WO2023127418A1 - Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly - Google Patents

Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly Download PDF

Info

Publication number
WO2023127418A1
WO2023127418A1 PCT/JP2022/044809 JP2022044809W WO2023127418A1 WO 2023127418 A1 WO2023127418 A1 WO 2023127418A1 JP 2022044809 W JP2022044809 W JP 2022044809W WO 2023127418 A1 WO2023127418 A1 WO 2023127418A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
vector
longitudinal direction
fiber assembly
intermittently fixed
Prior art date
Application number
PCT/JP2022/044809
Other languages
French (fr)
Japanese (ja)
Inventor
正敏 大野
拓哉 植草
耕司 滝口
尚人 淺村
大典 佐藤
彰 鯰江
健 大里
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2023127418A1 publication Critical patent/WO2023127418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly.
  • Patent Document 1 discloses an optical fiber cable having a plurality of optical fiber units collectively covered with a jacket. Each optical fiber unit includes a plurality of intermittently fixed ribbon ribbons.
  • the present invention has been made in consideration of such circumstances, and aims to provide an optical fiber assembly, an optical fiber cable, and an optical fiber assembly manufacturing method that can suppress an increase in maximum transmission loss.
  • an optical fiber assembly provides a plurality of intermittently fixed optical fibers including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction.
  • a normal twisted portion in which the plurality of intermittently fixed tape fibers are twisted together, and a reverse twisted portion in which the plurality of intermittently fixed tape fibers are twisted in a direction opposite to the normal twisted portion.
  • It has an SZ twist structure in which the period including is repeated in the longitudinal direction, the dimension of one period in the longitudinal direction is P, the dimension in the longitudinal direction is P / 4, and the center in the longitudinal direction is the A region located at the boundary between the normal twisted portion and the reverse twisted portion is referred to as a reversed region, and a region located between the reversed regions in the longitudinal direction is referred to as a rotated region.
  • the midpoint of the two optical fibers located at both ends is M
  • the center of gravity is G
  • the center of gravity is G with the midpoint M as the starting point.
  • MG is a vector obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed fiber ribbons
  • GU is a vector obtained by synthesizing the vector MG with respect to all the intermittently fixed fiber ribbons. is larger than the average value of the scalar quantity L in all the rotation regions.
  • the vector GU in the reversal region is the same as the vector GU in one of the two rotational regions adjacent to the reversal region in the longitudinal direction. , and the vector GU in the other of the two rotation regions adjacent to the inversion region.
  • an optical fiber assembly an optical fiber cable, and a method for manufacturing an optical fiber assembly capable of suppressing an increase in maximum transmission loss.
  • FIG. 1 is a cross-sectional view showing an optical fiber assembly and an optical fiber cable according to an embodiment of the invention
  • FIG. 1 is a perspective view showing an optical fiber unit according to an embodiment of the invention
  • FIG. 1 is a perspective view showing an intermittently fixed tape core wire according to an embodiment of the present invention
  • FIG. It is a figure explaining SZ twist structure concerning the embodiment of the present invention
  • 1 is a cross-sectional view showing an optical fiber unit according to an embodiment of the invention
  • FIG. It is a figure explaining vector MG.
  • FIG. 4 is a diagram showing transitions of scalar amounts L, Lin, and Lout for the optical fiber assembly according to Example 1 of the present invention
  • FIG. 4 is a diagram showing vectors GU, GUin, and GUout in a certain rotation region for the optical fiber assembly according to Example 1 of the present invention
  • FIG. 8B is a diagram showing vectors GU, GUin, and GUout in the inversion region adjacent to the rotation region shown in FIG. 8A for the optical fiber assembly according to Example 1 of the present invention
  • FIG. 8C is a diagram showing vectors GU, GUin, and GUout in the rotation area adjacent to the inversion area shown in FIG. 8B for the optical fiber assembly according to Example 1 of the present invention
  • FIG. 8B is a diagram showing vectors GU, GUin, and GUout in the inversion region adjacent to the rotation region shown in FIG. 8C for the optical fiber assembly according to Example 1 of the present invention
  • FIG. 5 is a diagram showing transitions of scalar amounts L, Lin, and Lout for an optical fiber assembly according to Example 2 of the present invention
  • the optical fiber cable 100 includes an optical fiber aggregate 1 including a plurality of optical fiber units U.
  • each optical fiber unit U has a plurality of intermittently fixed fiber ribbons 10 .
  • the plurality of intermittently fixed fiber ribbons 10 constitute the plurality of optical fiber units U.
  • each intermittent fixing tape core wire 10 includes a plurality of optical fibers 11 .
  • the plurality of optical fibers 11 constitute the plurality of intermittently fixed tape core wires 10 .
  • the outer diameter of each optical fiber 11 is, for example, 250 ⁇ m. However, the outer diameter of the optical fiber 11 may be 200 ⁇ m, or may be another value.
  • the longitudinal direction of the optical fiber assembly 1 (optical fiber cable 100) is simply referred to as the longitudinal direction Z.
  • the longitudinal direction Z is also a direction parallel to the central axis O of the optical fiber assembly 1 (optical fiber cable 100).
  • One orientation along the longitudinal direction Z is referred to as the +Z orientation or forward.
  • the orientation opposite to the +Z orientation is referred to as the -Z orientation or back.
  • a section perpendicular to the longitudinal direction Z is called a transverse section. Viewing a cross section from the longitudinal direction Z is called a cross section view.
  • a direction perpendicular to the central axis O of the optical fiber assembly 1 (optical fiber cable 100) is referred to as a radial direction.
  • the direction approaching the central axis O is referred to as the radial inner side, and the direction away from the central axis O is referred to as the radial outer side.
  • the direction of rotation around the central axis O when viewed from the longitudinal direction Z is called the circumferential direction.
  • the optical fiber cable 100 according to this embodiment is a so-called slotless optical cable. That is, the optical fiber cable 100 according to this embodiment does not have a slot rod in which a groove (slot groove) for accommodating the optical fiber 11 (the intermittent fixing tape core wire 10) is formed.
  • the optical fiber cable 100 may be a slot type optical cable having a slot rod.
  • the optical fiber assembly 1 according to this embodiment may be accommodated in the slot groove of the optical fiber cable 100 .
  • the optical fiber cable 100 includes the optical fiber assembly 1 described above, a pressure wrap 120 covering the optical fiber assembly 1, and the optical fiber assembly 1 via the pressure wrap 120. and a jacket 110 that covers and houses the .
  • the optical fiber assembly 1 can be regarded as a portion of the optical fiber cable 100 excluding the jacket 110, the pressure wrap 120, and the like.
  • the optical fiber assembly 1 and the pressure winding 120 may be collectively referred to as a core.
  • the pressure wrap 120 is a tape-shaped member that bundles the plurality of optical fiber units U. As shown in FIG. The type of the pressing wrap 120 is not particularly limited as long as the optical fiber units U can be bundled.
  • the press wrap 120 may have water absorbency.
  • the pressure winding 120 may be wound vertically or horizontally with respect to the optical fiber assembly 1, for example.
  • the pressure wrap 120 when the pressure wrap 120 is a tape extending in the longitudinal direction Z, the pressure wrap 120 may be formed in a cylindrical shape that wraps the optical fiber unit U. In this case, both ends in the circumferential direction of the pressure winding 120 may overlap each other to form a wrap portion.
  • the pressing wrap 120 may be a tube forming body that wraps the optical fiber unit U instead of the tape.
  • the optical fiber 11 By wrapping the optical fiber unit U with the pressing wrap 120 in the longitudinal direction Z, the optical fiber 11 can be protected. Note that there may be a portion in the longitudinal direction Z where the optical fiber 11 is not wrapped by the pressure wrap 120 , and the optical fiber cable 100 may not have the pressure wrap 120 .
  • Polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. PO) resin, polyvinyl chloride (PVC), and the like can be used.
  • the jacket 110 may be formed using a mixture (alloy, mixture) of the above resins.
  • additives may be added to the jacket 110 depending on the purpose. Examples of additives include flame retardants, colorants, antidegradants, inorganic fillers, and the like.
  • the jacket 110 may have a two-layer structure or other multi-layer structure.
  • a protective layer covering the outer cover 110 is provided outside the outer cover 110 (first outer cover) in the illustrated example, and a second outer cover covering the protective layer is provided outside the protective layer.
  • the protective layer may be made of, for example, metal or fiber reinforced plastic (FRP).
  • jacket 110 may have no protective layer and may simply be formed by multiple layers of jacket.
  • the external shape of the jacket 110 according to the present embodiment is substantially circular in cross-sectional view, except for projections 110a, which will be described later. However, the shape of the jacket 110 can be changed as appropriate. As shown in FIG. 1, a plurality of (four in the illustrated example) tensile strength members 130 and a pair of ripcords 140 are arranged on the jacket 110 according to the present embodiment.
  • the tensile strength member 130 is a member having a higher spring constant or tensile strength in the longitudinal direction Z than the jacket 110 .
  • a metal wire steel wire or the like
  • a material in which metal wires are bundled, a glass fiber, a material in which glass fibers are bundled, or the like can be used.
  • fiber reinforced plastic (FRP) or the like may be used as the tensile member 130 .
  • the tensile member 130 has a role of receiving the tension and protecting the optical fibers 11 when the tension along the longitudinal direction Z is applied to the optical fiber assembly 1 (optical fiber cable 100).
  • a plurality of strength members 130 are disposed on the jacket 110 .
  • a plurality of tensile members 130 are arranged so as to sandwich the optical fiber assembly 1 in the radial direction.
  • the plurality of tensile members 130 may be isotropically arranged on the jacket 110 so as to surround the optical fiber assembly 1 (core).
  • the tensile strength member 130 may not be embedded in the jacket.
  • strength member 130 may be included in the center or core of optical fiber assembly 1 .
  • the optical fiber cable 100 may not have the strength member 130.
  • a ripcord 140 is a member used to tear the jacket 110 .
  • synthetic fiber (polyester or the like) thread, polypropylene (PP) or nylon cylindrical rod, or the like can be used.
  • a ripcord 140 is disposed on the jacket 110 . Note that, in a cross-sectional view, the ripcord 140 may be arranged so that the entire circumference is embedded in the outer cover 110, or may be partially exposed from the outer peripheral surface or the inner peripheral surface of the outer cover 110. may be placed.
  • a pair of ripcords 140 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction.
  • each tensile strength member 130 and the position of each ripcord 140 are shifted from each other in the circumferential direction.
  • the number of ripcords 140 may be one, or three or more.
  • the ripcord 140 may not be embedded in the jacket 110 .
  • the ripcord 140 may be tandemly attached to the optical fiber assembly 1 .
  • fiber optic cable 100 may not have ripcord 140 .
  • a pair of protrusions 110a projecting radially outward from the outer peripheral surface of the outer cover 110 are provided on the outer cover 110 according to the present embodiment.
  • the position of the projection 110a in the circumferential direction and the position of the ripcord 140 correspond to each other.
  • the protrusion 110 a serves as a mark that makes it easier for the user to recognize the position of the ripcord 140 from the outside of the optical fiber cable 100 .
  • the outer cover 110 may not have the projections 110a.
  • the protrusions 110a may be replaced by linear coloring on the jacket 110.
  • the outer cover 110 does not have to have the projections 110a, and the outer cover 110 may not be colored.
  • the optical fiber assembly 1 has a plurality of (12 in the example shown in FIG. 1) optical fiber units U.
  • an optical fiber assembly 1 including a plurality of optical fiber units U has a two-layer structure. That is, the multiple optical fiber units U include multiple (nine in the illustrated example) outer layer units Uout and multiple (three in the illustrated example) inner layer units Uin. Each outer layer unit Uout is located on the outer circumference of the optical fiber assembly 1 .
  • the plurality of inner layer units Uin are surrounded from the radially outer side by the plurality of outer layer units Uout. That is, the plurality of inner layer units Uin are positioned at the center of the optical fiber assembly 1 in a cross-sectional view.
  • the number of inner layer units Uin and the number of outer layer units Uout can be changed as appropriate.
  • the optical fiber assembly 1 does not have to have a two-layer structure.
  • the optical fiber unit U includes the above-described multiple intermittently fixed tape core wires 10 and a bundle material 20 that bundles the multiple intermittently fixed tape core wires 10 .
  • the number of intermittently fixed tape core wires 10 included in one optical fiber unit U may be two or more, and may be six, for example.
  • the bundle material 20 is a member capable of bundling a plurality of intermittently fixed tape core wires 10 .
  • the bundle material 20 for example, a thread-like, string-like, tape-like member, or the like can be used.
  • the intermittently fixed fiber ribbon 10 according to the present embodiment is bundled by winding a bundle material 20 thereon.
  • the configuration in which the bundle material 20 bundles the intermittently fixed tape core wires 10 is not limited to the illustrated example.
  • the bundle material 20 may be spirally wound around the intermittent fixing ribbon 10 .
  • the optical fiber unit U may not have the bundle material 20 .
  • the intermittently fixed tape core wires 10 may be bundled by twisting a plurality of the intermittently fixed tape core wires 10 in the optical fiber unit U.
  • the optical fiber assembly 1 may not have the optical fiber unit U.
  • the plurality of intermittently fixed ribbon core wires 10 may not constitute the optical fiber unit U.
  • the optical fiber assembly 1 may have a structure in which the pressure wrap 120 or the jacket 110 directly covers the intermittent fixing tape core wire 10 .
  • the inner layer unit Uin is formed in a fan shape
  • the outer layer unit Uout is formed in a square shape.
  • the cross-sectional shape of the optical fiber unit U is not limited to the illustrated example, and may be circular, elliptical, or polygonal. Further, even when the optical fiber 11 is bundled with the bundle material 20 , the bundle material 20 is deformed, and the optical fiber 11 appropriately moves to an empty space inside the jacket 110 . Therefore, for example, as shown in FIG. 5, the cross-sectional shape of the optical fiber unit U may be deformed.
  • each intermittently fixed ribbon core 10 includes a plurality of (12 in the illustrated example) optical fibers 11 and a plurality of fixing portions 12 .
  • Each optical fiber 11 has a core and a cladding.
  • a coating layer such as resin is provided on the outer periphery of the clad.
  • the plurality of optical fibers 11 in the intermittently fixed tape cable core 10 are arranged in a row.
  • the intermittently fixed tape core wire 10 has a tape-like shape.
  • the direction in which the optical fibers 11 are arranged in the intermittently fixed fiber ribbon 10 may be referred to as the tape width direction W for ease of explanation.
  • Each fixing portion 12 fixes two optical fibers 11 adjacent in the tape width direction W to each other.
  • a gap may be provided between two adjacent optical fibers 11 .
  • a plurality of fixing portions 12 are intermittently arranged in the longitudinal direction Z in the gap.
  • two optical fibers 11 may be continuously fixed in the longitudinal direction Z to form an optical fiber set, and a plurality of optical fiber sets may be intermittently fixed by a plurality of fixing portions 12 .
  • the plurality of fixing portions 12 are two-dimensionally intermittently arranged in the longitudinal direction Z and the tape width direction W.
  • the arrangement of the fixing portion 12 is not limited to the example in FIG. 3, and can be changed as appropriate.
  • the arrangement pattern of the fixed portions 12 may not be a constant pattern in the longitudinal direction Z or the tape width direction W.
  • the arrangement pattern of the fixing portions 12 does not have to be a constant pattern between different intermittently fixed tape core wires 10 .
  • the material of the fixed part 12 for example, a UV curable resin may be adopted.
  • the material of the fixing portion 12 is not particularly limited as long as the adjacent optical fibers can be fixed, and can be changed as appropriate.
  • the plurality of optical fiber units U and the plurality of intermittently fixed tape core wires 10 included therein are twisted in an SZ shape. More specifically, the optical fiber assembly 1 has an SZ-twisted structure in which a period 30 including forward-twisted portions 31 and reverse-twisted portions 32 is repeated in the longitudinal direction Z.
  • Period 30 is also referred to as twist pitch 30 .
  • twist pitch 30 In each of the forward-twisted portion 31 and the reverse-twisted portion 32, a plurality of optical fiber units U and a plurality of intermittently fixed fiber ribbons 10 included therein are twisted together.
  • each optical fiber unit U (intermittently fixed tape core wire 10 ) is wound around the central axis O of the optical fiber assembly 1 in each of the forward twisted portion 31 and the reverse twisted portion 32 .
  • the direction in which the optical fiber assembly 1 is twisted in the forward twisting portion 31 and the direction in which the optical fiber assembly 1 is twisted in the reverse twisting portion 32 are opposite to each other.
  • the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout may be equal or different.
  • the reversal region 41 and the rotation region 42 are defined for the optical fiber assembly 1 as shown in FIG.
  • the reversal region 41 is a region that extends in the longitudinal direction Z around the boundary B between the forward twisted portion 31 and the reverse twisted portion 32 .
  • the reversal region 41 is a region in which the direction in which the intermittently fixed fiber ribbons 10 are twisted is reversed.
  • the dimension of the reversed region 41 in the longitudinal direction Z is P/4, where P is the dimension of the period (twist pitch) 30 .
  • a rotation area 42 is an area other than the inversion area 41 .
  • the rotation area 42 is an area located between the inversion areas 41 .
  • the rotation area 42 is an area in which the intermittently fixed ribbon core 10 is twisted (wound) in one direction.
  • the reversal regions 41 and the rotation regions 42 are alternately repeated in the longitudinal direction Z. As shown in FIG.
  • the plurality of intermittently fixed tape core wires 10 are stacked in a collapsed state when viewed in cross section.
  • the optical fibers 11 belonging to the same intermittent fixing ribbon 10 are connected by solid lines.
  • the “collapsed state” means a state in which at least one intermittent fixing tape core wire 10 included in the optical fiber assembly 1 is curved.
  • the shape of the laminated intermittent fixing ribbons 10 differs between the cross section in the reversal region 41 and the cross section in the rotation region 42 .
  • the collapsed state of the intermittently fixed ribbon core 10 differs between the reversal region 41 and the rotation region 42 .
  • the cross-sectional shape of the optical fiber assembly 1 differs between the reversed region 41 and the rotated region 42 .
  • FIG. 6 is a cross-sectional view of the optical fiber assembly 1 (optical fiber unit U) shown in FIG. 5 plotted on the xy plane.
  • each of the six intermittently fixed tape core wires 10 included in the optical fiber unit U is called a first tape to a sixth tape.
  • the vector MG is a vector quantity defined for each intermittently fixed tape core wire 10 at each position in the longitudinal direction Z of the optical fiber assembly 1 .
  • M be the middle point of the two optical fibers 11 positioned at both ends of the optical fibers 11 forming the intermittent fixing tape core wire 10 in the cross section
  • G be the center of gravity of the intermittent fixing tape core wire 10 .
  • the vector MG is a vector starting at the midpoint M and ending at the center of gravity G.
  • the vector MG defined for the first tape is called vector MG1
  • the vector MG defined for the second tape is called vector MG2.
  • Vectors GU, GUin, and GUout are vector quantities defined for each position in the longitudinal direction Z of the optical fiber assembly 1 .
  • the vector GU is a vector obtained by synthesizing the vector MG for all the intermittently fixed tape core wires 10 included in the optical fiber assembly 1 .
  • the vector GUin is a vector obtained by synthesizing the vector MG for all the intermittently fixed fiber ribbons 10 included in all the inner layer units Uin.
  • Vector GUout is a vector obtained by synthesizing all intermittently fixed fiber ribbons 10 included in all outer layer units Uout.
  • the feature that "the state of collapse of the intermittently fixed ribbon core 10 differs between the reversal region 41 and the rotation region 42" described above can be rephrased as follows using the vector GU. That is, the vector GU in the reverse region 41 is the vector GU in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z, and the vector GU in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z vector GU on the other.
  • the scalar quantities L, Lin, and Lout are scalar quantities defined for each position in the longitudinal direction Z of the optical fiber assembly 1 .
  • the scalar quantity L is the magnitude of vector GU.
  • the scalar quantity Lin is the magnitude of the vector GUin.
  • the scalar quantity Lout is the magnitude of the vector GUout.
  • the scalar quantity L is a quantity that characterizes the collapsed state of the intermittently fixed fiber ribbon 10 . More specifically, the greater the scalar amount L, the more the intermittently fixed fiber ribbon 10 is considered to have collapsed.
  • Example 1 As the optical fiber assembly 1 and the optical fiber cable 100 according to Example 1, an 864-core optical fiber assembly and an optical fiber cable according to the above embodiment were produced.
  • the optical fiber assembly 1 according to Example 1 had 12 optical fiber units U. As shown in FIG. Each optical fiber unit U had six intermittently fixed tape core wires 10 bundled with a bundle material 20 . Each intermittent fixing tape core wire 10 contained 12 optical fibers 11 . Also, at each position in the longitudinal direction Z, the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout were considered to be substantially equal.
  • the outer diameter of the jacket 110 was 18.2 mm, and the inner diameter of the jacket 110 was 11.5 mm.
  • the thickness of the pressure winding 120 was set to 0.2 mm.
  • the outer diameter of the optical fiber assembly 1 was approximately 11.1 mm.
  • Table 1 is a table summarizing the results of measuring the scalar amounts L, Lin, and Lout at positions arranged at approximately equal intervals in the longitudinal direction Z of the optical fiber assembly 1 according to Example 1. More specifically, the measurement of the scalar amount L and the like was performed for the reversal region 41 and the rotation region 42 included in four continuous cycles (twisting pitches) 30 in the longitudinal direction Z. As shown in FIG. FIG. 7 is a diagram showing Table 1 as a graph. In Table 1 and FIG. 7, each of the nine reversal regions 41 included in the measurement target is called a first reversal region to a ninth reversal region in order in the +Z direction. Similarly, each of the eight rotation areas 42 is called a first rotation area to an eighth rotation area.
  • the measurement of the scalar quantity L and the like at each position was performed by photographing the cross section of the optical fiber assembly 1 at regular intervals in the longitudinal direction Z and tracing the images obtained by the photographing on the xy plane. . More specifically, the measurement of the scalar quantity L and the like was performed in the following procedure. That is, light is incident on predetermined optical fibers 11 of the intermittent fixing tape core wire 10 (optical fiber unit U), and how the optical fiber unit U including the optical fiber 11 that propagates the incident light is twisted. was analyzed to confirm the winding angle of each intermittent fixing tape core wire 10 (optical fiber unit U), and to discriminate between the reversal region 41 and the rotation region 42 .
  • the optical fiber assembly 1 was hardened with an epoxy resin and cut at each position in the longitudinal direction Z. After polishing the hardened optical fiber assembly 1 so that the cross section was clear, an image of the cross section was taken with a microscope. The position of each optical fiber 11 was plotted on the xy plane on the image obtained by the microscope, and the scalar amount L and the like were measured.
  • the optical fiber cable 100 may be cut at each position in the longitudinal direction Z after the optical fiber assembly 1 is fixed with epoxy resin.
  • the sheath 110 may be filled with the epoxy resin, for example, by injecting the epoxy resin from one end in the longitudinal direction Z of the optical fiber cable 100 and sucking the epoxy resin from the other end. .
  • the average value of the scalar amounts L in all the inversion regions 41 is larger than the average value of the scalar amounts L in all the rotation regions 42 .
  • the scalar quantity L in the inversion region 41 is the scalar quantity L in one of the two rotation regions 42 adjacent to the inversion region 41 and the scalar quantity L in the other of the two rotation regions 42 is greater than at least one of L and That is, the scalar amount L in the Nth inversion area 41 is greater than at least one of the scalar amount L in the (N ⁇ 1)th rotation area 42 and the scalar amount L in the Nth rotation area 42 .
  • the scalar quantity L does not become minimum in the inversion region 41 .
  • the scalar amount L of the second inverted area is larger than both the scalar amount L of the first rotated area adjacent to the second inverted area and the scalar amount L of the second rotated area.
  • the region 41 may be particularly referred to as a maximum inversion region 41M.
  • the four inversion regions 41 of the second inversion region, the sixth inversion region, the seventh inversion region, and the eighth inversion region are the maximum inversion regions. 41M. Also, the number (four) of the maximum inversion regions 41M is 1 ⁇ 3 or more of the number (nine) of the inversion regions 41 .
  • FIGS. 8A to 8D are diagrams showing vectors GU, GUin, and GUout, respectively, for two rotation regions and two flip regions.
  • the four regions shown in FIGS. 8A to 8D are continuous in the longitudinal direction Z in the order of the rotation region shown in FIG. 8A, the reversal region shown in FIG. 8B, the rotation region shown in FIG. 8C, and the reversal region shown in FIG. 8D. ing.
  • the arrow indicated by symbol T indicates the direction in which a plurality of intermittently fixed tape core wires are twisted in the rotation region, that is, the direction in which each optical fiber unit (intermittently fixed tape core wire) rotates ( winding direction).
  • the vector GUin and the vector GUout point in substantially the same direction in the inversion area. More specifically, the angle formed by vector GUin and vector GUout is 90° or less.
  • the following method may be used in the manufacturing process of the optical fiber assembly 1.
  • the vector GU in the reverse region 41 is the vector GU in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z, and the vector GU in the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z.
  • the technique shown below is used.
  • the first method is to change the tension applied to the optical fiber units U and the intermittently fixed tape core wires 10 with time in the process of twisting the optical fiber units U and the intermittently fixed tape core wires 10 in an SZ shape.
  • a second technique is to temporally change the rotation speed of battens used when the optical fiber units U and the intermittently fixed fiber ribbons 10 are twisted together in an SZ shape.
  • a third method is to determine the distance between each through-hole and the center of the batten plate for a plurality of through-holes formed in the batten plate and through which the optical fiber unit U and the intermittent fixing tape core wire 10 are inserted. It is a method to make it different.
  • a fourth technique is to vary the shape and size of each of the plurality of through holes.
  • a fifth technique is to adjust the length of the pause time (the rotation of the battens) when reversing the twisting direction.
  • a sixth method is a method of arranging optical fiber units U having different numbers of cores adjacent to each other. It should be noted that the above-described first to sixth methods are examples, and other methods may be used as long as the optical fiber assembly 1 that satisfies the above-described relationships regarding the scalar quantity L, the vectors GUin, and GUout can be manufactured. good. Also, some of the methods described above may be used in combination.
  • Example 2 As an optical fiber assembly 1 and an optical fiber cable 100 according to Example 2, an optical fiber assembly and an optical fiber cable of 288 fibers according to the above embodiment were produced.
  • the optical fiber assembly 1 according to Example 2 had 24 intermittently fixed tape core wires 10 .
  • Each intermittent fixing tape core wire 10 contained 12 optical fibers 11 .
  • the optical fiber assembly 1 does not have the bundle material 20, and is bundled by twisting 24 intermittently fixed tape core wires 10 in an SZ shape.
  • the intermittent fixing tape cable core 10 did not form the optical fiber unit U.
  • the outer diameter of the jacket 110 was 11.8 mm, and the inner diameter of the jacket 110 was 7.0 mm.
  • the thickness of the pressure winding 120 was set to 0.2 mm.
  • the outer diameter of the optical fiber assembly 1 was approximately 6.6 mm.
  • Table 2 is a table summarizing the results of measuring the scalar amount L for each position arranged at approximately equal intervals in the longitudinal direction Z of the optical fiber assembly 1 according to Example 2. More specifically, the measurement of the scalar amount L and the like was performed for the reversal regions 41 and the rotation regions 42 included in five consecutive cycles (twisting pitches) 30 in the longitudinal direction Z.
  • FIG. 9 is a diagram showing Table 2 as a graph.
  • each of the 10 reversed regions 41 included in the measurement target is called a first reversed region to a tenth reversed region in order in the +Z direction.
  • each of the 11 rotation areas 42 is called a first rotation area to an 11th rotation area.
  • the details of the method for measuring the scalar quantity L and the like were the same as those in the first embodiment.
  • the average value of the scalar amount L in all the inversion regions 41 is It is larger than the average value of the scalar quantity L in all rotation areas 42 .
  • the first inversion region, the second inversion region, the third inversion region, the fourth inversion region, the seventh inversion region, and the tenth inversion region corresponds to the maximum inversion area 41M.
  • the number (six) of the maximum inversion regions 41M is 1 ⁇ 3 or more of the number (ten) of the inversion regions 41 .
  • an optical fiber cable (optical fiber assembly) having a plurality of optical fiber units collectively covered with a jacket.
  • strain may concentrate on a specific intermittently fixed tape core wire or optical fiber.
  • Such strain concentrations have sometimes resulted in an increase in the maximum transmission loss of the fiber optic cable (optical fiber assembly).
  • concentration of strain on a specific intermittently fixed tape core wire (optical fiber) as described above causes the collapse of the cross-sectional shape of the optical fiber cable (optical fiber assembly), that is, the optical fiber unit (intermittently fixed tape core wire). This is particularly likely to occur when the state is constant over a long period of time. In other words, concentration of strain on a specific intermittently fixed tape core wire is particularly likely to occur when the same collapsed state continues for a long section.
  • the average value of the scalar quantities L in all the reversal regions 41 is larger than the average value of the scalar quantities L in all the rotation regions 42 . That is, the cross-sectional shape of the optical fiber assembly 1 , that is, the collapsed state of the intermittently fixed tape core wires 10 differs between the reversal region 41 and the rotation region 42 . Therefore, the collapsed state of the intermittently fixed optical fiber ribbon 10 is unlikely to be constant in the longitudinal direction Z, and concentration of strain on a specific intermittently fixed optical fiber ribbon 10 or optical fiber 11 can be suppressed. Thereby, an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed.
  • the optical fiber assembly 1 includes a plurality of intermittently fixed portions including a plurality of optical fibers 11 and a plurality of fixing portions 12 for intermittently fixing the plurality of optical fibers 11 in the longitudinal direction Z.
  • GU is a vector obtained by synthesizing the vector MG with respect to all the intermittently fixed fiber ribbons 10
  • the magnitude of the vector GU is a scalar quantity L, a scalar in all the inversion regions 41
  • the average value of the quantity L is greater than the average value of the scalar quantity L in all rotation regions 42 .
  • the scalar quantity L in the reverse region 41 is the scalar quantity L in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z, and the scalar quantity L in the other of the two rotational regions 42 adjacent to the reverse region 41 and at least one of the scalar quantity L.
  • the condition of intermittent fixing tape core wires 10 changes more frequently. Therefore, concentration of strain on the specific intermittent fixing ribbon 10 or optical fiber 11 can be more reliably suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be more reliably suppressed.
  • the plurality of inversion regions 41 includes at least one maximum inversion region 41M, and the scalar amount L in the maximum inversion region 41M is a scalar value in one of the two rotation regions 42 adjacent to the maximum inversion region 41M in the longitudinal direction Z. It may be larger than both the quantity L and the scalar quantity L in the other of the two rotation regions 42 adjacent to the maximum inversion region 41M. According to this configuration, it is possible to greatly change the collapsed state of the intermittently fixed fiber ribbon 10 in the maximum inversion region 41M. Therefore, concentration of strain on the specific intermittent fixing ribbon 10 or optical fiber 11 can be more reliably suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be more reliably suppressed.
  • the number of maximum inversion regions 41M may be 1 ⁇ 3 or more of the number of inversion regions 41 . According to this configuration, it is possible to more reliably suppress concentration of strain on the specific intermittently fixed tape core wire 10 and the optical fiber 11, and to further reliably suppress an increase in the maximum transmission loss of the optical fiber assembly 1. can.
  • the plurality of intermittently fixed tape core wires 10 form a plurality of optical fiber units U, and in each of the plurality of optical fiber units U, at least two or more of the plurality of intermittently fixed tape core wires 10 are intermittently
  • the fixing tape cable core 10 may be bundled. According to this configuration, concentration of strain on a specific optical fiber unit U can be suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed.
  • the plurality of optical fiber units U includes a plurality of outer layer units Uout located on the outer periphery of the optical fiber assembly 1 and at least one or more inner layer units Uin surrounded by the plurality of outer layer units Uout.
  • GUin be a vector obtained by synthesizing MG for all of the plurality of intermittently fixed ribbon fibers 10 included in the inner layer unit Uin
  • GUin be a vector obtained by synthesizing MG for all of the plurality of intermittently fixed ribbon fibers 10 included in the plurality of outer layer units Uout.
  • the angle formed by the vector GUin and the vector GUout in the inversion area 41 may be 90° or less. According to this configuration, an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed more reliably.
  • the optical fiber cable 100 includes the above-described optical fiber assembly 1 and a jacket 110 that accommodates the optical fiber assembly 1 . According to this configuration, it is possible to suppress an increase in the maximum transmission loss of the optical fiber cable 100 .
  • the vector GU in the reversal region 41 is the vector GU in one of the two reversal regions 42 adjacent to the reversal region 41 in the longitudinal direction Z, and the vector GU in the reversal region 41 and the vector GU in the other of the two adjacent rotation regions 42 are made different from each other. According to this configuration, it is possible to manufacture the optical fiber assembly 1 that suppresses an increase in maximum transmission loss.
  • the optical fiber assembly 1 may have inclusions (not shown) such as PP yarns and water absorbing polymers.
  • the inclusion may be provided between the adjacent optical fiber units U, or may be provided between the adjacent intermittently fixed tape core wires 10 .
  • the shape of the optical fiber assembly 1 is more likely to be deformed. Therefore, an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed more reliably.
  • the number of optical fiber units U included in the optical fiber assembly 1 may be 11 or less, or may be 13 or more. Further, the number of the intermittently fixed fiber ribbons 10 included in each optical fiber unit U may be two or more and five or less, or may be seven or more. Further, the number of optical fibers 11 included in each intermittent fixing tape core wire 10 may be 2 or more and 11 or less, or may be 13 or more.
  • the number of maximum inversion regions 41M included in the optical fiber assembly 1 does not have to be 1/3 or more of the number of inversion regions 41.
  • the optical fiber assembly 1 may not have the maximum inversion region 41M.
  • optical fiber assembly 1 all configurations other than the optical fiber assembly 1, such as the jacket 110, the pressure wrap 120, the tensile strength member 130, and the ripcord 140 in the above embodiment, are examples, and can be changed as appropriate.
  • the optical fiber assembly 1 according to this embodiment may be applied to a loose tube cable or the like.
  • the above configuration other than the optical fiber assembly 1 may be omitted. In other words, the optical fiber assembly 1 does not have to constitute the optical fiber cable 100 .
  • the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout are equal, and the cycle (twist pitch) of the inner layer unit Uin and the outer layer unit Uin are equal.
  • the cycles (twisting pitches) of the units Uout may be the same, and the positions in the longitudinal direction Z of the boundaries B between the normal twisted portions 31 and the reverse twisted portions 32 in the inner layer units Uin and the outer layer units Uout may be the same.
  • the configuration is not limited to this, and for example, the twist angle, twist pitch, or boundary B position may be different between the inner layer unit Uin and the outer layer unit Uout.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

This optical fiber assembly is provided with a plurality of intermittently-fixed optical fiber ribbons and has an SZ twisting structure in which a cycle including a forward-twisted part and a reverse-twisted part is repeated in a longitudinal direction. In a cross section perpendicular to the longitudinal direction, when, in one intermittently-fixed optical fiber ribbon from among the plurality of intermittently-fixed optical fiber ribbons, the midpoint of two of the optical fibers positioned at both ends is denoted by M, the center of gravity is denoted by G, a vector having the midpoint M as a starting point and the center of gravity G as an end point is denoted by MG, a vector obtained by synthesizing the vector MG with respect to all of the plurality of intermittently-fixed optical fiber ribbons is denoted by GU, and the magnitude of the vector GU is denoted as a scalar quantity L, the average value of the scalar quantity L in all inverted regions is greater than the average value of the scalar quantity L in all rotated regions.

Description

光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly
 本発明は、光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法に関する。
 本願は、2021年12月27日に、日本に出願された特願2021-212144号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly.
This application claims priority based on Japanese Patent Application No. 2021-212144 filed in Japan on December 27, 2021, the content of which is incorporated herein.
 特許文献1には、外被によって一括被覆された複数の光ファイバユニットを有する光ファイバケーブルが開示されている。各光ファイバユニットには、複数の間欠固定テープ心線が含まれる。 Patent Document 1 discloses an optical fiber cable having a plurality of optical fiber units collectively covered with a jacket. Each optical fiber unit includes a plurality of intermittently fixed ribbon ribbons.
日本国特開2014-16530号公報Japanese Patent Application Laid-Open No. 2014-16530
 ところで、例えば特許文献1に示す光ファイバケーブルにおいて、曲げが生じたり、低温環境下での外被の収縮が生じたりした場合、特定の間欠固定テープ心線に歪みが集中する場合があった。このような歪みの集中は、光ファイバケーブル(光ファイバ集合体)の最大伝送損失の増大をもたらす場合があった。 By the way, in the optical fiber cable shown in Patent Document 1, for example, when bending occurs or when the jacket shrinks in a low-temperature environment, strain may concentrate on a specific intermittently fixed tape core wire. Such strain concentrations have sometimes resulted in an increase in the maximum transmission loss of the fiber optic cable (optical fiber assembly).
 本発明は、このような事情を考慮してなされ、最大伝送損失の増大を抑制できる光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and aims to provide an optical fiber assembly, an optical fiber cable, and an optical fiber assembly manufacturing method that can suppress an increase in maximum transmission loss.
 上記課題を解決するために、本発明の一態様に係る光ファイバ集合体は、複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有し、前記長手方向における前記一周期の寸法をPとし、前記長手方向における寸法がP/4であり、かつ、前記長手方向における中心が前記順撚り部と前記逆撚り部との境界に位置する領域を反転領域と称し、前記長手方向において前記反転領域の間に位置する領域を回転領域と称し、前記長手方向に垂直な断面において、前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをGUとし、前記ベクトルGUの大きさをスカラー量Lとするとき、全ての前記反転領域における前記スカラー量Lの平均値が、全ての前記回転領域における前記スカラー量Lの平均値よりも大きい。 In order to solve the above-described problems, an optical fiber assembly according to one aspect of the present invention provides a plurality of intermittently fixed optical fibers including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction. A normal twisted portion in which the plurality of intermittently fixed tape fibers are twisted together, and a reverse twisted portion in which the plurality of intermittently fixed tape fibers are twisted in a direction opposite to the normal twisted portion. It has an SZ twist structure in which the period including is repeated in the longitudinal direction, the dimension of one period in the longitudinal direction is P, the dimension in the longitudinal direction is P / 4, and the center in the longitudinal direction is the A region located at the boundary between the normal twisted portion and the reverse twisted portion is referred to as a reversed region, and a region located between the reversed regions in the longitudinal direction is referred to as a rotated region. In one intermittently fixed tape core wire among a plurality of intermittently fixed tape core wires, the midpoint of the two optical fibers located at both ends is M, the center of gravity is G, and the center of gravity is G with the midpoint M as the starting point. is the end point, MG is a vector obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed fiber ribbons, and GU is a vector obtained by synthesizing the vector MG with respect to all the intermittently fixed fiber ribbons. is larger than the average value of the scalar quantity L in all the rotation regions.
 また、本発明の一態様に係る光ファイバ集合体の製造方法は、前記反転領域における前記ベクトルGUを、前記反転領域と前記長手方向において隣接する2つの前記回転領域のうち一方における前記ベクトルGUと、前記反転領域と隣接する2つの前記回転領域のうち他方における前記ベクトルGUと、のいずれとも異ならせる。 Further, in the method for manufacturing an optical fiber assembly according to an aspect of the present invention, the vector GU in the reversal region is the same as the vector GU in one of the two rotational regions adjacent to the reversal region in the longitudinal direction. , and the vector GU in the other of the two rotation regions adjacent to the inversion region.
 本発明の上記態様によれば、最大伝送損失の増大を抑制可能な光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法を提供できる。 According to the above aspect of the present invention, it is possible to provide an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly capable of suppressing an increase in maximum transmission loss.
本発明の実施形態に係る光ファイバ集合体および光ファイバケーブルを示す断面図である。1 is a cross-sectional view showing an optical fiber assembly and an optical fiber cable according to an embodiment of the invention; FIG. 本発明の実施形態に係る光ファイバユニットを示す斜視図である。1 is a perspective view showing an optical fiber unit according to an embodiment of the invention; FIG. 本発明の実施形態に係る間欠固定テープ心線を示す斜視図である。1 is a perspective view showing an intermittently fixed tape core wire according to an embodiment of the present invention; FIG. 本発明の実施形態に係るSZ撚り構造を説明する図である。It is a figure explaining SZ twist structure concerning the embodiment of the present invention. 本発明の実施形態に係る光ファイバユニットを示す断面図である。1 is a cross-sectional view showing an optical fiber unit according to an embodiment of the invention; FIG. ベクトルMGを説明する図である。It is a figure explaining vector MG. 本発明の実施例1に係る光ファイバ集合体について、スカラー量L、Lin、およびLoutの推移を示す図である。FIG. 4 is a diagram showing transitions of scalar amounts L, Lin, and Lout for the optical fiber assembly according to Example 1 of the present invention; 本発明の実施例1に係る光ファイバ集合体について、ある回転領域におけるベクトルGU、GUin、およびGUoutを示す図である。FIG. 4 is a diagram showing vectors GU, GUin, and GUout in a certain rotation region for the optical fiber assembly according to Example 1 of the present invention; 本発明の実施例1に係る光ファイバ集合体について、図8Aに示す回転領域に隣接する反転領域におけるベクトルGU、GUin、およびGUoutを示す図である。FIG. 8B is a diagram showing vectors GU, GUin, and GUout in the inversion region adjacent to the rotation region shown in FIG. 8A for the optical fiber assembly according to Example 1 of the present invention; 本発明の実施例1に係る光ファイバ集合体について、図8Bに示す反転領域に隣接する回転領域におけるベクトルGU、GUin、およびGUoutを示す図である。FIG. 8C is a diagram showing vectors GU, GUin, and GUout in the rotation area adjacent to the inversion area shown in FIG. 8B for the optical fiber assembly according to Example 1 of the present invention; 本発明の実施例1に係る光ファイバ集合体について、図8Cに示す回転領域に隣接する反転領域におけるベクトルGU、GUin、およびGUoutを示す図である。FIG. 8B is a diagram showing vectors GU, GUin, and GUout in the inversion region adjacent to the rotation region shown in FIG. 8C for the optical fiber assembly according to Example 1 of the present invention; 本発明の実施例2に係る光ファイバ集合体について、スカラー量L、Lin、およびLoutの推移を示す図である。FIG. 5 is a diagram showing transitions of scalar amounts L, Lin, and Lout for an optical fiber assembly according to Example 2 of the present invention;
 以下、本発明の実施形態に係る光ファイバ集合体1および光ファイバケーブル100について図面に基づいて説明する。
 図1に示すように、本実施形態に係る光ファイバケーブル100は、複数の光ファイバユニットUを含む光ファイバ集合体1を備える。図2に示すように、各光ファイバユニットUは、複数の間欠固定テープ心線10を有する。言い換えれば、複数の間欠固定テープ心線10は、複数の光ファイバユニットUを構成している。また、各間欠固定テープ心線10は、複数の光ファイバ11を含む。言い換えれば、複数の光ファイバ11は、複数の間欠固定テープ心線10を構成している。各光ファイバ11の外径は、例えば250μmである。ただし、光ファイバ11の外径は200μmであってもよいし、その他の値であってもよい。
An optical fiber assembly 1 and an optical fiber cable 100 according to embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the optical fiber cable 100 according to this embodiment includes an optical fiber aggregate 1 including a plurality of optical fiber units U. As shown in FIG. As shown in FIG. 2, each optical fiber unit U has a plurality of intermittently fixed fiber ribbons 10 . In other words, the plurality of intermittently fixed fiber ribbons 10 constitute the plurality of optical fiber units U. As shown in FIG. Also, each intermittent fixing tape core wire 10 includes a plurality of optical fibers 11 . In other words, the plurality of optical fibers 11 constitute the plurality of intermittently fixed tape core wires 10 . The outer diameter of each optical fiber 11 is, for example, 250 μm. However, the outer diameter of the optical fiber 11 may be 200 μm, or may be another value.
(方向定義)
 ここで、本実施形態では、光ファイバ集合体1(光ファイバケーブル100)の長手方向を単に長手方向Zと称する。長手方向Zは、光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oと平行な方向でもある。長手方向Zに沿う一つの向きを、+Zの向きまたは前方と称する。+Zの向きとは反対の向きを、-Zの向きまたは後方と称する。長手方向Zに垂直な断面を、横断面と称する。横断面を長手方向Zから見ることを横断面視と称する。光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oに直交する方向を、径方向と称する。径方向に沿って、中心軸線Oに接近する向きを、径方向内側と称し、中心軸線Oから離反する向きを、径方向外側と称する。長手方向Zから見て、中心軸線Oまわりに周回する方向を、周方向と称する。
(direction definition)
Here, in this embodiment, the longitudinal direction of the optical fiber assembly 1 (optical fiber cable 100) is simply referred to as the longitudinal direction Z. As shown in FIG. The longitudinal direction Z is also a direction parallel to the central axis O of the optical fiber assembly 1 (optical fiber cable 100). One orientation along the longitudinal direction Z is referred to as the +Z orientation or forward. The orientation opposite to the +Z orientation is referred to as the -Z orientation or back. A section perpendicular to the longitudinal direction Z is called a transverse section. Viewing a cross section from the longitudinal direction Z is called a cross section view. A direction perpendicular to the central axis O of the optical fiber assembly 1 (optical fiber cable 100) is referred to as a radial direction. Along the radial direction, the direction approaching the central axis O is referred to as the radial inner side, and the direction away from the central axis O is referred to as the radial outer side. The direction of rotation around the central axis O when viewed from the longitudinal direction Z is called the circumferential direction.
 図1に示すように、本実施形態に係る光ファイバケーブル100は、いわゆるスロットレス型の光ケーブルである。すなわち、本実施形態に係る光ファイバケーブル100は、光ファイバ11(間欠固定テープ心線10)を収容する溝(スロット溝)が形成されるスロットロッドを有さない。ただし、光ファイバケーブル100はスロットロッドを有するスロット型の光ケーブルであってもよい。この場合、本実施形態に係る光ファイバ集合体1は、光ファイバケーブル100のスロット溝に収容されていてもよい。 As shown in FIG. 1, the optical fiber cable 100 according to this embodiment is a so-called slotless optical cable. That is, the optical fiber cable 100 according to this embodiment does not have a slot rod in which a groove (slot groove) for accommodating the optical fiber 11 (the intermittent fixing tape core wire 10) is formed. However, the optical fiber cable 100 may be a slot type optical cable having a slot rod. In this case, the optical fiber assembly 1 according to this embodiment may be accommodated in the slot groove of the optical fiber cable 100 .
 図1に示すように、本実施形態に係る光ファイバケーブル100は、上述した光ファイバ集合体1と、光ファイバ集合体1を覆う押さえ巻き120と、押さえ巻き120を介して光ファイバ集合体1を被覆して収容する外被110と、を備える。つまり、光ファイバ集合体1は、光ファイバケーブル100のうち外被110や押さえ巻き120等を除いた部分とみなすことができる。また、光ファイバ集合体1および押さえ巻き120を総称して、コアと称する場合がある。 As shown in FIG. 1, the optical fiber cable 100 according to the present embodiment includes the optical fiber assembly 1 described above, a pressure wrap 120 covering the optical fiber assembly 1, and the optical fiber assembly 1 via the pressure wrap 120. and a jacket 110 that covers and houses the . In other words, the optical fiber assembly 1 can be regarded as a portion of the optical fiber cable 100 excluding the jacket 110, the pressure wrap 120, and the like. Also, the optical fiber assembly 1 and the pressure winding 120 may be collectively referred to as a core.
 押さえ巻き120は、テープ状の部材であり、複数の光ファイバユニットUを束ねている。光ファイバユニットUを束ねることができれば押さえ巻き120の種類は特に限定されないが、押さえ巻き120としては、例えば不織布やポリエステルテープ等が採用されてもよい。押さえ巻き120は、吸水性を有していてもよい。押さえ巻き120は、光ファイバ集合体1に対して例えば縦添え巻きや横巻きされていてもよい。
 例えば、押さえ巻き120が長手方向Zに延びるテープである場合、押さえ巻き120は光ファイバユニットUを包む円筒状に形成されていてもよい。この場合、押さえ巻き120の周方向における両端部は、互いに重ねられており、ラップ部を形成していてもよい。また、押さえ巻き120はテープ状ではなく、光ファイバユニットUを包むチューブ形成体であってもよい。長手方向Zにおいて、光ファイバユニットUが押さえ巻き120により包まれていることで、光ファイバ11を保護することができる。
 なお、長手方向Zにおいて押さえ巻き120により光ファイバ11が包まれていない箇所があってもよし、光ファイバケーブル100は押さえ巻き120を有していなくてもよい。
The pressure wrap 120 is a tape-shaped member that bundles the plurality of optical fiber units U. As shown in FIG. The type of the pressing wrap 120 is not particularly limited as long as the optical fiber units U can be bundled. The press wrap 120 may have water absorbency. The pressure winding 120 may be wound vertically or horizontally with respect to the optical fiber assembly 1, for example.
For example, when the pressure wrap 120 is a tape extending in the longitudinal direction Z, the pressure wrap 120 may be formed in a cylindrical shape that wraps the optical fiber unit U. In this case, both ends in the circumferential direction of the pressure winding 120 may overlap each other to form a wrap portion. Also, the pressing wrap 120 may be a tube forming body that wraps the optical fiber unit U instead of the tape. By wrapping the optical fiber unit U with the pressing wrap 120 in the longitudinal direction Z, the optical fiber 11 can be protected.
Note that there may be a portion in the longitudinal direction Z where the optical fiber 11 is not wrapped by the pressure wrap 120 , and the optical fiber cable 100 may not have the pressure wrap 120 .
 外被110の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)等のポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)等を用いることができる。また、上記の樹脂の混和物(アロイ、ミクスチャー)を用いて外被110が形成されていてもよい。また、目的に応じて、外被110に対して種々の添加剤が添加されていてもよい。添加剤の例としては、難燃剤、着色剤、劣化防止剤、無機フィラー等が挙げられる。また、外被110は、2層構造、またはその他の複層構造を有していてもよい。例えば、図示の例における外被110(第1の外被)の外側に外被110を覆う保護層が設けられ、当該保護層の外側に当該保護層を覆う第2の外被が設けられていてもよい。保護層は、例えば、金属製であってもよいし、繊維強化プラスチック(FRP)製であってもよい。あるいは、外被110は、保護層を有さず、単に複数層の外被によって形成されていてもよい。 Polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. PO) resin, polyvinyl chloride (PVC), and the like can be used. Moreover, the jacket 110 may be formed using a mixture (alloy, mixture) of the above resins. Moreover, various additives may be added to the jacket 110 depending on the purpose. Examples of additives include flame retardants, colorants, antidegradants, inorganic fillers, and the like. Also, the jacket 110 may have a two-layer structure or other multi-layer structure. For example, a protective layer covering the outer cover 110 is provided outside the outer cover 110 (first outer cover) in the illustrated example, and a second outer cover covering the protective layer is provided outside the protective layer. may The protective layer may be made of, for example, metal or fiber reinforced plastic (FRP). Alternatively, jacket 110 may have no protective layer and may simply be formed by multiple layers of jacket.
 本実施形態に係る外被110の外形は、後述する突起110aを除いて、横断面視において略円形状である。ただし、外被110の形状は適宜変更可能である。図1に示すように、本実施形態に係る外被110には、複数(図示の例において4つ)の抗張力体130および一対のリップコード140が配置されている。 The external shape of the jacket 110 according to the present embodiment is substantially circular in cross-sectional view, except for projections 110a, which will be described later. However, the shape of the jacket 110 can be changed as appropriate. As shown in FIG. 1, a plurality of (four in the illustrated example) tensile strength members 130 and a pair of ripcords 140 are arranged on the jacket 110 according to the present embodiment.
 抗張力体130は、外被110よりも長手方向Zにおけるばね定数または引張強度が高い部材である。抗張力体130の材質としては、例えば、金属線(鋼線等)、金属線を束ねた材料、ガラス繊維、またはガラス繊維を束ねた材料等を用いることができる。あるいは、抗張力体130として繊維強化プラスチック(FRP)等を用いてもよい。抗張力体130は、光ファイバ集合体1(光ファイバケーブル100)に対して長手方向Zに沿った張力が印加された場合に、当該張力を受けて光ファイバ11を保護する役割を有する。
 複数の抗張力体130は、外被110に配置されている。本実施形態に係る複数の抗張力体130は、径方向において光ファイバ集合体1を間に挟むように配されている。ただし、複数の抗張力体130は、光ファイバ集合体1(コア)を囲むよう、等方的に外被110に配置されていてもよい。なお、抗張力体130は外被に埋設されていなくてもよい。例えば、抗張力体130は光ファイバ集合体1の中心やコアに含まれていてもよい。あるいは、光ファイバケーブル100の用途によっては、光ファイバケーブル100は抗張力体130を有していなくてもよい。
The tensile strength member 130 is a member having a higher spring constant or tensile strength in the longitudinal direction Z than the jacket 110 . As the material of the tensile strength member 130, for example, a metal wire (steel wire or the like), a material in which metal wires are bundled, a glass fiber, a material in which glass fibers are bundled, or the like can be used. Alternatively, fiber reinforced plastic (FRP) or the like may be used as the tensile member 130 . The tensile member 130 has a role of receiving the tension and protecting the optical fibers 11 when the tension along the longitudinal direction Z is applied to the optical fiber assembly 1 (optical fiber cable 100).
A plurality of strength members 130 are disposed on the jacket 110 . A plurality of tensile members 130 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction. However, the plurality of tensile members 130 may be isotropically arranged on the jacket 110 so as to surround the optical fiber assembly 1 (core). Note that the tensile strength member 130 may not be embedded in the jacket. For example, strength member 130 may be included in the center or core of optical fiber assembly 1 . Alternatively, depending on the application of the optical fiber cable 100, the optical fiber cable 100 may not have the strength member 130. FIG.
 リップコード140は、外被110を引裂くために用いられる部材である。リップコード140の材質としては、例えば合成繊維(ポリエステル等)の糸やポリプロピレン(PP)やナイロン製の円柱状のロッド等を用いることができる。
 リップコード140は、外被110に配置されている。なお、横断面視において、リップコード140は外被110内に全周が埋設されるように配置されていてもよいし、外被110の外周面または内周面から一部が露出するように配置されていてもよい。本実施形態に係る一対のリップコード140は、径方向において光ファイバ集合体1を間に挟むように配されている。また、周方向において、各抗張力体130の位置と各リップコード140の位置とは、互いにずれている。なお、リップコード140の数は1つであってもよいし、3つ以上であってもよい。また、リップコード140は外被110に埋設されていなくてもよい。例えば、リップコード140は光ファイバ集合体1に縦添えされていてもよい。あるいは、光ファイバケーブル100はリップコード140を有していなくてもよい。
A ripcord 140 is a member used to tear the jacket 110 . As a material of the rip cord 140, for example, synthetic fiber (polyester or the like) thread, polypropylene (PP) or nylon cylindrical rod, or the like can be used.
A ripcord 140 is disposed on the jacket 110 . Note that, in a cross-sectional view, the ripcord 140 may be arranged so that the entire circumference is embedded in the outer cover 110, or may be partially exposed from the outer peripheral surface or the inner peripheral surface of the outer cover 110. may be placed. A pair of ripcords 140 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction. In addition, the position of each tensile strength member 130 and the position of each ripcord 140 are shifted from each other in the circumferential direction. Note that the number of ripcords 140 may be one, or three or more. Also, the ripcord 140 may not be embedded in the jacket 110 . For example, the ripcord 140 may be tandemly attached to the optical fiber assembly 1 . Alternatively, fiber optic cable 100 may not have ripcord 140 .
 本実施形態に係る外被110には、外被110の外周面から径方向外側に向けて突出する一対の突起110aが設けられている。周方向における突起110aの位置と、リップコード140の位置とは、互いに対応している。突起110aは、使用者が光ファイバケーブル100の外部からリップコード140の位置を認識しやすくする目印の役割を有する。なお、外被110は突起110aを有していなくてもよい。この場合、突起110aを、外被110に対する線状の着色で代用してもよい。ただし、外被110が突起110aを有さず、かつ、外被110に着色が施されていなくてもよい。 A pair of protrusions 110a projecting radially outward from the outer peripheral surface of the outer cover 110 are provided on the outer cover 110 according to the present embodiment. The position of the projection 110a in the circumferential direction and the position of the ripcord 140 correspond to each other. The protrusion 110 a serves as a mark that makes it easier for the user to recognize the position of the ripcord 140 from the outside of the optical fiber cable 100 . Note that the outer cover 110 may not have the projections 110a. In this case, the protrusions 110a may be replaced by linear coloring on the jacket 110. FIG. However, the outer cover 110 does not have to have the projections 110a, and the outer cover 110 may not be colored.
 上述したように、光ファイバ集合体1は、複数(図1に示す例において12個)の光ファイバユニットUを有する。図1に示すように、本実施形態に係る複数の光ファイバユニットUを含む光ファイバ集合体1は、2層構造を有している。つまり、複数の光ファイバユニットUは、複数(図示の例において9つ)の外層ユニットUoutおよび複数(図示の例において3つ)の内層ユニットUinを含む。各外層ユニットUoutは、光ファイバ集合体1の外周に位置する。複数の内層ユニットUinは、複数の外層ユニットUoutによって径方向外側から取り囲まれている。つまり、複数の内層ユニットUinは、横断面視において光ファイバ集合体1の中心部に位置する。ただし、内層ユニットUinの数および外層ユニットUoutの数は適宜変更可能である。また、光ファイバ集合体1は2層構造を有していなくてもよい。 As described above, the optical fiber assembly 1 has a plurality of (12 in the example shown in FIG. 1) optical fiber units U. As shown in FIG. 1, an optical fiber assembly 1 including a plurality of optical fiber units U according to this embodiment has a two-layer structure. That is, the multiple optical fiber units U include multiple (nine in the illustrated example) outer layer units Uout and multiple (three in the illustrated example) inner layer units Uin. Each outer layer unit Uout is located on the outer circumference of the optical fiber assembly 1 . The plurality of inner layer units Uin are surrounded from the radially outer side by the plurality of outer layer units Uout. That is, the plurality of inner layer units Uin are positioned at the center of the optical fiber assembly 1 in a cross-sectional view. However, the number of inner layer units Uin and the number of outer layer units Uout can be changed as appropriate. Also, the optical fiber assembly 1 does not have to have a two-layer structure.
 図2に示すように、本実施形態に係る光ファイバユニットUは、上述した複数の間欠固定テープ心線10と、複数の間欠固定テープ心線10を束ねるバンドル材20と、を備える。1つの光ファイバユニットUに含まれる間欠固定テープ心線10の数は、2つ以上であればよく、例えば6つ等であってもよい。 As shown in FIG. 2, the optical fiber unit U according to the present embodiment includes the above-described multiple intermittently fixed tape core wires 10 and a bundle material 20 that bundles the multiple intermittently fixed tape core wires 10 . The number of intermittently fixed tape core wires 10 included in one optical fiber unit U may be two or more, and may be six, for example.
 バンドル材20は、複数の間欠固定テープ心線10を結束可能な部材である。バンドル材20としては、例えば、糸状、紐状、またはテープ状の部材等を採用できる。本実施形態に係る間欠固定テープ心線10は、バンドル材20が巻き付けられることによって束ねられている。ただし、バンドル材20が間欠固定テープ心線10を束ねる構成は図示の例に限られない。例えば、バンドル材20は間欠固定テープ心線10に対して螺旋状に巻き付けられていてもよい。あるいは、光ファイバユニットUはバンドル材20を有していなくてもよい。この場合、例えば、光ファイバユニットUにおいて複数の間欠固定テープ心線10が撚り合わされることで間欠固定テープ心線10が束ねられていてもよい。 The bundle material 20 is a member capable of bundling a plurality of intermittently fixed tape core wires 10 . As the bundle material 20, for example, a thread-like, string-like, tape-like member, or the like can be used. The intermittently fixed fiber ribbon 10 according to the present embodiment is bundled by winding a bundle material 20 thereon. However, the configuration in which the bundle material 20 bundles the intermittently fixed tape core wires 10 is not limited to the illustrated example. For example, the bundle material 20 may be spirally wound around the intermittent fixing ribbon 10 . Alternatively, the optical fiber unit U may not have the bundle material 20 . In this case, for example, the intermittently fixed tape core wires 10 may be bundled by twisting a plurality of the intermittently fixed tape core wires 10 in the optical fiber unit U.
 なお、光ファイバ集合体1は、光ファイバユニットUを有していなくてもよい。言い換えれば、複数の間欠固定テープ心線10は、光ファイバユニットUを構成していなくてもよい。つまり、光ファイバ集合体1は、押さえ巻き120や外被110が直接間欠固定テープ心線10を覆う構造を有していてもよい。
 また、図1に示す例では、内層ユニットUinは扇形に形成され、外層ユニットUoutは四角形に形成されている。図示の例に限られず、光ファイバユニットUの断面形状が円形、楕円形、若しくは多角形となっていてもよい。また、光ファイバ11は、バンドル材20で束ねられた状態であっても、バンドル材20を変形させながら外被110の内部において空いている空間に適宜移動する。このため、例えば図5に示すように、光ファイバユニットUの断面形状が崩れていてもよい。
The optical fiber assembly 1 may not have the optical fiber unit U. In other words, the plurality of intermittently fixed ribbon core wires 10 may not constitute the optical fiber unit U. In other words, the optical fiber assembly 1 may have a structure in which the pressure wrap 120 or the jacket 110 directly covers the intermittent fixing tape core wire 10 .
Further, in the example shown in FIG. 1, the inner layer unit Uin is formed in a fan shape, and the outer layer unit Uout is formed in a square shape. The cross-sectional shape of the optical fiber unit U is not limited to the illustrated example, and may be circular, elliptical, or polygonal. Further, even when the optical fiber 11 is bundled with the bundle material 20 , the bundle material 20 is deformed, and the optical fiber 11 appropriately moves to an empty space inside the jacket 110 . Therefore, for example, as shown in FIG. 5, the cross-sectional shape of the optical fiber unit U may be deformed.
 図3に示すように、各間欠固定テープ心線10は、複数(図示の例において12個)の光ファイバ11および複数の固定部12を含む。各光ファイバ11は、コアおよびクラッドを有する。クラッドの外周には、例えば樹脂等の被覆層が設けられている。光ファイバ集合体1を構成する前の状態では、間欠固定テープ心線10における複数の光ファイバ11は一列に並んでいる。これにより、間欠固定テープ心線10はテープ状の形状を有する。以下、説明を容易とするために、間欠固定テープ心線10において光ファイバ11が並ぶ方向をテープ幅方向Wと称する場合がある。 As shown in FIG. 3 , each intermittently fixed ribbon core 10 includes a plurality of (12 in the illustrated example) optical fibers 11 and a plurality of fixing portions 12 . Each optical fiber 11 has a core and a cladding. A coating layer such as resin is provided on the outer periphery of the clad. Before the optical fiber assembly 1 is formed, the plurality of optical fibers 11 in the intermittently fixed tape cable core 10 are arranged in a row. Thereby, the intermittently fixed tape core wire 10 has a tape-like shape. Hereinafter, the direction in which the optical fibers 11 are arranged in the intermittently fixed fiber ribbon 10 may be referred to as the tape width direction W for ease of explanation.
 各固定部12は、テープ幅方向Wにおいて隣接する2つの光ファイバ11を互いに固定する。隣接する2つの光ファイバ11同士の間には、隙間が設けられていてもよい。この場合、その隙間には複数の固定部12が長手方向Zに間欠的に配置される。あるいは、隣接する2つの光ファイバ11同士の間に隙間が無くてもよい。また、2つの光ファイバ11が長手方向Zにおいて連続的に固定されて光ファイバ組を構成しており、複数の光ファイバ組が複数の固定部12によって間欠的に固定されていてもよい。
 図3に示すように、複数の固定部12は、長手方向Zおよびテープ幅方向Wに2次元的に間欠的に配置されている。なお、固定部12の配置は、図3の例に限定されず、適宜変更可能である。また、固定部12の配置パターンは、長手方向Zもしくはテープ幅方向Wにおいて、一定のパターンでなくてもよい。固定部12の配置パターンは、異なる間欠固定テープ心線10間において、一定のパターンでなくてもよい。固定部12の材質としては、例えばUV硬化型樹脂を採用してもよい。ただし、隣接する光ファイバを固定可能であれば、固定部12の材質は特に限定されず、適宜変更可能である。
Each fixing portion 12 fixes two optical fibers 11 adjacent in the tape width direction W to each other. A gap may be provided between two adjacent optical fibers 11 . In this case, a plurality of fixing portions 12 are intermittently arranged in the longitudinal direction Z in the gap. Alternatively, there may be no gap between two adjacent optical fibers 11 . Alternatively, two optical fibers 11 may be continuously fixed in the longitudinal direction Z to form an optical fiber set, and a plurality of optical fiber sets may be intermittently fixed by a plurality of fixing portions 12 .
As shown in FIG. 3, the plurality of fixing portions 12 are two-dimensionally intermittently arranged in the longitudinal direction Z and the tape width direction W. As shown in FIG. Note that the arrangement of the fixing portion 12 is not limited to the example in FIG. 3, and can be changed as appropriate. Also, the arrangement pattern of the fixed portions 12 may not be a constant pattern in the longitudinal direction Z or the tape width direction W. The arrangement pattern of the fixing portions 12 does not have to be a constant pattern between different intermittently fixed tape core wires 10 . As the material of the fixed part 12, for example, a UV curable resin may be adopted. However, the material of the fixing portion 12 is not particularly limited as long as the adjacent optical fibers can be fixed, and can be changed as appropriate.
 図4に示すように、光ファイバ集合体1において、複数の光ファイバユニットUおよびそれらに含まれる複数の間欠固定テープ心線10は、SZ状に撚り合わされている。より詳細には、光ファイバ集合体1は、順撚り部31および逆撚り部32を含む周期30が長手方向Zにおいて繰り返されるSZ撚り構造を有する。周期30は、撚りピッチ30とも称される。順撚り部31および逆撚り部32の各々においては、複数の光ファイバユニットUおよびそれらに含まれる複数の間欠固定テープ心線10が、互いに撚り合わされている。より詳細には、順撚り部31および逆撚り部32の各々において、各光ファイバユニットU(間欠固定テープ心線10)は、光ファイバ集合体1の中心軸線Oまわりに巻回されている。図4に示すように、順撚り部31において光ファイバ集合体1が撚り合わされる向きと、逆撚り部32において光ファイバ集合体1が撚り合わされる向きとは、互いに逆向きである。なお、順撚り部31および逆撚り部32において、内層ユニットUinの撚り角(巻回角)と外層ユニットUoutの撚り角(巻回角)とは等しくてもよいし、異なっていてもよい。 As shown in FIG. 4, in the optical fiber assembly 1, the plurality of optical fiber units U and the plurality of intermittently fixed tape core wires 10 included therein are twisted in an SZ shape. More specifically, the optical fiber assembly 1 has an SZ-twisted structure in which a period 30 including forward-twisted portions 31 and reverse-twisted portions 32 is repeated in the longitudinal direction Z. FIG. Period 30 is also referred to as twist pitch 30 . In each of the forward-twisted portion 31 and the reverse-twisted portion 32, a plurality of optical fiber units U and a plurality of intermittently fixed fiber ribbons 10 included therein are twisted together. More specifically, each optical fiber unit U (intermittently fixed tape core wire 10 ) is wound around the central axis O of the optical fiber assembly 1 in each of the forward twisted portion 31 and the reverse twisted portion 32 . As shown in FIG. 4, the direction in which the optical fiber assembly 1 is twisted in the forward twisting portion 31 and the direction in which the optical fiber assembly 1 is twisted in the reverse twisting portion 32 are opposite to each other. In the normal twisted portion 31 and the reverse twisted portion 32, the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout may be equal or different.
 ここで、本明細書では、以降の説明を容易とするために、光ファイバ集合体1について、図4に示すように反転領域41および回転領域42を定義する。反転領域41は、順撚り部31と逆撚り部32との境界Bを中心として長手方向Zに広がる領域である。つまり、反転領域41は、間欠固定テープ心線10が撚り合わされる向きが反転する領域である。反転領域41の長手方向Zにおける寸法は、周期(撚りピッチ)30の寸法をPとして、P/4である。回転領域42は、反転領域41以外の領域である。言い換えれば、回転領域42は、反転領域41の間に位置する領域である。回転領域42は、間欠固定テープ心線10が一つの向きに撚り合わされる(巻回される)領域である。光ファイバ集合体1においては、反転領域41と回転領域42とが長手方向Zにおいて交互に繰り返される。 Here, in this specification, for the purpose of facilitating the following description, the reversal region 41 and the rotation region 42 are defined for the optical fiber assembly 1 as shown in FIG. The reversal region 41 is a region that extends in the longitudinal direction Z around the boundary B between the forward twisted portion 31 and the reverse twisted portion 32 . In other words, the reversal region 41 is a region in which the direction in which the intermittently fixed fiber ribbons 10 are twisted is reversed. The dimension of the reversed region 41 in the longitudinal direction Z is P/4, where P is the dimension of the period (twist pitch) 30 . A rotation area 42 is an area other than the inversion area 41 . In other words, the rotation area 42 is an area located between the inversion areas 41 . The rotation area 42 is an area in which the intermittently fixed ribbon core 10 is twisted (wound) in one direction. In the optical fiber assembly 1, the reversal regions 41 and the rotation regions 42 are alternately repeated in the longitudinal direction Z. As shown in FIG.
 図5に示すように、本実施形態に係る光ファイバ集合体1において、複数の間欠固定テープ心線10は、横断面視において崩れた状態で積層されている。図5において、同一の間欠固定テープ心線10に属する光ファイバ11は、実線によって結ばれている。なお、「崩れた状態」とは、光ファイバ集合体1に含まれる少なくとも1つの間欠固定テープ心線10が湾曲している状態を意味する。また、間欠固定テープ心線10が積層された形状は、反転領域41における横断面と回転領域42における横断面とで異なる。言い換えれば、間欠固定テープ心線10の崩れ状態は、反転領域41と回転領域42とで異なる。さらに言い換えれば、光ファイバ集合体1の断面形状は、反転領域41と回転領域42とで異なる。 As shown in FIG. 5, in the optical fiber assembly 1 according to the present embodiment, the plurality of intermittently fixed tape core wires 10 are stacked in a collapsed state when viewed in cross section. In FIG. 5, the optical fibers 11 belonging to the same intermittent fixing ribbon 10 are connected by solid lines. In addition, the “collapsed state” means a state in which at least one intermittent fixing tape core wire 10 included in the optical fiber assembly 1 is curved. Also, the shape of the laminated intermittent fixing ribbons 10 differs between the cross section in the reversal region 41 and the cross section in the rotation region 42 . In other words, the collapsed state of the intermittently fixed ribbon core 10 differs between the reversal region 41 and the rotation region 42 . In other words, the cross-sectional shape of the optical fiber assembly 1 differs between the reversed region 41 and the rotated region 42 .
 本明細書では、間欠固定テープ心線10の崩れ状態を評価するために、以下のように定義されるベクトルMG、GU、GUin、GUout、およびスカラー量L、Lin、Loutを導入する。ここで、図6は、図5に示す光ファイバ集合体1(光ファイバユニットU)の横断面図を、xy平面上にプロットした図である。図6においては、光ファイバユニットUに含まれる6つの間欠固定テープ心線10の各々を、第1テープ~第6テープと称している。 In this specification, vectors MG, GU, GUin, and GUout and scalar quantities L, Lin, and Lout defined as follows are introduced in order to evaluate the state of collapse of the intermittent fixation ribbon core 10 . Here, FIG. 6 is a cross-sectional view of the optical fiber assembly 1 (optical fiber unit U) shown in FIG. 5 plotted on the xy plane. In FIG. 6, each of the six intermittently fixed tape core wires 10 included in the optical fiber unit U is called a first tape to a sixth tape.
 ベクトルMGは、光ファイバ集合体1の長手方向Zにおける各位置について、間欠固定テープ心線10ごとに定義されるベクトル量である。横断面において、間欠固定テープ心線10を構成する光ファイバ11のうち両端に位置する2つの光ファイバ11の中点をMとし、間欠固定テープ心線10の重心をGとする。図6に示すように、ベクトルMGは、中点Mを始点とし、重心Gを終点とするベクトルである。図6においては、第1テープについて定義されるベクトルMGをベクトルMG1と称し、第2テープについて定義されるベクトルMGをベクトルMG2と称している。第3テープ~第6テープについても同様である。なお、間欠固定テープ心線10が崩れている(湾曲している)状態において、中点Mと重心Gとが一致することは極めて稀である。 The vector MG is a vector quantity defined for each intermittently fixed tape core wire 10 at each position in the longitudinal direction Z of the optical fiber assembly 1 . Let M be the middle point of the two optical fibers 11 positioned at both ends of the optical fibers 11 forming the intermittent fixing tape core wire 10 in the cross section, and let G be the center of gravity of the intermittent fixing tape core wire 10 . As shown in FIG. 6, the vector MG is a vector starting at the midpoint M and ending at the center of gravity G. As shown in FIG. In FIG. 6, the vector MG defined for the first tape is called vector MG1, and the vector MG defined for the second tape is called vector MG2. The same applies to the third to sixth tapes. It is extremely rare for the midpoint M and the center of gravity G to coincide with each other when the intermittent fixing tape cord 10 is collapsed (curved).
 ベクトルGU、GUin、GUoutは、光ファイバ集合体1の長手方向Zにおける各位置について定義されるベクトル量である。ベクトルGUは、ベクトルMGを光ファイバ集合体1に含まれる間欠固定テープ心線10の全てについて合成して得られるベクトルである。ベクトルGUinは、ベクトルMGを全ての内層ユニットUinに含まれる間欠固定テープ心線10の全てについて合成して得られるベクトルである。ベクトルGUoutは、全ての外層ユニットUoutに含まれる間欠固定テープ心線10の全てについて合成して得られるベクトルである。 Vectors GU, GUin, and GUout are vector quantities defined for each position in the longitudinal direction Z of the optical fiber assembly 1 . The vector GU is a vector obtained by synthesizing the vector MG for all the intermittently fixed tape core wires 10 included in the optical fiber assembly 1 . The vector GUin is a vector obtained by synthesizing the vector MG for all the intermittently fixed fiber ribbons 10 included in all the inner layer units Uin. Vector GUout is a vector obtained by synthesizing all intermittently fixed fiber ribbons 10 included in all outer layer units Uout.
 ここで、先述した「間欠固定テープ心線10の崩れ状態は、反転領域41と回転領域42とで異なる」との特徴は、ベクトルGUを用いて、次のように言い換えることもできる。つまり、反転領域41におけるベクトルGUは、反転領域41と長手方向Zにおいて隣接する2つの回転領域42のうち一方におけるベクトルGUと、反転領域41と長手方向Zにおいて隣接する2つの回転領域42のうち他方におけるベクトルGUと、のいずれとも異なる。 Here, the feature that "the state of collapse of the intermittently fixed ribbon core 10 differs between the reversal region 41 and the rotation region 42" described above can be rephrased as follows using the vector GU. That is, the vector GU in the reverse region 41 is the vector GU in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z, and the vector GU in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z vector GU on the other.
 スカラー量L、Lin、Loutは、光ファイバ集合体1の長手方向Zにおける各位置について定義されるスカラー量である。スカラー量Lは、ベクトルGUの大きさである。スカラー量Linは、ベクトルGUinの大きさである。スカラー量Loutは、ベクトルGUoutの大きさである。上記した定義からわかるように、スカラー量Lは、間欠固定テープ心線10の崩れ状態を特徴づける量である。より具体的には、スカラー量Lが大きいほど、間欠固定テープ心線10が大きく崩れていると考えられる。これは、間欠固定テープ心線10の湾曲が大きいほど(間欠固定テープ心線10が崩れているほど)ベクトルMGの大きさが大きくなり、ベクトルMGを合成したベクトルであるベクトルGUのスカラー量(大きさ)Lも大きくなると考えられるためである。 The scalar quantities L, Lin, and Lout are scalar quantities defined for each position in the longitudinal direction Z of the optical fiber assembly 1 . The scalar quantity L is the magnitude of vector GU. The scalar quantity Lin is the magnitude of the vector GUin. The scalar quantity Lout is the magnitude of the vector GUout. As can be seen from the above definition, the scalar quantity L is a quantity that characterizes the collapsed state of the intermittently fixed fiber ribbon 10 . More specifically, the greater the scalar amount L, the more the intermittently fixed fiber ribbon 10 is considered to have collapsed. This is because the larger the curvature of the intermittently fixed optical fiber ribbon 10 (the more the intermittently fixed optical fiber ribbon 10 is collapsed), the larger the magnitude of the vector MG, and the scalar amount of the vector GU, which is a vector obtained by combining the vectors MG ( This is because it is thought that the size) L will also increase.
 以下、具体的な実施例を用いて、上記実施形態を説明する。なお、本発明は以下の実施例に限定されない。 The above embodiments will be described below using specific examples. In addition, the present invention is not limited to the following examples.
(実施例1)
 実施例1に係る光ファイバ集合体1および光ファイバケーブル100として、前記実施形態に係る864心の光ファイバ集合体および光ファイバケーブルを作成した。実施例1に係る光ファイバ集合体1は、12個の光ファイバユニットUを有していた。各光ファイバユニットUは、バンドル材20によって束ねられた6つの間欠固定テープ心線10を有していた。各間欠固定テープ心線10は、12個の光ファイバ11を含んでいた。また、長手方向Zにおける各位置において、内層ユニットUinの撚り角(巻回角)と外層ユニットUoutの撚り角(巻回角)とは、互いに略等しいとみなせた。外被110の外径は18.2mm、外被110の内径は11.5mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約11.1mmとなった。
(Example 1)
As the optical fiber assembly 1 and the optical fiber cable 100 according to Example 1, an 864-core optical fiber assembly and an optical fiber cable according to the above embodiment were produced. The optical fiber assembly 1 according to Example 1 had 12 optical fiber units U. As shown in FIG. Each optical fiber unit U had six intermittently fixed tape core wires 10 bundled with a bundle material 20 . Each intermittent fixing tape core wire 10 contained 12 optical fibers 11 . Also, at each position in the longitudinal direction Z, the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout were considered to be substantially equal. The outer diameter of the jacket 110 was 18.2 mm, and the inner diameter of the jacket 110 was 11.5 mm. The thickness of the pressure winding 120 was set to 0.2 mm. The outer diameter of the optical fiber assembly 1 was approximately 11.1 mm.
 表1は、実施例1に係る光ファイバ集合体1の長手方向Zにおいて略等間隔をあけて並ぶ各位置について、スカラー量L、Lin、Loutを計測した結果をまとめた表である。より詳しくは、スカラー量L等の計測は、長手方向Zにおいて連続する4つの周期(撚りピッチ)30に含まれる反転領域41および回転領域42について行われた。図7は、表1をグラフにして示す図である。なお、表1および図7において、計測対象に含まれる9つの反転領域41の各々を、+Zの向きにおいて順に、第1反転領域~第9反転領域と称している。同様に、8つの回転領域42の各々を、第1回転領域~第8回転領域と称している。 Table 1 is a table summarizing the results of measuring the scalar amounts L, Lin, and Lout at positions arranged at approximately equal intervals in the longitudinal direction Z of the optical fiber assembly 1 according to Example 1. More specifically, the measurement of the scalar amount L and the like was performed for the reversal region 41 and the rotation region 42 included in four continuous cycles (twisting pitches) 30 in the longitudinal direction Z. As shown in FIG. FIG. 7 is a diagram showing Table 1 as a graph. In Table 1 and FIG. 7, each of the nine reversal regions 41 included in the measurement target is called a first reversal region to a ninth reversal region in order in the +Z direction. Similarly, each of the eight rotation areas 42 is called a first rotation area to an eighth rotation area.
 なお、各位置におけるスカラー量L等の計測は、光ファイバ集合体1の断面を長手方向Zにおいて一定間隔で撮影し、当該撮影によって得られた画像をxy平面上にトレースすることによって行われた。より具体的には、スカラー量L等の計測は以下の手順で行われた。すなわち、間欠固定テープ心線10(光ファイバユニットU)の所定の光ファイバ11に対し光を入射し、入射した光を伝搬する光ファイバ11を含む光ファイバユニットUがどのように撚られているかを解析することで各間欠固定テープ心線10(光ファイバユニットU)の巻回角を確認し、反転領域41と回転領域42とを判別した。その後、光ファイバ集合体1をエポキシ樹脂で固め、長手方向Zにおける各位置で切断した。当該固めた光ファイバ集合体1を横断面が明瞭になるように研磨したのち、横断面の画像をマイクロスコープで撮影した。マイクロスコープによって得られた画像上で、各光ファイバ11の位置をxy平面上にプロットし、スカラー量L等を計測した。なお、エポキシ樹脂で光ファイバ集合体1を固定してから、光ファイバケーブル100を長手方向Zにおける各位置で切断してもよい。この場合、例えば光ファイバケーブル100の長手方向Zにおける一方の端部からエポキシ樹脂を注入し、他方の端部からエポキシ樹脂を吸引することで、外被110内にエポキシ樹脂を充填してもよい。 The measurement of the scalar quantity L and the like at each position was performed by photographing the cross section of the optical fiber assembly 1 at regular intervals in the longitudinal direction Z and tracing the images obtained by the photographing on the xy plane. . More specifically, the measurement of the scalar quantity L and the like was performed in the following procedure. That is, light is incident on predetermined optical fibers 11 of the intermittent fixing tape core wire 10 (optical fiber unit U), and how the optical fiber unit U including the optical fiber 11 that propagates the incident light is twisted. was analyzed to confirm the winding angle of each intermittent fixing tape core wire 10 (optical fiber unit U), and to discriminate between the reversal region 41 and the rotation region 42 . After that, the optical fiber assembly 1 was hardened with an epoxy resin and cut at each position in the longitudinal direction Z. After polishing the hardened optical fiber assembly 1 so that the cross section was clear, an image of the cross section was taken with a microscope. The position of each optical fiber 11 was plotted on the xy plane on the image obtained by the microscope, and the scalar amount L and the like were measured. Alternatively, the optical fiber cable 100 may be cut at each position in the longitudinal direction Z after the optical fiber assembly 1 is fixed with epoxy resin. In this case, the sheath 110 may be filled with the epoxy resin, for example, by injecting the epoxy resin from one end in the longitudinal direction Z of the optical fiber cable 100 and sucking the epoxy resin from the other end. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から見て取れるように、実施例1に係る光ファイバ集合体1においては、全ての反転領域41におけるスカラー量Lの平均値が、全ての回転領域42におけるスカラー量Lの平均値よりも大きい。また、図7から見て取れるように、反転領域41におけるスカラー量Lは、当該反転領域41に隣接する2つの回転領域42のうち一方におけるスカラー量Lと、2つの回転領域42のうち他方におけるスカラー量Lと、のうち少なくとも一方よりも大きい。つまり、N番目の反転領域41におけるスカラー量Lは、N-1番目の回転領域42におけるスカラー量Lと、N番目の回転領域42におけるスカラー量Lと、のうち少なくとも一方よりも大きい。言い換えれば、スカラー量Lは、反転領域41において極小とならない。 As can be seen from Table 1, in the optical fiber assembly 1 according to Example 1, the average value of the scalar amounts L in all the inversion regions 41 is larger than the average value of the scalar amounts L in all the rotation regions 42 . Also, as can be seen from FIG. 7, the scalar quantity L in the inversion region 41 is the scalar quantity L in one of the two rotation regions 42 adjacent to the inversion region 41 and the scalar quantity L in the other of the two rotation regions 42 is greater than at least one of L and That is, the scalar amount L in the Nth inversion area 41 is greater than at least one of the scalar amount L in the (N−1)th rotation area 42 and the scalar amount L in the Nth rotation area 42 . In other words, the scalar quantity L does not become minimum in the inversion region 41 .
 また、図7から見て取れるように、第2反転領域のスカラー量Lは、第2反転領域に隣接する第1回転領域のスカラー量Lと第2回転領域のスカラー量Lとのいずれよりも大きい。本明細書では、長手方向Zにおいて隣接する2つの回転領域42のうち一方におけるスカラー量Lと、2つの回転領域42のうち他方におけるスカラー量Lと、のいずれよりも大きいスカラー量Lを有する反転領域41を、特に極大反転領域41Mと称する場合がある。図7から見て取れるように、実施例1に係る光ファイバ集合体1においては、第2反転領域、第6反転領域、第7反転領域、および第8反転領域の4つの反転領域41が極大反転領域41Mに該当する。また、極大反転領域41Mの個数(4つ)は、反転領域41の個数(9つ)の1/3以上である。 Also, as can be seen from FIG. 7, the scalar amount L of the second inverted area is larger than both the scalar amount L of the first rotated area adjacent to the second inverted area and the scalar amount L of the second rotated area. Herein, a reversal having a scalar quantity L that is greater than the scalar quantity L in one of the two rotational regions 42 adjacent in the longitudinal direction Z and the scalar quantity L in the other of the two rotational regions 42 The region 41 may be particularly referred to as a maximum inversion region 41M. As can be seen from FIG. 7, in the optical fiber assembly 1 according to Example 1, the four inversion regions 41 of the second inversion region, the sixth inversion region, the seventh inversion region, and the eighth inversion region are the maximum inversion regions. 41M. Also, the number (four) of the maximum inversion regions 41M is ⅓ or more of the number (nine) of the inversion regions 41 .
 図8A~図8Dは、2つの回転領域および2つの反転領域について、ベクトルGU、GUin、GUoutの各々を示す図である。なお、図8A~図8Dに示す4つの領域は、図8Aに示す回転領域、図8Bに示す反転領域、図8Cに示す回転領域、図8Dに示す反転領域、の順に長手方向Zにおいて連続している。また、図8Aおよび図8Cにおいて、符号Tで示す矢印は、当該回転領域において複数の間欠固定テープ心線が撚り合わされる向き、すなわち、各光ファイバユニット(間欠固定テープ心線)の回転する(巻回される)向きを示している。 FIGS. 8A to 8D are diagrams showing vectors GU, GUin, and GUout, respectively, for two rotation regions and two flip regions. The four regions shown in FIGS. 8A to 8D are continuous in the longitudinal direction Z in the order of the rotation region shown in FIG. 8A, the reversal region shown in FIG. 8B, the rotation region shown in FIG. 8C, and the reversal region shown in FIG. 8D. ing. In addition, in FIGS. 8A and 8C, the arrow indicated by symbol T indicates the direction in which a plurality of intermittently fixed tape core wires are twisted in the rotation region, that is, the direction in which each optical fiber unit (intermittently fixed tape core wire) rotates ( winding direction).
 図8A~図8Dから見て取れるように、反転領域において、ベクトルGUinとベクトルGUoutとは、略同じ向きを向いている。より具体的には、ベクトルGUinとベクトルGUoutとがなす角は、90°以下である。 As can be seen from FIGS. 8A to 8D, the vector GUin and the vector GUout point in substantially the same direction in the inversion area. More specifically, the angle formed by vector GUin and vector GUout is 90° or less.
 なお、スカラー量L、ベクトルGUin、GUoutに関する上記した関係が成立するよう、間欠固定テープ心線10の崩れ状態を変化させるために、光ファイバ集合体1の製造過程において、例えば以下に示す手法が用いられる。言い換えれば、反転領域41におけるベクトルGUを、反転領域41と長手方向Zにおいて隣接する2つの回転領域42のうち一方におけるベクトルGUと、反転領域41と長手方向Zにおいて隣接する2つの回転領域42のうち他方におけるベクトルGUと、のいずれとも異ならせるために、以下に示す手法が用いられる。
 第1の手法は、光ファイバユニットUおよび間欠固定テープ心線10をSZ状に撚り合わせる過程において、光ファイバユニットUおよび間欠固定テープ心線10に加えられる張力を時間的に変化させる手法である。第2の手法は、光ファイバユニットUおよび間欠固定テープ心線10をSZ状に撚り合わせる際に用いる目板の回転速度を時間的に変化させる手法である。第3の手法は、上記目板に形成され、各々に光ファイバユニットUおよび間欠固定テープ心線10が挿通される複数の貫通孔について、各貫通孔と目板の中心との間の距離を異ならせる手法である。第4の手法は、上記複数の貫通孔について、各貫通孔の形状や大きさを異ならせる手法である。第5の手法は、撚り合わせの向きを反転させる際の(上記目板の回転の)一時停止の時間の長さを調整する手法である。第6の手法は、互いに心数の異なる光ファイバユニットU同士を隣接させて配置する手法である。なお、上記した第1の手法~第6の手法は一例であり、スカラー量L、ベクトルGUin、GUoutに関する上記した関係が成立する光ファイバ集合体1を製造できれば、他の手法が用いられてもよい。また、上記した手法のうちいくつかの手法が組み合わされて用いられてもよい。
In order to change the collapsed state of the intermittently fixed fiber ribbon 10 so that the above-described relationship of the scalar quantity L and the vectors GUin and GUout is established, the following method may be used in the manufacturing process of the optical fiber assembly 1. Used. In other words, the vector GU in the reverse region 41 is the vector GU in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z, and the vector GU in the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z. In order to make it different from the vector GU in the other, the technique shown below is used.
The first method is to change the tension applied to the optical fiber units U and the intermittently fixed tape core wires 10 with time in the process of twisting the optical fiber units U and the intermittently fixed tape core wires 10 in an SZ shape. . A second technique is to temporally change the rotation speed of battens used when the optical fiber units U and the intermittently fixed fiber ribbons 10 are twisted together in an SZ shape. A third method is to determine the distance between each through-hole and the center of the batten plate for a plurality of through-holes formed in the batten plate and through which the optical fiber unit U and the intermittent fixing tape core wire 10 are inserted. It is a method to make it different. A fourth technique is to vary the shape and size of each of the plurality of through holes. A fifth technique is to adjust the length of the pause time (the rotation of the battens) when reversing the twisting direction. A sixth method is a method of arranging optical fiber units U having different numbers of cores adjacent to each other. It should be noted that the above-described first to sixth methods are examples, and other methods may be used as long as the optical fiber assembly 1 that satisfies the above-described relationships regarding the scalar quantity L, the vectors GUin, and GUout can be manufactured. good. Also, some of the methods described above may be used in combination.
(実施例2)
 実施例2に係る光ファイバ集合体1および光ファイバケーブル100として、前記実施形態に係る288心の光ファイバ集合体および光ファイバケーブルを作成した。実施例2に係る光ファイバ集合体1は、24個の間欠固定テープ心線10を有していた。各間欠固定テープ心線10は、12個の光ファイバ11を含んでいた。また、光ファイバ集合体1は、バンドル材20を有しておらず、24個の間欠固定テープ心線10がSZ状に撚り合わされることによって結束されていた。言い換えれば、間欠固定テープ心線10は光ファイバユニットUを形成していなかった。外被110の外径は11.8mm、外被110の内径は7.0mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約6.6mmとなった。
(Example 2)
As an optical fiber assembly 1 and an optical fiber cable 100 according to Example 2, an optical fiber assembly and an optical fiber cable of 288 fibers according to the above embodiment were produced. The optical fiber assembly 1 according to Example 2 had 24 intermittently fixed tape core wires 10 . Each intermittent fixing tape core wire 10 contained 12 optical fibers 11 . Moreover, the optical fiber assembly 1 does not have the bundle material 20, and is bundled by twisting 24 intermittently fixed tape core wires 10 in an SZ shape. In other words, the intermittent fixing tape cable core 10 did not form the optical fiber unit U. The outer diameter of the jacket 110 was 11.8 mm, and the inner diameter of the jacket 110 was 7.0 mm. The thickness of the pressure winding 120 was set to 0.2 mm. The outer diameter of the optical fiber assembly 1 was approximately 6.6 mm.
 表2は、実施例2に係る光ファイバ集合体1の長手方向Zにおいて略等間隔をあけて並ぶ各位置について、スカラー量Lを計測した結果をまとめた表である。より詳しくは、スカラー量L等の計測は、長手方向Zにおいて連続する5つの周期(撚りピッチ)30に含まれる反転領域41および回転領域42について行われた。図9は、表2をグラフにして示す図である。なお、表2および図9において、計測対象に含まれる10個の反転領域41の各々を、+Zの向きにおいて順に、第1反転領域~第10反転領域と称している。同様に、11個の回転領域42の各々を、第1回転領域~第11回転領域と称している。なお、スカラー量L等の計測方法の詳細は、実施例1における場合と同様であった。 Table 2 is a table summarizing the results of measuring the scalar amount L for each position arranged at approximately equal intervals in the longitudinal direction Z of the optical fiber assembly 1 according to Example 2. More specifically, the measurement of the scalar amount L and the like was performed for the reversal regions 41 and the rotation regions 42 included in five consecutive cycles (twisting pitches) 30 in the longitudinal direction Z. FIG. 9 is a diagram showing Table 2 as a graph. In Table 2 and FIG. 9, each of the 10 reversed regions 41 included in the measurement target is called a first reversed region to a tenth reversed region in order in the +Z direction. Similarly, each of the 11 rotation areas 42 is called a first rotation area to an 11th rotation area. The details of the method for measuring the scalar quantity L and the like were the same as those in the first embodiment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から見て取れるように、間欠固定テープ心線10が光ファイバユニットUを構成していない実施例2においても、実施例1と同様に、全ての反転領域41におけるスカラー量Lの平均値が、全ての回転領域42におけるスカラー量Lの平均値よりも大きい。 As can be seen from Table 2, even in Example 2, in which the intermittent fixing tape core wire 10 does not constitute the optical fiber unit U, the average value of the scalar amount L in all the inversion regions 41 is It is larger than the average value of the scalar quantity L in all rotation areas 42 .
 また、図9から見て取れるように、実施例2に係る光ファイバ集合体1においては、第1反転領域、第2反転領域、第3反転領域、第4反転領域、第7反転領域、および第10反転領域が極大反転領域41Mに該当する。また、極大反転領域41Mの個数(6つ)は、反転領域41の個数(10個)の1/3以上である。 Moreover, as can be seen from FIG. 9, in the optical fiber assembly 1 according to Example 2, the first inversion region, the second inversion region, the third inversion region, the fourth inversion region, the seventh inversion region, and the tenth inversion region The inversion area corresponds to the maximum inversion area 41M. Also, the number (six) of the maximum inversion regions 41M is ⅓ or more of the number (ten) of the inversion regions 41 .
 次に、以上のように構成された光ファイバ集合体1の作用について説明する。 Next, the operation of the optical fiber assembly 1 configured as above will be described.
 従来、外被によって一括被覆された複数の光ファイバユニットを有する光ファイバケーブル(光ファイバ集合体)が知られている。このような光ファイバケーブルにおいて、曲げが生じたり、低温環境下での外被の収縮が生じたりした場合、特定の間欠固定テープ心線や光ファイバに歪みが集中する場合があった。このような歪みの集中は、光ファイバケーブル(光ファイバ集合体)の最大伝送損失の増大をもたらす場合があった。また、上記のような特定の間欠固定テープ心線(光ファイバ)への歪みの集中は、光ファイバケーブル(光ファイバ集合体)の断面形状、すなわち光ファイバユニット(間欠固定テープ心線)の崩れ状態が長い区間一定である場合に特に生じやすい。言い換えれば、特定の間欠固定テープ心線への歪みの集中は、長い区間同じ崩れ状態が連続する場合に特に生じやすい。 Conventionally, an optical fiber cable (optical fiber assembly) having a plurality of optical fiber units collectively covered with a jacket is known. In such an optical fiber cable, when bending occurs or when the jacket shrinks in a low-temperature environment, strain may concentrate on a specific intermittently fixed tape core wire or optical fiber. Such strain concentrations have sometimes resulted in an increase in the maximum transmission loss of the fiber optic cable (optical fiber assembly). In addition, the concentration of strain on a specific intermittently fixed tape core wire (optical fiber) as described above causes the collapse of the cross-sectional shape of the optical fiber cable (optical fiber assembly), that is, the optical fiber unit (intermittently fixed tape core wire). This is particularly likely to occur when the state is constant over a long period of time. In other words, concentration of strain on a specific intermittently fixed tape core wire is particularly likely to occur when the same collapsed state continues for a long section.
 これに対して本実施形態に係る光ファイバ集合体1においては、全ての反転領域41におけるスカラー量Lの平均値が、全ての回転領域42におけるスカラー量Lの平均値よりも大きい。つまり、反転領域41と回転領域42とで、光ファイバ集合体1の断面形状、すなわち、間欠固定テープ心線10の崩れ状態が異なる。したがって、間欠固定テープ心線10の崩れ状態が長手方向Zにおいて一定になりにくく、特定の間欠固定テープ心線10や光ファイバ11に歪みが集中することを抑制できる。これにより、光ファイバ集合体1の最大伝送損失の増大を抑制することができる。 On the other hand, in the optical fiber assembly 1 according to the present embodiment, the average value of the scalar quantities L in all the reversal regions 41 is larger than the average value of the scalar quantities L in all the rotation regions 42 . That is, the cross-sectional shape of the optical fiber assembly 1 , that is, the collapsed state of the intermittently fixed tape core wires 10 differs between the reversal region 41 and the rotation region 42 . Therefore, the collapsed state of the intermittently fixed optical fiber ribbon 10 is unlikely to be constant in the longitudinal direction Z, and concentration of strain on a specific intermittently fixed optical fiber ribbon 10 or optical fiber 11 can be suppressed. Thereby, an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed.
 以上説明したように、本実施形態に係る光ファイバ集合体1は、複数の光ファイバ11および複数の光ファイバ11を長手方向Zにおいて間欠的に固定する複数の固定部12を含む複数の間欠固定テープ心線10を備え、複数の間欠固定テープ心線10が撚り合わされた順撚り部31と、複数の間欠固定テープ心線10が順撚り部31とは逆向きに撚り合わされた逆撚り部32と、を含む周期30が長手方向Zにおいて繰り返されるSZ撚り構造を有し、長手方向Zにおける周期30の寸法をPとし、長手方向Zにおける寸法がP/4であり、かつ、長手方向Zにおける中心が順撚り部31と逆撚り部32との境界Bに位置する領域を反転領域41と称し、長手方向Zにおいて反転領域41の間に位置する領域を回転領域42と称し、横断面において、複数の間欠固定テープ心線10のうちの1つの間欠固定テープ心線10における、両端に位置する2つの光ファイバ11の中点をMとし、重心をGとし、中点Mを始点とし重心Gを終点とするベクトルをMGとし、ベクトルMGを複数の間欠固定テープ心線10の全てについて合成したベクトルをGUとし、ベクトルGUの大きさをスカラー量Lとするとき、全ての反転領域41におけるスカラー量Lの平均値が、全ての回転領域42におけるスカラー量Lの平均値よりも大きい。 As described above, the optical fiber assembly 1 according to the present embodiment includes a plurality of intermittently fixed portions including a plurality of optical fibers 11 and a plurality of fixing portions 12 for intermittently fixing the plurality of optical fibers 11 in the longitudinal direction Z. A forward twisted portion 31 having a tape core wire 10, in which a plurality of intermittently fixed tape core wires 10 are twisted together, and a reverse twisted portion 32 in which a plurality of intermittently fixed tape core wires 10 are twisted in a direction opposite to the normal twisted portion 31. and has an SZ twist structure in which the period 30 including and is repeated in the longitudinal direction Z, the dimension of the period 30 in the longitudinal direction Z is P, the dimension in the longitudinal direction Z is P / 4, and A region whose center is located at the boundary B between the normal twisted portion 31 and the reverse twisted portion 32 is called a reversed region 41, and a region located between the reversed regions 41 in the longitudinal direction Z is called a rotated region 42. In the cross section, Let M be the midpoint of two optical fibers 11 located at both ends of one of the plurality of intermittently fixed tape core wires 10, and let G be the center of gravity. is an end point, GU is a vector obtained by synthesizing the vector MG with respect to all the intermittently fixed fiber ribbons 10, and the magnitude of the vector GU is a scalar quantity L, a scalar in all the inversion regions 41 The average value of the quantity L is greater than the average value of the scalar quantity L in all rotation regions 42 .
 この構成により、特定の間欠固定テープ心線10や光ファイバ11に歪みが集中することを抑制し、光ファイバ集合体1の最大伝送損失の増大を抑制することができる。 With this configuration, it is possible to suppress concentration of strain on a specific intermittently fixed tape core wire 10 or optical fiber 11 and suppress an increase in the maximum transmission loss of the optical fiber assembly 1 .
 また、反転領域41におけるスカラー量Lは、反転領域41と長手方向Zにおいて隣接する2つの回転領域42のうち一方におけるスカラー量Lと、反転領域41と隣接する2つの回転領域42のうち他方におけるスカラー量Lと、のうち少なくとも一方よりも大きくてもよい。この構成によれば、光ファイバ集合体1の長手方向Zにおいて、より頻繁に間欠固定テープ心線10の崩れ状態が変化する。したがって、特定の間欠固定テープ心線10や光ファイバ11に歪みが集中することをより確実に抑制し、光ファイバ集合体1の最大伝送損失の増大をより確実に抑制することができる。 In addition, the scalar quantity L in the reverse region 41 is the scalar quantity L in one of the two rotational regions 42 adjacent to the reverse region 41 in the longitudinal direction Z, and the scalar quantity L in the other of the two rotational regions 42 adjacent to the reverse region 41 and at least one of the scalar quantity L. According to this configuration, in the longitudinal direction Z of the optical fiber assembly 1, the condition of intermittent fixing tape core wires 10 changes more frequently. Therefore, concentration of strain on the specific intermittent fixing ribbon 10 or optical fiber 11 can be more reliably suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be more reliably suppressed.
 また、複数の反転領域41は、少なくとも一つの極大反転領域41Mを含み、極大反転領域41Mにおけるスカラー量Lは、極大反転領域41Mと長手方向Zにおいて隣接する2つの回転領域42のうち一方におけるスカラー量Lと、極大反転領域41Mと隣接する2つの回転領域42のうち他方におけるスカラー量Lと、のいずれよりも大きくてもよい。この構成によれば、極大反転領域41Mにおいて、間欠固定テープ心線10の崩れ状態を大きく変化させることができる。したがって、特定の間欠固定テープ心線10や光ファイバ11に歪みが集中することをより確実に抑制し、光ファイバ集合体1の最大伝送損失の増大をより確実に抑制することができる。 In addition, the plurality of inversion regions 41 includes at least one maximum inversion region 41M, and the scalar amount L in the maximum inversion region 41M is a scalar value in one of the two rotation regions 42 adjacent to the maximum inversion region 41M in the longitudinal direction Z. It may be larger than both the quantity L and the scalar quantity L in the other of the two rotation regions 42 adjacent to the maximum inversion region 41M. According to this configuration, it is possible to greatly change the collapsed state of the intermittently fixed fiber ribbon 10 in the maximum inversion region 41M. Therefore, concentration of strain on the specific intermittent fixing ribbon 10 or optical fiber 11 can be more reliably suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be more reliably suppressed.
 また、極大反転領域41Mの個数は、反転領域41の個数の1/3以上であってもよい。この構成によれば、特定の間欠固定テープ心線10や光ファイバ11に歪みが集中することをさらに確実に抑制し、光ファイバ集合体1の最大伝送損失の増大をさらに確実に抑制することができる。 Also, the number of maximum inversion regions 41M may be ⅓ or more of the number of inversion regions 41 . According to this configuration, it is possible to more reliably suppress concentration of strain on the specific intermittently fixed tape core wire 10 and the optical fiber 11, and to further reliably suppress an increase in the maximum transmission loss of the optical fiber assembly 1. can.
 また、複数の間欠固定テープ心線10は、複数の光ファイバユニットUを形成しており、複数の光ファイバユニットUの各々において、複数の間欠固定テープ心線10のうち少なくとも二つ以上の間欠固定テープ心線10が束ねられていてもよい。この構成によれば、特定の光ファイバユニットUに歪みが集中することを抑制し、光ファイバ集合体1の最大伝送損失の増大を抑制することができる。 Further, the plurality of intermittently fixed tape core wires 10 form a plurality of optical fiber units U, and in each of the plurality of optical fiber units U, at least two or more of the plurality of intermittently fixed tape core wires 10 are intermittently The fixing tape cable core 10 may be bundled. According to this configuration, concentration of strain on a specific optical fiber unit U can be suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed.
 また、複数の光ファイバユニットUは、光ファイバ集合体1の外周に位置する複数の外層ユニットUoutと、複数の外層ユニットUoutによって取り囲まれた少なくとも一つ以上の内層ユニットUinと、を含み、ベクトルMGを内層ユニットUinに含まれる複数の間欠固定テープ心線10の全てについて合成したベクトルをGUinとし、ベクトルMGを複数の外層ユニットUoutに含まれる複数の間欠固定テープ心線10の全てについて合成したベクトルをGUoutとするとき、反転領域41において、ベクトルGUinとベクトルGUoutとがなす角が90°以下であってもよい。この構成によれば、光ファイバ集合体1の最大伝送損失の増大をより確実に抑制することができる。 In addition, the plurality of optical fiber units U includes a plurality of outer layer units Uout located on the outer periphery of the optical fiber assembly 1 and at least one or more inner layer units Uin surrounded by the plurality of outer layer units Uout. Let GUin be a vector obtained by synthesizing MG for all of the plurality of intermittently fixed ribbon fibers 10 included in the inner layer unit Uin, and let GUin be a vector obtained by synthesizing MG for all of the plurality of intermittently fixed ribbon fibers 10 included in the plurality of outer layer units Uout. When the vector is GUout, the angle formed by the vector GUin and the vector GUout in the inversion area 41 may be 90° or less. According to this configuration, an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed more reliably.
 また、本実施形態に係る光ファイバケーブル100は、上記した光ファイバ集合体1と、光ファイバ集合体1を収容する外被110と、を備える。この構成によれば、光ファイバケーブル100の最大伝送損失の増大を抑制することができる。 Further, the optical fiber cable 100 according to this embodiment includes the above-described optical fiber assembly 1 and a jacket 110 that accommodates the optical fiber assembly 1 . According to this configuration, it is possible to suppress an increase in the maximum transmission loss of the optical fiber cable 100 .
 また、本実施形態に係る光ファイバ集合体1の製造方法は、反転領域41におけるベクトルGUを、反転領域41と長手方向Zにおいて隣接する2つの回転領域42のうち一方におけるベクトルGUと、反転領域41と隣接する2つの回転領域42のうち他方におけるベクトルGUと、のいずれとも異ならせる。この構成によれば、最大伝送損失の増大を抑制した光ファイバ集合体1を製造することができる。 Further, in the method for manufacturing the optical fiber assembly 1 according to the present embodiment, the vector GU in the reversal region 41 is the vector GU in one of the two reversal regions 42 adjacent to the reversal region 41 in the longitudinal direction Z, and the vector GU in the reversal region 41 and the vector GU in the other of the two adjacent rotation regions 42 are made different from each other. According to this configuration, it is possible to manufacture the optical fiber assembly 1 that suppresses an increase in maximum transmission loss.
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 It should be noted that the technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
 例えば、光ファイバ集合体1は、PPヤーンや吸水性ポリマー等の介在物(不図示)を有していてもよい。当該介在物は、隣接する光ファイバユニットU間に設けられていてもよいし、隣接する間欠固定テープ心線10間に設けられていてもよい。光ファイバ集合体1が上記の介在物を有している場合、光ファイバ集合体1の形状をより崩しやすくなる。したがって、光ファイバ集合体1の最大伝送損失の増大をより確実に抑制することができる。 For example, the optical fiber assembly 1 may have inclusions (not shown) such as PP yarns and water absorbing polymers. The inclusion may be provided between the adjacent optical fiber units U, or may be provided between the adjacent intermittently fixed tape core wires 10 . When the optical fiber assembly 1 has the above inclusions, the shape of the optical fiber assembly 1 is more likely to be deformed. Therefore, an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed more reliably.
 また、光ファイバ集合体1に含まれる光ファイバユニットUの数は11個以下であってもよいし、13個以上であってもよい。また、各光ファイバユニットUに含まれる間欠固定テープ心線10の数は2つ以上5つ以下であってもよいし、7つ以上であってもよい。また、各間欠固定テープ心線10に含まれる光ファイバ11の数は2つ以上11個以下であってもよいし、13個以上であってもよい。 Also, the number of optical fiber units U included in the optical fiber assembly 1 may be 11 or less, or may be 13 or more. Further, the number of the intermittently fixed fiber ribbons 10 included in each optical fiber unit U may be two or more and five or less, or may be seven or more. Further, the number of optical fibers 11 included in each intermittent fixing tape core wire 10 may be 2 or more and 11 or less, or may be 13 or more.
 また、光ファイバ集合体1に含まれる極大反転領域41Mの個数は、反転領域41の個数の1/3以上でなくてもよい。あるいは、光ファイバ集合体1は極大反転領域41Mを有していなくてもよい。 Also, the number of maximum inversion regions 41M included in the optical fiber assembly 1 does not have to be 1/3 or more of the number of inversion regions 41. Alternatively, the optical fiber assembly 1 may not have the maximum inversion region 41M.
 また、前記実施形態における、外被110、押さえ巻き120、抗張力体130、リップコード140等の光ファイバ集合体1以外の構成については全て一例であり、適宜変更可能である。例えば、本実施形態に係る光ファイバ集合体1を、ルースチューブケーブル等に適用してもよい。また、光ファイバ集合体1以外の上記構成はなくてもよい。つまり、光ファイバ集合体1は光ファイバケーブル100を構成していなくてもよい。 In addition, all configurations other than the optical fiber assembly 1, such as the jacket 110, the pressure wrap 120, the tensile strength member 130, and the ripcord 140 in the above embodiment, are examples, and can be changed as appropriate. For example, the optical fiber assembly 1 according to this embodiment may be applied to a loose tube cable or the like. Moreover, the above configuration other than the optical fiber assembly 1 may be omitted. In other words, the optical fiber assembly 1 does not have to constitute the optical fiber cable 100 .
 また、順撚り部31および逆撚り部32において内層ユニットUinの撚り角(巻回角)と外層ユニットUoutの撚り角(巻回角)とは等しく、内層ユニットUinの周期(撚りピッチ)と外層ユニットUoutの周期(撚りピッチ)は等しく、内層ユニットUinと外層ユニットUoutとにおける順撚り部31と逆撚り部32との境界Bの長手方向Zにおける位置が同等であってもよい。さらにこの構成に限られず、例えば、内層ユニットUinと外層ユニットUoutとにおける撚り角、撚りピッチ、または境界Bの位置は異なっていてもよい。 Further, in the forward twisted portion 31 and the reverse twisted portion 32, the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout are equal, and the cycle (twist pitch) of the inner layer unit Uin and the outer layer unit Uin are equal. The cycles (twisting pitches) of the units Uout may be the same, and the positions in the longitudinal direction Z of the boundaries B between the normal twisted portions 31 and the reverse twisted portions 32 in the inner layer units Uin and the outer layer units Uout may be the same. Further, the configuration is not limited to this, and for example, the twist angle, twist pitch, or boundary B position may be different between the inner layer unit Uin and the outer layer unit Uout.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components within the scope of the present invention, and the above-described embodiments and modifications may be combined as appropriate.
 1…光ファイバ集合体 10…間欠固定テープ心線 11…光ファイバ 12…固定部 30…撚りピッチ(周期) 41…反転領域 41M…極大反転領域 42…回転領域 Z…長手方向 1... Optical fiber assembly 10... Intermittently fixed tape core wire 11... Optical fiber 12... Fixed part 30... Twisting pitch (cycle) 41... Reversal area 41 M... Maximum reversal area 42... Rotation area Z... Longitudinal direction

Claims (8)

  1.  複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、
     前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有し、
     前記長手方向における前記周期の寸法をPとし、
     前記長手方向における寸法がP/4であり、かつ、前記長手方向における中心が前記順撚り部と前記逆撚り部との境界に位置する領域を反転領域と称し、
     前記長手方向において前記反転領域の間に位置する領域を回転領域と称し、
     前記長手方向に垂直な断面において、
      前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、
      前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをGUとし、前記ベクトルGUの大きさをスカラー量Lとするとき、
     全ての前記反転領域における前記スカラー量Lの平均値が、全ての前記回転領域における前記スカラー量Lの平均値よりも大きい、光ファイバ集合体。
    A plurality of intermittently fixed ribbon core wires including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in the longitudinal direction,
    A period including a forward twisted portion in which the plurality of intermittently fixed tape core wires are twisted together and a reverse twisted portion in which the plurality of intermittently fixed tape core wires are twisted in a direction opposite to the normal twisted portion is defined in the longitudinal direction. has an SZ twist structure repeated in
    Let P be the dimension of the period in the longitudinal direction,
    A region whose dimension in the longitudinal direction is P/4 and whose center in the longitudinal direction is located at the boundary between the forward twisted portion and the reverse twisted portion is called a reversal region,
    A region located between the reversal regions in the longitudinal direction is called a rotation region,
    In a cross section perpendicular to the longitudinal direction,
    In one intermittently fixed tape core wire among the plurality of intermittently fixed tape core wires, the midpoint of the two optical fibers located at both ends is M, the center of gravity is G, and the center of gravity is set with the midpoint M as the starting point. Let MG be a vector with G as the end point,
    Let GU be a vector obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed tape core wires, and let the magnitude of the vector GU be a scalar quantity L,
    An optical fiber assembly, wherein an average value of the scalar quantity L in all the inversion regions is larger than an average value of the scalar quantity L in all the rotation regions.
  2.  前記反転領域における前記スカラー量Lは、前記反転領域と前記長手方向において隣接する2つの前記回転領域のうち一方における前記スカラー量Lと、前記反転領域と隣接する2つの前記回転領域のうち他方における前記スカラー量Lと、のうち少なくとも一方よりも大きい、請求項1に記載の光ファイバ集合体。 The scalar amount L in the inversion area is the scalar amount L in one of the two rotation areas adjacent to the inversion area in the longitudinal direction, and the scalar amount L in the other of the two rotation areas adjacent to the inversion area. 2. The optical fiber assembly according to claim 1, which is greater than at least one of said scalar quantity L and L.
  3.  複数の前記反転領域は、少なくとも一つの極大反転領域を含み、
     前記極大反転領域における前記スカラー量Lは、前記極大反転領域と前記長手方向において隣接する2つの前記回転領域のうち一方における前記スカラー量Lと、前記極大反転領域と隣接する2つの前記回転領域のうち他方における前記スカラー量Lと、のいずれよりも大きい、請求項1または2に記載の光ファイバ集合体。
    The plurality of inversion regions includes at least one maximum inversion region,
    The scalar amount L in the maximum inversion area is the scalar amount L in one of the two rotation areas adjacent to the maximum inversion area in the longitudinal direction, 3. The optical fiber assembly according to claim 1, wherein the scalar quantity L in the other is larger than both.
  4.  前記極大反転領域の個数は、前記反転領域の個数の1/3以上である、請求項3に記載の光ファイバ集合体。 The optical fiber assembly according to claim 3, wherein the number of said maximum inversion regions is ⅓ or more of the number of said inversion regions.
  5.  前記複数の間欠固定テープ心線は、複数の光ファイバユニットを形成しており、
     前記複数の光ファイバユニットの各々において、前記複数の間欠固定テープ心線のうち少なくとも二つ以上の前記間欠固定テープ心線が束ねられている、請求項1から4のいずれか一項に記載の光ファイバ集合体。
    The plurality of intermittently fixed tape core wires form a plurality of optical fiber units,
    5. The intermittently fixed tape core wire according to any one of claims 1 to 4, wherein at least two of the plurality of intermittently fixed tape core wires are bundled in each of the plurality of optical fiber units. Optical fiber assembly.
  6.  前記複数の光ファイバユニットは、前記光ファイバ集合体の外周に位置する複数の外層ユニットと、前記複数の外層ユニットによって取り囲まれた少なくとも一つの内層ユニットと、を含み、
     前記ベクトルMGを前記内層ユニットに含まれる前記複数の間欠固定テープ心線の全てについて合成したベクトルをGUinとし、前記ベクトルMGを前記複数の外層ユニットに含まれる前記複数の間欠固定テープ心線の全てについて合成したベクトルをGUoutとするとき、
     前記反転領域において、前記ベクトルGUinと前記ベクトルGUoutとがなす角が90°以下である、請求項5に記載の光ファイバ集合体。
    The plurality of optical fiber units includes a plurality of outer layer units located on the outer periphery of the optical fiber assembly, and at least one inner layer unit surrounded by the plurality of outer layer units,
    Let GUin be a vector obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed fiber ribbons contained in the inner layer units, and let GUin be the vector MG as all of the plurality of intermittently fixed fiber ribbons contained in the plurality of outer layer units. Let GUout be the vector synthesized for
    6. The optical fiber assembly according to claim 5, wherein an angle formed by said vector GUin and said vector GUout in said inversion region is 90[deg.] or less.
  7.  請求項1から6のいずれか一項に記載の光ファイバ集合体と、
     前記光ファイバ集合体を収容する外被と、を備える光ファイバケーブル。
    an optical fiber assembly according to any one of claims 1 to 6;
    and a jacket that houses the optical fiber assembly.
  8.  複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有する光ファイバ集合体を製造する光ファイバ集合体の製造方法であって、
     前記長手方向における前記周期の寸法をPとし、
     前記長手方向における寸法がP/4であり、かつ、前記長手方向における中心が前記順撚り部と前記逆撚り部との境界に位置する領域を反転領域と称し、
     前記長手方向において前記反転領域の間に位置する領域を回転領域と称し、
     前記長手方向に垂直な断面において、
      前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、
      前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをGUとするとき、
     前記反転領域における前記ベクトルGUを、前記反転領域と前記長手方向において隣接する2つの前記回転領域のうち一方における前記ベクトルGUと、前記反転領域と隣接する2つの前記回転領域のうち他方における前記ベクトルGUと、のいずれとも異ならせる、光ファイバ集合体の製造方法。
    A plurality of intermittently fixed tape core wires including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction, wherein the intermittently fixed tape core wires are twisted together in a normal twisted portion. and a counter-twisted portion in which the plurality of intermittently fixed tape core wires are twisted in a direction opposite to the forward-twisted portion. A method for manufacturing an optical fiber assembly,
    Let P be the dimension of the period in the longitudinal direction,
    A region whose dimension in the longitudinal direction is P/4 and whose center in the longitudinal direction is located at the boundary between the forward twisted portion and the reverse twisted portion is called a reversal region,
    A region located between the reversal regions in the longitudinal direction is called a rotation region,
    In a cross section perpendicular to the longitudinal direction,
    In one intermittently fixed tape core wire among the plurality of intermittently fixed tape core wires, the midpoint of the two optical fibers located at both ends is M, the center of gravity is G, and the center of gravity is set with the midpoint M as the starting point. Let MG be a vector with G as the end point,
    When a vector obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed tape core wires is GU,
    The vector GU in the reversal area is divided into the vector GU in one of the two rotational areas adjacent to the reversal area in the longitudinal direction and the vector GU in the other of the two rotational areas adjacent to the reversal area. A method of manufacturing an optical fiber assembly that is different from GU and GU.
PCT/JP2022/044809 2021-12-27 2022-12-06 Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly WO2023127418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-212144 2021-12-27
JP2021212144 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127418A1 true WO2023127418A1 (en) 2023-07-06

Family

ID=86998585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044809 WO2023127418A1 (en) 2021-12-27 2022-12-06 Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly

Country Status (2)

Country Link
TW (1) TW202344881A (en)
WO (1) WO2023127418A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496214A (en) * 1981-03-05 1985-01-29 Siemens Aktiengesellschaft Optical cable
JPH02157806A (en) * 1988-12-12 1990-06-18 Sumitomo Electric Ind Ltd Collecting method for sz-type loose tube cable
JP2020106734A (en) * 2018-12-28 2020-07-09 株式会社フジクラ Method of manufacturing optical fiber unit, and optical fiber unit manufacturing device
WO2022004362A1 (en) * 2020-07-01 2022-01-06 株式会社フジクラ Optical cable and optical-cable manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496214A (en) * 1981-03-05 1985-01-29 Siemens Aktiengesellschaft Optical cable
JPH02157806A (en) * 1988-12-12 1990-06-18 Sumitomo Electric Ind Ltd Collecting method for sz-type loose tube cable
JP2020106734A (en) * 2018-12-28 2020-07-09 株式会社フジクラ Method of manufacturing optical fiber unit, and optical fiber unit manufacturing device
WO2022004362A1 (en) * 2020-07-01 2022-01-06 株式会社フジクラ Optical cable and optical-cable manufacturing method

Also Published As

Publication number Publication date
TW202344881A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US11048054B2 (en) Optical fiber cable and method of manufacturing optical fiber cable
WO2011043324A1 (en) Optical fiber cable
JP7151727B2 (en) fiber optic cable
CN110662992B (en) Optical fiber cable
JP7479533B2 (en) Slotless optical fiber cable and method for manufacturing slotless optical cable core
US20220269024A1 (en) Optical fiber cable with drop cables having preattached optical connectors and method to strand the same
WO2023127418A1 (en) Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly
WO2023127419A1 (en) Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly
WO2023127420A1 (en) Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly
WO2023079932A1 (en) Optical fiber cable and method for laying optical fiber cable
US20200225432A1 (en) Optical fiber cable
WO2023127421A1 (en) Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly
TWI839996B (en) Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly
TWI818525B (en) Optical fiber cable and fiber optic cable manufacturing method
JP6345438B2 (en) Optical cable manufacturing method and manufacturing apparatus
CN116075760A (en) Optical cable and optical cable manufacturing method
JP2005301159A (en) Optical fiber cable and manufacturing method of same
JPH11271583A (en) Manufacture of optical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915649

Country of ref document: EP

Kind code of ref document: A1