WO2023127523A1 - Resin composition, multilayer sheet, prepreg, cured product, substrate with cured product, and electronic device - Google Patents

Resin composition, multilayer sheet, prepreg, cured product, substrate with cured product, and electronic device Download PDF

Info

Publication number
WO2023127523A1
WO2023127523A1 PCT/JP2022/046199 JP2022046199W WO2023127523A1 WO 2023127523 A1 WO2023127523 A1 WO 2023127523A1 JP 2022046199 W JP2022046199 W JP 2022046199W WO 2023127523 A1 WO2023127523 A1 WO 2023127523A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
compound
resin
polyimide resin
Prior art date
Application number
PCT/JP2022/046199
Other languages
French (fr)
Japanese (ja)
Inventor
豪 阪口
裕士 曽根田
勇貴 宇佐
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2023127523A1 publication Critical patent/WO2023127523A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to resin compositions, laminated sheets and prepregs. Further, the present invention relates to a cured product obtained from the resin composition, a substrate with a cured product containing the cured product formed by curing the resin composition, and an electronic device mounted with the substrate with the cured product.
  • a multilayer printed wiring board has an interlayer insulating layer formed between a plurality of conductor layers.
  • a prepreg obtained by impregnating glass cloth or the like with a resin composition is used as an insulating layer covering a conductor layer of a printed wiring board.
  • an insulating sealing resin is used in a semiconductor package.
  • Patent Document 1 discloses a composition containing an epoxy compound, a curing agent, silica and a polyimide having a dimer structure
  • Patent Document 2 discloses a specific amount of an N-alkylbis Compositions are disclosed that include a maleimide compound or the like, an epoxy compound, an inorganic filler, and a specific curing agent
  • Patent Document 3 discloses a resin composition containing a thermosetting resin, an inorganic filler, a specific amount of an organic filler and an adhesive softening agent.
  • Patent Document 4 discloses a resin composition for forming an insulating layer containing a specific amount of an epoxy resin, a specific amount of a maleimide compound having a specific structure, a specific amount of an active ester compound, and an inorganic filler. .
  • Patent Document 5 discloses a polyimide adhesive composition containing a polyimide resin, a thermosetting resin, a flame retardant, and an organic solvent obtained by reacting diamines containing specific amounts of aromatic tetracarboxylic acids and dimer diamine. ing. Further, Patent Document 6 discloses a resin material containing a cyclohexane ring, a maleimide compound having a dimer structure, a polyimide resin having a dimer structure, an epoxy compound, an active ester compound and an inorganic filler. Furthermore, Patent Document 7 discloses a resin composition containing a thermosetting resin, an inorganic filler, a specific amount of an organic filler and a tacky softening agent.
  • Patent Document 8 the problem is to provide a polyimide-based adhesive that has a low B-stage loss elastic modulus and provides an adhesive layer with good heat-resistant adhesiveness and low dielectric properties.
  • a polyimide adhesive containing an organic solvent is disclosed.
  • the problem is to provide a polyimide-based adhesive that has a low B-stage loss elastic modulus and provides an adhesive layer with good heat-resistant adhesiveness and low dielectric properties.
  • a polyimide adhesive containing an organic solvent is disclosed.
  • the present disclosure has been made in view of the above background. It is an object of the present invention to provide a resin composition which is excellent in terms of strength, a laminated sheet, a prepreg, a cured product, a substrate with the cured product, and an electronic device which are formed using the resin composition.
  • the polyimide resin (A) has residues X 2 d derived from dimer diamine and/or dimer diisocyanate, and the total average number of functional groups selected from amino groups, acid anhydride groups and maleimide groups is 0.
  • the temperature at which the polyimide resin (A) has a storage modulus G' of 1.0 ⁇ 10 7 Pa is in the range of ⁇ 30 to 90° C., and the polyimide resin (A) has a weight average molecular weight of 10,000 to 100. ,000, and
  • the curable compound (B) is one or two selected from the group consisting of an epoxy compound (b1), a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and a nadimide compound (b5). and A resin composition having a glass transition temperature of 140 to 400° C. in a cured product obtained by curing treatment.
  • the polyimide resin (A) has the general formula (1): (X 1 is independently a tetravalent tetracarboxylic acid residue for each repeating unit, X 2 is independently a divalent organic group for each repeating unit, and the X 1 and the imide bond are bonded to each other. form two imide rings.) Having a repeating unit of the structure represented by [ _ 1]. [3]: The resin composition according to [1] or [2], further comprising a heat stabilizer (D). [4]: The resin according to any one of [1] to [3], wherein 1 to 40% by mass of the polyimide resin (A) is blended in 100% by mass of the non-volatile components of the resin composition. Composition.
  • [5] The resin composition according to any one of [1] to [4], which contains an epoxy compound (b1) as the curable compound (B) and further contains an active ester compound.
  • [6] A laminated sheet comprising a substrate and a resin composition layer formed on the substrate and formed of the resin composition according to any one of [1] to [5].
  • [7] A prepreg in which a substrate is impregnated with the resin composition according to any one of [1] to [5].
  • [8] A cured product obtained from the resin composition according to any one of [1] to [5].
  • [9] A substrate with a cured product, comprising a cured product formed by curing the resin composition according to any one of [1] to [5].
  • [10] An electronic device equipped with the substrate with a cured product according to [9].
  • a resin composition that is excellent in substrate processing suitability (embedding property in substrate unevenness, heat cycle resistance, plating solution resistance), and whose cured product has excellent long-term heat resistance and excellent bending strength, and the resin An excellent effect is obtained that a laminate sheet, a prepreg, a cured product, a substrate with the cured product, and an electronic device formed using the composition can be provided.
  • the resin composition according to the present embodiment contains a polyimide resin (A), a curable compound (B) and a thermally conductive filler (C).
  • the polyimide resin (A) has a residue X 2 d (hereinafter also referred to as a dimer structure) derived from dimer diamine and/or dimer diisocyanate.
  • the polyimide resin (A) has an average total number of functional groups selected from amino groups, acid anhydride groups and maleimide groups of 1 or less, including 0.
  • the temperature at which the polyimide resin (A) has a storage elastic modulus G′ of 1.0 ⁇ 10 7 Pa is in the range of ⁇ 30 to 90° C., and the weight average molecular weight (hereinafter also referred to as Mw) is 10. , 000 to 100,000.
  • Polyimide resin (A) can be used alone or in combination of two or more.
  • the curable compound (B) includes an epoxy compound (b1), a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and a nadimide compound (b5) (hereinafter also referred to as (b1) to (b5) is one or two or more selected from the group consisting of
  • the composition has a glass transition temperature (hereinafter also referred to as Tg) of 140 to 400° C. when cured.
  • the average functional group number is the total average functional group number of functional groups selected from amino groups, acid anhydride groups and maleimide groups per molecule of the polyimide resin (A), and is the raw material used for synthesizing the polyimide resin (A). It can be determined from the charging ratio of the components.
  • the total average number of functional groups being 0 means that the polyimide resin (A) does not have any groups among amino groups, acid anhydride groups and maleimide groups.
  • the total average number of functional groups of 1 or less means that the total number of functional groups of amino groups, acid anhydride groups and maleimide groups is 1 or less on average in one molecule of the polyimide resin (A).
  • the term "cured product" refers to curing by forming a three-dimensional crosslinked structure through curing, and refers to a state in which the curing reaction does not proceed substantially even after further curing.
  • Curing treatment causes the curable compound (B) to crosslink with each other, the curable compound (B) and the polyimide resin (A) to crosslink, and the curable compound (B) to crosslink with other components. , and an embodiment in which these are arbitrarily combined.
  • heat curing treatment and photocuring treatment can be exemplified. When using a thermoreactive group, heat treatment is usually performed, and when using a photoreactive group, light irradiation treatment is usually performed.
  • Curing conditions vary depending on the composition, but when a thermoreactive group is used, a cured product can be obtained, for example, by treating at 180° C. for about 60 minutes. Similarly, when a photoreactive group is used, a cured product can be obtained by, for example, irradiating actinic rays (for example, 365 nm) in such a light amount as to allow the cross-linking reaction to proceed sufficiently.
  • actinic rays for example, 365 nm
  • the present composition is molded into a desired shape such as a sheet, a part of the composition may undergo a curing reaction, but the state in which the composition can be cured by further curing treatment is not included in the cured product. At the stage of the resin composition, it may be in a B-stage state in which a part of the components are semi-cured.
  • the present composition has the above structure, it is possible to provide a resin composition that is highly suitable for substrate processing, having excellent embedding properties in substrate irregularities, excellent heat cycle resistance and plating solution resistance in the substrate processing process.
  • the main reason is that the polyimide resin (A) having high flexibility and Mw in a specific range is blended into the resin composition that has a relatively high glass transition temperature when cured, and the polyimide resin
  • the polyimide resin By making the total average number of functional groups of amino groups, acid anhydride groups and maleimide groups of (A) 1 or less including 0, it is possible to increase the fluidity before curing and bring out the stress relaxation effect after curing. It is thought that it depends on what has been done.
  • the composition since the composition has the above structure, the cured product thereof has excellent long-term heat resistance.
  • a thermally conductive filler (C) is added as a compounding component of the resin composition that has a relatively high glass transition temperature when cured, and furthermore, it has a dimer structure and high planarity. It is believed that this is due to the combination of the polyimide resin (A) having the above structure and having an imide group and excellent heat resistance.
  • the present composition has the above constitution, the bending strength of the cured product is excellent.
  • the resin composition which has a relatively high glass transition temperature when cured, has a hydrocarbon chain or ring structure, a dimer structure with little interaction between molecular chains, and a moderate It is believed that this is due to the addition of the polyimide resin (A) having flexibility (having a storage elastic modulus within the above specific range) and having Mw within the above specific range.
  • Polyimide resin (A) Polyimide resin (A) has residues X 2 d derived from dimer diamine and/or dimer diisocyanate. Also, the polyimide resin (A) should have an average total functional group number of 1 or less including 0, of functional groups selected from amino groups, acid anhydride groups and maleimide groups. Furthermore, the polyimide resin (A) has a storage modulus G′ of 1.0 ⁇ 10 7 Pa at a temperature of ⁇ 30 to 90° C. and an Mw in the range of 10,000 to 100,000. .
  • a dimer diamine can be obtained, for example, by converting the carboxy group of a dimer acid into an amino group.
  • a dimer diisocyanate is obtained, for example, by converting a carboxy group of a dimer acid into an isocyanate group.
  • the dimer acid refers to a dimer of unsaturated aliphatic carboxylic acid or a hydrogenated product thereof.
  • natural fatty acids such as soybean oil fatty acid, tall oil fatty acid, rapeseed oil fatty acid, or linolenic acid, linoleic acid, oleic acid, erucic acid, myristoleic acid, palmitoleic acid, sapienic acid, elaidic acid, stearolic acid, vaccenic acid , gadoleic acid, eicosenoic acid, brassic acid, nervonic acid, eicosadienoic acid, docosadienoic acid, pinolenic acid, eleostearic acid, mead acid, dihomo- ⁇ -linolenic acid, eicosatrienoic acid, stearidonic acid, arachidonic acid, eicosa Unsaturated fatty acids such as tetraenoic acid, cetoleic acid, adrenic acid, boseopentaenoic acid, osponded acid,
  • Unsaturated bonds may be optionally hydrogenated to reduce the degree of unsaturation. Dimer diamine and dimer diisocyanate with a lowered degree of unsaturation are preferable in terms of oxidation resistance (particularly coloration at high temperatures) and suppression of gelation during synthesis.
  • the dimer acid is preferably a compound having 20 to 60 carbon atoms, more preferably a compound having 24 to 56 carbon atoms, still more preferably a compound having 28 to 48 carbon atoms, and even more preferably a compound having 36 to 44 carbon atoms.
  • a dicarboxylic acid compound having a branched structure obtained by Diels-Alder reaction of a fatty acid is preferred.
  • the branched structure is preferably an aliphatic chain and a ring structure, more preferably a ring structure.
  • the ring structure is preferably one or more aromatic rings or an alicyclic structure, more preferably an alicyclic structure. When there are two ring structures, the two rings may be independent or continuous.
  • a dimer diamine and a dimer diisocyanate can use 1 type or multiple types of compounds.
  • the alicyclic structure may have one or more double bonds in the ring, or may have no double bonds.
  • Methods for converting the carboxy group of the dimer acid to an amino group include, for example, a method of amidating the carboxylic acid, aminating it by Hoffmann rearrangement, and further distilling and purifying it.
  • a method for converting a carboxy group of a dimer acid into a diisocyanate group includes, for example, a method of isocyanating a carboxylic acid by Curtius rearrangement.
  • the amino group in the dimer diamine or the isocyanate group in the dimer diisocyanate may be directly bonded to the ring structure, but from the viewpoint of improving solubility and flexibility, the amino group is bonded to the ring via an aliphatic chain. It is preferably attached to the structure.
  • the number of carbon atoms between the amino group or isocyanate group and the ring structure is preferably 2-25.
  • Suitable examples of aliphatic chains include chain hydrocarbon groups such as alkylene groups.
  • a suitable example is a compound in which the two amino groups or isocyanate groups are each bonded to a ring structure via an alkylene group.
  • dimer acid polybasic acid
  • dimer diamine or dimer diisocyanate include the following chemical formulas (d1) to (d4). These are examples, and the dimer acid is not limited to the structures below.
  • the dimer diamine and dimer diisocyanate are preferably compounds having 20 to 60 carbon atoms, more preferably compounds having 24 to 56 carbon atoms, still more preferably compounds having 28 to 48 carbon atoms, and even more preferably compounds having 36 to 44 carbon atoms. Such a carbon number is preferable from the viewpoint of availability.
  • dimer diamine Commercial products of dimer diamine include, for example, “Priamine 1071”, “Priamine 1073”, “Priamine 1074”, and “Priamine 1075” manufactured by Croda Japan, and “Versamin 551” manufactured by BASF Japan.
  • the total number of functional groups of an amino group, an acid anhydride group and a maleimide group in one molecule of the polyimide resin (A) is 1 or less on average, thereby improving substrate processing suitability. It turned out to work well.
  • the total average number of functional groups of amino groups, acid anhydride groups and maleimide groups in the polyimide resin (A) is 1 or less (including 0), so that the polyimide resin (A) has a crosslinked structure via these groups. Structures taken inside can be suppressed. In other words, the average number of bonds between the polyimide resin (A) and the curable compound (B) via these groups can be reduced to one or less.
  • the fluidity is increased at the stage before the curing treatment, and the embedding of the wiring formed on the substrate into the unevenness of the circuit board, etc. is excellent, while stress relaxation of the polyimide resin (A) after the curing treatment. It can improve the properties and dispersibility, and effectively improve the plating solution resistance and long-term heat resistance of the cured product.
  • substrate processability in addition to an amino group, an acid anhydride group and a maleimide group, as a group that makes the total average number of functional groups in one molecule of the polyimide resin (A) 1 or less (including 0), more preferably contain a carboxy group.
  • the total average functional group number of functional groups selected from amino groups, acid anhydride groups, carboxy groups and maleimide groups is 1 or less, including 0.
  • the average number of functional groups in this case is the total average number of functional groups selected from amino groups, acid anhydride groups, carboxy groups and maleimide groups per molecule of the polyimide resin (A).
  • the epoxy compound (b1) is used as the curable compound (B)
  • the high reactivity of the epoxy group facilitates the formation of crosslinks before the curing treatment.
  • the total functional groups of amino groups, acid anhydride groups and maleimide groups (hereinafter also referred to as amino groups, etc.) in one molecule of the polyimide resin (A) are 1 or less on average, It is possible to suppress the cross-linking reaction in the stage before the curing treatment, and effectively improve the poor embedding of the wiring formed on the substrate into the unevenness of the circuit board.
  • a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and/or a nadimide compound (b5) having lower reactivity than the epoxy compound (b1) is used as the curable compound (B).
  • the acid anhydride group, amino, etc. of the polyimide resin (A) tend to remain in the cured product after curing.
  • the total functional groups of amino groups, acid anhydride groups and maleimide groups in one molecule of the polyimide resin (A) is 1 or less on average, so that the number of amino groups, etc. remaining after curing can be reduced, and plating solution resistance such as acid resistance is excellent.
  • the present composition by setting the number of functional groups of the maleimide group in the above range, the increase in the crosslink density around the crosslinked site of the polyimide resin (A) is suppressed, and the stress of the polyimide resin (A) is relieved. It is possible to appropriately maintain the properties and maintain good heat cycle resistance of the cured product.
  • the polyimide resin (A) has a storage modulus G′ of 1.0 ⁇ 10 7 Pa at a temperature of -30 to 90°C. By setting it as this range, a polyimide resin (A) with high flexibility can be obtained. From the viewpoint of bending strength and long-term heat resistance, it is more preferable that the temperature at which the storage elastic modulus G' becomes 1.0 ⁇ 10 7 Pa is in any of 30 to 80°C, and any of 30 to 70°C. More preferably, there is a temperature at which the storage modulus G' is 1.0 ⁇ 10 7 Pa.
  • thermally conductive filler (C) By containing the thermally conductive filler (C), a molded article having excellent heat dissipation can be obtained.
  • the formation of voids is not a big problem when forming a coating film, but when producing a prepreg, inclusion of the thermally conductive filler (C) makes voids more likely to occur. This problem becomes more likely to occur as the temperature decreases and as the content of the thermally conductive filler (C) increases.
  • a polyimide resin (A) having a storage elastic modulus G′ of 1.0 ⁇ 10 7 Pa at a temperature of ⁇ 30° C.
  • a polyimide resin (A) having a storage modulus G′ of 1.0 ⁇ 10 7 Pa is preferably ⁇ 15° C. or more and less than 27° C., ⁇ 5° C. or more, It is more preferably less than 27°C.
  • drying temperature is not the temperature for making a cured product, but the temperature for removing the volatile components of the resin composition, including the B stage where the resin composition is partly cured. obtain.
  • drying temperature refers to a temperature higher than the boiling point of the volatile component and at which voids do not occur.
  • the polyimide resin (A) having a storage elastic modulus G′ of 1.0 ⁇ 10 7 Pa at a temperature of ⁇ 30 to 90° C. can be adjusted by adjusting the type of the monomer that becomes the repeating structural unit and the Mw. .
  • a monomer having flexibility such as a dimer structure as a monomer
  • a structure having an aliphatic including an alicyclic skeleton
  • the storage elastic modulus G′ tends to decrease
  • the storage elastic modulus G' tends to increase.
  • the storage elastic modulus G' tends to decrease by decreasing the Mw.
  • a rigid polyimide resin such as a polyimide resin composed of pyromellitic anhydride and diaminobiphenyl has a storage modulus G′ at 90° C. of approximately 1.0 ⁇ 10 9
  • a flexible polyimide resin such as a dimer diamine and 1 ,2,4,5-Cyclohexanetetracarboxylic dianhydride has a storage elastic modulus G' at 90° C. of about 1.0 ⁇ 10 5 .
  • the Mw of the polyimide resin (A) is 10,000 to 100,000. When it is 10,000 or more, even if the content of the thermally conductive filler (C) in the cured product is increased, good adhesion to other members can be maintained, and a high-quality cured product can be provided. Moreover, long-term heat resistance can be improved by making it 100,000 or less. A more preferred range is 15,000 to 80,000, and an even more preferred range is 20,000 to 75,000.
  • the amount of the polyimide resin (A) is arbitrary, but in order to increase the bending strength of the cured product and to improve the substrate processability (especially heat cycle resistance), the non-volatile component of the composition ( It is preferably contained in an amount of 1 to 40% by mass based on 100% by mass (solid content). The range is more preferably 7 to 27% by mass, and even more preferably 9 to 19% by mass.
  • X 1 is independently a tetravalent organic group for each repeating unit
  • X 2 is independently a divalent organic group for each repeating unit
  • X 1 and an imide bond are bonded to form two forming an imide ring.
  • Specific examples of X1 include a tetracarboxylic acid residue
  • specific examples of X2 include a diamine residue and a diisocyanate residue.
  • tetracarboxylic acid residue refers to tetracarboxylic acids and tetracarboxylic acid derivatives such as tetracarboxylic dianhydrides and tetracarboxylic acid diesters (hereinafter referred to as “tetracarboxylic acids”). It refers to the group to do.
  • a "diamine residue” is a group derived from a diamine (a diamine compound), and a “diisocyanate residue” is a residue derived from a diisocyanate (a diisocyanate compound).
  • An "imide ring” is a ring having an imide bond, and the number of elements forming one ring is 4 or more and 7 or less. Preferably 5 or 6.
  • the imide ring may be fused with another ring.
  • the polyimide resin (A) may or may not have reactive functional groups with respect to the curable compound (B).
  • reactive functional groups include the above-described amino group, acid anhydride group, carboxy group, maleimide group, and phenolic hydroxyl group.
  • a polyimide resin (A) that does not have a reactive functional group a crosslinked structure with the curable compound (B) is not formed, but the resin composition having a relatively high glass transition temperature when cured.
  • the polyimide resin (A) having a phenolic hydroxyl group enhances the interaction between the aromatic ring having a phenolic hydroxyl group and the imide ring, and combines a dimer-derived flexible structure to increase fluidity before curing. , it is thought that the stress relaxation effect after curing can be elicited.
  • a phenolic hydroxyl group refers to a hydroxyl group directly bonded to an aromatic ring.
  • aromatic rings include benzene ring, naphthalene ring and pyridine ring.
  • a phenolic hydroxyl group can be introduced into any one of a molecular chain terminal, a side group, and a side chain, or can be combined arbitrarily.
  • the term "molecular chain end” refers to a terminal portion of repeating structural units constituting the molecular chain of the polyimide resin (A), or a non-repeating structure linked to the terminal end.
  • the phenolic hydroxyl value of the polyimide resin (A) is preferably 1 to 50 mgKOH/g. Within this range, the crosslink density can be made appropriate, and substrate processability, particularly plating solution resistance (alkali resistance and acid resistance) can be more effectively improved. Moreover, by setting it as the said phenolic hydroxyl value, a crosslink density can be made suitable and a stress relaxation effect can be brought out.
  • the phenolic hydroxyl value is more preferably 3 to 40 mgKOH/g, still more preferably 10 to 30 mgKOH/g.
  • the phenolic hydroxyl value can be adjusted by adjusting the amount of the monomer having a phenolic hydroxyl group to be charged, the introduction rate of the phenolic hydroxyl group to the molecular chain end, and/or the introduction rate of the phenolic hydroxyl group to the side chain.
  • an amine compound having a phenolic hydroxyl group represented by the general formula (3) is further reacted.
  • a method can be exemplified.
  • a phenolic hydroxyl group may be introduced by a similar method in place of the acid anhydride-terminated polyimide resin with a carboxylic acid-terminated polyimide resin.
  • Ar in the general formula (3) is an aromatic group which may have a substituent. Examples of substituents include alkyl groups having 1 to 10 carbon atoms, fluoroalkyl groups and halogen atoms. The same applies to Ar and substituents in general formulas (4) and (5) described later.
  • an acid anhydride compound having a phenolic hydroxyl group represented by the general formula (4), or a carboxylic acid compound having a phenolic hydroxyl group represented by the general formula (5) A method of further reacting to introduce a phenolic hydroxyl group at the terminal can be exemplified.
  • Specific examples of general formula (3) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2,3-xylenol, 4-amino- 2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4-amino-2,6-diphenylphenol can be exemplified.
  • Specific examples of general formula (4) include 3-hydroxyphthalic anhydride and 4-hydroxyphthalic anhydride.
  • salicylic acid and oxybenzoic acid can be exemplified as specific examples of general formula (5).
  • general formulas (3) and (4) one hydroxyl group is exemplified, but a compound in which two or more hydroxyl groups are bonded to Ar may be used.
  • a polyimide resin (A) having a phenolic hydroxyl group that satisfies at least one of the following (i) and (ii) is suitable from the viewpoint of effectively improving the substrate processing suitability of the cured product, particularly the heat cycle resistance.
  • the functional groups at the ends of the molecular chains of the polyimide resin (A) can be substantially all phenolic hydroxyl groups. In addition to phenolic hydroxyl group ends, molecular chain ends having no functional group may also be included. In addition to the phenolic hydroxyl group end, it may also have a molecular chain end having another functional group (acid anhydride group, etc.).
  • the polyimide resin (A) having a molecular chain end having no functional group and a phenolic hydroxyl group end is, for example, an amine compound of general formula (3) and a monoamine compound for end blocking for acid anhydride-terminated polyimide. It is obtained by mixing at a ratio and carrying out a terminal blocking reaction. Further, a terminal blocking reaction is performed by mixing a compound represented by general formulas (4) and/or (5) and an acid anhydride compound and/or a carboxylic acid compound for terminal blocking in a specific ratio with respect to an amine-terminated polyimide. may be obtained by According to these methods, the amount of phenolic hydroxyl groups at the ends of the molecular chains of the polyimide resin (A) can be easily adjusted.
  • Monoamine compounds for terminal blocking include, for example, aliphatic amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine; Alicyclic amines such as amines and dicyclohexylamine; aromatic amines such as aniline, toluidine, diphenylamine and naphthylamine, and any mixture thereof.
  • aliphatic amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine
  • Alicyclic amines such as amines and dicyclohexylamine
  • aromatic amines such as ani
  • Acid anhydrides for terminal blocking include phthalic anhydride, 2,2′-biphenyldicarboxylic anhydride, 1,2-naphthalenedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, and 1,8-naphthalene.
  • Examples of the carboxylic acid having no phenolic hydroxyl group include carboxylic acids having a structure obtained by removing the phenolic hydroxyl group from the above carboxylic acid having a phenolic hydroxyl group.
  • the polyimide resin (A) having a phenolic hydroxyl group terminal and another functional group terminal is, for example, an acid anhydride terminal polyimide, an amine compound of general formula (3) and a monoamine compound having another functional group at a specific ratio. It is obtained by mixing with and performing a terminal blocking reaction. Similarly, in the amine-terminated polyimide, the compounds of the general formulas (4) and/or (5) and an acid anhydride compound and/or a carboxylic acid compound having other functional groups are mixed at a specific ratio to conduct a terminal blocking reaction. obtained by doing According to this method, the amounts of phenolic hydroxyl groups and other functional groups at the molecular chain ends of the polyimide resin (A) can be adjusted.
  • Other functional groups are not particularly limited. Examples include a nitro group and a cyano group.
  • the other functional group is an acid anhydride group
  • react with an amine compound having a phenolic hydroxyl group at a portion of the terminal to convert a portion of the acid anhydride terminal to a phenolic hydroxyl group.
  • the other functional group is an amino group
  • it is synthesized by a method of reacting a compound having one acid anhydride group having a phenolic hydroxyl group at a portion of the terminal. good too.
  • a polyimide resin (A) may be synthesized. According to this method, the synthesis process can be simplified.
  • the ratio of the phenolic hydroxyl value to the total functional group value (total) is preferably 50 to 100%, more preferably 70 to 100%. is more preferred.
  • the internal stress relaxation of the polyimide resin (A) having a dimer-derived flexible structure is enhanced while enhancing the interaction between the aromatic ring having the phenolic hydroxyl group and the imide ring. can be performed more effectively. If it does not contain phenolic hydroxyl groups, the total average amount of functional groups of amino groups, acid anhydride groups and maleimide groups should be small from the viewpoint of improving plating solution resistance (alkali resistance and acid resistance).
  • the total average amount of functional groups of carboxy groups, amino groups, acid anhydride groups and maleimide groups is desirable, and it is more desirable that the total average amount of functional groups of carboxy groups, amino groups, acid anhydride groups and maleimide groups is small.
  • the total average amount of functional groups of amino groups, acid anhydride groups and maleimide groups is preferably 0.5 or less, including 0, and more preferably 0.3 or less, including 0. .
  • the total average amount of functional groups of the carboxy group, amino group, acid anhydride group and maleimide group is preferably 0.5 or less, including 0. It is more preferably 0.3 or less including 0.
  • phenolic hydroxyl groups into the side chains and/or side groups of the polyimide resin (A)
  • organic compounds such as diamines and diisocyanates having phenolic hydroxyl groups and/or tetracarboxylic acids having phenolic hydroxyl groups.
  • a compound having a phenolic hydroxyl group may be introduced into the side chain.
  • diamines having a phenolic hydroxyl group include bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl) Propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, 2,2'-ditrifluoromethyl-5 ,5'-dihydroxyl-4,4'-diaminobiphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, 2,2'-bis(trifluoromethyl)-5,5'-dihydroxybenzidine, etc. family diamines. Also, a substituent may be introduced at any position of these compounds.
  • a diamine represented by the following general formula (6) may also be used.
  • R 1 represents a direct bond or a group containing carbon, hydrogen, oxygen, nitrogen, sulfur, or halogen.
  • r and s each independently represent an integer of 1 to 20, and R2 represents a hydrogen atom or a methyl group.
  • Diamines represented by general formula (6) include, for example, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene, 2,2-bis (3-amino-4-hydroxyphenyl)hexafluoropropane, 4,4'-diamino-3,3'-dihydroxybisphenyl and the like.
  • Suitable examples of tetracarboxylic acids having a phenolic hydroxyl group include compounds having a hydroxyl group as a substituent of the aromatic group of the aromatic tetracarboxylic acids described later.
  • a diamine containing a phenolic hydroxyl group that satisfies at least one of the following (iii) and (iv) is preferable from the viewpoint of more effectively improving the plating solution resistance.
  • part of X 2 in general formula (1) is a diamine residue X 2 f containing a phenolic hydroxyl group, and the aromatic ring having the phenolic hydroxyl group is derived from a diamine that forms the imide ring; Nitrogen atoms bond.
  • part of X 2 in general formula (1) is a diamine residue X 2 f having a phenolic hydroxyl group, having an aliphatic group directly linked to an aromatic ring having the phenolic hydroxyl group, A nitrogen atom derived from the diamine forming the imide ring is bonded to the aliphatic group.
  • Suitable examples of the diamine satisfying the above (iii) or (iv) include the following general formulas (9) and (10).
  • n is an integer of 1-10.
  • X 1 in general formula (1) is, as described above, a tetravalent tetracarboxylic acid residue that may have an independent structure for each repeating unit.
  • the tetracarboxylic acids used in the polymerization for obtaining X1 are not particularly limited.
  • aromatic tetracarboxylic acids containing an aromatic group aromatic tetracarboxylic acids containing an aromatic group
  • aliphatic tetracarboxylic acids containing an aliphatic group preferably used.
  • an aliphatic group is a hydrocarbon group, and refers to a chain, a branched chain, a ring (alicyclic structure), or a combination thereof.
  • the aliphatic group may contain unsaturated bonds. Aliphatic groups may also contain heteroatoms such as nitrogen, oxygen, sulfur, selenium, fluorine, chlorine, bromine, and the like. Tetracarboxylic acids may be used alone or in combination of two or more. Moreover, the examples of the above monomers may optionally have a substituent. Examples of substituents include alkyl groups, halogen atoms, nitro groups, and cyano groups.
  • aromatic tetracarboxylic acids include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, and 2,3′,3,4′-biphenyltetracarboxylic dianhydride.
  • 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, diphthalic anhydride represented by the following general formula (11) I can give an example.
  • X 5 in the formula is an organic group optionally having a divalent substituent (eg, a hydrocarbon group having 1 to 10 carbon atoms), —O—, —CO—, —SO 2 —, —S— , -SO 2 -, -CONH-, -COO-, or -OCO-, -C(CF 3 ) 2 -, -COO-Z-OCO-, -O-Ph-C(CH 3 ) 2 -Ph- A connecting group such as O- is shown.
  • substituents may contain substituents.
  • An alkyl group, a halogen, a carbonyl group, etc. can be illustrated as said substituent.
  • tetracarboxylic acids described later Specific examples include 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′ -diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 2,2-bis[4-(3,4-di Carboxyphenoxy)phenyl]propane dianhydride, p-phenylenebis(trimellitic acid monoester acid anhydride), and ethylene glycol bisanhydrotrimellitate can be exemplified.
  • the structure of X 1 in the general formula (1) of the polyimide resin (A) is not limited, but while adjusting the storage elastic modulus, the stress relaxation effect synergistically with the dimer structure is brought out, and the substrate processability is improved. Specifically, from the viewpoint of further improving bending strength and heat cycle resistance, it is preferable that X 1 a having an aliphatic group is included. X 1 a may have an aliphatic group and may contain an aromatic group.
  • Tetracarboxylic acids having an aliphatic group include a chain hydrocarbon structure and/or an alicyclic hydrocarbon structure that may contain an aromatic group.
  • a "chain hydrocarbon structure” is a linear hydrocarbon structure and/or branched hydrocarbon structure that may have an unsaturated bond.
  • the "alicyclic hydrocarbon structure” is an alicyclic hydrocarbon which may have an unsaturated bond, and may be monocyclic or polycyclic. These may contain substituents.
  • tetracarboxylic acids having an aliphatic group include 1,2,3,4-butanetetracarboxylic acid, 1,2,3,4-pentanetetracarboxylic acid, and 1,2,4,5-pentanetetracarboxylic acid.
  • Acids, tetracarboxylic acid dianhydrides having a chain hydrocarbon structure such as 1,2,3,4-hexanetetracarboxylic acid and 1,2,5,6-hexanetetracarboxylic acid can be exemplified.
  • cyclobutane-1,2,3,4-tetracarboxylic acid cyclopentane-1,2,3,4-tetracarboxylic acid, cyclohexane-1,2,3,4-tetracarboxylic acid, cyclohexane-1,2 , 4,5-tetracarboxylic acid, 1-carboxymethyl-2,3,5-cyclopentanetricarboxylic acid, 3-carboxymethyl-1,2,4-cyclopentanetricarboxylic acid, rel-dicyclohexyl-3,3′, 4,4′-tetracarboxylic acid, tricyclo[4.2.2.02,5]dec-9-ene-3,4,7,8-tetracarboxylic acid, 5-carboxymethylbicyclo[2.2.1 ]heptane-2,3,6-tricarboxylic acid, bicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylic acid, bicyclo[2.2.2
  • X 1 a having an aliphatic group it is preferable to have a structure S that satisfies at least one of the following (I) and (II) from the viewpoint of exerting stress relaxation more effectively.
  • At least one of the carbon atoms in X 1 constituting the imide ring is directly linked to at least one of the carbon atoms in X 1 constituting the other imide ring.
  • At least one of the carbons in the X 1 constituting each of the two imide rings independently has a structure directly linked to an aliphatic structure, and contains an aliphatic structure that is one of the constituent elements , satisfies either As specific examples satisfying the above (I), chemical formulas (Ia) to (Id) can be exemplified. The chemical formulas (Ib) to (Id) are also compounds satisfying the above (II). * in the formula indicates the bonding site with the imide group.
  • Examples of X 1 a having a structure S in which the carbon in X 1 forming the imide ring is directly linked to a chain hydrocarbon structure that is an aliphatic structure are represented by chemical formulas (II-a) and (II-v). can be exemplified.
  • the chemical formula (II-b) The represented compound can be exemplified.
  • Chemical formula (II-c) can be exemplified as an example of X 1 a having a structure S containing an alicyclic hydrocarbon structure among the aliphatic structures.
  • the two imide rings may each independently satisfy at least one of (I) and (II) above, and may contain an aromatic ring as shown in chemical formula (II-d).
  • the ratio of X 1 a having an aliphatic group is preferably 60 to 100 mol%, more preferably 75 to 100 mol%, with respect to 100 mol% of X 1 constituting the polyimide resin (A).
  • a preferred range is 85 to 100 mol %.
  • the ratio of X 1 a having an aliphatic group is, among the raw material monomers used when synthesizing the polyimide resin (A), the total monomers to be X 1 residues 100 mol% with respect to the aliphatic group It can be determined from the content ratio (mol %) of the monomer in which X 1 a is a residue.
  • the ratio of the constituent components derived from the monomers of the polyimide resin (A) in 100 mol% of the monomer which is a tetracarboxylic acid used in the polymerization of the polyimide resin (A).
  • X 2 in general formula (1) is, as described above, a divalent organic group which may have an independent structure for each repeating unit.
  • Preferred examples of organic compounds used for polymerization to obtain X2 include diamines and diisocyanates, as described above. At least part of X 2 is residue X 2 d derived from dimer diamine and/or dimer diisocyanate.
  • the ratio of X 2 d having a dimer structure is preferably 60 to 100 mol % when the entire X 2 constituting the polyimide resin (A) is taken as 100 mol %.
  • the packing of the polyimide resin (A) is moderately inhibited, the dispersibility with the curable compound (B) and the thermally conductive filler (C) is effectively increased, and the substrate processability and bending strength can have both in good balance.
  • a more preferred range is 75 to 100 mol %, and a still more preferred range is 85 to 100 mol %.
  • the proportion of X 2 d having a dimer structure is, among the raw material monomers used when synthesizing the polyimide resin (A), X 2 having a dimer structure with respect to 100 mol% of all monomers that become X 2 residues It can be determined from the content (mol%) of the monomer in which d is the residue.
  • the other diamine that becomes a monomer of X 2 other than the monomer forming the residue X 2 d having a dimer structure described above is particularly Not limited. Specifically, an optionally substituted aliphatic group (a chain hydrocarbon structure and/or an alicyclic hydrocarbon structure that may contain an unsaturated bond), an aromatic ring and these There is a diamine compound that is an arbitrary combination of
  • diamines other than dimer structures include 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,3-diamino naphthalene, 2,6-diaminotoluene, 2,4-diaminotoluene, 3,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4 '-diamino-1,2-diphenylethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, 4,4'-diaminodipheny
  • the polyimide resin (A) may contain residues derived from monomers other than X1 residue and X2 residue within the scope of the present disclosure.
  • a polyamine compound having 3 or more amino groups may be used.
  • polyamine compounds having three or more amino groups include 1,2,4-triaminobenzene and 3,4,4'-triaminodiphenyl ether.
  • the polyimide resin (A) can be produced by various known methods.
  • a specific example is a method of cyclizing a polyamic acid resin or polyamic acid ester resin, which is a polyimide precursor, by heating to convert it into an imide group.
  • a method for synthesizing a polyamic acid resin includes, for example, a method of reacting a tetracarboxylic dianhydride and a diamine. More specifically, a monomer containing a tetracarboxylic dianhydride and a diamine is dissolved in a solvent and stirred at a temperature of, for example, 60 to 120° C. for 0.1 to 2 hours to polymerize the polyimide precursor. Polyamic acid resin can be produced.
  • polyimide resin (A) a method in which the total average functional group number of functional groups selected from amino groups, acid anhydride groups and maleimide groups is 1 or less including 0, the number of terminal functional groups is increased by the reaction of a monofunctional compound. A method of adjustment is preferred.
  • Amino groups and acid anhydride groups can be introduced from monomers.
  • a maleimide group can be obtained by a method of introducing a maleimide group-containing compound into a molecular chain terminal or a side chain, or a method of reacting a terminal amine compound with maleic anhydride.
  • a maleimide group or a phenolic hydroxyl group When introducing a maleimide group or a phenolic hydroxyl group, they may be introduced at the stage of synthesizing the polyamic acid resin, or may be introduced after obtaining the polyimide resin. The same is true when passing through a polyamic acid ester resin, which will be described later.
  • Amino groups, acid anhydride groups and maleimide groups may be introduced into side chains or side groups.
  • a phenolic hydroxyl group may be similarly introduced into a side chain or side group.
  • a method of using a compound having these functional groups as a monomer for polymerizing the polyimide resin (A), a polyimide resin precursor, or a polyimide resin was synthesized. Later, there is a method of introducing a phenolic hydroxyl group into a side chain or side group.
  • Polyamic acid ester resin synthesis methods include obtaining a diester with a tetracarboxylic dianhydride and an alcohol and then reacting it with a diamine in the presence of a condensing agent, or obtaining a diester with a tetracarboxylic dianhydride and an alcohol. Then, the remaining dicarboxylic acid is acid chlorided and reacted with a diamine.
  • a method of reacting a tetracarboxylic dianhydride and a diisocyanate to obtain a polyimide precursor and subsequently obtaining a polyimide resin is also suitable.
  • Organic solvents used for polymerization include, for example, N-methyl-2-pyrrolidone (NMP), 2-butanone, dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc). , N,N-diethylacetamide, hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme and cresol.
  • NMP N-methyl-2-pyrrolidone
  • DMSO dimethylsulfoxide
  • DMF N,N-dimethylformamide
  • DMAc N,N-dimethylacetamide
  • N,N-diethylacetamide hexamethylphosphoramide
  • N-methylcaprolactam dimethyl sulfate
  • cyclohexanone dioxane
  • the method of imidizing a polyimide precursor to obtain a polyimide resin is not particularly limited, but a method of heating in a solvent at a temperature of 80 to 400° C. for 0.5 to 50 hours can be exemplified. At this time, a catalyst and/or a dehydrating agent may be used as necessary.
  • reaction catalysts include aliphatic tertiary amines such as triethylamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic tertiary amines such as pyridine, picoline and isoquinoline.
  • dehydrating agents include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides such as benzoic anhydride.
  • the imidization rate (imido ring formation rate) is not limited, but from the viewpoint of effectively exhibiting the effects of alkali resistance and acid resistance (plating solution resistance), it is preferably 80% or more, and 90% or more. is more preferable, and 95 to 100% is even more preferable.
  • the imidization rate can be determined by NMR, IR analysis, or the like.
  • Curable compound (B) is one or more selected from the group consisting of epoxy compound (b1), cyanate ester compound (b2), maleimide compound (b3), polyphenylene ether compound (b4) and nadimide compound (b5). .
  • the epoxy compound (b1) may be used in combination with an active ester compound.
  • the curable compound (B) can be used singly or in combination of two or more regardless of whether the resin is the same or different. Curing agents other than those described above and curing accelerators may also be used in combination.
  • the average number of functional groups of the curable compound (B) is calculated for each curable compound (B) having the same skeleton.
  • a combined system of a cyanate ester compound (b2) and a maleimide compound (b3), a maleimide compound (b3) and a polyphenylene ether compound (b4) ) is preferred. Further, from the viewpoint of more effectively improving the bending strength, a combined system of the maleimide compound (b3) and the nadimide compound (b5) is suitable.
  • Epoxy compound (b1) refers to a curable resin having an epoxy group.
  • the epoxy compound (b1) is preferably used in combination with an active ester compound.
  • the active ester compound is a compound that has one or more ester groups that react with epoxy groups in one molecule and that cures the epoxy resin. Examples of commercially available active ester compounds include "HPC-8000-65T", “EXB9416-70BK” and "EXB8100-65T” manufactured by DIC.
  • an ester group is generated by the reaction between the epoxy compound (b1) and the active ester compound. Therefore, the polarity can be made lower than in the case of using a phenol-based curing agent. As a result, compatibility between the dimer structure of the polyimide resin (A) and the epoxy compound (b1) can be effectively enhanced.
  • epoxy compound (b1) examples include glycidyl ether-type epoxy resins; Epoxy resins; glycidyl ester-type epoxy resins such as diglycidyl phthalate, diglycidyl hexahydrophthalate, or diglycidyl tetrahydrophthalate; cyclic) epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin can be exemplified.
  • cresol novolak type epoxy resin cresol novolak type epoxy resin, phenol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, bisphenol A type novolak type epoxy resin, dicyclopentadiene type epoxy resin, tetrabromobisphenol A type epoxy resin, brominated phenol novolak type epoxy resin.
  • Epoxy resin can be exemplified.
  • the cyanate ester compound (b2) refers to a curable resin having a cyanate group.
  • the cyanate ester compound (b2) include bisphenol A-type cyanate ester resin, bisphenol F-type cyanate ester resin, bisphenol E-type cyanate ester resin, bisphenol S-type cyanate ester resin, bisphenol sulfide-type cyanate ester resin, and phenylene ether-type cyanate ester resin.
  • naphthylene ether type cyanate ester resin biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolac type cyanate ester resin, triphenylmethane type cyanate Ester resin, tetraphenylethane type cyanate ester resin, dicyclopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolak type cyanate ester resin, naphthol aralkyl type cyanate ester resin, naphthol-phenol cocondensed novolak type cyanate ester resins, naphthol-cresol cocondensed novolak type cyanate ester resins, aromatic hydrocarbon formaldehyde resin-modified phenol resin type cyanate ester resins,
  • cyanate ester compound (b2) phenol novolac type cyanate ester resin (“PT-30” and “PT-60” manufactured by Lonza Japan), prepolymer trimerized bisphenol type cyanate ester resin (Lonza Japan (“BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”), etc. may be used.
  • the maleimide compound (b3) refers to a curable resin having a maleimide group.
  • the type of maleimide compound (b3) is not particularly limited. From the viewpoint of long-term heat resistance, the average number of maleimide groups is preferably 1.5 to 4, more preferably 2 or more.
  • the Mw of the maleimide compound (b3) is not particularly limited, it is preferably 100 or more, more preferably 150 or more, from the viewpoint of suppressing volatilization during drying.
  • the upper limit of Mw is not particularly limited, it is 8,000 or less, more preferably 5,000 or less in consideration of availability.
  • maleimide compound (b3) examples include polyfunctional maleimides obtained by reacting a polyfunctional amine with maleic anhydride.
  • Polyfunctional amines include isophoronediamine, dicyclohexylmethane-4,4'-diamine, and Jeffamine D-230, HK-511, D-400, and XTJ- having terminal aminated polypropylene glycol skeletons manufactured by Huntsman Corporation.
  • maleimide compounds (b3) include 4,4′-diphenylmethanebismaleimide, m-phenylenebismaleimide, p-phenylenebismaleimide, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, bis-(3 -ethyl-5-methyl-4-maleimidophenyl)methane, 4-methyl-1,3-phenylenebismaleimide, N,N'-ethylenedimaleimide, N,N'-hexamethylenedimaleimide, bis(4-maleimide phenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, bisphenol A diphenyletherbismaleimide, etc.
  • biphenyl aralkyl type maleimide polyphenylmethane maleimide (CAS NO: 67784-74-1, a reaction product of a polymer composed of formaldehyde and aniline and maleic anhydride), N,N'-(toluene-2,6-diyl ) bismaleimide, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, N , N'-ethylenebismaleimide, N,N'-trimethylenebismaleimide, N,N'-propylenebismaleimide, N,N'-tetramethylenebismaleimide, N,N'-pentamethylenebismaleimide, N,N '-(1,3-pentanediyl)bis(maleimi
  • a radical polymerization initiator can be added.
  • azo compounds and organic peroxides can be exemplified.
  • a polymerization initiator is used alone or in combination of two or more.
  • Azo compounds include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane 1-carbonitrile), 2,2 '-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2'-azobis(2-methylpropionate), 4 , 4′-azobis(4-cyanovaleric acid), 2,2′-azobis(2-hydroxymethylpropionitrile), 2,2′-azobis[2-(2-imidazolin-2-yl)propane] can be exemplified.
  • Organic peroxides include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di(2-ethoxyethyl) peroxydicarbonate. , t-butyl peroxy 2-ethylhexanoate, t-butyl peroxyneodecanoate, t-butyl peroxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl Peroxide can be exemplified.
  • the polyphenylene ether compound (b4) has a repeating unit having a structure represented by the following general formula (14) and contains a curable functional group.
  • R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), an optionally substituted alkyl group ( Linear or branched compounds with 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, heptyl group, and cyclohexyl group.
  • cyclic compounds optionally substituted alkoxy groups (C1-C6 alkoxy groups such as methoxy, ethoxy, butoxy, and propoxy groups), optionally substituted aryl Examples include groups (phenyl group, naphthyl group, etc.), optionally substituted amino groups, carboxy groups, nitro groups, cyano groups, and the like.
  • the polyphenylene ether compound (b4) preferably has an average number of curable functional groups of 1 to 10, more preferably 2 or more.
  • the Mw of the polyphenylene ether compound (b4) is not particularly limited, it is preferably 200 or more, more preferably 500 or more, from the viewpoint of bending strength. Although the upper limit of Mw is not particularly limited, it is 10,000 or less in consideration of availability and the like.
  • polyphenylene ether compound (b4) examples include poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2,6-dimethyl-1,4-phenylene ether), poly(2- methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g., 2,3,6- trimethylphenol, 2-methyl-6-butylphenol, etc.).
  • polyphenols e.g., 2,3,6- trimethylphenol, 2-methyl-6-butylphenol, etc.
  • polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols, poly(2,6-dimethyl-1,4-phenylene ether), and the like are added to bisphenols and trisphenols.
  • the nadimide compound (b5) is not particularly limited as long as it has two or more nadimide groups in the molecule.
  • Suitable examples of the nadimide compound (b5) include compounds having a structure represented by the following general formula (15).
  • R 21 is an optionally substituted alkylene group having 1 to 20 carbon atoms (eg, an alkylene group such as a methylene group, ethylene group, propylene group, butylene group, pentylene group, heptylene group), cyclohexylene; alicyclic groups such as groups, phenylene groups, biphenylene groups, naphthylene groups, and groups consisting of any combination thereof.
  • R22 and R23 are curable functional groups such as allyl groups or (meth)acrylate groups.
  • Thermally conductive filler (C) is a compound that imparts thermal conductivity to the cured product of the present composition. From the viewpoint of thermal conductivity, the thermally conductive filler preferably has a thermal conductivity of 0.5 W/(m K) or more, more preferably 1.0 W/(m K) or more. It is more preferably 1.5 W/(m ⁇ K) or more.
  • a thermally conductive inorganic filler and a thermally conductive organic-inorganic hybrid filler can be used as the thermally conductive filler (C).
  • the content of the thermally conductive filler (C) may be appropriately adjusted depending on the application, and is usually 5 to 95% by mass with respect to 100% by mass of non-volatile components in the present composition.
  • the shape of the thermally conductive filler (C) is not particularly limited. For example, spherical, powdery, fibrous, acicular, scaly and the like can be mentioned. By using a plurality of types of thermally conductive fillers having different particle sizes and shapes, the thermally conductive filler (C) can be highly filled in some cases.
  • a heat conductive filler (C) is used individually by 1 type or in combination of 2 or more types.
  • thermally conductive inorganic fillers include alumina, aluminum hydroxide, zirconium hydroxide, barium hydroxide, calcium hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, magnesium sulfate, oxide Titanium, tin oxide, aluminum oxide, magnesium oxide, zirconium oxide, calcium oxide, magnesium oxide, zinc oxide, molybdenum oxide, antimony oxide, nickel oxide, calcium silicate, beryllia, calcium titanate, silicon carbide, silicon nitride, aluminum nitride , metal compounds such as boron nitride, titanium white, zinc borate, aluminum borate; talc; clay; mica; glass fiber, kaolin, hydrotalcite, wollastonite, xonotlite, calcium hydrogen phosphate, calcium phosphate, glass flakes, Metal oxides and metal nitrides such as hydrated glass and sepiolite; hydrated metal compounds; fused crushed silica, fused s
  • thermally conductive organic-inorganic hybrid fillers include fillers obtained by coating the surface of the inorganic fillers listed above with a resin or dispersant.
  • a method for coating the surface of the thermally conductive inorganic filler with a resin or a dispersant a known method can be applied.
  • the inorganic filler is preferably exposed in order to effectively bring out the thermal conductivity of the thermally conductive inorganic filler.
  • the surface of the thermally conductive inorganic filler can be surface-treated with, for example, a silane-, titanate-, or aluminate-based coupling agent. The surface treatment can enhance the dispersibility of the thermally conductive filler in the binder component. It is also possible to increase the interfacial adhesive strength between the binder component and the thermally conductive filler.
  • Silane coupling agents include ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane.
  • Aminosilanes such as methoxysilane and ⁇ -ureidopropyltriethoxysilane; epoxysilane; mercaptosilane such as 3-mercaptopropyltrimethoxysilane; p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris( ⁇ -methoxyethoxy)silane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacryloxypropyl Examples include vinylsilanes such as trimethoxysilane.
  • Titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(N-aminoethyl/aminoethyl) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis( dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, diisopropylbis(dioctylphosphate)titanate, tetraisopropylbis(dioctylphosphite)titanate, tetraoctylbis(ditridecylphosphite)titanate and the like.
  • a mode in which the surface of the thermally conductive inorganic filler is coated with a fluororesin is also suitable. From the viewpoint of maintaining good thermal conductivity, it is preferable that the thermally conductive inorganic fillers are exposed at the portions where the thermally conductive inorganic fillers are in contact with each other.
  • the method of adding the thermally conductive filler (C) is not particularly limited, and conventionally known methods can be used.
  • Preferred examples include a method of adding the filler to the polymerization reaction solution before or during the polymerization of the polyimide resin (A), a method of kneading the filler into the polyimide resin (A) using a triple roll or the like, and preparing a dispersion containing the filler. and a method of mixing this with the polyimide resin (A).
  • dispersants, thickeners and the like may be used as long as they do not affect the physical properties of the resin composition.
  • Thermal stabilizer (D) The present composition can optionally contain a heat stabilizer (D).
  • the heat stabilizer (D) may be a compound having an ultraviolet absorption function, a radical scavenging function, a peroxide decomposition function, or a flame retardant function. Phenolic compounds such as resin hindered phenol; hindered amine, phosphorus, sulfur, benzotriazole, benzophenone, hydroxylamine, salicylate, and triazine compounds. Also, metal hydrates and halogen compounds can be exemplified. Known ultraviolet absorbers, antioxidants and flame retardants can be used.
  • the heat stabilizer (D) can be used alone or in combination of two or more.
  • Including the heat stabilizer (D) can improve the substrate processability in addition to the long-term heat resistance.
  • the content thereof is, for example, 0.1 to 5% by mass in 100% by mass of the composition excluding the thermally conductive filler (C) and the solvent.
  • Hindered phenol compounds include, for example, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H ,5H)-trione, 1,1,3-tris-(2′-methyl-4′-hydroxy-5′-t-butylphenyl)-butane, 4,4′-butylidene-bis-(2-t- butyl-5-methylphenol), 3-(3,5-di-t-butyl-4-hydroxyphenyl)stearylpropionate, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxy Phenyl)propionate, 3,9-bis[2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10 -tetraoxaspiro[5.5
  • Hindered amine compounds include, for example, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate, tetrakis(2,2,6,6-tetramethyl -4-piperidyl) 1,2,3,4-butane tetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl) -4-piperidyl) sebacate, bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 2, 2,6,6-tetramethyl-4-piperidyl methacrylate, a polycondensate of dimethyl succinate and 1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine, poly[ [6-[(
  • the phosphorus-based compound is not particularly limited as long as it contains a phosphorus atom, and may be an inorganic compound or an organic compound.
  • inorganic phosphorus compounds include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as amide phosphoric acid; phosphoric acid; phosphine oxide;
  • organic phosphorus compounds include di(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, distearylpentaerythritol diphosphite, 2,2′-methylenebis(4 ,6-di-t-butylphenyl)2-ethylhexyl phosphite, tris(2,4-di-t-butylphenyl)phosphite, tris(n
  • Sulfur compounds include, for example, 2,2-bis ⁇ [3-(dodecylthio)-1-oxopropoxy]methyl ⁇ propane-1,3-diylbis[3-(dodecylthio)propionate], 3,3′-thiobis ditridecyl propionate, 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis[(octylthio)methyl]-o-cresol, 2,4-bis[(laurylthio)methyl]-o-cresol and the like.
  • composition may be solventless or may contain a solvent.
  • Solvents include toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1 -Methoxy-2-propanol, 2-acetoxy-1-methoxypropane, n-hexane, cyclohexane, cyclohexanone and mixtures thereof.
  • a fluorine-based filler may be used from the viewpoint of more effectively exhibiting a low dielectric constant.
  • fluorine-based fillers include PTFE, PVDF (a vinylidene fluoride polymer having a linear structure in which CF2 and CH2 are alternately bonded), NEOFLON FEP (tetrafluoroethylene-hexafluoropropylene copolymer: tetrafluoroethylene- propylene hexafluoride copolymer resin), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer: perfluoroalkoxy resin), NEOFLON ETFE (tetrafluoroethylene-ethylene copolymer), ECTFE (polychlorotrifluoroethylene : Trifluoroethylene chloride resin) and the like can be exemplified.
  • additives can be included within the scope of the present disclosure.
  • a polyimide resin that does not correspond to the polyimide resin (A) and/or a curable compound that does not correspond to the curable compound (B) may be used.
  • any thermoplastic resin can be used.
  • a catalyst may also be included as an optional component to accelerate the curing process. Suitable examples of catalysts include imidazole-based, amine-based, and phosphorus-based catalysts.
  • dyes e.g., carbon black
  • polymerization inhibitors antifoaming agents
  • leveling agents e.g., carbon black
  • ion scavengers e.g., ethylene glycol dimethacrylate
  • moisturizing agents e.g., ethylene glycol dimethacrylate
  • viscosity modifiers e.g., ethylene glycol dimethacrylate
  • preservatives e.g., sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • the glass transition temperature of the cured product obtained by curing the present composition is in the range of 140 to 400°C. More preferably, it is 200 to 300°C. When the glass transition temperature is 140°C or higher, long-term heat resistance can be enhanced. On the other hand, when the glass transition temperature is 400° C. or lower, a certain degree of flexibility can be imparted, and the stress relaxation effect of the polyimide resin (A) can be brought out.
  • the present composition is obtained by blending each compounding component.
  • An imidized polyimide resin (A) is used as a compounding component instead of a polyimide precursor.
  • a solvent can be used as appropriate for blending.
  • the solid content concentration can be, for example, 20 to 60% by mass. Since the polyimide resin (A) has a dimer structure, it can be easily dissolved in various organic solvents.
  • the composition can be in the form of powder, film, sheet, plate, pellet, paste or liquid, for example.
  • a liquid or paste resin composition can be easily obtained by adjusting the viscosity using a solvent.
  • a film-like, sheet-like, or plate-like resin composition can be formed, for example, by applying a liquid or paste resin composition and drying it.
  • the powdery or pellet-like resin composition can be obtained, for example, by pulverizing or cutting the film-like resin composition into a desired size.
  • the present composition can be suitably used as a resin composition layer.
  • the present composition can be suitably used for laminated sheet applications including a base material and a resin composition layer formed of the present composition provided on the base material. Since the resin composition layer exhibits excellent adhesiveness after curing treatment, it is suitable for bonding with various materials (resin layer, metal layer, inorganic layer such as ITO, composite layer, etc.). For example, it is suitable as an adhesive sheet for copper clad laminates (CCL), and as a bonding material between electronic circuit boards and electronic components.
  • CCL copper clad laminates
  • a coating liquid (varnish) of the present composition containing a solvent is applied to one side of the release film, and a liquid medium such as an organic solvent is removed and dried at 40 to 150 ° C., for example, to form a resin composition layer (adhesive sheet) is obtained.
  • a laminated sheet that is an adhesive sheet with a double-sided release film is obtained.
  • the adhesive sheet can be isolated by peeling off the release film.
  • the two release films can be of the same type or of different types. By using release films with different release properties, the strength of the release force can be adjusted, making it easier to peel off in order.
  • a laminate sheet having an adhesive sheet may be obtained by coating a substrate other than the releasable substrate with the coating liquid.
  • Base materials include resin materials such as polyimide film, polyethylene film, polycarbonate, polyethylene, liquid crystal polymer, phenolic resin, and aramid resin; metal materials such as copper, aluminum, and stainless steel; inorganic materials such as ITO, glass, silicon, and silicon carbide. and composite materials in which these are arbitrarily combined can be exemplified.
  • the soft polyimide resin (A) having a storage elastic modulus G′ of 1.0 ⁇ 10 7 Pa at a temperature between ⁇ 30° C. and 90° C. provides excellent adhesion to various substrates. In addition, it is excellent in moldability.
  • coating methods include known methods such as comma coating, knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure printing, flexographic printing, screen printing, dip coating, spray coating, and spin coating. can be selected.
  • the thickness of the adhesive sheet after drying is preferably 5 to 500 ⁇ m, more preferably 10 to 100 ⁇ m, in order to exhibit sufficient adhesiveness and from the viewpoint of ease of handling.
  • the composition can be suitably used for forming a prepreg obtained by impregnating a base material with the composition.
  • a prepreg can be produced, for example, by impregnating a fibrous base material with the present composition, then heating and drying the resin composition for semi-curing (B-staging).
  • the amount of solid matter adhered to the fiber base material of the resin composition is preferably 20 to 90% by mass in terms of the content of the resin composition after drying relative to the prepreg. It is more preferably 30 to 80% by mass, still more preferably 40 to 70% by mass.
  • the solid content adhesion amount of the resin composition in the prepreg is 20 to 90% by mass, for example, 1 to 30 at a temperature of 40 to 250 ° C. It can be manufactured by heating and drying for minutes and semi-curing (to B stage).
  • the fiber base material known materials can be used without limitation, but organic fibers, inorganic fibers and glass fibers can be exemplified.
  • organic fibers include polyimide, polyester, tetrafluoroethylene, and wholly aromatic polyamide.
  • inorganic fibers include carbon fibers.
  • glass fibers include E-glass cloth, D-glass cloth, S-glass cloth, Q-glass cloth, NE-glass cloth, L-glass cloth, T-glass cloth, spherical glass cloth, and low dielectric glass cloth. Among these, E-glass cloth, T-glass cloth, S-glass cloth, Q-glass cloth and organic fibers are preferable from the viewpoint of low coefficient of thermal expansion.
  • the fiber base material may be used singly or in combination of two or more.
  • the shape of the fiber base material can be appropriately selected according to the intended use and performance. Specific examples include woven fabrics, non-woven fabrics, robinks, chopped strand mats and surfacing mats. Plain weave, Nanako weave, and twill weave can be exemplified as the weave method of the woven fabric. It can be arbitrarily selected and designed according to desired characteristics.
  • the thickness of the fibrous substrate can range, for example, from about 0.01 to 1.0 mm. From the viewpoint of thinning, the thickness is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the fiber base material can be surface-treated with a silane coupling agent or the like in order to bring out the desired properties, or can be mechanically opened.
  • a silane coupling agent or the like in order to bring out the desired properties, or can be mechanically opened.
  • corona treatment or plasma treatment may be performed.
  • the surface treatment of the silane coupling agent includes aminosilane coupling treatment, vinylsilane coupling treatment, cationic silane coupling treatment, epoxysilane coupling treatment, and the like.
  • the method of impregnating the fiber base material with the resin composition is not particularly limited, but examples include alcohols, ethers, acetals, ketones, esters, alcohol esters, ketone alcohols, ether alcohols, ketone ethers, A method of preparing a varnish of a resin composition using an organic solvent such as ketone esters or ester ethers and immersing a fiber base material in the varnish, a method of applying or spraying the varnish on the fiber base material, a method of spreading the varnish on the fiber base material, A method of laminating both sides of a base material with a film made of a resin composition can be used.
  • the resin composition layer and the like formed from the present composition are suitable for insulating layers, underfill materials, adhesive materials, and the like of semiconductor chip packages. It is also suitable for use as a composition for copper-clad laminates, a bonding sheet for wiring board formation, and a cover coat for flexible substrates.
  • a cured product can be obtained by subjecting the present composition to a curing treatment.
  • it contains a thermosetting compound, it is usually cured by heat curing treatment, and when it contains a photocurable compound, it is usually cured by light irradiation treatment.
  • a method of molding the resin composition into a desired shape such as a sheet and curing treatment can be exemplified.
  • a molded body such as a sheet of the resin composition can be easily obtained by coating the resin composition containing a solvent and drying it. Then, the molded product is cured to form a cured product.
  • the molding and curing may be performed at the same time.
  • a sheet-shaped cured product is also referred to as a cured layer.
  • the temperature for heat curing may be appropriately selected according to the type of the curable compound (B). For example, a method of heat treatment at a temperature of 150 to 300° C. for 30 to 180 minutes can be exemplified. In the case of photocuring treatment, actinic rays may be irradiated at an intensity sufficient for curing. At the time of curing, pressure can be applied for thermocompression bonding (for example, 5 MPa) as needed. By the curing treatment, a crosslinked structure is formed in the present composition to obtain a three-dimensionally crosslinked cured product.
  • a metal-clad laminate is obtained, for example, through a process of forming an insulating layer using the present composition and laminating the insulating layer and a metal layer. Adhesive sheets and prepregs formed from the present composition can be suitably used for this insulating layer.
  • a metal-clad laminate can be obtained by laminating a metal layer and a prepreg formed using the present composition and then performing a curing treatment step by thermocompression bonding.
  • a known method can be used for the thermocompression bonding step. For example, hot pressing is performed at a temperature of 120 to 250° C. and a pressure of 0.5 to 10 MPa for 0.5 to 5 hours.
  • the laminate structure of the metal-clad laminate includes a two-layer laminate of metal layer/hardened layer, a multilayer laminate of metal layer/hardened layer/metal layer, or metal layer/hardened layer/metal layer/hardened layer.
  • a metal-clad laminate having a multi-layer structure in which metal layers or the like are alternately laminated can be exemplified.
  • the laminate may also contain an insulating layer other than the cured layer formed from the present composition.
  • a plurality of prepregs or the like may be stacked and cured.
  • a conductive layer other than a metal layer may be laminated.
  • a metal-clad laminate having a layer structure of metal layer/hardening layer/metal layer is obtained by forming a circuit pattern on the metal layers formed on both main surfaces of the hardening layer, thereby producing a circuit board having a circuit pattern layer.
  • Through-holes and vias may be formed in the cured layer using a laser or the like.
  • a build-up process may be performed on the core substrate to stack insulating hardened layers and form vias to form multiple layers.
  • a circuit board can be obtained, for example, by forming a desired circuit pattern on a metal layer of a metal-clad laminate by a subtractive method, or by forming a desired circuit pattern on one or both sides of an insulating layer by an additive method. can.
  • a copper foil or the like is used as the metal layer.
  • a copper clad laminate includes a step of performing electrolytic copper plating on the copper foil surface, removing the resist layer, and then etching with an alkaline plating solution.
  • the present composition is suitable for copper-clad laminates because it is excellent in substrate processability such as plating solution resistance. Furthermore, since the cured product is excellent in bending strength and long-term heat resistance, a substrate with a cured product containing a cured product formed by curing the composition can be used in a wide range of applications under various environments.
  • a printed wiring board is produced, for example, by processing the copper foil of a copper-clad laminate by etching or the like, forming a signal circuit or the like, and bonding a substrate and a cover film together via an adhesive sheet, followed by a curing treatment process, etc. can be manufactured.
  • a flexible printed wiring board can be produced by forming a conductive pattern on an insulating flexible film, forming a protective film thereon via the present adhesive sheet, and performing thermocompression bonding.
  • the flexible film include polyester, polyimide, liquid crystal polymer, and PTFE film.
  • the conductive pattern can be exemplified by a method of forming by printing technology, and a method by sputtering or plating.
  • openings may be provided by drilling or laser processing, and vias may be formed by filling with a conductive agent.
  • a circuit layer can also be formed on the cured layer of the present composition.
  • the cured product of the present composition has excellent plating resistance and is therefore suitable for producing multilayer printed wiring boards.
  • a printed wiring board formed using the present composition has excellent workability and excellent long-term heat resistance and bending strength, and is therefore suitable for various electronic devices such as smartphones and tablet terminals.
  • the polyimide resin (A) of this composition has excellent electrical insulation
  • a cured product with excellent insulation can be provided by using an insulating material for the curable compound (B) and the thermally conductive filler (C).
  • an insulating material for the curable compound (B) and the thermally conductive filler (C) is suitably used as a material for forming an insulating layer on a circuit board (including a coverlay layer of a printed wiring board, an interlayer insulating layer of a built-up board, a bonding sheet, etc.).
  • a conductive material in a filler such as the thermally conductive filler (C)
  • it can be used as a conductive member of an electronic component.
  • electronic components include power modules such as power semiconductor devices, LEDs, and inverter devices.
  • the cured product of this composition contains a thermally conductive filler (C), it can be applied to general applications that require heat dissipation.
  • C thermally conductive filler
  • the resin composition can be suitably used as a heat radiating component having a desired shape.
  • it is useful as a heat-dissipating adhesive or heat-dissipating sheet for electronic devices (smartphones, doublet terminals, etc.) that cannot be equipped with a fan or heat sink due to its lightness, thinness, shortness and size, and battery exterior materials.
  • the cured product of the present composition is suitable as an adhesive layer between a heating element and a heat sink, or as a heat spreader. It can also be applied as a heat dissipation layer covering one or more electronic components mounted on a substrate.
  • Mw weight-average molecular weight
  • GPC gel permeation chromatograph
  • the acid value was measured according to JIS K0070. Specifically, about 1 g of a sample (polyimide resin (A)) is accurately weighed into a stoppered Erlenmeyer flask, and dissolved by adding 100 mL of cyclohexanone solvent. Phenolphthalein test solution was added to this as an indicator, titration was carried out with a 0.1N alcoholic potassium hydroxide solution, and the end point was when the indicator maintained a light red color for 30 seconds. The acid value was determined by the following formula.
  • the phenolic hydroxyl value was measured according to JIS K0070.
  • the phenolic hydroxyl value is the amount (mg) of potassium hydroxide required to neutralize the acetic acid bound to the phenolic hydroxyl group when the phenolic hydroxyl group contained in 1 g of the polyimide resin (A) is acetylated. is represented by When calculating the phenolic hydroxyl value of the polyimide resin (A), it was calculated in consideration of the acid value as shown in the following formula.
  • a sample polyimide resin (A)
  • polyimide resin (A) polyimide resin (A)
  • a sample polyimide resin (A)
  • cyclohexanone solvent 100 mL
  • an acetylating agent a solution of 25 g of acetic anhydride dissolved in pyridine to a volume of 100 mL
  • phenolphthalein test solution is added as an indicator and maintained for 30 seconds.
  • the solution is then titrated with 0.5N alcoholic potassium hydroxide solution until it turns pink.
  • the phenolic hydroxyl value was determined by the following formula.
  • Phenolic hydroxyl value [ ⁇ (ba) x F x 28.05 ⁇ /S] + D however, S: Sample collection amount (g) a: consumption of 0.5N alcoholic potassium hydroxide solution (mL) b: Consumption (mL) of 0.5N alcoholic potassium hydroxide solution in blank experiment F: Potency of 0.5N alcoholic potassium hydroxide solution D: Acid value (mgKOH/g)
  • the value of b can be determined by titrating 5 mL of the acetylating agent (a solution of 25 g of acetic anhydride dissolved in pyridine to a volume of 100 mL) with a 0.5N alcoholic potassium hydroxide solution.
  • Amine value (mgKOH/g) (5.611 x a x F)/S however, S: Sample collection amount (g) a: consumption of 0.1N alcoholic hydrochloric acid solution (mL) F: Titer of 0.1N alcoholic hydrochloric acid solution
  • DM1 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • DM2 1,2,3,4-butanetetracarboxylic dianhydride
  • DM3 4,4'-(4,4'-isopropylidenedi phenoxy)diphthalic anhydride
  • DM4 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride
  • DM5 5-(2, 5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride
  • DM6 X-22-168B (manufactured by Shin-Etsu Chemical Co., Ltd., siloxane-type tetracarboxylic dianhydride, molecular weight 2960)
  • MM1 maleic anhydride
  • MM2 phthalic anhydride
  • Tables 1 to 4 show the blending amount (parts by mass), the phenolic hydroxyl group (PhOH) value, acid anhydride group value, amine value, maleimide value, and total functional group value of the obtained polyimide resin. Also shown are the mol % of the X 1 a residue relative to 100 mol % of the X 1 residue and the mol % of the X 2 d residue relative to 100 mol % of the X 2 residue.
  • the Mw of the polyimide resin (A), the temperature at which the storage elastic modulus G' is 1.0 ⁇ 10 7 Pa, the amino group in the polyimide resin (A), the functional group selected from the acid anhydride group and the maleimide group indicates the total average functional group number of
  • the value of the maleimide value was calculated from the charged amount used for synthesizing the polyimide resin (A).
  • the total functional group value in this example is the total functional group value of phenolic hydroxyl value + acid anhydride group value + amine group value + maleimide value.
  • the carboxy value may be added to the above formula.
  • a prepreg 2 according to Example 1 was obtained in the same manner as in the prepreg production 1, except that the heat drying temperature and time were changed to 120° C. for 5 minutes.
  • Examples 2 to 55, Comparative Examples 1 to 15 Varnishes according to Examples 2 to 48, 50 to 53, and Comparative Examples 1 to 15 were prepared in the same manner as in Example 1 except that the ingredients and amounts were changed to those shown in Tables 5 to 9.
  • Prepreg 1 prepreg 2 was obtained.
  • an adhesive sheet which is a resin composition layer obtained in the ⁇ manufacture of adhesive sheet>> described later, was used, and copper clad was obtained in the same manner. A laminate was obtained.
  • (B)) (B)-1: Epoxy compound (b1), XD-1000 (manufactured by Nippon Kayaku Co., Ltd., dicyclopentadiene type epoxy, polyfunctional, functional group equivalent 252 g/eq.)
  • B)-3 Maleimide compound (b3), BMI-3000 (manufactured by Daiwa Kasei Kogyo Co., Ltd., bisphenol A diphenyl ether bismaleimide, difunctional, functional group equivalent 285.3 g/eq.)
  • the obtained copper-clad laminate was cut into a piece having a width of 40 mm and a length of 25 mm.
  • two support members made of metal and having rounded ends were placed at a distance (23.7 mm) shorter than the length of the test piece.
  • the specimen was placed on the support members so that the longitudinal center of the specimen overlapped the center of the spacing between the two support members.
  • a pressurizing tool made of metal and having a rounded tip was pressed against the central portion of the test piece to apply force to the test piece.
  • the speed at which the force was applied to the test piece was 1.0 mm/min.
  • the force was continued to be applied to the specimen and ended when the specimen broke.
  • the bending strength in terms of 1.6 mm thickness was calculated based on the distance between support members (distance between fulcrums), the width of the test piece, the thickness of the test piece, and the force applied when the test piece broke.
  • A 400 N/mm 2 or more.
  • B 300 N/mm 2 or more and less than 400 N/mm 2 .
  • C 200 N/mm 2 or more and less than 300 N/mm 2 .
  • D 150 N/mm 2 or more and less than 200 N/mm 2 .
  • E 100 N/mm 2 or more and less than 150 N/mm 2 .
  • F Less than 100 N/ mm2 . Not practical.
  • Substrate processing suitability A printed wiring board for evaluation was produced according to the following method, and a series of tests of embeddability, heat cycle resistance, and plating solution resistance were conducted. After that, the printed wiring board for evaluation was cut, and the exposed cross section was observed with an optical microscope at a magnification of 100 times.
  • ⁇ Heat cycle test> The printed wiring board for evaluation was put into a thermal shock device ("TSE-11-A", manufactured by Espec Co., Ltd.), and exposed to high temperature: 125 ° C. for 15 minutes, low temperature exposure: -50 ° C., 15 minutes. A predetermined number of alternating exposures were performed.
  • ⁇ Plating solution resistance test> The printed wiring board for evaluation after the above heat cycle test was subjected to the following acidic plating test, then washed with pure water and dried. After that, using the same sample, the following alkaline plating test was carried out.
  • [I. Acid plating test] The adhesive sheet with the double-sided release film was cut into a size of 65 mm ⁇ 65 mm, and the light release film was peeled off. Then, the adhesive sheet surface exposed by peeling was combined with a two-layer CCL [ESPANEX MC18-25-00FRM] copper surface manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and laminated at 90 ° C., followed by 180 ° C. and 2.0 MPa.
  • Pre-dip step immersion in hydrochloric acid at 25° C. for 30 seconds.
  • Activation step Immerse in ICP Accela (manufactured by Okuno Chemical Industry Co., Ltd.) at 30°C for 1 minute.
  • Post-dipping step Immerse in sulfuric acid at 25°C for 1 minute.
  • Electroless nickel plating process immersed in IP Nicolon FPF (manufactured by Okuno Chemical Industry Co., Ltd.) at 85°C for 20 minutes.
  • II. Alkaline Plating Test A test piece for evaluation was prepared in the same manner as the acid plating test, and the test piece was subjected to electroless nickel treatment according to the following procedures and conditions of sw. s.
  • Alkaline degreasing step Immersed in an alkaline degreasing agent (50 g/L aqueous solution of A-SCREEN A-220 (trade name) manufactured by Okuno Pharmaceutical Co., Ltd.) at 50°C for 5 minutes.
  • Etching process immersion at 67° C. for 10 minutes in an aqueous solution containing 400 g/L of chromic anhydride and 400 g/L of 98% sulfuric acid.
  • Activation step immersion in an aqueous solution containing 20 mL/L of 98% sulfuric acid at 25°C for 2 minutes.
  • Imparting catalytic activity Immerse in a catalyst activating solution (manufactured by Okuno Chemical Industry Co., Ltd., an aqueous solution containing 10 mL/L of TSP Activator Conc (trade name)) at 25°C for 2 minutes.
  • Electroless nickel plating process Ammonia alkali type autocatalytic electroless nickel plating solution (manufactured by Okuno Chemical Industry Co., Ltd., chemical nickel A (trade name) 160 mL / L, chemical nickel B (trade name) pH 9 containing 160 mL / L solution) at 40°C for 5 minutes.
  • the term "defective appearance” refers to the occurrence of peeling from the substrate surface, voids, and the like.
  • Prepregs 1 and 2 The prepregs 1 and 2 of each example were cut, and the exposed cross section was observed with a scanning electron microscope (SEM) at a magnification of 5000 times.
  • the void means a crack having a size of 0.1 ⁇ m or more.
  • a resin composition containing a polyimide resin in which the total average number of functional groups of amino groups, acid anhydride groups and maleimide groups per molecule exceeds 1 was inferior in substrate processability as shown in Comparative Examples 1 to 3. .
  • the resin composition using the polyimide resin at which the storage modulus G′ becomes 1.0 ⁇ 10 7 Pa at a temperature exceeding 90° C. was inferior in flexural strength as shown in Comparative Examples 4 and 5.
  • the resin composition using a polyimide resin having an Mw of less than 10,000 was inferior in substrate processability.
  • the resin composition using a polyimide resin having an Mw exceeding 100,000 was inferior in long-term heat resistance as shown in Comparative Example 7.
  • Examples 1 to 55 according to the present disclosure have substrate processing suitability that combines embeddability into substrate unevenness, heat cycle resistance, and plating solution resistance, and the cured product has excellent long-term heat resistance and bending strength. I was able to confirm that it is excellent.

Abstract

The present invention provides a resin composition which has substrate processing adequacy including embeddability into substrate relief patterns, heat cycle resistance and plating solution resistance, and which enables the achievement of a cured product that has excellent long-term heat resistance and excellent bending strength. The above is achieved by means of a resin composition which contains a polyimide resin (A), a curable compound (B) and a thermally conductive filler (C), wherein: a cured product of this resin composition has a Tg of 140°C to 400°C; the polyimide resin (A) has a residue X2d that is derived from a dimer diamine and/or a dimer diisocyanate, while having a total average number of functional groups selected from among an amino group, an acid anhydride group and a maleimide group of 1 or less (including 0); the temperature and Mw at which the storage elastic modulus G' of the polyimide resin (A) is 1.0 × 107 Pa are within specific ranges; and the curable compound (B) is selected from the group consisting of an epoxy compound (b1) and the like.

Description

樹脂組成物、積層シート、プリプレグ、硬化物、硬化物付基板および電子機器Resin compositions, laminate sheets, prepregs, cured products, substrates with cured products, and electronic devices
 本開示は、樹脂組成物、積層シートおよびプリプレグに関する。更に、前記樹脂組成物から得られる硬化物、前記樹脂組成物を硬化して形成される硬化物を含む硬化物付基板、前記硬化物付基板を搭載した電子機器に関する。 The present disclosure relates to resin compositions, laminated sheets and prepregs. Further, the present invention relates to a cured product obtained from the resin composition, a substrate with a cured product containing the cured product formed by curing the resin composition, and an electronic device mounted with the substrate with the cured product.
 電子部品には、樹脂組成物を硬化させて得られた部材が様々な部位に用いられている。例えば、多層プリント配線板には、複数の導体層間に層間絶縁層が形成されている。また、樹脂組成物をガラスクロス等に含浸させたプリプレグが、プリント配線板の導体層を覆う絶縁層として用いられている。また、半導体パッケージに絶縁性の封止樹脂が用いられている。 Materials obtained by curing resin compositions are used in various parts of electronic components. For example, a multilayer printed wiring board has an interlayer insulating layer formed between a plurality of conductor layers. Also, a prepreg obtained by impregnating glass cloth or the like with a resin composition is used as an insulating layer covering a conductor layer of a printed wiring board. Also, an insulating sealing resin is used in a semiconductor package.
 このような樹脂組成物として、樹脂成分、硬化成分、無機フィラー成分を含む組成物が開示されている。例えば、特許文献1には、エポキシ化合物、硬化剤、シリカおよびダイマー構造を有するポリイミドを含有する組成物が、特許文献2には、ダイマージアミンに由来する骨格を有する、特定量のN-アルキルビスマレイミド化合物等と、エポキシ化合物と、無機充填剤と、特定の硬化剤とを含む組成物が開示されている。また、特許文献3には、熱硬化性樹脂、無機充填剤、特定量の有機充填剤および粘着性柔軟化剤を含む樹脂組成物が開示されている。更に、特許文献4には、特定量のエポキシ樹脂、特定の構造を有する特定量のマレイミド化合物、特定量の活性エステル系化合物および無機充填剤を含む絶縁層形成用樹脂組成物が開示されている。 A composition containing a resin component, a curing component, and an inorganic filler component is disclosed as such a resin composition. For example, Patent Document 1 discloses a composition containing an epoxy compound, a curing agent, silica and a polyimide having a dimer structure, and Patent Document 2 discloses a specific amount of an N-alkylbis Compositions are disclosed that include a maleimide compound or the like, an epoxy compound, an inorganic filler, and a specific curing agent. Further, Patent Document 3 discloses a resin composition containing a thermosetting resin, an inorganic filler, a specific amount of an organic filler and an adhesive softening agent. Furthermore, Patent Document 4 discloses a resin composition for forming an insulating layer containing a specific amount of an epoxy resin, a specific amount of a maleimide compound having a specific structure, a specific amount of an active ester compound, and an inorganic filler. .
 特許文献5には、芳香族テトラカルボン酸類およびダイマージアミンを特定量含むジアミン類を反応させてなるポリイミド樹脂、熱硬化性樹脂、難燃剤、並びに有機溶剤を含むポリイミド系接着剤組成物が開示されている。また、特許文献6には、シクロヘキサン環、ダイマー構造を有するマレイミド化合物、ダイマー構造を有するポリイミド樹脂、エポキシ化合物、活性エステル系化合物および無機充填剤を含む樹脂材料が開示されている。更に、特許文献7には、熱硬化性樹脂、無機充填材、特定量の有機充填材および粘着性柔軟化剤を含む樹脂組成物が開示されている。また、特許文献8には、Bステージにおける損失弾性率が低く、耐熱接着性および低誘電特性が良好な接着層を与えるポリイミド系接着剤を提供することを課題として、末端変性ポリイミドと架橋剤と有機溶剤を含むポリイミド系接着剤が開示されている。また、特許文献8には、Bステージにおける損失弾性率が低く、耐熱接着性および低誘電特性が良好な接着層を与えるポリイミド系接着剤を提供することを課題として、末端変性ポリイミドと架橋剤と有機溶剤を含むポリイミド系接着剤が開示されている。 Patent Document 5 discloses a polyimide adhesive composition containing a polyimide resin, a thermosetting resin, a flame retardant, and an organic solvent obtained by reacting diamines containing specific amounts of aromatic tetracarboxylic acids and dimer diamine. ing. Further, Patent Document 6 discloses a resin material containing a cyclohexane ring, a maleimide compound having a dimer structure, a polyimide resin having a dimer structure, an epoxy compound, an active ester compound and an inorganic filler. Furthermore, Patent Document 7 discloses a resin composition containing a thermosetting resin, an inorganic filler, a specific amount of an organic filler and a tacky softening agent. Further, in Patent Document 8, the problem is to provide a polyimide-based adhesive that has a low B-stage loss elastic modulus and provides an adhesive layer with good heat-resistant adhesiveness and low dielectric properties. A polyimide adhesive containing an organic solvent is disclosed. Further, in Patent Document 8, the problem is to provide a polyimide-based adhesive that has a low B-stage loss elastic modulus and provides an adhesive layer with good heat-resistant adhesiveness and low dielectric properties. A polyimide adhesive containing an organic solvent is disclosed.
国際公開第2018/062404号WO2018/062404 国際公開第2019/189466号WO2019/189466 特開2020-158704号公報JP 2020-158704 A 特開2020-186392号公報JP 2020-186392 A 特開2013-199645号公報JP 2013-199645 A 特開2021-25052号公報Japanese Patent Application Laid-Open No. 2021-25052 特開2020-158704号公報JP 2020-158704 A 特開2016-191049号公報JP 2016-191049 A
 電子機器の高機能化がすすみ、機器に内蔵される電子部品の高い信頼性が益々求められている。樹脂組成物においては、プリント配線板等の製造時に基板加工適性に優れる材料が求められている。具体的には、配線などの凹凸パターンが形成された基板上に樹脂組成物からなる絶縁層を形成する際に、凹凸形状に対する埋め込み性に優れる材料が求められている。また、樹脂組成物を硬化した硬化物において、優れためっき耐性(アルカリ耐性、酸耐性)が求められている。更に、はんだリフロー工程など高温プロセスに耐え得るヒートサイクル耐性のある材料が求められている。また、長期耐熱性ならびに曲げ強度を兼ね備える材料が市場で求められている。 With the advancement of electronic equipment, there is an increasing demand for high reliability of the electronic components built into the equipment. There is a demand for resin compositions that are excellent in substrate processing suitability during the production of printed wiring boards and the like. Specifically, when an insulating layer made of a resin composition is formed on a substrate on which an uneven pattern such as wiring is formed, there is a demand for a material that is excellent in filling the uneven shape. In addition, a cured product obtained by curing the resin composition is required to have excellent plating resistance (alkali resistance, acid resistance). Furthermore, there is a need for heat cycle resistant materials that can withstand high temperature processes such as solder reflow processes. In addition, the market demands materials that have both long-term heat resistance and bending strength.
 本開示は上記背景に鑑みてなされたものであり、基板凹凸への埋め込み性、めっき液耐性およびヒートサイクル耐性を兼ね備える基板加工適性を有し、その硬化物が長期耐熱性に優れると共に曲げ強度にも優れる樹脂組成物、並びに前記樹脂組成物を用いて形成される積層シート、プリプレグ、硬化物、硬化物付基板および電子機器を提供することを目的とする。 The present disclosure has been made in view of the above background. It is an object of the present invention to provide a resin composition which is excellent in terms of strength, a laminated sheet, a prepreg, a cured product, a substrate with the cured product, and an electronic device which are formed using the resin composition.
 本発明者らが鋭意検討を重ねたところ、以下の態様において、本開示の課題を解決し得ることを見出し、本開示を完成するに至った。
[1]: ポリイミド樹脂(A)、硬化性化合物(B)および熱伝導性フィラー(C)を含む樹脂組成物であって、
 ポリイミド樹脂(A)は、ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xdを有し、アミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数が0を含む1以下であり、
 ポリイミド樹脂(A)の貯蔵弾性率G’が1.0×10Paとなる温度が、-30~90℃のいずれかにあり、ポリイミド樹脂(A)の重量平均分子量が10,000~100,000であり、
 硬化性化合物(B)は、エポキシ化合物(b1)、シアネートエステル化合物(b2)、マレイミド化合物(b3)、ポリフェニレンエーテル化合物(b4)およびナジイミド化合物(b5)からなる群から選択される一種又は二種以上であり、
 硬化処理により得られた硬化物のガラス転移温度が140~400℃となる樹脂組成物。
[2]: ポリイミド樹脂(A)は、一般式(1):
Figure JPOXMLDOC01-appb-C000002
(Xは繰り返し単位毎にそれぞれ独立に4価のテトラカルボン酸残基であり、Xは繰り返し単位毎にそれぞれ独立に2価の有機基であり、前記Xとイミド結合が互いに結合して2つのイミド環を形成する。)
で表される構造の繰り返し単位を有し、
 ポリイミド樹脂(A)を構成する前記X全体を100モル%としたときに、前記ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xdを60~100モル%有することを特徴とする[1]に記載の樹脂組成物。
[3]: 更に、熱安定剤(D)を含むことを特徴とする[1]又は[2]に記載の樹脂組成物。
[4]: 樹脂組成物の不揮発成分100質量%中に、ポリイミド樹脂(A)が1~40質量%配合されていることを特徴とする[1]~[3]のいずれかに記載の樹脂組成物。
[5]: 硬化性化合物(B)としてエポキシ化合物(b1)を含有し、更に、活性エステル系化合物を含むことを特徴とする[1]~[4]のいずれかに記載の樹脂組成物。
[6]: 基材と、前記基材上に設けられた、[1]~[5]のいずれかに記載の樹脂組成物で形成された樹脂組成物層とを含む、積層シート。
[7]: 基材に[1]~[5]のいずれかに記載の樹脂組成物を含浸させたプリプレグ。
[8]: [1]~[5]のいずれかに記載の樹脂組成物から得られる硬化物。
[9]: [1]~[5]のいずれかに記載の樹脂組成物を硬化して形成される硬化物を含む、硬化物付基板。
[10]: [9]に記載の硬化物付基板を搭載した電子機器。
As a result of extensive studies, the present inventors have found that the following aspects can solve the problems of the present disclosure, and have completed the present disclosure.
[1]: A resin composition containing a polyimide resin (A), a curable compound (B) and a thermally conductive filler (C),
The polyimide resin (A) has residues X 2 d derived from dimer diamine and/or dimer diisocyanate, and the total average number of functional groups selected from amino groups, acid anhydride groups and maleimide groups is 0. is less than or equal to 1 including
The temperature at which the polyimide resin (A) has a storage modulus G' of 1.0×10 7 Pa is in the range of −30 to 90° C., and the polyimide resin (A) has a weight average molecular weight of 10,000 to 100. ,000, and
The curable compound (B) is one or two selected from the group consisting of an epoxy compound (b1), a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and a nadimide compound (b5). and
A resin composition having a glass transition temperature of 140 to 400° C. in a cured product obtained by curing treatment.
[2]: The polyimide resin (A) has the general formula (1):
Figure JPOXMLDOC01-appb-C000002
(X 1 is independently a tetravalent tetracarboxylic acid residue for each repeating unit, X 2 is independently a divalent organic group for each repeating unit, and the X 1 and the imide bond are bonded to each other. form two imide rings.)
Having a repeating unit of the structure represented by
[ _ 1].
[3]: The resin composition according to [1] or [2], further comprising a heat stabilizer (D).
[4]: The resin according to any one of [1] to [3], wherein 1 to 40% by mass of the polyimide resin (A) is blended in 100% by mass of the non-volatile components of the resin composition. Composition.
[5]: The resin composition according to any one of [1] to [4], which contains an epoxy compound (b1) as the curable compound (B) and further contains an active ester compound.
[6]: A laminated sheet comprising a substrate and a resin composition layer formed on the substrate and formed of the resin composition according to any one of [1] to [5].
[7]: A prepreg in which a substrate is impregnated with the resin composition according to any one of [1] to [5].
[8]: A cured product obtained from the resin composition according to any one of [1] to [5].
[9]: A substrate with a cured product, comprising a cured product formed by curing the resin composition according to any one of [1] to [5].
[10]: An electronic device equipped with the substrate with a cured product according to [9].
 本開示によれば、基板加工適正(基板凹凸への埋め込み性、ヒートサイクル耐性、めっき液耐性)に優れ、その硬化物が長期耐熱性に優れると共に曲げ強度にも優れる樹脂組成物、並びに前記樹脂組成物を用いて形成される積層シート、プリプレグ、硬化物、硬化物付基板および電子機器を提供できるという優れた効果を奏する。 According to the present disclosure, a resin composition that is excellent in substrate processing suitability (embedding property in substrate unevenness, heat cycle resistance, plating solution resistance), and whose cured product has excellent long-term heat resistance and excellent bending strength, and the resin An excellent effect is obtained that a laminate sheet, a prepreg, a cured product, a substrate with the cured product, and an electronic device formed using the composition can be provided.
 以下、本開示について詳細に説明する。なお、本開示の趣旨に合致する限り、他の実施形態も本開示の範疇に含まれることは言うまでもない。また、本明細書において「~」を用いて特定される数値範囲は、「~」の前後に記載される数値を下限値および上限値の範囲として含むものとする。また、本明細書において「フィルム」や「シート」は同義であり、厚みによって区別されないものとする。また、本明細書中に出てくる各種成分は特に注釈しない限り、それぞれ独立に一種単独でも二種以上を併用してもよい。本明細書に記載する数値は、後述する[実施例]に記載の方法にて得られる値をいう。 The present disclosure will be described in detail below. It goes without saying that other embodiments are also included in the scope of the present disclosure as long as they match the gist of the present disclosure. In addition, in this specification, the numerical range specified using "-" shall include the numerical values described before and after "-" as the range of lower and upper values. Moreover, in this specification, the terms "film" and "sheet" have the same meaning and are not distinguished by thickness. In addition, unless otherwise noted, the various components appearing in the present specification may be used singly or in combination of two or more. Numerical values described in this specification refer to values obtained by methods described in [Examples] below.
1.樹脂組成物
 本実施形態に係る樹脂組成物(以下、本組成物ともいう)は、ポリイミド樹脂(A)、硬化性化合物(B)および熱伝導性フィラー(C)を含む。ポリイミド樹脂(A)は、ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xd(以下、ダイマー構造ともいう)を有する。また、ポリイミド樹脂(A)は、アミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数を、0を含む1以下とする。そして、ポリイミド樹脂(A)の貯蔵弾性率G’が1.0×10Paとなる温度が、-30~90℃のいずれかにあり、且つ重量平均分子量(以下、Mwともいう)を10,000~100,000とする。ポリイミド樹脂(A)は一種単独又は二種以上を併用できる。
1. Resin Composition The resin composition according to the present embodiment (hereinafter also referred to as the present composition) contains a polyimide resin (A), a curable compound (B) and a thermally conductive filler (C). The polyimide resin (A) has a residue X 2 d (hereinafter also referred to as a dimer structure) derived from dimer diamine and/or dimer diisocyanate. In addition, the polyimide resin (A) has an average total number of functional groups selected from amino groups, acid anhydride groups and maleimide groups of 1 or less, including 0. The temperature at which the polyimide resin (A) has a storage elastic modulus G′ of 1.0×10 7 Pa is in the range of −30 to 90° C., and the weight average molecular weight (hereinafter also referred to as Mw) is 10. , 000 to 100,000. Polyimide resin (A) can be used alone or in combination of two or more.
 硬化性化合物(B)は、エポキシ化合物(b1)、シアネートエステル化合物(b2)、マレイミド化合物(b3)、ポリフェニレンエーテル化合物(b4)およびナジイミド化合物(b5)(以下、(b1)~(b5)ともいう)からなる群から選択される一種又は二種以上である。本組成物は、硬化処理により得た硬化物のガラス転移温度(以下、Tgともいう)を140~400℃とする。 The curable compound (B) includes an epoxy compound (b1), a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and a nadimide compound (b5) (hereinafter also referred to as (b1) to (b5) is one or two or more selected from the group consisting of The composition has a glass transition temperature (hereinafter also referred to as Tg) of 140 to 400° C. when cured.
 平均官能基数は、ポリイミド樹脂(A)の1分子あたりのアミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数であり、ポリイミド樹脂(A)の合成に用いる原料成分の仕込み比率から求めることができる。合計の平均官能基数が0とは、ポリイミド樹脂(A)にアミノ基、酸無水物基およびマレイミド基のいずれの基も有しないことを意味する。合計の平均官能基数が1以下とは、ポリイミド樹脂(A)1分子中に、アミノ基、酸無水物基およびマレイミド基の合計官能基が平均で1以下であることを意味する。 The average functional group number is the total average functional group number of functional groups selected from amino groups, acid anhydride groups and maleimide groups per molecule of the polyimide resin (A), and is the raw material used for synthesizing the polyimide resin (A). It can be determined from the charging ratio of the components. The total average number of functional groups being 0 means that the polyimide resin (A) does not have any groups among amino groups, acid anhydride groups and maleimide groups. The total average number of functional groups of 1 or less means that the total number of functional groups of amino groups, acid anhydride groups and maleimide groups is 1 or less on average in one molecule of the polyimide resin (A).
 本明細書において、硬化物とは、硬化処理により三次元架橋構造を形成して硬化することをいい、更に硬化処理しても実質的に硬化反応が進行しない程度に硬化された状態をいう。硬化処理により、硬化性化合物(B)同士が架橋する態様、硬化性化合物(B)とポリイミド樹脂(A)とが架橋する態様、および硬化性化合物(B)と他の成分とが架橋する態様、並びにこれらを任意に組み合わせた態様が挙げられる。硬化処理としては、熱硬化処理、光硬化処理が例示できる。熱反応性基を用いる場合には加熱処理を、光反応性基を用いる場合には光照射処理を通常行う。組成物により硬化条件は変わるが、熱反応性基を用いる場合には、例えば、180℃で60min程度処理することにより硬化物を得ることができる。同様に、光反応性基を用いる場合には、例えば、活性光線(例えば365nm)を架橋反応が充分に進行する光量で照射することにより硬化物を得ることができる。なお、本組成物をシート等の所望の形状に成形する際に、その一部が硬化反応し得るが、更に硬化処理すれば硬化し得る状態は、ここでいう硬化物には含まない。樹脂組成物の段階で、成分の一部が半硬化したBステージの状態であってもよい。 In this specification, the term "cured product" refers to curing by forming a three-dimensional crosslinked structure through curing, and refers to a state in which the curing reaction does not proceed substantially even after further curing. Curing treatment causes the curable compound (B) to crosslink with each other, the curable compound (B) and the polyimide resin (A) to crosslink, and the curable compound (B) to crosslink with other components. , and an embodiment in which these are arbitrarily combined. As curing treatment, heat curing treatment and photocuring treatment can be exemplified. When using a thermoreactive group, heat treatment is usually performed, and when using a photoreactive group, light irradiation treatment is usually performed. Curing conditions vary depending on the composition, but when a thermoreactive group is used, a cured product can be obtained, for example, by treating at 180° C. for about 60 minutes. Similarly, when a photoreactive group is used, a cured product can be obtained by, for example, irradiating actinic rays (for example, 365 nm) in such a light amount as to allow the cross-linking reaction to proceed sufficiently. In addition, when the present composition is molded into a desired shape such as a sheet, a part of the composition may undergo a curing reaction, but the state in which the composition can be cured by further curing treatment is not included in the cured product. At the stage of the resin composition, it may be in a B-stage state in which a part of the components are semi-cured.
 本組成物は上記構成を有しているので、基板加工プロセスにおいて、基板凹凸への埋め込み性に優れ、ヒートサイクル耐性およびめっき液耐性に優れる、基板加工適性の高い樹脂組成物を提供できる。その主たる理由は、硬化物としたときに比較的高いガラス転移温度となる樹脂組成物の配合成分に、柔軟性が高く且つ特定範囲のMwを有するポリイミド樹脂(A)を配合すると共に、ポリイミド樹脂(A)のアミノ基、酸無水物基およびマレイミド基の合計の平均官能基数が0を含む1以下とすることにより、硬化前の流動性を高めると共に、硬化後の応力緩和効果を引き出すことができたことによると考えられる。 Since the present composition has the above structure, it is possible to provide a resin composition that is highly suitable for substrate processing, having excellent embedding properties in substrate irregularities, excellent heat cycle resistance and plating solution resistance in the substrate processing process. The main reason is that the polyimide resin (A) having high flexibility and Mw in a specific range is blended into the resin composition that has a relatively high glass transition temperature when cured, and the polyimide resin By making the total average number of functional groups of amino groups, acid anhydride groups and maleimide groups of (A) 1 or less including 0, it is possible to increase the fluidity before curing and bring out the stress relaxation effect after curing. It is thought that it depends on what has been done.
 また、本組成物は上記構成を有しているので、その硬化物の長期耐熱性が優れる。その主たる理由は、硬化物としたときに比較的高いガラス転移温度となる樹脂組成物の配合成分として熱伝導性フィラー(C)を添加し、更に、ダイマー構造を有し、且つ平面性の高いイミド基を有する、耐熱性に優れた上記構成のポリイミド樹脂(A)を組合せたことによると考えられる。 In addition, since the composition has the above structure, the cured product thereof has excellent long-term heat resistance. The main reason for this is that a thermally conductive filler (C) is added as a compounding component of the resin composition that has a relatively high glass transition temperature when cured, and furthermore, it has a dimer structure and high planarity. It is believed that this is due to the combination of the polyimide resin (A) having the above structure and having an imide group and excellent heat resistance.
 更に、本組成物は上記構成を有しているので、その硬化物の曲げ強度が優れる。その主たる理由は、硬化物としたときに比較的高いガラス転移温度となる樹脂組成物に、炭化水素鎖や環構造を有している、分子鎖間の相互作用が少ないダイマー構造と、適度な柔軟性を有し(上記特定範囲の貯蔵弾性率を有し)、更に、Mwを上記特定範囲とするポリイミド樹脂(A)を配合したことによると考えられる。硬化により剛直となる硬化性化合物(B)に、このようなポリイミド樹脂(A)を配合することにより硬化物に応力緩和性を付与し、硬化性化合物(B)および熱伝導性フィラー(C)を配合している組成物においても破壊靭性を付与できたものと考えられる。以下、本組成物の各成分および製造方法について詳細に説明する。 Furthermore, since the present composition has the above constitution, the bending strength of the cured product is excellent. The main reason is that the resin composition, which has a relatively high glass transition temperature when cured, has a hydrocarbon chain or ring structure, a dimer structure with little interaction between molecular chains, and a moderate It is believed that this is due to the addition of the polyimide resin (A) having flexibility (having a storage elastic modulus within the above specific range) and having Mw within the above specific range. By blending such a polyimide resin (A) with the curable compound (B) that becomes rigid when cured, stress relaxation is imparted to the cured product, and the curable compound (B) and the thermally conductive filler (C) It is considered that the fracture toughness could be imparted to the composition containing Each component of the present composition and the production method are described in detail below.
1-1.ポリイミド樹脂(A)
 ポリイミド樹脂(A)は、ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xdを有する。また、ポリイミド樹脂(A)は、アミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数が0を含む1以下とする。更に、ポリイミド樹脂(A)は、貯蔵弾性率G’が1.0×10Paとなる温度が-30~90℃のいずれかにあり、Mwが10,000~100,000の範囲にある。
1-1. Polyimide resin (A)
Polyimide resin (A) has residues X 2 d derived from dimer diamine and/or dimer diisocyanate. Also, the polyimide resin (A) should have an average total functional group number of 1 or less including 0, of functional groups selected from amino groups, acid anhydride groups and maleimide groups. Furthermore, the polyimide resin (A) has a storage modulus G′ of 1.0×10 7 Pa at a temperature of −30 to 90° C. and an Mw in the range of 10,000 to 100,000. .
 ダイマージアミンは、例えば、ダイマー酸のカルボキシ基をアミノ基に転化することにより得られる。ダイマージイソシアネートは、例えば、ダイマー酸のカルボキシ基をイソシアネート基に転化することにより得られる。ここでダイマー酸とは、不飽和脂肪族カルボン酸の二量体又はその水添物をいう。例えば、大豆油脂肪酸、トール油脂肪酸、菜種油脂肪酸等の天然の脂肪酸、或いはリノレン酸、リノール酸、オレイン酸、エルカ酸、ミリストレイン酸、パルミトレイン酸、サピエン酸、エライジン酸、ステアロール酸、バクセン酸、ガドレイン酸、エイコセン酸、ブラシジン酸、ネルボン酸、エイコサジエン酸、ドコサジエン酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、セトレイン酸、アドレン酸、ボセオペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸、エイコサペンタエン酸、ドコサヘキサエン酸およびニシン酸等の不飽和脂肪酸を二量化してダイマー酸を得ることができる。不飽和結合を必要に応じて水添し、不飽和度を低下させてもよい。不飽和度を下げたダイマージアミンおよびダイマージイソシアネートは、耐酸化性(特に高温域における着色)や合成時のゲル化抑制の点で好適である。 A dimer diamine can be obtained, for example, by converting the carboxy group of a dimer acid into an amino group. A dimer diisocyanate is obtained, for example, by converting a carboxy group of a dimer acid into an isocyanate group. Here, the dimer acid refers to a dimer of unsaturated aliphatic carboxylic acid or a hydrogenated product thereof. For example, natural fatty acids such as soybean oil fatty acid, tall oil fatty acid, rapeseed oil fatty acid, or linolenic acid, linoleic acid, oleic acid, erucic acid, myristoleic acid, palmitoleic acid, sapienic acid, elaidic acid, stearolic acid, vaccenic acid , gadoleic acid, eicosenoic acid, brassic acid, nervonic acid, eicosadienoic acid, docosadienoic acid, pinolenic acid, eleostearic acid, mead acid, dihomo-γ-linolenic acid, eicosatrienoic acid, stearidonic acid, arachidonic acid, eicosa Unsaturated fatty acids such as tetraenoic acid, cetoleic acid, adrenic acid, boseopentaenoic acid, osponded acid, sardine acid, tetracosapentaenoic acid, eicosapentaenoic acid, docosahexaenoic acid and nisinic acid can be dimerized to obtain dimer acids. can. Unsaturated bonds may be optionally hydrogenated to reduce the degree of unsaturation. Dimer diamine and dimer diisocyanate with a lowered degree of unsaturation are preferable in terms of oxidation resistance (particularly coloration at high temperatures) and suppression of gelation during synthesis.
 ダイマー酸は、炭素数20~60の化合物が好ましく、炭素数24~56の化合物がより好ましく、炭素数28~48の化合物が更に好ましく、炭素数36~44の化合物が更に好ましい。脂肪酸をディールス-アルダー反応させた分岐構造を有するジカルボン酸化合物が好ましい。前記分岐構造は、脂肪鎖および環構造が好ましく、環構造がより好ましい。前記環構造は、1又は2以上の芳香環や脂環構造が好ましく、脂環構造がより好ましい。環構造が2つの場合、2つの環が独立していても、連続していてもよい。ダイマージアミンおよびダイマージイソシアネートは一種又は複数種の化合物を用いることができる。脂環構造は、環内に二重結合を1つ又は複数有する場合、二重結合を有さない場合などがある。ダイマー酸のカルボキシ基をアミノ基に転化する方法は、例えば、カルボン酸をアミド化させ、ホフマン転位によりアミン化させ、更に蒸留・精製を行う方法が挙げられる。また、ダイマー酸のカルボキシ基をジイソシアネート基に転化する方法は、例えば、カルボン酸からクルチウス転位によりイソシアネート化させる方法が挙げられる。 The dimer acid is preferably a compound having 20 to 60 carbon atoms, more preferably a compound having 24 to 56 carbon atoms, still more preferably a compound having 28 to 48 carbon atoms, and even more preferably a compound having 36 to 44 carbon atoms. A dicarboxylic acid compound having a branched structure obtained by Diels-Alder reaction of a fatty acid is preferred. The branched structure is preferably an aliphatic chain and a ring structure, more preferably a ring structure. The ring structure is preferably one or more aromatic rings or an alicyclic structure, more preferably an alicyclic structure. When there are two ring structures, the two rings may be independent or continuous. A dimer diamine and a dimer diisocyanate can use 1 type or multiple types of compounds. The alicyclic structure may have one or more double bonds in the ring, or may have no double bonds. Methods for converting the carboxy group of the dimer acid to an amino group include, for example, a method of amidating the carboxylic acid, aminating it by Hoffmann rearrangement, and further distilling and purifying it. A method for converting a carboxy group of a dimer acid into a diisocyanate group includes, for example, a method of isocyanating a carboxylic acid by Curtius rearrangement.
 ダイマージアミン中のアミノ基、或いはダイマージイソシアネート中のイソシアネート基は、環構造に直接結合していてもよいが、溶解性向上、柔軟性向上の観点から、当該アミノ基は脂肪族鎖を介して環構造と結合していることが好ましい。アミノ基又はイソシアネート基と環構造との間の炭素数は2~25であることが好ましい。脂肪族鎖の好適例として、アルキレン基等の鎖状炭化水素基が例示できる。好適な例として、当該2つのアミノ基又はイソシアネート基が、それぞれアルキレン基を介して環構造と結合している化合物が例示できる。 The amino group in the dimer diamine or the isocyanate group in the dimer diisocyanate may be directly bonded to the ring structure, but from the viewpoint of improving solubility and flexibility, the amino group is bonded to the ring via an aliphatic chain. It is preferably attached to the structure. The number of carbon atoms between the amino group or isocyanate group and the ring structure is preferably 2-25. Suitable examples of aliphatic chains include chain hydrocarbon groups such as alkylene groups. A suitable example is a compound in which the two amino groups or isocyanate groups are each bonded to a ring structure via an alkylene group.
 なお、ダイマージアミン或いはダイマージイソシアネートを得るためのダイマー酸(多塩基酸)の具体例として、下記化学式(d1)~(d4)が挙げられる。これらは一例であり、ダイマー酸は下記構造に限定されない。 Specific examples of dimer acid (polybasic acid) for obtaining dimer diamine or dimer diisocyanate include the following chemical formulas (d1) to (d4). These are examples, and the dimer acid is not limited to the structures below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ダイマージアミンおよびダイマージイソシアネートは、炭素数20~60の化合物が好ましく、炭素数24~56の化合物がより好ましく、炭素数28~48の化合物が更に好ましく、炭素数36~44の化合物が更に好ましい。かかる炭素数は、入手し易さの観点で好ましい。 The dimer diamine and dimer diisocyanate are preferably compounds having 20 to 60 carbon atoms, more preferably compounds having 24 to 56 carbon atoms, still more preferably compounds having 28 to 48 carbon atoms, and even more preferably compounds having 36 to 44 carbon atoms. Such a carbon number is preferable from the viewpoint of availability.
 ダイマージアミンの市販品は、例えば、クローダジャパン社製の「プリアミン1071」、「プリアミン1073」、「プリアミン1074」、「プリアミン1075」や、BASFジャパン社製の「バーサミン551」等が挙げられる。 Commercial products of dimer diamine include, for example, "Priamine 1071", "Priamine 1073", "Priamine 1074", and "Priamine 1075" manufactured by Croda Japan, and "Versamin 551" manufactured by BASF Japan.
 本発明者らが鋭意検討を重ねた結果、ポリイミド樹脂(A)1分子中に、アミノ基、酸無水物基およびマレイミド基の合計官能基数を平均で1以下とすることにより、基板加工適性を良好にできることがわかった。ポリイミド樹脂(A)においてアミノ基、酸無水物基およびマレイミド基の合計の平均官能基数が1以下(0を含む)であることにより、これらの基を介してポリイミド樹脂(A)が架橋構造の内部に取り込まれる構造を抑制できる。換言すると、これらの基を介したポリイミド樹脂(A)の硬化性化合物(B)との結合を平均一箇所以下とすることができる。その結果、硬化処理前の段階で流動性を高め、基板に形成された配線等の回路基板などの凹凸への埋め込み性を優れたものとしつつ、硬化処理後のポリイミド樹脂(A)の応力緩和性・分散性を向上させ、硬化物のめっき液耐性ならびに長期耐熱性を効果的に高めることができる。基板加工適性をより向上させる観点からは、ポリイミド樹脂(A)1分子中の合計の平均官能基数を1以下(0を含む)とする基として、アミノ基、酸無水物基およびマレイミド基に加えてカルボキシ基を含めることがより好ましい。即ち、アミノ基、酸無水物基、カルボキシ基およびマレイミド基から選択される官能基の合計の平均官能基数が0を含む1以下とすることがより好ましい。この場合の平均官能基数は、ポリイミド樹脂(A)の1分子あたりのアミノ基、酸無水物基、カルボキシ基およびマレイミド基から選択される官能基の合計の平均官能基数とする。 As a result of extensive studies by the present inventors, it was found that the total number of functional groups of an amino group, an acid anhydride group and a maleimide group in one molecule of the polyimide resin (A) is 1 or less on average, thereby improving substrate processing suitability. It turned out to work well. The total average number of functional groups of amino groups, acid anhydride groups and maleimide groups in the polyimide resin (A) is 1 or less (including 0), so that the polyimide resin (A) has a crosslinked structure via these groups. Structures taken inside can be suppressed. In other words, the average number of bonds between the polyimide resin (A) and the curable compound (B) via these groups can be reduced to one or less. As a result, the fluidity is increased at the stage before the curing treatment, and the embedding of the wiring formed on the substrate into the unevenness of the circuit board, etc. is excellent, while stress relaxation of the polyimide resin (A) after the curing treatment. It can improve the properties and dispersibility, and effectively improve the plating solution resistance and long-term heat resistance of the cured product. From the viewpoint of further improving substrate processability, in addition to an amino group, an acid anhydride group and a maleimide group, as a group that makes the total average number of functional groups in one molecule of the polyimide resin (A) 1 or less (including 0), more preferably contain a carboxy group. That is, it is more preferable that the total average functional group number of functional groups selected from amino groups, acid anhydride groups, carboxy groups and maleimide groups is 1 or less, including 0. The average number of functional groups in this case is the total average number of functional groups selected from amino groups, acid anhydride groups, carboxy groups and maleimide groups per molecule of the polyimide resin (A).
 硬化性化合物(B)としてエポキシ化合物(b1)を用いると、エポキシ基の反応性の高さにより硬化処理を行う前の段階で架橋形成がすすみやすくなる。本組成物によれば、ポリイミド樹脂(A)1分子中に、アミノ基、酸無水物基およびマレイミド基(以下、アミノ基等ともいう)の合計官能基を平均で1以下とすることにより、硬化処理前の段階における架橋反応を抑制し、基板に形成された配線等の回路基板などの凹凸への埋め込み性不良を効果的に改善できる。一方、硬化性化合物(B)としてエポキシ化合物(b1)に比べて反応性が低いシアネートエステル化合物(b2)、マレイミド化合物(b3)、ポリフェニレンエーテル化合物(b4)および/又はナジイミド化合物(b5)を用いる場合には、硬化処理後の硬化物にポリイミド樹脂(A)の酸無水物基やアミノ等が残存しやすい。本組成物によれば、ポリイミド樹脂(A)1分子中に、アミノ基、酸無水物基およびマレイミド基の合計官能基を平均で1以下とすることにより、硬化後に残存するアミノ基等の数を低減でき、酸耐性などのめっき液耐性が優れたものとなる。更に、本組成物によれば、マレイミド基の官能基数を前記範囲とすることにより、ポリイミド樹脂(A)の架橋部位周辺の架橋密度が高くなることを抑制し、ポリイミド樹脂(A)の応力緩和性を適切に維持し、硬化物のヒートサイクル耐性を良好に保つことができる。 When the epoxy compound (b1) is used as the curable compound (B), the high reactivity of the epoxy group facilitates the formation of crosslinks before the curing treatment. According to the present composition, the total functional groups of amino groups, acid anhydride groups and maleimide groups (hereinafter also referred to as amino groups, etc.) in one molecule of the polyimide resin (A) are 1 or less on average, It is possible to suppress the cross-linking reaction in the stage before the curing treatment, and effectively improve the poor embedding of the wiring formed on the substrate into the unevenness of the circuit board. On the other hand, a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and/or a nadimide compound (b5) having lower reactivity than the epoxy compound (b1) is used as the curable compound (B). In this case, the acid anhydride group, amino, etc. of the polyimide resin (A) tend to remain in the cured product after curing. According to the present composition, the total functional groups of amino groups, acid anhydride groups and maleimide groups in one molecule of the polyimide resin (A) is 1 or less on average, so that the number of amino groups, etc. remaining after curing can be reduced, and plating solution resistance such as acid resistance is excellent. Furthermore, according to the present composition, by setting the number of functional groups of the maleimide group in the above range, the increase in the crosslink density around the crosslinked site of the polyimide resin (A) is suppressed, and the stress of the polyimide resin (A) is relieved. It is possible to appropriately maintain the properties and maintain good heat cycle resistance of the cured product.
 ポリイミド樹脂(A)は、貯蔵弾性率G’が1.0×10Paとなる温度が-30~90℃のいずれかにある。この範囲とすることにより、柔軟性の高いポリイミド樹脂(A)を得ることができる。曲げ強度と長期耐熱性の観点からは、30~80℃のいずれかに貯蔵弾性率G’が1.0×10Paとなる温度があることがより好ましく、30~70℃のいずれかに貯蔵弾性率G’が1.0×10Paとなる温度があることが更に好ましい。 The polyimide resin (A) has a storage modulus G′ of 1.0×10 7 Pa at a temperature of -30 to 90°C. By setting it as this range, a polyimide resin (A) with high flexibility can be obtained. From the viewpoint of bending strength and long-term heat resistance, it is more preferable that the temperature at which the storage elastic modulus G' becomes 1.0×10 7 Pa is in any of 30 to 80°C, and any of 30 to 70°C. More preferably, there is a temperature at which the storage modulus G' is 1.0×10 7 Pa.
 熱伝導性フィラー(C)を含有することにより、放熱性に優れた成形物が得られる。その一方で、塗膜形成時には空隙の発生はそれほど問題にならないが、プリプレグを作製する場合には、熱伝導性フィラー(C)を含有させることにより空隙が生じやすくなる。この問題は、温度が低くなるにつれて、また、熱伝導性フィラー(C)の含有量が多くなるにつれて生じやすくなる。本発明者ら検討を重ねた結果、貯蔵弾性率G’が1.0×10Paとなる温度が-30℃以上、30℃未満であるポリイミド樹脂(A)を含有させることにより、熱伝導性フィラー(C)を含む樹脂組成物を用いてプリプレグを形成する場合であっても空隙の発生をより効果的に抑制できることがわかった。換言すると、低温領域で低弾性のポリイミド樹脂(A)を用いることで、比較的低温の乾燥温度においてもプリプレグ作製時に空隙を効果的に埋めることができたと考えられる。プリプレグの乾燥温度を低下させる観点からは、貯蔵弾性率G’が1.0×10Paとなる温度が-15℃以上、27℃未満のポリイミド樹脂(A)が好ましく、-5℃以上、27℃未満であることが更に好ましい。乾燥温度を低減させることにより環境負荷低減を図ることができる。なお、ここでいう乾燥温度とは、硬化物にするための温度ではなく、樹脂組成物の揮発成分を除去するための温度をいい、樹脂組成物の一部が硬化しているBステージを含み得る。ここで「乾燥温度」は揮発成分の沸点より高温以上であって、且つ空隙が生じない温度をいう。 By containing the thermally conductive filler (C), a molded article having excellent heat dissipation can be obtained. On the other hand, the formation of voids is not a big problem when forming a coating film, but when producing a prepreg, inclusion of the thermally conductive filler (C) makes voids more likely to occur. This problem becomes more likely to occur as the temperature decreases and as the content of the thermally conductive filler (C) increases. As a result of repeated studies by the present inventors, it was found that by containing a polyimide resin (A) having a storage elastic modulus G′ of 1.0×10 7 Pa at a temperature of −30° C. or more and less than 30° C., heat conduction It was found that the generation of voids can be more effectively suppressed even when a prepreg is formed using a resin composition containing the reactive filler (C). In other words, it is considered that the use of the polyimide resin (A), which has low elasticity in the low-temperature range, enabled effective filling of the voids during the preparation of the prepreg even at relatively low drying temperatures. From the viewpoint of lowering the drying temperature of the prepreg, a polyimide resin (A) having a storage modulus G′ of 1.0×10 7 Pa is preferably −15° C. or more and less than 27° C., −5° C. or more, It is more preferably less than 27°C. By reducing the drying temperature, the environmental load can be reduced. The drying temperature here is not the temperature for making a cured product, but the temperature for removing the volatile components of the resin composition, including the B stage where the resin composition is partly cured. obtain. Here, "drying temperature" refers to a temperature higher than the boiling point of the volatile component and at which voids do not occur.
 貯蔵弾性率G’が1.0×10Paとなる温度が-30~90℃のいずれかにあるポリイミド樹脂(A)は、繰り返し構造単位となる単量体の種類、およびMwにより調整できる。具体的には、単量体としてダイマー構造などの柔軟性を有する単量体と、脂肪族(脂環式骨格含む)を有する構造を組み合わせることにより貯蔵弾性率G’が低下する傾向にあり、逆に平面性の高い芳香族骨格にイミド構造が直接結合した構造を組み合わせると貯蔵弾性率G’が大きくなる傾向にある。また、Mwを低下させることにより、貯蔵弾性率G’が低下する傾向にある。剛直なポリイミド樹脂、例えば、ピロメリット酸無水物とジアミノビフェニルよりなるポリイミド樹脂の90℃の貯蔵弾性率G’は凡そ1.0×10であり、柔軟なポリイミド樹脂、例えば、ダイマージアミンと1,2,4,5-シクロヘキサンテトラカルボン酸二無水物よりなるポリイミド樹脂の90℃の貯蔵弾性率G’は凡そ1.0×10である。 The polyimide resin (A) having a storage elastic modulus G′ of 1.0×10 7 Pa at a temperature of −30 to 90° C. can be adjusted by adjusting the type of the monomer that becomes the repeating structural unit and the Mw. . Specifically, by combining a monomer having flexibility such as a dimer structure as a monomer with a structure having an aliphatic (including an alicyclic skeleton), the storage elastic modulus G′ tends to decrease, Conversely, when a structure in which an imide structure is directly bonded to a highly planar aromatic skeleton is combined, the storage elastic modulus G' tends to increase. Moreover, the storage elastic modulus G' tends to decrease by decreasing the Mw. A rigid polyimide resin such as a polyimide resin composed of pyromellitic anhydride and diaminobiphenyl has a storage modulus G′ at 90° C. of approximately 1.0×10 9 , and a flexible polyimide resin such as a dimer diamine and 1 ,2,4,5-Cyclohexanetetracarboxylic dianhydride has a storage elastic modulus G' at 90° C. of about 1.0×10 5 .
 ポリイミド樹脂(A)のMwは10,000~100,000とする。10,000以上であることで、硬化物中の熱伝導性フィラー(C)の含有量を多くしても他の部材との接着性を良好に保ち、高品質な硬化物を提供できる。また、100,000以下とすることで長期耐熱性を高めることができる。より好ましい範囲は15,000~80,000であり、更に好ましい範囲は20,000~75,000である。 The Mw of the polyimide resin (A) is 10,000 to 100,000. When it is 10,000 or more, even if the content of the thermally conductive filler (C) in the cured product is increased, good adhesion to other members can be maintained, and a high-quality cured product can be provided. Moreover, long-term heat resistance can be improved by making it 100,000 or less. A more preferred range is 15,000 to 80,000, and an even more preferred range is 20,000 to 75,000.
 ポリイミド樹脂(A)の配合量は任意であるが、硬化物の曲げ強度を高め、また、基板加工適性(特にヒートサイクル耐性)をより優れたものとするために、本組成物の不揮発成分(固形分)100質量%に対し1~40質量%含まれていることが好ましい。前記範囲は、7~27質量%がより好ましく、9~19質量%が更に好ましい。 The amount of the polyimide resin (A) is arbitrary, but in order to increase the bending strength of the cured product and to improve the substrate processability (especially heat cycle resistance), the non-volatile component of the composition ( It is preferably contained in an amount of 1 to 40% by mass based on 100% by mass (solid content). The range is more preferably 7 to 27% by mass, and even more preferably 9 to 19% by mass.
 ポリイミド樹脂(A)として、一般式(1):
Figure JPOXMLDOC01-appb-C000004
(Xは繰り返し単位毎にそれぞれ独立に4価の有機基であり、Xは繰り返し単位毎にそれぞれ独立に2価の有機基であり、前記Xとイミド結合が互いに結合して2つのイミド環を形成する。)で表される構造の繰り返し単位を有するものが好適である。Xの具体例としてテトラカルボン酸残基、Xの具体例としてジアミン残基、ジイソシアネート残基が挙げられる。
As the polyimide resin (A), general formula (1):
Figure JPOXMLDOC01-appb-C000004
(X 1 is independently a tetravalent organic group for each repeating unit, X 2 is independently a divalent organic group for each repeating unit, and X 1 and an imide bond are bonded to form two forming an imide ring.) is preferred. Specific examples of X1 include a tetracarboxylic acid residue, and specific examples of X2 include a diamine residue and a diisocyanate residue.
 本明細書において「テトラカルボン酸残基」とは、テトラカルボン酸、並びにテトラカルボン酸二無水物およびテトラカルボン酸ジエステル等のテトラカルボン酸誘導体(以下、これらを「テトラカルボン酸類」という)に由来する基をいう。また、「ジアミン残基」は、ジアミン(ジアミン化合物)に由来する基であり、「ジイソシアネート残基」とはジイソシアネート(ジイソシアネート化合物)に由来する残基をいう。 As used herein, the term "tetracarboxylic acid residue" refers to tetracarboxylic acids and tetracarboxylic acid derivatives such as tetracarboxylic dianhydrides and tetracarboxylic acid diesters (hereinafter referred to as "tetracarboxylic acids"). It refers to the group to do. A "diamine residue" is a group derived from a diamine (a diamine compound), and a "diisocyanate residue" is a residue derived from a diisocyanate (a diisocyanate compound).
 「イミド結合」とは、1つの窒素原子と2つのカルボニル結合(C=O)からなるものとし、イミド結合と式(1)中のXの一部が互いに結合してイミド環を形成する。「イミド環」は、イミド結合を有する環であり、1つの環を形成する元素数が4以上、7以下である。好適には5又は6である。イミド環は他の環と縮合していてもよい。また、「酸無水物基」とは、-C(=O)-O-C(=O)-で表される基を意味し、「酸無水物環」は、酸無水物基と炭素元素が結合して形成された環をいう。 The "imido bond" is composed of one nitrogen atom and two carbonyl bonds (C=O), and the imide bond and part of X 1 in formula (1) are bonded to each other to form an imide ring. . An "imide ring" is a ring having an imide bond, and the number of elements forming one ring is 4 or more and 7 or less. Preferably 5 or 6. The imide ring may be fused with another ring. In addition, the "acid anhydride group" means a group represented by -C(=O)-OC(=O)-, and the "acid anhydride ring" is an acid anhydride group and a carbon element. refers to a ring formed by combining
 ポリイミド樹脂(A)は、硬化性化合物(B)に対する反応性官能基を有していても有していなくてもよい。反応性官能基として、前述したアミノ基、酸無水物基、カルボキシ基、マレイミド基の他、フェノール性水酸基が挙げられる。反応性官能基を有しないポリイミド樹脂(A)を用いた場合、硬化性化合物(B)との架橋構造は形成されないが、硬化物としたときに比較的高いガラス転移温度となる樹脂組成物の配合成分に、柔軟性が高く且つ特定範囲のMwを有するポリイミド樹脂(A)を配合することにより、硬化前の流動性を高めると共に、硬化後の応力緩和効果を引き出すことができると考えられる。また、フェノール性水酸基を有するポリイミド樹脂(A)は、フェノール性水酸基を有する芳香環とイミド環との相互作用を高めつつ、ダイマー由来の柔軟構造を組み合わせることにより、硬化前の流動性を高めると共に、硬化後の応力緩和効果を引き出すことができると考えられる。 The polyimide resin (A) may or may not have reactive functional groups with respect to the curable compound (B). Examples of reactive functional groups include the above-described amino group, acid anhydride group, carboxy group, maleimide group, and phenolic hydroxyl group. When using a polyimide resin (A) that does not have a reactive functional group, a crosslinked structure with the curable compound (B) is not formed, but the resin composition having a relatively high glass transition temperature when cured. By blending the polyimide resin (A), which has high flexibility and Mw within a specific range, as a blending component, it is believed that the fluidity before curing can be enhanced and the stress relaxation effect after curing can be elicited. In addition, the polyimide resin (A) having a phenolic hydroxyl group enhances the interaction between the aromatic ring having a phenolic hydroxyl group and the imide ring, and combines a dimer-derived flexible structure to increase fluidity before curing. , it is thought that the stress relaxation effect after curing can be elicited.
 フェノール性水酸基とは、芳香環に直接結合している水酸基をいう。芳香環の好適例として、ベンゼン環、ナフタレン環、ピリジン環が例示できる。フェノール性水酸基は、分子鎖末端、側基、側鎖のいずれかに導入する他、これらを任意に組み合わせることができる。なお、分子鎖末端とは、ポリイミド樹脂(A)の分子鎖を構成する繰り返し構造単位のうち末端にあるもの、或いはその末端に連結された非繰り返し構造をいう。 A phenolic hydroxyl group refers to a hydroxyl group directly bonded to an aromatic ring. Preferred examples of aromatic rings include benzene ring, naphthalene ring and pyridine ring. A phenolic hydroxyl group can be introduced into any one of a molecular chain terminal, a side group, and a side chain, or can be combined arbitrarily. The term "molecular chain end" refers to a terminal portion of repeating structural units constituting the molecular chain of the polyimide resin (A), or a non-repeating structure linked to the terminal end.
 ポリイミド樹脂(A)のフェノール性水酸基価は、1~50mgKOH/gが好適である。この範囲とすることにより、架橋密度を適切なものとし、基板加工適性、特にめっき液耐性(耐アルカリ性および耐酸性)をより効果的に高めることができる。また、前記フェノール性水酸基価とすることにより、架橋密度を適切にして応力緩和効果を引き出すことができる。フェノール性水酸基価は3~40mgKOH/gであることがより好ましく、10~30mgKOH/gであることが更に好ましい。フェノール性水酸基価は、フェノール性水酸基を有するモノマーの仕込み量、分子鎖末端へのフェノール性水酸基の導入率、および/又は側鎖へのフェノール性水酸基の導入率により調整できる。 The phenolic hydroxyl value of the polyimide resin (A) is preferably 1 to 50 mgKOH/g. Within this range, the crosslink density can be made appropriate, and substrate processability, particularly plating solution resistance (alkali resistance and acid resistance) can be more effectively improved. Moreover, by setting it as the said phenolic hydroxyl value, a crosslink density can be made suitable and a stress relaxation effect can be brought out. The phenolic hydroxyl value is more preferably 3 to 40 mgKOH/g, still more preferably 10 to 30 mgKOH/g. The phenolic hydroxyl value can be adjusted by adjusting the amount of the monomer having a phenolic hydroxyl group to be charged, the introduction rate of the phenolic hydroxyl group to the molecular chain end, and/or the introduction rate of the phenolic hydroxyl group to the side chain.
 ポリイミド樹脂(A)の分子鎖末端にフェノール性水酸基を導入するには、酸無水物末端ポリイミド樹脂を合成した後、一般式(3)で表されるフェノール性水酸基を有するアミン化合物を更に反応させる方法が例示できる。酸無水物末端ポリイミド樹脂をカルボン酸末端ポリイミド樹脂に代えて、同様の方法によりフェノール性水酸基を導入してもよい。
Figure JPOXMLDOC01-appb-C000005
一般式(3)中のArは、置換基を有していてもよい芳香族基である。置換基としては、炭素数1~10のアルキル基、フルオロアルキル基およびハロゲン原子が例示できる。後述する一般式(4)、(5)のArおよび置換基についても同様である。
In order to introduce a phenolic hydroxyl group at the molecular chain end of the polyimide resin (A), after synthesizing an acid anhydride-terminated polyimide resin, an amine compound having a phenolic hydroxyl group represented by the general formula (3) is further reacted. A method can be exemplified. A phenolic hydroxyl group may be introduced by a similar method in place of the acid anhydride-terminated polyimide resin with a carboxylic acid-terminated polyimide resin.
Figure JPOXMLDOC01-appb-C000005
Ar in the general formula (3) is an aromatic group which may have a substituent. Examples of substituents include alkyl groups having 1 to 10 carbon atoms, fluoroalkyl groups and halogen atoms. The same applies to Ar and substituents in general formulas (4) and (5) described later.
 また、アミノ基末端ポリイミド樹脂を合成した後、一般式(4)で表されるフェノール性水酸基を有する酸無水物化合物、又は一般式(5)で表されるフェノール性水酸基を有するカルボン酸化合物を更に反応させ、末端にフェノール性水酸基を導入する方法が例示できる。 Further, after synthesizing an amino group-terminated polyimide resin, an acid anhydride compound having a phenolic hydroxyl group represented by the general formula (4), or a carboxylic acid compound having a phenolic hydroxyl group represented by the general formula (5) A method of further reacting to introduce a phenolic hydroxyl group at the terminal can be exemplified.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(3)の具体例として、3-アミノフェノール、4-アミノフェノール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、4-アミノ-2,3-キシレノール、4-アミノ-2,5-キシレノール、4-アミノ-2,6-キシレノール、4-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、4-アミノ-2,6-ジフェニルフェノールが例示できる。一般式(4)の具体例として、3-ヒドロキシフタル酸無水物、4-ヒドロキシフタル酸無水物等が挙げられる。また、一般式(5)の具体例として、サリチル酸、オキシ安息香酸が例示できる。一般式(3)~(4)では水酸基が1つの例を挙げたが、Arに水酸基が2つ以上結合している化合物を用いてもよい。 Specific examples of general formula (3) include 3-aminophenol, 4-aminophenol, 4-amino-o-cresol, 5-amino-o-cresol, 4-amino-2,3-xylenol, 4-amino- 2,5-xylenol, 4-amino-2,6-xylenol, 4-amino-1-naphthol, 5-amino-2-naphthol, 6-amino-1-naphthol, 4-amino-2,6-diphenylphenol can be exemplified. Specific examples of general formula (4) include 3-hydroxyphthalic anhydride and 4-hydroxyphthalic anhydride. Moreover, salicylic acid and oxybenzoic acid can be exemplified as specific examples of general formula (5). In the general formulas (3) and (4), one hydroxyl group is exemplified, but a compound in which two or more hydroxyl groups are bonded to Ar may be used.
 硬化物の基板加工適性、特にヒートサイクル耐性を効果的に向上させる観点からは、以下の(i)および(ii)の少なくとも一方を満たすフェノール性水酸基を有するポリイミド樹脂(A)が好適である。
(i)分子鎖末端にフェノール性水酸基を有し、当該フェノール性水酸基を有する芳香環のメタ位又はオルト位に、モノアミン由来のイミド環を形成する窒素原子が結合する。
(ii)分子鎖末端にフェノール性水酸基を有し、当該フェノール性水酸基を有する芳香環に直結する脂肪族基を有し、当該脂肪族基に、モノアミン由来のイミド環を形成する窒素原子が結合する。
 本発明者らが鋭意検討を重ねたところ、分子鎖末端のフェノール性水酸基の周辺構造は、架橋点周辺の構造となるため、応力緩和への影響が大きいことがわかった。水酸基とアミノ基の位置がオルト位又はメタ位にある(i)の構造を有することにより、イミド環と別のイミド環との相互作用が低減されて、応力緩和性が向上すると考えられる。また、アミノ基が、芳香環に直結せずに脂肪族基を介して結合する(ii)の構造を有することにより、イミド環と別のイミド環との相互作用が低減されて、応力緩和性が向上すると考えられる。
A polyimide resin (A) having a phenolic hydroxyl group that satisfies at least one of the following (i) and (ii) is suitable from the viewpoint of effectively improving the substrate processing suitability of the cured product, particularly the heat cycle resistance.
(i) It has a phenolic hydroxyl group at the molecular chain end, and a nitrogen atom forming an imide ring derived from monoamine is bonded to the meta-position or ortho-position of the aromatic ring having the phenolic hydroxyl group.
(ii) having a phenolic hydroxyl group at the molecular chain end, having an aliphatic group directly connected to the aromatic ring having the phenolic hydroxyl group, and a nitrogen atom forming a monoamine-derived imide ring bound to the aliphatic group; do.
As a result of extensive studies by the present inventors, it has been found that the structure around the phenolic hydroxyl group at the end of the molecular chain has a large effect on stress relaxation because it is the structure around the cross-linking point. By having the structure (i) in which the positions of the hydroxyl group and the amino group are in the ortho or meta position, the interaction between the imide ring and another imide ring is reduced, and the stress relaxation property is considered to be improved. In addition, by having the structure (ii) in which the amino group is not directly connected to the aromatic ring but bonded through the aliphatic group, the interaction between the imide ring and another imide ring is reduced, resulting in stress relaxation. is expected to improve.
 上記(i)および(ii)を満たす分子鎖末端を得るために、酸無水物基末端ポリイミド樹脂又はカルボキシ基末端ポリイミド樹脂の末端封止に用いるフェノール性水酸基を有するモノアミン化合物として、以下の化合物が例示できる。即ち、m-アミノフェノール、o-アミノフェノール、2-アミノ-5-エチルフェノール、2-(1-アミノエチル)フェノール、3-(2-アミノエチル)フェノール、4-(2-アミノエチル)フェノール、2-(2-アミノエチル)フェノール、2-(2-アミノメチル)フェノール、3-(2-アミノメチル)フェノール、2-(2-アミノメチル)フェノール、3-(2-アミノメチル)フェノール、4-(2-アミノプロピル)フェノール等が例示できる。 In order to obtain a molecular chain end that satisfies the above (i) and (ii), as a monoamine compound having a phenolic hydroxyl group used for terminal blocking of an acid anhydride group-terminated polyimide resin or a carboxyl group-terminated polyimide resin, the following compounds are used. I can give an example. Namely, m-aminophenol, o-aminophenol, 2-amino-5-ethylphenol, 2-(1-aminoethyl)phenol, 3-(2-aminoethyl)phenol, 4-(2-aminoethyl)phenol , 2-(2-aminoethyl)phenol, 2-(2-aminomethyl)phenol, 3-(2-aminomethyl)phenol, 2-(2-aminomethyl)phenol, 3-(2-aminomethyl)phenol , 4-(2-aminopropyl)phenol and the like.
 ポリイミド樹脂(A)の分子鎖末端の官能基を実質的に全てフェノール性水酸基とすることができる。また、フェノール性水酸基末端の他、官能基を有しない分子鎖末端を含んでいてもよい。また、フェノール性水酸基末端の他、他の官能基(酸無水物基等)を有する分子鎖末端を有していてもよい。 The functional groups at the ends of the molecular chains of the polyimide resin (A) can be substantially all phenolic hydroxyl groups. In addition to phenolic hydroxyl group ends, molecular chain ends having no functional group may also be included. In addition to the phenolic hydroxyl group end, it may also have a molecular chain end having another functional group (acid anhydride group, etc.).
 官能基を有しない分子鎖末端とフェノール性水酸基末端を有するポリイミド樹脂(A)は、例えば、酸無水物末端ポリイミドに対し、一般式(3)のアミン化合物と、末端封鎖用のモノアミン化合物を特定比率で混合して、末端封止反応を行うことにより得られる。また、アミン末端ポリイミドに対し、一般式(4)および/又は(5)の化合物と、末端封鎖用の酸無水物化合物および/又はカルボン酸化合物を特定比率で混合して末端封止反応を行うことにより得てもよい。これらの方法によれば、ポリイミド樹脂(A)の分子鎖末端のフェノール性水酸基の量を容易に調整することができる。 The polyimide resin (A) having a molecular chain end having no functional group and a phenolic hydroxyl group end is, for example, an amine compound of general formula (3) and a monoamine compound for end blocking for acid anhydride-terminated polyimide. It is obtained by mixing at a ratio and carrying out a terminal blocking reaction. Further, a terminal blocking reaction is performed by mixing a compound represented by general formulas (4) and/or (5) and an acid anhydride compound and/or a carboxylic acid compound for terminal blocking in a specific ratio with respect to an amine-terminated polyimide. may be obtained by According to these methods, the amount of phenolic hydroxyl groups at the ends of the molecular chains of the polyimide resin (A) can be easily adjusted.
 末端封鎖用のモノアミン化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミンおよびジブチルアミン等の脂肪族アミン;シクロヘキシルアミンおよびジシクロヘキシルアミン等の脂環族アミン;アニリン、トルイジン、ジフェニルアミンおよびナフチルアミン等の芳香族アミン、並びにこれらの任意の混合物が例示できる。 Monoamine compounds for terminal blocking include, for example, aliphatic amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine; Alicyclic amines such as amines and dicyclohexylamine; aromatic amines such as aniline, toluidine, diphenylamine and naphthylamine, and any mixture thereof.
 末端封鎖用の酸無水物としては、無水フタル酸、2,2’-ビフェニルジカルボン酸無水物、1,2-ナフタレンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、1.8-ナフタレンジカルボン酸無水物、1,2-アントラセンジカルボン酸無水物、2,3-アントラセンジカルボン酸無水物、L9-アントラセンジカルボン酸無水物等が挙げられる。フェノール性水酸基を有しないカルボン酸としては、上記フェノール性水酸基を有するカルボン酸からフェノール性水酸基を除いた構造を有するカルボン酸が挙げられる。 Acid anhydrides for terminal blocking include phthalic anhydride, 2,2′-biphenyldicarboxylic anhydride, 1,2-naphthalenedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, and 1,8-naphthalene. dicarboxylic anhydride, 1,2-anthracenedicarboxylic anhydride, 2,3-anthracenedicarboxylic anhydride, L9-anthracenedicarboxylic anhydride and the like. Examples of the carboxylic acid having no phenolic hydroxyl group include carboxylic acids having a structure obtained by removing the phenolic hydroxyl group from the above carboxylic acid having a phenolic hydroxyl group.
 フェノール性水酸基末端と他の官能基末端を有するポリイミド樹脂(A)は、例えば、酸無水物末端ポリイミドに対し、一般式(3)のアミン化合物と、他の官能基を有するモノアミン化合物を特定比率で混合して、末端封止反応を行うことにより得られる。アミン末端ポリイミドにおいても同様に、一般式(4)および/又は(5)の化合物と、他の官能基を有する酸無水物化合物および/又はカルボン酸化合物を特定比率で混合して末端封止反応を行うことにより得られる。この方法によれば、ポリイミド樹脂(A)の分子鎖末端のフェノール性水酸基および他の官能基の量を調整することができる。他の官能基は特に限定されない。例えば、ニトロ基、シアノ基が例示できる。 The polyimide resin (A) having a phenolic hydroxyl group terminal and another functional group terminal is, for example, an acid anhydride terminal polyimide, an amine compound of general formula (3) and a monoamine compound having another functional group at a specific ratio. It is obtained by mixing with and performing a terminal blocking reaction. Similarly, in the amine-terminated polyimide, the compounds of the general formulas (4) and/or (5) and an acid anhydride compound and/or a carboxylic acid compound having other functional groups are mixed at a specific ratio to conduct a terminal blocking reaction. obtained by doing According to this method, the amounts of phenolic hydroxyl groups and other functional groups at the molecular chain ends of the polyimide resin (A) can be adjusted. Other functional groups are not particularly limited. Examples include a nitro group and a cyano group.
 他の官能基が酸無水物基の場合には、酸無水物末端ポリイミドを合成後、末端の一部にフェノール性水酸基を有するアミン化合物を反応させ、酸無水物末端の一部をフェノール性水酸基に変換してもよい。同様に、他の官能基がアミノ基の場合には、アミノ基末端ポリイミドを合成後、末端の一部にフェノール性水酸基を有する酸無水物基を一つ有する化合物を反応させる方法により合成してもよい。 If the other functional group is an acid anhydride group, after synthesizing an acid anhydride-terminated polyimide, react with an amine compound having a phenolic hydroxyl group at a portion of the terminal to convert a portion of the acid anhydride terminal to a phenolic hydroxyl group. can be converted to Similarly, when the other functional group is an amino group, after synthesizing an amino group-terminated polyimide, it is synthesized by a method of reacting a compound having one acid anhydride group having a phenolic hydroxyl group at a portion of the terminal. good too.
 上記においては、ポリイミド樹脂を合成し、次いで分子鎖末端とする化合物を反応させる例を挙げたが、ポリイミド樹脂を合成する単量体と共に分子鎖末端に導入する化合物を混合し、重合することによりポリイミド樹脂(A)を合成してもよい。この方法によれば合成工程の簡略化を図ることができる。 In the above, an example of synthesizing a polyimide resin and then reacting a compound as a molecular chain end was given. A polyimide resin (A) may be synthesized. According to this method, the synthesis process can be simplified.
 めっき液耐性(耐アルカリ、耐酸性)をより優れたものとする観点から、全官能基価(合計)に対するフェノール性水酸基価の割合は、50~100%が好ましく、70~100%であることがより好ましい。ポリイミド樹脂(A)にフェノール性水酸基を導入することにより、フェノール性水酸基を有する芳香環とイミド環との相互作用を高めつつ、ダイマー由来の柔軟構造を有するポリイミド樹脂(A)の内部応力緩和をより効果的に発揮できる。フェノール性水酸基を含まない場合は、めっき液耐性(耐アルカリ、耐酸性)をより優れたものとする観点から、アミノ基、酸無水物基およびマレイミド基の合計の平均官能基の量が少ないことが望ましく、カルボキシ基、アミノ基、酸無水物基およびマレイミド基の合計の平均官能基の量が少ないことがより望ましい。具体的には、アミノ基、酸無水物基およびマレイミド基の合計の平均官能基の量が0を含む0.5以下であることが好ましく、0を含む0.3以下であることがより好ましい。また、カルボキシ基を含むポリイミド樹脂(A)の場合には、カルボキシ基、アミノ基、酸無水物基およびマレイミド基の合計の平均官能基の量が0を含む0.5以下であることがより好ましく、0を含む0.3以下であることが更に好ましい。 From the viewpoint of improving the plating solution resistance (alkali resistance, acid resistance), the ratio of the phenolic hydroxyl value to the total functional group value (total) is preferably 50 to 100%, more preferably 70 to 100%. is more preferred. By introducing a phenolic hydroxyl group into the polyimide resin (A), the internal stress relaxation of the polyimide resin (A) having a dimer-derived flexible structure is enhanced while enhancing the interaction between the aromatic ring having the phenolic hydroxyl group and the imide ring. can be performed more effectively. If it does not contain phenolic hydroxyl groups, the total average amount of functional groups of amino groups, acid anhydride groups and maleimide groups should be small from the viewpoint of improving plating solution resistance (alkali resistance and acid resistance). is desirable, and it is more desirable that the total average amount of functional groups of carboxy groups, amino groups, acid anhydride groups and maleimide groups is small. Specifically, the total average amount of functional groups of amino groups, acid anhydride groups and maleimide groups is preferably 0.5 or less, including 0, and more preferably 0.3 or less, including 0. . Further, in the case of the polyimide resin (A) containing a carboxy group, the total average amount of functional groups of the carboxy group, amino group, acid anhydride group and maleimide group is preferably 0.5 or less, including 0. It is more preferably 0.3 or less including 0.
 ポリイミド樹脂(A)の側鎖および/又は側基にフェノール性水酸基を導入するには、フェノール性水酸基を有するジアミン、ジイソシアネートなどの有機化合物および/又はフェノール性水酸基を有するテトラカルボン酸類を用いる方法が好適である。また、ポリイミド樹脂を合成後、フェノール性水酸基を有する化合物を側鎖に導入してもよい。 In order to introduce phenolic hydroxyl groups into the side chains and/or side groups of the polyimide resin (A), there is a method using organic compounds such as diamines and diisocyanates having phenolic hydroxyl groups and/or tetracarboxylic acids having phenolic hydroxyl groups. preferred. Moreover, after synthesizing the polyimide resin, a compound having a phenolic hydroxyl group may be introduced into the side chain.
 フェノール性水酸基を有するジアミンの好適例として、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、2,2’-ジトリフルオロメチル-5,5’-ジヒドロキシル-4,4’-ジアミノビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5,5’-ジヒドロキシベンジジンなどの芳香族ジアミンが挙げられる。また、これらの化合物の任意の位置に置換基が導入されていてもよい。 Suitable examples of diamines having a phenolic hydroxyl group include bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl) Propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, 2,2'-ditrifluoromethyl-5 ,5'-dihydroxyl-4,4'-diaminobiphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, 2,2'-bis(trifluoromethyl)-5,5'-dihydroxybenzidine, etc. family diamines. Also, a substituent may be introduced at any position of these compounds.
 また、下記一般式(6)で示すジアミンを用いてもよい。
Figure JPOXMLDOC01-appb-C000008
A diamine represented by the following general formula (6) may also be used.
Figure JPOXMLDOC01-appb-C000008
 式中Rは、直接結合、又は炭素、水素、酸素、窒素、硫黄、又はハロゲンを含む基を示す。前記基は、例えば、炭素数1~30の2価の炭化水素基又はハロゲン原子によって水素の一部若しくは全部が置換されている炭素数1~30の2価の炭化水素基、-(C=O)-、―SO-、-O-、-S-、―NH-(C=O)-、―(C=O)-O-、下記一般式(7)で表される基および下記一般式(8)で示す基が挙げられる。式中、rおよびsはそれぞれ独立に1~20の整数を示し、Rは水素原子又はメチル基を示す。 wherein R 1 represents a direct bond or a group containing carbon, hydrogen, oxygen, nitrogen, sulfur, or halogen. The group is, for example, a divalent hydrocarbon group having 1 to 30 carbon atoms or a divalent hydrocarbon group having 1 to 30 carbon atoms in which some or all of the hydrogen atoms are substituted by halogen atoms, -(C= O)-, -SO 2 -, -O-, -S-, -NH-(C=O)-, -(C=O)-O-, a group represented by the following general formula (7) and the following A group represented by the general formula (8) can be mentioned. In the formula, r and s each independently represent an integer of 1 to 20, and R2 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(6)で示すジアミンは、例えば2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、4,4’-ジアミノ-3,3’-ジヒドロキシビスフェニル等が挙げられる。 Diamines represented by general formula (6) include, for example, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene, 2,2-bis (3-amino-4-hydroxyphenyl)hexafluoropropane, 4,4'-diamino-3,3'-dihydroxybisphenyl and the like.
 フェノール性水酸基を有するテトラカルボン酸類の好適例として、後述する芳香族系のテトラカルボン酸類の芳香族基の置換基に水酸基を有する化合物が例示できる。 Suitable examples of tetracarboxylic acids having a phenolic hydroxyl group include compounds having a hydroxyl group as a substituent of the aromatic group of the aromatic tetracarboxylic acids described later.
 これらの中でも、めっき液耐性をより効果的に向上させる観点からは、以下の(iii)および(iv)の少なくともいずれかを満たすフェノール性水酸基を含むジアミンが好適である。
(iii)一般式(1)中のXの一部が、フェノール性水酸基を含むジアミン残基Xfであり、当該フェノール性水酸基を有する芳香環に、前記イミド環を形成するジアミン由来の窒素原子が結合する。
(iv)一般式(1)中のXの一部が、フェノール性水酸基を有するジアミン残基Xfであり、当該フェノール性水酸基を有する芳香環に直結する脂肪族基を有し、当該脂肪族基に、前記イミド環を形成するジアミン由来の窒素原子が結合する。
 上記(iii)又は(iv)の少なくとも一方を満たすフェノール性水酸基を有することにより、本組成物の硬化物のめっき液耐性をより効果的に高めることができる。硬化性化合物(B)との架橋点をポリイミド樹脂(A)の側基とすることにより、効果的に架橋構造を形成できる。
Among these, a diamine containing a phenolic hydroxyl group that satisfies at least one of the following (iii) and (iv) is preferable from the viewpoint of more effectively improving the plating solution resistance.
(iii) part of X 2 in general formula (1) is a diamine residue X 2 f containing a phenolic hydroxyl group, and the aromatic ring having the phenolic hydroxyl group is derived from a diamine that forms the imide ring; Nitrogen atoms bond.
(iv) part of X 2 in general formula (1) is a diamine residue X 2 f having a phenolic hydroxyl group, having an aliphatic group directly linked to an aromatic ring having the phenolic hydroxyl group, A nitrogen atom derived from the diamine forming the imide ring is bonded to the aliphatic group.
By having a phenolic hydroxyl group that satisfies at least one of the above (iii) and (iv), the plating solution resistance of the cured product of the present composition can be more effectively enhanced. By making the cross-linking point with the curable compound (B) a side group of the polyimide resin (A), a cross-linked structure can be effectively formed.
 上記(iii)又は(iv)を満たすジアミンの好適例として以下の一般式(9)、(10)が挙げられる。式(9)においてnは1~10の整数である。
Figure JPOXMLDOC01-appb-C000011
Suitable examples of the diamine satisfying the above (iii) or (iv) include the following general formulas (9) and (10). In formula (9), n is an integer of 1-10.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(1)中のXは、前述したように、繰り返し単位毎にそれぞれ独立の構造を有していてよい4価のテトラカルボン酸残基である。Xを得るための重合に用いるテトラカルボン酸類は特に限定されない。テトラカルボン酸類として、芳香族基を含む芳香族テトラカルボン酸類、脂肪族基を含む脂肪族テトラカルボン酸類、および芳香族基と脂肪族基を含むテトラカルボン酸類が好適に用いられる。なお、脂肪族基とは、炭化水素基であって、鎖状、分岐鎖状、環状(脂環式構造)又はこれらの組み合わせをいう。脂肪族基は不飽和結合を含んでいてもよい。また、脂肪族基は、窒素、酸素、硫黄、セレン、フッ素、塩素、臭素などのヘテロ原子を含んでいてもよい。テトラカルボン酸類は単独で用いても二種以上を併用してもよい。また、上記単量体の例は、適宜、置換基を有していてもよい。置換基としては、アルキル基、ハロゲン原子、ニトロ基、シアノ基等が例示できる。 X 1 in general formula (1) is, as described above, a tetravalent tetracarboxylic acid residue that may have an independent structure for each repeating unit. The tetracarboxylic acids used in the polymerization for obtaining X1 are not particularly limited. As tetracarboxylic acids, aromatic tetracarboxylic acids containing an aromatic group, aliphatic tetracarboxylic acids containing an aliphatic group, and tetracarboxylic acids containing an aromatic group and an aliphatic group are preferably used. In addition, an aliphatic group is a hydrocarbon group, and refers to a chain, a branched chain, a ring (alicyclic structure), or a combination thereof. The aliphatic group may contain unsaturated bonds. Aliphatic groups may also contain heteroatoms such as nitrogen, oxygen, sulfur, selenium, fluorine, chlorine, bromine, and the like. Tetracarboxylic acids may be used alone or in combination of two or more. Moreover, the examples of the above monomers may optionally have a substituent. Examples of substituents include alkyl groups, halogen atoms, nitro groups, and cyano groups.
 芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、以下の一般式(11)で表されるジフタル酸に無水物が例示できる。
Figure JPOXMLDOC01-appb-C000013
 式中のXは、2価の置換基を有していてもよい有機基(例えば炭素数1~10の炭化水素基)、-O-、-CO-、-SO-、-S-、-SO-、-CONH-、-COO-、又は-OCO-、-C(CF-、-COO-Z-OCO-、-O-Ph-C(CH-Ph-O-等の連結基を示す。前記Zは例えば-C-、-(CH-、-CH-CH(-O-C(=O)-CH)-CH-が例示できる。これらは、置換基を含んでいてもよい。前記置換基としては、アルキル基、ハロゲン、カルボニル基等が例示できる。後述するテトラカルボン酸においても同様である。具体例としては、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレングリコールビスアンヒドロトリメリテートが例示できる。
Examples of aromatic tetracarboxylic acids include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, and 2,3′,3,4′-biphenyltetracarboxylic dianhydride. , 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, diphthalic anhydride represented by the following general formula (11) I can give an example.
Figure JPOXMLDOC01-appb-C000013
X 5 in the formula is an organic group optionally having a divalent substituent (eg, a hydrocarbon group having 1 to 10 carbon atoms), —O—, —CO—, —SO 2 —, —S— , -SO 2 -, -CONH-, -COO-, or -OCO-, -C(CF 3 ) 2 -, -COO-Z-OCO-, -O-Ph-C(CH 3 ) 2 -Ph- A connecting group such as O- is shown. Examples of Z include -C 6 H 4 -, -(CH 2 ) n -, and -CH 2 -CH(-O-C(=O)-CH 3 )-CH 2 -. These may contain substituents. An alkyl group, a halogen, a carbonyl group, etc. can be illustrated as said substituent. The same applies to tetracarboxylic acids described later. Specific examples include 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′ -diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 2,2-bis[4-(3,4-di Carboxyphenoxy)phenyl]propane dianhydride, p-phenylenebis(trimellitic acid monoester acid anhydride), and ethylene glycol bisanhydrotrimellitate can be exemplified.
 ポリイミド樹脂(A)の一般式(1)中のXの構造は限定されないが、貯蔵弾性率を調整しつつ、ダイマー構造と相乗的に応力緩和効果を引き出して、基板加工適性をより優れたものとする、具体的には、曲げ強度やヒートサイクル耐性をより向上させる観点から、脂肪族基を有するXaを含むことが好ましい。Xaは、脂肪族基を有していればよく、芳香族基が含まれていてもよい。 The structure of X 1 in the general formula (1) of the polyimide resin (A) is not limited, but while adjusting the storage elastic modulus, the stress relaxation effect synergistically with the dimer structure is brought out, and the substrate processability is improved. Specifically, from the viewpoint of further improving bending strength and heat cycle resistance, it is preferable that X 1 a having an aliphatic group is included. X 1 a may have an aliphatic group and may contain an aromatic group.
 脂肪族基を有するテトラカルボン酸類としては、芳香族基を含んでいてもよい、鎖状炭化水素構造および/又は脂環式炭化水素構造がある。「鎖状炭化水素構造」は、不飽和結合を有していてもよい、直鎖状炭化水素構造および/又は分岐状炭化水素構造である。また、「脂環式炭化水素構造」は、不飽和結合を有していてもよい、脂環式炭化水素であり、単環であっても多環であってもよい。これらは、置換基を含んでいてもよい。 Tetracarboxylic acids having an aliphatic group include a chain hydrocarbon structure and/or an alicyclic hydrocarbon structure that may contain an aromatic group. A "chain hydrocarbon structure" is a linear hydrocarbon structure and/or branched hydrocarbon structure that may have an unsaturated bond. In addition, the "alicyclic hydrocarbon structure" is an alicyclic hydrocarbon which may have an unsaturated bond, and may be monocyclic or polycyclic. These may contain substituents.
 脂肪族基を有するテトラカルボン酸類の具体例として、1,2,3,4-ブタンテトラカルボン酸、1,2,3,4-ペンタンテトラカルボン酸、1,2,4,5-ペンタンテトラカルボン酸、1,2,3,4-ヘキサンテトラカルボン酸、1,2,5,6-ヘキサンテトラカルボン酸等の鎖状炭化水素構造を有するテトラカルボン酸二無水物が例示できる。
 また、シクロブタン-1,2,3,4-テトラカルボン酸、シクロペンタン-1,2,3,4-テトラカルボン酸、シクロヘキサン-1,2,3,4-テトラカルボン酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、1-カルボキシメチル-2,3,5-シクロペンタントリカルボン酸、3-カルボキシメチル-1,2,4-シクロペンタントリカルボン酸、rel-ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-9-エン-3,4,7,8-テトラカルボン酸、5-カルボキシメチルビシクロ[2.2.1]ヘプタン-2,3,6-トリカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-7-エン-2,3,6,7-テトラカルボン酸、ビシクロ[3.3.0]オクタン-2,4,6,7-テトラカルボン酸、7,8-ジフェニルビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸、4,8-ジフェニル-1,5-ジアザビシクロオクタン-2,3,6,7-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、9,14-ジオキソペンタシクロ[8.2.11,11.14,7.02,10.03,8]テトラデカン-5,6,12,13-テトラカルボン酸等のシクロ、ビシクロ、トリシクロテトラカルボン酸;2,8-ジオキサスピロ[4.5]デカン-1,3,7,9-テロトン等のスピロ環含有テトラカルボン酸;5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等の脂環式炭化水素構造を有するテトラカルボン酸二無水物が例示できる。
Specific examples of tetracarboxylic acids having an aliphatic group include 1,2,3,4-butanetetracarboxylic acid, 1,2,3,4-pentanetetracarboxylic acid, and 1,2,4,5-pentanetetracarboxylic acid. Acids, tetracarboxylic acid dianhydrides having a chain hydrocarbon structure such as 1,2,3,4-hexanetetracarboxylic acid and 1,2,5,6-hexanetetracarboxylic acid can be exemplified.
In addition, cyclobutane-1,2,3,4-tetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid, cyclohexane-1,2,3,4-tetracarboxylic acid, cyclohexane-1,2 , 4,5-tetracarboxylic acid, 1-carboxymethyl-2,3,5-cyclopentanetricarboxylic acid, 3-carboxymethyl-1,2,4-cyclopentanetricarboxylic acid, rel-dicyclohexyl-3,3′, 4,4′-tetracarboxylic acid, tricyclo[4.2.2.02,5]dec-9-ene-3,4,7,8-tetracarboxylic acid, 5-carboxymethylbicyclo[2.2.1 ]heptane-2,3,6-tricarboxylic acid, bicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylic acid, bicyclo[2.2.2]oct-7-ene-2, 3,6,7-tetracarboxylic acid, bicyclo[3.3.0]octane-2,4,6,7-tetracarboxylic acid, 7,8-diphenylbicyclo[2.2.2]oct-7-ene -2,3,5,6-tetracarboxylic acid, 4,8-diphenyl-1,5-diazabicyclooctane-2,3,6,7-tetracarboxylic acid, 9-oxatricyclo[4.2. 1.02,5]nonane-3,4,7,8-tetracarboxylic acid, 9,14-dioxopentacyclo[8.2.11,11.14,7.02,10.03,8]tetradecane -cyclo, bicyclo, tricyclotetracarboxylic acids such as 5,6,12,13-tetracarboxylic acid; spiro ring-containing such as 2,8-dioxaspiro[4.5]decane-1,3,7,9-terotone Tetracarboxylic acid; 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 1,3,3a,4,5,9b-hexahydro-5 ( Tetrahydro-2,5-dioxo-3-furanyl)naphtho[1,2-c]furan-1,3-dione, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3, Examples include tetracarboxylic dianhydrides having an alicyclic hydrocarbon structure such as 4-tetrahydronaphthalene-1,2-dicarboxylic anhydride.
 脂肪族基を有するXaのうちでも、応力緩和をより効果的に発揮させる観点からは、以下の(I)および(II)の少なくとも一方を満たす構造Sを有することが好ましい。
(I)前記イミド環を構成する前記X中の炭素の少なくとも一つが、他方の前記イミド環を構成する前記X中の炭素の少なくとも一つと互いに直結する。
(II)2つの前記イミド環それぞれを構成する、前記X中の炭素の少なくとも一つが、それぞれ独立に、脂肪族構造と直結する構造を有する、および構成元素の一つとなる脂肪族構造を含む、のいずれかを満たす。
上記(I)を満たす具体例として、化学式(I-a)~(I-d)が例示できる。なお、化学式(I-b)~(I-d)は上記(II)を満たす化合物でもある。式中の*は、イミド基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000014
Among X 1 a having an aliphatic group, it is preferable to have a structure S that satisfies at least one of the following (I) and (II) from the viewpoint of exerting stress relaxation more effectively.
(I) At least one of the carbon atoms in X 1 constituting the imide ring is directly linked to at least one of the carbon atoms in X 1 constituting the other imide ring.
(II) At least one of the carbons in the X 1 constituting each of the two imide rings independently has a structure directly linked to an aliphatic structure, and contains an aliphatic structure that is one of the constituent elements , satisfies either
As specific examples satisfying the above (I), chemical formulas (Ia) to (Id) can be exemplified. The chemical formulas (Ib) to (Id) are also compounds satisfying the above (II). * in the formula indicates the bonding site with the imide group.
Figure JPOXMLDOC01-appb-C000014
 上記(II)を満たす具体例として、化学式(II-a)~(II-v)が例示できる。 As specific examples satisfying the above (II), chemical formulas (II-a) to (II-v) can be exemplified.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 イミド環を形成するX中の炭素が、脂肪族構造である鎖状炭化水素構造に直結する構造Sを有するXaの例として、化学式(II-a)、(II-v)で表される化合物が例示できる。イミド環を形成するX中の炭素が、構成元素の一つとなる脂肪族構造のうちの脂環式炭化水素構造を含む構造Sを有するXaの例として、化学式(II-b)で表される化合物が例示できる。また、一方のイミド環を形成するXの炭素が、脂肪族構造のうちの脂環式炭化水素構造に直結し、他方のイミド環を形成するX中の炭素が、構成元素の一つとなる脂肪族構造のうちの脂環式炭化水素構造を含む構造Sを有するXaの例として、化学式(II-c)が例示できる。なお、2つのイミド環がそれぞれ独立に、上記(I)および(II)の少なくともいずれかを満たしていればよく、化学式(II-d)に示すように芳香環が含まれていてもよい。 Examples of X 1 a having a structure S in which the carbon in X 1 forming the imide ring is directly linked to a chain hydrocarbon structure that is an aliphatic structure are represented by chemical formulas (II-a) and (II-v). can be exemplified. As an example of X 1 a having a structure S in which the carbon in X 1 forming the imide ring contains an alicyclic hydrocarbon structure among the aliphatic structures serving as one of the constituent elements, the chemical formula (II-b) The represented compound can be exemplified. Further, the carbon of X 1 forming one imide ring is directly connected to the alicyclic hydrocarbon structure in the aliphatic structure, and the carbon in X 1 forming the other imide ring is one of the constituent elements. Chemical formula (II-c) can be exemplified as an example of X 1 a having a structure S containing an alicyclic hydrocarbon structure among the aliphatic structures. The two imide rings may each independently satisfy at least one of (I) and (II) above, and may contain an aromatic ring as shown in chemical formula (II-d).
 脂肪族基を有するXaの割合は、ポリイミド樹脂(A)を構成するX100モル%に対して、60~100モル%が好適であり、より好ましい範囲は75~100モル%、更に好ましい範囲は85~100モル%である。脂肪族基を有するXaを60~100モル%用いることにより、ヒートサイクル耐性(基板加工適正)がより優れたものとなる。脂肪族基を有するXaの割合は、ポリイミド樹脂(A)を合成する際に使用する原料モノマーのうち、X残基となる全単量体100モル%中に対する、脂肪族基を有するXaが残基となる単量体の含有率(モル%)より求めることができる。通常、ポリイミド樹脂(A)の重合に用いるテトラカルボン酸類である単量体100モル%中、脂肪族基を有するXaを含む単量体の仕込み率を60~100モル%とすることにより、ポリイミド樹脂(A)の単量体に由来する構成成分の割合とすることができる。 The ratio of X 1 a having an aliphatic group is preferably 60 to 100 mol%, more preferably 75 to 100 mol%, with respect to 100 mol% of X 1 constituting the polyimide resin (A). A preferred range is 85 to 100 mol %. By using 60 to 100 mol % of X 1 a having an aliphatic group, the heat cycle resistance (substrate processing suitability) becomes more excellent. The ratio of X 1 a having an aliphatic group is, among the raw material monomers used when synthesizing the polyimide resin (A), the total monomers to be X 1 residues 100 mol% with respect to the aliphatic group It can be determined from the content ratio (mol %) of the monomer in which X 1 a is a residue. In general, in 100 mol% of the monomer which is a tetracarboxylic acid used in the polymerization of the polyimide resin (A), by setting the charging rate of the monomer containing X 1 a having an aliphatic group to 60 to 100 mol% , the ratio of the constituent components derived from the monomers of the polyimide resin (A).
 一般式(1)中のXは、前述したように、繰り返し単位毎にそれぞれ独立の構造を有していてもよい2価の有機基である。Xを得るための重合に用いる有機化合物の好適例として、前述したようにジアミン、ジイソシアネートが例示できる。Xの少なくとも一部は、ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xdである。 X 2 in general formula (1) is, as described above, a divalent organic group which may have an independent structure for each repeating unit. Preferred examples of organic compounds used for polymerization to obtain X2 include diamines and diisocyanates, as described above. At least part of X 2 is residue X 2 d derived from dimer diamine and/or dimer diisocyanate.
 ダイマー構造を有するXdの割合は、ポリイミド樹脂(A)を構成するX全体を100モル%としたときに60~100モル%が好ましい。この範囲とすることにより、ポリイミド樹脂(A)のパッキングを適度に阻害し、硬化性化合物(B)および熱伝導性フィラー(C)との分散性を効果的に高め、基板加工適性および曲げ強度の両者をバランスよく兼ね備えることができる。より好ましい範囲は75~100モル%であり、更に好ましい範囲は85~100モル%である。ダイマー構造を有するXdの割合は、ポリイミド樹脂(A)を合成する際に使用する原料モノマーのうち、X残基となる全単量体100モル%中に対する、ダイマー構造を有するXdが残基となる単量体の含有率(モル%)より求めることができる。 The ratio of X 2 d having a dimer structure is preferably 60 to 100 mol % when the entire X 2 constituting the polyimide resin (A) is taken as 100 mol %. By setting this range, the packing of the polyimide resin (A) is moderately inhibited, the dispersibility with the curable compound (B) and the thermally conductive filler (C) is effectively increased, and the substrate processability and bending strength can have both in good balance. A more preferred range is 75 to 100 mol %, and a still more preferred range is 85 to 100 mol %. The proportion of X 2 d having a dimer structure is, among the raw material monomers used when synthesizing the polyimide resin (A), X 2 having a dimer structure with respect to 100 mol% of all monomers that become X 2 residues It can be determined from the content (mol%) of the monomer in which d is the residue.
 ポリイミド樹脂(A)の一般式(1)中のXにおいて、上述したダイマー構造を有する残基Xdを形成する単量体以外のXの単量体となるその他のジアミンは、特に限定されない。具体的には、置換基を有していてもよい、脂肪族基(不飽和結合が含まれていてもよい、鎖状炭化水素構造および/又は脂環式炭化水素構造)、芳香環およびこれらを任意に組み合わせたジアミン化合物がある。 In X 2 in the general formula (1) of the polyimide resin (A), the other diamine that becomes a monomer of X 2 other than the monomer forming the residue X 2 d having a dimer structure described above is particularly Not limited. Specifically, an optionally substituted aliphatic group (a chain hydrocarbon structure and/or an alicyclic hydrocarbon structure that may contain an unsaturated bond), an aromatic ring and these There is a diamine compound that is an arbitrary combination of
 ダイマー構造以外のジアミンの具体例として、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、1,5-ジアミノナフタレン、1,8-ジアミノナフタレン、2,3-ジアミノナフタレン、2,6-ジアミノトルエン、2,4-ジアミノトルエン、3,4-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-1,2-ジフェニルエタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルスルホン等の芳香族ジアミン;エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,9-ノナンジアミン、1,12-ドデカメチレンジアミン、メタキシレンジアミン等の脂肪族ジアミン;イソホロンジアミン、ノルボルナンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’―ジアミノジシクロヘキシルメタン、ピペラジン等の脂環族ジアミンが挙げられる。 Specific examples of diamines other than dimer structures include 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,3-diamino naphthalene, 2,6-diaminotoluene, 2,4-diaminotoluene, 3,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4 '-diamino-1,2-diphenylethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, 3,3'-diamino Aromatic diamines such as benzophenone and 3,3'-diaminodiphenylsulfone; ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,9- Aliphatic diamines such as nonanediamine, 1,12-dodecamethylenediamine, metaxylenediamine; isophoronediamine, norbornanediamine, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4' - Alicyclic diamines such as diaminodicyclohexylmethane and piperazine.
 また、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、2,2’-ジトリフルオロメチル-5,5’-ジヒドロキシル-4,4’-ジアミノビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5,5’-ジヒドロキシベンジジンなどのフェノール性水酸基を有するジアミンが挙げられる。上記ジアミンの任意の位置に、任意の置換基が導入されていてもよい。 Also, bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane, bis(3-amino-4 -hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, 2,2'-ditrifluoromethyl-5,5'-dihydroxyl-4, Diamines having a phenolic hydroxyl group such as 4'-diaminobiphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, and 2,2'-bis(trifluoromethyl)-5,5'-dihydroxybenzidine can be mentioned. Any substituent may be introduced at any position of the diamine.
 ポリイミド樹脂(A)には、本開示の趣旨を逸脱しない範囲において、X残基、X残基以外の単量体に由来する残基が含まれていてもよい。例えば、アミノ基を3以上有するポリアミン化合物を用いてもよい。アミノ基を3つ以上有するポリアミン化合物としては、例えば、1,2,4-トリアミノベンゼン、3,4,4’-トリアミノジフェニルエーテルが挙げられる。 The polyimide resin (A) may contain residues derived from monomers other than X1 residue and X2 residue within the scope of the present disclosure. For example, a polyamine compound having 3 or more amino groups may be used. Examples of polyamine compounds having three or more amino groups include 1,2,4-triaminobenzene and 3,4,4'-triaminodiphenyl ether.
 ポリイミド樹脂(A)は、各種公知の方法により製造できる。具体例として、ポリイミド前駆体であるポリアミド酸樹脂、又はポリアミド酸エステル樹脂を加熱により環化してイミド基に変換する方法が挙げられる。ポリアミド酸樹脂の合成法は、例えば、テトラカルボン酸二無水物とジアミンを反応させる方法がある。より具体的には、テトラカルボン酸二無水物とジアミンを含む単量体を溶媒に溶解させて例えば60~120℃の温度で0.1~2時間撹拌して、重合させることでポリイミド前駆体であるポリアミド酸樹脂を製造できる。 The polyimide resin (A) can be produced by various known methods. A specific example is a method of cyclizing a polyamic acid resin or polyamic acid ester resin, which is a polyimide precursor, by heating to convert it into an imide group. A method for synthesizing a polyamic acid resin includes, for example, a method of reacting a tetracarboxylic dianhydride and a diamine. More specifically, a monomer containing a tetracarboxylic dianhydride and a diamine is dissolved in a solvent and stirred at a temperature of, for example, 60 to 120° C. for 0.1 to 2 hours to polymerize the polyimide precursor. Polyamic acid resin can be produced.
 ポリイミド樹脂(A)において、アミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数が0を含む1以下とする方法は、単官能化合物の反応により末端官能基数を調整する方法が好適である。アミノ基、酸無水物基は単量体由来で導入することができる。マレイミド基は、マレイミド基含有化合物を分子鎖末端や側鎖に導入する方法や、末端アミン化合物に無水マレイン酸を反応させる方法がある。マレイミド基やフェノール性水酸基を導入する場合、ポリアミド酸樹脂を合成する段階で導入しても、ポリイミド樹脂を得てから導入してもよい。後述するポリアミド酸エステル樹脂を経由する場合も同様である。側鎖又は側基にアミノ基、酸無水物基およびマレイミド基を導入してもよい。フェノール性水酸基においても同様に側鎖又は側基に導入してもよい。側鎖・側基にこれらの官能基を導入する場合、ポリイミド樹脂(A)を重合するための単量体にこれらの官能基を有する化合物を用いる方法、ポリイミド樹脂前駆体又はポリイミド樹脂を合成した後に、側鎖又は側基にフェノール性水酸基を導入する方法がある。 In the polyimide resin (A), a method in which the total average functional group number of functional groups selected from amino groups, acid anhydride groups and maleimide groups is 1 or less including 0, the number of terminal functional groups is increased by the reaction of a monofunctional compound. A method of adjustment is preferred. Amino groups and acid anhydride groups can be introduced from monomers. A maleimide group can be obtained by a method of introducing a maleimide group-containing compound into a molecular chain terminal or a side chain, or a method of reacting a terminal amine compound with maleic anhydride. When introducing a maleimide group or a phenolic hydroxyl group, they may be introduced at the stage of synthesizing the polyamic acid resin, or may be introduced after obtaining the polyimide resin. The same is true when passing through a polyamic acid ester resin, which will be described later. Amino groups, acid anhydride groups and maleimide groups may be introduced into side chains or side groups. A phenolic hydroxyl group may be similarly introduced into a side chain or side group. When introducing these functional groups into side chains and side groups, a method of using a compound having these functional groups as a monomer for polymerizing the polyimide resin (A), a polyimide resin precursor, or a polyimide resin was synthesized. Later, there is a method of introducing a phenolic hydroxyl group into a side chain or side group.
 ポリアミド酸エステル樹脂の合成法は、テトラカルボン酸二無水物とアルコールとによりジエステルを得、次いで縮合剤の存在下でジアミンと反応させる方法や、テトラカルボン酸二無水物とアルコールとによりジエステルを得、次いで、残りのジカルボン酸を酸クロリド化し、ジアミンと反応させる方法が例示できる。また、テトラカルボン酸二無水物とジイソシアネートを反応させてポリイミド前駆体を得、続いてポリイミド樹脂を得る方法も好適である。 Polyamic acid ester resin synthesis methods include obtaining a diester with a tetracarboxylic dianhydride and an alcohol and then reacting it with a diamine in the presence of a condensing agent, or obtaining a diester with a tetracarboxylic dianhydride and an alcohol. Then, the remaining dicarboxylic acid is acid chlorided and reacted with a diamine. A method of reacting a tetracarboxylic dianhydride and a diisocyanate to obtain a polyimide precursor and subsequently obtaining a polyimide resin is also suitable.
 重合に用いる有機溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、2-ブタノン、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、ヘキサメチルホスホルアミド、N-メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾールが例示できる。溶媒は単独若しくは二種以上を併用して用いられる。キシレン、トルエンのような芳香族炭化水素の併用も可能である。 Organic solvents used for polymerization include, for example, N-methyl-2-pyrrolidone (NMP), 2-butanone, dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc). , N,N-diethylacetamide, hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme and cresol. A solvent is used individually or in combination of 2 or more types. Aromatic hydrocarbons such as xylene and toluene can also be used in combination.
 ポリイミド前駆体をイミド化させてポリイミド樹脂を得る方法は、特に制限されないが、溶媒中で、例えば、80~400℃の温度で0.5~50時間加熱する方法が例示できる。このとき、必要に応じて触媒および/又は脱水剤を用いてもよい。 The method of imidizing a polyimide precursor to obtain a polyimide resin is not particularly limited, but a method of heating in a solvent at a temperature of 80 to 400° C. for 0.5 to 50 hours can be exemplified. At this time, a catalyst and/or a dehydrating agent may be used as necessary.
 反応触媒として、トリエチルアミン等の脂肪族第3級アミン類、ジメチルアニリン等の芳香族第3級アミン類、ピリジン、ピコリン、イソキノリン等の複素環式第3級アミン類等が例示できる。また、脱水剤としては、例えば無水酢酸等の脂肪族酸無水物や無水安息香酸等の芳香族酸無水物が例示できる。 Examples of reaction catalysts include aliphatic tertiary amines such as triethylamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic tertiary amines such as pyridine, picoline and isoquinoline. Examples of dehydrating agents include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides such as benzoic anhydride.
 イミド化率(イミド環の形成率)は限定されないが、耐アルカリ性および耐酸性(めっき液耐性)の効果を効果的に発揮させる観点からは80%以上であることが好ましく、90%以上であることがより好ましく、95~100%であることが更に好ましい。NMRやIR分析等によりイミド化率を決定できる。 The imidization rate (imido ring formation rate) is not limited, but from the viewpoint of effectively exhibiting the effects of alkali resistance and acid resistance (plating solution resistance), it is preferably 80% or more, and 90% or more. is more preferable, and 95 to 100% is even more preferable. The imidization rate can be determined by NMR, IR analysis, or the like.
1-2.硬化性化合物(B)
 硬化性化合物(B)は、エポキシ化合物(b1)、シアネートエステル化合物(b2)、マレイミド化合物(b3)、ポリフェニレンエーテル化合物(b4)およびナジイミド化合物(b5)からなる群から選択される一種以上である。エポキシ化合物(b1)は、活性エステル系化合物と併用して用いてもよい。硬化性化合物(B)は、一種単独で用いる他、同種樹脂および異種樹脂を問わず、二種以上を組み合わせることができる。また、前記以外の硬化剤、および硬化促進剤を併用してもよい。
1-2. Curable compound (B)
Curable compound (B) is one or more selected from the group consisting of epoxy compound (b1), cyanate ester compound (b2), maleimide compound (b3), polyphenylene ether compound (b4) and nadimide compound (b5). . The epoxy compound (b1) may be used in combination with an active ester compound. The curable compound (B) can be used singly or in combination of two or more regardless of whether the resin is the same or different. Curing agents other than those described above and curing accelerators may also be used in combination.
 本組成物中の熱伝導性フィラー(C)および溶剤を除く成分100質量%中、硬化性化合物(B)を10~98質量%用いることが好ましく、-30~90質量%用いることがより好ましく、45~85質量%用いることが更に好ましい。硬化性化合物(B)の平均官能基数は、同一骨格の硬化性化合物(B)毎に平均官能基数を算出するものとする。 It is preferable to use 10 to 98% by mass of the curable compound (B), more preferably -30 to 90% by mass, in 100% by mass of the components excluding the thermally conductive filler (C) and the solvent in the present composition. , more preferably 45 to 85% by mass. For the average number of functional groups of the curable compound (B), the average number of functional groups is calculated for each curable compound (B) having the same skeleton.
 長期耐熱性をより効果的に向上させる観点からは、(b1)~(b5)のうちシアネートエステル化合物(b2)とマレイミド化合物(b3)の併用系、マレイミド化合物(b3)とポリフェニレンエーテル化合物(b4)の併用系が好適である。また、曲げ強度をより効果的に向上させる観点からは、マレイミド化合物(b3)とナジイミド化合物(b5)の併用系が好適である From the viewpoint of more effectively improving long-term heat resistance, among (b1) to (b5), a combined system of a cyanate ester compound (b2) and a maleimide compound (b3), a maleimide compound (b3) and a polyphenylene ether compound (b4) ) is preferred. Further, from the viewpoint of more effectively improving the bending strength, a combined system of the maleimide compound (b3) and the nadimide compound (b5) is suitable.
 エポキシ化合物(b1)とは、エポキシ基を有する硬化性樹脂をいう。エポキシ化合物(b1)は、活性エステル系化合物を併用して用いることが好ましい。活性エステル系化合物とは、エポキシ基と反応するエステル基を1分子中に1個以上有し、エポキシ樹脂を硬化せしめる化合物をいう。活性エステル系化合物の市販品として、DIC社製「HPC-8000-65T」、「EXB9416-70BK」および「EXB8100-65T」等が例示できる。 Epoxy compound (b1) refers to a curable resin having an epoxy group. The epoxy compound (b1) is preferably used in combination with an active ester compound. The active ester compound is a compound that has one or more ester groups that react with epoxy groups in one molecule and that cures the epoxy resin. Examples of commercially available active ester compounds include "HPC-8000-65T", "EXB9416-70BK" and "EXB8100-65T" manufactured by DIC.
 活性エステル系化合物を用いることにより、エポキシ化合物(b1)と活性エステル系化合物との反応によりエステル基が生じる。このため、フェノール系硬化剤を用いる場合に比べて極性を低くできる。その結果、ポリイミド樹脂(A)のダイマー構造とエポキシ化合物(b1)の相溶性を効果的に高めることができる。 By using an active ester compound, an ester group is generated by the reaction between the epoxy compound (b1) and the active ester compound. Therefore, the polarity can be made lower than in the case of using a phenol-based curing agent. As a result, compatibility between the dimer structure of the polyimide resin (A) and the epoxy compound (b1) can be effectively enhanced.
 エポキシ化合物(b1)の具体例としては、グリジシルエーテル型エポキシ樹脂;テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、又はテトラグリシジルメタキシリレンジアミン、ソルビトールポリグリシジルエーテル等のグリジシルアミン型エポキシ樹脂;ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、又はジグリシジルテトラヒドロフタレート等のグリシジルエステル型エポキシ樹脂、;エポキシシクロヘキシルメチル-エポキシシクロヘキサンカルボキシレート、又はビス(エポキシシクロヘキシル)アジペートなどの環状脂肪族(脂環型)エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂が例示できる。また、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂が例示できる。 Specific examples of the epoxy compound (b1) include glycidyl ether-type epoxy resins; Epoxy resins; glycidyl ester-type epoxy resins such as diglycidyl phthalate, diglycidyl hexahydrophthalate, or diglycidyl tetrahydrophthalate; cyclic) epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin can be exemplified. Also, cresol novolak type epoxy resin, phenol novolak type epoxy resin, α-naphthol novolak type epoxy resin, bisphenol A type novolak type epoxy resin, dicyclopentadiene type epoxy resin, tetrabromobisphenol A type epoxy resin, brominated phenol novolak type epoxy resin. Epoxy resin can be exemplified.
 シアネートエステル化合物(b2)とは、シアネート基を有する硬化性樹脂をいう。シアネートエステル化合物(b2)としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール-フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール-クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。 The cyanate ester compound (b2) refers to a curable resin having a cyanate group. Examples of the cyanate ester compound (b2) include bisphenol A-type cyanate ester resin, bisphenol F-type cyanate ester resin, bisphenol E-type cyanate ester resin, bisphenol S-type cyanate ester resin, bisphenol sulfide-type cyanate ester resin, and phenylene ether-type cyanate ester resin. , naphthylene ether type cyanate ester resin, biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolac type cyanate ester resin, triphenylmethane type cyanate Ester resin, tetraphenylethane type cyanate ester resin, dicyclopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolak type cyanate ester resin, naphthol aralkyl type cyanate ester resin, naphthol-phenol cocondensed novolak type cyanate ester resins, naphthol-cresol cocondensed novolak type cyanate ester resins, aromatic hydrocarbon formaldehyde resin-modified phenol resin type cyanate ester resins, biphenyl-modified novolac type cyanate ester resins, anthracene type cyanate ester resins, and the like.
 シアネートエステル化合物(b2)の市販品、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」および「PT-60」)、ビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」および「BTP-6020S」)等を用いてもよい。 Commercial products of cyanate ester compound (b2), phenol novolac type cyanate ester resin (“PT-30” and “PT-60” manufactured by Lonza Japan), prepolymer trimerized bisphenol type cyanate ester resin (Lonza Japan ("BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S"), etc. may be used.
 マレイミド化合物(b3)とは、マレイミド基を有する硬化性樹脂をいう。マレイミド化合物(b3)の種類は特に限定されない。長期耐熱性の観点から平均マレイミド基数が1.5~4であることが好ましく、2以上であることがより好ましい。 The maleimide compound (b3) refers to a curable resin having a maleimide group. The type of maleimide compound (b3) is not particularly limited. From the viewpoint of long-term heat resistance, the average number of maleimide groups is preferably 1.5 to 4, more preferably 2 or more.
 マレイミド化合物(b3)のMwは特に限定されないが、乾燥時の揮発抑制の観点から100以上であることが好ましく、150以上であることがより好ましい。Mwの上限値は特に限定されないが、入手容易性等を考慮すると8000以下、より好ましくは5000以下である。 Although the Mw of the maleimide compound (b3) is not particularly limited, it is preferably 100 or more, more preferably 150 or more, from the viewpoint of suppressing volatilization during drying. Although the upper limit of Mw is not particularly limited, it is 8,000 or less, more preferably 5,000 or less in consideration of availability.
 マレイミド化合物(b3)は、多官能アミンと無水マレイン酸を反応させて得られる多官能マレイミドを挙げることができる。多官能アミンとしては、イソホロンジアミン、ジシクロヘキシルメタン-4,4′-ジアミン、ハンツマン・コーポレーション社製の、末端アミノ化ポリプロピレングリコール骨格を有するジェファーミンD-230、HK-511、D-400、XTJ-582、D-2000、XTJ-578、XTJ-509、XTJ-510、T-403、T-5000、末端アミノ化エチレングリコール骨格を有するXTJ-500、XTJ-501、XTJ-502、XTJ-504、XTJ-511、XTJ-512、XTJ-590末端アミノ化ポリテトラメチレングリコール骨格を有するXTJ-542、XTJ-533、XTJ-536、XTJ-548、XTJ-559などが挙げられる。 Examples of the maleimide compound (b3) include polyfunctional maleimides obtained by reacting a polyfunctional amine with maleic anhydride. Polyfunctional amines include isophoronediamine, dicyclohexylmethane-4,4'-diamine, and Jeffamine D-230, HK-511, D-400, and XTJ- having terminal aminated polypropylene glycol skeletons manufactured by Huntsman Corporation. 582, D-2000, XTJ-578, XTJ-509, XTJ-510, T-403, T-5000, XTJ-500 with a terminally aminated ethylene glycol backbone, XTJ-501, XTJ-502, XTJ-504, XTJ-511, XTJ-512, XTJ-590 XTJ-542, XTJ-533, XTJ-536, XTJ-548, XTJ-559, etc. having a terminal aminated polytetramethylene glycol backbone.
 マレイミド化合物(b3)として、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、4-メチル-1,3-フェニレンビスマレイミド、N,N'-エチレンジマレイミド、N,N'-ヘキサメチレンジマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド等の分子内に2つのマレイミド基を有する樹脂、ビフェニルアラルキル型マレイミド、ポリフェニルメタンマレイミド(CASNO:67784-74-1、ホルムアルデヒドとアニリンからなるポリマーと無水マレイン酸の反応物)、N,N’-(トルエン-2,6-ジイル)ビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、N,N’-エチレンビスマレイミド、N,N’-トリメチレンビスマレイミド、N,N’-プロピレンビスマレイミド、N,N’-テトラメチレンビスマレイミド、N,N’-ペンタメチレンビスマレイミド、N,N’-(1,3-ペンタンジイル)ビス(マレインイミド)、N,N’-ヘキサメチレンビスマレイミド、N,N’-(1,7-ヘプタンジイル)ビスマレイミド、N,N’-(1,8-オクタンジイル)ビスマレイミド、N,N’-(1,9-ノタンジイル)ビスマレイミド、N,N’-(1,10-デカンジイル)ビスマレイミド、N,N’-(1,11-ウンデカンジイル)ビスマレイミド、N,N’-(1,12-ドデカンジイル)ビスマレイミド、N,N’-[(1,4-フェニレン)ビスメチレン]ビスマレイミド、N,N’-[(1,2-フェニレン)ビスメチレン]ビスマレイミド、N,N’-[(1,3-フェニレン)ビスメチレン]ビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、N,N′‐[(メチルイミノ)ビス(4,1‐フェニレン)]ビスマレイミド、N,N′‐(2‐ヒドロキシプロパン‐1,3‐ジイルビスイミノビスカルボニルビスエチレン)ビスマレイミド、N,N′‐(ジチオビスエチレン)ビスマレイミド、N,N′‐[ヘキサメチレンビス(イミノカルボニルメチレン)]ビスマレイミド、N,N′‐カルボニルビス(1,4‐フェニレン)ビスマレイミド、N,N′,N′′‐[ニトリロトリス(エチレン)]トリスマレイミド、N,N’,N’’-[ニトリロトリス(4,1-フェニレン)]トリスマレイミド、N,N′‐[p‐フェニレンビス(オキシ-p-フェニレン)]ビスマレイミド、N,N′‐[メチレンビス(オキシ)ビス(2-メチル-1,4-フェニレン)]ビスマレイミド、N,N’-[メチレンビス(オキシ-p-フェニレン)]ビス(マレインイミド)N,N′‐[ジメチルシリレンビス[(4,1-フェニレン)(1,3,4,-オキサジアゾール-5,2-ジイル)(4,1-フェニレン)]]ビスマレイミド、N,N’-[(1,3-フェニレン)ビスオキシビス(3,1-フェニレン)]ビスマレイミド、1,1’-[3’-オキソスピロ[9H-キサンテン-9,1’(3’H)-イソベンゾフラン]-3,6-ジイル]ビス(1H-ピロール-2,5-ジオン)、N,N’-(3,3’-ジクロロビフェニル-4,4’-ジイル)ビスマレイミド、N,N’-(3,3’-ジメチルビフェニル-4,4’-ジイル)ビスマレイミド、N,N’-(3,3’-ジメトキシビフェニル-4,4’-ジイル)ビスマレイミド、N,N’-[メチレンビス(2-エチル-4,1-フェニレン)]ビスマレイミド、N,N’-[メチレンビス(2,6-ジエチル-4,1-フェニレン)]ビスマレイミド、N,N’-[メチレンビス(2-ブロモ-6-エチル-4,1-フェニレン)]ビスマレイミド、N,N’-[メチレンビス(2-メチル-4,1-フェニレン)]ビスマレイミド、N,N’-[エチレンビス(オキシエチレン)]ビスマレイミド、N,N’-[スルホニルビス(4,1-フェニレン)ビス(オキシ)ビス(4,1-フェニレン)]ビスマレイミド、N,N’-[ナフタレン-2,7-ジイルビス(オキシ)ビス(4,1-フェニレン)]ビスマレイミド、N,N’-[p-フェニレンビス(オキシ-p-フェニレン)]ビスマレイミド、N,N’-[(1,3-フェニレン)ビスオキシビス(3,1-フェニレン)]ビスマレイミド、N,N’-(3,6,9-トリオキサウンデカン-1,11-ジイル)ビスマレイミド、N,N’-[イソプロピリデンビス[p-フェニレンオキシカルボニル(m-フェニレン)]]ビスマレイミド、N,N’-[イソプロピリデンビス[p-フェニレンオキシカルボニル(p-フェニレン)]]ビスマレイミド、N,N’-[イソプロピリデンビス[(2,6-ジクロロベンゼン-4,1-ジイル)オキシカルボニル(p-フェニレン)]]ビスマレイミド、N,N’-[(フェニルイミノ)ビス(4,1-フェニレン)]ビスマレイミド、N,N’-[アゾビス(4,1-フェニレン)]ビスマレイミド、N,N’-[1,3,4-オキサジアゾール-2,5-ジイルビス(4,1-フェニレン)]ビスマレイミド、2,6-ビス[4-(マレインイミド-N-イル)フェノキシ]ベンゾニトリル、N,N’-[1,3,4-オキサジアゾール-2,5-ジイルビス(3,1-フェニレン)]ビスマレイミド、N,N’-[ビス[9-オキソ-9H-9-ホスファ(V)-10-オキサフェナントレン-9-イル]メチレンビス(p-フェニレン)]ビスマレイミド、N,N’-[ヘキサフルオロイソプロピリデンビス[p-フェニレンオキシカルボニル(m-フェニレン)]]ビスマレイミド、N,N’-[カルボニルビス[(4,1-フェニレン)チオ(4,1-フェニレン)]]ビスマレイミド、N,N’-カルボニルビス(p-フェニレンオキシp-フェニレン)ビスマレイミド、N,N’-[5-tert-ブチル-1,3-フェニレンビス[(1,3,4-オキサジアゾール-5,2-ジイル)(4,1-フェニレン)]]ビスマレイミド、N,N’-[シクロヘキシリデンビス(4,1-フェニレン)]ビスマレイミド、N,N’-[メチレンビス(オキシ)ビス(2-メチル-1,4-フェニレン)]ビスマレイミド、N,N’-[5-[2-[5-(ジメチルアミノ)-1-ナフチルスルホニルアミノ]エチルカルバモイル]-1,3-フェニレン]ビスマレイミド、N,N’-(オキシビスエチレン)ビスマレイミド、N,N’-[ジチオビス(m-フェニレン)]ビスマレイミド、N,N’-(3,6,9-トリオキサウンデカン-1,11-ジイル)ビスマレイミド、N,N’-(エチレンビス-p-フェニレン)ビスマレイミド、DesignerMolecules社製のBMI-689、BMI-1500、BMI-1700、BMI-3000、BMI-5000、BMI-9000、JFEケミカル社製のODA-BMI、BAFBMIなどの多官能マレイミドを挙げることができる。 Examples of maleimide compounds (b3) include 4,4′-diphenylmethanebismaleimide, m-phenylenebismaleimide, p-phenylenebismaleimide, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, bis-(3 -ethyl-5-methyl-4-maleimidophenyl)methane, 4-methyl-1,3-phenylenebismaleimide, N,N'-ethylenedimaleimide, N,N'-hexamethylenedimaleimide, bis(4-maleimide phenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, bisphenol A diphenyletherbismaleimide, etc. with two maleimide groups in the molecule biphenyl aralkyl type maleimide, polyphenylmethane maleimide (CAS NO: 67784-74-1, a reaction product of a polymer composed of formaldehyde and aniline and maleic anhydride), N,N'-(toluene-2,6-diyl ) bismaleimide, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, N , N'-ethylenebismaleimide, N,N'-trimethylenebismaleimide, N,N'-propylenebismaleimide, N,N'-tetramethylenebismaleimide, N,N'-pentamethylenebismaleimide, N,N '-(1,3-pentanediyl)bis(maleimide), N,N'-hexamethylenebismaleimide, N,N'-(1,7-heptanediyl)bismaleimide, N,N'-(1,8- octanediyl)bismaleimide, N,N'-(1,9-notanediyl)bismaleimide, N,N'-(1,10-decanediyl)bismaleimide, N,N'-(1,11-undecanediyl)bismaleimide Maleimide, N,N'-(1,12-dodecanediyl)bismaleimide, N,N'-[(1,4-phenylene)bismethylene]bismaleimide, N,N'-[(1,2-phenylene)bismethylene] bismaleimide, N,N'-[(1,3-phenylene)bismethylene]bismaleimide, 1,6'-bismaleimide-(2,2,4-trimethyl)hexane, N,N'-[(methylimino)bis (4,1-phenylene)]bismaleimide, N,N'-(2-hydroxypropane-1,3-diylbisiminobiscarbonylbisethylene)bismaleimide, N,N'-(dithiobisethylene)bismaleimide, N,N'-[hexamethylenebis(iminocarbonylmethylene)]bismaleimide, N,N'-carbonylbis(1,4-phenylene)bismaleimide, N,N',N''-[nitrilotris(ethylene) ]trismaleimide, N,N',N''-[nitrilotris(4,1-phenylene)]trismaleimide, N,N'-[p-phenylenebis(oxy-p-phenylene)]bismaleimide, N, N'-[methylenebis(oxy)bis(2-methyl-1,4-phenylene)]bismaleimide, N,N'-[methylenebis(oxy-p-phenylene)]bis(maleimide)N,N'-[ dimethylsilylenebis[(4,1-phenylene)(1,3,4,-oxadiazole-5,2-diyl)(4,1-phenylene)]]bismaleimide, N,N'-[(1, 3-phenylene)bisoxybis(3,1-phenylene)]bismaleimide, 1,1′-[3′-oxospiro[9H-xanthene-9,1′(3′H)-isobenzofuran]-3,6-diyl ] Bis(1H-pyrrole-2,5-dione), N,N′-(3,3′-dichlorobiphenyl-4,4′-diyl)bismaleimide, N,N′-(3,3′-dimethyl biphenyl-4,4′-diyl)bismaleimide, N,N′-(3,3′-dimethoxybiphenyl-4,4′-diyl)bismaleimide, N,N′-[methylenebis(2-ethyl-4, 1-phenylene)]bismaleimide, N,N'-[methylenebis(2,6-diethyl-4,1-phenylene)]bismaleimide, N,N'-[methylenebis(2-bromo-6-ethyl-4, 1-phenylene)]bismaleimide, N,N'-[methylenebis(2-methyl-4,1-phenylene)]bismaleimide, N,N'-[ethylenebis(oxyethylene)]bismaleimide, N,N' -[sulfonylbis(4,1-phenylene)bis(oxy)bis(4,1-phenylene)]bismaleimide, N,N'-[naphthalene-2,7-diylbis(oxy)bis(4,1-phenylene )] bismaleimide, N,N'-[p-phenylenebis(oxy-p-phenylene)]bismaleimide, N,N'-[(1,3-phenylene)bisoxybis(3,1-phenylene)]bismaleimide , N,N′-(3,6,9-trioxaundecane-1,11-diyl)bismaleimide, N,N′-[isopropylidenebis[p-phenyleneoxycarbonyl(m-phenylene)]]bismaleimide , N,N'-[isopropylidenebis[p-phenyleneoxycarbonyl (p-phenylene)]]bismaleimide, N,N'-[isopropylidenebis[(2,6-dichlorobenzene-4,1-diyl) oxycarbonyl(p-phenylene)]]bismaleimide, N,N'-[(phenylimino)bis(4,1-phenylene)]bismaleimide, N,N'-[azobis(4,1-phenylene)]bis Maleimide, N,N'-[1,3,4-oxadiazole-2,5-diylbis(4,1-phenylene)]bismaleimide, 2,6-bis[4-(maleimido-N-yl) Phenoxy]benzonitrile, N,N'-[1,3,4-oxadiazole-2,5-diylbis(3,1-phenylene)]bismaleimide, N,N'-[bis[9-oxo-9H -9-phospha(V)-10-oxaphenanthren-9-yl]methylenebis(p-phenylene)]bismaleimide, N,N'-[hexafluoroisopropylidenebis[p-phenyleneoxycarbonyl(m-phenylene)] ] bismaleimide, N,N'-[carbonylbis[(4,1-phenylene)thio(4,1-phenylene)]]bismaleimide, N,N'-carbonylbis(p-phenyleneoxy p-phenylene)bis maleimide, N,N'-[5-tert-butyl-1,3-phenylenebis[(1,3,4-oxadiazol-5,2-diyl)(4,1-phenylene)]]bismaleimide, N,N'-[cyclohexylidenebis(4,1-phenylene)]bismaleimide, N,N'-[methylenebis(oxy)bis(2-methyl-1,4-phenylene)]bismaleimide, N,N '-[5-[2-[5-(dimethylamino)-1-naphthylsulfonylamino]ethylcarbamoyl]-1,3-phenylene]bismaleimide, N,N'-(oxybisethylene)bismaleimide, N, N'-[dithiobis(m-phenylene)]bismaleimide, N,N'-(3,6,9-trioxaundecane-1,11-diyl)bismaleimide, N,N'-(ethylenebis-p- phenylene) bismaleimide, Designer Molecules BMI-689, BMI-1500, BMI-1700, BMI-3000, BMI-5000, BMI-9000, JFE Chemical Co. ODA-BMI, BAFBMI and other polyfunctional maleimides. be able to.
 マレイミド化合物(b3)をラジカルにより架橋させる場合には、ラジカル重合開始剤を添加することができる。具体的にはアゾ系化合物、有機過酸化物が例示できる。重合開始剤は一種もしくは二種以上を組み合わせて用いられる。
 アゾ系化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノバレリック酸)、2,2’-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]が例示できる。
 有機過酸化物としては、過酸化ベンゾイル、t-ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、t-ブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシビバレート、(3,5,5-トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシドが例示できる。
When the maleimide compound (b3) is crosslinked by radicals, a radical polymerization initiator can be added. Specifically, azo compounds and organic peroxides can be exemplified. A polymerization initiator is used alone or in combination of two or more.
Azo compounds include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane 1-carbonitrile), 2,2 '-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2'-azobis(2-methylpropionate), 4 , 4′-azobis(4-cyanovaleric acid), 2,2′-azobis(2-hydroxymethylpropionitrile), 2,2′-azobis[2-(2-imidazolin-2-yl)propane] can be exemplified.
Organic peroxides include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di(2-ethoxyethyl) peroxydicarbonate. , t-butyl peroxy 2-ethylhexanoate, t-butyl peroxyneodecanoate, t-butyl peroxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl Peroxide can be exemplified.
 ポリフェニレンエーテル化合物(b4)は、下記一般式(14)で表される構造の繰り返し単位を有し、硬化性官能基を含有するものである。
Figure JPOXMLDOC01-appb-C000016
11、R12、R13およびR14は、繰り返し単位毎にそれぞれ独立に、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、置換基を有していてもよいアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘプチル基等の炭素数1~6の直鎖状もしくは分岐状の化合物、シクロヘキシル基等の脂環式化合物)、置換基を有していてもよいアルコキシ基(メトキシ基、エトキシ基、ブトキシ基、プロポキシ基等の炭素数1~6のアルコキシ基)、置換基を有していてもよいアリール基(フェニル基、ナフチル基等)、置換基を有していてもよいアミノ基、カルボキシ基、ニトロ基、シアノ基などが例示できる。
The polyphenylene ether compound (b4) has a repeating unit having a structure represented by the following general formula (14) and contains a curable functional group.
Figure JPOXMLDOC01-appb-C000016
R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), an optionally substituted alkyl group ( Linear or branched compounds with 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, heptyl group, and cyclohexyl group. cyclic compounds), optionally substituted alkoxy groups (C1-C6 alkoxy groups such as methoxy, ethoxy, butoxy, and propoxy groups), optionally substituted aryl Examples include groups (phenyl group, naphthyl group, etc.), optionally substituted amino groups, carboxy groups, nitro groups, cyano groups, and the like.
 長期耐熱性の観点からポリフェニレンエーテル化合物(b4)の平均硬化性官能基数は1~10であることが好ましく、2以上であることがより好ましい。 From the viewpoint of long-term heat resistance, the polyphenylene ether compound (b4) preferably has an average number of curable functional groups of 1 to 10, more preferably 2 or more.
 ポリフェニレンエーテル化合物(b4)のMwは特に限定されないが、曲げ強度の観点から200以上であることが好ましく、500以上であることがより好ましい。Mwの上限値は特に限定されないが、入手容易性等を考慮すると1万以下である。 Although the Mw of the polyphenylene ether compound (b4) is not particularly limited, it is preferably 200 or more, more preferably 500 or more, from the viewpoint of bending strength. Although the upper limit of Mw is not particularly limited, it is 10,000 or less in consideration of availability and the like.
 ポリフェニレンエーテル化合物(b4)の具体例としては、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)との共重合体が挙げられる。また、2,6-ジメチルフェノールとビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体およびポリ(2,6-ジメチル-1,4-フェニレンエーテル)等をビスフェノール類やトリスフェノール類のようなフェノール化合物と有機過酸化物の存在下でトルエン等の溶媒中で加熱し、再分配反応させて得られる、直鎖構造もしくは分岐構造を有するポリフェニレンエーテルが挙げられる。 Specific examples of the polyphenylene ether compound (b4) include poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2,6-dimethyl-1,4-phenylene ether), poly(2- methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g., 2,3,6- trimethylphenol, 2-methyl-6-butylphenol, etc.). In addition, polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols, poly(2,6-dimethyl-1,4-phenylene ether), and the like are added to bisphenols and trisphenols. A polyphenylene ether having a linear or branched structure obtained by heating in a solvent such as toluene in the presence of a phenol compound and an organic peroxide such as the above to cause a redistribution reaction.
 ナジイミド化合物(b5)は、分子内にナジイミド基を2個以上有するものであれば、特に限定されない。ナジイミド化合物(b5)の好適例として、下記一般式(15)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
21は、炭素数1~20の置換基を有していてもよいアルキレン基(例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へプチレン基等のアルキレン基)、シクロヘキシレン基等の脂環式基、フェニレン基、ビフェニレン基、ナフチレン基およびこれらの任意の組合せからなる基である。R22およびR23は、アリル基又は(メタ)アクリレート基等の硬化性官能基である。
The nadimide compound (b5) is not particularly limited as long as it has two or more nadimide groups in the molecule. Suitable examples of the nadimide compound (b5) include compounds having a structure represented by the following general formula (15).
Figure JPOXMLDOC01-appb-C000017
R 21 is an optionally substituted alkylene group having 1 to 20 carbon atoms (eg, an alkylene group such as a methylene group, ethylene group, propylene group, butylene group, pentylene group, heptylene group), cyclohexylene; alicyclic groups such as groups, phenylene groups, biphenylene groups, naphthylene groups, and groups consisting of any combination thereof. R22 and R23 are curable functional groups such as allyl groups or (meth)acrylate groups.
 市販品としては、丸善石油化学社製品の「BANI-M」、および「BANI-X」が挙げられる。 Commercially available products include "BANI-M" and "BANI-X" from Maruzen Petrochemical Co., Ltd.
1-3.熱伝導性フィラー(C)
 熱伝導性フィラー(C)は、本組成物の硬化物に熱伝導性を付与する化合物である。熱伝導性フィラーは、熱伝導性の観点から、熱伝導率が0.5W/(m・K)以上であることが好ましく、1.0W/(m・K)以上であることがより好ましく、1.5W/(m・K)以上であることが更に好ましい。熱伝導性フィラー(C)としては、熱伝導性無機系フィラー、熱伝導性有機無機ハイブリッド系フィラーを用いることができる。熱伝導性フィラー(C)の含有量は用途に応じて適宜調整すればよく、通常は、本組成物の不揮発成分100質量%に対して5~95質量%である。熱伝導性フィラー(C)形状は特に限定されない。例えば、球状、粉状、繊維状、針状、鱗片状等が挙げられる。粒子サイズや形状が異なる複数種の熱伝導性フィラーを用いることにより、熱伝導性フィラー(C)を高充填できる場合がある。熱伝導性フィラー(C)は一種単独又は二種以上を併用して用いられる。
1-3. Thermally conductive filler (C)
The thermally conductive filler (C) is a compound that imparts thermal conductivity to the cured product of the present composition. From the viewpoint of thermal conductivity, the thermally conductive filler preferably has a thermal conductivity of 0.5 W/(m K) or more, more preferably 1.0 W/(m K) or more. It is more preferably 1.5 W/(m·K) or more. As the thermally conductive filler (C), a thermally conductive inorganic filler and a thermally conductive organic-inorganic hybrid filler can be used. The content of the thermally conductive filler (C) may be appropriately adjusted depending on the application, and is usually 5 to 95% by mass with respect to 100% by mass of non-volatile components in the present composition. The shape of the thermally conductive filler (C) is not particularly limited. For example, spherical, powdery, fibrous, acicular, scaly and the like can be mentioned. By using a plurality of types of thermally conductive fillers having different particle sizes and shapes, the thermally conductive filler (C) can be highly filled in some cases. A heat conductive filler (C) is used individually by 1 type or in combination of 2 or more types.
 熱伝導性無機系フィラーの具体例としては、アルミナ、水酸化アルミニウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、硫酸マグネシウム、酸化チタン、酸化スズ、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化モリブデン、酸化アンチモン、酸化ニッケル、ケイ酸カルシウム、ベリリア、チタン酸カルシウム、炭化ケイ素、窒化ケイ素、窒化アルミニウム、窒化ホウ素、チタンホワイト、ホウ酸亜鉛、ホウ酸アルミニウムなどの金属化合物;タルク;クレー;マイカ;ガラス繊維、カオリン、ハイドロタルサイト、ウォラストナイト、ゾノトライト、リン酸水素カルシウム、リン酸カルシウム、ガラスフレーク、水和ガラス、セピオライトなどの金属酸化物や金属窒化物;水和金属化合物;溶融破砕シリカ、溶融球状シリカ、結晶性シリカ、非結晶性シリカ、2次凝集シリカ、微粉シリカ、中空シリカ、多孔質シリカなどのシリカ系;炭化ケイ素、窒化ケイ素、炭化チタン、ダイヤモンドなどの窒化系や炭素系フィラーが例示できる。
 これらの中でもアルミナ、酸化アルミニウム、窒化アルミニウム、窒化ホウ素がより好ましく、アルミナ、窒化ホウ素が長期耐熱性を効果的に高める観点から特に好ましい。
Specific examples of thermally conductive inorganic fillers include alumina, aluminum hydroxide, zirconium hydroxide, barium hydroxide, calcium hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, magnesium sulfate, oxide Titanium, tin oxide, aluminum oxide, magnesium oxide, zirconium oxide, calcium oxide, magnesium oxide, zinc oxide, molybdenum oxide, antimony oxide, nickel oxide, calcium silicate, beryllia, calcium titanate, silicon carbide, silicon nitride, aluminum nitride , metal compounds such as boron nitride, titanium white, zinc borate, aluminum borate; talc; clay; mica; glass fiber, kaolin, hydrotalcite, wollastonite, xonotlite, calcium hydrogen phosphate, calcium phosphate, glass flakes, Metal oxides and metal nitrides such as hydrated glass and sepiolite; hydrated metal compounds; fused crushed silica, fused spherical silica, crystalline silica, non-crystalline silica, secondary aggregated silica, finely divided silica, hollow silica, porous Examples include silica-based fillers such as silica; nitride-based fillers such as silicon carbide, silicon nitride, titanium carbide, and diamond; and carbon-based fillers.
Among these, alumina, aluminum oxide, aluminum nitride, and boron nitride are more preferable, and alumina and boron nitride are particularly preferable from the viewpoint of effectively increasing long-term heat resistance.
 熱伝導性有機無機ハイブリッド系フィラーの具体例としては、上記に挙げた無機系フィラーの表面を樹脂や分散剤でコーティングしたフィラーが例示できる。熱伝導性無機系フィラーの表面を樹脂や分散剤でコーティングする方法としては、公知の方法を適用できる。この場合、熱伝導性無機フィラーの熱伝導特性を効果的に引き出すために、無機系フィラーが露出していることが好ましい。熱伝導性無機系フィラーの表面は、例えば、シラン系、チタネート系およびアルミネート系カップリング剤などで表面処理を行うことができる。表面処理により、バインダー成分に帯する熱伝導性フィラーの分散性を高めることができる。また、バインダー成分と熱伝導性フィラーとの界面接着強度を高めることもできる。 Specific examples of thermally conductive organic-inorganic hybrid fillers include fillers obtained by coating the surface of the inorganic fillers listed above with a resin or dispersant. As a method for coating the surface of the thermally conductive inorganic filler with a resin or a dispersant, a known method can be applied. In this case, the inorganic filler is preferably exposed in order to effectively bring out the thermal conductivity of the thermally conductive inorganic filler. The surface of the thermally conductive inorganic filler can be surface-treated with, for example, a silane-, titanate-, or aluminate-based coupling agent. The surface treatment can enhance the dispersibility of the thermally conductive filler in the binder component. It is also possible to increase the interfacial adhesive strength between the binder component and the thermally conductive filler.
 シランカップリング剤としては、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン;3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン;p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン等が例示できる。 Silane coupling agents include γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane. Aminosilanes such as methoxysilane and γ-ureidopropyltriethoxysilane; epoxysilane; mercaptosilane such as 3-mercaptopropyltrimethoxysilane; p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris(β-methoxyethoxy)silane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyl Examples include vinylsilanes such as trimethoxysilane.
 チタネートカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ジイソプロピルビス(ジオクチルホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート等が例示できる。 Titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(N-aminoethyl/aminoethyl) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis( dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, diisopropylbis(dioctylphosphate)titanate, tetraisopropylbis(dioctylphosphite)titanate, tetraoctylbis(ditridecylphosphite)titanate and the like.
 また、熱伝導性無機系フィラーの表面にフッ素系樹脂を被覆する態様も好適である。熱伝導性を良好に保つ観点から、熱伝導性無機フィラー同士が接触する部分は熱伝導性無機フィラーが露出していることが好ましい。 A mode in which the surface of the thermally conductive inorganic filler is coated with a fluororesin is also suitable. From the viewpoint of maintaining good thermal conductivity, it is preferable that the thermally conductive inorganic fillers are exposed at the portions where the thermally conductive inorganic fillers are in contact with each other.
 熱伝導性フィラー(C)の添加方法は特に制限されるものではなく、従来公知の方法を用いることができる。好適例として、ポリイミド樹脂(A)の重合前又は途中に重合反応液に添加する方法、3本ロールなどを用いてポリイミド樹脂(A)にフィラーを混錬する方法、フィラーを含む分散液を用意しこれをポリイミド樹脂(A)に混合する方法などが挙げられる。また、フィラーを良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等を樹脂組成物の物性に影響を及ぼさない範囲で用いることもできる。 The method of adding the thermally conductive filler (C) is not particularly limited, and conventionally known methods can be used. Preferred examples include a method of adding the filler to the polymerization reaction solution before or during the polymerization of the polyimide resin (A), a method of kneading the filler into the polyimide resin (A) using a triple roll or the like, and preparing a dispersion containing the filler. and a method of mixing this with the polyimide resin (A). Further, in order to disperse the filler well and stabilize the dispersed state, dispersants, thickeners and the like may be used as long as they do not affect the physical properties of the resin composition.
1-4.熱安定剤(D)
 本組成物は、任意成分として熱安定剤(D)を添加することができる。熱安定剤(D)は、紫外線吸収機能、ラジカル補足機能、過酸化物分解機能、又は難燃機能を有する化合物であればよく、具体的には、ヒンダードフェノール系、セミヒンダードフェノール系、レスヒンダードフェノール系などのフェノール系化合物;ヒンダードアミン系、リン系、イオウ系、ベンゾトリアゾール系、ベンゾフェノン系、ヒドロキシルアミン系、サルチル酸エステル系、およびトリアジン系の化合物が挙げられる。また、金属水和物、ハロゲン系化合物が例示できる。公知の紫外線吸収剤、酸化防止剤、難燃剤を使用できる。熱安定剤(D)は一種又は二種以上を混合して用いることができる。熱安定剤(D)を含むことで、長期耐熱性に加え、基板加工適性を向上させることができる。熱安定剤(D)を用いる場合の含有量は、本組成物の熱伝導性フィラー(C)および溶剤を除く組成物100質量%中、例えば0.1~5質量%である。
1-4. Thermal stabilizer (D)
The present composition can optionally contain a heat stabilizer (D). The heat stabilizer (D) may be a compound having an ultraviolet absorption function, a radical scavenging function, a peroxide decomposition function, or a flame retardant function. Phenolic compounds such as resin hindered phenol; hindered amine, phosphorus, sulfur, benzotriazole, benzophenone, hydroxylamine, salicylate, and triazine compounds. Also, metal hydrates and halogen compounds can be exemplified. Known ultraviolet absorbers, antioxidants and flame retardants can be used. The heat stabilizer (D) can be used alone or in combination of two or more. Including the heat stabilizer (D) can improve the substrate processability in addition to the long-term heat resistance. When the heat stabilizer (D) is used, the content thereof is, for example, 0.1 to 5% by mass in 100% by mass of the composition excluding the thermally conductive filler (C) and the solvent.
 ヒンダードフェノール系化合物は、例えば、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,1,3-トリス-(2’-メチル-4’-ヒドロキシ-5’-t-ブチルフェニル)-ブタン、4,4’-ブチリデン-ビス-(2-t-ブチル-5-メチルフェノール)、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス[2-[3-(3-t-ブチル-4-ヒドロキシ-5 -メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、1,3,5-トリス(3-ヒドロキシ-4-t-ブチル-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,2’-メチレンビス(6-t-ブチル-4-エチルフェノール)、2,2’チオジエチルビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)、i-オクチル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,6-ビス(ドデシルチオメチル)-o-クレゾール、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸モノエチルエステルのカルシウム塩、4,6-ビス(オクチルチオメチル)-o-クレゾール、ビス[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロピオン酸]エチレンビスオキシビスエチレン、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2’-チオ-ビス-(6-t-ブチル-4-メチルフェノール)、2,5-ジ-t-アミル-ヒドロキノン、2,6-ジ-t-ブチル-4-ノニルフェノール、2,2’-イソブチリデン-ビス-(4,6-ジメチル-フェノール)、2,2’-メチレン-ビス-(6-(1-メチル-シクロヘキシル)-p-クレゾール)、2,4-ジメチル-6-(1-メチル-シクロヘキシル)-フェノール等が挙げられる。 Hindered phenol compounds include, for example, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H ,5H)-trione, 1,1,3-tris-(2′-methyl-4′-hydroxy-5′-t-butylphenyl)-butane, 4,4′-butylidene-bis-(2-t- butyl-5-methylphenol), 3-(3,5-di-t-butyl-4-hydroxyphenyl)stearylpropionate, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxy Phenyl)propionate, 3,9-bis[2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10 -tetraoxaspiro[5.5]undecane, 1,3,5-tris(3,5-di-t-butyl-4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 1,3,5 -tris(3-hydroxy-4-t-butyl-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 2,2′-methylenebis (6-t-butyl-4-ethylphenol), 2,2′ thiodiethylbis-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate, N,N-hexamethylenebis(3, 5-di-t-butyl-4-hydroxy-hydrocinnamamide), i-octyl 3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,6-bis(dodecylthiomethyl )-o-cresol, calcium salt of 3,5-di-t-butyl-4-hydroxybenzylphosphonic acid monoethyl ester, 4,6-bis(octylthiomethyl)-o-cresol, bis[3-(3 -methyl-4-hydroxy-5-t-butylphenyl)propionic acid]ethylenebisoxybisethylene, 1,6-hexanediol bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate , 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,2′-thio-bis-(6 -t-butyl-4-methylphenol), 2,5-di-t-amyl-hydroquinone, 2,6-di-t-butyl-4-nonylphenol, 2,2′-isobutylidene-bis-(4,6 -dimethyl-phenol), 2,2′-methylene-bis-(6-(1-methyl-cyclohexyl)-p-cresol), 2,4-dimethyl-6-(1-methyl-cyclohexyl)-phenol, etc. mentioned.
 市販品は、ADEKA社製アデカスタブAO-20、AO-30、AO-40,AO-50、AO-60、AO-80、AO-330、ケミプロ社製KEMINOX101、179、76、9425、BASF社製IRGANOX1010、1035、1076、1098、1135、1330、1726、1425WL、1520L、245、259、3114、5057、565、サンケミカル社製サイアノックスCY-1790、CY-2777等が挙げられる。 Commercially available products are Adekastab AO-20, AO-30, AO-40, AO-50, AO-60, AO-80, AO-330 manufactured by ADEKA, KEMINOX101, 179, 76, 9425 manufactured by Chemipro, manufactured by BASF. IRGANOX 1010, 1035, 1076, 1098, 1135, 1330, 1726, 1425WL, 1520L, 245, 259, 3114, 5057, 565, Cyanox CY-1790, CY-2777 manufactured by Sun Chemical Co., and the like.
 ヒンダードアミン系化合物は、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカノキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カルボネート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、コハク酸ジメチルと1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンとの重縮合物、ポリ[[6-[(1,1,3,3-テトラメチルブチル)アミノ]-s-トリアジン-2,4-ジイル]-[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]-ヘキサメチレン-[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]]、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールと3,5,5-トリメチルヘキサン酸のエステル、N,N’-4,7-テトラキス〔4,6-ビス{N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ}-1,3,5-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミン、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、ビス(1,2,2,6,6-ペンタメチル-4-ピリペリジル)[[3,5-ビス(1,1ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネートメチル1,2,2,6,6-ペンタメチル-4-ピリペリジルセバケート、ポリ[[6-モルホリノ-s-トリアジン-2,4-ジイル]-[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]-ヘキサメチレン-[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]]、2,2,6,6-テトラメチル-4-ピペリジル-C12-21およびC18不飽和脂肪酸エステル、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド等が挙げられる。 Hindered amine compounds include, for example, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate, tetrakis(2,2,6,6-tetramethyl -4-piperidyl) 1,2,3,4-butane tetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl) -4-piperidyl) sebacate, bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 2, 2,6,6-tetramethyl-4-piperidyl methacrylate, a polycondensate of dimethyl succinate and 1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine, poly[ [6-[(1,1,3,3-tetramethylbutyl)amino]-s-triazine-2,4-diyl]-[(2,2,6,6-tetramethyl-4-piperidyl)imino] -hexamethylene-[(2,2,6,6-tetramethyl-4-piperidyl)imino]], 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and 3,5,5 -ester of trimethylhexanoic acid, N,N'-4,7-tetrakis[4,6-bis{N-butyl-N-(1,2,2,6,6-pentamethyl-4-piperidyl)amino}- 1,3,5-triazin-2-yl]-4,7-diazadecane-1,10-diamine, bis(2,2,6,6-tetramethyl-1-(octyloxy)-4-decanedioate piperidinyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane, bis(1,2,2,6,6-pentamethyl-4-pyliperidyl)[[3,5-bis(1,1 dimethylethyl )-4-hydroxyphenyl]methyl]butylmalonate methyl 1,2,2,6,6-pentamethyl-4-pyriperidyl sebacate, poly[[6-morpholino-s-triazine-2,4-diyl] -[(2,2,6,6-tetramethyl-4-piperidyl)imino]-hexamethylene-[(2,2,6,6-tetramethyl-4-piperidyl)imino]], 2,2,6 ,6-tetramethyl-4-piperidyl-C12-21 and C18 unsaturated fatty acid esters, N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-1,6-hexamethylenediamine , 2-methyl-2-(2,2,6,6-tetramethyl-4-piperidyl)amino-N-(2,2,6,6-tetramethyl-4-piperidyl)propionamide and the like.
 市販品は、ADEKA社製アデカスタブLA-52、LA-57、LA-63P、LA-68、LA-72、LA-77Y、LA-77G、LA-81、LA-82、LA-87、LA-402F、LA-502XP、ケミプロ化成社製KAMISTAB29、62、77、94、BASF製Tinuvin249、TINUVIN111FDL、123、144、292、5100、サンケミカル社製サイアソーブUV-3346、UV-3529、UV-3853等が挙げられる。 Commercially available products are ADEKA's Adekastab LA-52, LA-57, LA-63P, LA-68, LA-72, LA-77Y, LA-77G, LA-81, LA-82, LA-87, LA- 402F, LA-502XP, KAMISTAB29, 62, 77, 94 manufactured by Chemipro Kasei Co., Ltd., Tinuvin249 manufactured by BASF, TINUVIN111FDL, 123, 144, 292, 5100, Cyasorb UV-3346 manufactured by Sun Chemical Co., UV-3529, UV-3853, etc. mentioned.
 リン系化合物は、リン原子を含有するものであれば特に制限はなく、無機系の化合物でも有機系の化合物でもよい。無機系のリン系化合物としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。有機系のリン系化合物としては、例えば、ジ(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、ジステアリルペンタエリスリトールジフォスファイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、テトラ(C12~C15アルキル)-4,4’-イソプロピリデンジフェニルジフォスファイト、ジフェニルモノ(2-エチルヘキシル)フォスファイト、ジフェニルイソデシルフォスファイト、トリス(イソデシル)フォスファイト、トリフェニルフォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4-ビフェニルジフォスホニト、トリス(トリデシル)フォスファイト、フェニルイソオクチルフォスファイト、フェニルイソデシルフォスファイト、フェニルジ(トリデシル)フォスファイト、ジフェニルイソオクチルフォスファイト、ジフェニルトリデシルフォスファイト、4,4’イソプロピリデンジフェノールアルキルフォスファイト、トリスノニルフェニルフォスファイト、トリスジノニルフェニルフォスファイト、トリス(ビフェニル)フォスファイト、ジ(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、ジ(ノニルフェニル)ペンタエリスリトールジフォスファイト、フェニルビスフェノールAペンタエリスリトールジフォスファイト、テトラトリデシル4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)ジフォスファイト、ヘキサトリデシル1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタントリフォスファイト、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスファイトジエチルエステル、ソジウムビス(4-t-ブチルフェニル)フォスファイト、ソジウム-2,2-メチレン-ビス(4,6-ジ-t-ブチルフェニル)-フォスファイト、1,3-ビス(ジフェノキシフォスフォニロキシ)-ベンゼン、亜リン酸エチルビス(2,4-ジtert-ブチル-6-メチルフェニル)等が挙げられる。 The phosphorus-based compound is not particularly limited as long as it contains a phosphorus atom, and may be an inorganic compound or an organic compound. Examples of inorganic phosphorus compounds include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as amide phosphoric acid; phosphoric acid; phosphine oxide; Examples of organic phosphorus compounds include di(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, distearylpentaerythritol diphosphite, 2,2′-methylenebis(4 ,6-di-t-butylphenyl)2-ethylhexyl phosphite, tris(2,4-di-t-butylphenyl)phosphite, tris(nonylphenyl)phosphite, tetra(C12-C15 alkyl)-4, 4′-Isopropylidenediphenyldiphosphite, diphenylmono(2-ethylhexyl)phosphite, diphenylisodecylphosphite, tris(isodecyl)phosphite, triphenylphosphite, tetrakis(2,4-di-t-butylphenyl )-4,4-biphenyldiphosphonate, tris(tridecyl)phosphite, phenylisooctylphosphite, phenylisodecylphosphite, phenyldi(tridecyl)phosphite, diphenylisooctylphosphite, diphenyltridecylphosphite, 4 , 4′ isopropylidenediphenol alkyl phosphite, trisnonylphenyl phosphite, trisdinonylphenyl phosphite, tris(biphenyl) phosphite, di(2,4-di-t-butylphenyl) pentaerythritol diphosphite, di(nonylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, tetratridecyl 4,4'-butylidenebis(3-methyl-6-t-butylphenol) diphosphite, hexatridecyl 1,1 , 3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane triphosphite, 3,5-di-t-butyl-4-hydroxybenzylphosphite diethyl ester, sodium bis(4-t- butylphenyl)phosphite, sodium-2,2-methylene-bis(4,6-di-t-butylphenyl)-phosphite, 1,3-bis(diphenoxyphosphonyloxy)-benzene, ethylbisphosphite (2,4-di-tert-butyl-6-methylphenyl) and the like.
 市販品は、ADEKA社製アデカスタブPEP-36、PEP-8、HP-10、2112、1178、1500、C、135A、3010、TPP、BASF社製IRGAFOS168、クラリアントケミカルズ社製HostanoxP-EPQ、三光社製HCA等が挙げられる。 Commercially available products are Adekastab PEP-36, PEP-8, HP-10, 2112, 1178, 1500, C, 135A, 3010, TPP manufactured by ADEKA, IRGAFOS168 manufactured by BASF, HostanoxP-EPQ manufactured by Clariant Chemicals, and manufactured by Sanko. HCA etc. are mentioned.
 イオウ系化合物は、例えば、2,2-ビス{〔3-(ドデシルチオ)-1-オキソプロポキシ〕メチル}プロパン-1,3-ジイルビス〔3-(ドデシルチオ)プロピオネート〕、3,3’-チオビスプロピオン酸ジトリデシル、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス〔(オクチルチオ)メチル〕-o-クレゾール、2,4-ビス〔(ラウリルチオ)メチル〕-o-クレゾール等が挙げられる。 Sulfur compounds include, for example, 2,2-bis{[3-(dodecylthio)-1-oxopropoxy]methyl}propane-1,3-diylbis[3-(dodecylthio)propionate], 3,3′-thiobis ditridecyl propionate, 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis[(octylthio)methyl]-o-cresol, 2,4-bis[(laurylthio)methyl]-o-cresol and the like.
 市販品は、ADEKA社製アデカスタブAO-412S、AO-503、ケミプロ化成社製KEMINOXPLS等が挙げられる。 Commercially available products include Adekastab AO-412S and AO-503 manufactured by ADEKA, and KEMINOXPLS manufactured by Chemipro Kasei.
1-5.その他の任意成分
 本組成物は、無溶剤であっても溶剤を含んでいてもよい。溶剤としては、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2- プロパノール、2-アセトキシ-1-メトキシプロパン、n-ヘキサン、シクロヘキサン、シクロヘキサノンおよびこれらの混合物が例示できる。
1-5. Other Optional Components The composition may be solventless or may contain a solvent. Solvents include toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1 -Methoxy-2-propanol, 2-acetoxy-1-methoxypropane, n-hexane, cyclohexane, cyclohexanone and mixtures thereof.
 低誘電率化をより効果的に発揮させる観点から、フッ素系フィラーを用いてもよい。フッ素系フィラーとしては、PTFE、PVDF(CF2とCH2が交互に結合した直鎖状構造を持つフッ化ビニリデン重合体)、ネオフロンFEP(テトラフルオロエチレン~ヘキサフルオロプロピレン共重合体:四フッ化エチレン~六フッ化プロピレン共重合樹脂)、PFA(テトラフルオロエチレン~パーフルオロアルキルビニルエーテル共重合体:パーフルオロアルコキシ樹脂)、ネオフロンETFE(テトラフルオロエチレンとエチレンの共重合体)、ECTFE(ポリクロロトリフルオロエチレン:三フッ化塩化エチレン樹脂)等が例示できる。 A fluorine-based filler may be used from the viewpoint of more effectively exhibiting a low dielectric constant. Examples of fluorine-based fillers include PTFE, PVDF (a vinylidene fluoride polymer having a linear structure in which CF2 and CH2 are alternately bonded), NEOFLON FEP (tetrafluoroethylene-hexafluoropropylene copolymer: tetrafluoroethylene- propylene hexafluoride copolymer resin), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer: perfluoroalkoxy resin), NEOFLON ETFE (tetrafluoroethylene-ethylene copolymer), ECTFE (polychlorotrifluoroethylene : Trifluoroethylene chloride resin) and the like can be exemplified.
 更に本開示の趣旨を逸脱しない範囲で添加剤を含むことができる。例えば、ポリイミド樹脂(A)に該当しないポリイミド樹脂、および/又は硬化性化合物(B)に該当しない硬化性化合物を用いてもよい。また、任意の熱可塑性樹脂を用いることができる。また、硬化処理を促進するために、任意成分として触媒を含有することができる。触媒の好適例として、イミダゾール系、アミン系、リン系が例示できる。更に、染料、顔料(例えば、カーボンブラック)、重合禁止剤、消泡剤、レベリング剤、イオン捕集剤、保湿剤、粘度調整剤、防腐剤、抗菌剤、帯電防止剤、アンチブロッキング剤、紫外線吸収剤、赤外線吸収剤、電磁波シールド剤等が挙げられる。 Furthermore, additives can be included within the scope of the present disclosure. For example, a polyimide resin that does not correspond to the polyimide resin (A) and/or a curable compound that does not correspond to the curable compound (B) may be used. Also, any thermoplastic resin can be used. A catalyst may also be included as an optional component to accelerate the curing process. Suitable examples of catalysts include imidazole-based, amine-based, and phosphorus-based catalysts. Furthermore, dyes, pigments (e.g., carbon black), polymerization inhibitors, antifoaming agents, leveling agents, ion scavengers, moisturizing agents, viscosity modifiers, preservatives, antibacterial agents, antistatic agents, antiblocking agents, ultraviolet rays Absorbents, infrared absorbents, electromagnetic wave shielding agents and the like can be mentioned.
1-6.樹脂組成物および硬化物の特性
 本組成物を硬化処理して得られた硬化物のガラス転移温度を140~400℃の範囲とする。より好ましくは200~300℃である。前記ガラス転移温度が140℃以上であることで、長期耐熱性を高めることができる。一方、前記ガラス転移温度が400℃以下であることで、一定の柔軟性を付与することができ、ポリイミド樹脂(A)の応力緩和効果を引き出すことができる。
1-6. Properties of Resin Composition and Cured Product The glass transition temperature of the cured product obtained by curing the present composition is in the range of 140 to 400°C. More preferably, it is 200 to 300°C. When the glass transition temperature is 140°C or higher, long-term heat resistance can be enhanced. On the other hand, when the glass transition temperature is 400° C. or lower, a certain degree of flexibility can be imparted, and the stress relaxation effect of the polyimide resin (A) can be brought out.
2.樹脂組成物の製造方法
 本組成物は、各配合成分を配合することにより得られる。ポリイミド前駆体ではなく、イミド化したポリイミド樹脂(A)を配合成分として用いる。配合に際して、適宜、溶媒を用いることができる。固形分濃度は、例えば20~60質量%とすることができる。ポリイミド樹脂(A)はダイマー構造を有しているので、各種有機溶剤に容易に溶解させることができる。
2. Method for Producing Resin Composition The present composition is obtained by blending each compounding component. An imidized polyimide resin (A) is used as a compounding component instead of a polyimide precursor. A solvent can be used as appropriate for blending. The solid content concentration can be, for example, 20 to 60% by mass. Since the polyimide resin (A) has a dimer structure, it can be easily dissolved in various organic solvents.
 本組成物は、例えば粉末状、フィルム状、シート状、板状、ペレット状、ペースト状または液状とすることができる。液状またはペースト状の樹脂組成物は、溶剤を用いて粘度を調整することにより容易に得ることができる。また、フィルム状、シート状、板状の樹脂組成物は、例えば、液状またはペースト状の樹脂組成物を塗工して乾燥することにより形成できる。また、粉末状、ペレット状の樹脂組成物は、例えば、前記フィルム状等の樹脂組成物を所望のサイズに粉砕または分断することにより得られる。 The composition can be in the form of powder, film, sheet, plate, pellet, paste or liquid, for example. A liquid or paste resin composition can be easily obtained by adjusting the viscosity using a solvent. Moreover, a film-like, sheet-like, or plate-like resin composition can be formed, for example, by applying a liquid or paste resin composition and drying it. Further, the powdery or pellet-like resin composition can be obtained, for example, by pulverizing or cutting the film-like resin composition into a desired size.
3.樹脂組成物層、積層シートおよびプリプレグ
 本組成物は、樹脂組成物層として好適に用いることができる。また、本組成物は、基材と、この基材上に設けられた本組成物で形成された樹脂組成物層とを含む、積層シート用途に好適に用いることができる。樹脂組成物層は、硬化処理後に優れた接着性を示すので、各種材料(樹脂層、金属層、ITO等の無機層、複合層など)との接合用途として好適である。例えば、銅張積層板(CCL:Copper Clad Laminate)の接着シート、電子回路基板と電子部品等との部品同士の接合材料に好適である。
3. Resin Composition Layer, Laminated Sheet, and Prepreg The present composition can be suitably used as a resin composition layer. In addition, the present composition can be suitably used for laminated sheet applications including a base material and a resin composition layer formed of the present composition provided on the base material. Since the resin composition layer exhibits excellent adhesiveness after curing treatment, it is suitable for bonding with various materials (resin layer, metal layer, inorganic layer such as ITO, composite layer, etc.). For example, it is suitable as an adhesive sheet for copper clad laminates (CCL), and as a bonding material between electronic circuit boards and electronic components.
 例えば、溶剤を含む本組成物の塗布液(ワニス)を、剥離フィルムの片面に塗布し、有機溶剤等の液状媒体を例えば40~150℃で除去・乾燥することにより、樹脂組成物層(接着シート)を有する積層シートが得られる。得られた接着シートの表面に別の剥離フィルムを積層することにより、両面剥離フィルム付き接着シートである積層シートが得られる。両面を剥離フィルムで積層することにより、接着シートの表面汚染を予防することができる。剥離フィルムを剥がすことによって、接着シートを単離することができる。2つの剥離フィルムは、同種または異種のいずれも用いることができる。剥離性の異なる剥離フィルムを用いることによって、剥離力に強弱をつけることができるので順番に剥がしやすくなる。また、剥離性基材以外の基材に塗布液を塗工して接着シート(樹脂組成物層)を有する積層シートを得てもよい。 For example, a coating liquid (varnish) of the present composition containing a solvent is applied to one side of the release film, and a liquid medium such as an organic solvent is removed and dried at 40 to 150 ° C., for example, to form a resin composition layer (adhesive sheet) is obtained. By laminating another release film on the surface of the obtained adhesive sheet, a laminated sheet that is an adhesive sheet with a double-sided release film is obtained. By laminating the release film on both sides, surface contamination of the adhesive sheet can be prevented. The adhesive sheet can be isolated by peeling off the release film. The two release films can be of the same type or of different types. By using release films with different release properties, the strength of the release force can be adjusted, making it easier to peel off in order. Alternatively, a laminate sheet having an adhesive sheet (resin composition layer) may be obtained by coating a substrate other than the releasable substrate with the coating liquid.
 基材は、ポリイミドフィルム、ポリエチレンフィルム、ポリカーボネート、ポリエチレン、液晶ポリマー、フェノール樹脂、アラミド樹脂などの樹脂材料;銅、アルミニウム、ステンレス等の金属材料;ITO、ガラス、シリコン、シリコンカーバイト等の無機材料およびこれらを任意に組み合わせた複合材料が例示できる。本組成物によれば、貯蔵弾性率G’が1.0×10Paとなる温度が-30~90℃のいずれかにある軟らかいポリイミド樹脂(A)により各種基材への密着性に優れるのみならず、成形加工性に優れる。 Base materials include resin materials such as polyimide film, polyethylene film, polycarbonate, polyethylene, liquid crystal polymer, phenolic resin, and aramid resin; metal materials such as copper, aluminum, and stainless steel; inorganic materials such as ITO, glass, silicon, and silicon carbide. and composite materials in which these are arbitrarily combined can be exemplified. According to the present composition, the soft polyimide resin (A) having a storage elastic modulus G′ of 1.0×10 7 Pa at a temperature between −30° C. and 90° C. provides excellent adhesion to various substrates. In addition, it is excellent in moldability.
 塗布方法としては、例えば、コンマコート、ナイフコート、ダイコート、リップコート、ロールコート、カーテンコート、バーコート、グラビア印刷、フレキソ印刷、スクリーン印刷、ディップコート、スプレーコート、スピンコート等、公知の方法を選択することができる。接着シートの乾燥後の厚みは十分な接着性を発揮させるため、また、取り扱い易さの点から、5~500μmであることが好ましく、10~100μmであることが更に好ましい。 Examples of coating methods include known methods such as comma coating, knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure printing, flexographic printing, screen printing, dip coating, spray coating, and spin coating. can be selected. The thickness of the adhesive sheet after drying is preferably 5 to 500 μm, more preferably 10 to 100 μm, in order to exhibit sufficient adhesiveness and from the viewpoint of ease of handling.
 本組成物は、基材に本組成物を含浸させることにより得たプリプレグ形成用として好適に用いることができる。プリプレグは、例えば、繊維基材に本組成物を含浸させ、続いて、樹脂組成物を加熱乾燥せしめて半硬化(Bステージ化)することにより製造できる。樹脂組成物の繊維基材に対する固形分付着量は、プリプレグに対する乾燥後の樹脂組成物の含有率において20~90質量%とすることが好ましい。より好ましくは、30~80質量%であり、さらに好ましくは40~70質量%である。例えば、プリプレグ中の樹脂組成物の固形分付着量が20~90質量%となるように、本組成物を繊維基材に含浸または塗工した後、例えば40~250℃の温度で1~30分加熱乾燥し、半硬化(Bステージ化)させることにより製造することができる。 The composition can be suitably used for forming a prepreg obtained by impregnating a base material with the composition. A prepreg can be produced, for example, by impregnating a fibrous base material with the present composition, then heating and drying the resin composition for semi-curing (B-staging). The amount of solid matter adhered to the fiber base material of the resin composition is preferably 20 to 90% by mass in terms of the content of the resin composition after drying relative to the prepreg. It is more preferably 30 to 80% by mass, still more preferably 40 to 70% by mass. For example, after impregnating or coating a fiber base material with the present composition so that the solid content adhesion amount of the resin composition in the prepreg is 20 to 90% by mass, for example, 1 to 30 at a temperature of 40 to 250 ° C. It can be manufactured by heating and drying for minutes and semi-curing (to B stage).
 繊維基材としては、公知の材料を制限なく利用できるが、有機繊維、無機繊維およびガラス繊維が例示できる。有機繊維としては、ポリイミド、ポリエステル、テトラフルオロエチレン、全芳香族ポリアミドなどが例示できる。無機繊維としては、炭素繊維が例示できる。ガラス繊維としては、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、NEガラスクロス、Lガラスクロス、Tガラスクロス、球状ガラスクロス、低誘電ガラスクロスなどが例示できる。これらのなかでも低熱膨張率の観点からは、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロスおよび有機繊維が好適である。繊維基材は一種単独でも二種以上を併用してもよい。 As the fiber base material, known materials can be used without limitation, but organic fibers, inorganic fibers and glass fibers can be exemplified. Examples of organic fibers include polyimide, polyester, tetrafluoroethylene, and wholly aromatic polyamide. Examples of inorganic fibers include carbon fibers. Examples of glass fibers include E-glass cloth, D-glass cloth, S-glass cloth, Q-glass cloth, NE-glass cloth, L-glass cloth, T-glass cloth, spherical glass cloth, and low dielectric glass cloth. Among these, E-glass cloth, T-glass cloth, S-glass cloth, Q-glass cloth and organic fibers are preferable from the viewpoint of low coefficient of thermal expansion. The fiber base material may be used singly or in combination of two or more.
 繊維基材の形状は、目的とする用途および性能に応じて適宜選択できる。具体例としては、織布、不織布、ロービンク、チョップドストランドマットおよびサーフェシングマットが例示できる。織布の織り方としては、平織り、ななこ織り、綾織りが例示できる。所望の特性に応じて、任意に選択・設計することができる。繊維基材の厚さは、例えば、約0.01~1.0mmの範囲とすることができる。薄膜化の観点からは500μm以下が好ましく、300μm以下がより好ましい。 The shape of the fiber base material can be appropriately selected according to the intended use and performance. Specific examples include woven fabrics, non-woven fabrics, robinks, chopped strand mats and surfacing mats. Plain weave, Nanako weave, and twill weave can be exemplified as the weave method of the woven fabric. It can be arbitrarily selected and designed according to desired characteristics. The thickness of the fibrous substrate can range, for example, from about 0.01 to 1.0 mm. From the viewpoint of thinning, the thickness is preferably 500 μm or less, more preferably 300 μm or less.
 繊維基材は、必要に応じて、所望の特性を引き出すためにシランカップリング剤などで表面処理を施したり、機械的に開繊処理を施すことができる。その他、コロナ処理やプラズマ処理を行ってもよい。シランカップリング剤の表面処理は、アミノシランカップリング処理、ビニルシランカップリング処理、カチオニックシランカップリング処理、エポキシシランカップリング処理等がある。 If necessary, the fiber base material can be surface-treated with a silane coupling agent or the like in order to bring out the desired properties, or can be mechanically opened. In addition, corona treatment or plasma treatment may be performed. The surface treatment of the silane coupling agent includes aminosilane coupling treatment, vinylsilane coupling treatment, cationic silane coupling treatment, epoxysilane coupling treatment, and the like.
 繊維基材に樹脂組成物を含浸させる方法は特に限定されないが、例えば、アルコール類、エーテル類、アセタール類、ケトン類、エステル類、アルコールエステル類、ケトンアルコール類、エーテルアルコール類、ケトンエーテル類、ケトンエステル類やエステルエーテル類などの有機溶媒を用いて樹脂組成物のワニスを調製し、ワニス中に繊維基材を浸漬する方法、繊維基材にワニスを塗布またはスプレー等により散布する方法、繊維基材の両面を樹脂組成物からなる膜でラミネートする方法等が挙げられる。 The method of impregnating the fiber base material with the resin composition is not particularly limited, but examples include alcohols, ethers, acetals, ketones, esters, alcohol esters, ketone alcohols, ether alcohols, ketone ethers, A method of preparing a varnish of a resin composition using an organic solvent such as ketone esters or ester ethers and immersing a fiber base material in the varnish, a method of applying or spraying the varnish on the fiber base material, a method of spreading the varnish on the fiber base material, A method of laminating both sides of a base material with a film made of a resin composition can be used.
 更に、本組成物より形成されてなる樹脂組成物層等は、半導体チップパッケージの絶縁層、アンダーフィル材、接着材等に好適である。また、銅張積層板用の組成物、配線板形成用ボンディングシート、フレキシブル基板のカバーコートにも好適である。 Furthermore, the resin composition layer and the like formed from the present composition are suitable for insulating layers, underfill materials, adhesive materials, and the like of semiconductor chip packages. It is also suitable for use as a composition for copper-clad laminates, a bonding sheet for wiring board formation, and a cover coat for flexible substrates.
4.硬化物の製造方法
 本組成物を硬化処理することにより硬化物が得られる。熱硬化性化合物を含む場合には熱硬化処理を、光硬化性化合物を含む場合には光照射処理により通常硬化する。例えば、樹脂組成物をシート等の所望の形状に成形し、硬化処理する方法が例示できる。溶剤を含む樹脂組成物を塗布、乾燥することにより簡便に樹脂組成物のシートなどの成形体を得ることができる。そして、成形体を硬化することにより硬化物を形成する。成形体と硬化のタイミングは同時であってもよい。なお、硬化物のうちシート状のものを硬化層ともいう。
4. Method for Producing Cured Product A cured product can be obtained by subjecting the present composition to a curing treatment. When it contains a thermosetting compound, it is usually cured by heat curing treatment, and when it contains a photocurable compound, it is usually cured by light irradiation treatment. For example, a method of molding the resin composition into a desired shape such as a sheet and curing treatment can be exemplified. A molded body such as a sheet of the resin composition can be easily obtained by coating the resin composition containing a solvent and drying it. Then, the molded product is cured to form a cured product. The molding and curing may be performed at the same time. A sheet-shaped cured product is also referred to as a cured layer.
 熱硬化処理する場合の温度は、硬化性化合物(B)の種類に応じて適宜選定すればよい。例えば、150~300℃の温度で、30~180分加熱処理する方法が例示できる。光硬化処理する場合、活性光線を硬化が行われる強度で照射すればよい。硬化時に、必要に応じて圧をかけて熱圧着(例えば、5MPa)することができる。硬化処理により、本組成物に架橋構造が形成され、3次元架橋した硬化物が得られる。 The temperature for heat curing may be appropriately selected according to the type of the curable compound (B). For example, a method of heat treatment at a temperature of 150 to 300° C. for 30 to 180 minutes can be exemplified. In the case of photocuring treatment, actinic rays may be irradiated at an intensity sufficient for curing. At the time of curing, pressure can be applied for thermocompression bonding (for example, 5 MPa) as needed. By the curing treatment, a crosslinked structure is formed in the present composition to obtain a three-dimensionally crosslinked cured product.
5.硬化物および硬化物付基板
 本組成物から得られる硬化物は、長期耐熱性に優れると共に曲げ強度に優れ、製造工程中の基板加工適性にも優れるので、金属張積層板、プリント配線板をはじめとする各種部品の硬化物、或いはこの硬化物を含む硬化物付基板として好適である。
 金属張積層板は、例えば、本組成物を用いて絶縁層を形成し、絶縁層と金属層を積層するプロセス等を経て得られる。この絶縁層には、本組成物から形成された接着シート、プリプレグを好適に用いることができる。例えば、金属層と本組成物を用いて形成したプリプレグを積層した後、加熱圧着により硬化処理工程を行うことにより、金属張積層板が得られる。加熱圧着工程は、公知の方法を利用できる。例えば、120~250℃の温度で0.5~10MPaの圧力で、0.5~5時間熱プレスすることにより行われる。
5. Cured product and substrate with cured product The cured product obtained from this composition has excellent long-term heat resistance, bending strength, and substrate processability during the manufacturing process. It is suitable as a cured product of various parts or a substrate with a cured product containing this cured product.
A metal-clad laminate is obtained, for example, through a process of forming an insulating layer using the present composition and laminating the insulating layer and a metal layer. Adhesive sheets and prepregs formed from the present composition can be suitably used for this insulating layer. For example, a metal-clad laminate can be obtained by laminating a metal layer and a prepreg formed using the present composition and then performing a curing treatment step by thermocompression bonding. A known method can be used for the thermocompression bonding step. For example, hot pressing is performed at a temperature of 120 to 250° C. and a pressure of 0.5 to 10 MPa for 0.5 to 5 hours.
 金属張積層板の積層構成としては、金属層/硬化層の2層の積層体、金属層/硬化層/金属層の複層からなる積層体、或いは金属層/硬化層/金属層/硬化層/金属層等の交互に積層された多層構造を有する金属張積層板が例示できる。また、本組成物より形成した硬化層以外の絶縁層が積層体に含まれていてもよい。また、硬化層の厚みを調整するためにプリプレグ等を複数枚重ねて硬化させてもよい。また、金属層以外の導電層が積層されていてもよい。 The laminate structure of the metal-clad laminate includes a two-layer laminate of metal layer/hardened layer, a multilayer laminate of metal layer/hardened layer/metal layer, or metal layer/hardened layer/metal layer/hardened layer. A metal-clad laminate having a multi-layer structure in which metal layers or the like are alternately laminated can be exemplified. The laminate may also contain an insulating layer other than the cured layer formed from the present composition. Moreover, in order to adjust the thickness of the cured layer, a plurality of prepregs or the like may be stacked and cured. Also, a conductive layer other than a metal layer may be laminated.
 例えば、金属層/硬化層/金属層の層構成を有する金属張積層板は、硬化層の両主面上に形成された金属層に回路パターンを形成することにより、回路パターン層を有する回路基板を得ることができる。硬化層には、レーザー等によりスルーホールやビアを形成してもよい。コア基板にビルドアッププロセスによって、絶縁硬化層を重ね合わせて、ビアを形成し、多層化してもよい。回路基板は、例えば、サブトラクティブ法により金属張積層板の金属層を所望の回路パターンに形成する方法や、アディティブ法により絶縁層の片面または両面に所望の回路パターンを形成することにより得ることができる。 For example, a metal-clad laminate having a layer structure of metal layer/hardening layer/metal layer is obtained by forming a circuit pattern on the metal layers formed on both main surfaces of the hardening layer, thereby producing a circuit board having a circuit pattern layer. can be obtained. Through-holes and vias may be formed in the cured layer using a laser or the like. A build-up process may be performed on the core substrate to stack insulating hardened layers and form vias to form multiple layers. A circuit board can be obtained, for example, by forming a desired circuit pattern on a metal layer of a metal-clad laminate by a subtractive method, or by forming a desired circuit pattern on one or both sides of an insulating layer by an additive method. can.
 金属層としては銅箔などが用いられる。銅張積層板では、銅箔面に電解銅めっきを行い、レジスト層を除去した後にアルカリ性等のめっき液でエッチングする工程がある。本組成物は、めっき液耐性等の基板加工適性に優れるので銅張積層板用途に好適である。更に、本硬化物は硬化物の曲げ強度および長期耐熱性に優れるので、本組成物を硬化して形成される硬化物を含む硬化物付基板は様々な環境下で幅広い用途に利用できる。 A copper foil or the like is used as the metal layer. A copper clad laminate includes a step of performing electrolytic copper plating on the copper foil surface, removing the resist layer, and then etching with an alkaline plating solution. The present composition is suitable for copper-clad laminates because it is excellent in substrate processability such as plating solution resistance. Furthermore, since the cured product is excellent in bending strength and long-term heat resistance, a substrate with a cured product containing a cured product formed by curing the composition can be used in a wide range of applications under various environments.
 プリント配線板は、例えば、銅張積層板における銅箔をエッチング等によって加工し、信号回路等を形成して得た基板とカバーフィルムとを接着シートを介して貼り合わせ、硬化処理工程等を経て製造できる。また、例えば、絶縁性のフレキシブルフィルム上に導体パターンを形成し、その上に本接着シートを介して保護膜を形成し、熱圧着する工程等を経てフレキシブルプリント配線板を製造できる。前記フレキシブルフィルムとしては、ポリエステル、ポリイミド、液晶ポリマー、PTFEフィルムが例示できる。導体パターンは、プリント技術により形成する方法、スパッタリングやめっきによる方法が例示できる。 A printed wiring board is produced, for example, by processing the copper foil of a copper-clad laminate by etching or the like, forming a signal circuit or the like, and bonding a substrate and a cover film together via an adhesive sheet, followed by a curing treatment process, etc. can be manufactured. Alternatively, for example, a flexible printed wiring board can be produced by forming a conductive pattern on an insulating flexible film, forming a protective film thereon via the present adhesive sheet, and performing thermocompression bonding. Examples of the flexible film include polyester, polyimide, liquid crystal polymer, and PTFE film. The conductive pattern can be exemplified by a method of forming by printing technology, and a method by sputtering or plating.
 プリント配線板の片面または両面に形成された本組成物の硬化層に対し、ドリル加工やレーザー加工などにより開口部を設け、導電剤を充填してビアを形成してもよい。また、本組成物の硬化層上に回路層を形成することもできる。本組成物の硬化物はめっき耐性に優れるので多層プリント配線板の製造に好適である。本組成物を用いて形成されたプリント配線板は、優れた加工適性を有し、長期耐熱性および曲げ強度に優れるので、スマートフォンやタブレット端末等の各種電子機器に好適である。 For the cured layer of the present composition formed on one or both sides of the printed wiring board, openings may be provided by drilling or laser processing, and vias may be formed by filling with a conductive agent. A circuit layer can also be formed on the cured layer of the present composition. The cured product of the present composition has excellent plating resistance and is therefore suitable for producing multilayer printed wiring boards. A printed wiring board formed using the present composition has excellent workability and excellent long-term heat resistance and bending strength, and is therefore suitable for various electronic devices such as smartphones and tablet terminals.
 本組成物のポリイミド樹脂(A)は電気絶縁性に優れるので、硬化性化合物(B)や熱伝導性フィラー(C)に絶縁性材料を用いることで絶縁性に優れた硬化物を提供できる。例えば、回路基板上の絶縁層形成材料(プリント配線板のカバーレイ層、ビルトアップ基板等の層間絶縁層、ボンディングシート等を含む)等として好適に用いられる。また、熱伝導性フィラー(C)などのフィラーにおいて導電性材料を用いることにより、電子部品の導電性部材に利用することも可能である。電子部品は、例えば、パワー半導体装置、LED、インバーター装置等のパワーモジュールが例示できる。 Since the polyimide resin (A) of this composition has excellent electrical insulation, a cured product with excellent insulation can be provided by using an insulating material for the curable compound (B) and the thermally conductive filler (C). For example, it is suitably used as a material for forming an insulating layer on a circuit board (including a coverlay layer of a printed wiring board, an interlayer insulating layer of a built-up board, a bonding sheet, etc.). Moreover, by using a conductive material in a filler such as the thermally conductive filler (C), it can be used as a conductive member of an electronic component. Examples of electronic components include power modules such as power semiconductor devices, LEDs, and inverter devices.
 更に、本組成物の硬化物は熱伝導性フィラー(C)を配合しているので、放熱性が求められる用途全般に適用できる。例えば、樹脂組成物の成形性を利用して、所望の形状の放熱部品として好適に利用できる。特に、軽薄短小化のために、ファンやヒートシンクを設置できない電子機器(スマートフォン、ダブレット端末等)、電池用外装材の放熱性接着材や放熱性シートとして有用である。また、本組成物の硬化物は、発熱体とヒートシンクとの接着層、或いはヒートスプレッダーとして好適である。また、基板上に搭載された一種または複数の電子部品を被覆する放熱層として適用できる。 Furthermore, since the cured product of this composition contains a thermally conductive filler (C), it can be applied to general applications that require heat dissipation. For example, by utilizing the moldability of the resin composition, it can be suitably used as a heat radiating component having a desired shape. In particular, it is useful as a heat-dissipating adhesive or heat-dissipating sheet for electronic devices (smartphones, doublet terminals, etc.) that cannot be equipped with a fan or heat sink due to its lightness, thinness, shortness and size, and battery exterior materials. Moreover, the cured product of the present composition is suitable as an adhesive layer between a heating element and a heat sink, or as a heat spreader. It can also be applied as a heat dissipation layer covering one or more electronic components mounted on a substrate.
 以下、本開示を実施例によりさらに具体的に説明する。本開示は以下の実施例に限定されない。特に断りのない限り、「%」および「部」は質量基準とする。 Hereinafter, the present disclosure will be described more specifically by way of examples. The disclosure is not limited to the following examples. Unless otherwise specified, "%" and "parts" are based on mass.
(i)重量平均分子量(Mw)の測定
 Mwの測定は、昭和電工社製GPC(ゲルパーミエーションクロマトグラフ)「GPC-101」を用いた。溶媒はTHF(テトラヒドロフラン)とし、カラムとして「KF-805L」(昭和電工社製:GPCカラム:8mmID×300mmサイズ)を直列に2本接続したものを用いた。試料濃度1質量%、流量1.0mL/min、圧力3.8MPa、カラム温度40℃の条件で行い、Mwの決定はポリスチレン換算で行った。データ解析はメーカー内蔵ソフトを使用して検量線、分子量およびピーク面積を算出し、保持時間17.9~30.0分の範囲を分析対象としてMwを求めた。
(i) Measurement of weight-average molecular weight (Mw) Mw was measured using a GPC (gel permeation chromatograph) “GPC-101” manufactured by Showa Denko KK. THF (tetrahydrofuran) was used as the solvent, and two "KF-805L" columns (manufactured by Showa Denko Co., Ltd.: GPC column: 8 mm ID×300 mm size) connected in series were used. The conditions were a sample concentration of 1% by mass, a flow rate of 1.0 mL/min, a pressure of 3.8 MPa, and a column temperature of 40° C. Mw was determined in terms of polystyrene. Data analysis was performed by calculating the calibration curve, molecular weight and peak area using the manufacturer's built-in software, and determining the Mw with the retention time range of 17.9 to 30.0 minutes as the analysis target.
(ii)酸価の測定
 酸価はJIS K0070に準じて測定した。具体的には、共栓三角フラスコ中に試料(ポリイミド樹脂(A))約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、0.1Nアルコール性水酸化カリウム溶液で滴定し、指示薬が淡紅色を30秒間保持した時を終点とした。酸価は次式により求めた。
酸価(mgKOH/g)=(5.611×a×F)/S
ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(mL)
F:0.1Nアルコール性水酸化カリウム溶液の力価
(ii) Measurement of acid value The acid value was measured according to JIS K0070. Specifically, about 1 g of a sample (polyimide resin (A)) is accurately weighed into a stoppered Erlenmeyer flask, and dissolved by adding 100 mL of cyclohexanone solvent. Phenolphthalein test solution was added to this as an indicator, titration was carried out with a 0.1N alcoholic potassium hydroxide solution, and the end point was when the indicator maintained a light red color for 30 seconds. The acid value was determined by the following formula.
Acid value (mgKOH/g) = (5.611 x a x F)/S
however,
S: Sample collection amount (g)
a: consumption of 0.1N alcoholic potassium hydroxide solution (mL)
F: Titer of 0.1N alcoholic potassium hydroxide solution
(iii)フェノール性水酸基価の測定
 フェノール性水酸基価は、JIS K0070に準じて測定した。フェノール性水酸基価は、ポリイミド樹脂(A)1g中に含まれるフェノール性水酸基をアセチル化させたときに、フェノール性水酸基と結合した酢酸を中和するために必要な水酸化カリウムの量(mg)で表したものである。ポリイミド樹脂(A)のフェノール性水酸基価を算出する場合には、下記式に示す通り、酸価を考慮して計算した。具体的には、共栓三角フラスコ中に試料(ポリイミド樹脂(A))約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mLとした溶液)を正確に5mL加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.5Nアルコール性水酸化カリウム溶液で滴定する。フェノール性水酸基価は次式により求めた。
フェノール性水酸基価(mgKOH/g)=[{(b-a)×F×28.05}/S]+D
但し、
S:試料の採取量(g)
a:0.5Nアルコール性水酸化カリウム溶液の消費量(mL)
b:空実験の0.5Nアルコール性水酸化カリウム溶液の消費量(mL)
F:0.5Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
なお、bの値は、アセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mLとした溶液)5mLを0.5Nアルコール性水酸化カリウム溶液で滴定することで求められる。
(iii) Measurement of phenolic hydroxyl value The phenolic hydroxyl value was measured according to JIS K0070. The phenolic hydroxyl value is the amount (mg) of potassium hydroxide required to neutralize the acetic acid bound to the phenolic hydroxyl group when the phenolic hydroxyl group contained in 1 g of the polyimide resin (A) is acetylated. is represented by When calculating the phenolic hydroxyl value of the polyimide resin (A), it was calculated in consideration of the acid value as shown in the following formula. Specifically, about 1 g of a sample (polyimide resin (A)) is accurately weighed into a stoppered Erlenmeyer flask, and dissolved by adding 100 mL of cyclohexanone solvent. Exactly 5 mL of an acetylating agent (a solution of 25 g of acetic anhydride dissolved in pyridine to a volume of 100 mL) was further added and stirred for about 1 hour. To this, phenolphthalein test solution is added as an indicator and maintained for 30 seconds. The solution is then titrated with 0.5N alcoholic potassium hydroxide solution until it turns pink. The phenolic hydroxyl value was determined by the following formula.
Phenolic hydroxyl value (mgKOH/g) = [{(ba) x F x 28.05}/S] + D
however,
S: Sample collection amount (g)
a: consumption of 0.5N alcoholic potassium hydroxide solution (mL)
b: Consumption (mL) of 0.5N alcoholic potassium hydroxide solution in blank experiment
F: Potency of 0.5N alcoholic potassium hydroxide solution D: Acid value (mgKOH/g)
The value of b can be determined by titrating 5 mL of the acetylating agent (a solution of 25 g of acetic anhydride dissolved in pyridine to a volume of 100 mL) with a 0.5N alcoholic potassium hydroxide solution.
(iv)酸無水物基価の測定
 共栓三角フラスコ中に試料(ポリイミド樹脂(A))約1gを精密に量り採り、1,4-ジオキサン溶媒100mLを加えて溶解した。試料中の酸無水物基の量よりも多いオクチルアミン、1,4-ジオキサン、水の混合溶液(混合比(質量)は1.49/800/80)を10mL加えて15分攪拌し、酸無水物基と反応させた。その後、過剰のオクチルアミンを0.02M過塩素酸、1,4-ジオキサンの混合溶液で滴定した。また、試料を加えていない、オクチルアミン、1,4-ジオキサン、水の混合溶液(混合比(質量)は1.49/800/80)10mLもブランクとして測定を実施した。酸無水物基価は次式により求めた(単位:mgKOH/g)
酸無水物基価(mgKOH/g)=0.02×(B-A)×F×56.11/S
B:ブランクの滴定量(mL)
A:試料の滴定量(mL)
S:試料の採取量(g)
F:0.02mol/L過塩素酸の力価
(iv) Measurement of acid anhydride group value About 1 g of a sample (polyimide resin (A)) was accurately weighed into a stoppered Erlenmeyer flask and dissolved by adding 100 mL of 1,4-dioxane solvent. 10 mL of a mixed solution of octylamine, 1,4-dioxane, and water (mixing ratio (mass) is 1.49/800/80), which is larger than the amount of acid anhydride groups in the sample, is added and stirred for 15 minutes, and the acid reacted with anhydride groups. Thereafter, excess octylamine was titrated with a mixed solution of 0.02M perchloric acid and 1,4-dioxane. In addition, 10 mL of a mixed solution of octylamine, 1,4-dioxane and water (mixing ratio (mass): 1.49/800/80) to which no sample was added was also measured as a blank. The acid anhydride value was obtained by the following formula (unit: mgKOH/g)
Acid anhydride value (mgKOH/g) = 0.02 x (BA) x F x 56.11/S
B: Blank titration volume (mL)
A: Titration volume of sample (mL)
S: Sample collection amount (g)
F: 0.02 mol/L perchloric acid titer
(v)アミン価の測定
 共栓三角フラスコ中に試料(ポリイミド樹脂(A))約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。これに、別途0.20gのMethyl Orangeを蒸溜水50mLに溶解した液と、0.28gのXylene Cyanol FFをメタノール50mLに溶解した液とを混合して調製した指示薬を2、3滴加え、30秒間保持する。その後、溶液が青灰色を呈するまで0.1Nアルコール性塩酸溶液で滴定する。アミン価は次式により求めた。
アミン価(mgKOH/g)=(5.611×a×F)/S
但し、
 S:試料の採取量(g)
 a:0.1Nアルコール性塩酸溶液の消費量(mL)
 F:0.1Nアルコール性塩酸溶液の力価 
(v) Measurement of amine value About 1 g of a sample (polyimide resin (A)) is accurately weighed into a stoppered Erlenmeyer flask, and dissolved in 100 mL of cyclohexanone solvent. A few drops of an indicator prepared by mixing a solution of 0.20 g of Methyl Orange dissolved in 50 mL of distilled water and a solution of 0.28 g of Xylene Cyanol FF dissolved in 50 mL of methanol were added. Hold for seconds. Then titrate with 0.1N alcoholic hydrochloric acid solution until the solution turns blue-grey. The amine value was determined by the following formula.
Amine value (mgKOH/g) = (5.611 x a x F)/S
however,
S: Sample collection amount (g)
a: consumption of 0.1N alcoholic hydrochloric acid solution (mL)
F: Titer of 0.1N alcoholic hydrochloric acid solution
(vi)貯蔵弾性率G’が1.0×10Paとなる温度の測定
 各合成例に係るポリイミド樹脂(A)を不揮発成分35%になるようにシクロヘキサノンに溶解させた塗工液を、耐熱性の離形フィルム上に10milのギャップを持ったドクターブレードを用いて塗工し、130℃で10min乾燥させることにより、厚さ25μmの樹脂シートを得た。得られた樹脂シートを重剥離フィルムから剥離し、樹脂シートの貯蔵弾性率およびTgを動的粘弾性測定装置「DVA200」(アイティー計測制御社製)により測定した。
 貯蔵弾性率は、樹脂シートを0℃まで冷却後、昇温速度10℃/分で300℃まで昇温させ、振動周波数10Hz、つかみ間長:10mmで粘弾性を測定し、貯蔵弾性率G’が1.0×10Paとなる温度を確認した。
  昇温速度:10℃/min
  測定周波数:10Hz
  つかみ間長:10mm
  幅:5mm
(vi) Measurement of temperature at which storage elastic modulus G' becomes 1.0×10 7 Pa A resin sheet having a thickness of 25 μm was obtained by coating on a heat-resistant release film using a doctor blade having a gap of 10 mil and drying at 130° C. for 10 minutes. The obtained resin sheet was peeled off from the heavy release film, and the storage modulus and Tg of the resin sheet were measured with a dynamic viscoelasticity measuring device "DVA200" (manufactured by IT Keisoku Kogyo Co., Ltd.).
After cooling the resin sheet to 0° C., the resin sheet was heated to 300° C. at a heating rate of 10° C./min. was confirmed to be 1.0×10 7 Pa.
Heating rate: 10°C/min
Measurement frequency: 10Hz
Length between grips: 10 mm
Width: 5mm
<ポリイミド樹脂の合成>
[合成例1]
 オイルバスを備えた撹拌棒付き1Lセパラブルフラスコに、窒素ガスを導入しながら、シクロヘキサノン200gを加え、ジアミンとしてダイマージアミン(PRIAMINE1075)149.4g、モノアミン化合物として、m-アミノフェノール4.7gを撹拌しながら加え、続いてテトラカルボン酸類として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物67.3gを加えて室温で30分撹拌した。これを100℃に昇温し、3時間撹拌した後、オイルバスを外して室温に戻し、ワニス状のポリイミド前駆体を得た。その後、ディーンスタークトラップを用いて留出する水を系外に除去しながら、170℃で10時間加熱を行い、イミド化してポリイミド樹脂P1を得た。
<Synthesis of polyimide resin>
[Synthesis Example 1]
200 g of cyclohexanone was added to a 1 L separable flask equipped with a stirring bar equipped with an oil bath while introducing nitrogen gas, and 149.4 g of dimer diamine (PRIAMINE 1075) as a diamine and 4.7 g of m-aminophenol as a monoamine compound were stirred. Subsequently, 67.3 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride was added as a tetracarboxylic acid and stirred at room temperature for 30 minutes. After heating this to 100° C. and stirring for 3 hours, the oil bath was removed and the temperature was returned to room temperature to obtain a varnish-like polyimide precursor. Thereafter, while removing distilled water out of the system using a Dean-Stark trap, the mixture was heated at 170° C. for 10 hours for imidization to obtain a polyimide resin P1.
[合成例2~32、比較合成例1~8]
 表1~4に記載の単量体および配合量に変更した以外は、合成例1と同様の方法によりポリイミド樹脂P2~P32,N1~N8を得た。
 表1~4の略称を以下に示す。
DM1:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物
DM2:1,2,3,4-ブタンテトラカルボン酸二無水物
DM3:4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物
DM4:4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物
DM5:5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物
DM6:X-22-168B(信越化学社製、シロキサン型テトラカルボン酸二無水物、分子量2960)
MM1:無水マレイン酸
MM2:無水フタル酸
DA1:プリアミン1075(ダイマージアミン、クローダジャパン社製)
DA2:4,4’-(ヘキサフルオロイソプロピリデン)ビス(2-アミノフェノール) 
DA3:1,12-ドデカンジアミン
DA4:KF-8010(信越化学社製、シロキサンジアミン、分子量850)
DA5:D-2000(HUNTSMAN社製、ポリプロピレングリコール型ポリエーテルジアミン、分子量2000)
MA1:m-アミノフェノール
MA2:o-アミノフェノール
MA3:p-アミノフェノール
MA4:4-ヒドロキシフェネチルアミン(チラミン)
MA5:1ーアミノデカン
[Synthesis Examples 2 to 32, Comparative Synthesis Examples 1 to 8]
Polyimide resins P2 to P32 and N1 to N8 were obtained in the same manner as in Synthesis Example 1, except that the monomers and amounts were changed as shown in Tables 1 to 4.
Abbreviations in Tables 1 to 4 are shown below.
DM1: 1,2,4,5-cyclohexanetetracarboxylic dianhydride DM2: 1,2,3,4-butanetetracarboxylic dianhydride DM3: 4,4'-(4,4'-isopropylidenedi phenoxy)diphthalic anhydride DM4: 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride DM5: 5-(2, 5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride DM6: X-22-168B (manufactured by Shin-Etsu Chemical Co., Ltd., siloxane-type tetracarboxylic dianhydride, molecular weight 2960)
MM1: maleic anhydride MM2: phthalic anhydride DA1: Priamine 1075 (dimer diamine, manufactured by Croda Japan)
DA2: 4,4'-(hexafluoroisopropylidene)bis(2-aminophenol)
DA3: 1,12-dodecanediamine DA4: KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd., siloxane diamine, molecular weight 850)
DA5: D-2000 (manufactured by HUNTSMAN, polypropylene glycol type polyether diamine, molecular weight 2000)
MA1: m-aminophenol MA2: o-aminophenol MA3: p-aminophenol MA4: 4-hydroxyphenethylamine (tyramine)
MA5: 1-aminodecane
 表1~4に、配合量(質量部)、得られたポリイミド樹脂のフェノール性水酸基(PhOH)価、酸無水物基価、アミン価、マレイミド価、全官能基価を示す。また、X残基100モル%に対するXa残基のモル%、X残基100モル%に対するXd残基のモル%を示す。また、ポリイミド樹脂(A)のMw、貯蔵弾性率G’が1.0×10Paとなる温度、ポリイミド樹脂(A)中のアミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数を示す。なお、マレイミド価の値は、ポリイミド樹脂(A)の合成に用いる仕込み量から算出した。また、本実施例において全官能基価は、フェノール性水酸基価+酸無水物基価+アミン基価+マレイミド価の合計の官能基価である。カルボキシ基を含む場合には、前記式にカルボキシ価を加えればよい。 Tables 1 to 4 show the blending amount (parts by mass), the phenolic hydroxyl group (PhOH) value, acid anhydride group value, amine value, maleimide value, and total functional group value of the obtained polyimide resin. Also shown are the mol % of the X 1 a residue relative to 100 mol % of the X 1 residue and the mol % of the X 2 d residue relative to 100 mol % of the X 2 residue. In addition, the Mw of the polyimide resin (A), the temperature at which the storage elastic modulus G' is 1.0 × 10 7 Pa, the amino group in the polyimide resin (A), the functional group selected from the acid anhydride group and the maleimide group indicates the total average functional group number of In addition, the value of the maleimide value was calculated from the charged amount used for synthesizing the polyimide resin (A). In addition, the total functional group value in this example is the total functional group value of phenolic hydroxyl value + acid anhydride group value + amine group value + maleimide value. When a carboxy group is included, the carboxy value may be added to the above formula.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
[実施例1]
<<樹脂組成物(ワニス)の調製>>
 固形分換算で合成例1のポリイミド樹脂(P1)を100部、硬化性化合物(B)として、(B)-1と(B)-2をそれぞれ80部ずつ、熱伝導性フィラー(C)-1を260部、容器に仕込み、不揮発成分濃度が50%になるように混合溶剤(トルエン:MEK=9:1(質量比))を加え、ディスパーで10分攪拌して実施例1に係るワニスを得た。
[Example 1]
<<Preparation of resin composition (varnish)>>
100 parts of the polyimide resin (P1) of Synthesis Example 1 in terms of solid content, 80 parts each of (B)-1 and (B)-2 as the curable compound (B), and a thermally conductive filler (C)- 260 parts of 1 are charged in a container, a mixed solvent (toluene: MEK = 9: 1 (mass ratio)) is added so that the concentration of non-volatile components is 50%, and the varnish according to Example 1 is stirred for 10 minutes with a disper. got
<<プリプレグの製造1>>
 次に、得られたワニスをガラスクロス(日東紡績社製の♯2116タイプ、WEA116E、Eガラス)に、質量比がガラスクロス:不揮発成分の樹脂組成物=2:3になるように含浸させた後、140℃で約5分間加熱乾燥することにより実施例1に係るプリプレグ1を得た。
<<Production of prepreg 1>>
Next, a glass cloth (#2116 type, WEA116E, E glass manufactured by Nitto Boseki Co., Ltd.) was impregnated with the obtained varnish so that the mass ratio of the glass cloth: non-volatile resin composition was 2:3. After that, the prepreg 1 according to Example 1 was obtained by drying by heating at 140° C. for about 5 minutes.
<<プリプレグの製造2>>
 加熱乾燥温度と時間を120℃×5分間に変更した以外は、プリプレグの製造1と同様の方法で、実施例1に係るプリプレグ2を得た。
<<Production of prepreg 2>>
A prepreg 2 according to Example 1 was obtained in the same manner as in the prepreg production 1, except that the heat drying temperature and time were changed to 120° C. for 5 minutes.
<銅張積層板の製造>
 得られたプリプレグ1と、厚み35μmの銅箔とをそれぞれ3層ずつ積層させ、250℃、3.0MPa、120分の条件で加熱プレスし、最後に両側の最外層に厚み35μmの銅箔を配置することで実施例1に係る銅張積層板を得た。そして、後述する評価を行った。結果を表5に示す。
<Production of copper-clad laminate>
The obtained prepreg 1 and three layers of copper foil with a thickness of 35 μm were laminated, and hot-pressed under the conditions of 250° C., 3.0 MPa, and 120 minutes. A copper-clad laminate according to Example 1 was obtained by arranging them. And the evaluation mentioned later was performed. Table 5 shows the results.
[実施例2~55、比較例1~15]
 表5~9に記載の配合成分および配合量に変更する以外は実施例1と同様の方法により、実施例2~48,50~53、比較例1~15に係るワニスを調製し、プリプレグ1,プリプレグ2を得た。また、実施例49,54,55に関しては、プリプレグ1の代わりに、後述する<<接着シートの製造>>で得られた樹脂組成物層である接着シートを用いて、同様の方法で銅張積層板を得た。各評価結果を表4~9に示す。
[Examples 2 to 55, Comparative Examples 1 to 15]
Varnishes according to Examples 2 to 48, 50 to 53, and Comparative Examples 1 to 15 were prepared in the same manner as in Example 1 except that the ingredients and amounts were changed to those shown in Tables 5 to 9. Prepreg 1 , prepreg 2 was obtained. In addition, with respect to Examples 49, 54, and 55, instead of prepreg 1, an adhesive sheet, which is a resin composition layer obtained in the <<manufacture of adhesive sheet>> described later, was used, and copper clad was obtained in the same manner. A laminate was obtained. Each evaluation result is shown in Tables 4-9.
<<接着シート等の製造>>
 実施例49,54,55のワニスを、それぞれドクターブレードを使用して乾燥後の厚さが50μmとなるように、厚さ50μmの重剥離フィルム(重離型剤がコーティングされたポリエチレンテレフタレート(PET)フィルム)上に均一塗工して100℃で2分乾燥させた。その後、室温まで冷却し、片面剥離フィルム付き接着シートを得た。次いで、得られた片面剥離フィルム付き接着シートの接着シート面を厚さ50μmの軽剥離フィルム(軽離型剤がコーティングされたPETフィルム)に重ね合わせ、重剥離フィルム/接着シート/軽剥離フィルムからなる両面剥離フィルム付きの積層シートを得た。得られた接着シートと、厚み35μmの銅箔とをそれぞれ3層ずつ積層させ、250℃、3.0MPa、120分の条件で加熱プレスし、最後に両側の最外層に厚み35μmの銅箔を配置することで銅張積層板を得た。
<<Manufacture of adhesive sheets, etc.>>
The varnishes of Examples 49, 54, and 55 were each coated with a 50 μm thick heavy release film (polyethylene terephthalate (PET) coated with a heavy release agent) using a doctor blade so that the thickness after drying was 50 μm. ) film) and dried at 100° C. for 2 minutes. Then, it was cooled to room temperature to obtain an adhesive sheet with a single-sided release film. Next, the adhesive sheet surface of the obtained adhesive sheet with a single-sided release film is superimposed on a 50 μm thick light release film (PET film coated with a light release agent), and from the heavy release film / adhesive sheet / light release film A laminated sheet with a double-sided release film was obtained. The obtained adhesive sheet and three layers of copper foil with a thickness of 35 μm were laminated, and hot-pressed under the conditions of 250° C., 3.0 MPa, and 120 minutes. A copper-clad laminate was obtained by arranging.
 実施例および比較例で使用した材料を下記に示す。
(硬化性化合物(B))
(B)-1:エポキシ化合物(b1)、XD-1000(日本化薬社製、ジシクロペンタジエン型エポキシ、多官能、官能基当量252g/eq.)
(B)-2:シアネートエステル化合物(b2)、BAD(三菱ガス化学社製、ビスフェノールA型シアン酸エステル、2官能、官能基当量139g/eq)
(B)-3:マレイミド化合物(b3)、BMI‐3000(大和化成工業社製、ビスフェノールAジフェニルエーテルビスマレイミド、2官能、官能基当量285.3g/eq.)
(B)-4:ポリフェニレンエーテル化合物(b4)、Noryl(登録商標)SA9000(SABIC社製、メタクリレート基含有ポリフェニレンエーテル、2官能、官能基当量:850g/eq.)
(B)-5:ナジイミド化合物(b5)、BANI-M(丸善石油化学社製、ビスアリルナジイミド、2官能)
(B)-6:活性エステル系化合物、HPC-8000-65T(SABIC社製,活性エステル系化合物)
(B)-7:フェノール樹脂、H-4(明和化成社製)
(B)-8:ドデカン二酸ジヒドラジド
(熱伝導性フィラー(C))
(C)-1:AO-509(アドマテックス社製、アルミナ)
(C)-2:SP-2(デンカ社製、窒化ホウ素)
(C)-3:SC2050-MB(アドマテックス社製、シリカ)
(C)-4:FZO-50(石原産業社製、酸化亜鉛)
(熱安定剤(D))
(D)-1:2ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製「IRGANOX1010」)
(D)-2:TT-LX(1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール)
(D)-3:ビス(2-アリルフェノキシ)ホスファゼン
Materials used in Examples and Comparative Examples are shown below.
(Curable compound (B))
(B)-1: Epoxy compound (b1), XD-1000 (manufactured by Nippon Kayaku Co., Ltd., dicyclopentadiene type epoxy, polyfunctional, functional group equivalent 252 g/eq.)
(B)-2: cyanate ester compound (b2), BAD (manufactured by Mitsubishi Gas Chemical Company, bisphenol A type cyanate ester, bifunctional, functional group equivalent weight 139 g/eq)
(B)-3: Maleimide compound (b3), BMI-3000 (manufactured by Daiwa Kasei Kogyo Co., Ltd., bisphenol A diphenyl ether bismaleimide, difunctional, functional group equivalent 285.3 g/eq.)
(B)-4: Polyphenylene ether compound (b4), Noryl (registered trademark) SA9000 (manufactured by SABIC, methacrylate group-containing polyphenylene ether, bifunctional, functional group equivalent: 850 g/eq.)
(B)-5: Nadimide compound (b5), BANI-M (manufactured by Maruzen Petrochemical Co., Ltd., bisallyl nadimide, difunctional)
(B)-6: Active ester compound, HPC-8000-65T (manufactured by SABIC, active ester compound)
(B) -7: Phenolic resin, H-4 (manufactured by Meiwa Kasei Co., Ltd.)
(B)-8: dodecanedioic acid dihydrazide (thermally conductive filler (C))
(C)-1: AO-509 (manufactured by Admatechs, alumina)
(C)-2: SP-2 (manufactured by Denka, boron nitride)
(C)-3: SC2050-MB (manufactured by Admatechs, silica)
(C)-4: FZO-50 (manufactured by Ishihara Sangyo Co., Ltd., zinc oxide)
(Heat stabilizer (D))
(D)-1:2 pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] ("IRGANOX1010" manufactured by BASF)
(D)-2: TT-LX (1-[N,N-bis(2-ethylhexyl)aminomethyl]methylbenzotriazole)
(D)-3: bis(2-allylphenoxy)phosphazene
(vii)樹脂組成物の硬化物のTgの測定
 耐熱性の離形フィルム上に10milのギャップを持ったドクターブレードを用いて、各例に係るワニスを塗工し、130℃で10min乾燥させることにより、厚さ25μmの樹脂組成物層を得た。得られた樹脂組成物層を重剥離フィルムから剥離し、250℃で60分加熱処理を行い、硬化層を得た。得られた硬化層に対し、(vi)と同様の動的粘弾性測定装置を用い、昇温速度、測定周波数、つかみ間長、幅を同一の条件として、-50~400℃の温度範囲で損失正接(tanδ)の測定をおこない、上記と同様の方法によりTgを測定した。
(vii) Measurement of Tg of cured product of resin composition Using a doctor blade with a gap of 10 mil on a heat-resistant release film, apply the varnish according to each example and dry at 130 ° C. for 10 minutes. Thus, a resin composition layer having a thickness of 25 μm was obtained. The obtained resin composition layer was peeled off from the heavy release film and heat-treated at 250° C. for 60 minutes to obtain a cured layer. For the obtained cured layer, using the same dynamic viscoelasticity measuring device as in (vi), under the same conditions of temperature increase rate, measurement frequency, length between grips, and width, at a temperature range of -50 to 400 ° C. Loss tangent (tan δ) was measured, and Tg was measured by the same method as above.
α.曲げ強度
 得られた銅張積層板を、幅40mm、長さ25mmに切り出し、切り出した銅張積層板の両面の最外層の銅箔を取り除き、これを試験片とした。水平面と平行な面上に、金属製であり、先端に丸みを有する2つの支持部材を試験片の長さよりも短い間隔(23.7mm)に配置した。2つの支持部材の間隔の中心に、試験片の長さ方向の中心が重なるように、支持部材上に試験片を配置した。続いて、試験片の中心の上方から、金属製であり、先端に丸みを有する加圧具を、試験片の中央部に押し当てて試験片に力を加えた。試験片に力を加える速度は、1.0mm/分とした。試験片に力を加え続けて、試験片が折れたときに終了とした。支持部材間距離(支点間の距離)、試験片の幅、試験片の厚み、および試験片が折れたときに加えていた力に基づいて、1.6mm厚換算での曲げ強度を算出した。
A:400N/mm以上。
B:300N/mm以上、400N/mm未満。
C:200N/mm以上、300N/mm未満。
D:150N/mm以上、200N/mm未満。
E:100N/mm以上、150N/mm未満。
F:100N/mm未満。実用外。
α. Bending strength The obtained copper-clad laminate was cut into a piece having a width of 40 mm and a length of 25 mm. On a plane parallel to the horizontal plane, two support members made of metal and having rounded ends were placed at a distance (23.7 mm) shorter than the length of the test piece. The specimen was placed on the support members so that the longitudinal center of the specimen overlapped the center of the spacing between the two support members. Subsequently, from above the center of the test piece, a pressurizing tool made of metal and having a rounded tip was pressed against the central portion of the test piece to apply force to the test piece. The speed at which the force was applied to the test piece was 1.0 mm/min. The force was continued to be applied to the specimen and ended when the specimen broke. The bending strength in terms of 1.6 mm thickness was calculated based on the distance between support members (distance between fulcrums), the width of the test piece, the thickness of the test piece, and the force applied when the test piece broke.
A: 400 N/mm 2 or more.
B: 300 N/mm 2 or more and less than 400 N/mm 2 .
C: 200 N/mm 2 or more and less than 300 N/mm 2 .
D: 150 N/mm 2 or more and less than 200 N/mm 2 .
E: 100 N/mm 2 or more and less than 150 N/mm 2 .
F: Less than 100 N/ mm2 . Not practical.
β.基板加工適性
 評価用プリント配線板を下記の方法に従って作製し、埋め込み性、ヒートサイクル耐性、めっき液耐性の一連の試験を実施した。その後、評価用プリント配線板を切断し、露出した断面を光学顕微鏡により100倍の倍率で観察した。
β. Substrate processing suitability A printed wiring board for evaluation was produced according to the following method, and a series of tests of embeddability, heat cycle resistance, and plating solution resistance were conducted. After that, the printed wiring board for evaluation was cut, and the exposed cross section was observed with an optical microscope at a magnification of 100 times.
<評価用プリント配線板の作製(銅回路への埋め込み性試験)>
 L/S=25μm/25μmであり、銅の厚みがそれぞれ25μmと50μmである2種類の回路パターンが形成されたガラス布基材エポキシ樹脂銅張積層板を内層回路基板として用意した。その両面に、実施例および比較例(以下、各例という)に係るプリプレグを250℃、3.0MPa、120分の条件で加熱プレスし、続いて両側の最外層に銅箔を配置することで評価用プリント配線板を得た。実施例49,54,55においては、それぞれ得られた接着シートを用いて、同様の方法で評価用プリント配線板を得た。
<Preparation of printed wiring board for evaluation (embeddability test in copper circuit)>
A glass cloth-based epoxy resin copper-clad laminate having L/S=25 μm/25 μm and two types of circuit patterns having copper thicknesses of 25 μm and 50 μm, respectively, was prepared as an inner layer circuit board. The prepregs according to the examples and comparative examples (hereinafter referred to as each example) were heat-pressed on both sides under the conditions of 250° C., 3.0 MPa, and 120 minutes, and then copper foil was placed on the outermost layers on both sides. A printed wiring board for evaluation was obtained. In Examples 49, 54 and 55, printed wiring boards for evaluation were obtained in the same manner using the obtained adhesive sheets.
<ヒートサイクル試験>
 上記評価用プリント配線板を冷熱衝撃装置(「TSE‐11‐A」、エスペック社製)に投入し、高温さらし:125℃、15分、低温さらし:-50℃、15分の曝露条件にて交互曝露を所定回数実施した。
<Heat cycle test>
The printed wiring board for evaluation was put into a thermal shock device ("TSE-11-A", manufactured by Espec Co., Ltd.), and exposed to high temperature: 125 ° C. for 15 minutes, low temperature exposure: -50 ° C., 15 minutes. A predetermined number of alternating exposures were performed.
<めっき液耐性試験>
 上記のヒートサイクル試験が終わった評価用プリント配線板に対して、下記の酸性めっき試験を実施した後、純水で評価用プリント配線板を洗浄し、乾燥させた。その後、同サンプルを用いて下記のアルカリ性めっき試験を実施した。
[I.酸性めっき試験]
 前記両面剥離フィルム付き接着シートを65mm×65mmの大きさにカットし、軽剥離フィルムを剥離した。そして、剥離により露出した接着シート面を、新日鉄住金化学社製の2層のCCL[エスパネックスMC18-25-00FRM]銅面と合わせて90℃でラミネートし、続いて180℃、2.0MPaの条件で60分圧着処理を行った。最後に重剥離フィルムを剥離し、評価用試験片を作製した。この試験片に対して、上記両面剥離フィルム付き接着シートから軽剥離フィルムを剥がし、露出した接着シート面に対し、下記h~nの手順および条件に従って無電解ニッケル処理を行った。
h.酸性脱脂工程:40℃のICPクリーンS-135K(奥野製薬工業社製)に4分間浸漬。
i.ソフトエッチング工程:30℃の過硫酸ナトリウムに1分間浸漬。
j.デスマット工程:25℃の硫酸に1分間浸漬。
k.プリディップ工程:25℃の塩酸に30秒間浸漬。
l.活性化工程:30℃のICPアクセラ(奥野製薬工業社製)に1分間浸漬。
m.ポストディップ工程:25℃の硫酸に1分間浸漬。
n.無電解ニッケルめっき工程:85℃のIPニコロンFPF(奥野製薬工業社製)に20分間浸漬。
[II.アルカリ性めっき試験]
 酸めっき試験と同様の方法にて、評価用試験片を作製し、この試験片に対して、下記s~wの手順および条件に従って、無電解ニッケル処理を行った。
s.アルカリ性脱脂工程:50℃のアルカリ性脱脂剤(奥野製薬工業社製エースクリーンA-220(商標名)50g/L水溶液)に5分間浸漬。
t.エッチング処理工程:無水クロム酸400g/Lおよび98%硫酸400g/Lを含む水溶液中に67℃で10分間浸漬。
u.活性化工程:98%硫酸を20mL/L含有する水溶液中に25℃で2分間浸漬。
v.触媒活性付与:25℃の触媒活性化液(奥野製薬工業社製、TSPアクチベーターコンク(商標名)10mL/Lを含有する水溶液)に2分間浸漬。
w.無電解ニッケルめっき工程:アンモニアアルカリタイプの自己触媒型無電解ニッケルめっき液(奥野製薬工業社製、化学ニッケルA(商標名)160mL/L、化学ニッケルB(商標名)160mL/Lを含有するpH9の水溶液)中に40℃で5分間浸漬。
<Plating solution resistance test>
The printed wiring board for evaluation after the above heat cycle test was subjected to the following acidic plating test, then washed with pure water and dried. After that, using the same sample, the following alkaline plating test was carried out.
[I. Acid plating test]
The adhesive sheet with the double-sided release film was cut into a size of 65 mm×65 mm, and the light release film was peeled off. Then, the adhesive sheet surface exposed by peeling was combined with a two-layer CCL [ESPANEX MC18-25-00FRM] copper surface manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and laminated at 90 ° C., followed by 180 ° C. and 2.0 MPa. The crimping process was performed for 60 minutes under the conditions. Finally, the heavy release film was peeled off to prepare a test piece for evaluation. For this test piece, the light release film was peeled off from the adhesive sheet with the double-sided release film, and the exposed adhesive sheet surface was subjected to electroless nickel treatment according to the following procedures and conditions hn.
h. Acid degreasing step: immersion in ICP Clean S-135K (manufactured by Okuno Chemical Industry Co., Ltd.) at 40° C. for 4 minutes.
i. Soft etching step: immersion in sodium persulfate at 30°C for 1 minute.
j. Desmutting step: immersion in sulfuric acid at 25°C for 1 minute.
k. Pre-dip step: immersion in hydrochloric acid at 25° C. for 30 seconds.
l. Activation step: Immerse in ICP Accela (manufactured by Okuno Chemical Industry Co., Ltd.) at 30°C for 1 minute.
m. Post-dipping step: Immerse in sulfuric acid at 25°C for 1 minute.
n. Electroless nickel plating process: immersed in IP Nicolon FPF (manufactured by Okuno Chemical Industry Co., Ltd.) at 85°C for 20 minutes.
[II. Alkaline Plating Test]
A test piece for evaluation was prepared in the same manner as the acid plating test, and the test piece was subjected to electroless nickel treatment according to the following procedures and conditions of sw.
s. Alkaline degreasing step: Immersed in an alkaline degreasing agent (50 g/L aqueous solution of A-SCREEN A-220 (trade name) manufactured by Okuno Pharmaceutical Co., Ltd.) at 50°C for 5 minutes.
t. Etching process: immersion at 67° C. for 10 minutes in an aqueous solution containing 400 g/L of chromic anhydride and 400 g/L of 98% sulfuric acid.
u. Activation step: immersion in an aqueous solution containing 20 mL/L of 98% sulfuric acid at 25°C for 2 minutes.
v. Imparting catalytic activity: Immerse in a catalyst activating solution (manufactured by Okuno Chemical Industry Co., Ltd., an aqueous solution containing 10 mL/L of TSP Activator Conc (trade name)) at 25°C for 2 minutes.
w. Electroless nickel plating process: Ammonia alkali type autocatalytic electroless nickel plating solution (manufactured by Okuno Chemical Industry Co., Ltd., chemical nickel A (trade name) 160 mL / L, chemical nickel B (trade name) pH 9 containing 160 mL / L solution) at 40°C for 5 minutes.
 上記一連の試験を行ったサンプルについて、以下の基準で評価した。なお、外観不良とは、基板表面からの剥がれ、空隙などの発生をいう。
A:50μm厚の銅回路への埋め込み試験、5000回のヒートサイクル試験、めっき液耐性試験を終えた後のいずれも外観不良なし。
B:上記Aには該当しないが、50μm厚の銅回路への埋め込み試験、1000回のヒートサイクル試験、めっき液耐性試験を終えた後のいずれも外観不良なし。
C:上記A,Bには該当しないが、50μm厚の銅回路への埋め込み試験、200回のヒートサイクル試験、めっき液耐性試験を終えた後のいずれも外観不良なし。
D:上記A~Cには該当しないが、25μm厚の銅回路への埋め込み試験、200回のヒートサイクル試験、めっき液耐性試験を終えた後のいずれも外観不良なし。
E:上記A~Dには該当しないが、25μm厚の銅回路への埋め込み試験、50回のヒートサイクル試験、めっき液耐性試験を終えた後のいずれも外観不良なし。
F:上記A~Eのいずれにも該当しない。実用外。
The samples subjected to the above series of tests were evaluated according to the following criteria. Incidentally, the term "defective appearance" refers to the occurrence of peeling from the substrate surface, voids, and the like.
A: No appearance defects after completion of the embedding test in a copper circuit with a thickness of 50 μm, the heat cycle test of 5000 times, and the plating solution resistance test.
B: Although it does not correspond to A above, there is no appearance defect after the embedding test in a copper circuit with a thickness of 50 μm, the heat cycle test of 1000 times, and the plating solution resistance test.
C: Not applicable to the above A and B, but no appearance defects after completion of the embedding test in a copper circuit with a thickness of 50 μm, the heat cycle test of 200 times, and the plating solution resistance test.
D: Although it does not correspond to the above A to C, there is no appearance defect after completion of the embedding test in a copper circuit with a thickness of 25 μm, the heat cycle test of 200 times, and the plating solution resistance test.
E: Although it does not correspond to the above A to D, there is no appearance defect after the embedding test in a copper circuit with a thickness of 25 μm, the heat cycle test of 50 times, and the plating solution resistance test.
F: Not applicable to any of the above A to E. Not practical.
γ.長期耐熱性
 各例で作製したプリプレグ又は接着シートを、幅40mm、長さ25mmに切り出し、切り出したサンプルを、250℃、3.0MPa、120分の条件で加熱プレスして硬化物を得、初期Tgを測定した。続いて、この硬化物を熱風オーブン中にて、空気雰囲気下、250℃で1000時間保管し、保管後のTgを測定した。保管前のTgに対する保管後のTgの減少幅から長期耐熱性を評価した。
A:減少幅5%未満。
B:減少幅5%以上、8%未満。
C:減少幅8%以上、10%未満。
D:減少幅10%以上、15%未満。
E:減少幅15%以上、20%未満。
F:減少幅20%以上。実用外。
γ. Long-term heat resistance The prepreg or adhesive sheet prepared in each example is cut into a width of 40 mm and a length of 25 mm, and the cut sample is heated and pressed under the conditions of 250 ° C., 3.0 MPa, and 120 minutes to obtain a cured product. Tg was measured. Subsequently, this cured product was stored in an air atmosphere at 250° C. for 1000 hours in a hot air oven, and the Tg after storage was measured. Long-term heat resistance was evaluated from the degree of decrease in Tg after storage relative to Tg before storage.
A: less than 5% reduction.
B: Decrease width of 5% or more and less than 8%.
C: Reduction width of 8% or more and less than 10%.
D: Reduction range of 10% or more and less than 15%.
E: Reduction range of 15% or more and less than 20%.
F: Decrease width of 20% or more. Not practical.
δ.プリプレグ1,2の作製性
 各例のプリプレグ1,2を切断し、露出した断面を走査型電子顕微鏡(SEM)により5000倍の倍率で観察した。なお、空隙とは、0.1μm以上のサイズの罅をいうものとする。
A:120℃で約5分間乾燥した際にも、140℃で約5分間乾燥した際にも空隙は見られなかった。
B:120℃で約5分間乾燥した際には空隙が見られたものの、140℃で約5分間乾燥した際には、空隙が見られなかった。
δ. Manufacturability of Prepregs 1 and 2 The prepregs 1 and 2 of each example were cut, and the exposed cross section was observed with a scanning electron microscope (SEM) at a magnification of 5000 times. In addition, the void means a crack having a size of 0.1 μm or more.
A: No voids were observed when dried at 120°C for about 5 minutes and when dried at 140°C for about 5 minutes.
B: Although voids were observed when dried at 120°C for about 5 minutes, no voids were observed when dried at 140°C for about 5 minutes.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 1分子あたりのアミノ基、酸無水物基およびマレイミド基の合計の平均官能基数が1を超えるポリイミド樹脂を配合した樹脂組成物は、比較例1~3に示すように基板加工適性に劣っていた。また、貯蔵弾性率G’が1.0×10Paとなる温度が90℃を超えるポリイミド樹脂を用いた樹脂組成物は、比較例4、5に示すように曲げ強度に劣っていた。また、Mwが10,000未満のポリイミド樹脂を用いた樹脂組成物は、比較例6に示すように基板加工適性に劣っていた。更に、Mwが10万を超えるポリイミド樹脂を用いた樹脂組成物は、比較例7に示すように長期耐熱性に劣っていた。一方、本開示に係る実施例1~55は、基板凹凸への埋め込み性、ヒートサイクル耐性およびめっき液耐性を兼ね備える基板加工適性を有し、その硬化物が長期耐熱性に優れると共に曲げ強度にも優れることが確認できた。 A resin composition containing a polyimide resin in which the total average number of functional groups of amino groups, acid anhydride groups and maleimide groups per molecule exceeds 1 was inferior in substrate processability as shown in Comparative Examples 1 to 3. . Moreover, the resin composition using the polyimide resin at which the storage modulus G′ becomes 1.0×10 7 Pa at a temperature exceeding 90° C. was inferior in flexural strength as shown in Comparative Examples 4 and 5. Moreover, as shown in Comparative Example 6, the resin composition using a polyimide resin having an Mw of less than 10,000 was inferior in substrate processability. Furthermore, the resin composition using a polyimide resin having an Mw exceeding 100,000 was inferior in long-term heat resistance as shown in Comparative Example 7. On the other hand, Examples 1 to 55 according to the present disclosure have substrate processing suitability that combines embeddability into substrate unevenness, heat cycle resistance, and plating solution resistance, and the cured product has excellent long-term heat resistance and bending strength. I was able to confirm that it is excellent.
 この出願は、2021年12月27日に出願された日本出願特願2021-213179を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-213179 filed on December 27, 2021, and the entire disclosure thereof is incorporated herein.

Claims (10)

  1.  ポリイミド樹脂(A)、硬化性化合物(B)および熱伝導性フィラー(C)を含む樹脂組成物であって、
     ポリイミド樹脂(A)は、ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xdを有し、アミノ基、酸無水物基およびマレイミド基から選択される官能基の合計の平均官能基数が0を含む1以下であり、
     ポリイミド樹脂(A)の貯蔵弾性率G’が1.0×10Paとなる温度が、-30~90℃のいずれかにあり、ポリイミド樹脂(A)の重量平均分子量が10,000~100,000であり、
     硬化性化合物(B)は、エポキシ化合物(b1)、シアネートエステル化合物(b2)、マレイミド化合物(b3)、ポリフェニレンエーテル化合物(b4)およびナジイミド化合物(b5)からなる群から選択される一種又は二種以上であり、
     硬化処理により得られた硬化物のガラス転移温度が140~400℃となる樹脂組成物。
    A resin composition containing a polyimide resin (A), a curable compound (B) and a thermally conductive filler (C),
    The polyimide resin (A) has residues X 2 d derived from dimer diamine and/or dimer diisocyanate, and the total average number of functional groups selected from amino groups, acid anhydride groups and maleimide groups is 0. is less than or equal to 1 including
    The temperature at which the polyimide resin (A) has a storage modulus G' of 1.0×10 7 Pa is in the range of −30 to 90° C., and the polyimide resin (A) has a weight average molecular weight of 10,000 to 100. ,000, and
    The curable compound (B) is one or two selected from the group consisting of an epoxy compound (b1), a cyanate ester compound (b2), a maleimide compound (b3), a polyphenylene ether compound (b4) and a nadimide compound (b5). and
    A resin composition having a glass transition temperature of 140 to 400° C. in a cured product obtained by curing treatment.
  2.  ポリイミド樹脂(A)は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (Xは繰り返し単位毎にそれぞれ独立に4価のテトラカルボン酸残基であり、Xは繰り返し単位毎にそれぞれ独立に2価の有機基であり、前記Xとイミド結合が互いに結合して2つのイミド環を形成する。)
    で表される構造の繰り返し単位を有し、
     ポリイミド樹脂(A)を構成する前記X全体を100モル%としたときに、前記ダイマージアミンおよび/又はダイマージイソシアネートに由来する残基Xdを60~100モル%有することを特徴とする請求項1に記載の樹脂組成物。
    The polyimide resin (A) has the general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (X 1 is independently a tetravalent tetracarboxylic acid residue for each repeating unit, X 2 is independently a divalent organic group for each repeating unit, and the X 1 and the imide bond are bonded to each other. form two imide rings.)
    Having a repeating unit of the structure represented by
    The claim characterized by having 60 to 100 mol% of the residue X 2d derived from the dimer diamine and/or dimer diisocyanate when the entire X 2 constituting the polyimide resin (A) is 100 mol%. Item 1. The resin composition according to item 1.
  3.  更に、熱安定剤(D)を含むことを特徴とする請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising a heat stabilizer (D).
  4.  樹脂組成物の不揮発成分100質量%中に、ポリイミド樹脂(A)が1~40質量%配合されていることを特徴とする請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, characterized in that 1 to 40% by mass of the polyimide resin (A) is blended in 100% by mass of the non-volatile components of the resin composition.
  5.  硬化性化合物(B)としてエポキシ化合物(b1)を含有し、更に、活性エステル系化合物を含むことを特徴とする請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1 or 2, which contains an epoxy compound (b1) as the curable compound (B) and further contains an active ester compound.
  6.  基材と、前記基材上に設けられた、請求項1~5のいずれかに記載の樹脂組成物で形成された樹脂組成物層とを含む、積層シート。 A laminated sheet comprising a substrate and a resin composition layer formed of the resin composition according to any one of claims 1 to 5 provided on the substrate.
  7.  基材に請求項1~5のいずれかに記載の樹脂組成物を含浸させたプリプレグ。 A prepreg in which a base material is impregnated with the resin composition according to any one of claims 1 to 5.
  8.  請求項1~5のいずれかに記載の樹脂組成物から得られる硬化物。 A cured product obtained from the resin composition according to any one of claims 1 to 5.
  9.  請求項1~5のいずれかに記載の樹脂組成物を硬化して形成される硬化物を含む、硬化物付基板。 A substrate with a cured product, comprising a cured product formed by curing the resin composition according to any one of claims 1 to 5.
  10.  請求項9に記載の硬化物付基板を搭載した電子機器。 An electronic device equipped with the substrate with a cured product according to claim 9.
PCT/JP2022/046199 2021-12-27 2022-12-15 Resin composition, multilayer sheet, prepreg, cured product, substrate with cured product, and electronic device WO2023127523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021213179A JP7196275B1 (en) 2021-12-27 2021-12-27 Resin compositions, laminated sheets, prepregs, cured products, substrates with cured products, and electronic devices
JP2021-213179 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127523A1 true WO2023127523A1 (en) 2023-07-06

Family

ID=84600882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046199 WO2023127523A1 (en) 2021-12-27 2022-12-15 Resin composition, multilayer sheet, prepreg, cured product, substrate with cured product, and electronic device

Country Status (3)

Country Link
JP (2) JP7196275B1 (en)
TW (1) TWI832614B (en)
WO (1) WO2023127523A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117278A (en) * 2013-12-17 2015-06-25 株式会社ティ−アンドケイ東華 Functionalized polyimide resin and epoxy resin composition including the same
JP6391851B2 (en) * 2016-09-29 2018-09-19 積水化学工業株式会社 Interlayer insulating material and multilayer printed wiring board
JP2019119755A (en) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 Diamine compound as polyimide raw material for forming photoelectric display device, polyamide acid and polyimide using the same
WO2019188436A1 (en) * 2018-03-28 2019-10-03 積水化学工業株式会社 Curable resin composition, adhesive agent, adhesive film, circuit substrate, interlayer insulating material, and printed wiring board
JP2020132881A (en) * 2019-02-18 2020-08-31 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP2021070824A (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Polyimide composition, resin film, laminate, cover ray film, copper foil with resin, metal-clad laminate and circuit board
JP6981522B1 (en) * 2020-12-15 2021-12-15 東洋インキScホールディングス株式会社 Thermosetting resin composition and its use
JP2022054337A (en) * 2020-09-25 2022-04-06 東洋インキScホールディングス株式会社 Thermosetting composition, thermosetting sheet, cured product, cured sheet, and printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042340A (en) * 2019-09-13 2021-03-18 味の素株式会社 Resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117278A (en) * 2013-12-17 2015-06-25 株式会社ティ−アンドケイ東華 Functionalized polyimide resin and epoxy resin composition including the same
JP6391851B2 (en) * 2016-09-29 2018-09-19 積水化学工業株式会社 Interlayer insulating material and multilayer printed wiring board
JP2019119755A (en) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 Diamine compound as polyimide raw material for forming photoelectric display device, polyamide acid and polyimide using the same
WO2019188436A1 (en) * 2018-03-28 2019-10-03 積水化学工業株式会社 Curable resin composition, adhesive agent, adhesive film, circuit substrate, interlayer insulating material, and printed wiring board
JP2020132881A (en) * 2019-02-18 2020-08-31 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP2021070824A (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Polyimide composition, resin film, laminate, cover ray film, copper foil with resin, metal-clad laminate and circuit board
JP2022054337A (en) * 2020-09-25 2022-04-06 東洋インキScホールディングス株式会社 Thermosetting composition, thermosetting sheet, cured product, cured sheet, and printed wiring board
JP6981522B1 (en) * 2020-12-15 2021-12-15 東洋インキScホールディングス株式会社 Thermosetting resin composition and its use

Also Published As

Publication number Publication date
JP2023097050A (en) 2023-07-07
TWI832614B (en) 2024-02-11
JP7196275B1 (en) 2022-12-26
TW202325799A (en) 2023-07-01
JP2023097359A (en) 2023-07-07

Similar Documents

Publication Publication Date Title
TWI804598B (en) Resin materials, laminated structures, and multilayer printed wiring boards
CN105131598B (en) Low-dielectric resin composition, resin film using same, prepreg and circuit board
JP7474064B2 (en) Resin materials and multilayer printed wiring boards
JP6854505B2 (en) Resin composition, thermosetting film using it
JP5499544B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
JP2021025053A (en) Resin material and multilayer printed wiring board
WO2021020563A1 (en) Resin material and multilayer printed wiring board
JP2023010737A (en) resin composition
JP2022054337A (en) Thermosetting composition, thermosetting sheet, cured product, cured sheet, and printed wiring board
JP7196275B1 (en) Resin compositions, laminated sheets, prepregs, cured products, substrates with cured products, and electronic devices
JP2022176199A (en) Resin sheet, and resin composition
WO2022102757A1 (en) Resin composition
JP2022151212A (en) Method for manufacturing printed wiring board
JP7156494B1 (en) Thermosetting compositions, adhesive sheets, printed wiring boards and electronic devices
JP2021025051A (en) Resin material and multilayer printed wiring board
JP7351396B1 (en) Resin compositions, laminate sheets, prepregs, cured products, substrates with cured products, and electronic devices
WO2020017524A1 (en) Copper foil processing method, copper foil, laminate, copper-clad laminated plate, printed wiring board, and module corresponding to high-speed communication
JP7200861B2 (en) resin composition
JP7311064B2 (en) resin composition
JP7135919B2 (en) resin composition
WO2022196696A1 (en) Resin sheet
JP2021025052A (en) Resin material and multilayer printed wiring board
JP2022150798A (en) resin composition
JP2023068373A (en) resin composition
WO2023149521A1 (en) Resin composition, cured product, sheet-like layered material, resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023570838

Country of ref document: JP

Kind code of ref document: A