
WO2019181016A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
WO2020255862A1 (en) * 2019-06-17 2020-12-24 日本キャボット・マイクロエレクトロニクス株式会社 Chemical-mechanical polishing composition, rinse composition, chemical-mechanical polishing method, and rinsing method

Also Published As

Publication number Publication date
TW202342661A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP5569574B2 (en) Abrasive and substrate polishing method using the abrasive
KR101435237B1 (en) Composition for polishing surfaces of silicon dioxide
JP5418590B2 (en) Abrasive, abrasive set and substrate polishing method
JP5953762B2 (en) CMP polishing liquid, manufacturing method thereof, and substrate polishing method
TWI550045B (en) Abrasive agent, abrasive agent set and method for polishing substrate
JP5287174B2 (en) Abrasive and polishing method
JP5965906B2 (en) Aqueous polishing composition and method for chemical mechanical polishing of a substrate comprising a silicon oxide dielectric film and a polysilicon film
TW200845167A (en) Water-based polishing slurry for polishing silicon carbide single crystal substrate, and polishing method for the same
JP2007088424A (en) Aqueous dispersing element for chemical mechanical polishing, kit for preparing the same aqueous dispersing element, chemical mechanical polishing method and manufacturing method for semiconductor device
JP2010199595A (en) Cmp polishing compound and method for polishing substrate
JP6114312B2 (en) Chemical mechanical polishing (CMP) composition containing protein
WO2015098197A1 (en) Abrasive, abrasive set, and method for polishing substrate
JP2017508833A (en) Chemical mechanical polishing (CMP) composition comprising poly (amino acid)
JP6569191B2 (en) Abrasive, abrasive set, and substrate polishing method
JP2010028086A (en) Cmp abrasive, and polishing method using the same
JP2011104694A (en) Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition
JP2009260236A (en) Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
WO2023127775A1 (en) Composition, polishing agent and method for polishing base material
JP7356932B2 (en) Polishing composition and polishing method
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP7294809B2 (en) Method of using a chemical-mechanical polishing (CMP) composition for polishing cobalt and/or cobalt-alloy containing substrates
JP7452963B2 (en) Slurry for wet blasting
JP4811586B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP4604727B2 (en) Additive for CMP abrasives
JP2015035522A (en) Polishing liquid for cmp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915998

Country of ref document: EP

Kind code of ref document: A1