WO2023127306A1 - Crystallized glass and crystalline glass - Google Patents

Crystallized glass and crystalline glass Download PDF

Info

Publication number
WO2023127306A1
WO2023127306A1 PCT/JP2022/041285 JP2022041285W WO2023127306A1 WO 2023127306 A1 WO2023127306 A1 WO 2023127306A1 JP 2022041285 W JP2022041285 W JP 2022041285W WO 2023127306 A1 WO2023127306 A1 WO 2023127306A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallized glass
glass according
mol
glass
less
Prior art date
Application number
PCT/JP2022/041285
Other languages
French (fr)
Japanese (ja)
Inventor
智 新井
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023127306A1 publication Critical patent/WO2023127306A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to crystallized glass and crystallizable glass.
  • Cover glass Properties required for cover glass include (1) high mechanical strength, (2) high scratch resistance, (3) light weight, and (4) low cost.
  • Patent Document 2 discloses a technique for improving fracture toughness by precipitating petalite crystals and lithium silicate crystals in the cover glass.
  • Patent Document 3 discloses a technique for increasing mechanical strength by precipitating carnegiite as a main crystal.
  • JP 2006-083045 A Japanese Patent No. 6663532 JP-A-59-223249
  • the petalite crystals and lithium silicate crystals disclosed in Patent Document 2 are crystals containing lithium.
  • Lithium is a scarce resource, and with the recent increase in demand for lithium-ion batteries, there is concern that the supply of raw materials will become unstable.
  • the ion exchange treatment of exchanging lithium ions in the glass and sodium ions in the molten salt increases the stress depth compared to the ion exchange of sodium ions in the glass and potassium ions in the molten salt, but the surface The compressive stress value of is likely to be small.
  • the transparency of the cover glass is also important.
  • the crystallized glass described in Patent Document 3 often becomes opaque, and it tends to become opaque particularly when nepheline precipitates.
  • An object of the present invention is to provide a crystallized glass and a crystallizable glass that have excellent ion exchange performance and excellent transparency even if they do not contain a large amount of lithium components.
  • the present inventor found that the above technical problems can be solved by strictly regulating the glass composition of the crystallized glass. It is something to do. That is, the crystallized glass according to the first invention has a composition, in mol%, of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, P 2 O 5 0 to 10%, ZrO 2 0-10%, MgO+CaO+SrO+BaO+ZnO 0-20%.
  • MgO+CaO+SrO+BaO+ZnO refers to the total amount of MgO, CaO, SrO, BaO and ZnO.
  • the crystallized glass according to the second invention is preferably formed by depositing crystals containing Si, Al, Na, and O in the first invention, and the crystals containing Si, Al, Na, and O are mainly Crystals are preferred.
  • the "main crystal” can be evaluated using an X-ray diffractometer (for example, Rigaku's fully automatic multi-purpose horizontal X-ray diffractometer Smart Lab).
  • the scan mode is 2 ⁇ / ⁇ measurement
  • the scan type is continuous scan
  • the scattering and divergence slit widths are 1°
  • the light receiving slit width is 0.2°
  • the measurement range is 10 to 60°
  • the measurement step is 0. 0.1° and a scanning speed of 5°/min
  • the analysis software installed in the package of the same model can be used to evaluate precipitated crystals.
  • the average crystallite size of crystals containing Si, Al, Na, and O is 1 ⁇ m or less.
  • the "average crystallite size" can be calculated using the X-ray diffraction peak based on the Debeye-Sherrer method.
  • the crystallized glass according to the fourth invention preferably has a degree of crystallinity of 1 to 95%.
  • the "crystallinity" is calculated based on the X-ray diffraction profile by (integrated intensity of the X-ray diffraction peak of the crystal) / (total integrated intensity of the measured X-ray diffraction) x 100 [%]. be able to.
  • the crystallized glass according to the fifth invention is the crystallized glass according to any one of the first to fourth inventions, wherein Na 4 Al 2 Si 2 O 9 , Na 6 Al 4 Si 4 O 17 , Na 8 Al 4 Si 4 O 18 Among them, it is preferable that at least one kind of crystal is precipitated.
  • the mol % ratio Al 2 O 3 /SiO 2 is 0.1 to 0.5.
  • Al 2 O 3 /SiO 2 refers to a value obtained by dividing the content of Al 2 O 3 by the content of SiO 2 .
  • the mol % ratio Al 2 O 3 /Na 2 O is 0.01 to 0.7.
  • Al2O3 / Na2O refers to a value obtained by dividing the content of Al2O3 by the content of Na2O .
  • the mol % ratio Na 2 O/SiO 2 is preferably 0.1-1.
  • Na 2 O/SiO 2 refers to a value obtained by dividing the content of Na 2 O by the content of SiO 2 .
  • the content of P 2 O 5 is 0.1 to 10 mol %.
  • the crystallized glass according to the tenth invention preferably has a ZrO 2 content of 0.1 to 10 mol %.
  • the crystallized glass according to the eleventh invention preferably has a CaO content of 0 to 5 mol%.
  • the crystallized glass according to the twelfth invention is the crystallized glass according to any one of the first to eleventh inventions, wherein the content of Fe 2 O 3 is 0 to 0.5 mol% and the content of TiO 2 is 0 to 0.5 mol. %.
  • the crystallized glass according to the thirteenth invention in any one of the first to twelfth inventions, preferably does not substantially contain As 2 O 3 and PbO.
  • substantially free from means not intentionally added to the glass, and does not completely exclude unavoidable impurities. Specifically, it means that the content of each of the specified components is less than 0.01 mol %.
  • the crystallized glass according to the fourteenth invention in any one of the first to thirteenth inventions, has no compressive stress layer formed on the surface due to ion exchange, and has a scratch depth of 200 ⁇ m or less when scratched.
  • the "scratch depth” means that a sample is placed on a granite surface plate, and No. 180 abrasive paper is pressed against the sample with a load of 100 N to scratch it. A three-point bending test is performed and the cross section of the fractured sample is observed with a differential interference microscope, and it means the depth from the glass surface of the semicircular median crack.
  • the crystallized glass according to the fifteenth invention preferably has a compressive stress layer formed on the surface by ion exchange.
  • the crystallized glass according to the sixteenth invention preferably has a surface compressive stress value of at least 100 MPa or more.
  • the "compressive stress value” and the “stress depth (DOC)” can be measured by, for example, a scattered light photoelastic stress meter SLP-1000 or a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho.
  • the crystallized glass according to the seventeenth invention preferably has a depth of stress (DOC) of 20 ⁇ m or more.
  • the crystallized glass according to the eighteenth invention preferably has a ⁇ CT/t of 20 MPa or more.
  • ⁇ CT/t is the depth direction profile of compressive stress obtained with a scattered light photoelastic stress meter (for example, Orihara Seisakusho's scattered light photoelastic stress meter SLP-1000), from the glass surface to the thickness Means the value obtained by integrating the stress up to half the depth of
  • the number of fragments after a drop test is 200 or less per 1000 mm 2 .
  • the "number of fragments after the drop test” is defined by placing a sample on a granite surface plate and vertically dropping a 53 g weight with a Vickers indenter attached to the tip of the sample from a height of 10 mm. It means the number of fragments when delayed fracture occurred after the test was performed.
  • the crystallized glass according to the twentieth invention preferably has a Young's modulus of 50 MPa or more in any one of the first to nineteenth inventions.
  • the crystallized glass according to the twenty-first invention preferably has a fracture toughness of less than 1.0 MPa ⁇ m 1/2 .
  • the crystallized glass according to the 22nd invention in any one of the 1st to 21st inventions preferably has a visible light transmittance of 50% or more at a wavelength of 380 to 780 nm at a thickness of 0.7 mm.
  • the “visible light transmittance” is obtained by measuring the linear transmittance in the thickness direction using a spectrophotometer (eg, Shimadzu UV-3100).
  • the crystallized glass according to the twenty-third invention is any one of the first to twenty-second inventions, wherein the coefficient of linear thermal expansion at 30 to 300° C. is 0 ⁇ 10 ⁇ 7 to 150 ⁇ 10 ⁇ 7 /° C. is preferred.
  • the crystallized glass according to the twenty-fourth invention is preferably used for the cover glass in any one of the first to twenty-third inventions.
  • the crystallized glass according to the twenty-fifth invention has a composition, in mol%, of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, P 2 O 5 0.1 to 10%, ZrO 2 0.1-10%, CaO 0-1%, MgO + CaO + SrO + BaO + ZnO 0-20%, mol% ratio Al 2 O 3 /SiO 2 is 0.1-0.3, mol% ratio Al 2 O 3 /Na 2 O is 0.2 to 0.48, and crystals containing Si, Al, Na and O are precipitated.
  • the crystallizable glass according to the twenty-sixth invention has a composition, in mol%, of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, and P 2 O 5 0.8 to 10%, ZrO 2 0.1-10%, MgO + CaO + SrO + BaO + ZnO 0-20%, CaO 0-1%, mol% ratio Al 2 O 3 /SiO 2 is 0.1-0.3, mol% ratio Al 2 O 3 /Na 2 O is 0.2 to 0.48, and the mol % ratio Na 2 O/SiO 2 is 0.4 to 0.7.
  • crystals containing Si, Al, Na, and O are precipitated by heat treatment (more specifically, by firing treatment).
  • the crystallizable glass according to the twenty-eighth invention is preferably subjected to an ion exchange treatment in the twenty-sixth or twenty-seventh invention.
  • Sample no. 32 is a transmittance curve at a wavelength of 200 to 800 nm at a thickness of 0.7 mm.
  • Sample no. 32 (which has undergone a crystallization process but has not been subjected to ion exchange treatment) and conventional chemically strengthened glass are compared in terms of scratch depth when scratched.
  • 4 is data showing the relationship between compressive stress values (CS) and stress depths (DOC) of samples A to D of Example 2.
  • FIG. Sample no. Data showing 32 XRD curves. 4 is data showing the relationship between compressive stress values (CS) and stress depths (DOC) of samples E to I of Example 3.
  • FIG. 4 is data showing the relationship between the number of fragments of Samples F to J of Example 3 and Comparative Example L and ⁇ CT/t.
  • the crystallized glass (crystalline glass) of the present invention has a composition of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, P 2 O 5 0 to 10%, ZrO 2 0-10%, MgO+CaO+SrO+BaO+ZnO 0-20%.
  • % means mol% unless otherwise specified.
  • SiO2 is a component that forms the skeleton of glass.
  • the content of SiO 2 is preferably 30-70%, 35-65%, 37-60%, 39-58%, especially 40-55%. If the SiO2 content is too low, the weather resistance tends to be significantly reduced. On the other hand, if the content of SiO2 is too high, the meltability tends to decrease.
  • Al 2 O 3 is a component that enhances ion exchange performance and is a component necessary for precipitating desired crystals.
  • the content of Al 2 O 3 is preferably 1-20%, 2-18%, 3-16%, 4-14%, 5-12%, especially 6-11%. If the content of Al 2 O 3 is too small, it becomes difficult to deposit desired crystals. On the other hand, if the content of Al 2 O 3 is too high, the meltability tends to deteriorate.
  • the mol % ratio Al 2 O 3 /SiO 2 is preferably from 0.01 to 0.5, from 0.05 to 0.4, from 0.1 to 0.3, from 0.11 to 0.29, from 0.12 to 0.28, 0.13-0.27, 0.14-0.26, especially 0.15-0.25. If the mol % ratio of Al 2 O 3 /SiO 2 is out of the above range, crystals containing Na, Al, Si, and O are difficult to precipitate, and the crystallized glass may become cloudy due to precipitation of heterogeneous crystals.
  • Na 2 O is a component that lowers high-temperature viscosity and enhances meltability. In addition to being a component involved in the ion exchange treatment, it is a component necessary for precipitating desired crystals.
  • the content of Na 2 O is preferably 3-45%, 5-40%, 10-38%, 15-35%, 18-33%, especially 20-30%. If the content of Na 2 O is too small, the ion exchange performance tends to deteriorate and the desired crystals are difficult to precipitate. On the other hand, if the content of Na 2 O is too large, the high-temperature viscosity is too low, and the glass may be softened and deformed during the heat treatment for crystallization.
  • the mol % ratio Na 2 O/SiO 2 is preferably 0.1-1, 0.2-0.9, 0.3-0.8, 0.4-0.7, 0.41-0.69 , 0.42-0.68, 0.43-0.67, 0.44-0.66, 0.45-0.65, 0.46-0.64, 0.47-0.63, 0 0.48-0.62, 0.49-0.61, especially 0.5-0.6. If the mol % ratio of Na 2 O/SiO 2 is too small, crystals containing Na, Al, Si, and O are difficult to precipitate, and high-temperature viscosity increases, making melting difficult.
  • the mol % ratio Al 2 O 3 /Na 2 O is preferably 0.01-0.7, 0.05-0.6, 0.1-0.5, 0.2-0.48, 0.21 ⁇ 0.45, 0.22-0.44, 0.23-0.43, 0.24-0.42, 0.25-0.41, especially 0.26-0.4. If the mol % ratio of Al 2 O 3 /Na 2 O is out of the above range, crystals containing Na, Al, Si, and O are difficult to precipitate, and the crystallized glass may become cloudy due to the precipitation of heterogeneous crystals.
  • MgO, CaO, SrO, BaO, and ZnO are components that increase meltability.
  • the content of MgO+CaO+SrO+BaO+ZnO is preferably 0-20%, 1-18%, 2-16%, 3-14%, 4-13%, 5-12%, especially 6-11%. If the content of MgO+CaO+SrO+BaO+ZnO is too high, coarse crystals tend to precipitate. On the other hand, if the content of MgO+CaO+SrO+BaO+ZnO is too small, the melting temperature tends to increase.
  • MgO is a component that enhances meltability and also a component that enhances mechanical strength.
  • the content of MgO is preferably 0-15%, 0-10%, 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. If the content of MgO is too high, not only coarse crystals are likely to precipitate but also heterogeneous crystals are likely to precipitate.
  • CaO is a component that enhances meltability and is a component that easily inhibits ion exchange.
  • the content of CaO is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, and it is particularly preferably substantially free. If the content of CaO is too high, ion exchange is likely to be inhibited, coarse crystals are likely to precipitate, and heterogeneous crystals are likely to precipitate.
  • SrO is a component that enhances meltability.
  • the content of SrO is preferably 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. If the SrO content is too high, coarse crystals are likely to precipitate, and heterogeneous crystals are likely to precipitate.
  • BaO is a component that enhances meltability.
  • the content of BaO is preferably 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. If the BaO content is too high, coarse crystals tend to precipitate, and heterogeneous crystals tend to precipitate.
  • ZnO is a component that enhances meltability and also makes it difficult for coarse crystals and heterogeneous crystals to precipitate.
  • the content of ZnO is preferably 0-20%, 0-18%, 0-16%, 0-14%, especially 0-12%. If the content of ZnO is too high, the high-temperature viscosity is too low, and the glass may be softened and deformed during the heat treatment for crystallization. When it is important to suppress the precipitation of coarse crystals and heterogeneous crystals, it is preferable to contain ZnO. In that case, the ZnO content is preferably 0.1 to 20%, 0.5 to 19%. , 1-18%, 2-17%, 3-16%, especially 4-15%.
  • Li 2 O like Na 2 O, is a component that lowers high-temperature viscosity and enhances meltability. If the content of Li 2 O is too high, heterogeneous crystals are precipitated, and the transmittance of the crystallized glass tends to decrease. Therefore, Li 2 O can be substantially free, but when Li 2 O is contained, its content is preferably 0 to 5%, particularly 0 to 1%.
  • K 2 O like Li 2 O and Na 2 O, is a component that lowers high-temperature viscosity and enhances meltability. If the K 2 O content is too high, crystals other than the main crystals of the crystallized glass, that is, heterogeneous crystals are likely to precipitate, resulting in a decrease in transmittance. Also, if K 2 O is added, the ion exchange speed increases, and compressive stress can be formed from the surface of the glass to a deep region even in a short period of time. On the other hand, if K 2 O is too much, the compressive stress value tends to be small.
  • the content of K 2 O is preferably 0-5%, especially 0-1%.
  • Na 2 O is required for the precipitation of the desired crystals
  • Na 2 O>Li 2 O and Na 2 O>K 2 O are preferable in the content of the alkali metal oxide, and Na 2 O>K 2 O.
  • ⁇ Li 2 O is more preferred, and Na 2 O>K 2 O>Li 2 O is particularly preferred.
  • P 2 O 5 is a component that enhances ion exchange performance. It is also a necessary component for efficiently precipitating crystals in the crystallization process. On the other hand, when a large amount of P 2 O 5 is contained, the glass tends to be remarkably phase-separated.
  • the content of P 2 O 5 is preferably 0-10%, 0.1-9%, 0.3-8%, 0.5-7%, 0.6-6.5%, 0.7- 6%, 0.8-5.5%, 0.9-5%. Especially 1 to 7.5%. If the content of P 2 O 5 is too small, ion exchange becomes difficult to occur and the time required for ion exchange becomes longer, which tends to reduce productivity.
  • crystal nuclei are not sufficiently formed, and coarse crystals are precipitated, making the glass more likely to become cloudy and likely to break.
  • the content of P 2 O 5 is too high, the glass will undergo phase separation, and the crystallized glass will tend to become cloudy, and the weather resistance will tend to decrease.
  • ZrO 2 is a component that efficiently deposits crystals in the crystallization process.
  • the content of ZrO 2 is preferably 0-10%, 0.1-9.5%, 0.2-9%, 0.3-8.5%, 0.4-8%, 0.5- 7.5%, 0.6-7%, 0.7-6.5%, especially 0.8-6%. If the content of ZrO 2 is too low, crystal nuclei are not sufficiently formed, and coarse crystals are precipitated, making the glass more likely to become cloudy and likely to break. On the other hand, if the ZrO 2 content is too high, coarse ZrO 2 crystals are precipitated, the glass tends to devitrify, and the crystallized glass tends to break.
  • SnO 2 is a component that releases oxygen by changing its valence during melting, increases the bubble floating speed in the molten glass, and promotes clarification.
  • the SnO 2 content is preferably 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%.
  • SnO 2 also has the effect of promoting phase separation of ZrO 2 . While keeping the liquidus temperature low (while suppressing the risk of devitrification due to primary phase precipitation), in order to efficiently generate phase separation and rapidly perform the nucleation and crystal growth steps in the subsequent steps, SnO 2 is preferably added.
  • the SnO 2 content in this case is 0.01-5%, 0.03-4%, 0.05-3%, 0.08-2.5%, particularly preferably 0.1-2% .
  • Fe 2 O 3 is a component contained in the raw material as an unavoidable impurity. If the content of Fe 2 O 3 is too high, the crystallized glass may be colored and transmittance may be lowered.
  • the content of Fe 2 O 3 is preferably 0-4%, 0-3%, 0-2%, 0-1%, 0-0.5%, especially 0-0.1%.
  • TiO 2 is a component that promotes precipitation of crystals in the crystallization process.
  • the glass may be markedly colored.
  • a zirconia titanate-based crystal containing ZrO 2 and TiO 2 acts as a crystal nucleus, but electrons transition from the valence band of oxygen, which is a ligand, to the conduction band of zirconia and titanium, which are central metals (LMCT transition ), involved in the coloring of crystallized glass.
  • LMCT transition central metals
  • an LMCT transition can occur from the valence band of the SiO2 framework to the conduction band of tetravalent titanium in the residual glass phase.
  • the content of TiO 2 is preferably 0-4%, 0-3%, 0-2%, 0-1%, 0-0.5%, especially 0-0.1%.
  • the lower limit of the content of TiO2 is preferably 0.0003% or more, 0.001% or more, 0.01% or more, especially 0.02% or more.
  • B 2 O 3 is a component that lowers high-temperature viscosity and improves meltability and moldability. It is also a component that can contribute to the tendency of phase separation to occur during crystal nucleus formation.
  • the content of B 2 O 3 is preferably 0-3%, 0-2%, 0-1%, especially 0-0.1%. If the content of B 2 O 3 is too high, the amount of the compound containing B evaporates at the time of melting, which may increase the environmental load.
  • CeO 2 is a component that not only increases the solubility but also has an effect as an oxidizing agent, suppresses the increase of Fe 2+ in the total Fe impurities, and increases the visible light transmittance of the crystallized glass.
  • the content of CeO 2 is preferably 0-0.5%, 0-0.4%, in particular 0-0.3%. If the content of CeO 2 is too high, the coloration due to Ce 4+ may become too strong, and the crystallized glass may take on a brown color.
  • SO3 can be introduced from Glauber's salt.
  • SO 3 is a component that releases sulfur dioxide and oxygen during melting to expand bubbles in the molten glass and promote clarification. It is also a component that works as an oxidizing agent like CeO 2 and increases the effect of CeO 2 by allowing it to coexist with CeO 2 .
  • the content of SO3 is preferably 0-0.5%, 0.01-0.45%, 0.02-0.4%, 0.03-0.35%, 0.04-0.3 %, especially 0.05-0.25%. If the content of SO 3 is too high, heterogeneous crystals may precipitate and the surface quality of the crystallized glass may deteriorate.
  • MoO 3 is a component that can be slightly mixed into the molten glass from the electrode in the melting method in which the glass is heated by applying an electric current from an electrode immersed in the molten glass.
  • the content of MoO 3 is preferably 0-0.5%, 0-0.1%, 0-0.05%, 0-0.01%, 0-0.005%, 0-0.001% , 0 to 0.0005%, especially 0 to 0.0003%.
  • the Cl content is preferably 0.1% or less, 0.05% or less, 0.01% or less, 0.005% or less, and particularly 0.04% or less.
  • Cr 2 O 3 , La 2 O 3 , WO 3 , Nb 2 O 3 , Y 2 O 3 and the like are added at 3% or less, 2% or less, and 1% or less, respectively, in order to improve chemical durability, high-temperature viscosity, etc. , less than 1%, and up to 0.5%.
  • components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may be introduced up to 0.1% each.
  • the mixed amount of noble metal elements such as Pt, Rh, and Au is preferably 500 ppm or less, more preferably 300 ppm or less.
  • the crystallized glass of the present invention preferably has the following characteristics and properties.
  • the crystallized glass of the present invention is preferably formed by precipitating crystals containing Na, Al, Si and O, more preferably by precipitating crystals containing Na, Al, Si and O as main crystals.
  • it preferably contains crystals represented by Na 4 Al 2 Si 2 O 9 , Na 6 Al 4 Si 4 O 17 or Na 8 Al 4 Si 4 O 18 .
  • crystals represented by Na 4 Al 2 Si 2 O 9 , Na 6 Al 4 Si 4 O 17 or Na 8 Al 4 Si 4 O 18 .
  • precipitation of crystals other than the above crystals is not excluded.
  • the main crystal of the crystallized glass of the present invention preferably has a triclinic system, a monoclinic system, a cubic system, a tetragonal system, a hexagonal system or a cubic system, more preferably a monoclinic system or a cubic system.
  • tetragonal system, hexagonal system, cubic system, more preferably rectangular system, tetragonal system, hexagonal system, cubic system, more preferably tetragonal system, hexagonal system, cubic system particularly preferably is hexagonal, cubic, most preferably cubic.
  • the degree of crystallinity is preferably 1% or more, 5% or more, 10% or more, 15% or more, 20% or more, particularly 25% or more. If the degree of crystallinity is too low, the effect of increasing the allowable limit of internal tensile stress tends to decrease. On the other hand, if the degree of crystallinity is too high, the transmittance tends to decrease. In addition, when ion exchange treatment is performed, the proportion of the glass phase to be ion exchanged decreases, making it difficult to form a high compressive stress value. Therefore, the crystallinity is preferably 99% or less, 96% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, particularly 30% or less.
  • the crystallite size is preferably 1 ⁇ m or less, 0.5 ⁇ m or less, particularly 0.3 ⁇ m or less. If the crystallite size is too large, the transmittance tends to decrease. Although the lower limit of the crystallite size is not particularly limited, it is practically 1 nm or more.
  • the average visible light transmittance at a thickness of 0.7 mm and a wavelength of 380 to 780 nm is preferably 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, and particularly 80% or more. If the thickness is 0.7 mm and the average visible light transmittance at a wavelength of 380 to 780 nm is too low, it will be difficult to use as a cover glass for smartphones.
  • the whiteness L* value is preferably 50 or higher, 60 or higher, 70 or higher, 80 or higher, particularly 90 or higher. If the whiteness is too low, the transmittance tends to decrease.
  • the "whiteness L* value" means the one defined in JIS Z 8730.
  • the crystallized glass of the present invention preferably has a compressive stress layer on its surface.
  • the surface compressive stress value (CS) is preferably 100 MPa or more, 200 MPa or more, 300 MPa or more, 400 MPa or more, 500 MPa or more, 550 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more, 750 MPa or more, 800 MPa or more, 850 MPa or more, 900 MPa or more. , especially above 950 MPa. If the compressive stress value is too small, the bending strength may become low.
  • the upper limit range of the compressive stress value (CS) is preferably 1800 MPa or less. If the compressive stress value (CS) is too large, the internal tensile stress becomes excessive, and when the crystallized glass is broken, fragments are likely to scatter.
  • the depth of stress (DOC) is preferably 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, 110 ⁇ m or more, especially 120 ⁇ m or more. be. If the stress depth is too small, the drop strength may become low.
  • the upper limit of the depth of stress (DOC) is 300 ⁇ m or less, and practically 1/4 or less of the thickness of the glass.
  • the stress integral value ⁇ CT/t is obtained from a scattered light photoelastic stress meter (for example, Orihara Seisakusho's scattered light photoelastic stress meter SLP-1000). It is the value obtained by integrating the stress up to the depth of ⁇ CT/t of the crystallized glass of the present invention is preferably 10 MPa or more, 12 MPa or more, 14 MPa or more, 16 MPa or more, 18 MPa or more, 20 MPa or more, 21 MPa or more, 22 MPa or more, 23 MPa or more, 24 MPa or more, 25 MPa or more, 26 MPa or more. , 27 MPa or more, 28 MPa or more, 29 MPa or more, in particular 30 MPa or more.
  • a scattered light photoelastic stress meter for example, Orihara Seisakusho's scattered light photoelastic stress meter SLP-1000. It is the value obtained by integrating the stress up to the depth of ⁇ CT/t of the crystallized glass of the present invention is
  • ⁇ CT/t is preferably 50 MPa or less, 48 MPa or less, 46 MPa or less, 45 MPa or less, 44 MPa or less, 43 MPa or less, 42 MPa or less, 41 MPa or less, 40 MPa or less, 39 MPa or less, or 38 MPa. 37 MPa or less, 36 MPa or less, particularly 35 MPa or less.
  • the depth of the scratch when scratched means that the sample is placed on a granite surface plate, and the sample is pressed with No. 180 abrasive paper with a load of 100 N to scratch it. A three-point bending test is performed and the cross section of the fractured sample is observed with a differential interference microscope, and it means the depth from the glass surface of the semicircular median crack.
  • the scratch depth when scratched is preferably 200 ⁇ m or less, 190 ⁇ m or less, 180 ⁇ m or less, 170 ⁇ m or less, 160 ⁇ m or less, 150 ⁇ m or less, 140 ⁇ m or less, or 130 ⁇ m.
  • the scratch depth is 120 ⁇ m or less, 110 ⁇ m or less, particularly 100 ⁇ m or less. If the scratch depth is too deep, conspicuous scratches are likely to occur when dropped. Although the lower limit of the scratch depth is not particularly limited, it is practically 30 ⁇ m or more.
  • the number of fragments after the drop test is 500 or less, 450 or less, 400 or less, 350 or less, 300 or less, 250 or less, 200 or less, 190 or less, 180 or less, 170 or less per 1000 mm 2 , 160 or less, 150 or less, 140 or less, 130 or less, 120 or less, 110 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, especially 50 or less preferable. If the number of fragments is too high, the transparency will be lost after dropping. In addition, there is a risk of injury due to fine fragments. Although the lower limit of the number of fragments is not particularly limited, it is actually two or more.
  • the bending strength is preferably 100 MPa or higher, 120 MPa or higher, 150 MPa or higher, 180 MPa or higher, 200 MPa or higher, 230 MPa or higher, and particularly 250 MPa or higher. If the bending strength is too low, the crystallized glass will easily break. Although the upper limit of the bending strength is not particularly limited, it is practically 3000 MPa or less.
  • the drop resistance height is preferably 5 mm or more, 7 mm or more, particularly 10 mm or more. If the drop resistance is too low, the crystallized glass is likely to break when dropped.
  • the Young's modulus is preferably 50 GPa or higher, 60 GPa or higher, 70 GPa or higher, 75 GPa or higher, and particularly 80 GPa or higher. If the Young's modulus is too low, the tempered glass will easily bend when the plate thickness is thin. Although the upper limit of the Young's modulus is not particularly limited, it is practically 150 GPa or less.
  • the fracture toughness is preferably 0.5 MPa ⁇ m 1/2 or more, 0.55 MPa ⁇ m 1/2 or more, 0.6 MPa ⁇ m 1/2 or more, 0.65 MPa ⁇ m 1 /2 or more, particularly 0.7 MPa ⁇ m 1/2 or more. Too low a fracture toughness tends to increase the number of fragments in a drop test. On the other hand, if, for example, the degree of crystallinity is excessively increased in order to increase the fracture toughness, the average visible light transmittance of the crystallized glass tends to decrease. Therefore, when emphasizing the transmittance, the fracture toughness is preferably 2 or less, 1.5 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1.0 or less, especially less than 1.0 .
  • the strain point is preferably 450°C or higher, particularly 500°C or higher. If the strain point is too low, the glass may be deformed during the crystallization process. Although the upper limit of the strain point is not particularly limited, it is practically 1000° C. or less.
  • the coefficient of thermal expansion at 30 to 380°C is preferably 0 ⁇ 10 -7 to 160 ⁇ 10 -7 /°C, 10 ⁇ 10 -7 to 155 ⁇ 10 -7 /°C, especially 20 ⁇ 10 -7 to 150 ⁇ 10 -7 /°C. If the coefficient of thermal expansion is too low, it will be difficult to match the coefficient of thermal expansion with the surrounding members. On the other hand, if the coefficient of thermal expansion is too high, the thermal shock resistance tends to decrease.
  • glass raw materials are blended so as to have the desired composition.
  • the mixed raw material batch is melted at 1300 to 1600° C. for 8 to 16 hours and formed into a predetermined shape to obtain crystallizable glass.
  • a molding method a well-known molding method such as a float method, an overflow down-draw method, a roll-out method, or a mold press method can be employed.
  • processing such as bending may be performed as necessary.
  • the crystallizable glass is subjected to heat treatment (that is, firing treatment) at 500 to 800°C for 0.1 to 15 hours to precipitate crystals and obtain crystallized glass.
  • the heat treatment for crystallization may be performed only at a specific temperature, the heat treatment may be performed stepwise by holding the temperature at two or more levels, or the heat treatment may be performed while giving a temperature gradient. According to such treatment, the number of crystals deposited and the degree of crystal growth can be individually adjusted. Also, crystallization may be promoted by applying or irradiating sound waves or electromagnetic waves.
  • the obtained crystallized glass is subjected to an ion exchange treatment to increase the bending strength.
  • the ion exchange treatment the crystallized glass is brought into contact with a molten salt of 350° C. or higher to replace alkali ions (such as Na ions) in the glass with alkali ions having a larger ionic radius (such as K ions). .
  • a compressive stress layer can be formed on the surface.
  • Nitrates (potassium nitrate, sodium nitrate, etc.), carbonates (potassium carbonate, sodium carbonate, etc.), sulfates (potassium sulfate, sodium sulfate, etc.), chloride salts (potassium chloride, sodium chloride, etc.) are used as molten salts for the ion exchange treatment. ) or a combination thereof can be used.
  • surface processing such as filming, machining such as cutting, drilling, etc. may be applied.
  • Tables 1 to 4 show sample Nos., which are examples. 1 to 34 and sample No. 35 as a comparative example.
  • N.D means unmeasured.
  • firing in the density measurement values in the table means a heat treatment process for precipitating and growing crystals
  • annealing means crystallizing the glass for the purpose of relaxing the strain in the glass. It means a heat treatment process that does not cause
  • a batch raw material prepared to have the composition shown in the table was put into a melting furnace and melted at 1300 to 1500° C., and then the molten glass dough was roll-formed to prepare a crystallizable glass of 200 ⁇ 500 ⁇ 5 mm. .
  • crystallized glass was obtained by heat-treating the resulting crystallizable glass at the temperature and time indicated in the table.
  • crystallized glass sample thus produced, density, appearance (transparent, translucent or opaque), main crystal, space group, crystal system, crystallinity, average crystallite size, scratch depth, precipitated crystal, Transmittance and coefficient of thermal expansion were evaluated.
  • Sample no. For 32 to 34, strain point, annealing point, temperature at high temperature viscosity of 10 4.0 dPa s, temperature at high temperature viscosity of 10 3.0 dPa s, L* value, a* value, b* value, heat The coefficient of expansion was also evaluated. The results are shown in the table.
  • the density is a value measured by the well-known Archimedes method. The density was measured before and after firing, and the difference between the measured values was calculated.
  • the main crystal, space group, crystal system, crystallinity, and average crystallite size were evaluated using an X-ray diffractometer (Rigaku fully automatic multi-purpose horizontal X-ray diffractometer Smart Lab).
  • Scan mode is 2 ⁇ / ⁇ measurement
  • scan type is continuous scan
  • scattering and divergence slit width is 1°
  • receiving slit width is 0.2°
  • measurement range is 10 to 60°
  • measurement step is 0.1°
  • scan speed was set to 5°/min
  • the average crystallite size of precipitated crystals was calculated based on the Debye-Sherrer method using the measured X-ray diffraction peaks.
  • the scanning speed was 1°/min.
  • the crystallinity is based on the X-ray diffraction profile obtained by the above method, (integrated intensity of X-ray diffraction peak of crystal) / (total integrated intensity of measured X-ray diffraction) ⁇ 100 [%] Calculated.
  • strain point and annealing point were measured based on the methods of ASTM C336 and C338.
  • the temperature at a high temperature viscosity of 10 4.0 dPa ⁇ s and the temperature at a high temperature viscosity of 10 3.0 dPa ⁇ s were measured by the platinum ball pull-up method.
  • the L* value, a* value, and b* value were calculated from the transmittance measurement results at a wavelength of 200 to 800 nm using a spectrophotometer for a plate-shaped sample optically polished on both sides to a thickness of 0.7 mm.
  • a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation was used for the measurement.
  • FIG. 1 shows sample no. 32 is a transmittance curve at a wavelength of 200 to 800 nm at a thickness of 0.7 mm.
  • the coefficient of thermal expansion was measured in the temperature range of 30-380°C using a sample processed to 20mm x 3.8mm ⁇ .
  • a NETZSCH dilatometer was used for the measurement.
  • sample No. 1-34 were transparent or translucent.
  • Sample No. 35 which is a comparative example, was translucent and white.
  • FIG. 32 had a high transmittance of 85% or more in the visible region (wavelength of 400 to 700 nm).
  • Table 5 shows samples A to D that are examples.
  • Samples A to D were produced as follows.
  • sample No. 1 of Example 1 A batch raw material prepared to have a composition of No. 32 was put into a melting kiln and melted at 1300 to 1500° C., and then the molten glass material was roll-formed to prepare a crystallizable glass of 200 ⁇ 500 ⁇ 5 mm.
  • the above crystallizable glass was heat-treated at 600°C for 4 hours and at 740°C for 1 hour to obtain crystallized glass.
  • FIG. 2 shows data comparing the depth of scratches when this crystallized glass and conventional glass for chemical strengthening (that is, glass not subjected to ion exchange) are scratched.
  • the wound depth was measured using the following procedure. A sample is placed on a granite surface plate, and No. 180 abrasive paper is pressed against the sample with a load of 100 N to scratch it. After that, a three-point bending test was performed, and the cross section of the fractured sample was observed with a differential interference microscope, and the depth of the semicircular median crack from the glass surface was measured.
  • the obtained crystallized glass was subjected to ion exchange treatment under the conditions described in the table to obtain crystallized glass having a compressive stress layer on the surface.
  • FIG. 3 shows data representing the relationship between the compressive stress value (CS) and stress depth (DOC) of samples AD.
  • CS Surface compressive stress value
  • DOC stress depth
  • the Vickers hardness is a value measured by pressing a Vickers indenter with a load of 100 gf using a Vickers hardness tester in accordance with JIS Z2244-1992, and is the average value of 10 measurements.
  • the Young's modulus was calculated by a method based on JIS R1602-1995 "Elastic modulus test method for fine ceramics".
  • the bending strength was measured using the three-point loading method according to ASTM C880-78.
  • the drop resistance height was determined by a drop test. A sample of 50mm x 50mm x 0.7mm thick is placed on a granite surface plate, and a drop test is performed by vertically dropping a 53g weight with a Vickers indenter attached to the tip onto the sample from a specific height. The drop height was defined as the maximum height at which the original shape was maintained.
  • samples A to D have a surface compressive stress value (CS) of 271 MPa or more and a stress depth (DOC) of 21 ⁇ m or more, and are considered to have high mechanical strength. .
  • CS surface compressive stress value
  • DOC stress depth
  • Tables 6 and 7 show samples E to K, which are examples.
  • Samples E to K were produced as follows.
  • sample no. A batch raw material prepared to have a composition of No. 32 was put into a melting kiln and melted at 1300 to 1500°C. Several sheets of this crystallizable glass were heat-treated at 600° C. for 4 hours and at 740° C. for 1 hour to obtain crystallized glasses (Samples E to J).
  • FIG. 4 shows sample no. The data show the XRD curve of No. 32, and it was confirmed that Na 6 Al 4 Si 4 O 17 was precipitated. Sample K was a glass that was not crystallized.
  • the resulting crystallizable glass and crystallized glass were polished to a thickness of 0.7 mm.
  • the fracture toughness was determined by measuring K IC by the SEPB method based on JIS R1607 "Fine Ceramic Fracture Toughness Test Method". The fracture toughness value of each sample was obtained from the average value of three points.
  • Examples E to J were polished to a thickness of 0.7 mm. Thereafter, the crystallized glass was subjected to an ion exchange treatment under the conditions shown in the table to obtain a crystallized glass having a compressive stress layer on its surface.
  • FIG. 5 shows data representing the relationship between the compressive stress value (CS) and stress depth (DOC) of samples E to I.
  • the compressive stress value, stress depth, Vickers hardness, Young's modulus, bending strength, and drop resistance were measured in the same manner as in Example 2.
  • ⁇ CT/t means a value obtained by integrating the stress from the surface of the glass to a depth half the thickness of the stress profile in the depth direction of the compressive stress.
  • the number of fragments was determined by placing a sample on a granite surface plate and dropping a 53g weight with a Vickers indenter on the tip vertically onto the sample from a height of 10mm. means the number of pieces of the sample when .
  • samples E to J were subjected to ion exchange treatment with high-temperature molten salt, and therefore had a surface compressive stress value of 1101 MPa or more and a stress depth of 26 ⁇ m or more. It is considered to have high strength.
  • FIG. 6 shows the result of comparing Samples F to J, which are crystallized tempered glasses, with a conventional tempered glass containing no crystals (Comparative Example L).
  • FIG. 6 shows the relationship between the number of fragments and ⁇ CT/t for Samples F to J and Comparative Example L, which is conventional tempered glass (Example No. 2 in the specification of WO 2015/125584). Data.
  • Comparative Example L has a glass composition of SiO 2 66.5%, Al 2 O 3 11.4%, B 2 O 3 0.5%, Na 2 O 15.2%, K 2 O 1.5%, in terms of mol %. 4%, MgO 4.8%, SnO 2 0.2%, 0.7 mm thick, crystal-free glass.
  • Comparative Example L For Comparative Example L, a plurality of samples were subjected to ion exchange treatment at different tempering times and temperatures to prepare a plurality of samples having different ⁇ CT/t shown in FIG. 6, and each sample was subjected to a drop test. and counted the number of fragments. As can be seen from FIG. 6, the number of fragments in Samples EJ was less than Comparative Example L, which is a conventional chemically strengthened glass.
  • the crystallized glass of the present invention is suitable as a cover glass for touch panel displays such as mobile phones, digital cameras, and PDAs (portable terminals).
  • the crystallized glass of the present invention can also be used in applications requiring high bending strength, high drop resistance, and transparency, such as window glass, magnetic disk substrates, flat panel display substrates, and solar cells. It is expected to be applied to cover glass for electronic devices and cover glass for solid-state imaging devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided are crystallized glass and crystalline glass which are excellent in ion exchange performance and are excellent in transparency even without containing a large amount of a lithium component. This crystallized glass is characterized by containing, as a composition, 30-70% of SiO2, 1-20% of Al2O3, 3-45% of Na2O, 0-10% of P2O5, 0-10% of ZrO2, and 0-20% of MgO+CaO+SrO+BaO+ZnO by mol%.

Description

結晶化ガラス及び結晶性ガラスcrystallized glass and crystallizable glass
 本発明は、結晶化ガラス及び結晶性ガラスに関する。 The present invention relates to crystallized glass and crystallizable glass.
 携帯電話、デジタルカメラ、PDA(携帯端末)等は、益々普及する傾向にある。これらの用途には、タッチパネルディスプレイを保護するために、カバーガラスが用いられている(特許文献1参照)。 Mobile phones, digital cameras, PDAs (portable terminals), etc. are becoming more and more popular. For these uses, cover glass is used to protect the touch panel display (see Patent Document 1).
 カバーガラスに求められる特性として、(1)高い機械的強度、(2)高い耐傷性、(3)軽量、(4)低コストが挙げられる。 Properties required for cover glass include (1) high mechanical strength, (2) high scratch resistance, (3) light weight, and (4) low cost.
 近年、カバーガラスに結晶化ガラスを用いることが検討されており、特許文献2には、カバーガラス中にペタライト結晶及びリチウムシリケート結晶を析出させることで、破壊靭性を改善する技術が開示されている。特許文献3には、主結晶としてカーネギアイトを析出させて、機械的強度を高める技術が開示されている。 In recent years, the use of crystallized glass for the cover glass has been studied, and Patent Document 2 discloses a technique for improving fracture toughness by precipitating petalite crystals and lithium silicate crystals in the cover glass. . Patent Document 3 discloses a technique for increasing mechanical strength by precipitating carnegiite as a main crystal.
特開2006-083045号公報JP 2006-083045 A 特許第6663532号公報Japanese Patent No. 6663532 特開昭59-223249号公報JP-A-59-223249
 結晶化ガラスをカバーガラスに採用する場合、(5)透明性が更に要求される。また(6)スマートフォンの用途では、カバーガラスの薄型化と落下衝撃に対する耐久性が重要視される。 When using crystallized glass as the cover glass, (5) transparency is further required. In addition, (6) in the use of smartphones, thinning of the cover glass and durability against drop impact are emphasized.
 カバーガラスの機械的強度を高める方法として、表面に圧縮応力層を形成し、且つその圧縮応力値を大きくすることが有効である。また、落下衝撃に対する耐久性を高める方法として、圧縮応力層の応力深さを大きくすることが有効である。 As a method of increasing the mechanical strength of the cover glass, it is effective to form a compressive stress layer on the surface and increase the compressive stress value. In addition, increasing the stress depth of the compressive stress layer is effective as a method of increasing the durability against drop impact.
 しかし、従来の結晶化ガラスについて、圧縮応力層の応力深さを増加させようとすると、イオン交換時間が極端に長くなる上、表面の圧縮応力値が低下してしまうという問題があった。 However, with conventional crystallized glass, when trying to increase the stress depth of the compressive stress layer, there was a problem that the ion exchange time became extremely long and the surface compressive stress value decreased.
 また、特許文献2で開示されているペタライト結晶及びリチウムシリケート結晶は、リチウムを含む結晶である。リチウムは希少な資源であると共に、近年のリチウムイオン電池の需要の高まりを受けて、原料の供給が不安定になることが危惧されている。更に、ガラス中のリチウムイオンと溶融塩中のナトリウムイオンを交換するイオン交換処理は、ガラス中のナトリウムイオンと溶融塩中のカリウムイオンのイオン交換に比べて、応力深さが増大するものの、表面の圧縮応力値が小さくなり易い。 In addition, the petalite crystals and lithium silicate crystals disclosed in Patent Document 2 are crystals containing lithium. Lithium is a scarce resource, and with the recent increase in demand for lithium-ion batteries, there is concern that the supply of raw materials will become unstable. Furthermore, the ion exchange treatment of exchanging lithium ions in the glass and sodium ions in the molten salt increases the stress depth compared to the ion exchange of sodium ions in the glass and potassium ions in the molten salt, but the surface The compressive stress value of is likely to be small.
 結晶化ガラスをカバーガラスに採用する場合には、カバーガラスの透明性も重要になる。特許文献3に記載の結晶化ガラスは、不透明になることが多く、特にネフェリンが析出する場合に不透明になり易い。 When using crystallized glass as the cover glass, the transparency of the cover glass is also important. The crystallized glass described in Patent Document 3 often becomes opaque, and it tends to become opaque particularly when nepheline precipitates.
 本発明の目的は、リチウム成分を多量に含まなくても、イオン交換性能に優れると共に、透明性に優れた結晶化ガラス及び結晶性ガラスを提供することである。 An object of the present invention is to provide a crystallized glass and a crystallizable glass that have excellent ion exchange performance and excellent transparency even if they do not contain a large amount of lithium components.
 本発明者は、種々の検討を行った結果、結晶化ガラスのガラス組成を厳密に規制することにより、上記技術的課題を解決できることを見出し、本発明(第1~28の発明)として、提案するものである。すなわち、第1の発明に係る結晶化ガラスは、組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0~10%、ZrO 0~10%、MgO+CaO+SrO+BaO+ZnO 0~20%を含有することを特徴とする。ここで、「MgO+CaO+SrO+BaO+ZnO」は、MgO、CaO、SrO、BaO及びZnOの合量を指す。 As a result of various investigations, the present inventor found that the above technical problems can be solved by strictly regulating the glass composition of the crystallized glass. It is something to do. That is, the crystallized glass according to the first invention has a composition, in mol%, of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, P 2 O 5 0 to 10%, ZrO 2 0-10%, MgO+CaO+SrO+BaO+ZnO 0-20%. Here, "MgO+CaO+SrO+BaO+ZnO" refers to the total amount of MgO, CaO, SrO, BaO and ZnO.
 また、第2の発明に係る結晶化ガラスは、第1の発明において、Si、Al、Na、Oを含む結晶が析出してなることが好ましく、Si、Al、Na、Oを含む結晶は主結晶であることが好ましい。「主結晶」は、X線回折装置(例えば、リガク製全自動多目的水平型X線回折装置 Smart Lab)を用いて評価することができる。前記装置を用いる場合、スキャンモードは2θ/θ測定、スキャンタイプは連続スキャン、散乱及び発散スリット幅は1°、受光スリット幅は0.2°、測定範囲は10~60°、測定ステップは0.1°、スキャン速度は5°/分とし、同機種パッケージに搭載された解析ソフトを用いて析出結晶の評価を行うことができる。 Further, the crystallized glass according to the second invention is preferably formed by depositing crystals containing Si, Al, Na, and O in the first invention, and the crystals containing Si, Al, Na, and O are mainly Crystals are preferred. The "main crystal" can be evaluated using an X-ray diffractometer (for example, Rigaku's fully automatic multi-purpose horizontal X-ray diffractometer Smart Lab). When using the above device, the scan mode is 2θ/θ measurement, the scan type is continuous scan, the scattering and divergence slit widths are 1°, the light receiving slit width is 0.2°, the measurement range is 10 to 60°, and the measurement step is 0. 0.1° and a scanning speed of 5°/min, and the analysis software installed in the package of the same model can be used to evaluate precipitated crystals.
 また、第3の発明に係る結晶化ガラスは、第2の発明において、Si、Al、Na、Oを含む結晶の平均結晶子サイズが1μm以下であることが好ましい。ここで、「平均結晶子サイズ」は、デバイ・シェラー(Debeye-Sherrer)法に基づいて、X線回折ピークを用いて算出することができる。 Further, in the crystallized glass according to the third invention, in the second invention, it is preferable that the average crystallite size of crystals containing Si, Al, Na, and O is 1 μm or less. Here, the "average crystallite size" can be calculated using the X-ray diffraction peak based on the Debeye-Sherrer method.
 また、第4の発明に係る結晶化ガラスは、第1~3の発明のいずれかにおいて、結晶化度が1~95%であることが好ましい。ここで、「結晶化度」は、X線回折プロファイルに基づいて、(結晶のX線回折ピークの積分強度)/(計測されたX線回折の全積分強度)×100[%]によって算出することができる。 Further, in any one of the first to third inventions, the crystallized glass according to the fourth invention preferably has a degree of crystallinity of 1 to 95%. Here, the "crystallinity" is calculated based on the X-ray diffraction profile by (integrated intensity of the X-ray diffraction peak of the crystal) / (total integrated intensity of the measured X-ray diffraction) x 100 [%]. be able to.
 また、第5の発明に係る結晶化ガラスは、第1~4の発明のいずれかにおいて、NaAlSi、NaAlSi17、NaAlSi18の内、少なくとも1種以上の結晶が析出してなることが好ましい。 Further, the crystallized glass according to the fifth invention is the crystallized glass according to any one of the first to fourth inventions, wherein Na 4 Al 2 Si 2 O 9 , Na 6 Al 4 Si 4 O 17 , Na 8 Al 4 Si 4 O 18 Among them, it is preferable that at least one kind of crystal is precipitated.
 また、第6の発明に係る結晶化ガラスは、第1~5の発明のいずれかにおいて、mol%比Al/SiOが0.1~0.5であることが好ましい。ここで、「Al/SiO」は、Alの含有量をSiOの含有量で除した値を指す。 Further, in the crystallized glass according to the sixth invention, in any one of the first to fifth inventions, it is preferable that the mol % ratio Al 2 O 3 /SiO 2 is 0.1 to 0.5. Here, “Al 2 O 3 /SiO 2 ” refers to a value obtained by dividing the content of Al 2 O 3 by the content of SiO 2 .
 また、第7の発明に係る結晶化ガラスは、第1~6の発明のいずれかにおいて、mol%比Al/NaOが0.01~0.7であることが好ましい。ここで、「Al/NaO」は、Alの含有量をNaOの含有量で除した値を指す。 Further, in the crystallized glass according to the seventh invention, in any one of the first to sixth inventions, it is preferable that the mol % ratio Al 2 O 3 /Na 2 O is 0.01 to 0.7. Here, " Al2O3 / Na2O " refers to a value obtained by dividing the content of Al2O3 by the content of Na2O .
 また、第8の発明に係る結晶化ガラスは、第1~7の発明のいずれかにおいて、mol%比NaO/SiOが0.1~1であることが好ましい。ここで、「NaO/SiO」は、NaOの含有量をSiOの含有量で除した値を指す。 Further, in the crystallized glass according to the eighth invention, in any one of the first to seventh inventions, the mol % ratio Na 2 O/SiO 2 is preferably 0.1-1. Here, “Na 2 O/SiO 2 ” refers to a value obtained by dividing the content of Na 2 O by the content of SiO 2 .
 また、第9の発明に係る結晶化ガラスは、第1~8の発明のいずれかにおいて、Pの含有量が0.1~10mol%であることが好ましい。 Further, in the crystallized glass according to the ninth invention, in any one of the first to eighth inventions, it is preferable that the content of P 2 O 5 is 0.1 to 10 mol %.
 また、第10の発明に係る結晶化ガラスは、第1~9の発明のいずれかにおいて、ZrOの含有量が0.1~10mol%であることが好ましい。 Further, in any one of the first to ninth inventions, the crystallized glass according to the tenth invention preferably has a ZrO 2 content of 0.1 to 10 mol %.
 また、第11の発明に係る結晶化ガラスは、第1~10の発明のいずれかにおいて、CaOの含有量が0~5mol%であることが好ましい。 In addition, in any one of the first to tenth inventions, the crystallized glass according to the eleventh invention preferably has a CaO content of 0 to 5 mol%.
 また、第12の発明に係る結晶化ガラスは、第1~11の発明のいずれかにおいて、Feの含有量が0~0.5mol%、TiOの含有量が0~0.5mol%であることが好ましい。 Further, the crystallized glass according to the twelfth invention is the crystallized glass according to any one of the first to eleventh inventions, wherein the content of Fe 2 O 3 is 0 to 0.5 mol% and the content of TiO 2 is 0 to 0.5 mol. %.
 また、第13の発明に係る結晶化ガラスは、第1~12の発明のいずれかにおいて、実質的にAs、PbOを含有しないことが好ましい。ここで、「実質的に含有しない」とは、意図的にガラスに添加しないという意味であり、不可避的不純物まで完全に排除するものではない。具体的には、明示の成分の含有量が各々0.01mol%未満であることを意味する。 Further, the crystallized glass according to the thirteenth invention, in any one of the first to twelfth inventions, preferably does not substantially contain As 2 O 3 and PbO. Here, "substantially free from" means not intentionally added to the glass, and does not completely exclude unavoidable impurities. Specifically, it means that the content of each of the specified components is less than 0.01 mol %.
 また、第14の発明に係る結晶化ガラスは、第1~13の発明のいずれかにおいて、表面にイオン交換による圧縮応力層が形成されておらず、加傷した際の傷深さが200μm以下になることが好ましい。ここで、「傷深さ」とは、花崗岩の定盤上に試料を載置し、その試料に180番の研磨紙を100Nの荷重で押し当て、傷をつける。3点曲げ試験を行って割断した試料の断面を微分干渉顕微鏡で観察し、半円状の圧痕(median crack)のガラス表面からの深さを意味する。 Further, the crystallized glass according to the fourteenth invention, in any one of the first to thirteenth inventions, has no compressive stress layer formed on the surface due to ion exchange, and has a scratch depth of 200 μm or less when scratched. It is preferable to be Here, the "scratch depth" means that a sample is placed on a granite surface plate, and No. 180 abrasive paper is pressed against the sample with a load of 100 N to scratch it. A three-point bending test is performed and the cross section of the fractured sample is observed with a differential interference microscope, and it means the depth from the glass surface of the semicircular median crack.
 また、第15の発明に係る結晶化ガラスは、第1~14の発明のいずれかにおいて、表面にイオン交換による圧縮応力層が形成されていることが好ましい。 Further, in any one of the first to fourteenth inventions, the crystallized glass according to the fifteenth invention preferably has a compressive stress layer formed on the surface by ion exchange.
 また、第16の発明に係る結晶化ガラスは、第15の発明において、表面の圧縮応力値が少なくとも100MPa以上であることが好ましい。なお、「圧縮応力値」と「応力深さ(DOC)」は、例えば、折原製作所の散乱光光弾性応力計SLP-1000又は表面応力計FSM-6000LEにより測定することができる。 In the fifteenth invention, the crystallized glass according to the sixteenth invention preferably has a surface compressive stress value of at least 100 MPa or more. The "compressive stress value" and the "stress depth (DOC)" can be measured by, for example, a scattered light photoelastic stress meter SLP-1000 or a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho.
 また、第17の発明に係る結晶化ガラスは、第15又は第16の発明において、応力深さ(DOC)が20μm以上であることが好ましい。 In addition, in the fifteenth or sixteenth invention, the crystallized glass according to the seventeenth invention preferably has a depth of stress (DOC) of 20 μm or more.
 また、第18の発明に係る結晶化ガラスは、第15~17の発明のいずれかにおいて、∫CT/tが20MPa以上であることが好ましい。ここで、「∫CT/t」は、散乱光光弾性応力計(例えば折原製作所の散乱光光弾性応力計SLP-1000)で得られた圧縮応力の深さ方向のプロファイルについて、ガラス表面から厚みの半分の深さまでの応力を積分した値を意味する。 Further, in any one of the fifteenth to seventeenth inventions, the crystallized glass according to the eighteenth invention preferably has a ∫CT/t of 20 MPa or more. Here, "∫CT/t" is the depth direction profile of compressive stress obtained with a scattered light photoelastic stress meter (for example, Orihara Seisakusho's scattered light photoelastic stress meter SLP-1000), from the glass surface to the thickness Means the value obtained by integrating the stress up to half the depth of
 また、第19の発明に係る結晶化ガラスは、第1~18の発明のいずれかにおいて、落下試験後の破片数が1000mm当たり200個以下であることが好ましい。なお、本発明において「落下試験後の破片数」は、花崗岩の定盤上の試料を載置し、その試料に先端にビッカース圧子を付けた53gの重りを10mmの高さから垂直に落とす落下試験を行った後、遅れ破壊が生じた時の破片の数を意味する。 Further, in the crystallized glass according to the nineteenth invention, in any one of the first to eighteenth inventions, it is preferable that the number of fragments after a drop test is 200 or less per 1000 mm 2 . In the present invention, the "number of fragments after the drop test" is defined by placing a sample on a granite surface plate and vertically dropping a 53 g weight with a Vickers indenter attached to the tip of the sample from a height of 10 mm. It means the number of fragments when delayed fracture occurred after the test was performed.
 また、第20の発明に係る結晶化ガラスは、第1~19の発明のいずれかにおいて、ヤング率が50MPa以上であることが好ましい。 Further, the crystallized glass according to the twentieth invention preferably has a Young's modulus of 50 MPa or more in any one of the first to nineteenth inventions.
 また、第21の発明に係る結晶化ガラスは、第1~20の発明のいずれかにおいて、破壊靭性が1.0MPa・m1/2未満であることが好ましい。 In addition, in any one of the first to twentieth inventions, the crystallized glass according to the twenty-first invention preferably has a fracture toughness of less than 1.0 MPa·m 1/2 .
 また、第22の発明に係る結晶化ガラスは、第1~21の発明のいずれかにおいて、厚み0.7mmにおける波長380~780nmの可視光透過率が50%以上であることが好ましい。なお、「可視光透過率」は、分光光度計(例えば島津製UV-3100)を用いて、厚み方向の直線透過率を測定したものである。 Further, the crystallized glass according to the 22nd invention in any one of the 1st to 21st inventions preferably has a visible light transmittance of 50% or more at a wavelength of 380 to 780 nm at a thickness of 0.7 mm. The “visible light transmittance” is obtained by measuring the linear transmittance in the thickness direction using a spectrophotometer (eg, Shimadzu UV-3100).
 また、第23の発明に係る結晶化ガラスは、第1~22の発明のいずれかにおいて、30~300℃における線熱膨張係数が0×10-7~150×10-7/℃であることが好ましい。 Further, the crystallized glass according to the twenty-third invention is any one of the first to twenty-second inventions, wherein the coefficient of linear thermal expansion at 30 to 300° C. is 0×10 −7 to 150×10 −7 /° C. is preferred.
 また、第24の発明に係る結晶化ガラスは、第1~23の発明のいずれかにおいて、カバーガラスに用いることが好ましい。 Also, the crystallized glass according to the twenty-fourth invention is preferably used for the cover glass in any one of the first to twenty-third inventions.
 第25の発明に係る結晶化ガラスは、組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0.1~10%、ZrO 0.1~10%、CaO 0~1%、MgO+CaO+SrO+BaO+ZnO 0~20%を含有し、mol%比Al/SiOが0.1~0.3、mol%比Al/NaOが0.2~0.48であり、Si、Al、Na、Oを含む結晶が析出してなることを特徴とする。 The crystallized glass according to the twenty-fifth invention has a composition, in mol%, of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, P 2 O 5 0.1 to 10%, ZrO 2 0.1-10%, CaO 0-1%, MgO + CaO + SrO + BaO + ZnO 0-20%, mol% ratio Al 2 O 3 /SiO 2 is 0.1-0.3, mol% ratio Al 2 O 3 /Na 2 O is 0.2 to 0.48, and crystals containing Si, Al, Na and O are precipitated.
 第26の発明に係る結晶性ガラスは、組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0.8~10%、ZrO 0.1~10%、MgO+CaO+SrO+BaO+ZnO 0~20%、CaO 0~1%を含有し、mol%比Al/SiOが0.1~0.3、mol%比Al/NaOが0.2~0.48、mol%比NaO/SiOが0.4~0.7であることを特徴とする。 The crystallizable glass according to the twenty-sixth invention has a composition, in mol%, of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, and P 2 O 5 0.8 to 10%, ZrO 2 0.1-10%, MgO + CaO + SrO + BaO + ZnO 0-20%, CaO 0-1%, mol% ratio Al 2 O 3 /SiO 2 is 0.1-0.3, mol% ratio Al 2 O 3 /Na 2 O is 0.2 to 0.48, and the mol % ratio Na 2 O/SiO 2 is 0.4 to 0.7.
 また、第27の発明に係る結晶性ガラスは、第26の発明において、熱処理により(より特定的には焼成処理により)、Si、Al、Na、Oを含む結晶が析出することが好ましい。 In addition, in the crystallizable glass according to the twenty-seventh aspect of the twenty-sixth aspect, it is preferable that crystals containing Si, Al, Na, and O are precipitated by heat treatment (more specifically, by firing treatment).
 また、第28の発明に係る結晶性ガラスは、第26又は第27の発明において、イオン交換処理に供されることが好ましい。 Also, the crystallizable glass according to the twenty-eighth invention is preferably subjected to an ion exchange treatment in the twenty-sixth or twenty-seventh invention.
実施例1の試料No.32の厚み0.7mmにおける波長200~800nmの透過率曲線である。Sample no. 32 is a transmittance curve at a wavelength of 200 to 800 nm at a thickness of 0.7 mm. 実施例2の試料No.32(結晶化工程を経ているが、イオン交換処理を行っていないもの)と従来の化学強化ガラスとの加傷した際の傷深さを比較したデータである。Sample no. 32 (which has undergone a crystallization process but has not been subjected to ion exchange treatment) and conventional chemically strengthened glass are compared in terms of scratch depth when scratched. 実施例2の試料A~Dの圧縮応力値(CS)と応力深さ(DOC)の関係を表したデータである。4 is data showing the relationship between compressive stress values (CS) and stress depths (DOC) of samples A to D of Example 2. FIG. 実施例3の試料No.32のXRD曲線を示すデータである。Sample no. Data showing 32 XRD curves. 実施例3の試料E~Iの圧縮応力値(CS)と応力深さ(DOC)の関係を表したデータである。4 is data showing the relationship between compressive stress values (CS) and stress depths (DOC) of samples E to I of Example 3. FIG. 実施例3の試料F~J及び比較例Lの破片数と∫CT/tの関係を表したデータである。4 is data showing the relationship between the number of fragments of Samples F to J of Example 3 and Comparative Example L and ∫CT/t.
 本発明の結晶化ガラス(結晶性ガラス)は、組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0~10%、ZrO 0~10%、MgO+CaO+SrO+BaO+ZnO 0~20%を含有することを特徴とする。上記のように組成を限定した理由を以下に説明する。なお、各成分の含有量の説明において、特に断りがない限り、「%」はmol%を意味する。 The crystallized glass (crystalline glass) of the present invention has a composition of SiO 2 30 to 70%, Al 2 O 3 1 to 20%, Na 2 O 3 to 45%, P 2 O 5 0 to 10%, ZrO 2 0-10%, MgO+CaO+SrO+BaO+ZnO 0-20%. The reason for limiting the composition as described above will be explained below. In the description of the content of each component, "%" means mol% unless otherwise specified.
 SiOはガラスの骨格を形成する成分である。SiOの含有量は、好ましくは30~70%、35~65%、37~60%、39~58%、特に40~55%である。SiOの含有量が少な過ぎると、耐候性が著しく低下する傾向にある。一方、SiOの含有量が多過ぎると、溶融性が低下し易くなる。 SiO2 is a component that forms the skeleton of glass. The content of SiO 2 is preferably 30-70%, 35-65%, 37-60%, 39-58%, especially 40-55%. If the SiO2 content is too low, the weather resistance tends to be significantly reduced. On the other hand, if the content of SiO2 is too high, the meltability tends to decrease.
 Alは、イオン交換性能を高める成分であると共に、所望の結晶を析出させるために必要な成分である。Alの含有量は、好ましくは1~20%、2~18%、3~16%、4~14%、5~12%、特に6~11%である。Alの含有量が少な過ぎると、所望の結晶が析出し難くなる。一方、Alの含有量が多過ぎると、溶融性が低下し易くなる。 Al 2 O 3 is a component that enhances ion exchange performance and is a component necessary for precipitating desired crystals. The content of Al 2 O 3 is preferably 1-20%, 2-18%, 3-16%, 4-14%, 5-12%, especially 6-11%. If the content of Al 2 O 3 is too small, it becomes difficult to deposit desired crystals. On the other hand, if the content of Al 2 O 3 is too high, the meltability tends to deteriorate.
 Na、Al、Si、Oを含む結晶を析出させるためには、結晶を構成する成分の含有比率を制御することが好ましい。mol%比Al/SiOは、好ましくは0.01~0.5、0.05~0.4、0.1~0.3、0.11~0.29、0.12~0.28、0.13~0.27、0.14~0.26、特に0.15~0.25である。mol%比Al/SiOが上記範囲外になると、Na、Al、Si、Oを含む結晶が析出し難くなると共に、異種結晶の析出によって結晶化ガラスが白濁する虞がある。 In order to precipitate crystals containing Na, Al, Si, and O, it is preferable to control the content ratios of the components that make up the crystals. The mol % ratio Al 2 O 3 /SiO 2 is preferably from 0.01 to 0.5, from 0.05 to 0.4, from 0.1 to 0.3, from 0.11 to 0.29, from 0.12 to 0.28, 0.13-0.27, 0.14-0.26, especially 0.15-0.25. If the mol % ratio of Al 2 O 3 /SiO 2 is out of the above range, crystals containing Na, Al, Si, and O are difficult to precipitate, and the crystallized glass may become cloudy due to precipitation of heterogeneous crystals.
 NaOは、高温粘度を低下させて、溶融性を高める成分である。またイオン交換処理に関与する成分であると共に、所望の結晶を析出させるために必要な成分である。NaOの含有量は、好ましくは3~45%、5~40%、10~38%、15~35%、18~33%、特に20~30%である。NaOの含有量が少な過ぎると、イオン交換性能が低下し易くなると共に、所望の結晶が析出し難くなる。一方、NaOの含有量が多過ぎると、高温粘度が低下し過ぎて、結晶化のための熱処理でガラスが軟化変形してしまう虞がある。 Na 2 O is a component that lowers high-temperature viscosity and enhances meltability. In addition to being a component involved in the ion exchange treatment, it is a component necessary for precipitating desired crystals. The content of Na 2 O is preferably 3-45%, 5-40%, 10-38%, 15-35%, 18-33%, especially 20-30%. If the content of Na 2 O is too small, the ion exchange performance tends to deteriorate and the desired crystals are difficult to precipitate. On the other hand, if the content of Na 2 O is too large, the high-temperature viscosity is too low, and the glass may be softened and deformed during the heat treatment for crystallization.
 Na、Al、Si、Oを含む結晶を析出させるためには、結晶を構成する成分の含有比率を制御することが好ましい。mol%比NaO/SiOは、好ましくは0.1~1、0.2~0.9、0.3~0.8、0.4~0.7、0.41~0.69、0.42~0.68、0.43~0.67、0.44~0.66、0.45~0.65、0.46~0.64、0.47~0.63、0.48~0.62、0.49~0.61、特に0.5~0.6である。mol%比NaO/SiOが小さ過ぎると、Na、Al、Si、Oを含む結晶が析出し難くなる上に、高温粘度が高くなり、溶融が困難になる。一方、mol%比NaO/SiOが大き過ぎると、Na、Al、Si、Oを含む結晶が析出し難くなる上に、高温粘度が低くなり、結晶化ための熱処理でガラスが軟化変形し易くなる。 In order to precipitate crystals containing Na, Al, Si, and O, it is preferable to control the content ratios of the components that make up the crystals. The mol % ratio Na 2 O/SiO 2 is preferably 0.1-1, 0.2-0.9, 0.3-0.8, 0.4-0.7, 0.41-0.69 , 0.42-0.68, 0.43-0.67, 0.44-0.66, 0.45-0.65, 0.46-0.64, 0.47-0.63, 0 0.48-0.62, 0.49-0.61, especially 0.5-0.6. If the mol % ratio of Na 2 O/SiO 2 is too small, crystals containing Na, Al, Si, and O are difficult to precipitate, and high-temperature viscosity increases, making melting difficult. On the other hand, if the mol% ratio of Na 2 O/SiO 2 is too large, crystals containing Na, Al, Si, and O are difficult to precipitate, and the high-temperature viscosity is lowered, so that the glass softens and deforms during the heat treatment for crystallization. becomes easier.
 Na、Al、Si、Oを含む結晶を析出させるためには、結晶を構成する成分の含有比率を制御することが好ましい。mol%比Al/NaOは、好ましくは0.01~0.7、0.05~0.6、0.1~0.5、0.2~0.48、0.21~0.45、0.22~0.44、0.23~0.43、0.24~0.42、0.25~0.41、特に0.26~0.4である。mol%比Al/NaOが上記範囲外になると、Na、Al、Si、Oを含む結晶が析出し難くなると共に、異種結晶の析出によって結晶化ガラスが白濁する虞がある。 In order to precipitate crystals containing Na, Al, Si, and O, it is preferable to control the content ratios of the components that make up the crystals. The mol % ratio Al 2 O 3 /Na 2 O is preferably 0.01-0.7, 0.05-0.6, 0.1-0.5, 0.2-0.48, 0.21 ~0.45, 0.22-0.44, 0.23-0.43, 0.24-0.42, 0.25-0.41, especially 0.26-0.4. If the mol % ratio of Al 2 O 3 /Na 2 O is out of the above range, crystals containing Na, Al, Si, and O are difficult to precipitate, and the crystallized glass may become cloudy due to the precipitation of heterogeneous crystals.
 MgO、CaO、SrO、BaO、ZnOは溶融性を高める成分である。MgO+CaO+SrO+BaO+ZnOの含有量は、好ましくは0~20%、1~18%、2~16%、3~14%、4~13%、5~12%、特に6~11%である。MgO+CaO+SrO+BaO+ZnOの含有量が多過ぎると、粗大な結晶が析出し易くなる。一方、MgO+CaO+SrO+BaO+ZnOの含有量が少な過ぎると、溶融温度が高くなり易い。  MgO, CaO, SrO, BaO, and ZnO are components that increase meltability. The content of MgO+CaO+SrO+BaO+ZnO is preferably 0-20%, 1-18%, 2-16%, 3-14%, 4-13%, 5-12%, especially 6-11%. If the content of MgO+CaO+SrO+BaO+ZnO is too high, coarse crystals tend to precipitate. On the other hand, if the content of MgO+CaO+SrO+BaO+ZnO is too small, the melting temperature tends to increase.
 MgOは、溶融性を高める成分であると共に、機械的強度を高める成分でもある。MgOの含有量は、好ましくは0~15%、0~10%、0~5%、0~4%、0~3%、0~2%、特に0~1%である。MgOの含有量が多過ぎると、粗大な結晶が析出し易くなるだけでなく、異種結晶が析出し易くなる。 MgO is a component that enhances meltability and also a component that enhances mechanical strength. The content of MgO is preferably 0-15%, 0-10%, 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. If the content of MgO is too high, not only coarse crystals are likely to precipitate but also heterogeneous crystals are likely to precipitate.
 CaOは、溶融性を高める成分であると共に、イオン交換を阻害し易い成分である。CaOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、0~1%であり、特に実質的に含有しないことが好ましい。CaOの含有量が多過ぎると、イオン交換が阻害され易くなると共に、粗大結晶が析出し易くなり、また異種結晶が析出し易くなる。 CaO is a component that enhances meltability and is a component that easily inhibits ion exchange. The content of CaO is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, and it is particularly preferably substantially free. If the content of CaO is too high, ion exchange is likely to be inhibited, coarse crystals are likely to precipitate, and heterogeneous crystals are likely to precipitate.
 SrOは、溶融性を高める成分である。SrOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、特に0~1%である。SrOの含有量が多過ぎると、粗大結晶が析出し易くなり、また異種結晶が析出し易くなる。 SrO is a component that enhances meltability. The content of SrO is preferably 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. If the SrO content is too high, coarse crystals are likely to precipitate, and heterogeneous crystals are likely to precipitate.
 BaOは、溶融性を高める成分である。BaOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、特に0~1%である。BaOの含有量が多過ぎると、粗大結晶が析出し易くなり、また異種結晶が析出し易くなる。 BaO is a component that enhances meltability. The content of BaO is preferably 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. If the BaO content is too high, coarse crystals tend to precipitate, and heterogeneous crystals tend to precipitate.
 ZnOは、溶融性を高める成分であると共に、粗大な結晶や異種結晶の析出を生じ難くする成分である。ZnOの含有量は、好ましくは0~20%、0~18%、0~16%、0~14%、特に0~12%である。ZnOの含有量が多過ぎると、高温粘度が低下し過ぎて、結晶化のための熱処理でガラスが軟化変形してしまう虞がある。粗大な結晶や異種結晶の析出を抑制することを重視する場合には、ZnOを含有させることが好ましく、その場合、ZnO含有量は、好ましくは0.1~20%、0.5~19%、1~18%、2~17%、3~16%、特に4~15%である。 ZnO is a component that enhances meltability and also makes it difficult for coarse crystals and heterogeneous crystals to precipitate. The content of ZnO is preferably 0-20%, 0-18%, 0-16%, 0-14%, especially 0-12%. If the content of ZnO is too high, the high-temperature viscosity is too low, and the glass may be softened and deformed during the heat treatment for crystallization. When it is important to suppress the precipitation of coarse crystals and heterogeneous crystals, it is preferable to contain ZnO. In that case, the ZnO content is preferably 0.1 to 20%, 0.5 to 19%. , 1-18%, 2-17%, 3-16%, especially 4-15%.
 上記成分以外に、以下の成分を含有させることが可能である。 In addition to the above ingredients, it is possible to include the following ingredients.
 LiOは、NaOと同様に、高温粘度を低下させて、溶融性を高める成分である。LiOの含有量が多過ぎると、異種結晶が析出して、結晶化ガラスの透過率が低下し易くなる。したがって、LiOは、実質的に含まないものとすることができるが、LiOを含有する場合、その含有量は、好ましくは0~5%、特に0~1%である。 Li 2 O, like Na 2 O, is a component that lowers high-temperature viscosity and enhances meltability. If the content of Li 2 O is too high, heterogeneous crystals are precipitated, and the transmittance of the crystallized glass tends to decrease. Therefore, Li 2 O can be substantially free, but when Li 2 O is contained, its content is preferably 0 to 5%, particularly 0 to 1%.
 KOは、LiO、NaOと同様に高温粘度を低下させて、溶融性を高める成分である。KOの含有量が多過ぎると、結晶化ガラスの主結晶以外の結晶、つまり異種結晶が析出し易くなり、透過率が低下し易くなる。また、KOを添加すれば、イオン交換速度が速くなり、短時間でもガラス表面から深い領域まで圧縮応力を形成することができる。一方、KOが多過ぎると、圧縮応力値が小さくなり易い。KOの含有量は、好ましくは0~5%、特に0~1%である。 K 2 O, like Li 2 O and Na 2 O, is a component that lowers high-temperature viscosity and enhances meltability. If the K 2 O content is too high, crystals other than the main crystals of the crystallized glass, that is, heterogeneous crystals are likely to precipitate, resulting in a decrease in transmittance. Also, if K 2 O is added, the ion exchange speed increases, and compressive stress can be formed from the surface of the glass to a deep region even in a short period of time. On the other hand, if K 2 O is too much, the compressive stress value tends to be small. The content of K 2 O is preferably 0-5%, especially 0-1%.
 所望の結晶の析出には、NaOが必要になるが、アルカリ金属酸化物の含有量においてNaO>LiO及びNaO>KOが好ましく、NaO>KO≧LiOが更に好ましく、NaO>KO>LiOが特に好ましい。 Although Na 2 O is required for the precipitation of the desired crystals, Na 2 O>Li 2 O and Na 2 O>K 2 O are preferable in the content of the alkali metal oxide, and Na 2 O>K 2 O. ≧Li 2 O is more preferred, and Na 2 O>K 2 O>Li 2 O is particularly preferred.
 Pは、イオン交換性能を高める成分である。また、結晶化工程で効率的に結晶を析出させるために必要な成分でもある。一方、Pを多量に含有すると、ガラスが顕著に分相し易くなる。Pの含有量は、好ましくは0~10%、0.1~9%、0.3~8%、0.5~7%、0.6~6.5%、0.7~6%、0.8~5.5%、0.9~5%。特に1~7.5%である。Pの含有量が少な過ぎると、イオン交換が起こり難くなり、イオン交換に要する時間が長くなるため生産性が低下し易くなる。また結晶核が十分に形成されず、粗大な結晶が析出してガラスが白濁し易くなると共に、破損し易くなる虞がある。一方、Pの含有量が多過ぎると、ガラスが分相して、結晶化ガラスが白濁し易くなると共に、耐候性が低下し易くなる。 P 2 O 5 is a component that enhances ion exchange performance. It is also a necessary component for efficiently precipitating crystals in the crystallization process. On the other hand, when a large amount of P 2 O 5 is contained, the glass tends to be remarkably phase-separated. The content of P 2 O 5 is preferably 0-10%, 0.1-9%, 0.3-8%, 0.5-7%, 0.6-6.5%, 0.7- 6%, 0.8-5.5%, 0.9-5%. Especially 1 to 7.5%. If the content of P 2 O 5 is too small, ion exchange becomes difficult to occur and the time required for ion exchange becomes longer, which tends to reduce productivity. In addition, crystal nuclei are not sufficiently formed, and coarse crystals are precipitated, making the glass more likely to become cloudy and likely to break. On the other hand, if the content of P 2 O 5 is too high, the glass will undergo phase separation, and the crystallized glass will tend to become cloudy, and the weather resistance will tend to decrease.
 ZrOは、結晶化工程で効率的に結晶を析出させる成分である。ZrOの含有量は、好ましくは0~10%、0.1~9.5%、0.2~9%、0.3~8.5%、0.4~8%、0.5~7.5%、0.6~7%、0.7~6.5%、特に0.8~6%である。ZrOの含有量が少な過ぎると、結晶核が十分に形成されず、粗大な結晶が析出してガラスが白濁し易くなると共に、破損し易くなる虞がある。一方、ZrOの含有量が多過ぎると、粗大なZrO結晶が析出して、ガラスが失透し易くなり、また結晶化ガラスが破損し易くなる。 ZrO 2 is a component that efficiently deposits crystals in the crystallization process. The content of ZrO 2 is preferably 0-10%, 0.1-9.5%, 0.2-9%, 0.3-8.5%, 0.4-8%, 0.5- 7.5%, 0.6-7%, 0.7-6.5%, especially 0.8-6%. If the content of ZrO 2 is too low, crystal nuclei are not sufficiently formed, and coarse crystals are precipitated, making the glass more likely to become cloudy and likely to break. On the other hand, if the ZrO 2 content is too high, coarse ZrO 2 crystals are precipitated, the glass tends to devitrify, and the crystallized glass tends to break.
 SnOは、溶融中に価数変化することで酸素を放出し、溶融ガラス中の気泡をより大きくすることで泡の浮上速度を高めて、清澄を促す成分である。SnOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、特に0~1%である。またSnOにはZrOの分相を促進する効果もある。液相温度を低く抑えながら(初相析出による失透のリスクを抑えながら)、分相を効率的に発生させて、後の工程における核形成、結晶成長工程を迅速に行うために、SnOを加えることが好ましい。この場合のSnO含有量は、0.01~5%、0.03~4%、0.05~3%、0.08~2.5%、特に好ましくは0.1~2%である。 SnO 2 is a component that releases oxygen by changing its valence during melting, increases the bubble floating speed in the molten glass, and promotes clarification. The SnO 2 content is preferably 0-5%, 0-4%, 0-3%, 0-2%, especially 0-1%. SnO 2 also has the effect of promoting phase separation of ZrO 2 . While keeping the liquidus temperature low (while suppressing the risk of devitrification due to primary phase precipitation), in order to efficiently generate phase separation and rapidly perform the nucleation and crystal growth steps in the subsequent steps, SnO 2 is preferably added. The SnO 2 content in this case is 0.01-5%, 0.03-4%, 0.05-3%, 0.08-2.5%, particularly preferably 0.1-2% .
 Feは、不可避な不純物として原料に含まれる成分である。Feの含有量が多過ぎると、結晶化ガラスが着色し、透過率が低下する虞がある。Feの含有量は、好ましくは0~4%であり、0~3%、0~2%、0~1%、0~0.5%、特に0~0.1%である。 Fe 2 O 3 is a component contained in the raw material as an unavoidable impurity. If the content of Fe 2 O 3 is too high, the crystallized glass may be colored and transmittance may be lowered. The content of Fe 2 O 3 is preferably 0-4%, 0-3%, 0-2%, 0-1%, 0-0.5%, especially 0-0.1%.
 TiOは、結晶化工程で結晶の析出を促進させる成分である。一方、TiOを多量に含有すると、ガラスが著しく着色する虞がある。ZrOとTiOを含むジルコニアチタネート系の結晶は結晶核として作用するが、配位子である酸素の価電子帯から中心金属であるジルコニア及びチタンの伝導帯へと電子が遷移し(LMCT遷移)、結晶化ガラスの着色に関与する。また残存ガラス相にチタンが残っている場合、SiO骨格の価電子帯から残存ガラス相の4価のチタンの伝導帯へとLMCT遷移が起こり得る。また残存ガラス相の3価のチタンではd-d遷移が起こり、結晶化ガラスの着色に関与する。更にチタンと鉄が共存する場合は、イルメナイト(FeTiO)様の着色が発現する。またチタンと錫が共存する場合は、黄色が強まることが知られている。よって、TiOの含有量は、好ましくは0~4%、0~3%、0~2%、0~1%、0~0.5%、特に0~0.1%である。但し、TiOは不純物として混入し易いため、TiOを完全に除去しようとすると、原料コストが増加する。原料コストの増加を抑制するために、TiOの含有量の下限は、好ましくは0.0003%以上、0.001%以上、0.01%以上、特に0.02%以上である。 TiO 2 is a component that promotes precipitation of crystals in the crystallization process. On the other hand, if TiO 2 is contained in a large amount, the glass may be markedly colored. A zirconia titanate-based crystal containing ZrO 2 and TiO 2 acts as a crystal nucleus, but electrons transition from the valence band of oxygen, which is a ligand, to the conduction band of zirconia and titanium, which are central metals (LMCT transition ), involved in the coloring of crystallized glass. Also, when titanium remains in the residual glass phase, an LMCT transition can occur from the valence band of the SiO2 framework to the conduction band of tetravalent titanium in the residual glass phase. Further, trivalent titanium in the residual glass phase undergoes a dd transition, which contributes to the coloring of the crystallized glass. Furthermore, when titanium and iron coexist, ilmenite (FeTiO 3 )-like coloring develops. It is also known that when titanium and tin coexist, the yellow color is enhanced. Thus, the content of TiO 2 is preferably 0-4%, 0-3%, 0-2%, 0-1%, 0-0.5%, especially 0-0.1%. However, since TiO 2 is easily mixed as an impurity, if TiO 2 is completely removed, raw material costs increase. In order to suppress an increase in raw material costs, the lower limit of the content of TiO2 is preferably 0.0003% or more, 0.001% or more, 0.01% or more, especially 0.02% or more.
 Bは、高温粘度を低下させて、溶融性及び成形性を高める成分である。また結晶核形成時の分相の起こり易さに関与し得る成分でもある。Bの含有量は、好ましくは0~3%、0~2%、0~1%、特に0~0.1%である。Bの含有量が多過ぎると、溶融時にBを含む化合物の蒸発量が多くなり、環境負荷が高くなる虞がある。 B 2 O 3 is a component that lowers high-temperature viscosity and improves meltability and moldability. It is also a component that can contribute to the tendency of phase separation to occur during crystal nucleus formation. The content of B 2 O 3 is preferably 0-3%, 0-2%, 0-1%, especially 0-0.1%. If the content of B 2 O 3 is too high, the amount of the compound containing B evaporates at the time of melting, which may increase the environmental load.
 CeOは、溶解性を高めるだけではなく、酸化剤としての効果があり、不純物である全Fe中のFe2+の増加を抑えて、結晶化ガラスの可視光透過率を高める成分である。CeOの含有量は、好ましくは0~0.5%、0~0.4%、特に0~0.3%である。CeOの含有量が多過ぎると、Ce4+による着色が強くなり過ぎて、結晶化ガラスが褐色を呈する虞がある。 CeO 2 is a component that not only increases the solubility but also has an effect as an oxidizing agent, suppresses the increase of Fe 2+ in the total Fe impurities, and increases the visible light transmittance of the crystallized glass. The content of CeO 2 is preferably 0-0.5%, 0-0.4%, in particular 0-0.3%. If the content of CeO 2 is too high, the coloration due to Ce 4+ may become too strong, and the crystallized glass may take on a brown color.
 SOは、芒硝から導入することができる。SOは、溶融時に二酸化硫黄と酸素を放出することで、溶融ガラス中の泡を拡大させて、清澄を促す成分である。またCeOと同様に酸化剤として働き、CeOと共存させることによりCeOの効果を高める成分である。SOの含有量は、好ましくは0~0.5%、0.01~0.45%、0.02~0.4%、0.03~0.35%、0.04~0.3%、特に0.05~0.25%である。SOの含有量が多過ぎると、異種結晶が析出して、結晶化ガラスの表面品位が低下する虞がある。 SO3 can be introduced from Glauber's salt. SO 3 is a component that releases sulfur dioxide and oxygen during melting to expand bubbles in the molten glass and promote clarification. It is also a component that works as an oxidizing agent like CeO 2 and increases the effect of CeO 2 by allowing it to coexist with CeO 2 . The content of SO3 is preferably 0-0.5%, 0.01-0.45%, 0.02-0.4%, 0.03-0.35%, 0.04-0.3 %, especially 0.05-0.25%. If the content of SO 3 is too high, heterogeneous crystals may precipitate and the surface quality of the crystallized glass may deteriorate.
 MoOは、溶融ガラス中に浸漬させた電極からガラス中に電流を流すことで加熱する溶融方法において、電極から僅かに溶融ガラスに混入し得る成分である。溶融ガラスの加熱を電極通電のみで行う場合、MoOの混入量が増加し易いため注意が必要である。MoOの混入量が多過ぎると、ガラスが着色し、透過率が低下する虞がある。MoOの含有量は、好ましくは0~0.5%、0~0.1%、0~0.05%、0~0.01%、0~0.005%、0~0.001%、0~0.0005%、特に0~0.0003%である。 MoO 3 is a component that can be slightly mixed into the molten glass from the electrode in the melting method in which the glass is heated by applying an electric current from an electrode immersed in the molten glass. When the molten glass is heated only by energizing the electrodes, it is necessary to pay attention to the fact that the amount of MoO 3 mixed in tends to increase. If the amount of MoO 3 mixed is too large, the glass may be colored and the transmittance may be lowered. The content of MoO 3 is preferably 0-0.5%, 0-0.1%, 0-0.05%, 0-0.01%, 0-0.005%, 0-0.001% , 0 to 0.0005%, especially 0 to 0.0003%.
 As、PbOは、環境及び人体に対して有害であるため実質的に含有しないことが好ましい。 Since As 2 O 3 and PbO are harmful to the environment and human body, it is preferable not to substantially contain them.
 清澄剤として、F、Cl、Sb等を1種類以上導入してもよい。これらの清澄剤の合計含有量及び個別含有量は、好ましくは0~5%、0.001~3%、0.003~1%、0.005~0.5%、特に0.01~0.3%である。なお、Clを清澄剤として加えない場合でも、Clはバッチ原料に含まれる不純物としてガラス中に含まれ得る。Clの含有量が多過ぎると、ガラスを加熱加工する際に白色の欠陥を生じ易くなる。よって、Clの含有量は、好ましくは0.1%以下、0.05%以下、0.01%以下、0.005%以下、特に0.04%以下である。 As a refining agent, one or more of F, Cl, Sb 2 O 3 and the like may be introduced. The total and individual contents of these refining agents are preferably 0-5%, 0.001-3%, 0.003-1%, 0.005-0.5%, especially 0.01-0. .3%. Note that even when Cl is not added as a fining agent, Cl can be contained in the glass as an impurity contained in batch raw materials. If the Cl content is too high, white defects tend to occur during heat processing of the glass. Therefore, the Cl content is preferably 0.1% or less, 0.05% or less, 0.01% or less, 0.005% or less, and particularly 0.04% or less.
 化学的耐久性、高温粘度等の改良のために、Cr、La、WO、Nb、Y等をそれぞれ3%以下、2%以下、1%以下、1%未満、0.5%以下で導入してもよい。 Cr 2 O 3 , La 2 O 3 , WO 3 , Nb 2 O 3 , Y 2 O 3 and the like are added at 3% or less, 2% or less, and 1% or less, respectively, in order to improve chemical durability, high-temperature viscosity, etc. , less than 1%, and up to 0.5%.
 不純物として、H、CO、CO、HO、He、Ne、Ar、N等の成分をそれぞれ0.1%まで導入してもよい。またPt、Rh、Au等の貴金属元素の混入量はそれぞれ500ppm以下、更には300ppm以下であることが好ましい。 As impurities, components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may be introduced up to 0.1% each. Also, the mixed amount of noble metal elements such as Pt, Rh, and Au is preferably 500 ppm or less, more preferably 300 ppm or less.
 本発明の結晶化ガラスは下記の特性、性質を有することが好ましい。 The crystallized glass of the present invention preferably has the following characteristics and properties.
 本発明の結晶化ガラスは、Na、Al、Si、Oを含む結晶が析出してなることが好ましく、主結晶としてNa、Al、Si、Oを含む結晶が析出してなることがより好ましく、特にNaAlSi、NaAlSi17又はNaAlSi18で表される結晶を含んでいることが好ましい。このような結晶を析出させると、内部引っ張り応力の許容限界を高める効果が発現して、結晶化ガラスが破壊する際に発生する破片の数を少なくすることができる。なお、本発明では、上記結晶以外の結晶の析出を排除するものではない。 The crystallized glass of the present invention is preferably formed by precipitating crystals containing Na, Al, Si and O, more preferably by precipitating crystals containing Na, Al, Si and O as main crystals. In particular, it preferably contains crystals represented by Na 4 Al 2 Si 2 O 9 , Na 6 Al 4 Si 4 O 17 or Na 8 Al 4 Si 4 O 18 . When such crystals are precipitated, the effect of increasing the permissible limit of internal tensile stress is exhibited, and the number of fragments generated when the crystallized glass is broken can be reduced. In addition, in the present invention, precipitation of crystals other than the above crystals is not excluded.
 本発明の結晶化ガラスの主結晶は、三斜晶系、単斜晶系、直方晶系、正方晶系、六方晶系、立方晶系が好ましく、より好ましくは単斜晶系、直方晶系、正方晶系、六方晶系、立方晶系、更に好ましくは直方晶系、正方晶系、六方晶系、立方晶系、更に好ましくは、正方晶系、六方晶系、立方晶系、特に好ましくは六方晶系、立方晶系、最も好ましくは立方晶系である。主結晶が対称性の高い結晶である程、光が通ることに対しての異方性が小さいため、結晶化ガラスが透明になり易い。一方、主結晶の対称性が低いと、結晶の向きによって光の通り方が異なるため、光が散乱され易く、半透明又は不透明になり易い。 The main crystal of the crystallized glass of the present invention preferably has a triclinic system, a monoclinic system, a cubic system, a tetragonal system, a hexagonal system or a cubic system, more preferably a monoclinic system or a cubic system. , tetragonal system, hexagonal system, cubic system, more preferably rectangular system, tetragonal system, hexagonal system, cubic system, more preferably tetragonal system, hexagonal system, cubic system, particularly preferably is hexagonal, cubic, most preferably cubic. When the main crystal is a highly symmetrical crystal, the crystallized glass tends to be transparent because the anisotropy with respect to the passage of light is small. On the other hand, if the symmetry of the main crystal is low, the direction of light travels differently depending on the orientation of the crystal.
 本発明の結晶化ガラスにおいて、結晶化度は、好ましくは1%以上、5%以上、10%以上、15%以上、20%以上、特に25%以上である。結晶化度が低過ぎると、内部引っ張り応力の許容限界を高める効果が小さくなり易い。一方、結晶化度が高過ぎると、透過率が低下し易くなる。また、イオン交換処理を行う場合、イオン交換処理の対象となるガラス相の比率が少なくなるため、高い圧縮応力値を形成することが困難になる。よって、結晶化度は、好ましくは99%以下、96%以下、80%以下、70%以下、60%以下、50%以下、40%以下、特に30%以下である。 In the crystallized glass of the present invention, the degree of crystallinity is preferably 1% or more, 5% or more, 10% or more, 15% or more, 20% or more, particularly 25% or more. If the degree of crystallinity is too low, the effect of increasing the allowable limit of internal tensile stress tends to decrease. On the other hand, if the degree of crystallinity is too high, the transmittance tends to decrease. In addition, when ion exchange treatment is performed, the proportion of the glass phase to be ion exchanged decreases, making it difficult to form a high compressive stress value. Therefore, the crystallinity is preferably 99% or less, 96% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, particularly 30% or less.
 結晶子サイズは、好ましくは1μm以下、0.5μm以下、特に0.3μm以下である。結晶子サイズが大き過ぎると、透過率が低下し易くなる。なお、結晶子サイズの下限は特に限定されないが、現実的には1nm以上である。 The crystallite size is preferably 1 μm or less, 0.5 μm or less, particularly 0.3 μm or less. If the crystallite size is too large, the transmittance tends to decrease. Although the lower limit of the crystallite size is not particularly limited, it is practically 1 nm or more.
 厚み0.7mm、波長380~780nmにおける可視光平均透過率は、好ましくは50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、特に80%以上である。厚み0.7mm、波長380~780nmにおける可視光平均透過率が低過ぎると、スマートフォンのカバーガラスとして使用し難くなる。 The average visible light transmittance at a thickness of 0.7 mm and a wavelength of 380 to 780 nm is preferably 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, and particularly 80% or more. If the thickness is 0.7 mm and the average visible light transmittance at a wavelength of 380 to 780 nm is too low, it will be difficult to use as a cover glass for smartphones.
 白色度L*値は、好ましくは50以上、60以上、70以上、80以上、特に90以上である。白色度が低過ぎると、透過率が低下し易くなる。なお、「白色度L*値」はJIS Z 8730に定義されているものを意味している。 The whiteness L* value is preferably 50 or higher, 60 or higher, 70 or higher, 80 or higher, particularly 90 or higher. If the whiteness is too low, the transmittance tends to decrease. The "whiteness L* value" means the one defined in JIS Z 8730.
 本発明の結晶化ガラスは、表面に圧縮応力層を有することが好ましい。表面の圧縮応力値(CS)は、好ましくは100MPa以上、200MPa以上、300MPa以上、400MPa以上、500MPa以上、550MPa以上、600MPa以上、650MPa以上、700MPa以上、750MPa以上、800MPa以上、850MPa以上、900MPa以上、特に950MPa以上である。圧縮応力値が小さ過ぎると、曲げ強度が低くなる虞がある。圧縮応力値(CS)の上限範囲は、1800MPa以下であることが好ましい。圧縮応力値(CS)が大き過ぎると、内部引張応力が過大となり、結晶化ガラスが破損した際に破片が飛散し易くなる。 The crystallized glass of the present invention preferably has a compressive stress layer on its surface. The surface compressive stress value (CS) is preferably 100 MPa or more, 200 MPa or more, 300 MPa or more, 400 MPa or more, 500 MPa or more, 550 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more, 750 MPa or more, 800 MPa or more, 850 MPa or more, 900 MPa or more. , especially above 950 MPa. If the compressive stress value is too small, the bending strength may become low. The upper limit range of the compressive stress value (CS) is preferably 1800 MPa or less. If the compressive stress value (CS) is too large, the internal tensile stress becomes excessive, and when the crystallized glass is broken, fragments are likely to scatter.
 応力深さ(DOC)は、好ましくは10μm以上、20μm以上、30μm以上、40μm以上、50μm以上、50μm以上、60μm以上、70μm以上、80μm以上、90μm以上、100μm以上、110μm以上、特に120μm以上である。応力深さが小さ過ぎると、落下強度が低くなる虞がある。応力深さ(DOC)の上限範囲は、300μm以下であり、現実的にはガラスの厚みの1/4以下である。 The depth of stress (DOC) is preferably 10 μm or more, 20 μm or more, 30 μm or more, 40 μm or more, 50 μm or more, 50 μm or more, 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, 100 μm or more, 110 μm or more, especially 120 μm or more. be. If the stress depth is too small, the drop strength may become low. The upper limit of the depth of stress (DOC) is 300 μm or less, and practically 1/4 or less of the thickness of the glass.
 応力積分値∫CT/tは、散乱光光弾性応力計(例えば折原製作所の散乱光光弾性応力計SLP-1000)で得られた圧縮応力の深さ方向のプロファイルについて、ガラス表面から厚みの半分の深さまでの応力を積分した値である。本発明の結晶化ガラスの∫CT/tは、好ましくは10MPa以上、12MPa以上、14MPa以上、16MPa以上、18MPa以上、20MPa以上、21MPa以上、22MPa以上、23MPa以上、24MPa以上、25MPa以上、26MPa以上、27MPa以上、28MPa以上、29MPa以上、特に30MPa以上である。∫CT/tが大きい程、結晶化ガラスに大きな圧縮応力を形成することができる。一方、∫CT/tが大き過ぎると、結晶化ガラスが破壊した際に発生する破片数が多くなり易い。破片数を少なくすることを重視する場合、∫CT/tは、好ましくは50MPa以下、48MPa以下、46MPa以下、45MPa以下、44MPa以下、43MPa以下、42MPa以下、41MPa以下、40MPa以下、39MPa以下、38MPa以下、37MPa以下、36MPa以下、特に35MPa以下である。 The stress integral value ∫CT/t is obtained from a scattered light photoelastic stress meter (for example, Orihara Seisakusho's scattered light photoelastic stress meter SLP-1000). It is the value obtained by integrating the stress up to the depth of ∫CT/t of the crystallized glass of the present invention is preferably 10 MPa or more, 12 MPa or more, 14 MPa or more, 16 MPa or more, 18 MPa or more, 20 MPa or more, 21 MPa or more, 22 MPa or more, 23 MPa or more, 24 MPa or more, 25 MPa or more, 26 MPa or more. , 27 MPa or more, 28 MPa or more, 29 MPa or more, in particular 30 MPa or more. The larger ∫CT/t is, the larger compressive stress can be formed in the crystallized glass. On the other hand, if ∫CT/t is too large, the number of fragments generated when the crystallized glass breaks tends to increase. When emphasizing reducing the number of fragments, ∫CT/t is preferably 50 MPa or less, 48 MPa or less, 46 MPa or less, 45 MPa or less, 44 MPa or less, 43 MPa or less, 42 MPa or less, 41 MPa or less, 40 MPa or less, 39 MPa or less, or 38 MPa. 37 MPa or less, 36 MPa or less, particularly 35 MPa or less.
 加傷した際の傷深さとは、花崗岩の定盤上に試料を載置し、その試料に180番の研磨紙を100Nの荷重で押し当て、傷をつける。3点曲げ試験を行って割断した試料の断面を微分干渉顕微鏡で観察し、半円状の圧痕(median crack)のガラス表面からの深さを意味する。表面にイオン交換による圧縮応力層が形成されていない場合に、加傷した際の傷深さは、好ましくは200μm以下、190μm以下、180μm以下、170μm以下、160μm以下、150μm以下、140μm以下、130μm以下、120μm以下、110μm以下、特に100μm以下である。傷深さが深過ぎると、落下した際に目立つ傷ができ易い。傷深さの下限範囲は特に限定されないが、現実的には30μm以上である。  The depth of the scratch when scratched means that the sample is placed on a granite surface plate, and the sample is pressed with No. 180 abrasive paper with a load of 100 N to scratch it. A three-point bending test is performed and the cross section of the fractured sample is observed with a differential interference microscope, and it means the depth from the glass surface of the semicircular median crack. When a compressive stress layer is not formed on the surface by ion exchange, the scratch depth when scratched is preferably 200 μm or less, 190 μm or less, 180 μm or less, 170 μm or less, 160 μm or less, 150 μm or less, 140 μm or less, or 130 μm. 120 μm or less, 110 μm or less, particularly 100 μm or less. If the scratch depth is too deep, conspicuous scratches are likely to occur when dropped. Although the lower limit of the scratch depth is not particularly limited, it is practically 30 μm or more.
 落下試験後の破片数は、1000mm当たり500個以下、450個以下、400個以下、350個以下、300個以下、250個以下、200個以下、190個以下、180個以下、170個以下、160個以下、150個以下、140個以下、130個以下、120個以下、110個以下、100個以下、90個以下、80個以下、70個以下、60個以下、特に50個以下が好ましい。破片数が多過ぎると、落下後に、透明性が損なわれる。また細かい破片によって怪我をする虞がある。破片数の下限範囲は特に限定されないが、現実的には2個以上である。 The number of fragments after the drop test is 500 or less, 450 or less, 400 or less, 350 or less, 300 or less, 250 or less, 200 or less, 190 or less, 180 or less, 170 or less per 1000 mm 2 , 160 or less, 150 or less, 140 or less, 130 or less, 120 or less, 110 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, especially 50 or less preferable. If the number of fragments is too high, the transparency will be lost after dropping. In addition, there is a risk of injury due to fine fragments. Although the lower limit of the number of fragments is not particularly limited, it is actually two or more.
 曲げ強度は、好ましくは100MPa以上、120MPa以上、150MPa以上、180MPa以上、200MPa以上、230MPa以上、特に250MPa以上である。曲げ強度が低過ぎると、結晶化ガラスが割れ易くなる。なお、曲げ強度の上限範囲は特に限定されないが、現実的には3000MPa以下である。 The bending strength is preferably 100 MPa or higher, 120 MPa or higher, 150 MPa or higher, 180 MPa or higher, 200 MPa or higher, 230 MPa or higher, and particularly 250 MPa or higher. If the bending strength is too low, the crystallized glass will easily break. Although the upper limit of the bending strength is not particularly limited, it is practically 3000 MPa or less.
 耐落下高さは、好ましくは5mm以上、7mm以上、特に10mm以上である。耐落下高さが低過ぎると、落下の際に結晶化ガラスが割れ易くなる。 The drop resistance height is preferably 5 mm or more, 7 mm or more, particularly 10 mm or more. If the drop resistance is too low, the crystallized glass is likely to break when dropped.
 本発明の結晶化ガラスにおいて、ヤング率は、好ましくは50GPa以上、60GPa以上、70GPa以上、75GPa以上、特に80GPa以上である。ヤング率が低過ぎると、板厚が薄い場合に強化ガラスが撓み易くなる。ヤング率の上限範囲は特に限定されないが、現実的には150GPa以下である。 In the crystallized glass of the present invention, the Young's modulus is preferably 50 GPa or higher, 60 GPa or higher, 70 GPa or higher, 75 GPa or higher, and particularly 80 GPa or higher. If the Young's modulus is too low, the tempered glass will easily bend when the plate thickness is thin. Although the upper limit of the Young's modulus is not particularly limited, it is practically 150 GPa or less.
 本発明の結晶化ガラスにおいて、破壊靭性は、好ましくは0.5MPa・m1/2以上、0.55MPa・m1/2以上、0.6MPa・m1/2以上、0.65MPa・m1/2以上、特に0.7MPa・m1/2以上である。破壊靭性が低過ぎると、落下試験の破片数が増加し易い。一方、破壊靭性を高めるべく、例えば結晶化度を上げ過ぎると、結晶化ガラスの可視光平均透過率が低下し易い。したがって、透過率を重視する場合、破壊靭性は、好ましくは2以下、1.5以下、1.3以下、1.2以下、1.1以下、1.0以下、特に1.0未満である。 In the crystallized glass of the present invention, the fracture toughness is preferably 0.5 MPa·m 1/2 or more, 0.55 MPa·m 1/2 or more, 0.6 MPa·m 1/2 or more, 0.65 MPa·m 1 /2 or more, particularly 0.7 MPa·m 1/2 or more. Too low a fracture toughness tends to increase the number of fragments in a drop test. On the other hand, if, for example, the degree of crystallinity is excessively increased in order to increase the fracture toughness, the average visible light transmittance of the crystallized glass tends to decrease. Therefore, when emphasizing the transmittance, the fracture toughness is preferably 2 or less, 1.5 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1.0 or less, especially less than 1.0 .
 歪点は、好ましくは450℃以上、特に500℃以上である。歪点が低過ぎると、結晶化工程でガラスが変形する虞がある。歪点の上限範囲は特に限定されないが、現実的には1000℃以下である。 The strain point is preferably 450°C or higher, particularly 500°C or higher. If the strain point is too low, the glass may be deformed during the crystallization process. Although the upper limit of the strain point is not particularly limited, it is practically 1000° C. or less.
 30~380℃における熱膨張係数は、好ましくは0×10-7~160×10-7/℃、10×10-7~155×10-7/℃、特に20×10-7~150×10-7/℃である。熱膨張係数が低過ぎると、熱膨張係数が周辺部材と整合し難くなる。一方、熱膨張係数が高過ぎると、耐熱衝撃性が低下し易くなる。 The coefficient of thermal expansion at 30 to 380°C is preferably 0×10 -7 to 160×10 -7 /°C, 10×10 -7 to 155×10 -7 /°C, especially 20×10 -7 to 150×10 -7 /°C. If the coefficient of thermal expansion is too low, it will be difficult to match the coefficient of thermal expansion with the surrounding members. On the other hand, if the coefficient of thermal expansion is too high, the thermal shock resistance tends to decrease.
 次に、本発明の結晶化ガラスの製造方法を説明する。 Next, the method for producing the crystallized glass of the present invention will be explained.
 まず、所望の組成となるようにガラス原料を調合する。次に調合した原料バッチを1300~1600℃で8~16時間溶融し、所定の形状に成形し結晶性ガラスを得る。なお成形方法として、フロート法、オーバーフローダウンドロー法、ロールアウト法、モールドプレス法等の周知の成形法を採用することができる。なお、必要に応じて曲げ加工等の処理を施しても構わない。 First, glass raw materials are blended so as to have the desired composition. Next, the mixed raw material batch is melted at 1300 to 1600° C. for 8 to 16 hours and formed into a predetermined shape to obtain crystallizable glass. As a molding method, a well-known molding method such as a float method, an overflow down-draw method, a roll-out method, or a mold press method can be employed. In addition, processing such as bending may be performed as necessary.
 次いで結晶性ガラスを所望の結晶化度にするために、500~800℃で0.1~15時間熱処理(すなわち焼成処理)することにより、結晶を析出させて結晶化ガラスを得る。なお、結晶化のための熱処理は、ある特定の温度のみで行ってよく、二水準以上の温度に保持して段階的に熱処理してもよく、温度勾配を与えながら熱処理してもよい。このような処理によれば、結晶の析出数および結晶の成長の程度を個別に調整し得る。また音波や電磁波を印加、照射することで結晶化を促進してもよい。 Next, in order to obtain the desired degree of crystallinity, the crystallizable glass is subjected to heat treatment (that is, firing treatment) at 500 to 800°C for 0.1 to 15 hours to precipitate crystals and obtain crystallized glass. The heat treatment for crystallization may be performed only at a specific temperature, the heat treatment may be performed stepwise by holding the temperature at two or more levels, or the heat treatment may be performed while giving a temperature gradient. According to such treatment, the number of crystals deposited and the degree of crystal growth can be individually adjusted. Also, crystallization may be promoted by applying or irradiating sound waves or electromagnetic waves.
 その後、得られた結晶化ガラスに対して、曲げ強度を高くするためにイオン交換処理を行う。イオン交換処理は、350℃以上の溶融塩に、結晶化ガラスを接触させることにより、ガラス中のアルカリイオン(例えばNaイオン)をそれよりもイオン半径が大きいアルカリイオン(例えばKイオン)と置換させる。このようにして、表面に圧縮応力層を形成することができる。 After that, the obtained crystallized glass is subjected to an ion exchange treatment to increase the bending strength. In the ion exchange treatment, the crystallized glass is brought into contact with a molten salt of 350° C. or higher to replace alkali ions (such as Na ions) in the glass with alkali ions having a larger ionic radius (such as K ions). . In this way, a compressive stress layer can be formed on the surface.
 イオン交換処理に際して、溶融塩として、硝酸塩(硝酸カリウム、硝酸ナトリウム等)、炭酸塩(炭酸カリウム、炭酸ナトリウム等)、硫酸塩(硫酸カリウム、硫酸ナトリウム等)、塩化物塩(塩化カリウム、塩化ナトリウム等)やこれらを組み合わせたものを用いることができる。 Nitrates (potassium nitrate, sodium nitrate, etc.), carbonates (potassium carbonate, sodium carbonate, etc.), sulfates (potassium sulfate, sodium sulfate, etc.), chloride salts (potassium chloride, sodium chloride, etc.) are used as molten salts for the ion exchange treatment. ) or a combination thereof can be used.
 必要に応じて、イオン交換処理前又は後に、膜付け等の表面加工、切断、穴開け等の機械加工等を施してもよい。 If necessary, before or after ion exchange treatment, surface processing such as filming, machining such as cutting, drilling, etc. may be applied.
 以下、本発明を実施例に基づいて詳細に説明する。表1~4は、実施例である試料No.1~34及び比較例である試料No.35を示すものである。なお、表中で「N.D.」は未測定を意味している。また、表中の密度測定値における「焼成」とは、結晶を析出および成長させるための熱処理工程を意味し、「アニール」とはガラス中の歪を緩和することを目的としたガラスを結晶化させない熱処理工程を意味する。
 
Hereinafter, the present invention will be described in detail based on examples. Tables 1 to 4 show sample Nos., which are examples. 1 to 34 and sample No. 35 as a comparative example. In the table, "N.D." means unmeasured. In addition, "firing" in the density measurement values in the table means a heat treatment process for precipitating and growing crystals, and "annealing" means crystallizing the glass for the purpose of relaxing the strain in the glass. It means a heat treatment process that does not cause
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 以下のようにして試料No.1~35を作製した。  Sample No. 1-35 were produced.
 まず、表中の組成になるように調合したバッチ原料を溶融窯に投入し、1300~1500℃で溶融した後、溶融ガラス生地をロール成形し、200×500×5mmの結晶性ガラスを作製した。 First, a batch raw material prepared to have the composition shown in the table was put into a melting furnace and melted at 1300 to 1500° C., and then the molten glass dough was roll-formed to prepare a crystallizable glass of 200×500×5 mm. .
 さらに、得られた結晶性ガラスを表中に記載の温度、時間にて熱処理することにより、結晶化ガラスを得た。 Furthermore, crystallized glass was obtained by heat-treating the resulting crystallizable glass at the temperature and time indicated in the table.
 このようにして作製した結晶化ガラスの試料について、密度、外観(透明、半透明又は不透明)、主結晶、空間群、結晶系、結晶化度、平均結晶子サイズ、傷深さ、析出結晶、透過率、及び熱膨張係数を評価した。試料No.32~34については、歪点、徐冷点、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、L*値、a*値、b*値、熱膨張係数も評価した。その結果を表に示す。 Regarding the crystallized glass sample thus produced, density, appearance (transparent, translucent or opaque), main crystal, space group, crystal system, crystallinity, average crystallite size, scratch depth, precipitated crystal, Transmittance and coefficient of thermal expansion were evaluated. Sample no. For 32 to 34, strain point, annealing point, temperature at high temperature viscosity of 10 4.0 dPa s, temperature at high temperature viscosity of 10 3.0 dPa s, L* value, a* value, b* value, heat The coefficient of expansion was also evaluated. The results are shown in the table.
 密度は周知のアルキメデス法によって測定した値である。なお、密度の測定は焼成を行う前後で行い、測定値の差を算出した。 The density is a value measured by the well-known Archimedes method. The density was measured before and after firing, and the difference between the measured values was calculated.
 外観は目視で透明、半透明、不透明の3つの水準から判定した。基準としては、試料を通して文字(MSPゴシック、12pt)を見た際に、文字が明瞭に見える場合を透明、文字が見えるが霞んで見える場合を半透明、文字が見えない場合を不透明とした。 The appearance was visually judged from three levels: transparent, translucent, and opaque. As a standard, when characters (MSP Gothic, 12pt) were viewed through the sample, the case where the characters were clearly visible was defined as transparent, the case where the characters were visible but vague was defined as translucent, and the case where the characters were not visible was defined as opaque.
 主結晶、空間群、結晶系、結晶化度、平均結晶子サイズはX線回折装置(リガク製 全自動多目的水平型X線回折装置 Smart Lab)を用いて評価した。スキャンモードは2θ/θ測定、スキャンタイプは連続スキャン、散乱及び発散スリット幅は1°、受光スリット幅は0.2°、測定範囲は10~60°、測定ステップは0.1°、スキャン速度は5°/分とし、同機種パッケージに搭載された解析ソフトを用いて析出結晶の評価を行った。また析出結晶の平均結晶子サイズはデバイ・シェラー(Debeye-Sherrer)法に基づいて、測定したX線回折ピークを用いて算出した。なお、平均結晶子サイズ算出用の測定では、スキャン速度は1°/分とした。また、結晶化度は上記方法で得られたX線回折プロファイルを基づいて、(結晶のX線回折ピークの積分強度)/(計測されたX線回折の全積分強度)×100[%]によって算出した。 The main crystal, space group, crystal system, crystallinity, and average crystallite size were evaluated using an X-ray diffractometer (Rigaku fully automatic multi-purpose horizontal X-ray diffractometer Smart Lab). Scan mode is 2θ/θ measurement, scan type is continuous scan, scattering and divergence slit width is 1°, receiving slit width is 0.2°, measurement range is 10 to 60°, measurement step is 0.1°, scan speed was set to 5°/min, and the precipitated crystals were evaluated using the analysis software installed in the package of the same model. The average crystallite size of precipitated crystals was calculated based on the Debye-Sherrer method using the measured X-ray diffraction peaks. In addition, in the measurement for calculating the average crystallite size, the scanning speed was 1°/min. In addition, the crystallinity is based on the X-ray diffraction profile obtained by the above method, (integrated intensity of X-ray diffraction peak of crystal) / (total integrated intensity of measured X-ray diffraction) × 100 [%] Calculated.
 歪点、徐冷点は、ASTM C336及びC338の方法に基づいて測定した。 The strain point and annealing point were measured based on the methods of ASTM C336 and C338.
 高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度は、白金球引き上げ法で測定した。 The temperature at a high temperature viscosity of 10 4.0 dPa·s and the temperature at a high temperature viscosity of 10 3.0 dPa·s were measured by the platinum ball pull-up method.
 L*値、a*値、b*値は、厚み0.7mmに両面光学研磨した板状の試料について、分光光度計を用いて波長200~800nmの透過率測定結果から算出した。測定には島津製作所製分光光度計UV-3100PCを用いた。図1は、試料No.32の厚み0.7mmにおける波長200~800nmの透過率曲線である。 The L* value, a* value, and b* value were calculated from the transmittance measurement results at a wavelength of 200 to 800 nm using a spectrophotometer for a plate-shaped sample optically polished on both sides to a thickness of 0.7 mm. A spectrophotometer UV-3100PC manufactured by Shimadzu Corporation was used for the measurement. FIG. 1 shows sample no. 32 is a transmittance curve at a wavelength of 200 to 800 nm at a thickness of 0.7 mm.
 熱膨張係数は、20mm×3.8mmφに加工した試料を用いて、30~380℃の温度域で測定した。測定にはNETZSCH製 Dilatometerを用いた。 The coefficient of thermal expansion was measured in the temperature range of 30-380°C using a sample processed to 20mm x 3.8mmφ. A NETZSCH dilatometer was used for the measurement.
 表1~4から明らかなように、試料No.1~34は、透明又は半透明であった。一方、比較例である試料No.35は、半透明且つ白色であった。また、図1から分かるように、試料No.32の可視域(波長400~700nm)での透過率が85%以上と高かった。 As is clear from Tables 1 to 4, sample No. 1-34 were transparent or translucent. On the other hand, Sample No. 35, which is a comparative example, was translucent and white. Moreover, as can be seen from FIG. 32 had a high transmittance of 85% or more in the visible region (wavelength of 400 to 700 nm).
 表5は、実施例である試料A~Dを示している。 Table 5 shows samples A to D that are examples.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 以下のようにして試料A~Dを作製した。 Samples A to D were produced as follows.
 まず、実施例1の試料No.32の組成になるように調合したバッチ原料を溶融窯に投入し、1300~1500℃で溶融した後、溶融ガラス生地をロール成形し、200×500×5mmの結晶性ガラスを作製した。 First, sample No. 1 of Example 1 A batch raw material prepared to have a composition of No. 32 was put into a melting kiln and melted at 1300 to 1500° C., and then the molten glass material was roll-formed to prepare a crystallizable glass of 200×500×5 mm.
 次に、上記の結晶性ガラスを600℃で4時間、740℃で1時間熱処理することにより、結晶化ガラスを得た。 Next, the above crystallizable glass was heat-treated at 600°C for 4 hours and at 740°C for 1 hour to obtain crystallized glass.
 さらに、得られた結晶化ガラスを厚みが0.7mmになるよう研磨した。このようにして得られた試料No.32の組成を有する結晶化ガラスについて、加傷した際の傷深さを測定した。図2は、この結晶化ガラスと従来の化学強化用ガラス(すなわちイオン交換を行っていないガラス)との加傷した際の傷深さを比較したデータである。 Furthermore, the resulting crystallized glass was polished to a thickness of 0.7 mm. Sample no. Crystallized glasses having compositions of 32 were measured for scratch depth when scratched. FIG. 2 shows data comparing the depth of scratches when this crystallized glass and conventional glass for chemical strengthening (that is, glass not subjected to ion exchange) are scratched.
 傷深さは、次のような手順で測定した。花崗岩の定盤上に試料を載置し、その試料に180番の研磨紙を100Nの荷重で押し当て、傷をつける。その後、3点曲げ試験を行って割断した試料の断面を微分干渉顕微鏡で観察し、半円状の圧痕(median crack)のガラス表面からの深さを測定した。 The wound depth was measured using the following procedure. A sample is placed on a granite surface plate, and No. 180 abrasive paper is pressed against the sample with a load of 100 N to scratch it. After that, a three-point bending test was performed, and the cross section of the fractured sample was observed with a differential interference microscope, and the depth of the semicircular median crack from the glass surface was measured.
 その後、得られた結晶化ガラスについて、表中に記載の条件でイオン交換処理を行い、表面に圧縮応力層を有する結晶化ガラスを得た。 After that, the obtained crystallized glass was subjected to ion exchange treatment under the conditions described in the table to obtain crystallized glass having a compressive stress layer on the surface.
 このようにして作製した試料について、表面の圧縮応力値(CS)、応力深さ(DOC)、ヤング率、ビッカース硬度、曲げ強度、耐落下高さを評価した。その結果を表中に示す。図3は、試料A~Dの圧縮応力値(CS)と応力深さ(DOC)の関係を表したデータである。 The surface compressive stress value (CS), stress depth (DOC), Young's modulus, Vickers hardness, bending strength, and drop resistance height of the samples thus prepared were evaluated. The results are shown in the table. FIG. 3 shows data representing the relationship between the compressive stress value (CS) and stress depth (DOC) of samples AD.
 表面の圧縮応力値(CS)、応力深さ(DOC)は、表面応力計(株式会社折原製作所製FSM-6000)及び表面応力計FSM-6000(株式会社折原製作所製)を用いて観察される干渉縞の本数とその間隔から圧縮応力値と応力深さを算出した。なお、応力特性の算出に当たり、各試料の屈折率を1.548、光学弾性定数を31.0[(nm/cm)/MPa]とした。なお、イオン交換処理の前後では、ガラス表層におけるガラス組成が微視的に異なるものの、ガラス全体として見た場合、ガラス組成は実質的に相違しない。 Surface compressive stress value (CS) and stress depth (DOC) are observed using a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.) and a surface stress meter FSM-6000 (manufactured by Orihara Seisakusho Co., Ltd.). Compressive stress value and stress depth were calculated from the number of interference fringes and their intervals. In calculating the stress characteristics, the refractive index of each sample was set to 1.548, and the optical elastic constant was set to 31.0 [(nm/cm)/MPa]. Although the glass composition in the glass surface layer is microscopically different before and after the ion exchange treatment, the glass composition as a whole does not substantially differ.
 ビッカース硬度は、JIS Z2244-1992に準拠すると共に、ビッカース硬度計にて100gfの荷重でビッカース圧子を押し込むことで測定した値であり、測定10回の平均値である。 The Vickers hardness is a value measured by pressing a Vickers indenter with a load of 100 gf using a Vickers hardness tester in accordance with JIS Z2244-1992, and is the average value of 10 measurements.
 ヤング率は、JIS R1602-1995「ファインセラミックスの弾性率試験方法」に準拠した方法で算出したものである。 The Young's modulus was calculated by a method based on JIS R1602-1995 "Elastic modulus test method for fine ceramics".
 曲げ強度は、ASTM C880-78に準じた3点荷重法を用いて測定したものである。 The bending strength was measured using the three-point loading method according to ASTM C880-78.
 耐落下高さは、落下試験により求めた。花崗岩の定盤の上に、50mm×50mm×0.7mm厚の試料を置き、試料の上に先端にビッカース圧子を付けた53gの重りを特定の高さから垂直に落とす落下試験を行い、割れることなく元の形状を維持した最大高さを落下高さとした。 The drop resistance height was determined by a drop test. A sample of 50mm x 50mm x 0.7mm thick is placed on a granite surface plate, and a drop test is performed by vertically dropping a 53g weight with a Vickers indenter attached to the tip onto the sample from a specific height. The drop height was defined as the maximum height at which the original shape was maintained.
 図2から分かるように、試料No.32の組成を有するイオン交換を行っていない結晶化ガラスは、従来の化学強化用ガラスよりも落下した際の傷が目立たないと考えられる。また、表5及び図3から分かるように、試料A~Dは、表面の圧縮応力値(CS)が271MPa以上、応力深さ(DOC)が21μm以上であり、機械的強度が高いと考えられる。 As can be seen from Fig. 2, sample No. It is considered that the crystallized glass having the composition of No. 32 and not undergoing ion exchange has less conspicuous scratches when dropped than the conventional glass for chemical strengthening. In addition, as can be seen from Table 5 and FIG. 3, samples A to D have a surface compressive stress value (CS) of 271 MPa or more and a stress depth (DOC) of 21 μm or more, and are considered to have high mechanical strength. .
 表6及び7は、実施例である試料E~Kを示している。 Tables 6 and 7 show samples E to K, which are examples.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 以下のようにして試料E~Kを作製した。 Samples E to K were produced as follows.
 まず、実施例1の試料No.32の組成になるように調合したバッチ原料を溶融窯に投入し、1300~1500℃で溶融した後、溶融ガラス生地をロール成形し、200×500×5mmの結晶性ガラスを複数枚作製した。この結晶性ガラスの内、数枚を600℃4時間、740℃1時間熱処理することにより、結晶化ガラスを得た(試料E~J)。図4は、試料No.32のXRD曲線を示すデータであり、NaAlSi17が析出していることが確認できた。また、結晶化を行わなかったガラスを試料Kとした。 First, sample no. A batch raw material prepared to have a composition of No. 32 was put into a melting kiln and melted at 1300 to 1500°C. Several sheets of this crystallizable glass were heat-treated at 600° C. for 4 hours and at 740° C. for 1 hour to obtain crystallized glasses (Samples E to J). FIG. 4 shows sample no. The data show the XRD curve of No. 32, and it was confirmed that Na 6 Al 4 Si 4 O 17 was precipitated. Sample K was a glass that was not crystallized.
 次に、得られた結晶性ガラスおよび結晶化ガラスを厚みが0.7mmになるよう研磨した。 Next, the resulting crystallizable glass and crystallized glass were polished to a thickness of 0.7 mm.
 このようにして作製した試料E~Kについて、ヤング率、破壊靭性を評価した。その結果を表6に示す。なお、ヤング率については実施例2と同様の方法で測定した。 The Young's modulus and fracture toughness were evaluated for samples E to K produced in this way. Table 6 shows the results. The Young's modulus was measured in the same manner as in Example 2.
 破壊靭性は、JIS R1607「ファインセラミックスの破壊靱性試験方法」に基づき、SEPB法によりKICを測定したものである。なお、各試料の破壊靱性値は3点の平
均値より求めた。
The fracture toughness was determined by measuring K IC by the SEPB method based on JIS R1607 "Fine Ceramic Fracture Toughness Test Method". The fracture toughness value of each sample was obtained from the average value of three points.
 さらに、得られた結晶化ガラス(試料E~J)及び試料Lを厚みが0.7mmになるよう研磨した。その後、結晶化ガラスを表中に記載の条件でイオン交換処理を行い、表面に圧縮応力層を有する結晶化ガラスを得た。 Furthermore, the obtained crystallized glass (Samples E to J) and Sample L were polished to a thickness of 0.7 mm. Thereafter, the crystallized glass was subjected to an ion exchange treatment under the conditions shown in the table to obtain a crystallized glass having a compressive stress layer on its surface.
 このようにして作製した試料について、圧縮応力値(CS)、応力深さ(DOC)、ビッカース硬度、ヤング率、曲げ強度、耐落下高さ、板面積、∫CT/t、破片数を評価した。その結果を表7に示す。また、図5は、試料E~Iの圧縮応力値(CS)と応力深さ(DOC)の関係を表したデータである。なお、圧縮応力値、応力深さ、ビッカース硬度、ヤング率、曲げ強度、耐落下高さについては、実施例2と同様の方法で測定した。 The samples thus prepared were evaluated for compressive stress value (CS), stress depth (DOC), Vickers hardness, Young's modulus, bending strength, drop height, plate area, ∫CT/t, and number of fragments. . Table 7 shows the results. FIG. 5 shows data representing the relationship between the compressive stress value (CS) and stress depth (DOC) of samples E to I. The compressive stress value, stress depth, Vickers hardness, Young's modulus, bending strength, and drop resistance were measured in the same manner as in Example 2.
 ∫CT/tは、圧縮応力の深さ方向の応力プロファイルについて、ガラス表面から厚みの半分の深さまでの応力を積分した値を意味する。 ∫CT/t means a value obtained by integrating the stress from the surface of the glass to a depth half the thickness of the stress profile in the depth direction of the compressive stress.
 破片数は、花崗岩の定盤の上に試料を載置し、その試料の上に先端にビッカース圧子を付けた53gの重りを10mmの高さから垂直に落とす落下試験を行った後、遅れ破壊が生じた時の試料の破片の数を意味する。 The number of fragments was determined by placing a sample on a granite surface plate and dropping a 53g weight with a Vickers indenter on the tip vertically onto the sample from a height of 10mm. means the number of pieces of the sample when .
 表6から明らかなように、熱処理を施した結晶化ガラスであるE~Jは、Kよりも高いヤング率を有しているが破壊靭性は試料Lと同等である。 As is clear from Table 6, heat-treated crystallized glasses E to J have a higher Young's modulus than K, but the fracture toughness is equivalent to that of sample L.
 表7及び図5から明らかなように、試料E~Jは、高温の溶融塩にてイオン交換処理を施したため、表面の圧縮応力値が1101MPa以上、応力深さが26μm以上であり、機械的強度が高いと考えられる。 As is clear from Table 7 and FIG. 5, samples E to J were subjected to ion exchange treatment with high-temperature molten salt, and therefore had a surface compressive stress value of 1101 MPa or more and a stress depth of 26 μm or more. It is considered to have high strength.
また、結晶化強化ガラスである試料F~Jについて、従来の結晶を含まない強化ガラス(比較例L)と対比を行った結果を図6に示す。図6は、試料F~J及び従来の強化ガラス(国際公開第2015/125584号の明細書中の実施例No.2)である比較例Lの破片数と∫CT/tの関係を表したデータである。比較例Lはガラス組成として、モル%で、SiO 66.5%、Al 11.4%、B 0.5%、NaO 15.2%、KO 1.4%、MgO 4.8%、SnO 0.2%を含有し、厚み0.7mmのガラスであり、結晶を含まないガラスである。比較例Lについては、複数枚の試料について各々異なる強化時間及び温度でイオン交換処理を行ない、図6に示す異なる∫CT/tを有する複数のサンプルを作製した上で、各サンプルについて落下試験を行い、破片数を測定した。図6から分かるように、試料E~Jの破片数は、従来の化学強化ガラスである比較例Lよりも少なかった。 Further, FIG. 6 shows the result of comparing Samples F to J, which are crystallized tempered glasses, with a conventional tempered glass containing no crystals (Comparative Example L). FIG. 6 shows the relationship between the number of fragments and ∫CT/t for Samples F to J and Comparative Example L, which is conventional tempered glass (Example No. 2 in the specification of WO 2015/125584). Data. Comparative Example L has a glass composition of SiO 2 66.5%, Al 2 O 3 11.4%, B 2 O 3 0.5%, Na 2 O 15.2%, K 2 O 1.5%, in terms of mol %. 4%, MgO 4.8%, SnO 2 0.2%, 0.7 mm thick, crystal-free glass. For Comparative Example L, a plurality of samples were subjected to ion exchange treatment at different tempering times and temperatures to prepare a plurality of samples having different ∫CT/t shown in FIG. 6, and each sample was subjected to a drop test. and counted the number of fragments. As can be seen from FIG. 6, the number of fragments in Samples EJ was less than Comparative Example L, which is a conventional chemically strengthened glass.
 本発明の結晶化ガラスは、携帯電話、デジタルカメラ、PDA(携帯端末)等のタッチパネルディスプレイのカバーガラスとして好適である。また、本発明の結晶化ガラスは、これらの用途以外にも、高い曲げ強度、高落下耐性、透明性が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラスへの応用が期待される。 The crystallized glass of the present invention is suitable as a cover glass for touch panel displays such as mobile phones, digital cameras, and PDAs (portable terminals). In addition to these uses, the crystallized glass of the present invention can also be used in applications requiring high bending strength, high drop resistance, and transparency, such as window glass, magnetic disk substrates, flat panel display substrates, and solar cells. It is expected to be applied to cover glass for electronic devices and cover glass for solid-state imaging devices.

Claims (28)

  1.  組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0~10%、ZrO 0~10%、MgO+CaO+SrO+BaO+ZnO 0~20%を含有する結晶化ガラス。 Composition: SiO 2 30-70%, Al 2 O 3 1-20%, Na 2 O 3-45%, P 2 O 5 0-10%, ZrO 2 0-10%, MgO+CaO+SrO+BaO+ZnO 0- Crystallized glass containing 20%.
  2.  Si、Al、Na及びOを含む結晶が析出してなることを特徴とする請求項1に記載の結晶化ガラス。 The crystallized glass according to claim 1, characterized in that crystals containing Si, Al, Na and O are precipitated.
  3.  Si、Al、Na及びOを含む結晶の平均結晶子サイズが1μm以下であることを特徴とする請求項2に記載の結晶化ガラス。 The crystallized glass according to claim 2, wherein the average crystallite size of crystals containing Si, Al, Na and O is 1 μm or less.
  4.  結晶化度が1~95%であることを特徴とする請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, which has a crystallinity of 1 to 95%.
  5.  NaAlSi、NaAlSi17、NaAlSi18の内、少なくとも1種以上の結晶が析出してなることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. Crystals of at least one of Na4Al2Si2O9 , Na6Al4Si4O17 and Na8Al4Si4O18 are deposited . Crystallized glass according to .
  6.  mol%比Al/SiOが0.01~0.5であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the mol % ratio Al 2 O 3 /SiO 2 is 0.01 to 0.5.
  7.  mol%比Al/NaOが0.01~0.7であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the mol % ratio Al 2 O 3 /Na 2 O is 0.01 to 0.7.
  8.  mol%比NaO/SiOが0.1~1であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the mol % ratio Na 2 O/SiO 2 is 0.1-1.
  9.  Pの含有量が0.1~10mol%であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. Crystallized glass according to claim 1, wherein the content of P 2 O 5 is 0.1 to 10 mol %.
  10.  ZrOの含有量が0.1~10mol%であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. Crystallized glass according to claim 1, wherein the content of ZrO 2 is 0.1-10 mol %.
  11.  CaOの含有量が0~5mol%であることを特徴とする請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, characterized in that the content of CaO is 0 to 5 mol%.
  12.  Feの含有量が0~0.5mol%、TiOの含有量が0~0.5mol%であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. Crystallized glass according to claim 1, wherein the content of Fe 2 O 3 is 0 to 0.5 mol % and the content of TiO 2 is 0 to 0.5 mol %.
  13.  実質的にAs、PbOを含有しないことを特徴とする請求項1又は2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, which contains substantially no As2O3 and PbO .
  14.  表面にイオン交換による圧縮応力層が形成されておらず、加傷した際の傷深さが200μm以下になることを特徴とする請求項1又は2に記載の結晶化ガラス。 Crystallized glass according to claim 1 or 2, characterized in that no compressive stress layer is formed on the surface due to ion exchange, and the depth of damage when damaged is 200 µm or less.
  15.  表面にイオン交換による圧縮応力層が形成されていることを特徴とする請求項1又は2に記載の結晶化ガラス。 Crystallized glass according to claim 1 or 2, characterized in that a compressive stress layer is formed on the surface by ion exchange.
  16.  表面の圧縮応力値が少なくとも100MPa以上であることを特徴とする請求項15に記載の結晶化ガラス。 Crystallized glass according to claim 15, characterized in that the surface compressive stress value is at least 100 MPa or more.
  17.  応力深さが20μm以上であることを特徴とする請求項15に記載の結晶化ガラス。 The crystallized glass according to claim 15, wherein the stress depth is 20 µm or more.
  18.  ∫CT/tが20MPa以上であることを特徴とする請求項15に記載の結晶化ガラス。 Crystallized glass according to claim 15, characterized in that ∫CT/t is 20 MPa or more.
  19.  落下試験後の破片数が1000mm当たりの200個以下であることを特徴とする請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, wherein the number of fragments after a drop test is 200 or less per 1000 mm 2 .
  20.  ヤング率が50MPa以上であることを特徴とする請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, which has a Young's modulus of 50 MPa or more.
  21.  破壊靭性が1.0MPa・m1/2未満であることを特徴とする請求項1又は2に記載の結晶化ガラス。 Crystallized glass according to claim 1 or 2, characterized in that the fracture toughness is less than 1.0 MPa·m 1/2 .
  22.  厚み0.7mmにおける波長380~780nmの可視光透過率が50%以上であることを特徴とする請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, wherein the visible light transmittance at a wavelength of 380 to 780 nm at a thickness of 0.7 mm is 50% or more.
  23.  30~300℃における線熱膨張係数が0×10-7~150×10-7/℃であることを特徴とする請求項1又は2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the linear thermal expansion coefficient at 30 to 300° C. is 0×10 −7 to 150×10 −7 /°C.
  24.  カバーガラスに用いることを特徴とする請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, which is used for a cover glass.
  25.  組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0.1~10%、ZrO 0.1~10%、CaO 0~1%、MgO+CaO+SrO+BaO+ZnO 0~20%を含有し、mol%比Al/SiOが0.1~0.3、mol%比Al/NaOが0.2~0.48であり、Si、Al、Na、Oを含む結晶が析出してなることを特徴とする結晶化ガラス。 Composition, in mol%, SiO 2 30-70%, Al 2 O 3 1-20%, Na 2 O 3-45%, P 2 O 5 0.1-10%, ZrO 2 0.1-10% , CaO 0-1%, MgO + CaO + SrO + BaO + ZnO 0-20%, the mol% ratio Al 2 O 3 /SiO 2 is 0.1-0.3, the mol% ratio Al 2 O 3 /Na 2 O is 0.2 ∼0.48, crystallized glass characterized by being formed by precipitation of crystals containing Si, Al, Na and O.
  26.  組成として、mol%で、SiO 30~70%、Al 1~20%、NaO 3~45%、P 0.8~10%、ZrO 0.1~10%、MgO+CaO+SrO+BaO+ZnO 0~20%、CaO 0~1%を含有し、mol%比Al/SiOが0.1~0.3、mol%比Al/NaOが0.2~0.48、mol%比NaO/SiOが0.4~0.7であることを特徴とする結晶性ガラス。 Composition, in mol%, SiO 2 30-70%, Al 2 O 3 1-20%, Na 2 O 3-45%, P 2 O 5 0.8-10%, ZrO 2 0.1-10% , MgO+CaO+SrO+BaO+ZnO 0-20%, CaO 0-1%, mol% ratio Al 2 O 3 /SiO 2 is 0.1-0.3, mol% ratio Al 2 O 3 /Na 2 O is 0.2 ∼0.48, and a mol% ratio Na 2 O/SiO 2 of 0.4 to 0.7.
  27.  熱処理により、Si、Al、Na、Oを含む結晶が析出することを特徴とする請求項26に記載の結晶性ガラス。 The crystallizable glass according to claim 26, characterized in that crystals containing Si, Al, Na, and O are precipitated by heat treatment.
  28.  イオン交換処理に供されることを特徴とする請求項26又は27に記載の結晶性ガラス。
     
    28. The crystallizable glass according to claim 26 or 27, which is subjected to an ion exchange treatment.
PCT/JP2022/041285 2021-12-27 2022-11-07 Crystallized glass and crystalline glass WO2023127306A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021211978 2021-12-27
JP2021-211978 2021-12-27
JP2022-104687 2022-06-29
JP2022104687 2022-06-29

Publications (1)

Publication Number Publication Date
WO2023127306A1 true WO2023127306A1 (en) 2023-07-06

Family

ID=86998806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041285 WO2023127306A1 (en) 2021-12-27 2022-11-07 Crystallized glass and crystalline glass

Country Status (1)

Country Link
WO (1) WO2023127306A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193640A (en) * 1989-12-20 1991-08-23 Hoya Corp Crystallized glass
JP2015060614A (en) * 2013-09-20 2015-03-30 Hoya株式会社 Method for manufacturing glass substrate for information recording medium
JP2017515779A (en) * 2014-05-13 2017-06-15 コーニング インコーポレイテッド Transparent glass ceramic article, glass ceramic precursor glass, and method for forming the same
WO2017104514A1 (en) * 2015-12-16 2017-06-22 日本電気硝子株式会社 Crystallized glass support substrate and laminate body using same
JP2021084828A (en) * 2019-11-27 2021-06-03 株式会社オハラ Optical filter glass ceramic and optical filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193640A (en) * 1989-12-20 1991-08-23 Hoya Corp Crystallized glass
JP2015060614A (en) * 2013-09-20 2015-03-30 Hoya株式会社 Method for manufacturing glass substrate for information recording medium
JP2017515779A (en) * 2014-05-13 2017-06-15 コーニング インコーポレイテッド Transparent glass ceramic article, glass ceramic precursor glass, and method for forming the same
WO2017104514A1 (en) * 2015-12-16 2017-06-22 日本電気硝子株式会社 Crystallized glass support substrate and laminate body using same
JP2021084828A (en) * 2019-11-27 2021-06-03 株式会社オハラ Optical filter glass ceramic and optical filter

Similar Documents

Publication Publication Date Title
JP7327533B2 (en) Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass
JP7115479B2 (en) Crystallized glass and chemically strengthened glass
JP7435706B2 (en) Chemically strengthened glass
WO2019167850A1 (en) Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
US10676390B2 (en) Glass-ceramic article and glass-ceramic for electronic device cover plate
US20210292225A1 (en) Chemically strengthened glass plate, and cover glass and electronic device comprising chemically strengthened glass
JP7248020B2 (en) glass for chemical strengthening
JP6962512B1 (en) Crystallized glass and chemically strengthened glass
WO2022049823A1 (en) Crystallized glass and chemically strengthened glass
WO2020008901A1 (en) Chemically strengthened glass and method for manufacturing same
WO2023127306A1 (en) Crystallized glass and crystalline glass
WO2021235547A1 (en) Chemically strengthened glass article and manufacturing method thereof
WO2021215307A1 (en) Crystallized glass
JP2021181388A (en) Crystallized glass
WO2023243574A1 (en) Glass for chemical strengthening, and glass
WO2023149384A1 (en) Glass, chemically strengthened glass, and cover glass
WO2023090177A1 (en) Crystallised glass
WO2022215575A1 (en) Chemically-strengthened glass containing crystallized glass, and method for manufacturing same
WO2023008168A1 (en) Tempered glass, glass for tempering, and display device
WO2023119775A1 (en) Li2o-al2o3-sio2-system crystallized glass
WO2022080226A1 (en) Crystallized glass
WO2022168895A1 (en) Crystallized glass and chemically strengthened glass
WO2024062797A1 (en) Crystallised glass
WO2024143156A1 (en) Glass, glass plate for reinforcement, and reinforced glass plate
CN115884947A (en) Glass ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570706

Country of ref document: JP