WO2023127622A1 - 通信用電線 - Google Patents

通信用電線 Download PDF

Info

Publication number
WO2023127622A1
WO2023127622A1 PCT/JP2022/047022 JP2022047022W WO2023127622A1 WO 2023127622 A1 WO2023127622 A1 WO 2023127622A1 JP 2022047022 W JP2022047022 W JP 2022047022W WO 2023127622 A1 WO2023127622 A1 WO 2023127622A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductors
pair
wire
communication
signal line
Prior art date
Application number
PCT/JP2022/047022
Other languages
English (en)
French (fr)
Inventor
悠太 安好
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2023127622A1 publication Critical patent/WO2023127622A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics

Definitions

  • This disclosure relates to communication wires.
  • a wire including a signal wire 90 composed of a pair of insulated wires 91, 91, like the communication wire 9 shown in FIG. 3, is generally used.
  • a pair of insulated wires 91, 91 are arranged in parallel (parallel pair) or twisted together (twisted pair).
  • a metal foil 92 and a metal braid 93 as shield bodies for shielding and an outermost layer sheath 94 for protecting the entire communication wire are appropriately provided around the outer periphery of the signal line 90 .
  • Each insulated wire 91 is composed of a conductor 91a for transmitting an electric signal and an insulating coating 91b covering the conductor 91a.
  • Such communication wires are disclosed in Patent Documents 1 to 3, for example.
  • the insulating coating 91b constituting each insulated wire 91 has a low dielectric constant.
  • the dielectric constant of the insulating coating 91b is lowered, the characteristic impedance of the communication wire 9 is increased. Therefore, even if the insulating coating 91b is formed thin, it becomes easy to secure the necessary characteristic impedance.
  • olefin resins such as polyethylene and polypropylene, which are generally used as insulating coatings for communication wires, have a low dielectric constant among various resins. is difficult to reduce significantly.
  • Patent Document 3 a method of forming a large number of air bubbles by foaming the insulating coating 91b constituting each insulated wire 91 may be adopted.
  • the air bubbles can reduce the dielectric constant of the insulating coating 91b, and as a result, the diameter of the communication wire 9 can be reduced by reducing the thickness of the insulating coating 91b.
  • the insulation coating is foamed, and the low dielectric constant of air is used to reduce the dielectric of the insulation coating.
  • the insulation coating thickness is lowered while lowering the coefficient and securing the required characteristic impedance.
  • the higher the expansion ratio of the insulation coating the greater the effect of reducing the dielectric constant.
  • increasing the expansion ratio reduces the material strength of the insulation coating.
  • a decrease in the material strength of the insulating coating also leads to a decrease in the bending resistance of the communication wire. Therefore, there is a limit to lowering the dielectric constant by increasing the foaming ratio of the insulation coating in consideration of ensuring the necessary material strength.
  • the dielectric constant of air is 1.0, which is significantly lower than the dielectric constant of organic polymers, which is usually 2 or more.
  • the object is to provide a communication wire that can be made thinner while ensuring bending resistance.
  • the communication wire of the present disclosure includes a pair of conductors, and a covering material that is made of an insulating material and is in contact with the surfaces of the pair of conductors to integrally cover the outer circumference of the pair of conductors.
  • the covering material has a hollow portion not occupied by the insulating material at a position between the pair of conductors and continuous along the axial direction of the conductors; The pair of conductors are held at positions separated from each other with the hollow portion interposed therebetween.
  • the communication wire according to the present disclosure can be made thinner while ensuring bending resistance.
  • FIG. 1 is a cross-sectional view showing a communication wire according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view showing a communication wire according to a modified form
  • FIG. 3 is a cross-sectional view showing an example of a conventional general communication wire including a pair of insulated wires.
  • a communication wire according to the present disclosure is composed of a pair of conductors and an insulating material, and is in contact with the surfaces of the pair of conductors to integrally cover the outer circumference of the pair of conductors. and the covering material has a hollow portion, which is continuous along the axial direction of the conductors and which is not occupied by the insulating material, at a position between the pair of conductors. , the pair of conductors are held at positions separated from each other with the hollow portion interposed therebetween.
  • a hollow portion is formed at a position between the pair of conductors in the covering material that integrally covers the outer circumference of the pair of conductors.
  • the characteristic impedance is lowered. Since the effective dielectric constant of the signal line is lowered, a sufficiently high characteristic impedance can be ensured even if the distance between the conductors is reduced compared to the case where the hollow portion is not provided. By reducing the distance between the conductors, it is possible to reduce the outer diameter of the signal line and further the entire communication wire.
  • the hollow portion can effectively reduce the effective dielectric constant of the signal line, there is no need to use a material with a high foaming ratio as an insulating material that constitutes the coating material for the purpose of reducing the dielectric constant of the coating material.
  • a high material strength of the covering material can be ensured.
  • the bending resistance of the communication wire is kept high.
  • a coating material that integrally coats a pair of conductors and has a hollow portion instead of an insulating coating that individually coats a pair of conductors a communication wire can be improved in bending resistance. It is possible to achieve both the securing of properties and the reduction in diameter by utilizing the low dielectric constant of air.
  • the covering material surrounds the outer periphery of the pair of conductors spaced apart from each other, and the hollow portion faces each of the pair of conductors without the insulating material interposed therebetween. It is good to have a part that In a signal line, such a coating material coats the outer periphery of a pair of conductors in a hollow cylindrical shape (annular cross-section).
  • the hollow part faces each of a pair of conductors, and the pair of conductors are directly opposed to each other with the air layer in the hollow part sandwiched therebetween without an insulating material interposed therebetween.
  • twist is applied to the assembly of the pair of conductors and the covering material, and the pair of conductors are held by the covering material and cross each other in a spiral shape. good.
  • the outer diameter of the communication wire tends to be larger than when it is not twisted. , the outer diameter of the communication wire can be kept sufficiently small.
  • each of the pair of conductors is configured as a twisted wire in which a plurality of strands are twisted together.
  • the insulating material forming the covering material comes into contact with the outer circumference of the conductor over a large surface area. Therefore, the pair of conductors can be firmly held at predetermined relative positions separated from each other with the hollow portion interposed therebetween, which is highly effective in improving bending resistance.
  • the long diameter of the signal line is preferably 4.5 times or less the outer diameter of each of the pair of conductors.
  • a communication wire with a high diameter is achieved.
  • the distance between the conductors is shortened and a high diameter reduction effect is obtained. It is also possible to make it smaller.
  • the insulating material that constitutes the covering material includes one or more polymer materials, and each of the one or more polymer materials has a melt measured at 230° C. under a load of 2.16 kg. It is preferable that the flow rate is 7.0 g/10 min or less.
  • the insulating material constituting the covering material is composed of a polymer material having a low melt flow rate, so that when the covering material is formed by arranging the molten insulating material around the outer periphery of the pair of conductors, It becomes easier to secure a hollow portion between conductors. In addition, it becomes easy to form a coating material having a predetermined thickness in close contact with the surface of each conductor. As a result, the pair of conductors can be firmly held at predetermined relative positions separated from each other with the hollow portion interposed therebetween, which is highly effective in improving bending resistance.
  • the communication wire may further include a shield body containing a metal material, which is arranged to surround the outside of the signal wire. Then, the shield body can shield the signal line and reduce the influence of noise.
  • the communication wire may further have an insulating sheath arranged on the outermost periphery surrounding the signal wire. Then, the sheath can protect the signal line and the shield body.
  • FIG. 1 shows a cross-sectional view of a communication wire 1 according to an embodiment of the present disclosure cut perpendicularly to the axial direction.
  • the communication wire 1 includes a signal line 10.
  • the structure of the signal line 10 will be described in detail later, but it has a pair of conductors 11 and 11 and a covering material 12 made of an insulating material covering the outer circumferences of the conductors 11 and 11 .
  • the communication wire 1 preferably has shield bodies 20 and 30 that are arranged outside the signal line 10 , that is, outside the covering material 12 and contain a metal material.
  • the communication wire 1 preferably has an insulating sheath 40 arranged on the outermost periphery of the communication wire 1 so as to surround the outside of the signal wire 10 .
  • the communication wire 1 may include components other than the signal line 10, the shield bodies 20 and 30, and the sheath 40, but from the viewpoint of ensuring small diameter, it is preferable not to include other components.
  • the communication wire 1 can be used for transmission of differential signals.
  • the communication frequency is not particularly limited, it can be suitably applied to a frequency band of 1 MHz or more and 20 GHz or less.
  • the form of the shield provided outside the signal line 10 is not limited as long as it contains a metal material. Good.
  • a metal foil 20 is provided around the signal line 10 and a metal braid 30 is laminated on the outside of the metal foil 20 .
  • the shield bodies 20 and 30 play a role of shielding noise entering the signal line 10 from the outside and noise emitted from the signal line 10 to the outside.
  • the noise reduction effect is particularly enhanced.
  • the metal foil 20 may be in the form of an independent metal thin film, or in a form in which a metal layer is bonded to a base material such as a polymer film by vapor deposition, plating, adhesion, or the like.
  • the type of metal that constitutes the metal foil 20 is not particularly limited, but aluminum or an aluminum alloy, copper or a copper alloy can be preferably exemplified.
  • the metal braid 30 is configured as a braid body in which fine metal wires are woven into a hollow tubular shape. As the metal material constituting the metal braid 30, copper, copper alloys, aluminum, aluminum alloys, and metal wires of which the outer circumference is plated with tin or the like can be preferably exemplified.
  • the sheath 40 provided on the outermost periphery of the communication wire 1 is made of an insulating polymer material, and serves to physically protect the inner members, that is, the signal wire 10 and the shields 20 and 30. , play a role in suppressing the influence of contact with water or the like on the characteristics of the communication wire 1 .
  • the type of polymer that constitutes the sheath 40 is not particularly limited, but from the viewpoint of easily securing a predetermined high value as the characteristic impedance of the signal line 10, a material having a low dielectric constant among various polymer materials is preferably used.
  • Polymer materials that can be preferably used include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polystyrene, polytetrafluoroethylene, polyphenylene sulfide, and the like. Among them, polyolefin, which is a non-polar polymer material and particularly has a low dielectric constant, can be preferably used.
  • polymer material that constitutes the sheath 40 only one kind may be used, or two or more kinds may be mixed.
  • the sheath 40 may optionally contain additives such as flame retardants and antioxidants.
  • the signal line 10 that constitutes the communication wire 1 has a pair of conductors 11 and 11 and the covering material 12 that covers the outer periphery of the pair of conductors 11 and 11 .
  • the covering material 12 is made of an insulating material and integrally covers the outer periphery of the pair of conductors 11 , 11 .
  • An insulating coating (corresponding to 91b in FIG. 3) for individually coating each conductor 11 is not formed on the outer periphery of each conductor 11, and the coating material 12 is in direct contact with the outer periphery of the conductors 11,11.
  • the covering material 12 has a hollow portion S at a position between the pair of conductors 11,11.
  • the hollow portion S is a space that is not occupied by the insulating material forming the covering material 12 or other solid substances, and is occupied by air.
  • the hollow portion S is continuous along the axial direction of the conductors 11, 11, and is different from the foamed structure of a foamed resin configured as a large number of cells isolated from each other.
  • the hollow portion S is continuous over the entire length of the signal line 10 in the axial direction, except at the ends of the signal line 10 where the hollow structure inevitably disappears due to processing or the like.
  • the covering material 12 holds the pair of conductors 11, 11 at positions separated from each other with the hollow portion S interposed therebetween. That is, the covering material 12 holds the pair of conductors 11, 11 in a predetermined relative position while being separated from each other and insulated from each other. The relative positions of the conductors 11 and 11 are maintained by the insulating material forming the covering material 12 adhering (bonding) to the surfaces of the conductors 11 and 11 .
  • the covering material 12 surrounds the outer periphery of the pair of conductors 11, 11 that are spaced apart from each other, and the hollow part S is the insulating material that constitutes the covering material 12. It has a portion facing each of the pair of conductors 11, 11 without passing through.
  • the covering material 12 is formed in a hollow tubular shape, that is, in an annular shape when expressed in terms of a cross-sectional shape. kept in a state.
  • the pair of conductors 11, 11 are accommodated in a space surrounded by the covering material 12, and are directly opposed to each other with the air layer of the hollow portion S interposed therebetween without interposing the insulating material constituting the covering material 12 ( adjacent).
  • the hollow portion S is formed so as to occupy approximately 70% or more, further 90% or more of the volume of the area between the pair of conductors 11,11.
  • the signal line 10 may have a parallel line structure in which the conductors 11 and 11 are arranged in parallel and the covering material 12 is formed around the conductors 11 and 11 .
  • the pair of conductors 11, 11 are twisted wires twisted together.
  • the twisted wire is a twist applied to an assembly of the pair of conductors 11 and 11 and the coating material 12, and the pair of conductors 11 and 11 are held by the coating material 12 and twisted to each other. It refers to the state of being crossed in a shape.
  • the twisted wire is a parallel wire in which the covering material 12 is formed on the outer circumference of the conductors 11, 11 arranged in parallel. It has a twisted (self-twisted) structure.
  • the signal line 10 By configuring the signal line 10 as a twisted line, it is possible to reduce the influence of common-mode noise from the outside compared to the case of parallel lines. In addition, the bending resistance of the signal line 10 is increased, and the characteristics related to communication, such as the characteristic impedance, are less likely to change when subjected to bending.
  • the signal line 10 of the communication wire 1 has a hollow portion S inside the covering material 12, and is a substance such as a polymer material having a lower dielectric constant than the material constituting the covering material 12. Air fills the hollow S. Therefore, as compared with a form having no hollow portion S, for example, as shown in FIG. The effective dielectric constant of the electric wire 1 can be reduced.
  • Equation (1) the characteristic impedance of a signal line including a pair of conductors is expressed by Equation (1) below.
  • Z 0 is the characteristic impedance
  • ⁇ eff is the effective permittivity
  • d is the conductor diameter
  • s is the distance between conductors (the distance between the centers of a pair of conductors)
  • A is a constant.
  • a characteristic impedance value such as 100 ⁇ 10 ⁇ is determined according to required communication characteristics and standards. As shown in Equation (1), the characteristic impedance increases as the effective dielectric constant ⁇ eff of the signal line 10 decreases. Therefore, even if the inter-conductor distance s is reduced, a required characteristic impedance can be obtained. By providing a hollow portion S inside the covering material 12 and reducing the effective dielectric constant ⁇ eff , the characteristic impedance does not become excessively small, and a required characteristic impedance such as 100 ⁇ 10 ⁇ can be secured. By reducing the distance between conductors in the signal line 10, the diameter of the signal line 10 as well as the entire communication wire 1 can be reduced.
  • the outer diameter of the signal line 10 tends to be larger due to the twisted structure than in the case of parallel lines. Even in the case of twisted wires, it is possible to effectively reduce the diameter of the signal wire 10 .
  • the effective dielectric constant of the signal line 10 can be effectively reduced. Therefore, it is not necessary to form a foamed structure in the covering material 12 for the purpose of lowering the dielectric constant of the insulating material forming the covering material 12 .
  • the hollow portion S makes it possible to utilize the low dielectric constant of air to achieve a reduction in the diameter of the signal line 10 while securing the necessary characteristic impedance. can. High material strength can be ensured in the covering material 12 by not foaming the covering material 12, or by limiting the expansion ratio to a low level even if the covering material 12 is foamed.
  • the communication wire 1 has high bending resistance, and changes in characteristics related to communication, such as characteristic impedance within a predetermined range, can be kept small even if the wire is repeatedly bent.
  • the demand for high-speed communication is increasing, and in order to save space in the vehicle, it is necessary to reduce the diameter of the communication wire, and the necessary communication performance even after undergoing physical stimuli such as vibration and bending. It is desirable for communication wires for automobiles to have high bending resistance that can maintain the .
  • the covering material 12 constituting the signal wire 10 has the hollow portion S between the pair of conductors 11, 11. It is possible to achieve a reduction in diameter while ensuring a predetermined characteristic impedance, and at the same time have high flex resistance.
  • the degree of diameter reduction may be appropriately determined according to the specific constituent material of the signal line 10 and the required communication characteristics. It can be suppressed to 4.5 times or less, or 4 times or less. Alternatively, the long diameter of the signal line 10 can be suppressed to 2.8 mm or less, further 2.5 mm or less.
  • the major axis of the signal line 10 refers to the length of the longest straight line among the straight lines crossing the outer circumference of the cross section of the signal line 10 . In FIG. 1, the width of the signal line 10 corresponds to the length. When the signal line 10 is configured as a twisted line, the length of the signal line 10 may be evaluated before twisting the assembly of the conductors 11 and 11 and the covering material 12 .
  • each of the conductors 11, 11 included in the signal line 10 is not particularly limited, and each may be configured as a single wire or as an aggregate of a plurality of strands 11a.
  • each of the conductors 11, 11 is configured as a twisted wire in which a plurality of wires 11a are twisted together. Since the twisted wire has high flexibility, it increases the bending resistance of the signal line 10 .
  • the stranded wire has an uneven structure derived from the shape of the plurality of strands 11a on the surface as a whole of each conductor 11, and when the covering material 12 is formed by extrusion molding of an insulating material, the The contact area between the conductors 11, 11 and the covering material 12 increases as the insulating material enters the recesses of the uneven structure. As a result, the covering material 12 comes to strongly adhere to the conductors 11, 11, and the covering material 12 can firmly hold the pair of conductors 11, 11 at predetermined relative positions. As a result, the relative positions of the conductors 11, 11 are stably maintained even after being subjected to physical stimulation such as bending, so that the communication wire 1 can obtain particularly high bending resistance. Further, when the signal line 10 is configured as a twisted line, it becomes easier to maintain a predetermined inter-conductor distance even after a twisting operation.
  • the conductor diameter of each conductor 11 is not particularly specified, but as shown in the above formula (1), the smaller the conductor diameter (d), the higher the characteristic impedance. However, it becomes easy to secure a predetermined characteristic impedance. Further, reducing the diameter of the conductor itself also contributes to reducing the diameter of the communication wire 1 .
  • the characteristic impedance of the communication wire 1 is 100 ⁇ 10 ⁇
  • a configuration in which the diameter of the conductor is 0.55 mm or more and 0.75 mm or less can be exemplified as a suitable example. It is preferable that the distance between the conductors is, for example, 0.5 times or more and 1.0 times or less the conductor diameter.
  • Suitable examples of the metal material forming each conductor 11 include copper, copper alloys, aluminum, and aluminum alloys. The higher the tensile strength of the constituent material of the conductor 11, the smaller the diameter of the conductor 11 can be achieved while maintaining the strength of the conductor 11 sufficiently. If the conductor 11 is made of a copper alloy, high tensile strength is likely to be obtained.
  • the insulating material that constitutes the covering material 12 is not particularly limited, either, but it is preferable that the main component is a polymer material.
  • the polymer material include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polystyrene, polytetrafluoroethylene, polyphenylene sulfide, and the like, as well as the constituent materials of the sheath 40 described above.
  • polyolefin which is a nonpolar polymer and particularly a polymer giving a low dielectric constant and dielectric loss tangent, can be preferably used.
  • the main component (component occupying 50% by mass or more) of the polymer material is homopolyolefin such as homopolypropylene.
  • the polymer material constituting the covering material 12 only one kind may be used, or two or more kinds may be mixed.
  • Each polymer material constituting the covering material 12 has a melt flow rate (MFR) of 7.0 g/10 min or less, further 3.0 g/10 min or less, measured with a load of 2.16 kg at 230°C. It is preferably 0 g/min or less. Also, the insulating material as a whole preferably has those MFRs. When using a polymer material with an MFR exceeding 7.0 g/10 min, it is desirable to limit the content of such polymer material to 10% by mass or less in all polymer components constituting the coating material 12 .
  • the fluidity of the insulating material forming the covering material 12 does not become too high, thereby suppressing the phenomenon that the constituent material of the covering material 12 is densely filled between the conductors 11, 11, It becomes easier to reliably form the hollow portion S. Further, when forming the covering material 12 by extrusion molding or the like, it becomes easy to form a layer of the covering material 12 having a predetermined thickness in close contact with the surfaces of the conductors 11 . In particular, when each conductor 11 is composed of twisted wires, it is possible to form the covering material 12 that can firmly hold the conductors 11, 11 in a predetermined relative position by inserting an insulating material into the gaps between the wires 11a. can. Although there is no particular lower limit for the MFR of the polymer component, it is preferably 0.1 g/10 min or more from the viewpoint of smooth formation of the covering material 12 by extrusion molding.
  • the coating material 12 may optionally contain additives such as flame retardants, copper damage inhibitors, and antioxidants.
  • additives such as flame retardants, copper damage inhibitors, and antioxidants.
  • the content of the polar additive is preferably suppressed to 10 parts by mass or less with respect to 100 parts by mass of the polymer component.
  • the covering material 12 preferably does not have a foamed structure.
  • the form having a foamed structure is not excluded, and the insulating material forming the covering material 12 may be foamed within a range in which the strength of the material can be ensured.
  • the thickness of the coating material 12 is not particularly limited, it can be, for example, an average thickness of 0.25 mm or more from the viewpoint of enhancing the holding power for the conductors 11 and the bending resistance of the signal line 10. .
  • the average thickness of the covering material 12 is preferably 0.45 mm or less.
  • the pair of conductors 11, 11 are arranged in parallel with a predetermined gap, and the insulating material is extruded around the conductors 11, 11.
  • the hollow portion S can be formed by not placing an insulating material between the conductors 11 , 11 .
  • a metal mold with a projecting pipe in the center may be used as the point of the mold used for extrusion molding. With this pipe sandwiched between a pair of conductors 11, 11, a hollow portion S not occupied by the insulating material is formed by extruding a molten insulating material around the pipe. can be left as Thus, the signal line 10 can be obtained as a parallel line.
  • twisting self-twisting
  • the signal wire 10 has the covering material 12 formed to have an annular cross-section.
  • the configuration of the covering material is not limited to such a ring-shaped cross-section, but it contacts the surfaces of the pair of conductors 11, 11 to integrally cover the outer circumference of the pair of conductors 11, 11, and the hollow portion It is sufficient if it has The hollow portion is formed continuously along the axial direction of the conductors 11, 11 between the pair of conductors 11, 11 as a region not occupied by the insulating material, and the covering material The conductors 11, 11 are held at positions separated from each other with the hollow portion interposed therebetween.
  • FIG. 10' of the communication wire As an example of a case where a coating material having a shape other than a circular cross section is provided, FIG. Regarding the configuration common to the communication wire 1 described above, each member is indicated by the corresponding reference numeral in the figure, and the description thereof is omitted.
  • the hollow portion S' existing inside the covering material 12' is a through hole surrounded by the insulating material forming the covering material 12'. is formed as That is, unlike the communication wire 1 in FIG. 1, the pair of conductors 11, 11 directly face the hollow portion S' and directly face each other via the hollow portion S'. Between 11 and hollow portion S', an insulating material forming covering material 12' is interposed. In this case as well, the air that occupies the hollow portion S' lowers the effective dielectric constant of the signal line 10'. ' can be achieved.
  • the communication wire 1 having the covering member 12 having the annular cross-section shown in FIG. is superior in the effect that the diameter of the communication wire can be reduced by utilizing the contribution of the air in the hollow portion because the hollow portion occupies a relatively large space in the signal line.
  • the insulating material constituting the covering material is arranged also at the position between the conductors 11, 11, the effect of firmly holding the relative positions of the conductors 11, 11 by the covering material is excellent.
  • the form of the covering material may be selected according to the specific use of the communication wire.
  • sample A a communication wire provided with a signal wire having a covering material with an annular cross section was produced as shown in FIG. Specifically, an insulating material was extruded around a pair of parallel conductors to form a covering material. At this time, as a point of the mold for extrusion molding, a pipe protruding in the center is used, and by performing extrusion molding with the pipe sandwiched between a pair of conductors, an insulating property is formed between the conductors. A cavity was formed that was not occupied by material. As the conductor, a twisted wire obtained by twisting seven copper alloy wires was used. The outer diameter of the conductor was 0.609 mm.
  • the distance between conductors was set to 0.35 mm.
  • Material 1 whose composition is shown below was used, and the covering material had an average thickness of 0.4 mm.
  • the obtained signal line was twisted to configure a signal line as a twisted line.
  • the twist pitch was 10 mm.
  • the prepared signal line was cut perpendicularly to the axial direction, and the state of the cross section was observed. It was confirmed that the two conductors were held in the state.
  • a metal foil and a metal braid were arranged in this order on the outer circumference of the obtained signal line.
  • a copper foil having a PET base thickness: copper thin film 9 ⁇ m, PET film 16 ⁇ m
  • TA wire tin-plated annealed copper wire
  • the sheath was extruded on the outermost periphery.
  • the insulating material for forming the sheath a mixture of the components shown below was used, and the average thickness of the sheath was 0.4 mm.
  • TPO Olefin-based thermoplastic polyolefin
  • SEBS ExxonMobil "Santoprene 203-40”
  • SEBS thermoplastic elastomer
  • Antioxidant 2 parts by mass of "Irganox 1010” manufactured by BASF Corporation
  • Magnesium hydroxide 120 parts by mass of "Kisuma 5" manufactured by Kyowa Kagaku Co., Ltd.
  • samples B1 and B2 As samples B1 and B2, as shown in FIG. 3, communication wires were produced using insulated wires in which individual insulating coatings were formed on the outer circumferences of a pair of conductors. Specifically, the material 1 was extruded to form an insulating coating on the outer periphery of the same conductor as used for the sample A, thereby obtaining an insulated wire. The insulation coating does not have a foamed structure. Two pieces of this insulated wire were cut out and twisted together at a twist pitch of 10 mm to obtain a signal wire made of a twisted pair wire. A metal foil, a metal braid, and a sheath were formed on the outer circumference of this signal line in the same manner as in sample A.
  • Samples B1 and B2 differ from each other in the thickness of the insulating coating of the insulated wires forming the signal lines.
  • the thickness of the insulating coating is set so that the characteristic impedance of the communication wire is 100 ⁇ , and the thickness is 0.45 mm.
  • the thickness of the insulation coating is set so that the characteristic impedance of the communication wire is 90 ⁇ , which is the lower limit of the range of 100 ⁇ 10 ⁇ , and the thickness is thinner than that of sample B1. 0.41 mm.
  • samples C1 and C2 As samples C1 and C2, as shown in FIG. 3, communication wires were produced using insulated wires in which individual insulating coatings were formed on the outer circumferences of a pair of conductors.
  • the insulating coating was assumed to have a foam structure.
  • the samples were prepared in the same manner as the samples B1 and B2. However, a material obtained by adding a foaming agent to Material 1 was used as a constituent material of the insulation coating, and the thickness of the insulation coating was set as follows.
  • As a foaming agent 2.5 parts by mass of “Cellmic MB3274” manufactured by Sankyo Kasei Co., Ltd. was mixed with material 1 by dry blending.
  • the standard for the number of parts by mass is the same as the component composition of Material 1, and the total of the polymer components is 100 parts by mass. Since the material contained a foaming agent, the heat during extrusion caused the foaming agent to pyrolyze, forming a foamed structure in the insulation coating.
  • Samples C1 and C2 differ from each other in the thickness of the insulating coating of the insulated wires forming the signal lines.
  • the thickness of the insulating coating is set so that the characteristic impedance of the communication wire is 110 ⁇ , which is the upper limit of the range of 100 ⁇ 10 ⁇ , and the thickness is 0.45 mm.
  • the thickness of the insulating coating is set so that the characteristic impedance of the communication wire is 100 ⁇ , and the thickness is 0.41 mm, which is thinner than sample C1.
  • Outer diameter of signal wire The outer diameter of the signal wire was measured for each sample.
  • the major diameter that is, the length of the longest straight line out of the straight lines crossing the outer circumference of the cross section of the signal wire, was measured as the outer diameter. .
  • Table 1 summarizes the structure of the signal line covering (coating material or insulating coating), the initial characteristic impedance value, the evaluation result of the characteristic impedance change due to bending, and the measured value of the outer diameter of the signal line for each sample. .
  • the outer circumference of the insulated wire is covered with a non-foaming insulation coating, and air is not included inside the signal wire, so that the effective dielectric constant of the signal wire is larger than that of sample A, and is 100 ⁇ 10 ⁇ . It is interpreted that this is because it is necessary to provide a large distance between conductors in order to ensure the characteristic impedance.
  • sample B2 by setting the characteristic impedance to the lower limit of the range of 100 ⁇ 10 ⁇ , the outer diameter of the signal line is smaller than that of sample B1, which is set to the median value of 100 ⁇ . Larger than Sample A.
  • both the sample C1 with a thick insulation coating and the sample C2 with a thin insulation coating are as designed. has been confirmed to have a characteristic impedance in the range of 100 ⁇ 10 ⁇ .
  • the sample C2 with a thin insulating coating has a very low flex resistance (C)
  • the sample C1 with a thick insulating coating has a high resistance to bending.
  • the bending resistance is low (B).
  • Sample C1 corresponds to the one with the thickest insulating coating within the range in which the characteristic impedance falls within 100 ⁇ 10 ⁇ , but it can be said that sufficient flex resistance is not obtained even with that thickness. Furthermore, focusing on the outer diameter of the signal line, the sample C1 with a characteristic impedance of 110 ⁇ has the same outer diameter as the non-foamed sample B1 with a characteristic impedance of 100 ⁇ . Further, the sample C2 with a characteristic impedance of 100 ⁇ has the same outer diameter as the non-foamed sample B2 with a characteristic impedance of 90 ⁇ .
  • sample C2 has a larger outer diameter of the signal line, which means that the diameter of the signal line is reduced due to foaming of the insulating coating. It can be said that the effect does not reach the effect of reducing the diameter by applying a covering material having a hollow portion.
  • the distance between the conductors required to obtain a predetermined characteristic impedance can be reduced, and the conductors can be individually covered with insulation. It was confirmed that the diameter of the signal line can be reduced compared to the case where Compared to the case where the insulating coating is made thinner by foaming the insulating coating, the use of the coating material having the hollow portion provides a higher effect of reducing the diameter. In addition, since it is not necessary to foam the constituent material of the covering material having a hollow portion in order to reduce the dielectric constant, the covering material has a high material strength, and the conductor is individually covered with a non-foaming insulation coating.
  • a signal line was fabricated in the same manner as sample A of test [1] above. However, as materials for forming the covering material by extrusion molding, three compositions having component compositions shown in Table 2 below were used. Of the three types, material 1 is the same as used in test [1] above. That is, the signal line produced using material 1 is the same as the signal line of sample A. Table 2 shows the blending amount of each component in units of parts by mass. For each polypropylene resin (PP), the MFR value measured at 230° C. with a load of 2.16 kg is also shown.
  • PP polypropylene resin
  • Block PP2 "Novatec FB3B” manufactured by Japan Polypropylene
  • Block PP3 "Novatec MA3U” manufactured by Japan Polypropylene

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Communication Cables (AREA)

Abstract

耐屈曲性を確保しながら細径化することができる通信用電線を提供する。 1対の導体11,11と、絶縁性材料より構成され、前記1対の導体11,11の表面に接触して、前記1対の導体11,11の外周を一体に被覆する被覆材12と、を有する信号線10を含み、前記被覆材12は、前記1対の導体11,11の間の位置に、前記導体11,11の軸線方向に沿って連続して、前記絶縁性材料に占められない中空部Sを有しており、前記1対の導体11,11を、前記中空部Sを挟んで相互に離間した位置に保持する、通信用電線1とする。

Description

通信用電線
 本開示は、通信用電線に関する。
 差動信号を伝送するための通信用電線として、図3に示す通信用電線9のように、1対の絶縁電線91,91よりなる信号線90を含むものが、一般的に用いられている。信号線90においては、1対の絶縁電線91,91が並列に並べられるか(パラレルペア)、相互に撚り合わせられる(ツイストペア)。信号線90の外周には、適宜、遮蔽のためのシールド体としての金属箔92および金属編組93と、通信用電線全体を保護する最外層のシース94が設けられる。各絶縁電線91は、電気信号を伝送する導体91aと、導体91aを被覆する絶縁被覆91bと、から構成される。その種の通信用電線は、例えば特許文献1~3に開示されている。
 自動車分野等において、通信用電線を細径化することの需要が大きい。1対の絶縁電線91,91を含む通信用電線9を細径化するために、各絶縁電線91の絶縁被覆91bを薄くすることが考えられる。しかし、特許文献2,3にも記載されるとおり、同じ導体径の導体91aに対して、絶縁被覆91bを薄くすると、通信用電線9の特性インピーダンスが低くなり、必要な水準の特性インピーダンスを確保できなくなる可能性がある。そこで、必要な特性インピーダンスを確保しながら絶縁被覆91bを薄肉化し、通信用電線9を細径化するための手段の1つとして、各絶縁電線91を構成する絶縁被覆91bに、誘電率の低い材料を使用する方法がある。絶縁被覆91bの誘電率が低くなると、通信用電線9の特性インピーダンスが高くなるため、絶縁被覆91bを薄く形成しても、必要な特性インピーダンスを確保しやすくなる。しかし、通信用電線の絶縁被覆として一般的に使用されるポリエチレンやポリプロピレン等のオレフィン系樹脂は、各種樹脂の中でも低い誘電率を有しており、材料種の選択によってさらに絶縁被覆91bの誘電率を大幅に下げることは難しい。そこで、特許文献3にも記載されるとおり、各絶縁電線91を構成する絶縁被覆91bを発泡化させ、多数の気泡を形成する方法がとられる場合がある。気泡によって絶縁被覆91bの誘電率を低減することができ、その結果として、絶縁被覆91bの薄肉化による通信用電線9の細径化が可能となる。
国際公開第2019/221152号 特開2017-183178号公報 国際公開第2018/117204号 特開2015-191877号公報 特開2008-103179号公報
 上記のように、通信用電線を細径化する手段として、通信用電線を構成する1対の絶縁電線において、絶縁被覆を発泡化し、空気の誘電率の低さを利用して絶縁被覆の誘電率を下げ、必要な特性インピーダンスを確保しながら絶縁被覆を薄肉化するという方法がある。絶縁被覆の発泡倍率を高めるほど、誘電率を低減する効果が大きくなるが、発泡倍率を高めると、絶縁被覆の材料強度が低くなってしまう。絶縁被覆の材料強度の低下は、通信用電線の耐屈曲性の低下にもつながる。よって、必要な材料強度を確保することを考えると、絶縁被覆の発泡倍率を上昇させて誘電率を下げることには、限界がある。つまり、絶縁被覆の薄肉化による通信用電線の細径化にも限界が生じる。空気の比誘電率は1.0であり、通常は2以上である有機ポリマーの比誘電率と比較して顕著に低いため、空気を利用して通信用電線の実効誘電率を下げることで、通信用電線の細径化に高い効果が得られるが、従来の発泡電線を用いる形態では、通信用電線の耐屈曲性の確保を、空気を利用した通信用電線の細径化と両立することは難しい。
 そこで、耐屈曲性を確保しながら細径化することができる通信用電線を提供することを課題とする。
 本開示の通信用電線は、1対の導体と、絶縁性材料より構成され、前記1対の導体の表面に接触して、前記1対の導体の外周を一体に被覆する被覆材と、を有する信号線を含み、前記被覆材は、前記1対の導体の間の位置に、前記導体の軸線方向に沿って連続して、前記絶縁性材料に占められない中空部を有しており、前記1対の導体を、前記中空部を挟んで相互に離間した位置に保持する。
 本開示にかかる通信用電線は、耐屈曲性を確保しながら細径化することができる。
図1は、本開示の一実施形態にかかる通信用電線を示す断面図である。 図2は、変形形態にかかる通信用電線を示す断面図である。 図3は、1対の絶縁電線を含む、従来一般の通信用電線の例を示す断面図である。
[本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。
 本開示にかかる通信用電線は、1対の導体と、絶縁性材料より構成され、前記1対の導体の表面に接触して、前記1対の導体の外周を一体に被覆する被覆材と、を有する信号線を含み、前記被覆材は、前記1対の導体の間の位置に、前記導体の軸線方向に沿って連続して、前記絶縁性材料に占められない中空部を有しており、前記1対の導体を、前記中空部を挟んで相互に離間した位置に保持する。
 上記通信用電線の信号線においては、1対の導体の外周を一体に被覆する被覆材において、1対の導体の間の位置に、中空部が形成されている。一般に、1対の導体を有する信号線において導体間距離を小さくすると、特性インピーダンスが低くなるが、上記の通信用電線においては、導体間に空気に占められた中空部が存在していることで、信号線の実効誘電率が低くなるため、中空部が設けられない場合と比較して、導体間距離を小さくしても、十分な高さの特性インピーダンスを確保することができる。導体間距離を小さくすることで、信号線、さらに通信用電線全体の外径を小さくすることができる。また、中空部によって信号線の実効誘電率を効果的に低減できるため、被覆材の誘電率の低減を目的として、被覆材を構成する絶縁性材料として発泡倍率の高い材料を用いる必要はなく、被覆材の材料強度を高く確保することができる。その結果として、通信用電線の耐屈曲性も高く保たれる。このように、1対の導体をそれぞれ個別に被覆する絶縁被覆の代わりに、1対の導体を一体に被覆し、中空部を備えた被覆材を適用することで、通信用電線において、耐屈曲性の確保と、空気の誘電率の低さを利用した細径化を、両立することができる。
 ここで、前記被覆材は、相互に離間して配置された前記1対の導体の外周を包囲しており、前記中空部は、前記絶縁性材料を介さず前記1対の導体のそれぞれに面する部位を有するとよい。このような被覆材は、信号線において、1対の導体の外周を中空筒状(断面環状)に被覆するものとなる。中空部が1対の導体のそれぞれに面しており、1対の導体が、絶縁性材料を介さずに、中空部の空気の層を挟んで直接対向することになるので、信号線の実効誘電率を低減する効果に特に優れる。そのため、導体間距離を小さくすることで、必要な特性インピーダンスを確保しながら、通信用電線の細径化を効果的に達成することができる。
 前記信号線において、前記1対の導体と前記被覆材の集合体に捩りが加えられ、前記1対の導体が、前記被覆材に保持された状態で、相互に螺旋状に交差されているとよい。導体が螺旋状に交差されることで、信号線において、外部からのノイズの影響を小さく抑えることができる。信号線に捻りが加えられていることで、捻りを加えない場合と比較すると、通信用電線の外径が大きくなりやすいが、上記のように、中空部を設けることによる細径化の効果により、通信用電線の外径を十分に小さく抑えることが可能となる。
 前記1対の導体はそれぞれ、複数の素線が撚り合わせられた撚線として構成されているとよい。すると、被覆材を構成する絶縁性材料が、導体の外周に対して、広い表面積で接することになる。そのため、1対の導体を、中空部を挟んで相互に離間した所定の相対位置に、強固に保持することができ、耐屈曲性の向上に高い効果を示す。
 前記信号線の長径が、前記1対の導体のそれぞれの外径の4.5倍以下であるとよい。すると、通信用電線において、高い細径性が達成される。本開示にかかる通信用電線においては、被覆材に中空部を設けることで、導体間距離を短くし、高い細径化効果が得られるため、導体と比較した信号線の長径を、そのように小さくすることも可能である。
 前記被覆材を構成する絶縁性材料は、1種または2種以上のポリマー材料を含み、前記1種または2種以上のポリマー材料はそれぞれ、230℃にて2.16kgの荷重で測定されるメルトフローレートが、7.0g/10min以下であるとよい。被覆材を構成する絶縁性材料が、低いメルトフローレートを有するポリマー材料より構成されることで、溶融させた絶縁性材料を1対の導体の外周に配置して被覆材を形成する際に、導体の間に中空部を確保しやすくなる。また、所定の厚さの被覆材を、各導体の表面に密着させて形成しやすくなる。すると、1対の導体を、中空部を挟んで相互に離間した所定の相対位置に、強固に保持することができ、耐屈曲性の向上に高い効果を示す。
 前記通信用電線はさらに、前記信号線の外側を囲んで配置された、金属材料を含むシールド体を有するとよい。すると、シールド体によって、信号線に対して遮蔽を行い、ノイズの影響を低減することができる。
 前記通信用電線はさらに、前記信号線の外側を囲んで、最外周に配置された絶縁性のシースを有するとよい。すると、シースによって、信号線、またシールド体を保護することができる。
[本開示の実施形態の詳細]
 以下に、本開示の実施形態について、図面を用いて詳細に説明する。本明細書において、「平行」等、部材の形状や配置を示す語には、幾何的に厳密な概念のみならず、通信用電線として一般に許容される範囲の誤差も含むものとする。また、特記しない限り、各種特性値は、室温、大気中にて得られる値を指す。
<通信用電線の構成>
 図1に、本開示の一実施形態にかかる通信用電線1を、軸線方向に垂直に切断した断面図にて表示する。
 通信用電線1は、信号線10を備えている。信号線10の構成については後に詳しく説明するが、1対の導体11,11と、それら導体11,11の外周を被覆する絶縁性材料より構成された被覆材12とを有している。通信用電線1は、信号線10に加えて、信号線10の外側、つまり被覆材12の外側に配置されて、金属材料を含むシールド体20,30を有していることが好ましい。また、通信用電線1は、信号線10の外側を囲んで、通信用電線1の最外周に配置された絶縁性のシース40を有していることが好ましい。通信用電線1は、信号線10、シールド体20,30、シース40以外の構成部材を含んでもよいが、細径性の確保の観点からは、それら以外の構成部材を含まないことが好ましい。通信用電線1は、差動信号の伝送に用いることができる。通信周波数は特に限定されるものではないが、1MHz以上20GHz以下の周波数帯に好適に適用することができる。
 信号線10の外側に設けられるシールド体は、金属材料を含むものであれば、その形態を限定されるものではないが、金属箔20と金属編組30の少なくとも一方、好ましくは両方より構成されるとよい。図示した形態では、信号線10の外周に金属箔20を設け、さらに金属箔20の外側に金属編組30を積層している。シールド体20,30は、外部から信号線10に侵入するノイズ、および信号線10から外部に放出されるノイズを遮蔽する役割を果たす。金属箔20を内側、金属編組30を外側に積層することで、ノイズ低減の効果が特に高くなる。
 金属箔20は、独立した金属薄膜よりなる形態のほか、高分子フィルム等の基材に、蒸着、めっき、接着等によって金属層が結合されたものであってもよい。金属箔20を構成する金属種は特に限定されるものではないが、アルミニウムまたはアルミニウム合金、銅または銅合金を好適に例示することができる。金属編組30は、細い金属素線が、編み込まれて中空筒状に成形された編組体として構成されている。金属編組30を構成する金属材料としては、銅、銅合金、アルミニウム、アルミニウム合金、またそれらの金属素線の外周にスズ等によるめっきを施したものを、好適に例示することができる。
 さらに、通信用電線1の最外周に設けられるシース40は、絶縁性のポリマー材料より構成されており、内側の各部材、つまり信号線10やシールド体20,30を物理的に保護する役割や、水等との接触による通信用電線1の特性への影響を抑制する役割を果たす。シース40を構成するポリマーの種類は、特に限定されるものではないが、信号線10の特性インピーダンスとして所定の高い値を確保しやすくする観点から、各種ポリマー材料の中で低い誘電率を有する材料を用いることが好ましい。好適に利用できるポリマー材料として、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等を挙げることができる。中でも、無極性のポリマー材料であり、特に低い誘電率を有するポリオレフィンを好適に用いることができる。シース40を構成するポリマー材料としては、1種のみを用いても、2種以上を混合してもよい。シース40は、ポリマー材料に加え、適宜、難燃剤や酸化防止剤等の添加剤を含有してもよい。
<信号線の構成>
 上記のように、通信用電線1を構成する信号線10は、1対の導体11,11と、それら1対の導体11,11の外周を被覆する被覆材12とを有している。被覆材12は、絶縁性材料より構成され、1対の導体11,11の外周を一体に被覆している。各導体11の外周には、各導体11を個別に被覆する絶縁被覆(図3の91bに相当)は形成されておらず、被覆材12が導体11,11の外周に直接接触している。
 被覆材12は、1対の導体11,11の間の位置に、中空部Sを有している。中空部Sは、被覆材12を構成する絶縁性材料、あるいは他の固体物質に占められない空間であり、内部が空気に占められている。中空部Sは、導体11,11の軸線方向に沿って連続しており、相互に孤立した多数の気泡として構成される発泡樹脂の発泡構造とは相違している。好ましくは、信号線10の端部等において、加工等によって不可避的に中空構造が消失してしまう箇所を除き、信号線10の軸線方向の全域にわたって、中空部Sが連続しているとよい。
 被覆材12は、1対の導体11,11を、中空部Sを挟んで相互に離間した位置に保持している。つまり、被覆材12は、1対の導体11,11を、相互に離間し、また相互に絶縁された状態で、所定の相対位置に保持している。導体11,11の相対位置の保持は、被覆材12を構成する絶縁性材料が導体11,11の表面に密着(接着)することで達成されている。
 図1に示した形態では、被覆材12は、相互に離間して配置された1対の導体11,11の外周を包囲しており、中空部Sが、被覆材12を構成する絶縁性材料を介さず、1対の導体11,11のそれぞれに面する部位を有している。つまり、被覆材12が、中空筒状、すなわち断面形状で表現すると環状に形成されており、その被覆材12の中空筒状構造の中に、1対の導体11,11を、相互に離間した状態で保持している。1対の導体11,11は、被覆材12に囲まれた空間に収容され、被覆材12を構成する絶縁性材料を介さずに、中空部Sの空気の層を挟んで直接相互に対向(隣接)した状態となっている。好ましくは、1対の導体11,11の間の領域のうち、押出成形等による被覆材12の形成時に不可避的に絶縁性材料が侵入する領域を除いた全域が、中空部Sとなっているとよい。信号線10の断面において、おおむね、1対の導体11,11の間の領域のうち、70%以上、さらには90%以上の体積を占めて、中空部Sが形成されているとよい。
 信号線10においては、導体11,11が平行に並べられ、それらの導体11,11の外周に被覆材12が形成されたパラレル線の構造をとっていてもよい。しかし、1対の導体11,11が相互に撚られたツイスト線となっていることが好ましい。ここで、ツイスト線とは、1対の導体11,11と被覆材12の集合体に捩りが加えられ、1対の導体11,11が、被覆材12に保持された状態で、相互に螺旋状に交差されている状態を指す。つまり、ツイスト線は、平行に並べられた導体11,11の外周に被覆材12が形成されたパラレル線として、導体11,11と被覆材12の集合体を形成したうえで、その集合体全体に対して捻り(自己ツイスト)を加えた構造を有している。信号線10をツイスト線として構成することで、パラレル線である場合と比較して、外部からの同相モードノイズの影響を低減することができる。また、信号線10の耐屈曲性が高くなり、特性インピーダンス等、通信にかかる特性が、屈曲を受けた際に変化を起こしにくくなる。
 本実施形態にかかる通信用電線1の信号線10は、被覆材12の内部に中空部Sを有しており、ポリマー材料等、被覆材12構成する材料よりも低い誘電率を有する物質である空気が、その中空部Sを満たしている。そのため、中空部Sを有さない形態、例えば図3に示すように、各導体が個別に絶縁被覆によって被覆された絶縁電線が相互に接して複数配置されている形態と比較して、通信用電線1の実効誘電率を低減することができる。
 一般に、1対の導体を含む信号線の特性インピーダンスは、下の式(1)によって表現される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Zは特性インピーダンス、εeffは実効誘電率、dは導体径、sは導体間距離(1対の導体の中心間の距離)、Aは定数である。
 通信用電線1においては、求められる通信特性や規格に応じて、例えば100±10Ω等、特性インピーダンス値が定められている。式(1)に示されるように、信号線10の実効誘電率εeffが小さくなると、特性インピーダンスが大きくなる。よって、導体間距離sを小さくしても、必要な大きさの特性インピーダンスが得られる。被覆材12の内部に中空部Sを設け、実効誘電率εeffを小さくすることで、1対の導体11,11を相互に近づけて配置し、導体間距離sを小さくしても、特性インピーダンスが過度に小さくならず、100±10Ω等、必要な大きさの特性インピーダンスを確保することができる。信号線10において、導体間距離を小さくすれば、信号線10、さらには通信用電線1全体を細径化することができる。特に、信号線10がツイスト線として構成されている場合には、パラレル線の場合よりも、ツイスト構造に起因して信号線10の外径が大きくなりやすいが、中空部Sを設けることで、ツイスト線の場合にも、効果的に信号線10の細径化を達成することができる。
 また、被覆材12において、1対の導体11,11の間の位置に中空部Sを設けておくことで、信号線10の実効誘電率を効果的に低減することができる。よって、被覆材12を構成する絶縁性材料の誘電率を下げることを目的として、被覆材12に発泡構造を形成する必要がない。つまり、被覆材12を発泡させなくても、中空部Sによって、空気の誘電率の低さを利用して、必要な特性インピーダンスを確保しながらの信号線10の細径化を達成することができる。被覆材12を発泡させないことで、あるいは発泡させるとしても低い発泡倍率に留めておくことで、被覆材12において高い材料強度を確保することができる。その結果、通信用電線1が高い耐屈曲性を有するものとなり、繰り返して屈曲を受けても、所定範囲の特性インピーダンス等、通信に関わる特性における変化を小さく抑えることができる。自動車分野において、高速通信の需要が増しており、車両内での省スペース化のために通信用電線を細径化すること、また振動等、屈曲を伴う物理的刺激を経ても必要な通信性能を維持できる高い耐屈曲性を備えるものとすることは、自動車用の通信用電線において望ましい。
 このように、本実施形態にかかる通信用電線1においては、信号線10を構成する被覆材12が、1対の導体11,11の間の箇所に中空部Sを有していることで、所定の特性インピーダンスを確保しながら細径化を達成することができ、同時に高い耐屈曲性を備えるものとなる。細径化の程度は、信号線10の具体的な構成材料や要求される通信特性等に応じて適宜定めればよいが、例えば、信号線10の長径を、各導体11の導体径の5倍以下、さらには4.5倍以下、4倍以下に抑えることができる。あるいは、信号線10の長径を、2.8mm以下、さらには2.5mm以下に抑えることができる。ここで、信号線10の長径とは、信号線10の断面の外周を横切る直線のうち最長の直線の長さを指す。図1では、信号線10の横幅が長径に相当する。信号線10がツイスト線として構成される場合には、導体11,11と被覆材12の集合体に対して捻りを加える前の状態で、信号線10の長径を評価すればよい。
 信号線10に含まれる1対の導体11,11の具体的な構成は特に限定されるものではなく、それぞれ単線より構成されても、複数の素線11aの集合体として構成されてもよい。好ましくは、導体11,11は、それぞれ、複数の素線11aが撚り合わせられた撚線として構成されることが好ましい。撚線は高い柔軟性を有すため、信号線10の耐屈曲性を高めるものとなる。また、撚線は、各導体11全体としての表面に複数の素線11aの形状に由来する凹凸構造を有しており、絶縁性材料の押出成形等によって被覆材12を形成する際に、その凹凸構造の凹部に絶縁性材料が入り込むことで、導体11,11と被覆材12の間の接触面積が大きくなる。すると、被覆材12が導体11,11に対して強く密着するようになり、被覆材12によって1対の導体11,11を所定の相対位置に強固に保持できるようになる。その結果、屈曲等の物理的刺激を経ても導体11,11の相対位置が安定に保持されることになり、通信用電線1において特に高い耐屈曲性が得られる。また、信号線10がツイスト線として構成される場合には、捻りの操作を経ても、所定の導体間距離を保ちやすくなる。
 各導体11の導体径は特に指定されるものではないが、上記式(1)に示されるとおり、導体径(d)を小さくするほど特性インピーダンスが高くなるため、導体間距離(s)を小さくしても所定の特性インピーダンスを確保しやすくなる。また、導体径を小さくすること自体も、通信用電線1の細径化に貢献する。例えば、通信用電線1の特性インピーダンスを100±10Ωとする場合に、導体径を0.55mm以上、また0.75mm以下とする形態を、好適なものとして例示することができる。導体間距離は、例えば導体径の0.5倍以上、また1.0倍以下とすることが好ましい。
 各導体11を構成する金属材料としては、銅、銅合金、アルミニウム、アルミニウム合金を好適に例示することができる。導体11の構成材料が高い引張強度を有するほど、導体11の強度を十分に保ちながら、導体11の細径化を達成することができる。導体11を銅合金より構成すれば、高い引張強度が得られやすい。
 被覆材12を構成する絶縁性材料も特に限定されるものではないが、ポリマー材料を主成分とすることが好ましい。ポリマー材料としては、上記でシース40の構成材料として挙げたものと同様、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等を挙げることができる。中でも、無極性のポリマーであり、特に低い誘電率および誘電正接を与えるポリマーであるポリオレフィンを好適に用いることができる。中でも、ポリマー材料の主成分(50質量%以上を占める成分)を、ホモポリプロピレンをはじめとするホモポリオレフィンとすることが好ましい。被覆材12を構成するポリマー材料としては、1種のみを用いても、2種以上を混合してもよい。
 被覆材12を構成する各ポリマー材料は、230℃にて2.16kgの荷重で測定されるメルトフローレート(MFR)が、7.0g/10min以下、さらには3.0g/10min以下、1.0g/min以下であることが好ましい。また、絶縁性材料全体としても、それらのMFRを有することが好ましい。MFRが7.0g/10minを超えるポリマー材料を用いる場合には、被覆材12を構成する全ポリマー成分中、そのようなポリマー材料の含有量を、10質量%以下に留めておくことが望ましい。これらの場合には、被覆材12を構成する絶縁性材料の流動性が高くなりすぎないことで、導体11,11の間に被覆材12の構成材料が密に充填される現象を抑制し、中空部Sを確実に形成しやすくなる。また、押出成形等によって被覆材12を構成する際に、所定の厚みを有する被覆材12の層を、導体11,11の表面に密着させて形成しやすくなる。特に、各導体11が撚線より構成される場合には、素線11aの隙間に絶縁性材料が食い込み、導体11,11を所定の相対位置に強固に保持できる被覆材12を形成することができる。ポリマー成分のMFRに特に下限は設けられないが、押出成形による被覆材12の形成を円滑に行う等の観点から、0.1g/10min以上であるとよい。
被覆材12は、ポリマー材料に加え、適宜、難燃剤や銅害防止剤、酸化防止剤等の添加剤を含有してもよい。ただし、被覆材12の誘電率の過度の上昇を避ける観点から、極性の添加剤の含有量は、ポリマー成分100質量部に対して、10質量部以下に抑えておくことが好ましい。被覆材12は、被覆材12の強度を確保し、通信用電線1の耐屈曲性を高める観点から、発泡構造を有さないものであることが好ましい。ただし、発泡構造を有する形態を排除するものではなく、材料強度を確保できる範囲内で被覆材12を構成する絶縁性材料を発泡させておいてもよい。被覆材12の厚さは特に限定されるものではないが、導体11,11に対する保持力や信号線10の耐屈曲性を高める等の観点から、例えば平均で0.25mm以上とすることができる。一方、通信用電線1の細径性を高める観点から、被覆材12の厚さは、平均で0.45mm以下とするとよい。
 信号線10を形成する際には、1対の導体11,11を、所定の間隔を空けて平行に並べた状態で、絶縁性材料を導体11,11の外周に押出成形すればよい。この際、導体11,11の間の位置に絶縁性材料が配置されないようにすることで、中空部Sを形成することができる。具体的には、例えば、押出成形に用いる金型のポイントとして、中央部にパイプが突出したものを用いればよい。このパイプを1対の導体11,11の間に挟んだ状態で、パイプの周囲に溶融した絶縁性材料を押し出すことで、パイプが挟まれた箇所を、絶縁性材料に占められない中空部Sとして残すことができる。このようにして信号線10をパラレル線として得ることができる。信号線10をツイスト線とする場合には、得られたパラレル線を構成する1対の導体11,11と被覆材12の集合体全体に対して、捻り(自己ツイスト)を加えればよい。
<変形形態にかかる通信用電線>
 以上に説明した本開示の一実施形態にかかる通信用電線1においては、信号線10が断面環状に形成された被覆材12を有していた。しかし、被覆材の構成は、そのように断面環状のものに限られず、1対の導体11,11の表面に接触して、1対の導体11,11の外周を一体に被覆し、中空部を有するものであればよい。中空部は、1対の導体11,11の間の位置に、導体11,11の軸線方向に沿って連続して、絶縁性材料に占められない領域として形成され、被覆材が、1対の導体11,11を、中空部を挟んで相互に離間した位置に保持する。
 断面環状以外の形態の被覆材を備える場合の一例として、変形形態にかかる通信用電線1’の構成を、図2に断面図にて示す。上記で説明した通信用電線1と共通する構成については、各部材を図中に対応する符号にて表示し、説明を省略する。この変形形態にかかる通信用電線の信号線10’においては、被覆材12’の内部に存在する中空部S’が、被覆材12’を構成する絶縁性材料に全周を囲まれた貫通孔として形成されている。つまり、図1の通信用電線1のように、1対の導体11,11が、中空部S’に直接面し、中空部S’を介して直接対向しているのではなく、導体11,11と中空部S’の間に、被覆材12’を構成する絶縁性材料が介在されている。この場合にも、中空部S’を占める空気が、信号線10’の実効誘電率を下げるものとなり、その結果として、所定の特性インピーダンスを確保しながら、導体間距離を近づけ、通信用電線1’の細径化を達成できる。
 上記で説明した図1の断面環状の被覆材12を有する通信用電線1と、図2に示した貫通孔状の中空部S’を備えた被覆材12’を有する通信用電線1’とを比較すると、前者の方が、信号線において中空部が相対的に大きな空間を占めるため、中空部の空気の寄与を利用して通信用電線を細径化可能とする効果に優れる。一方、後者の方が、導体11,11の間の位置にも被覆材を構成する絶縁性材料が配置されるため、導体11,11の相対位置を被覆材で強固に保持する効果に優れる。通信用電線の具体的な用途等に応じて、被覆材の形態を選択すればよい。
 以下、実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。以下、特記しない限り、試料の作製および評価は、大気中、室温にて行っている。
[1]信号線の構造と耐屈曲性
 まず、断面環状の被覆材を有する信号線を備えた通信用電線と、従来一般のツイスト線を信号線として備えた通信用電線について、信号線の構造と耐屈曲性の関係を検証した。
<試料の作製>
(試料A)
 試料Aとして、図1に示したように、断面環状の被覆材を有する信号線を備えた通信用電線を作製した。具体的には、平行に並べた1対の導体の外周に、絶縁性材料を押出成形し、被覆材を形成した。この際、押出成形用の金型のポイントとして、中央部にパイプが突出したものを用い、パイプを1対の導体間に挟んだ状態で押出成形を行うことで、導体の間に、絶縁性材料に占められない中空部を形成した。導体としては、銅合金素線を7本撚り合わせた撚線を用いた。導体の外径は0.609mmであった。また、導体間距離を0.35mmとした。被覆材を形成するための絶縁性材料としては、下に組成を示す材料1を用い、被覆材の厚さは、平均で0.4mmとした。さらに、得られた信号線に対して、捻りを加えることで、ツイスト線として信号線を構成した。ツイストのピッチは10mmとした。作製した信号線について、軸線方向に垂直に切断し、断面の状態を観察して、内部に中空部を有する断面環状の被覆材が形成されており、その中空部を挟んで相互に離間された状態で2本の導体が保持されていることを確認した。
 材料1の成分組成
・ホモポリプロピレン(PP):日本ポリプロ社製 「ノバテックEA9FTD」(MFR:0.4g/10min) 80質量部
・ブロックPP1:日本ポリプロ社製 「ノバテックEC9GD」(MFR:0.5g/10min) 20質量部
・銅害防止剤:ADEKA社製 「アデカスタブCDA-1」 0.3質量部
・酸化防止剤:BASF社製 「イルガノックス1010」 1.5質量部
 得られた信号線に対して、金属箔と金属編組をこの順に外周に配置した。金属箔としてはPET基材を有する銅箔(厚み:銅薄膜9μm、PETフィルム16μm)を縦添え状に配置し、金属編組としては、スズめっき軟銅線(TA線)よりなる一重編組を設けた。最後にシースを最外周に押出成形した。シースを形成するための絶縁性材料としては、下に示す各成分を配合したものを用い、シースの厚さは、平均で0.4mmとした。
 シース材の成分組成
・オレフィン系熱可塑性ポリオレフィン(TPO)1:Lyondel Basell社製 「Adflex Q200F」 60質量部
・TPO2:エクソンモービル社製 「サントプレーン 203-40」 30質量部
・スチレン系熱可塑性エラストマー(SEBS):旭化成社製 「タフテック M1913」 10質量部
・酸化防止剤:BASF社製 「イルガノックス1010」 2質量部
・水酸化マグネシウム:協和化学社製 「キスマ5」 120質量部
(試料B1,B2)
 試料B1,B2として、図3に示したように、1対の導体の外周に個別の絶縁被覆を形成した絶縁電線を用いて通信用電線を作製した。具体的には、上記試料Aに用いたのと同じ導体の外周に、上記材料1を押出成形して絶縁被覆を形成し、絶縁電線を得た。絶縁被覆は発泡構造を有していない。この絶縁電線を2本切り出し、撚りピッチ10mmで相互に撚り合わせ、ツイストペア線よりなる信号線を得た。この信号線の外周に、試料Aと同様に、金属箔、金属編組、シースを形成した。
 試料B1,B2は、信号線を形成する絶縁電線の絶縁被覆の厚さにおいて相互に異なっている。試料B1については、通信用電線の特性インピーダンスが100Ωとなるように、絶縁被覆の厚さを設定しており、その厚さは0.45mmである。一方、試料B2は、通信用電線の特性インピーダンスが、100±10Ωとの範囲の下限である90Ωとなるように、絶縁被覆の厚さを設定しており、その厚さは試料B1よりも薄い0.41mmである。
(試料C1,C2)
 試料C1,C2として、図3に示したように、1対の導体の外周に個別の絶縁被覆を形成した絶縁電線を用いて通信用電線を作製した。絶縁被覆は、発泡構造を有するものとした。試料の作製は、上記試料B1,B2と同様に行った。ただし、絶縁被覆の構成材料として、材料1に発泡剤を加えた材料を用い、また絶縁被覆の厚さを、下記のように設定した。発泡剤としては、三協化成社製「セルマイク MB3274」2.5質量部を、ドライブレンドにて材料1に混合した。ここで、質量部数の基準は上記材料1の成分組成と同様としており、ポリマー成分の合計が100質量部である。材料が発泡剤を含んでいるため、押出成形時の熱によって発泡剤が熱分解し、絶縁被覆に発泡構造が形成された。
 試料C1,C2は、信号線を形成する絶縁電線の絶縁被覆の厚さにおいて相互に異なっている。試料C1については、通信用電線の特性インピーダンスが、100±10Ωとの範囲の上限である110Ωとなるように、絶縁被覆の厚さを設定しており、その厚さは0.45mmである。一方、試料C2については、通信用電線の特性インピーダンスが100Ωとなるように、絶縁被覆の厚さを設定しており、その厚さは試料C1よりも薄い0.41mmである。
<評価方法>
(1)初期特性インピーダンスの計測
 作製した各試料の通信用電線に対して、特性インピーダンスの測定を行った。測定はネットワークアナライザを用いてLCRメータを用いたオープン/ショート法によって行った。測定周波数は30kHz~8.5GHzとした。
(2)屈曲による特性インピーダンス変化の評価
 各試料の通信用電線に対して、屈曲試験を行った。屈曲試験としては、23℃(室温)にて、各通信用電線に対して、曲げ半径(R)を50mm、屈曲速度を5回/秒、屈曲角度を90°として、1000回の屈曲を行った。その後、上記初期状態での計測と同様にして、特性インピーダンスの測定を行った。そして、初期状態の特性インピーダンス(Z0)を基準として、屈曲後の特性インピーダンス(Z1)の変化率(R)を算出した。つまり、R=|Z1-Z0|/Z0×100%とした。この変化率が1%未満である場合を、耐屈曲性が高い「A」と評価した。また、変化率が1%以上2%未満である場合を、耐屈曲性が低い「B」と評価した。さらに、変化率が2%以上である場合を、耐屈曲性が非常に低い「C」評価とした。
(3)信号線の外径
 各試料について、信号線の外径を計測した。ここでは、金属箔、金属編組、シースを形成する前の状態の信号線に対して、外径として、長径、つまり信号線の断面の外周を横切る直線のうち最長の直線の長さを計測した。
<評価結果>
 下の表1に、各試料について、信号線被覆体(被覆材または絶縁被覆)の構造とともに、初期特性インピーダンスの値、屈曲による特性インピーダンス変化の評価結果、信号線の外径の測定値をまとめる。
Figure JPOXMLDOC01-appb-T000002
 表1によると、断面環状の被覆材を有する試料Aの通信用電線においては、100Ωの特性インピーダンスが得られるとともに、屈曲による特性インピーダンス変化の評価結果も、耐屈曲性が高いことを示している(A)。また、信号線の外径が、2.40mmとなっており、他の試料と比較して、明らかに小さくなっている。耐屈曲性の高さは、被覆材が発泡構造を有さないことによると解釈される。また、信号線の外径の小ささは、被覆材の内部に中空部を有することで、信号線の実効誘電率が大きくなり、100Ωとの所定の特性インピーダンスを与える導体間距離が、他の試料と比べて小さくて済んでいるためにあると解釈される。
 これに対し、非発泡の絶縁被覆で導体を個別に被覆した絶縁電線を用いた試料B1,B2の通信用電線においては、絶縁被覆が厚い試料B1と、絶縁被覆が薄い試料B2のいずれにおいても、設計値どおりに、100±10Ωの範囲の特性インピーダンスを有することが確認されている。また、絶縁被覆が発泡構造を有さないことと対応して、屈曲による特性インピーダンス変化の評価結果も、耐屈曲性が高いことを示している(A)。しかし、信号線の外径を見ると、小さい方の試料B2でも、2.86mmとなっており、試料Aの2.40mmよりも20%程度大きくなっている。このことは、絶縁電線の外周が非発泡の絶縁被覆で覆われており、信号線の内部に空気が内包されないことにより、信号線の実効誘電率が試料Aよりも大きくなり、100±10Ωの特性インピーダンスを確保するために、大きな導体間距離を設ける必要があるためであると解釈される。試料B2においては、特性インピーダンスを100±10Ωとの範囲の下限に設定することで、中央値の100Ωに設定した試料B1よりは信号線の外径が小さくなっているが、それでもその外径は試料Aよりも大きい。
 発泡させた絶縁被覆で導体を個別に被覆した絶縁電線を用いた試料C1,C2の通信用電線においても、絶縁被覆が厚い試料C1と、絶縁被覆が薄い試料C2のいずれにおいても、設計値どおりに、100±10Ωの範囲の特性インピーダンスを有することが確認されている。しかし、屈曲による特性インピーダンス変化の評価結果を見ると、絶縁被覆を薄く形成した試料C2では、耐屈曲性が非常に低くなっており(C)、絶縁被覆を厚く形成した試料C1でも、試料C2よりは良いものの、耐屈曲性が低いという結果になっている(B)。このことは、絶縁被覆が発泡されていることで、絶縁被覆の材料強度が低くなっているためであると考えられる。試料C1は、特性インピーダンスが100±10Ωに収まる範囲の中で、最も絶縁被覆を厚くしたものに相当するが、その厚さでも十分な耐屈曲性が得られていないと言える。さらに、信号線の外径に着目すると、特性インピーダンスが110Ωの試料C1で、特性インピーダンスを100Ωとした非発泡の試料B1と同じ外径となっている。また、特性インピーダンスが100Ωの試料C2では、特性インピーダンスを90Ωとした非発泡の試料B2と同じ外径となっている。つまり、絶縁被覆を発泡させることで、発泡させない場合と同じ厚さの絶縁被覆を用いても、高い特性インピーダンス値を確保することができる。逆に言うと、同じ特性インピーダンスを得るのに必要な絶縁被覆の厚さが、発泡によって小さくなっている。しかし、同じ100Ωの特性インピーダンスが得られている試料Aと試料C2を比較すると、試料C2の方が信号線の外径が大きくなっており、絶縁被覆の発泡化による信号線の細径化の効果は、中空部を有する被覆材の適用による細径化の効果には及ばないと言える。
 以上の対比より、中空部を有する被覆材で1対の導体の外周を被覆することで、所定の特性インピーダンスを得るために必要な導体間距離を小さくすることができ、導体を個別に絶縁被覆した場合と比較して、信号線を細径化できることが確認された。絶縁被覆を発泡化させることで絶縁被覆を薄肉化する場合と比較しても、中空部を有する被覆材を用いる場合の方が、高い細径化効果が得られる。また、中空部を有する被覆材においては、誘電率低減のために構成材料を発泡化させる必要がないため、被覆材が高い材料強度を有するものとなり、非発泡の絶縁被覆で導体を個別に被覆した場合と同等の耐屈曲性が確保される。このように、中空部を有する被覆材を用いることで、所定の高い水準の特性インピーダンスを確保しながら通信用電線を細径化し、かつ高い耐屈曲性を得ることができる。このような細径性と耐屈曲性の両立は、導体の外周を個別に絶縁被覆で被覆した絶縁電線を用いる場合には、絶縁被覆の薄肉化によっても、発泡化によっても、達成しがたいものである。
[2]被覆材の構成材料のMFRの影響
 次に、断面環状の被覆材の形成しやすさと、被覆材を構成するポリマー材料のMFRとの関係について確認した。
<試料の作製>
 上記試験[1]の試料Aと同様にして、信号線を作製した。ただし、被覆材を押出成形によって形成するための材料として、下の表2に示した成分組成を有する3種の組成物を用いた。3種のうち材料1については、上記試験[1]で用いたのと同じものである。つまり、材料1を用いて作製した信号線は、試料Aの信号線と同じものである。表2では、各成分の配合量を、質量部を単位として示している。各ポリプロピレン樹脂(PP)については、230℃にて2.16kgの荷重で測定されたMFRの値も合わせて示している。
Figure JPOXMLDOC01-appb-T000003
 試験[1]で説明した試料1の構成材料以外について、用いた製品は、以下のとおりである。
・ブロックPP2:日本ポリプロ社製 「ノバテックFB3B」
・ブロックPP3:日本ポリプロ社製 「ノバテックMA3U」
<評価方法>
 作製した各信号線について、軸線方向に垂直に切断し、断面の状態を観察した。観察に際し、被覆材が内部に中空部を有する断面環状の形状を有しているかを評価した。
<評価結果>
 材料1を用いた信号線については、上記試験[1]でも確認されたとおり、内部に中空部を有する断面環状の被覆材が問題なく形成された。一方、材料2および材料3を用いた試料ではいずれも、被覆材の内部に中空部はほぼ形成されておらず、導体間の位置に被覆材の構成材料が充填されてしまっていた。材料1は、ポリマー成分として、MFRが7.0g/10min以下の流動性が比較的低い材料のみを用いているのに対し、材料2および材料3は、MFRが7.0g/10minを超える流動性の高いポリマー成分を、全ポリマー成分100質量部のうち20質量部含有している。材料2および材料3を用いた場合には、それらの材料の流動性の高さにより、押出成形時に材料が導体間の空間に入り込み、中空部を保てなかったものと考えられる。それに対し、材料1を用いた場合には、材料の流動性が高すぎないことにより、押出成形を受けた材料が導体の外周部に留まり、金型に設けたパイプによって導体間に中空部が確保されたと解釈される。
 本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能である。
1,1’    通信用電線
10,10’  信号線
11      導体
11a     素線
12      被覆材
20      金属箔
30      金属編組
40      シース
9       従来の通信用電線
90      信号線
91      絶縁電線
91a     導体
91b     絶縁被覆
92      金属箔
93      金属編組
94      シース
S,S’    中空部

Claims (8)

  1.  1対の導体と、
     絶縁性材料より構成され、前記1対の導体の表面に接触して、前記1対の導体の外周を一体に被覆する被覆材と、を有する信号線を含み、
     前記被覆材は、
     前記1対の導体の間の位置に、前記導体の軸線方向に沿って連続して、前記絶縁性材料に占められない中空部を有しており、
     前記1対の導体を、前記中空部を挟んで相互に離間した位置に保持する、通信用電線。
  2.  前記被覆材は、相互に離間して配置された前記1対の導体の外周を包囲しており、
     前記中空部は、前記絶縁性材料を介さず前記1対の導体のそれぞれに面する部位を有する、請求項1に記載の通信用電線。
  3.  前記信号線において、前記1対の導体と前記被覆材の集合体に捩りが加えられ、
     前記1対の導体が、前記被覆材に保持された状態で、相互に螺旋状に交差されている、請求項1または請求項2に記載の通信用電線。
  4.  前記1対の導体はそれぞれ、複数の素線が撚り合わせられた撚線として構成されている、請求項1から請求項3のいずれか1項に記載の通信用電線。
  5.  前記信号線の長径が、前記1対の導体のそれぞれの外径の4.5倍以下である、請求項1から請求項4のいずれか1項に記載の通信用電線。
  6.  前記被覆材を構成する絶縁性材料は、1種または2種以上のポリマー材料を含み、
     前記1種または2種以上のポリマー材料はそれぞれ、230℃にて2.16kgの荷重で測定されるメルトフローレートが、7.0g/10min以下である、請求項1から請求項5のいずれか1項に記載の通信用電線。
  7.  前記通信用電線はさらに、前記信号線の外側を囲んで配置された、金属材料を含むシールド体を有する、請求項1から請求項6のいずれか1項に記載の通信用電線。
  8.  前記通信用電線はさらに、前記信号線の外側を囲んで、最外周に配置された絶縁性のシースを有する、請求項1から請求項7のいずれか1項に記載の通信用電線。
PCT/JP2022/047022 2021-12-29 2022-12-21 通信用電線 WO2023127622A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-215416 2021-12-29
JP2021215416A JP2023098765A (ja) 2021-12-29 2021-12-29 通信用電線

Publications (1)

Publication Number Publication Date
WO2023127622A1 true WO2023127622A1 (ja) 2023-07-06

Family

ID=86999036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047022 WO2023127622A1 (ja) 2021-12-29 2022-12-21 通信用電線

Country Status (2)

Country Link
JP (1) JP2023098765A (ja)
WO (1) WO2023127622A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535763U (ja) * 1978-08-31 1980-03-07
JPS62287521A (ja) * 1986-06-06 1987-12-14 株式会社 潤工社 高速伝送線路
JP2014146549A (ja) * 2013-01-30 2014-08-14 Hitachi Cable Ltd シールドケーブル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535763U (ja) * 1978-08-31 1980-03-07
JPS62287521A (ja) * 1986-06-06 1987-12-14 株式会社 潤工社 高速伝送線路
JP2014146549A (ja) * 2013-01-30 2014-08-14 Hitachi Cable Ltd シールドケーブル

Also Published As

Publication number Publication date
JP2023098765A (ja) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6943330B2 (ja) 通信用電線
US8431825B2 (en) Flat type cable for high frequency applications
CN110062947B (zh) 通信用电线
JP4916590B1 (ja) 伝送ケーブル用絶縁電線及び伝送ケーブル
WO2012074006A1 (ja) 絶縁電線及びケーブル
JP2020181821A (ja) 通信用電線
JP4916574B1 (ja) 伝送ケーブル用絶縁電線及び伝送ケーブル
JP6113823B2 (ja) GHz帯域の周波数の信号を伝送する絶縁電線用絶縁樹脂組成物、絶縁電線及びケーブル
JP5687024B2 (ja) 絶縁電線用絶縁樹脂組成物、絶縁電線及びケーブル
WO2023127622A1 (ja) 通信用電線
WO2013005383A1 (en) Flame retardant resin composition and insulated electrical wire
CN113508441B (zh) 通信用屏蔽电线
WO2022191019A1 (ja) 通信用電線
WO2022202174A1 (ja) 通信用電線
WO2021171960A1 (ja) 通信用電線
JP4951704B1 (ja) 伝送ケーブル用絶縁電線及び伝送ケーブル
WO2022190851A1 (ja) 通信用電線
JP5926827B2 (ja) 絶縁電線用絶縁樹脂組成物、絶縁電線及びケーブル
JP2023141855A (ja) 通信用電線
JP2016071984A (ja) 絶縁電線
JP2012113888A (ja) 被覆材、およびこれを用いた通信ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915846

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)