WO2023127397A1 - 電力増幅回路及び高周波回路 - Google Patents

電力増幅回路及び高周波回路 Download PDF

Info

Publication number
WO2023127397A1
WO2023127397A1 PCT/JP2022/044466 JP2022044466W WO2023127397A1 WO 2023127397 A1 WO2023127397 A1 WO 2023127397A1 JP 2022044466 W JP2022044466 W JP 2022044466W WO 2023127397 A1 WO2023127397 A1 WO 2023127397A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
signal
supply voltage
power supply
channel
Prior art date
Application number
PCT/JP2022/044466
Other languages
English (en)
French (fr)
Inventor
伸也 人見
聡 田中
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023127397A1 publication Critical patent/WO2023127397A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to a power amplifier circuit and a high frequency circuit.
  • 5GNR (5th Generation New Radio) can use a wider frequency band than before, and studies are underway on the efficient use of such a wider frequency band. For example, techniques for simultaneously transmitting multiple signals on multiple channels within a frequency band are being considered.
  • One of such simultaneous transmission techniques is intra-band non-contiguous carrier aggregation (CA) in which communication is performed using a plurality of discontinuous component carriers (CCs) at the same time.
  • CA intra-band non-contiguous carrier aggregation
  • CCs discontinuous component carriers
  • a tracking mode that dynamically adjusts the power supply voltage applied to the power amplifier circuit is used to improve the power-added efficiency (PAE) of the power amplifier circuit.
  • PAE power-added efficiency
  • Patent Document 1 PAE is improved by applying an envelope tracking mode to a power amplifier circuit.
  • the present invention provides a power amplifier circuit and a high frequency circuit that can improve PAE while suppressing deterioration of signal quality when transmitting multiple signals simultaneously on multiple channels.
  • a power amplifier circuit includes a power amplifier that amplifies a first signal and a second signal when a first signal on a first channel and a second signal on a second channel are simultaneously transmitted, Envelope tracking mode is applied to the power amplifier if the frequency gap between the first channel and the second channel is less than the first threshold width, and average power tracking mode is applied to the power amplifier if the frequency gap is greater than or equal to the first threshold width. applies.
  • a high-frequency circuit includes a power amplifier circuit including a power amplifier capable of amplifying a first signal of a first channel and a second signal of a second channel, and a tracking circuit capable of supplying a power supply voltage to the power amplifier. and, when the first and second signals are simultaneously transmitted, if (i) the frequency gap between the first and second channels is less than a first threshold width, the tracking circuit controls the power amplifier (ii) if the frequency gap is greater than or equal to the first threshold width, the tracking circuit supplies the power amplifier with the power supply voltage in average power tracking mode; (iii) the power amplifier , amplifies the first signal and the second signal using the power supply voltage supplied from the tracking circuit.
  • the present invention when a plurality of signals are simultaneously transmitted on a plurality of channels, it is possible to improve PAE while suppressing deterioration of signal quality.
  • FIG. 1A is a graph showing an example of transition of power supply voltage in average power tracking mode.
  • FIG. 1B is a graph showing an example of transition of power supply voltage in analog envelope tracking mode.
  • FIG. 1C is a graph showing an example of transition of power supply voltage in digital envelope tracking mode.
  • FIG. 2 is a circuit configuration diagram of the communication device according to the embodiment.
  • FIG. 3 is a diagram for explaining the relationship between frequency gaps and tracking modes in the embodiment.
  • FIG. 4 is a diagram showing transmission states of two channel signals in the frequency gap G1.
  • FIG. 5 is a diagram showing transmission states of two channel signals in the frequency gap G2.
  • FIG. 6 is a diagram showing transmission states of two channel signals in the frequency gap G3.
  • FIG. 7 is a diagram showing transmission states of two channel signals in the frequency gap G4.
  • FIG. 8 is a circuit configuration diagram of a power amplifier circuit according to Modification 1 of the embodiment.
  • FIG. 9 is a circuit configuration diagram of a power amplifier circuit according to Modification 1 of the embodiment.
  • FIG. 10 is a circuit configuration diagram of a power amplifier circuit according to Modification 2 of the embodiment.
  • FIG. 11 is a circuit configuration diagram of a power amplifier circuit according to Modification 2 of the embodiment.
  • FIG. 12 is a circuit configuration diagram of a communication device according to another embodiment.
  • each drawing is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ.
  • substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements.
  • Connected between A and B means connected to both A and B between A and B; It includes parallel connection (shunt connection) between the path and the ground.
  • the tracking mode is a mode for dynamically adjusting the power supply voltage applied to the power amplifier circuit.
  • the tracking mode is a mode for dynamically adjusting the power supply voltage applied to the power amplifier circuit.
  • APT average power tracking
  • ET envelope tracking
  • the tracking mode is not limited to these.
  • APT mode analog ET mode and digital ET mode will be explained with reference to FIGS. 1A to 1C.
  • the horizontal axis represents time and the vertical axis represents voltage.
  • a thick solid line represents the power supply voltage, and a thin solid line (waveform) represents the modulated wave.
  • FIG. 1A is a graph showing an example of transition of power supply voltage in APT mode.
  • APT mode the power supply voltage is varied to a plurality of discrete voltage levels on a frame-by-frame basis. As a result, the power supply voltage signal forms a square wave.
  • APT mode the voltage level of the power supply voltage is determined based on the average output power. Note that in the APT mode, the voltage level may change in units smaller than one frame (for example, subframes).
  • a frame means a unit that constitutes a high-frequency signal (modulated wave).
  • a frame contains 10 subframes, each subframe contains multiple slots, and each slot consists of multiple symbols.
  • the subframe length is 1 ms and the frame length is 10 ms.
  • FIG. 1B is a graph showing an example of changes in power supply voltage in the analog ET mode.
  • Analog ET mode is an example of ET mode.
  • the envelope of the modulated wave is tracked by continuously varying the supply voltage.
  • the power supply voltage is determined based on the envelope signal.
  • An envelope signal is a signal that indicates the envelope of a modulated wave.
  • the envelope value is represented by the square root of (I2+Q2), for example.
  • (I, Q) represent constellation points.
  • a constellation point is a point representing a signal modulated by digital modulation on a constellation diagram.
  • (I, Q) is determined by the BBIC 4, for example, based on transmission information.
  • FIG. 1C is a graph showing an example of transition of the power supply voltage in the digital ET mode.
  • Digital ET mode is an example of ET mode.
  • the envelope of the modulated wave is tracked by varying the power supply voltage to multiple discrete voltage levels within one frame.
  • the power supply voltage signal forms a square wave.
  • the power supply voltage level is selected or set from a plurality of discrete voltage levels based on the envelope signal.
  • FIG. 2 is a circuit configuration diagram of the communication device 5 according to this embodiment.
  • the communication device 5 includes a high frequency circuit 1, an antenna 2, an RFIC (Radio Frequency Integrated Circuit) 3, and a BBIC (Baseband Integrated Circuit) 4.
  • RFIC Radio Frequency Integrated Circuit
  • BBIC Baseband Integrated Circuit
  • the high-frequency circuit 1 transmits high-frequency signals between the antenna 2 and the RFIC 3.
  • the internal configuration of the high frequency circuit 1 will be described later.
  • the antenna 2 is connected to the high frequency circuit 1.
  • the antenna 2 receives a high frequency signal from the high frequency circuit 1 and outputs it to the outside.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC 4 , and outputs the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency circuit 1 .
  • the RFIC 3 also has a control section that controls the high frequency circuit 1 . Some or all of the functions of the RFIC 3 as a control unit may be implemented outside the RFIC 3, for example, in the BBIC 4 or the high frequency circuit 1.
  • the BBIC 4 is a baseband signal processing circuit that performs signal processing using an intermediate frequency band that is lower in frequency than the high frequency signal transmitted by the high frequency circuit 1 .
  • Signals processed by the BBIC 4 include, for example, image signals for displaying images and/or audio signals for calling through speakers.
  • circuit configuration of the communication device 5 shown in FIG. 2 is an example, and is not limited to this.
  • communication device 5 may not include antenna 2 and/or BBIC 4 .
  • the high frequency circuit 1 includes a power amplifier circuit 10 and a tracking circuit 50 .
  • the power amplifier circuit 10 is connected to the tracking circuit 50 and can receive power supply voltage from the tracking circuit 50 .
  • a detailed circuit configuration of the power amplifier circuit 10 will be described later.
  • the tracking circuit 50 can supply power supply voltage to the power amplifier circuit 10 .
  • a detailed circuit configuration of the tracking circuit 50 will be described later.
  • power amplifier circuit 10 includes power amplifier 11 , filter 21 , input terminal 101 , power supply voltage terminal 102 , and output terminal 103 .
  • the input terminal 101 is a terminal for receiving a high frequency transmission signal from the outside of the high frequency circuit 1 .
  • the power amplifier circuit 10 can receive the first signal S1 of the first channel and the second signal S2 of the second channel via the input terminal 101 .
  • the input terminal 101 is connected to the RFIC 3 outside the high frequency circuit 1 .
  • the first signal S1 and the second signal S2 have different center frequencies.
  • the first channel and the second channel are two channels included in the same band and two channels used in intra-band discontinuous CA.
  • the first channel and the second channel may be two channels used in intra-band contiguous carrier aggregation (CA). In this case, the frequency gap between the first channel and the second channel will be zero.
  • the first channel and the second channel may be two channels included in different bands, or two channels used in inter-band non-contiguous carrier aggregation. good.
  • the first channel and the second channel may be two channels used in EN-DC (E-UTRAN New Radio--Dual Connectivity).
  • a power supply voltage terminal 102 is a terminal for receiving a power supply voltage from the tracking circuit 50 .
  • the power supply voltage terminal 102 is connected to the output terminal 502 of the tracking circuit 50 outside the power amplifier circuit 10 .
  • the output terminal 103 is a terminal for supplying a high frequency transmission signal to the outside of the high frequency circuit 1 .
  • the output terminal 103 is connected to the antenna 2 outside the high frequency circuit 1 .
  • the power amplifier 11 is connected between the input terminal 101 and the filter 21 and is also connected to the power supply voltage terminal 102 . Specifically, the input terminal 11 a of the power amplifier 11 is connected to the input terminal 101 , and the output terminal 11 b of the power amplifier 11 is connected to the filter 21 and the power supply voltage terminal 102 .
  • the power amplifier 11 can amplify the first signal S1 and the second signal S2 using the power supply voltage supplied through the power supply voltage terminal 102 . Specifically, the power amplifier 11 can amplify a combined signal of the first signal S1 and the second signal S2. That is, the power amplifier 11 can simultaneously amplify the first signal S1 and the second signal S2. Note that the power amplifier 11 can also amplify only one of the first signal S1 and the second signal S2.
  • the filter 21 is connected between the power amplifier 11 and the output terminal 103 . Specifically, one end of the filter 21 is connected to the output terminal 11 b of the power amplifier 11 and the other end of the filter 21 is connected to the output terminal 103 .
  • Filter 21 is a band-pass filter (BPF: Band-Pass Filter) having a passband including band A.
  • BPF Band-Pass Filter
  • the filter 21 may be configured using any of a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, an LC resonance filter, and a dielectric resonance filter, and further , but not limited to.
  • Band A is a frequency band for communication systems built using radio access technology (RAT).
  • Band A is defined in advance by standardization organizations (eg, 3GPP (registered trademark) (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers)).
  • standardization organizations eg, 3GPP (registered trademark) (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers)
  • Examples of communication systems include a 5GNR system, an LTE system, and a WLAN (Wireless Local Area Network) system.
  • n77 for 5GNR is used as band A.
  • Band A is not limited to n77.
  • Band A may be n78 or n79 for 5GNR or Band42 for LTE.
  • Band A may be a licensed or unlicensed band within the range of 5 GHz to 7.125 GHz.
  • power amplifier circuit 10 may comprise an impedance matching circuit connected between any two circuit elements (eg, power amplifier 11 and filter 21, etc.).
  • the impedance matching circuit can be composed of inductors and/or capacitors, for example.
  • the power amplifier circuit 10 may not include the filter 21 .
  • the tracking circuit 50 includes an average power tracker (APT) 51, an envelope tracker (ET) 52, a switch 53, a control terminal 501, an output terminal 502, Prepare.
  • APT average power tracker
  • ET envelope tracker
  • a control terminal 501 is a terminal for receiving a control signal from the outside of the high frequency circuit 1 .
  • the control terminal 501 is connected to the RFIC 3 outside the high frequency circuit 1 .
  • the output terminal 502 is a terminal for supplying power supply voltage to the power amplifier circuit 10 .
  • the output terminal 502 is connected to the power supply voltage terminal 102 of the power amplifier circuit 10 outside the tracking circuit 50 .
  • the APT 51 can supply the power voltage VAPT1 in the first APT mode, and can supply the power voltage VAPT2 in the second APT mode. Specifically, when the first signal S1 of the first channel and the second signal S2 of the second channel are simultaneously transmitted, the frequency gap between the first channel and the second channel is equal to or greater than the first threshold width WTH1 . If it is less than 3 threshold width W TH3 , the APT 51 can supply the power supply voltage V APT1 in the first APT mode.
  • APT 51 can supply power supply voltage VAPT2 in the second APT mode.
  • the power supply voltage V APT2 supplied in the second APT mode is higher than the power supply voltage V APT1 supplied in the first APT mode. That is, the power supply voltage V APT2 is higher than the power supply voltage V APT1 for the same average power.
  • the ET 52 can supply the power supply voltage V ET1 in the first ET mode and can supply the power supply voltage V ET2 in the second ET mode. Specifically, when the first signal S1 of the first channel and the second signal S2 of the second channel are simultaneously transmitted, the frequency gap between the first channel and the second channel is less than the second threshold width WTH2. If present, ET52 can supply power supply voltage V ET1 in the first ET mode. Further, when the first signal S1 of the first channel and the second signal S2 of the second channel are simultaneously transmitted, the frequency gap between the first channel and the second channel is equal to or greater than the second threshold width WTH2 . Less than W TH1 , ET52 can supply power supply voltage V ET2 in the second ET mode.
  • the power supply voltage VET2 supplied in the second ET mode is higher than the power supply voltage VET1 supplied in the first ET mode. That is, the power supply voltage V ET2 is higher than the power supply voltage V ET1 for the envelope signals showing the same value.
  • the power supply voltage V ET1 is supplied so as to obtain, for example, 2 dB compressed output power with respect to the input power corresponding to the envelope signal.
  • a power supply voltage V ET2 is supplied so as to obtain an output power compressed by, for example, 0.5 to 1 dB with respect to the input power.
  • the first threshold width W TH1 , the second threshold width W TH2 , and the third threshold width W TH3 values that are empirically and/or experimentally predetermined according to the required performance of the communication device 5 are used. is not particularly limited.
  • Either the analog ET mode or the digital ET mode may be used as the first ET mode and the second ET mode. That is, the ET52 can be either an analog envelope tracker or a digital envelope tracker.
  • a switch 53 is connected between the APT 51 and ET 52 and the power amplifier 11 .
  • the switch 53 has a terminal 531 connected to the APT 51 , a terminal 532 connected to the ET 52 , and a terminal 533 connected to the output terminal 502 .
  • the switch 53 is configured by, for example, an SPDT (Single-Pole Double-Throw) type switch circuit.
  • the switch 53 can connect the terminals 531 and 532 to the terminal 533 based on the control signal from the RFIC3. Specifically, when the frequency gap between the first channel and the second channel is greater than or equal to the first threshold width WTH1 , the switch 53 connects APT51 to output terminal 502 without connecting ET52 to output terminal 502. can be connected. On the other hand, when the frequency gap between the first channel and the second channel is less than the first threshold width WTH1 , the switch 53 connects the ET52 to the output terminal 502 without connecting the APT51 to the output terminal 502. can be done.
  • the tracking circuit 50 selectively selects the first ET mode, the second ET mode, the first APT mode, and the second APT mode according to the frequency gap between the first channel and the second channel, as shown in FIG. can be applied to the power amplifier 11.
  • the circuit configuration of the tracking circuit 50 shown in FIG. 2 is an example, and is not limited to this.
  • switch 53 may not be included in tracking circuit 50 and may be included in power amplifier circuit 10 .
  • the tracking circuit 50 may include a multimode tracker instead of the APT 51, ET 52 and switch 53.
  • the multimode tracker can selectively supply an ET mode power supply voltage and an APT mode power supply voltage.
  • the internal configuration of the multimode tracker is not particularly limited, but is composed of, for example, a DC (Direct Current)-DC converter shared by the APT mode and ET mode and a modulator used in the ET mode.
  • FIG. 4 to 7 are diagrams showing transmission states of two channel signals in frequency gaps G1 to G4, respectively.
  • the RFIC 3 supplies the first signal S1 of the first channel and the second signal S2 of the second channel in which the frequency gap G1 between the first channel and the second channel is less than the second threshold width WTH2 .
  • switch 53 connects ET52 to output terminal 502, and ET52 provides supply voltage V ET1 in the first ET mode.
  • the power amplifier 11 can amplify the first signal S1 and the second signal S2 using the power supply voltage VET1 supplied from the ET52.
  • the amplified first signal S1 and second signal S2 pass through the filter 21 and are transmitted to the antenna 2 via the output terminal 103 .
  • the first signal S ⁇ b>1 and the second signal S ⁇ b>2 are transmitted from the communication device 5 .
  • the first signal S1 of the first channel and the second 2 signal S2 is provided.
  • switch 53 connects ET52 to output terminal 502, and ET52 supplies supply voltage V ET2 in the second ET mode.
  • the power amplifier 11 can amplify the first signal S1 and the second signal S2 using the power supply voltage VET2 supplied from the ET52.
  • the amplified first signal S1 and second signal S2 pass through the filter 21 and are transmitted to the antenna 2 via the output terminal 103 .
  • the first signal S ⁇ b>1 and the second signal S ⁇ b>2 are transmitted from the communication device 5 .
  • the first signal S1 of the first channel and the second 2 signal S2 is provided. Therefore, switch 53 connects APT 51 to output terminal 502, and APT 51 supplies power supply voltage VAPT1 in the first APT mode. Thereby, the power amplifier 11 can amplify the first signal S1 and the second signal S2 using the power supply voltage VAPT1 supplied from the APT51.
  • the amplified first signal S1 and second signal S2 pass through the filter 21 and are transmitted to the antenna 2 via the output terminal 103 . Thereby, the first signal S ⁇ b>1 and the second signal S ⁇ b>2 are transmitted from the communication device 5 .
  • the RFIC 3 supplies the first signal S1 of the first channel and the second signal S2 of the second channel in which the frequency gap G4 between the first channel and the second channel is equal to or greater than the third threshold width WTH3 .
  • switch 53 connects APT 51 to output terminal 502, and APT 51 supplies power supply voltage VAPT2 in the second APT mode.
  • the power amplifier 11 can amplify the first signal S1 and the second signal S2 using the power supply voltage VAPT2 supplied from the APT51.
  • the amplified first signal S1 and second signal S2 pass through the filter 21 and are transmitted to the antenna 2 via the output terminal 103 . Thereby, the first signal S ⁇ b>1 and the second signal S ⁇ b>2 are transmitted from the communication device 5 .
  • the relationship between the frequency gap and the power supply voltage in the communication device 5 is as follows when signals of two channels are simultaneously transmitted to the communication device 5 using a combination of a plurality of channels with different frequency gaps using a wireless communication tester. It can be specified by monitoring the power supply voltage supplied to the power amplifier 11 .
  • the tracking circuit 50 causes the power amplifier circuit 10 to operate in the ET mode (first ET mode or second ET mode).
  • the PAE can be improved by supplying the power supply voltage.
  • the power amplifying circuit 10 can be used for the first signal S1 and the second signal S2 when the first signal S1 of the first channel and the second signal S2 of the second channel are simultaneously transmitted.
  • a power amplifier 11 for amplifying S2 wherein if the frequency gap between the first and second channels is less than a first threshold width WTH1 , the ET mode is applied to the power amplifier 11 and the frequency gap is a first threshold width If W TH1 or more, the APT mode is applied to the power amplifier 11 .
  • the power amplifier circuit 10 can improve the PAE while suppressing deterioration in signal quality when simultaneously transmitting a plurality of signals on a plurality of channels.
  • the second ET mode is applied to the power amplifier 11, and the frequency gap is If it is less than the second threshold width W TH2 , the first ET mode is applied to the power amplifier 11, and the power supply voltage V ET2 supplied in the second ET mode is higher than the power supply voltage V ET1 supplied in the first ET mode. good too.
  • a higher power supply voltage is supplied if the frequency gap is larger. That is, in a situation where the peak power increases due to an increase in the overall bandwidth of the first signal and the second signal, a higher power supply voltage is supplied to the power amplifier 11, so that the power amplifier at a higher output power 11 can be improved to suppress signal distortion.
  • the first APT mode is applied to the power amplifier 11, and the frequency gap is If the third threshold width W TH3 or more, the second APT mode is applied to the power amplifier 11, and the power supply voltage V APT2 supplied in the second APT mode is higher than the power supply voltage V APT1 supplied in the first APT mode. good too.
  • a higher power supply voltage is supplied if the frequency gap is larger. That is, in a situation where the peak power increases due to an increase in the overall bandwidth of the first signal and the second signal, a higher power supply voltage is supplied to the power amplifier 11, so that the power amplifier at a higher output power 11 can be improved to suppress signal distortion.
  • the first channel and the second channel may be included in the same band A.
  • intra-band continuous CA may be available.
  • the power amplifier circuit 10 can be effectively applied to a wider band.
  • the ET mode may be applied to the power amplifier 11 when only one of the first signal and the second signal is transmitted.
  • the ET mode when the channel bandwidth of the signal amplified by the power amplifier 11 is narrow, the ET mode can be used and the PAE can be improved.
  • the high-frequency circuit 1 includes the power amplifier circuit 10 including the power amplifier 11 capable of amplifying the first signal S1 of the first channel and the second signal S2 of the second channel, and the power amplifier 11, wherein when the first signal S1 and the second signal S2 are simultaneously transmitted, (i) the frequency gap between the first channel and the second channel is the first If less than the threshold width W TH1 , the tracking circuit 50 supplies the power amplifier 11 with the power supply voltage in the ET mode, and (ii) the frequency gap between the first and second channels is greater than or equal to the first threshold width W TH1 . If so, the tracking circuit 50 supplies the power amplifier 11 with the power supply voltage in the APT mode, and (iii) the power amplifier 11 uses the power supply voltage supplied from the tracking circuit 50 to generate the first signal S1 and the second signal S1. Amplifies S2.
  • the power amplifier circuit 10 can improve the PAE while suppressing deterioration in signal quality when simultaneously transmitting a plurality of signals on a plurality of channels.
  • the tracking circuit 50 in (i), if the frequency gap is equal to or greater than the second threshold width W TH2 and less than the first threshold width W TH1 , the power amplifier 11 If the power amplifier 11 is supplied with the power supply voltage V ET2 in the 2ET mode and the frequency gap is less than the second threshold width W TH2 , the power amplifier 11 is supplied with the power supply voltage V ET1 in the first ET mode and the power supply voltage supplied in the second ET mode.
  • V ET2 may be higher than the power supply voltage V ET1 supplied in the first ET mode.
  • a higher power supply voltage is supplied if the frequency gap is larger. That is, in a situation where the peak power increases due to an increase in the overall bandwidth of the first signal and the second signal, a higher power supply voltage is supplied to the power amplifier 11, so that the power amplifier at a higher output power 11 can be improved to suppress signal distortion.
  • the tracking circuit 50 in (ii), if the frequency gap is equal to or greater than the first threshold width WTH1 and less than the third threshold width WTH3 , the power amplifier 11
  • the power supply voltage VAPT1 is supplied in the 1APT mode, and if the frequency gap is equal to or greater than the third threshold width WTH3 , the power amplifier 11 is supplied with the power supply voltage VAPT2 in the second APT mode, and the power supply voltage supplied in the second APT mode.
  • V APT2 may be higher than the power supply voltage V APT1 supplied in the first APT mode.
  • a higher power supply voltage is supplied if the frequency gap is larger. That is, in a situation where the peak power increases due to an increase in the overall bandwidth of the first signal and the second signal, a higher power supply voltage is supplied to the power amplifier 11, so that the power amplifier at a higher output power 11 can be improved to suppress signal distortion.
  • the first channel and the second channel may be included in the same band A in the high frequency circuit 1 according to the present embodiment.
  • intra-band continuous CA may be available in band A.
  • the high frequency circuit 1 can be effectively used in a wider band.
  • the ET mode may be applied to the power amplifier 11 when only one of the first signal and the second signal is transmitted.
  • the ET mode when the channel bandwidth of the signal amplified by the power amplifier 11 is narrow, the ET mode can be used and the PAE can be improved.
  • Modification 1 Next, modification 1 will be described.
  • This modification differs from the above-described embodiment mainly in that the power amplifier circuit includes a variable notch filter.
  • this modification will be described with reference to the drawings, focusing on the differences from the above-described embodiment.
  • FIG. 8 is a circuit configuration diagram of a power amplifier circuit 10A according to this modification.
  • the power amplifier circuit 10A includes a power amplifier 11, a filter 21, an input terminal 101, a power supply voltage terminal 102, an output terminal 103, and a notch filter 22.
  • FIG. 11 is a circuit configuration diagram of a power amplifier circuit 10A according to this modification.
  • the power amplifier circuit 10A includes a power amplifier 11, a filter 21, an input terminal 101, a power supply voltage terminal 102, an output terminal 103, and a notch filter 22.
  • the notch filter 22 is an example of a band-elimination filter (BEF), is connected to the power amplifier 11, and has an attenuation band including the frequency gap between the first channel and the second channel.
  • BEF band-elimination filter
  • notch filter 22 is a variable notch filter with a variable attenuation band, and is connected to input terminal 11 a of power amplifier 11 .
  • the attenuation band of the notch filter 22 can be changed according to the frequency gap between the first signal S1 and the second signal S2.
  • the notch filter 22 may be configured using any of SAW filters, BAW filters, LC resonance filters, and dielectric resonance filters, and is not limited to these.
  • the power amplifier circuit 10A further includes the notch filter 22 connected to the power amplifier 11, which includes the frequency gap between the first channel and the second channel.
  • a notch filter 22 having an attenuation band may be provided.
  • the notch filter 22 can attenuate noise included in the frequency gap between the first signal and the second signal, and signal quality can be improved.
  • the notch filter 22 may be a variable notch filter with a variable attenuation band.
  • the notch filter 22 can attenuate noise included in different frequency gaps. Therefore, the signal quality can be improved for different combinations of the first signal and the second signal, and the versatility of the high frequency circuit 1 and the power amplifier circuit 10A can be improved.
  • the notch filter 22 is connected to the input terminal 11a of the power amplifier 11 in FIG. 8, it is not limited to this.
  • the notch filter 22 may be connected to the output terminal 11b of the power amplifier 11, as shown in FIG.
  • Modification 2 Next, modification 2 will be described.
  • This modification differs from the above embodiment mainly in that a switch is connected between the power amplifier and the notch filter.
  • this modification will be described with reference to the drawings, focusing on the differences from the above-described embodiment.
  • FIG. 10 is a circuit configuration diagram of a power amplifier circuit 10B according to this modification.
  • the power amplifier circuit 10B includes a power amplifier 11, a filter 21, an input terminal 101, a power supply voltage terminal 102, an output terminal 103, a notch filter 23, and switches 31 and 32.
  • the notch filter 23 is an example of a band elimination filter, is connected to the power amplifier 11, and has an attenuation band that includes the frequency gap between the first channel and the second channel. In this modification, the notch filter 23 is connected to the input terminal 11 a of the power amplifier 11 via the switch 31 .
  • a switch 31 is connected between the power amplifier 11 and the notch filter 23 .
  • the switch 31 has a terminal 311 connected to the input terminal 11 a of the power amplifier 11 , a terminal 312 connected to the notch filter 23 , and a terminal 313 connected to the switch 32 .
  • the switch 31 is configured by, for example, an SPDT type switch circuit.
  • the switch 32 is connected between the notch filter 23 and the input terminal 101 .
  • Switch 32 may have terminal 321 connected to input terminal 101 , terminal 322 connected to notch filter 23 , and terminal 323 connected to terminal 313 of switch 31 .
  • the switch 32 is composed of, for example, an SPDT type switch circuit. Note that the switch 32 is an arbitrary circuit element and may be omitted.
  • the switches 31 and 32 connect the input terminal 101 to the power amplifier 11 via the notch filter 23 and connect the input terminal 101 to the power amplifier 11 without the notch filter 23.
  • the terminal 311 of the switch 31 is connected to the terminal 313 and connecting the terminal 321 of the switch 32 to the terminal 323 , the input terminal 101 is connected to the power amplifier 11 without passing the notch filter 23 .
  • the power amplifier circuit 10B is further the notch filter 23 connected to the power amplifier 11, which includes the frequency gap between the first channel and the second channel.
  • a notch filter 23 having an attenuation band may be provided.
  • the notch filter 23 can attenuate the noise included in the frequency gap between the first signal and the second signal, and the signal quality can be improved.
  • the power amplifier circuit 10B may further include a switch 31 connected between the power amplifier 11 and the notch filter 23 .
  • the switch 31 switches between connection and non-connection between the power amplifier 11 and the notch filter 23, so use and non-use of the notch filter 23 can be switched according to the frequency gap. Therefore, the signal quality can be improved in simultaneous transmission of signals of two channels with a specific frequency gap. On the other hand, it is possible to prevent notch filter 23 from adversely affecting simultaneous transmission of two channel signals having frequency gaps different from a specific frequency gap.
  • notch filter 23 is connected to the input terminal 11a of the power amplifier 11 via the switch 31 in FIG. 10, the present invention is not limited to this.
  • notch filter 23 may be connected to output terminal 11b of power amplifier 11 via switch 31, as shown in FIG.
  • the switches 31 and 32 can switch between connecting the power amplifier 11 to the filter 21 via the notch filter 23 and connecting the power amplifier 11 to the filter 21 without via the notch filter 23. .
  • the high-frequency circuit and communication device according to the present invention have been described above based on the embodiments, the high-frequency circuit and communication device according to the present invention are not limited to the above-described embodiments and modifications thereof. Other embodiments realized by combining arbitrary components in the above embodiments and their modifications, and various modifications that can be made by those skilled in the art without departing from the scope of the present invention are applied to the above embodiments.
  • the present invention also includes modified examples obtained by the above-described high-frequency circuit and various devices incorporating the above-described high-frequency circuit.
  • another circuit element, wiring, or the like is inserted between the paths connecting the circuit elements and signal paths disclosed in the drawings.
  • a matching circuit may be inserted between the power amplifier and the filter.
  • the communication device was a transmission device, but may be a transmission and reception device.
  • the high frequency circuit may comprise a low noise amplifier circuit.
  • the power amplifier 11 may selectively apply the first ET mode and the second ET mode and not apply the first APT mode and the second APT mode.
  • the tracking circuit 50 does not have to include the APT 51 and the switch 53 .
  • the power amplifier 11 may selectively apply the first APT mode and the second APT mode, and not apply the first ET mode and the second ET mode. In this case, tracking circuit 50 may not include ET 52 and switch 53 .
  • the high-frequency circuit 1 includes only one transmission path in the above embodiment, it may include a plurality of transmission paths.
  • the communication device 5 may further include an antenna 2A.
  • the high frequency circuit 1 may further include a power amplifier 12 , a filter 24 and a switch 30 .
  • the power amplifier 12 is connected between the RFIC 3 and the filter 24 and is capable of amplifying the band B transmission signal.
  • the power supply voltage supplied to the power amplifier 12 is not particularly limited, and may be, for example, the power supply voltage based on the ET mode or any power supply voltage. Therefore, in FIG. 12, the description of the supply path of the power supply voltage to the power amplifier 12 is omitted.
  • Band B is a frequency band for communication systems built using RAT.
  • Bands A and B are a combination of bands that can be transmitted simultaneously.
  • bands A and B are a combination of bands for CA (Carrier Aggregation).
  • bands A and B may be a combination of bands for EN-DC (E-UTRAN New Radio-Dual Connectivity) or NR-DC (New Radio-New Radio Dual Connectivity).
  • band B for example, Band1, Band2, Band3, Band4, Band13, Band20, Band26, Band28, Band66 or Band71 for LTE can be used.
  • Band B is not limited to this, and various bands defined by 3GPP or the like can be used.
  • Filter 24 is connected between power amplifier 12 and switch 30 . Specifically, one end of filter 24 is connected to the output end of power amplifier 12 and the other end of filter 24 is connected to terminal 304 of switch 30 . Filter 24 has a passband that includes band B. FIG. The filter 24 may be configured using any of SAW filters, BAW filters, LC resonance filters, and dielectric resonance filters, and is not limited to these.
  • the switch 30 is connected between the antennas 2 and 2A and the filters 21 and 24.
  • the switch 30 has a terminal 301 connected to the antenna 2, a terminal 302 connected to the antenna 2A, a terminal 303 connected to the output terminal 103 of the power amplifier circuit 10, a terminal 304 connected to the filter 24, including.
  • switch 30 can exclusively connect terminal 301 to terminals 303 and 304 and exclusively connect terminal 302 to terminals 303 and 304 based on a control signal from RFIC 3, for example. can do. That is, switch 30 can connect terminal 301 to one of terminals 303 and 304 and connect terminal 302 to the other of terminals 303 and 304 .
  • the present invention can be widely used in communication equipment such as mobile phones as a high-frequency circuit arranged in the front end section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

電力増幅回路(10)は、第1チャネルの第1信号(S1)及び第2チャネルの第2信号(S2)が同時送信される場合に、第1信号(S1)及び第2信号(S2)を増幅する電力増幅器(11)を備え、第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅(WTH1)未満であれば、電力増幅器(11)にETモードが適用され、周波数ギャップが第1閾値幅(WTH1)以上であれば、電力増幅器(11)にAPTモードが適用される。

Description

電力増幅回路及び高周波回路
 本発明は、電力増幅回路及び高周波回路に関する。
 5GNR(5th Generation New Radio)では、従来よりも広い周波数バンドが利用可能であり、このようなより広い周波数バンドの効率的な利用について検討が進んでいる。例えば、周波数バンド内の複数のチャネルで複数の信号を同時送信する技術が検討されている。そのような同時送信技術の1つとして、不連続な複数のコンポーネントキャリア(CC:Component Carrier)を同時に用いて通信を行うイントラバンド非連続CA(Intra-band Non-contiguous Carrier Aggregation)がある。
 また、携帯電話などの移動体通信機器では、電力増幅回路の電力付加効率(PAE:Power-Added Efficiency)を改善するために、電力増幅回路に印加される電源電圧を動的に調整するトラッキングモードの利用が進められている。特許文献1には、電力増幅回路にエンベロープトラッキングモードを適用することでPAEの改善が図られている。
米国特許出願公開第2020/0076375号明細書
 しかしながら、より広い通信バンド内の複数のチャネルで複数の信号を同時送信する場合に、特許文献1に開示された技術が適用されれば、信号品質が低下する場合がある。
 そこで、本発明は、複数のチャネルで複数の信号を同時送信する場合に、信号品質の低下を抑制しつつ、PAEの改善を図ることができる電力増幅回路及び高周波回路を提供する。
 本発明の一態様に係る電力増幅回路は、第1チャネルの第1信号及び第2チャネルの第2信号が同時送信される場合に、第1信号及び第2信号を増幅する電力増幅器を備え、第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅未満であれば、電力増幅器にエンベロープトラッキングモードが適用され、周波数ギャップが第1閾値幅以上であれば、電力増幅器に平均電力トラッキングモードが適用される。
 本発明の一態様に係る高周波回路は、第1チャネルの第1信号及び第2チャネルの第2信号を増幅可能な電力増幅器を備える電力増幅回路と、電力増幅器に電源電圧を供給可能なトラッキング回路と、を備え、第1信号及び第2信号が同時送信される場合に、(i)第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅未満であれば、トラッキング回路は、電力増幅器にエンベロープトラッキングモードで電源電圧を供給し、(ii)周波数ギャップが第1閾値幅以上であれば、トラッキング回路は、電力増幅器に平均電力トラッキングモードで電源電圧を供給し、(iii)電力増幅器は、トラッキング回路から供給された電源電圧を用いて、第1信号及び第2信号を増幅する。
 本発明によれば、複数のチャネルで複数の信号を同時送信する場合に、信号品質の低下を抑制しつつ、PAEの改善を図ることができる。
図1Aは、平均電力トラッキングモードにおける電源電圧の推移の一例を示すグラフである。 図1Bは、アナログエンベロープトラッキングモードにおける電源電圧の推移の一例を示すグラフである。 図1Cは、デジタルエンベロープトラッキングモードにおける電源電圧の推移の一例を示すグラフである。 図2は、実施の形態に係る通信装置の回路構成図である。 図3は、実施の形態において周波数ギャップとトラッキングモードとの関係を説明するための図である。 図4は、周波数ギャップG1における2つのチャネル信号の伝送状態を示す図である。 図5は、周波数ギャップG2における2つのチャネル信号の伝送状態を示す図である。 図6は、周波数ギャップG3における2つのチャネル信号の伝送状態を示す図である。 図7は、周波数ギャップG4における2つのチャネル信号の伝送状態を示す図である。 図8は、実施の形態の変形例1に係る電力増幅回路の回路構成図である。 図9は、実施の形態の変形例1に係る電力増幅回路の回路構成図である。 図10は、実施の形態の変形例2に係る電力増幅回路の回路構成図である。 図11は、実施の形態の変形例2に係る電力増幅回路の回路構成図である。 図12は、他の実施の形態に係る通信装置の回路構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。
 なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。
 本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味し、A及びBを結ぶ経路に直列接続されることに加えて、当該経路とグランドとの間に並列接続(シャント接続)されることを含む。
 まず、以下で説明する実施の形態において電力増幅回路に適用されるトラッキングモードについて説明する。トラッキングモードとは、電力増幅回路に印加される電源電圧を動的に調整するモードである。トラッキングモードにはいくつかの種類があるが、以下の実施の形態では、平均電力トラッキング(APT:Average Power Tracking)モード及びエンベロープトラッキング(ET:Envelope Tracking)モード(アナログETモード及びデジタルETモードを含む)が用いられる。なお、トラッキングモードは、これらに限定されない。
 APTモード、アナログETモード及びデジタルETモードについて、図1A~図1Cを参照しながら説明する。図1A~図1Cにおいて、横軸は時間を表し、縦軸は電圧を表す。また、太い実線は、電源電圧を表し、細い実線(波形)は、変調波を表す。
 図1Aは、APTモードにおける電源電圧の推移の一例を示すグラフである。APTモードでは、1フレーム単位で複数の離散的な電圧レベルに電源電圧を変動させる。その結果、電源電圧信号は矩形波を形成する。APTモードでは、平均出力電力に基づいて、電源電圧の電圧レベルが決定される。なお、APTモードでは、1フレームよりも小さな単位(例えばサブフレーム)で電圧レベルが変化してもよい。
 フレームとは、高周波信号(変調波)を構成する単位を意味する。例えば5GNR(5th Generation New Radio)及びLTE(Long Term Evolution)では、フレームは、10個のサブフレームを含み、各サブフレームは、複数のスロットを含み、各スロットは、複数のシンボルで構成される。サブフレーム長は1msであり、フレーム長は10msである。
 図1Bは、アナログETモードにおける電源電圧の推移の一例を示すグラフである。アナログETモードは、ETモードの一例である。図1Bに示すように、アナログETモードでは、電源電圧を連続的に変動させることで変調波の包絡線を追跡する。アナログETモードでは、エンベロープ信号に基づいて、電源電圧が決定される。
 エンベロープ信号とは、変調波の包絡線を示す信号である。エンベロープ値は、例えば(I2+Q2)の平方根で表される。ここで、(I,Q)は、コンスタレーションポイントを表す。コンスタレーションポイントとは、デジタル変調によって変調された信号をコンスタレーションダイヤグラム上で表す点である。(I,Q)は、例えば送信情報に基づいてBBIC4で決定される。
 図1Cは、デジタルETモードにおける電源電圧の推移の一例を示すグラフである。デジタルETモードは、ETモードの一例である。図1Cに示すように、デジタルETモードでは、1フレーム内で複数の離散的な電圧レベルに電源電圧を変動させることで変調波の包絡線を追跡する。その結果、電源電圧信号は矩形波を形成する。デジタルETモードでは、エンベロープ信号に基づいて、複数の離散的な電圧レベルの中から電源電圧レベルが選択又は設定される。
 (実施の形態)
 実施の形態について説明する。
 [1.1 回路構成]
 実施の形態1に係る通信装置5、高周波回路1、電力増幅回路10及びトラッキング回路50の回路構成について、図2を参照しながら説明する。図2は、本実施の形態に係る通信装置5の回路構成図である。
 [1.1.1 通信装置5の回路構成]
 通信装置5の回路構成について説明する。図2に示すように、本実施の形態に係る通信装置5は、高周波回路1と、アンテナ2と、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、を備える。
 高周波回路1は、アンテナ2及びRFIC3の間で高周波信号を伝送する。高周波回路1の内部構成については後述する。
 アンテナ2は、高周波回路1に接続されている。アンテナ2は、高周波回路1から高周波信号を受信して外部に出力する。
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1の送信経路に出力する。また、RFIC3は、高周波回路1を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4又は高周波回路1に実装されてもよい。
 BBIC4は、高周波回路1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が挙げられる。
 なお、図2に表された通信装置5の回路構成は、例示であり、これに限定されない。例えば、通信装置5は、アンテナ2及び/又はBBIC4を備えなくてもよい。
 [1.1.2 高周波回路1の回路構成]
 次に、高周波回路1の回路構成について説明する。図2に示すように、高周波回路1は、電力増幅回路10と、トラッキング回路50と、を備える。
 電力増幅回路10は、トラッキング回路50に接続され、トラッキング回路50から電源電圧の供給を受けることができる。電力増幅回路10の詳細な回路構成については後述する。
 トラッキング回路50は、電力増幅回路10に電源電圧を供給することができる。トラッキング回路50の詳細な回路構成については後述する。
 [1.1.3 電力増幅回路10の回路構成]
 次に、電力増幅回路10の回路構成について説明する。図2に示すように、電力増幅回路10は、電力増幅器11と、フィルタ21と、入力端子101と、電源電圧端子102と、出力端子103と、を備える。
 入力端子101は、高周波回路1の外部から高周波送信信号を受けるための端子である。本実施の形態では、電力増幅回路10は、入力端子101を介して、第1チャネルの第1信号S1及び第2チャネルの第2信号S2を受けることができる。入力端子101は、高周波回路1の外部でRFIC3に接続される。
 第1信号S1及び第2信号S2は、互いに異なる中心周波数を有する。本実施の形態では、第1チャネル及び第2チャネルは、同一バンドに含まれる2つのチャネルであって、イントラバンド非連続CAで用いられる2つのチャネルである。なお、第1チャネル及び第2チャネルは、イントラバンド連続CA(Intra-band Contiguous Carrier Aggregation)で用いられる2つのチャネルであってもよい。この場合、第1チャネル及び第2チャネル間の周波数ギャップはゼロとなる。また、第1チャネル及び第2チャネルは、異なるバンドに含まれる2つのチャネルであってもよく、インターバンド非連続CA(Inter-band Non-contiguous Carrier Aggregation)で用いられる2つのチャネルであってもよい。また、第1チャネル及び第2チャネルは、EN-DC(E-UTRAN New Radio - Dual Connectivity)で用いられる2つのチャネルであってもよい。
 電源電圧端子102は、トラッキング回路50から電源電圧を受けるための端子である。電源電圧端子102は、電力増幅回路10の外部でトラッキング回路50の出力端子502に接続される。
 出力端子103は、高周波回路1の外部に高周波送信信号を供給するための端子である。出力端子103は、高周波回路1の外部でアンテナ2に接続される。
 電力増幅器11は、入力端子101とフィルタ21との間に接続され、かつ、電源電圧端子102に接続される。具体的には、電力増幅器11の入力端子11aは入力端子101に接続され、電力増幅器11の出力端子11bはフィルタ21及び電源電圧端子102に接続される。電力増幅器11は、電源電圧端子102を介して供給される電源電圧を用いて第1信号S1及び第2信号S2を増幅することができる。具体的には、電力増幅器11は、第1信号S1及び第2信号S2の合成信号を増幅することができる。つまり、電力増幅器11は、第1信号S1及び第2信号S2を同時に増幅することができる。なお、電力増幅器11は、第1信号S1及び第2信号S2の一方のみを増幅することもできる。
 フィルタ21は、電力増幅器11と出力端子103との間に接続される。具体的には、フィルタ21の一端は電力増幅器11の出力端子11bに接続され、フィルタ21の他端は出力端子103に接続される。フィルタ21は、バンドAを含む通過帯域を有するバンドパスフィルタ(BPF:Band-Pass Filter)である。フィルタ21は、弾性表面波(SAW:Surface Acoustic Wave)フィルタ、バルク弾性波(BAW:Bulk Acoustic Wave)フィルタ、LC共振フィルタ、及び誘電体共振フィルタのいずれを用いて構成されてもよく、さらには、これらには限定されない。
 バンドAは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。バンドAは、標準化団体など(例えば3GPP(登録商標)(3rd Generation Partnership Project)及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義される。通信システムの例としては、5GNRシステム、LTEシステム及びWLAN(Wireless Local Area Network)システム等を挙げることができる。
 本実施の形態では、バンドAとして、5GNRのためのn77が用いられる。なお、バンドAは、n77に限定されない。例えば、バンドAは、5GNRのためのn78又はn79であってもよく、LTEのためのBand42であってもよい。さらには、バンドAは、5GHz~7.125GHzの範囲に含まれるライセンスバンド又はアンライセンスバンドであってもよい。
 なお、図2に示す電力増幅回路10の回路構成は、例示であり、これに限定されない。例えば、電力増幅回路10は、任意の2つの回路素子(例えば電力増幅器11及びフィルタ21など)の間に接続されたインピーダンス整合回路を備えてもよい。インピーダンス整合回路は、例えば、インダクタ及び/又はキャパシタで構成することができる。また例えば、電力増幅回路10は、フィルタ21を備えなくてもよい。
 [1.1.4 トラッキング回路50の回路構成]
 次に、トラッキング回路50の回路構成について説明する。図2に示すように、トラッキング回路50は、平均電力トラッカ(APT:Average Power Tracker)51と、エンベロープトラッカ(ET:Envelope Tracker)52と、スイッチ53と、制御端子501と、出力端子502と、を備える。
 制御端子501は、高周波回路1の外部から制御信号を受けるための端子である。制御端子501は、高周波回路1の外部でRFIC3に接続される。
 出力端子502は、電力増幅回路10に電源電圧を供給するための端子である。出力端子502は、トラッキング回路50の外部で電力増幅回路10の電源電圧端子102に接続される。
 APT51は、第1APTモードで電源電圧VAPT1を供給することができ、第2APTモードで電源電圧VAPT2を供給することができる。具体的には、第1チャネルの第1信号S1及び第2チャネルの第2信号S2が同時送信される場合に、第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅WTH1以上第3閾値幅WTH3未満であれば、APT51は、第1APTモードで電源電圧VAPT1を供給することができる。また、第1チャネルの第1信号S1及び第2チャネルの第2信号S2が同時送信される場合に、第1チャネル及び第2チャネル間の周波数ギャップが第3閾値幅WTH3以上であれば、APT51は、第2APTモードで電源電圧VAPT2を供給することができる。このとき、第2APTモードで供給される電源電圧VAPT2は、第1APTモードで供給される電源電圧VAPT1よりも高い。つまり、同じ平均電力に対して、電源電圧VAPT2は電源電圧VAPT1よりも高い。
 ET52は、第1ETモードで電源電圧VET1を供給することができ、第2ETモードで電源電圧VET2を供給することができる。具体的には、第1チャネルの第1信号S1及び第2チャネルの第2信号S2が同時送信される場合に、第1チャネル及び第2チャネル間の周波数ギャップが第2閾値幅WTH2未満であれば、ET52は、第1ETモードで電源電圧VET1を供給することができる。また、第1チャネルの第1信号S1及び第2チャネルの第2信号S2が同時送信される場合に、第1チャネル及び第2チャネル間の周波数ギャップが第2閾値幅WTH2以上第1閾値幅WTH1未満であれば、ET52は、第2ETモードで電源電圧VET2を供給することができる。このとき、第2ETモードで供給される電源電圧VET2は、第1ETモードで供給される電源電圧VET1よりも高い。つまり、同じ値を示すエンベロープ信号に対して、電源電圧VET2は電源電圧VET1よりも高い。言い換えると、第2ETモードでは、第1ETモードよりもゲインコンプレッションが小さくなるように、より高い電源電圧が供給される。具体的には、第1ETモードでは、エンベロープ信号に対応する入力電力に対して例えば2dB圧縮された出力電力が得られるように電源電圧VET1が供給され、第2ETモードでは、エンベロープ信号に対応する入力電力に対して例えば0.5~1dB圧縮された出力電力が得られるように電源電圧VET2が供給される。
 第1閾値幅WTH1と、第2閾値幅WTH2と、第3閾値幅WTH3としては、通信装置5の要求性能などに応じて経験的及び/又は実験的に予め定められた値が用いられればよく、特に限定されない。
 第1ETモード及び第2ETモードとしては、アナログETモード及びデジタルETモードのどちらが用いられてもよい。つまり、ET52は、アナログエンベロープトラッカ及びデジタルエンベロープトラッカのどちらであってもよい。
 スイッチ53は、APT51及びET52と電力増幅器11との間に接続される。具体的には、スイッチ53は、APT51に接続された端子531と、ET52に接続された端子532と、出力端子502に接続された端子533と、を備える。スイッチ53は、例えばSPDT(Single-Pole Double-Throw)型のスイッチ回路で構成される。
 この接続構成において、スイッチ53は、RFIC3からの制御信号に基づいて、端子531及び532を端子533に接続することができる。具体的には、第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅WTH1以上である場合に、スイッチ53は、ET52を出力端子502に接続せずに、APT51を出力端子502に接続することができる。一方、第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅WTH1未満である場合に、スイッチ53は、APT51を出力端子502に接続せずに、ET52を出力端子502に接続することができる。
 以上のように、トラッキング回路50は、図3に示すように、第1チャネル及び第2チャネル間の周波数ギャップに応じて、第1ETモード、第2ETモード、第1APTモード及び第2APTモードを選択的に電力増幅器11に適用することができる。
 なお、図2に示すトラッキング回路50の回路構成は、例示であり、これに限定されない。例えば、スイッチ53は、トラッキング回路50に含まれなくてもよく、電力増幅回路10に含まれてもよい。また例えば、トラッキング回路50は、APT51、ET52及びスイッチ53の代わりに、マルチモードトラッカを備えてもよい。マルチモードトラッカは、ETモードの電源電圧とAPTモードの電源電圧とを選択的に供給することができる。マルチモードトラッカの内部構成は、特に限定されないが、例えばAPTモード及びETモードで共用されるDC(Direct Current)-DCコンバータとETモードで用いられる変調器とで構成される。
 [1.2 各周波数ギャップにおける2つのチャネル信号の伝送状態]
 次に、本実施の形態に係る通信装置5において、各周波数ギャップにおける2つのチャネル信号の伝送状態について図4~図7を参照しながら説明する。図4~図7は、それぞれ周波数ギャップG1~G4における2つのチャネル信号の伝送状態を示す図である。
 図4では、RFIC3から、第1チャネル及び第2チャネル間の周波数ギャップG1が第2閾値幅WTH2未満である第1チャネルの第1信号S1及び第2チャネルの第2信号S2が供給されている。したがって、スイッチ53は、ET52を出力端子502に接続し、ET52は、第1ETモードで電源電圧VET1を供給する。これにより、電力増幅器11は、ET52から供給された電源電圧VET1を用いて、第1信号S1及び第2信号S2を増幅することができる。増幅された第1信号S1及び第2信号S2は、フィルタ21を通過し、出力端子103を介してアンテナ2に伝送される。これにより、第1信号S1及び第2信号S2が通信装置5から送信される。
 図5では、RFIC3から、第1チャネル及び第2チャネル間の周波数ギャップG2が第2閾値幅WTH2以上第1閾値幅WTH1未満である第1チャネルの第1信号S1及び第2チャネルの第2信号S2が供給されている。したがって、スイッチ53は、ET52を出力端子502に接続し、ET52は、第2ETモードで電源電圧VET2を供給する。これにより、電力増幅器11は、ET52から供給された電源電圧VET2を用いて、第1信号S1及び第2信号S2を増幅することができる。増幅された第1信号S1及び第2信号S2は、フィルタ21を通過し、出力端子103を介してアンテナ2に伝送される。これにより、第1信号S1及び第2信号S2が通信装置5から送信される。
 図6では、RFIC3から、第1チャネル及び第2チャネル間の周波数ギャップG3が第1閾値幅WTH1以上第3閾値幅WTH3未満である第1チャネルの第1信号S1及び第2チャネルの第2信号S2が供給されている。したがって、スイッチ53は、APT51を出力端子502に接続し、APT51は、第1APTモードで電源電圧VAPT1を供給する。これにより、電力増幅器11は、APT51から供給された電源電圧VAPT1を用いて、第1信号S1及び第2信号S2を増幅することができる。増幅された第1信号S1及び第2信号S2は、フィルタ21を通過し、出力端子103を介してアンテナ2に伝送される。これにより、第1信号S1及び第2信号S2が通信装置5から送信される。
 図7では、RFIC3から、第1チャネル及び第2チャネル間の周波数ギャップG4が第3閾値幅WTH3以上である第1チャネルの第1信号S1及び第2チャネルの第2信号S2が供給されている。したがって、スイッチ53は、APT51を出力端子502に接続し、APT51は、第2APTモードで電源電圧VAPT2を供給する。これにより、電力増幅器11は、APT51から供給された電源電圧VAPT2を用いて、第1信号S1及び第2信号S2を増幅することができる。増幅された第1信号S1及び第2信号S2は、フィルタ21を通過し、出力端子103を介してアンテナ2に伝送される。これにより、第1信号S1及び第2信号S2が通信装置5から送信される。
 なお、通信装置5における周波数ギャップと電源電圧との関係は、無線通信テスタを用いて、周波数ギャップが異なる複数のチャネルの組み合わせで2つのチャネルの信号を通信装置5に同時送信させたときに、電力増幅器11に供給される電源電圧を監視することで特定することができる。
 なお、本実施の形態では、第1チャネルの第1信号S1及び第2チャネルの第2信号S2が同時送信される場合について説明したが、高周波回路1は、第1チャネルの第1信号S1及び第2チャネルの第2信号S2の一方のみを送信することもできる。第1チャネルの第1信号S1及び第2チャネルの第2信号S2の一方のみが送信される場合には、トラッキング回路50は、電力増幅回路10にETモード(第1ETモード又は第2ETモード)で電源電圧を供給することで、PAEの改善を図ることができる。
 [1.3 効果など]
 以上のように、本実施の形態に係る電力増幅回路10は、第1チャネルの第1信号S1及び第2チャネルの第2信号S2が同時送信される場合に、第1信号S1及び第2信号S2を増幅する電力増幅器11を備え、第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅WTH1未満であれば、電力増幅器11にETモードが適用され、周波数ギャップが第1閾値幅WTH1以上であれば、電力増幅器11にAPTモードが適用される。
 第1チャネル及び第2チャネル間の周波数ギャップが大きいほど、第1信号及び第2信号の全体としてのバンド幅が増加する。そのため、ETモードにおいて第1信号及び第2信号のエンベロープ信号に電源電圧を追随させることが難しくなり、電力増幅器11で増幅された信号の歪みが増大する。したがって、周波数ギャップが比較的大きい場合にAPTモードが電力増幅器11に適用されることで、ETモードが電力増幅器11に適用される場合よりも信号の歪みを抑制することができる。一方、周波数ギャップが比較的小さい場合にETモードが電力増幅器11に適用されることで、APTモードが電力増幅器11に適用される場合よりもPAEを向上させることができる。つまり、電力増幅回路10は、複数のチャネルで複数の信号を同時送信する場合に、信号品質の低下を抑制しつつ、PAEの改善を図ることができる。
 また例えば、本実施の形態に係る電力増幅回路10において、周波数ギャップが第2閾値幅WTH2以上第1閾値幅WTH1未満であれば、電力増幅器11に第2ETモードが適用され、周波数ギャップが第2閾値幅WTH2未満であれば、電力増幅器11に第1ETモードが適用され、第2ETモードで供給される電源電圧VET2は、第1ETモードで供給される電源電圧VET1よりも高くてもよい。
 これによれば、ETモードが電力増幅器11に適用される場合に、周波数ギャップがより大きければより高い電源電圧が供給される。つまり、第1信号及び第2信号の全体としてのバンド幅が増加することでピーク電力が増加する状況において、より高い電源電圧が電力増幅器11に供給されることで、より高い出力電力における電力増幅器11の線形性を向上させて信号の歪みを抑制することができる。
 また例えば、本実施の形態に係る電力増幅回路10において、周波数ギャップが第1閾値幅WTH1以上第3閾値幅WTH3未満であれば、電力増幅器11に第1APTモードが適用され、周波数ギャップが第3閾値幅WTH3以上であれば、電力増幅器11に第2APTモードが適用され、第2APTモードで供給される電源電圧VAPT2は、第1APTモードで供給される電源電圧VAPT1よりも高くてもよい。
 これによれば、APTモードが電力増幅器11に適用される場合に、周波数ギャップがより大きければより高い電源電圧が供給される。つまり、第1信号及び第2信号の全体としてのバンド幅が増加することでピーク電力が増加する状況において、より高い電源電圧が電力増幅器11に供給されることで、より高い出力電力における電力増幅器11の線形性を向上させて信号の歪みを抑制することができる。
 また例えば、本実施の形態に係る電力増幅回路10において、第1チャネル及び第2チャネルは、同一のバンドAに含まれてもよい。また例えば、本実施の形態に係る電力増幅回路10において、バンドAでは、イントラバンド連続CAが利用可能であってもよい。
 これによれば、同一バンド内の複数のチャネルで複数の信号を同時送信する場合に、信号品質の低下を抑制しつつ、PAEの改善を図ることができる。特に、電力増幅回路10をより広いバンドに対して効果的に適用することができる。
 また例えば、第1信号及び第2信号の一方のみが送信される場合に、電力増幅器11にETモードが適用されてもよい。
 これによれば、電力増幅器11で増幅される信号のチャネル帯域幅が狭い場合には、ETモードを用いることができ、PAEの改善を図ることができる。
 以上のように、本実施の形態に係る高周波回路1は、第1チャネルの第1信号S1及び第2チャネルの第2信号S2を増幅可能な電力増幅器11を備える電力増幅回路10と、電力増幅器11に電源電圧を供給可能なトラッキング回路50と、を備え、第1信号S1及び第2信号S2が同時送信される場合に、(i)第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅WTH1未満であれば、トラッキング回路50は、電力増幅器11にETモードで電源電圧を供給し、(ii)第1チャネル及び第2チャネル間の周波数ギャップが第1閾値幅WTH1以上であれば、トラッキング回路50は、電力増幅器11にAPTモードで電源電圧を供給し、(iii)電力増幅器11は、トラッキング回路50から供給された電源電圧を用いて、第1信号S1及び第2信号S2を増幅する。
 第1チャネル及び第2チャネル間の周波数ギャップが大きいほど、第1信号及び第2信号の全体としてのバンド幅が増加する。そのため、ETモードにおいて第1信号及び第2信号のエンベロープ信号に電源電圧を追随させることが難しくなり、電力増幅器11で増幅された信号の歪みが増大する。したがって、周波数ギャップが比較的大きい場合に、APTモードで電源電圧が電力増幅器11に供給されることで、ETモードで電源電圧が電力増幅器11に供給される場合よりも信号の歪みを抑制することができる。一方、周波数ギャップが比較的小さい場合にETモードで電源電圧が電力増幅器11に供給されることで、APTモードで電源電圧が電力増幅器11に供給される場合よりもPAEを向上させることができる。つまり、電力増幅回路10は、複数のチャネルで複数の信号を同時送信する場合に、信号品質の低下を抑制しつつ、PAEの改善を図ることができる。
 また例えば、本実施の形態に係る高周波回路1において、トラッキング回路50は、(i)において、周波数ギャップが第2閾値幅WTH2以上第1閾値幅WTH1未満であれば、電力増幅器11に第2ETモードで電源電圧VET2を供給し、周波数ギャップが第2閾値幅WTH2未満であれば、電力増幅器11に第1ETモードで電源電圧VET1を供給し、第2ETモードで供給される電源電圧VET2は、第1ETモードで供給される電源電圧VET1よりも高くてもよい。
 これによれば、ETモードで電源電圧が電力増幅器11に供給される場合に、周波数ギャップがより大きければより高い電源電圧が供給される。つまり、第1信号及び第2信号の全体としてのバンド幅が増加することでピーク電力が増加する状況において、より高い電源電圧が電力増幅器11に供給されることで、より高い出力電力における電力増幅器11の線形性を向上させて信号の歪みを抑制することができる。
 また例えば、本実施の形態に係る高周波回路1において、トラッキング回路50は、(ii)において、周波数ギャップが第1閾値幅WTH1以上第3閾値幅WTH3未満であれば、電力増幅器11に第1APTモードで電源電圧VAPT1を供給し、周波数ギャップが第3閾値幅WTH3以上であれば、電力増幅器11に第2APTモードで電源電圧VAPT2を供給し、第2APTモードで供給される電源電圧VAPT2は、第1APTモードで供給される電源電圧VAPT1よりも高くてもよい。
 これによれば、APTモードで電源電圧が電力増幅器11に供給される場合に、周波数ギャップがより大きければより高い電源電圧が供給される。つまり、第1信号及び第2信号の全体としてのバンド幅が増加することでピーク電力が増加する状況において、より高い電源電圧が電力増幅器11に供給されることで、より高い出力電力における電力増幅器11の線形性を向上させて信号の歪みを抑制することができる。
 また例えば、本実施の形態に係る高周波回路1において、第1チャネル及び第2チャネルは、同一のバンドAに含まれてもよい。また例えば、本実施の形態に係る高周波回路1において、バンドAでは、イントラバンド連続CAが利用可能であってもよい。
 これによれば、同一バンド内の複数のチャネルで複数の信号を同時送信する場合に、信号品質の低下を抑制しつつ、PAEの改善を図ることができる。特に、高周波回路1をより広いバンドで効果的に利用することができる。
 また例えば、第1信号及び第2信号の一方のみが送信される場合に、電力増幅器11にETモードが適用されてもよい。
 これによれば、電力増幅器11で増幅される信号のチャネル帯域幅が狭い場合には、ETモードを用いることができ、PAEの改善を図ることができる。
 (変形例1)
 次に、変形例1について説明する。本変形例では、電力増幅回路に可変ノッチフィルタが含まれる点が、上記実施の形態と主として異なる。以下に、本変形例について、上記実施の形態と異なる点を中心に図面を参照しながら説明する。
 図8は、本変形例に係る電力増幅回路10Aの回路構成図である。電力増幅回路10Aは、電力増幅器11と、フィルタ21と、入力端子101と、電源電圧端子102と、出力端子103と、に加えて、ノッチフィルタ22を備える。
 ノッチフィルタ22は、帯域除去フィルタ(BEF:Band-Elimination Filter)の一例であり、電力増幅器11に接続され、第1チャネル及び第2チャネル間の周波数ギャップを含む減衰帯域を有する。図8では、ノッチフィルタ22は、減衰帯域が可変な可変ノッチフィルタであり、電力増幅器11の入力端子11aに接続される。ノッチフィルタ22の減衰帯域は、第1信号S1及び第2信号S2の周波数ギャップに応じて変化させることができる。
 ノッチフィルタ22としては、SAWフィルタ、BAWフィルタ、LC共振フィルタ、及び誘電体共振フィルタのいずれを用いて構成されてもよく、さらには、これらには限定されない。
 以上のように、本変形例に係る高周波回路1において、電力増幅回路10Aは、さらに、電力増幅器11に接続されるノッチフィルタ22であって、第1チャネル及び第2チャネル間の周波数ギャップを含む減衰帯域を有するノッチフィルタ22を備えてもよい。
 これによれば、ノッチフィルタ22によって第1信号及び第2信号の周波数ギャップに含まれるノイズを減衰させることができ、信号品質を向上させることができる。
 また例えば、本変形例に係る高周波回路1及び電力増幅回路10Aにおいて、ノッチフィルタ22は、減衰帯域が可変な可変ノッチフィルタであってもよい。
 これによれば、ノッチフィルタ22によって異なる周波数ギャップに含まれるノイズを減衰させることができる。したがって、第1信号及び第2信号の異なる組み合わせに対して、信号品質を向上させることができ、高周波回路1及び電力増幅回路10Aの汎用性を向上させることができる。
 なお、図8では、ノッチフィルタ22は、電力増幅器11の入力端子11aに接続されていたが、これに限定されない。例えば、図9に示すように、ノッチフィルタ22は、電力増幅器11の出力端子11bに接続されてもよい。
 (変形例2)
 次に、変形例2について説明する。本変形例では、電力増幅器とノッチフィルタとの間にスイッチが接続される点が、上記実施の形態と主として異なる。以下に、本変形例について、上記実施の形態と異なる点を中心に図面を参照しながら説明する。
 図10は、本変形例に係る電力増幅回路10Bの回路構成図である。電力増幅回路10Bは、電力増幅器11と、フィルタ21と、入力端子101と、電源電圧端子102と、出力端子103と、に加えて、ノッチフィルタ23と、スイッチ31及び32と、を備える。
 ノッチフィルタ23は、帯域除去フィルタの一例であり、電力増幅器11に接続され、第1チャネル及び第2チャネル間の周波数ギャップを含む減衰帯域を有する。本変形例では、ノッチフィルタ23は、スイッチ31を介して電力増幅器11の入力端子11aに接続される。
 スイッチ31は、電力増幅器11とノッチフィルタ23との間に接続される。スイッチ31は、電力増幅器11の入力端子11aに接続された端子311と、ノッチフィルタ23に接続された端子312と、スイッチ32に接続された端子313と、を有する。スイッチ31は、例えばSPDT型のスイッチ回路で構成される。
 スイッチ32は、ノッチフィルタ23と入力端子101との間に接続される。スイッチ32は、入力端子101に接続された端子321と、ノッチフィルタ23に接続された端子322と、スイッチ31の端子313に接続された端子323と、を備えることができる。スイッチ32は、例えばSPDT型のスイッチ回路で構成される。なお、スイッチ32は、任意の回路素子であり、省略されてもよい。
 このような接続構成において、スイッチ31及び32は、ノッチフィルタ23を介して入力端子101を電力増幅器11に接続することと、ノッチフィルタ23を介さずに入力端子101を電力増幅器11に接続することとを切り替えることができる。具体的には、スイッチ31の端子311が端子312に接続され、スイッチ32の端子321が端子322に接続されることで、入力端子101は、ノッチフィルタ23を介して電力増幅器11に接続される。逆に、スイッチ31の端子311が端子313に接続され、スイッチ32の端子321が端子323に接続されることで、入力端子101は、ノッチフィルタ23を介さずに電力増幅器11に接続される。
 以上のように、本変形例に係る高周波回路1において、電力増幅回路10Bは、さらに、電力増幅器11に接続されるノッチフィルタ23であって、第1チャネル及び第2チャネル間の周波数ギャップを含む減衰帯域を有するノッチフィルタ23を備えてもよい。
 これによれば、ノッチフィルタ23によって第1信号及び第2信号の周波数ギャップに含まれるノイズを減衰させることができ、信号品質を向上させることができる。
 また例えば、本変形例に係る高周波回路1において、電力増幅回路10Bは、さらに、電力増幅器11とノッチフィルタ23との間に接続されるスイッチ31を備えてもよい。
 これによれば、スイッチ31によって電力増幅器11とノッチフィルタ23との間の接続及び非接続が切り替えられるので、周波数ギャップに応じてノッチフィルタ23の使用及び不使用を切り替えることができる。したがって、特定の周波数ギャップを有する2つのチャネルの信号の同時送信において信号品質を向上させることができる。一方、特定の周波数ギャップと異なる周波数ギャップを有する2つのチャネルの信号の同時送信において、ノッチフィルタ23が悪影響を与えることを抑制することができる。
 なお、図10では、ノッチフィルタ23は、スイッチ31を介して電力増幅器11の入力端子11aに接続されていたが、これに限定されない。例えば、図11に示すように、ノッチフィルタ23は、スイッチ31を介して電力増幅器11の出力端子11bに接続されてもよい。この場合、スイッチ31及び32は、ノッチフィルタ23を介して電力増幅器11をフィルタ21に接続することと、ノッチフィルタ23を介さずに電力増幅器11をフィルタ21に接続することとを切り替えることができる。
 (他の実施の形態)
 以上、本発明に係る高周波回路及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波回路及び通信装置は、上記実施の形態及びその変形例に限定されるものではない。上記実施の形態及びその変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態及びその変形例に係る高周波回路及び通信装置の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、電力増幅器とフィルタとの間に整合回路が挿入されてもよい。
 また、上記実施の形態では、通信装置は、送信装置であったが、送受信装置であってもよい。この場合、高周波回路は、低雑音増幅回路を備えてもよい。
 なお、上記実施の形態では、4つのトラッキングモードが選択的に電力増幅器11に適用されていたが、トラッキングモードの数及び種類は、上記実施の形態の数及び種類に限定されない。例えば、電力増幅器11に、第1ETモード及び第2ETモードが選択的に適用され、第1APTモード及び第2APTモードが適用されなくてもよい。この場合、トラッキング回路50は、APT51及びスイッチ53を備えなくてもよい。また例えば、電力増幅器11に、第1APTモード及び第2APTモードが選択的に適用され、第1ETモード及び第2ETモードが適用されなくてもよい。この場合、トラッキング回路50は、ET52及びスイッチ53を備えなくてもよい。
 なお、上記実施の形態では、高周波回路1は、1つの送信経路のみを含んでいたが、複数の送信経路を含んでもよい。例えば、図12に示すように、通信装置5は、さらに、アンテナ2Aを備えてもよい。このとき、高周波回路1は、さらに、電力増幅器12と、フィルタ24と、スイッチ30と、を備えてもよい。
 電力増幅器12は、RFIC3とフィルタ24との間に接続され、バンドBの送信信号を増幅可能である。なお、電力増幅器12に供給される電源電圧は、特に限定されず、例えば、ETモードに基づく電源電圧であってもよく、どのような電源電圧であってもよい。したがって、図12において、電力増幅器12への電源電圧の供給経路の記載は省略されている。
 バンドBは、バンドAと同様に、RATを用いて構築される通信システムのための周波数バンドである。バンドA及びBは、同時送信可能なバンドの組み合わせである。例えば、バンドA及びBは、CA(Carrier Aggregation)のためのバンドの組み合わせである。また例えば、バンドA及びBは、EN-DC(E-UTRAN New Radio - Dual Connectivity)又はNR-DC(New Radio-New Radio Dual Connectivity)のためのバンドの組み合わせであってもよい。
 バンドBとしては、例えば、LTEのためのBand1、Band2、Band3、Band4、Band13、Band20、Band26、Band28、Band66又はBand71を用いることができる。なお、バンドBは、これに限定されず、3GPP等により定義された様々なバンドを用いることができる。
 フィルタ24は、電力増幅器12とスイッチ30との間に接続される。具体的には、フィルタ24の一端は電力増幅器12の出力端に接続され、フィルタ24の他端はスイッチ30の端子304に接続される。フィルタ24は、バンドBを含む通過帯域を有する。フィルタ24は、SAWフィルタ、BAWフィルタ、LC共振フィルタ、及び誘電体共振フィルタのいずれを用いて構成されてもよく、さらには、これらには限定されない。
 スイッチ30は、アンテナ2及び2Aとフィルタ21及び24との間に接続される。スイッチ30は、アンテナ2に接続される端子301と、アンテナ2Aに接続される端子302と、電力増幅回路10の出力端子103に接続される端子303と、フィルタ24に接続される端子304と、を含む。
 この接続構成において、スイッチ30は、例えばRFIC3からの制御信号に基づいて、端子301を端子303及び304に排他的に接続することができ、かつ、端子302を端子303及び304に排他的に接続することができる。つまり、スイッチ30は、端子301を端子303及び304の一方に接続するとともに、端子302を端子303及び304の他方に接続することができる。
 本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
 1 高周波回路
 2、2A アンテナ
 3 RFIC
 4 BBIC
 5 通信装置
 10、10A、10B 電力増幅回路
 11、12 電力増幅器
 11a、101 入力端子
 11b、103、502 出力端子
 21、24 フィルタ
 22、23 ノッチフィルタ
 30、31、32、53 スイッチ
 50 トラッキング回路
 51 APT
 52 ET
 102 電源電圧端子
 301、302、303、304、311、312、313、321、322、323、531、532、533 端子
 501 制御端子
 G1、G2、G3、G4 周波数ギャップ
 S1 第1信号
 S2 第2信号
 VAPT1、VAPT2、VET1、VET2 電源電圧
 WTH1 第1閾値幅
 WTH2 第2閾値幅
 WTH3 第3閾値幅

Claims (18)

  1.  第1チャネルの第1信号及び第2チャネルの第2信号が同時送信される場合に、前記第1信号及び前記第2信号を増幅する電力増幅器を備え、
     前記第1チャネル及び前記第2チャネル間の周波数ギャップが第1閾値幅未満であれば、前記電力増幅器にエンベロープトラッキングモードが適用され、
     前記周波数ギャップが前記第1閾値幅以上であれば、前記電力増幅器に平均電力トラッキングモードが適用される、
     電力増幅回路。
  2.  前記周波数ギャップが第2閾値幅以上前記第1閾値幅未満であれば、前記電力増幅器に第2エンベロープトラッキングモードが適用され、
     前記周波数ギャップが前記第2閾値幅未満であれば、前記電力増幅器に第1エンベロープトラッキングモードが適用され、
     前記第2エンベロープトラッキングモードで供給される電源電圧は、前記第1エンベロープトラッキングモードで供給される電源電圧よりも高い、
     請求項1に記載の電力増幅回路。
  3.  前記周波数ギャップが前記第1閾値幅以上第3閾値幅未満であれば、前記電力増幅器に第1平均電力トラッキングモードが適用され、
     前記周波数ギャップが前記第3閾値幅以上であれば、前記電力増幅器に第2平均電力トラッキングモードが適用され、
     前記第2平均電力トラッキングモードで供給される電源電圧は、前記第1平均電力トラッキングモードで供給される電源電圧よりも高い、
     請求項1又は2に記載の電力増幅回路。
  4.  前記電力増幅回路は、さらに、前記電力増幅器に接続される帯域除去フィルタであって、前記周波数ギャップを含む減衰帯域を有する帯域除去フィルタを備える、
     請求項1~3のいずれか1項に記載の電力増幅回路。
  5.  前記帯域除去フィルタは、前記減衰帯域が可変なフィルタである、
     請求項4に記載の電力増幅回路。
  6.  前記電力増幅回路は、さらに、前記電力増幅器と前記帯域除去フィルタとの間に接続されるスイッチを備える、
     請求項4に記載の電力増幅回路。
  7.  前記第1チャネル及び前記第2チャネルは、同一バンドに含まれる、
     請求項1~6のいずれか1項に記載の電力増幅回路。
  8.  前記同一バンドでは、イントラバンド連続CA(Intra-band Contiguous Carrier Aggregation)が利用可能である、
     請求項7に記載の電力増幅回路。
  9.  前記第1信号及び前記第2信号の一方のみが送信される場合に、前記電力増幅器にエンベロープトラッキングモードが適用される、
     請求項1~8のいずれか1項に記載の電力増幅回路。
  10.  第1チャネルの第1信号及び第2チャネルの第2信号を増幅可能な電力増幅器を備える電力増幅回路と、
     前記電力増幅器に電源電圧を供給可能なトラッキング回路と、を備え、
     前記第1信号及び前記第2信号が同時送信される場合に、
     (i)前記第1チャネル及び前記第2チャネル間の周波数ギャップが第1閾値幅未満であれば、前記トラッキング回路は、前記電力増幅器にエンベロープトラッキングモードで電源電圧を供給し、
     (ii)前記周波数ギャップが前記第1閾値幅以上であれば、前記トラッキング回路は、前記電力増幅器に平均電力トラッキングモードで電源電圧を供給し、
     (iii)前記電力増幅器は、前記トラッキング回路から供給された電源電圧を用いて、前記第1信号及び前記第2信号を増幅する、
     高周波回路。
  11.  前記トラッキング回路は、前記(i)において、
     前記周波数ギャップが第2閾値幅以上前記第1閾値幅未満であれば、前記電力増幅器に第2エンベロープトラッキングモードで電源電圧を供給し、
     前記周波数ギャップが前記第2閾値幅未満であれば、前記電力増幅器に第1エンベロープトラッキングモードで電源電圧を供給し、
     前記第2エンベロープトラッキングモードで供給される電源電圧は、前記第1エンベロープトラッキングモードで供給される電源電圧よりも高い、
     請求項10に記載の高周波回路。
  12.  前記トラッキング回路は、前記(ii)において、
     前記周波数ギャップが前記第1閾値幅以上第3閾値幅未満であれば、前記電力増幅器に第1平均電力トラッキングモードで電源電圧を供給し、
     前記周波数ギャップが前記第3閾値幅以上であれば、前記電力増幅器に第2平均電力トラッキングモードで電源電圧を供給し、
     前記第2平均電力トラッキングモードで供給される電源電圧は、前記第1平均電力トラッキングモードで供給される電源電圧よりも高い、
     請求項10又は11に記載の高周波回路。
  13.  前記電力増幅回路は、さらに、前記電力増幅器に接続される帯域除去フィルタであって、前記周波数ギャップを含む減衰帯域を有する帯域除去フィルタを備える、
     請求項10~12のいずれか1項に記載の高周波回路。
  14.  前記帯域除去フィルタは、前記減衰帯域が可変なフィルタである、
     請求項13に記載の高周波回路。
  15.  前記電力増幅回路は、さらに、前記電力増幅器と前記帯域除去フィルタとの間に接続されるスイッチを備える、
     請求項13に記載の高周波回路。
  16.  前記第1チャネル及び前記第2チャネルは、同一バンドに含まれる、
     請求項10~15のいずれか1項に記載の電力増幅回路。
  17.  前記同一バンドでは、イントラバンド連続CAが利用可能である、
     請求項16に記載の電力増幅回路。
  18.  前記第1信号及び前記第2信号の一方のみが送信される場合に、前記トラッキング回路は、前記電力増幅器にエンベロープトラッキングモードで電源電圧を供給する、
     請求項10~17のいずれか1項に記載の電力増幅回路。
PCT/JP2022/044466 2021-12-27 2022-12-01 電力増幅回路及び高周波回路 WO2023127397A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021212365 2021-12-27
JP2021-212365 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127397A1 true WO2023127397A1 (ja) 2023-07-06

Family

ID=86998568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044466 WO2023127397A1 (ja) 2021-12-27 2022-12-01 電力増幅回路及び高周波回路

Country Status (1)

Country Link
WO (1) WO2023127397A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430001A (zh) * 2019-08-30 2019-11-08 联想(北京)有限公司 一种载波优化方法及系统
JP2021010064A (ja) * 2019-06-28 2021-01-28 株式会社村田製作所 高周波回路および通信装置
US20210036669A1 (en) * 2019-07-22 2021-02-04 Skyworks Solutions, Inc. Apparatus and methods for adaptive power amplifier biasing
US20210105729A1 (en) * 2018-04-12 2021-04-08 Samsung Electronics Co., Ltd. Electronic device and bandwidth adaptation-based power control method in electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105729A1 (en) * 2018-04-12 2021-04-08 Samsung Electronics Co., Ltd. Electronic device and bandwidth adaptation-based power control method in electronic device
JP2021010064A (ja) * 2019-06-28 2021-01-28 株式会社村田製作所 高周波回路および通信装置
US20210036669A1 (en) * 2019-07-22 2021-02-04 Skyworks Solutions, Inc. Apparatus and methods for adaptive power amplifier biasing
CN110430001A (zh) * 2019-08-30 2019-11-08 联想(北京)有限公司 一种载波优化方法及系统

Similar Documents

Publication Publication Date Title
US9374056B2 (en) Multiband RF device
US10651824B2 (en) Tunable filter for RF circuits
US20150236798A1 (en) Methods for Increasing RF Throughput Via Usage of Tunable Filters
US7706835B2 (en) High-frequency circuit device
JP2005521275A (ja) 集中および分布インダクタンスを使用して増幅器内でインピーダンス整合するための方法およびシステム
CN212935883U (zh) 高频电路以及通信装置
US11349510B2 (en) Radio frequency front end module and communication device
US20230275609A1 (en) Radio-frequency front-end circuit and communication apparatus
US20210258028A1 (en) Radio frequency circuit, radio frequency module, and communication device
TWI713828B (zh) 多頻帶功率放大模組
KR20010062576A (ko) 무선 시스템 결합 장치 및 그 방법
WO2023127397A1 (ja) 電力増幅回路及び高周波回路
US20230238987A1 (en) Radio-frequency circuit and communication apparatus
JP2021118431A (ja) 高周波回路及び通信装置
WO2022074942A1 (ja) 高周波回路
JP2002016448A (ja) 無線周波数増幅器回路及び受信チェーン回路
JP2008205821A (ja) 高周波電力増幅装置及びそれを用いた送信装置
WO2023120086A1 (ja) 高周波回路、トラッキング回路及び電力増幅回路
US20230163791A1 (en) Radio-frequency circuit
CN111064481A (zh) 一种信号处理装置及设备
US20230223964A1 (en) Front end module and wireless device having multiple pre-amplifier bandpass filters
WO2023007996A1 (ja) 電力増幅回路および通信装置
WO2023002778A1 (ja) 電力増幅回路及び電力増幅方法
WO2023058414A1 (ja) 高周波回路および通信装置
US20240014845A1 (en) Radio-frequency circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915628

Country of ref document: EP

Kind code of ref document: A1