WO2020008901A1 - Chemically strengthened glass and method for manufacturing same - Google Patents

Chemically strengthened glass and method for manufacturing same Download PDF

Info

Publication number
WO2020008901A1
WO2020008901A1 PCT/JP2019/024562 JP2019024562W WO2020008901A1 WO 2020008901 A1 WO2020008901 A1 WO 2020008901A1 JP 2019024562 W JP2019024562 W JP 2019024562W WO 2020008901 A1 WO2020008901 A1 WO 2020008901A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
stress
chemically strengthened
depth
less
Prior art date
Application number
PCT/JP2019/024562
Other languages
French (fr)
Japanese (ja)
Inventor
拓実 馬田
健二 今北
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020528790A priority Critical patent/JP7255594B2/en
Priority to CN201980044625.9A priority patent/CN112399964B/en
Priority to CN202211423155.7A priority patent/CN115716714B/en
Publication of WO2020008901A1 publication Critical patent/WO2020008901A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to a chemically strengthened glass and a method for producing the same.
  • Chemically strengthened glass is used for a cover glass or the like of a portable terminal. Chemically strengthened glass contacts glass with a molten salt containing metal ions such as alkali metal ions, causing ion exchange between the metal ions in the glass and the metal ions in the molten salt and compressing the glass surface. This is a glass on which a stress layer is formed.
  • the strength of chemically strengthened glass strongly depends on a stress profile represented by a compressive stress value in which the depth from the glass surface is a variable.
  • a cover glass of a portable terminal or the like is less likely to be cracked by bending by increasing the compressive stress value on the glass surface. Further, it is considered that by increasing the depth of the compressive stress layer to form the compressive stress layer even in a deep portion of the glass, it is possible to prevent the glass from cracking even when subjected to a large impact.
  • Patent Document 1 illustrates a typical stress profile when ion exchange processing is performed twice.
  • the profile is composed of two straight line components, a straight line representing a stress profile from the glass surface to a point X at a certain depth and a straight line representing a stress profile from the point X to a point where the stress becomes zero.
  • Patent Document 1, FIG. 8 It is said that by using such a stress profile, the compressive stress on the surface can be increased, the compressive stress depth can be increased, and the internal tensile stress value can be reduced.
  • the stress greatly changes near the glass surface even if the depth from the glass surface slightly changes.
  • the surface of the chemically strengthened glass may be polished for the purpose of erasing scratches generated on the surface.
  • the surface compressive stress after polishing greatly differs due to a slight difference in the polishing amount. This has led to a decrease in yield.
  • the present invention provides a chemically strengthened glass having high strength and a small change in characteristics even when the surface is polished after chemical strengthening.
  • the present invention is a chemically strengthened glass having a compressive stress layer on the glass surface, wherein the compressive stress value CS 0 of the glass surface measured using an optical waveguide surface stress meter is 500 MPa or more, The depth from the glass surface at a position where the compressive stress value measured using the method becomes 0 is D [unit: ⁇ m], and the depth from the glass surface measured using the optical waveguide surface stress meter is (D / 2).
  • the compressive stress value at the position of) the CS 2 and the absolute value, the depth from the depth (D / 2) of the inclination x of the stress profile from the glass surface to be determined by the following equation to a depth of (D / 2)
  • to the absolute value of the slope y of the stress profile up to D is 0 to 0.8
  • the depth DOL of the compressive stress layer measured using a scattered photoelastic stress meter is 50 ⁇ m.
  • the present invention provides a chemically strengthened glass.
  • Chemically tempered glass of the present invention from the glass surface to be determined by the following equation from the depth from the glass surface to be measured using the optical waveguide surface stress meter and compressive stress value CS 1 at the position of 1 ⁇ m the CS 0 Metropolitan
  • the slope z of the stress profile up to a depth of 1 ⁇ m may be -100 MPa / ⁇ m or more and less than 0.
  • the plate may have a thickness of 2000 ⁇ m or less.
  • the glass composition of the central part in the thickness direction of the chemically strengthened glass contains 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis, and Li 2 O, Na 2 the total content of O and K 2 O is at least 5%, and the content of Li 2 O, Li 2 O, the ratio of the total content of Na 2 O and K 2 O 0.5 It may be the above.
  • Chemically tempered glass of the present invention matrix composition of chemically tempered glass, as represented by mol% based on oxides, SiO 2 50 ⁇ 80%, Al 2 O 3 5 ⁇ 25%, B 2 O 3 0 ⁇ 10%, P 2 O 5 0-10%, Li 2 O 2-20%, Na 2 O 0.5-10%, K 2 O 0-5%, MgO + ZnO + CaO + SrO + BaO 0-15%, ZrO 2 + TiO 2 0-5%, It may be.
  • the method for producing a chemically strengthened glass of the present invention includes immersing a glass plate in a potassium-containing strengthening salt at 400 ° C. to 500 ° C. for 1 to 8 hours, and thereafter, bringing the glass plate to a temperature of 300 ° C. or less.
  • the potassium-containing strengthened salt may be a method for producing chemically strengthened glass, which contains 70% by mass or more of potassium ions, with the mass of metal ions contained in the strengthened salt being 100% by mass.
  • the glass composition of the glass sheet before chemical strengthening contains 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis. and is a Li 2 O, the total content of Na 2 O and K 2 O is more than 5%, and the content of Li 2 O, containing a total of Li 2 O, Na 2 O and K 2 O
  • the ratio with the amount may be 0.5 or more.
  • FIG. 1 is a diagram showing a stress profile near the surface of the chemically strengthened glass of Example 1 measured by an optical waveguide surface stress meter.
  • FIG. 2 is a diagram showing a stress profile of the chemically strengthened glass of Example 1 measured using a scattered light photoelastic stress meter.
  • FIG. 3 is a stress profile diagram obtained by synthesizing data of the optical waveguide surface stress meter and data of the scattered light photoelastic stress meter.
  • stress profile refers to a value representing a compressive stress value from a glass surface to a central portion, with the depth from the glass surface as a variable.
  • compression stress depth DOL
  • compression stress depth is a depth at which the compression stress value becomes zero in the stress profile.
  • Internal tensile stress (CT)” refers to a tensile stress value at a depth of ⁇ of the thickness t of the glass.
  • chemically strengthened glass refers to glass that has been subjected to chemical strengthening treatment
  • glass for chemical strengthening refers to glass that has not been subjected to chemical strengthening treatment
  • the glass composition of the glass for chemical strengthening may be referred to as “the mother composition of chemically strengthened glass”. Except when an extreme ion exchange treatment is performed, the glass composition at a portion deeper than the DOL of the chemically strengthened glass is the mother composition of the chemically strengthened glass.
  • the glass composition is expressed in terms of mole percentage on an oxide basis unless otherwise specified, and mol% is simply expressed as “%”. Further, “substantially not contained” in the glass composition means that the glass composition is at or below the level of impurities contained in raw materials and the like, that is, it is not intentionally contained. Specifically, for example, it is less than 0.1%.
  • the lithium aluminosilicate glass can be chemically strengthened by an ion exchange treatment using a strengthening salt containing sodium ions and potassium ions.
  • chemical strengthening can be performed by an ion exchange treatment using a strengthening salt containing potassium ions after an ion exchange treatment using a strengthening salt containing sodium ions.
  • the chemically strengthened glass obtained in this manner has a stress profile that is sharp in the vicinity of the surface and relatively gentle in a deep part and is bent in two stages. By forming such a stress profile, it is possible to obtain a chemically strengthened glass that has a high surface strength, is hardly crushed even when subjected to a strong impact, and hardly shards when broken.
  • Delayed chipping is a phenomenon in which an edge is chipped at a portion where an excessive stress is introduced by chemical strengthening with a small force. Further, when the surface of the chemically strengthened glass having such a stress profile is polished, even the slightest difference in the amount of polishing greatly changes the stress on the outermost surface. In the tempered glass, these problems are unlikely to occur because the stress profile near the glass surface is adjusted.
  • a method using an optical waveguide surface stress meter is widely known as a method capable of accurately measuring the stress of a glass sample in a short time.
  • this method can measure stress only when the refractive index decreases from the sample surface toward the inside.
  • the layer in which sodium ions in the glass are replaced with potassium ions has a lower refractive index from the surface toward the inside, so that the stress can be measured using an optical waveguide surface stress meter.
  • such a refractive index distribution does not occur, so that stress cannot be measured with an optical waveguide surface stress meter.
  • FIG. 1 is an example of a stress profile obtained by measuring stress of the present tempered glass using an optical waveguide surface stress meter. Although the broken line portion of the graph actually causes stress due to ion exchange between lithium ions and sodium ions, the stress cannot be measured by the optical waveguide surface stress meter.
  • FIG. 2 is an example of a stress profile obtained by measuring the stress of the present tempered glass using a scattered light photoelastic stress meter.
  • the broken line in the graph is not reliable because it is affected by light scattering on the glass surface. Therefore, the stress can be analyzed by measuring the stress with two types of stress meters and combining the results. This method is described in detail in WO2018 / 056121.
  • FIG. 3 is an example of a stress profile diagram obtained by synthesis.
  • optical waveguide surface stress meter for example, FSM-6000 manufactured by Orihara Seisakusho can be used. Using the FSM-6000 and the attached software FsmV enables highly accurate stress measurement.
  • SLP-1000 manufactured by Orihara Seisakusho can be used as the scattered light photoelastic stress meter.
  • FSM-6000 is used as the optical waveguide surface stress meter and SLP-1000 is used as the scattered light photoelastic stress meter, data can be easily synthesized using dedicated software.
  • the present tempered glass preferably has a plate shape, and is usually a flat plate shape, but may be a curved surface shape.
  • the thickness of the tempered glass is preferably 400 ⁇ m or more, more preferably 600 ⁇ m or more, and even more preferably 700 ⁇ m or more. This is because the strength of the glass increases.
  • the thickness of the tempered glass is preferably as large as possible to increase the strength, but is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, to reduce the weight.
  • a compressive stress is generated by ion exchange of sodium ions and potassium ions in a relatively shallow region from the surface, and a compressive stress is generated by ion exchange of lithium ions and sodium ion in a deeper region.
  • Such chemically tempered glass has a stress profile that bends in two steps, which is steep near the surface and relatively gentle in deep parts, resulting in high surface strength and crushing even when subjected to strong impact. Because it is hard to do.
  • This tempered glass, compressive stress value CS 0 in the glass surface to be measured using the optical waveguide surface stress meter is not less than 500 MPa, therefore has high strength.
  • CS value of the glass surface shown by the arrow a is CS 0.
  • CS 0 is more preferably 900 MPa or more, further preferably 950 MPa or more, and particularly preferably 1000 MPa or more.
  • This tempered glass, the compressive stress value CS 0 in the glass surface is less than 1200 MPa, preferably since the late chipping is suppressed.
  • CS 0 is more preferably 1100 MPa or less, still more preferably 1050 MPa or less.
  • the tempered glass has a depth D [unit: ⁇ m] at which the “compressive stress value measured by the optical waveguide surface stress meter” is zero is 3 ⁇ m or more, because it can suppress breakage in a bending mode.
  • D is more preferably 4 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • D is more preferably about 10 ⁇ m. If D is too large, the tensile stress generated in the central glass layer will increase.
  • D is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the depth of the “point at which the CS value becomes 0” indicated by the arrow d is D.
  • D is thought to represent the depth at which potassium ions diffused.
  • the tempered glass has a stress profile gradient x [unit: MPa / ⁇ m] from the glass surface measured using an optical waveguide surface stress meter to a depth of (D / 2) [unit: ⁇ m], which is ⁇ 200 MPa / ⁇ m. It is preferably at least 200 MPa / ⁇ m.
  • the gradient x is more preferably ⁇ 100 MPa / ⁇ m or more and 100 MPa / ⁇ m or less, and still more preferably ⁇ 70 MPa / ⁇ m or more and 70 MPa / ⁇ m or less. As the absolute value of x is smaller, the thickness of the layer having an appropriate compressive stress value increases, and excellent characteristics can be obtained even when the surface is polished.
  • the slope x is preferably a negative value.
  • the highest compressive stress is required for a glass surface that requires a high compressive stress to suppress fracture in a bending mode. If there is a positive part in the slope of the stress profile, there will be places where excessive stress is introduced inside the glass, which will cause delayed chipping, or the stress on the outermost surface will be insufficient, and fracture due to bending mode will occur. It is easy to occur.
  • x is the slope of the stress profile from the glass surface indicated by arrow a to the glass surface indicated by arrow c to a depth of (D / 2).
  • x is the D, obtained from the compression stress value CS 2 at a depth of a compression stress value CS 0 and glass surfaces of the glass surface (D / 2) in the equation below.
  • This tempered glass bends when the gradient y [unit: MPa / ⁇ m] of the stress profile from depth D / 2 to depth D measured using an optical waveguide surface stress meter is ⁇ 125 MPa / ⁇ m or less.
  • the slope of the stress profile from a point at a depth of D / 2 from the glass surface indicated by an arrow c to a point at a depth D indicated by an arrow d is y.
  • y is obtained by the equation below from the D and CS 2.
  • the tempered glass keeps the high compressive stress layer of the glass outermost layer thin.
  • a stress region suitable for suppressing both the delayed chipping and the fracture caused by the bending mode can be formed thick. More preferably, it is 0.6 or less.
  • is 0. That is,
  • x is preferably 0 or less, and y is preferably a negative value. Therefore, x / y is preferably from 0 to 0.8, and more preferably from 0 to 0.6. The smaller the value of x / y is, the more preferable it is.
  • this tempered glass can suppress both delayed chipping and fracture due to bending mode. This is preferable because the thickness of a suitable stress region increases.
  • z is more preferably ⁇ 80 MPa / ⁇ m or more.
  • z is usually 100 MPa / ⁇ m or less, preferably 0 MPa / ⁇ m or less.
  • the slope of the stress profile from the glass surface indicated by arrow a to the point at a depth of 1 ⁇ m from the glass surface indicated by arrow b is z.
  • a compressive stress value at a depth of 1 ⁇ m measured by an optical waveguide surface stress meter is CS 1 [unit: MPa]
  • the compressive stress depth DOL measured by a scattered light photoelastic stress meter is preferably 50 ⁇ m or more.
  • the depth of the point at which the CS value indicated by the arrow e becomes 0 is DOL.
  • a typical asphalt projection may be about 50 ⁇ m
  • a compressive stress is formed from the surface of the glass to a depth of 50 ⁇ m from the surface layer of the glass.
  • DOL / t is preferably 0.1 or more, more preferably 0.12 or more, and still more preferably 0.14 or more.
  • DOL / t is preferably 0.25 or less, more preferably 0.22 or less, and particularly preferably 0.2 or less.
  • DOL is determined by the depth at which lithium and sodium ions are exchanged, and D is determined by the depth at which sodium and potassium ions are exchanged.
  • ease of ion exchange depends on the glass composition. It is.
  • the chemically strengthened glass of the present invention is obtained by chemically strengthening a glass for chemical strengthening which is a lithium aluminosilicate glass (hereinafter, referred to as “glass for strengthening”).
  • the composition of the glass for chemical strengthening is the same as the glass composition of the central part in the thickness direction of the chemically strengthened glass, except for the case where the chemical strengthening treatment is extremely performed.
  • the above description also applies to the composition of the central part in the thickness direction of the chemically strengthened glass.
  • the lithium aluminosilicate glass contains, for example, 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis, and has a total content of Li 2 O, Na 2 O and K 2 O. is 5% or more, and the content of Li 2 O, Li 2 O, Na 2 O and K 2 O ratio of the sum of the content of (Li 2 O / (Li 2 O + Na 2 O + K 2 O)) Is 0.5 or more glass.
  • the present tempering glass more preferably has the following composition in terms of mole percentage on an oxide basis. SiO 2 50 ⁇ 80%, Al 2 O 3 5 ⁇ 25%, B 2 O 3 0 ⁇ 10%, P 2 O 5 0 ⁇ 10%, Li 2 O 2 ⁇ 20%, Na 2 O 0.5 ⁇ 10 %, K 2 O 0-5%.
  • the content of MgO + ZnO + CaO + SrO + BaO is preferably 0 to 15%, and the content of ZrO 2 + TiO 2 (total content of ZrO 2 and TiO 2 ) is 0 to 5%. Is preferred. Such a glass tends to form a favorable stress profile by a chemical strengthening treatment. Hereinafter, this preferred glass composition will be described.
  • SiO 2 is a component constituting the skeleton of glass. Further, it is a component that increases chemical durability and is a component that reduces the occurrence of cracks when the glass surface is damaged.
  • the content of SiO 2 is preferably at least 50%, more preferably at least 55%, even more preferably at least 58%. Further, the content of SiO 2 is preferably 80% or less, more preferably 75% or less, and even more preferably 70% or less, in order to enhance the melting property of the glass.
  • Al 2 O 3 is an effective component for improving the ion exchange property during chemical strengthening and increasing the surface compressive stress after strengthening, and is a component for increasing the glass transition temperature (Tg) and increasing the Young's modulus. But also.
  • the content of Al 2 O 3 is preferably at least 5%, more preferably at least 7%, even more preferably at least 13%. Further, the content of Al 2 O 3 is preferably 25% or less, more preferably 23% or less, and further preferably 20% or less, in order to enhance the melting property.
  • B 2 O 3 is not essential, but may be included for the purpose of improving the melting property during glass production and the like.
  • B 2 O 3 in which case the content is preferably 0.5% or more, more preferably 1% or more. More preferably, it is at least 2%.
  • B 2 O 3 is a component that easily causes stress relaxation after chemical strengthening, the content of B 2 O 3 is preferably 10% or less, more preferably, in order to prevent a decrease in surface compressive stress due to stress relaxation. Is at most 8%, more preferably at most 5%, particularly preferably at most 3%.
  • Li 2 O is a component that forms a surface compressive stress by ion exchange, and is an essential component of lithium aluminosilicate glass. By chemically strengthening the lithium aluminosilicate glass, a chemically strengthened glass having a favorable stress profile can be obtained.
  • the content of Li 2 O is preferably 2% or more, more preferably 3% or more, and still more preferably 5% or more, in order to increase the depth DOL of the compressive stress layer.
  • the content of Li 2 O is preferably 20% or less, more preferably 15% or less, and still more preferably. 10% or less.
  • Na 2 O is a component that forms a surface compressive stress layer by ion exchange using a molten salt containing potassium, and is a component that improves the meltability of glass.
  • the content of Na 2 O is preferably 0.5% or more, more preferably 1% or more, and still more preferably 1.5% or more. Further, the content of Na 2 O is preferably at most 10%, more preferably at most 8%, further preferably at most 6%.
  • K 2 O is not essential, but may be contained in order to improve the meltability of the glass and suppress devitrification.
  • the content of K 2 O is preferably at least 0.1%, more preferably at least 0.5%, further preferably at least 1%. Further, the content of K 2 O is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less, in order to increase the compressive stress value due to ion exchange.
  • Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O are components that lower the melting temperature of glass, and are preferably contained in a total amount of 5% or more.
  • the total content of Li 2 O, Na 2 O, and K 2 O is preferably 5% or more, more preferably 7% or more, and even more preferably 8% or more.
  • (Li 2 O + Na 2 O + K 2 O) is preferably at most 20%, more preferably at most 18%, in order to maintain the strength of the glass.
  • Alkaline earth metal oxides such as MgO, CaO, SrO, BaO, and ZnO are components that enhance the melting property of glass, but tend to decrease ion exchange performance.
  • the total content of MgO, CaO, SrO, BaO, and ZnO is preferably 15% or less, more preferably 10% or less, and even more preferably 5% or less.
  • MgO When containing any of MgO, CaO, SrO, BaO and ZnO, it is preferable to contain MgO in order to increase the strength of the chemically strengthened glass.
  • MgO the content is preferably 0.1% or more, more preferably 0.5% or more. In order to enhance ion exchange performance, the content is preferably 10% or less, more preferably 8% or less.
  • the content of CaO when contained is preferably 0.5% or more, more preferably 1% or more. In order to enhance ion exchange performance, the content is preferably 5% or less, more preferably 3% or less.
  • the content when SrO is contained is preferably 0.5% or more, more preferably 1% or more. In order to enhance ion exchange performance, the content is preferably 5% or less, more preferably 3% or less.
  • the content of BaO when contained is preferably 0.5% or more, more preferably 1% or more. In order to enhance ion exchange performance, the content is preferably 5% or less, more preferably 1% or less, and further preferably substantially no content.
  • ZnO is a component for improving the melting property of glass, and may be contained.
  • the content is preferably 0.2% or more, and more preferably 0.5% or more.
  • the content of ZnO is preferably 5% or less, more preferably 3% or less.
  • TiO 2 is a component that suppresses scattering of fragments when the chemically strengthened glass is broken, and may be contained.
  • the content is preferably 0.1% or more.
  • the content of TiO 2 is preferably 5% or less, more preferably 1% or less, and further preferably substantially no content, in order to suppress devitrification at the time of melting.
  • ZrO 2 is a component that increases the surface compressive stress due to ion exchange, and may be included.
  • the content is preferably 0.5% or more, and more preferably 1% or more.
  • the content is preferably 5% or less, more preferably 3% or less.
  • the content of TiO 2 and ZrO 2 is preferably 5% or less, more preferably 3% or less.
  • Y 2 O 3 , La 2 O 3 and Nb 2 O 5 are components that suppress the fracture of chemically strengthened glass, and may be contained.
  • the content of each component is preferably 0.5% or more, more preferably 0.5% or more, further preferably 1% or more, particularly preferably 1.5% or more, and most preferably 1.5% or more. It is preferably at least 2%.
  • the total content of Y 2 O 3 , La 2 O 3 and Nb 2 O 5 is preferably 9% or less, more preferably 8% or less. In such a case, the glass is less likely to be devitrified at the time of melting, so that the quality of the chemically strengthened glass can be prevented from lowering.
  • the content of each of Y 2 O 3 , La 2 O 3 and Nb 2 O 5 is preferably at most 7%, more preferably at most 6%, further preferably at most 5%, particularly preferably at most 4%, most preferably. Is not more than 3%.
  • Ta 2 O 5 and Gd 2 O 3 may be contained in small amounts in order to suppress the fracture of the chemically strengthened glass.
  • the contents of these are each preferably 1% or less. , 0.5% or less, more preferably, substantially not contained.
  • P 2 O 5 may be contained in order to improve the ion exchange performance.
  • the content is preferably 0.5% or more, and more preferably 1% or more.
  • the content of P 2 O 5 is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
  • a coloring component may be added in a range that does not hinder achievement of the desired chemical strengthening properties.
  • the coloring component for example, Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , TiO 2 , CeO 2 , Er 2 O 3 and Nd 2 O 3 are mentioned. These may be used alone or in combination.
  • the total content of the coloring components is preferably 7% or less. Thereby, devitrification of glass can be suppressed.
  • the content of the coloring component is more preferably 5% or less, further preferably 3% or less, and particularly preferably 1% or less. When it is desired to increase the visible light transmittance of the glass, it is preferable that these components are not substantially contained.
  • SO 3 sulfur trioxide
  • chloride fluoride
  • fluoride fluoride
  • the like may be appropriately contained as a fining agent at the time of glass melting. It is preferable that As 2 O 3 is not substantially contained.
  • Sb 2 O 3 the content is preferably 0.3% or less, more preferably 0.1% or less, and most preferably substantially no content.
  • the glass transition temperature (Tg) of the present tempering glass is preferably 480 ° C. or higher, more preferably 500 ° C. or higher, even more preferably 520 ° C. or higher, in order to suppress stress relaxation during chemical strengthening.
  • Tg is preferably 700 ° C. or lower because the ion diffusion rate is increased during chemical strengthening.
  • Tg is preferably 650 ° C. or lower, more preferably 600 ° C. or lower.
  • the tempering glass preferably has a Young's modulus of 70 GPa or more.
  • the Young's modulus is preferably 110 GPa or less, more preferably 100 GPa or less, and even more preferably 90 GPa or less.
  • the Vickers hardness of the tempering glass is preferably 575 or more.
  • the Vickers hardness after chemical strengthening is preferably 600 or more, more preferably 625 or more, and even more preferably 650 or more.
  • the tempered glass generally has a Vickers hardness of 850 or less. Glasses having too high a Vickers hardness tend to have difficulty in obtaining sufficient ion exchangeability. Therefore, the Vickers hardness is preferably 800 or less, more preferably 750 or less.
  • the fracture toughness value of the present tempering glass is preferably 0.7 MPa ⁇ m 1/2 or more. As the fracture toughness value increases, the scattering of fragments tends to be suppressed when the chemically strengthened glass is broken.
  • the fracture toughness value is more preferably 0.75 MPa ⁇ m 1/2 or more, and still more preferably 0.8 MPa ⁇ m 1/2 or more.
  • the fracture toughness value is usually 1 MPa ⁇ m 1/2 or less.
  • the average thermal expansion coefficient ( ⁇ ) of the tempering glass at 50 ° C. to 350 ° C. is preferably 100 ⁇ 10 ⁇ 7 / ° C. or less. If the average coefficient of expansion ( ⁇ ) is small, the glass is less likely to warp during molding or cooling after chemical strengthening.
  • the average expansion coefficient ( ⁇ ) is more preferably not more than 95 ⁇ 10 ⁇ 7 / ° C., and further preferably not more than 90 ⁇ 10 ⁇ 7 / ° C.
  • the average coefficient of thermal expansion ( ⁇ ) is preferably as small as possible, but is usually 60 ⁇ 10 ⁇ 7 / ° C. or more.
  • the temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s is preferably 1750 ° C. or lower, more preferably 1700 ° C. or lower, and further preferably 1680 ° C. or lower. T 2 is usually at 1400 °C or more.
  • the temperature (T 4 ) at which the viscosity becomes 10 4 dPa ⁇ s is preferably 1350 ° C. or lower, more preferably 1300 ° C. or lower, and further preferably 1250 ° C. or lower. T 4 is usually at 1000 °C or more.
  • the present tempered glass can be produced, for example, by chemically tempering glass having the above-mentioned composition for chemical tempering.
  • the glass for chemical strengthening can be manufactured using, for example, the following general glass manufacturing method.
  • the following manufacturing method is an example of manufacturing a plate-shaped chemically strengthened glass, but the glass for chemical strengthening may have a shape other than the plate shape.
  • the glass raw materials are appropriately prepared so that a glass having a preferable composition is obtained, and the mixture is heated and melted in a glass melting furnace. Thereafter, the glass is homogenized by bubbling, stirring, addition of a fining agent, etc., formed into a glass plate having a predetermined thickness, and gradually cooled. Alternatively, it may be formed into a plate by a method of cutting into a block, followed by slow cooling, and then cutting.
  • Examples of the method of forming into a plate shape include a float method, a press method, a fusion method, and a downdraw method.
  • the float method is preferred.
  • a continuous molding method other than the float method for example, a fusion method and a downdraw method are also preferable.
  • the glass ribbon obtained by molding is ground and polished as required to form a glass plate.
  • the glass plate is cut into a predetermined shape and size or the glass plate is chamfered, if the glass plate is cut or chamfered before performing the chemical strengthening process described later, the chemical strengthening process is performed.
  • a compressive stress layer is also formed on the end face, which is preferable.
  • the chemically strengthened glass is obtained by subjecting the formed glass plate to a chemical strengthening treatment, followed by washing and drying.
  • Chemical strengthening treatment involves contacting glass with a metal salt, such as by immersing the glass in a melt of a metal salt (eg, potassium nitrate) containing a metal ion having a large ionic radius (typically, sodium ion or potassium ion).
  • a metal salt eg, potassium nitrate
  • Metal ions of small ionic radius in glass typically lithium or sodium ions
  • metal ions of large ionic radius in metal salts typically sodium or potassium ions for lithium ions
  • the method using “Li—Na exchange” in which lithium ions in glass are exchanged for sodium ions is preferred because the chemical strengthening treatment speed is high.
  • a method utilizing "Na-K exchange” in which sodium ions in glass are exchanged for potassium ions is preferable. It is more preferable to use the method of performing “Li—Na exchange” and “Na—K exchange” in combination, since a high surface compressive stress and a deep compressive stress layer can be formed in a relatively short processing time. In that case, it is more effective to perform “Na—K exchange” after performing “Li—Na exchange”.
  • Examples of the molten salt for performing the chemical strengthening treatment include nitrate, sulfate, carbonate, and chloride.
  • examples of the nitrate include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, and silver nitrate.
  • examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, and silver sulfate.
  • Examples of the carbonate include lithium carbonate, sodium carbonate, potassium carbonate and the like.
  • Examples of the chloride include lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride and the like.
  • the present tempered glass can be manufactured by a tempering treatment method described below (hereinafter, referred to as “the present tempering treatment method”).
  • This tempering treatment method includes a step of immersing the glass plate in a potassium-containing reinforcing salt.
  • a potassium-containing fortifying salt a salt containing 70% by mass or more of potassium ion is preferable, and a salt containing 90% by mass or more is more preferable, with the mass of the metal ion contained in the reinforcing salt being 100% by mass.
  • a high compressive stress layer can be formed on the surface layer.
  • potassium-containing reinforcing salt potassium-containing nitrate is preferable from the viewpoint of easy handling such as boiling point and danger.
  • the strengthening salt preferably contains potassium nitrate, and as a component other than potassium nitrate, a nitrate of an alkali metal or an alkaline earth metal such as sodium nitrate or magnesium nitrate may be contained. Further, lithium at an impurity level may be contained.
  • the glass plate in this tempering treatment method, it is preferable to immerse the glass plate in a potassium-containing tempering salt at 400 ° C. to 500 ° C.
  • the temperature of the potassium-containing reinforcing salt is 400 ° C. or higher, ion exchange is easy to proceed, which is preferable. Also, the occurrence of stress relaxation tends to reduce the
  • the time for immersing the glass in the potassium-containing reinforcing salt is preferably 1 hour or more because the surface compressive stress increases. Also, the occurrence of stress relaxation tends to reduce the
  • the immersion time is more preferably 2 hours or more, and still more preferably 3 hours or more. If the immersion time is too long, not only does the productivity decrease, but also the compressive stress may decrease due to the relaxation phenomenon. In order to increase the compressive stress, the time is preferably 8 hours or less, more preferably 6 hours or less, and further preferably 4 hours or less.
  • the glass plate in the potassium-containing reinforcing salt Before immersing the glass plate in the potassium-containing reinforcing salt, it may be immersed in another reinforcing salt.
  • a sodium-containing fortifying salt As another fortifying salt, a sodium-containing fortifying salt is preferable.
  • the sodium-containing fortifying salt is preferably a sodium nitrate-reinforcing salt from the viewpoint of ease of handling, similarly to potassium nitrate. Further, it is preferable that 70% by mass or more of sodium ions be contained, with the mass of metal ions contained in the reinforcing salt being 100% by mass.
  • the temperature is preferably maintained at 300 ° C. or lower. This is because when the temperature becomes higher than 300 ° C., the compressive stress generated by the ion exchange treatment is reduced by the relaxation phenomenon.
  • the holding temperature after immersing the glass plate in the potassium-containing reinforcing salt is more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the processing conditions of the chemical strengthening treatment may be appropriately selected such as time and temperature in consideration of the properties and composition of the glass and the type of the molten salt.
  • the chemically strengthened glass of the present invention is particularly useful as a cover glass used for mobile devices such as mobile phones and smartphones. Further, the present invention is also useful for cover glass of a display device such as a television, a personal computer, and a touch panel, an elevator wall surface, and a wall surface of a building such as a house or a building (entire display) which is not intended for carrying. It is also useful for building materials such as window glasses, table tops, interiors of automobiles and airplanes and the like, and as cover glasses for them, and for applications such as housings having a curved surface shape.
  • Glass raw materials were prepared so as to have the compositions of glass A to glass E shown in Table 1 in terms of mole percentage on an oxide basis, and weighed to 400 g as glass.
  • the mixed raw materials were put into a platinum crucible, put into an electric furnace at 1500 to 1700 ° C., melted for about 3 hours, defoamed, and homogenized.
  • the obtained molten glass was poured into a metal mold, kept at a temperature about 50 ° C. higher than the glass transition point for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block.
  • the obtained glass block was cut and ground, and finally both surfaces were mirror-polished to obtain a glass plate having a thickness of 800 ⁇ m.
  • Example 2 to 15 Using the glass shown in the glass column of Table 2, the time of immersion in the sodium-containing reinforcing salt is the time (unit: hours) shown in processing time 1 of Table 2, and the time of immersing in the potassium-containing reinforcing salt is processing time 2
  • the chemically strengthened glasses of Examples 2 to 15 were obtained in the same manner as in Example 1 except that the time (unit: hours) shown in (1) was used.
  • FIG. 1 is a stress profile obtained by using FSM-6000 for the chemically strengthened glass of Example 1
  • FIG. 2 is a stress profile obtained by using SLP-1000.
  • FIG. 3 shows the result of the synthesis.
  • Example 4 where x / y is 1, delayed chipping is apt to occur, which causes a decrease in yield during polishing.
  • Example 5 in which the same glass B was strengthened, the above-described problem did not occur. This may be because the reinforcement processing time is appropriate and x / y is as low as 0.19.
  • glass A was chemically strengthened.
  • the compression stress layer was introduced as deep as 180 ⁇ m, but the processing time 2 was too long.
  • Example 3 since the DOL is as shallow as 27 ⁇ m, it is easily broken when dropped on sand.

Abstract

A chemically strengthened glass having a compressive stress layer, the CS0 thereof measured using an optical waveguiding surface stress meter being 500 MPa or greater, |x|/|y| being 0-0.8 as determined by the formula in the specification, where D is the depth from the glass surface of a position at which the compressive stress value measured using an optical waveguiding surface stress meter is 0, and CS2is the compressive stress value at a position at a depth of (D/2) from the glass surface, and the DOL measured using a scattered light photoelastic stress meter being 50 µm or greater.

Description

化学強化ガラスおよびその製造方法Chemically tempered glass and method for producing the same
 本発明は、化学強化ガラスおよびその製造方法に関する。 The present invention relates to a chemically strengthened glass and a method for producing the same.
 携帯端末のカバーガラス等に化学強化ガラスが用いられている。
 化学強化ガラスは、アルカリ金属イオン等の金属イオンを含む溶融塩にガラスを接触させて、ガラス中の金属イオンと、溶融塩中の金属イオンとの間でイオン交換を生じさせ、ガラス表面に圧縮応力層を形成したガラスである。化学強化ガラスの強度は、ガラス表面からの深さを変数とする圧縮応力値で表される応力プロファイルに強く依存する。
2. Description of the Related Art Chemically strengthened glass is used for a cover glass or the like of a portable terminal.
Chemically strengthened glass contacts glass with a molten salt containing metal ions such as alkali metal ions, causing ion exchange between the metal ions in the glass and the metal ions in the molten salt and compressing the glass surface. This is a glass on which a stress layer is formed. The strength of chemically strengthened glass strongly depends on a stress profile represented by a compressive stress value in which the depth from the glass surface is a variable.
 携帯端末等のカバーガラスは、ガラス表面における圧縮応力値を大きくすることで、曲げによる割れが生じにくくなると考えられている。
 また、圧縮応力層深さを大きくしてガラスの深い部分にまで圧縮応力層を形成することで、大きな衝撃を受けた場合にも割れにくくできると考えられている。
It is considered that a cover glass of a portable terminal or the like is less likely to be cracked by bending by increasing the compressive stress value on the glass surface.
Further, it is considered that by increasing the depth of the compressive stress layer to form the compressive stress layer even in a deep portion of the glass, it is possible to prevent the glass from cracking even when subjected to a large impact.
 しかし、ガラスの表面に圧縮応力層を形成すると、必然的に、ガラス内部に引張応力層が形成される。内部引張応力の値が大きいと、化学強化ガラスが破壊する際に激しく破砕して破片が飛散しやすい。そのため、内部引張応力値を小さくしながら表面圧縮応力と圧縮応力深さを大きくする方法が検討されている。 However, when a compressive stress layer is formed on the surface of glass, a tensile stress layer is necessarily formed inside the glass. When the value of the internal tensile stress is large, when the chemically strengthened glass is broken, the glass is crushed violently and fragments are easily scattered. Therefore, a method of increasing the surface compressive stress and the compressive stress depth while reducing the internal tensile stress value has been studied.
 特許文献1には、イオン交換処理を2回行った場合の典型的な応力プロファイルが図示されている。そのプロファイルは、ガラス表面から一定の深さにある点Xまでの応力プロファイルを表す直線と、点Xから応力がゼロになる点までの応力プロファイルを表す直線と、の2つの直線成分で構成されている(特許文献1、FIG.8)。このような応力プロファイルを用いれば、表面の圧縮応力を大きくし、圧縮応力深さを大きくしながら、かつ内部引張応力値を小さくできるとされている。 Patent Document 1 illustrates a typical stress profile when ion exchange processing is performed twice. The profile is composed of two straight line components, a straight line representing a stress profile from the glass surface to a point X at a certain depth and a straight line representing a stress profile from the point X to a point where the stress becomes zero. (Patent Document 1, FIG. 8). It is said that by using such a stress profile, the compressive stress on the surface can be increased, the compressive stress depth can be increased, and the internal tensile stress value can be reduced.
国際公開第2015/127483号WO 2015/127483
 イオン交換処理を2回行った場合の典型的な応力プロファイルでは、ガラス表面付近において、ガラス表面からの深さが少し変化しただけで応力が大きく変化する。
 ところで、実際に携帯端末のカバーガラス等を製造する工程では、表面に生じた傷を消す等の目的で化学強化ガラスの表面が研磨されることがある。しかし、ガラス表面からの深さが少し変化しただけで応力が大きく変化するような応力プロファイルを有する化学強化ガラスでは、研磨量のわずかな違いによって研磨後の表面圧縮応力が大きく異なることになる。このことが、歩留まりの低下を招いていた。
In a typical stress profile in the case where the ion exchange treatment is performed twice, the stress greatly changes near the glass surface even if the depth from the glass surface slightly changes.
By the way, in the process of actually manufacturing a cover glass or the like of a portable terminal, the surface of the chemically strengthened glass may be polished for the purpose of erasing scratches generated on the surface. However, in the case of chemically strengthened glass having a stress profile in which the stress changes greatly even when the depth from the glass surface slightly changes, the surface compressive stress after polishing greatly differs due to a slight difference in the polishing amount. This has led to a decrease in yield.
 本発明は、強度が高く、かつ、化学強化後に表面を研磨したときにも特性の変化が小さい化学強化ガラスを提供する。 The present invention provides a chemically strengthened glass having high strength and a small change in characteristics even when the surface is polished after chemical strengthening.
 本発明は、ガラス表面に圧縮応力層を有する化学強化ガラスであって、光導波表面応力計を用いて測定されるガラス表面の圧縮応力値CSが500MPa以上であり、光導波表面応力計を用いて測定される圧縮応力値が0になる位置のガラス表面からの深さをD[単位:μm]、光導波表面応力計を用いて測定されるガラス表面からの深さが(D/2)の位置における圧縮応力値をCSとして、以下の式で求められるガラス表面から(D/2)の深さまでの応力プロファイルの傾きxの絶対値と、深さ(D/2)から深さDまでの応力プロファイルの傾きyの絶対値との比|x|/|y|が0~0.8であり、散乱光光弾性応力計を用いて測定される圧縮応力層深さDOLが50μm以上である、化学強化ガラスを提供する。
  x=(CS-CS)/((D/2)-0)=2×(CS-CS)/D
  y=(0-CS)/(D-(D/2))=-2×CS/D
The present invention is a chemically strengthened glass having a compressive stress layer on the glass surface, wherein the compressive stress value CS 0 of the glass surface measured using an optical waveguide surface stress meter is 500 MPa or more, The depth from the glass surface at a position where the compressive stress value measured using the method becomes 0 is D [unit: μm], and the depth from the glass surface measured using the optical waveguide surface stress meter is (D / 2). the compressive stress value at the position of) the CS 2, and the absolute value, the depth from the depth (D / 2) of the inclination x of the stress profile from the glass surface to be determined by the following equation to a depth of (D / 2) The ratio | x | / | y | to the absolute value of the slope y of the stress profile up to D is 0 to 0.8, and the depth DOL of the compressive stress layer measured using a scattered photoelastic stress meter is 50 μm. The present invention provides a chemically strengthened glass.
x = (CS 2 -CS 0 ) / ((D / 2) -0) = 2 × (CS 2 -CS 0 ) / D
y = (0−CS 2 ) / (D− (D / 2)) = − 2 × CS 2 / D
 本発明の化学強化ガラスは、光導波表面応力計を用いて測定されるガラス表面からの深さが1μmの位置における圧縮応力値CSと前記CSとから以下の式で求められるガラス表面から深さ1μmまでの応力プロファイルの傾きzが-100MPa/μm以上0未満であってもよい。
  z=(CS-CS)/(1μm-0μm)=(CS-CS)/1μm
 また、厚さが2000μm以下の板状であってもよい。
 また、前記化学強化ガラスの厚さ方向の中央部分のガラス組成が、酸化物基準のモル%表示でSiOを50%以上、Alを5%以上含有し、LiO、NaOおよびKOの合計の含有量が5%以上であり、かつ、LiOの含有量と、LiO、NaOおよびKOの合計の含有量との比が0.5以上であってもよい。
Chemically tempered glass of the present invention, from the glass surface to be determined by the following equation from the depth from the glass surface to be measured using the optical waveguide surface stress meter and compressive stress value CS 1 at the position of 1μm the CS 0 Metropolitan The slope z of the stress profile up to a depth of 1 μm may be -100 MPa / μm or more and less than 0.
z = (CS 1 -CS 0 ) / (1 μm-0 μm) = (CS 1 -CS 0 ) / 1 μm
Further, the plate may have a thickness of 2000 μm or less.
Further, the glass composition of the central part in the thickness direction of the chemically strengthened glass contains 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis, and Li 2 O, Na 2 the total content of O and K 2 O is at least 5%, and the content of Li 2 O, Li 2 O, the ratio of the total content of Na 2 O and K 2 O 0.5 It may be the above.
 本発明の化学強化ガラスは、化学強化ガラスの母組成が、酸化物基準のモル%表示で、SiO 50~80%、Al 5~25%、B 0~10%、P 0~10%、LiO 2~20%、NaO 0.5~10%、KO 0~5%、MgO+ZnO+CaO+SrO+BaO 0~15%、ZrO+TiO 0~5%、であってよい。 Chemically tempered glass of the present invention, matrix composition of chemically tempered glass, as represented by mol% based on oxides, SiO 2 50 ~ 80%, Al 2 O 3 5 ~ 25%, B 2 O 3 0 ~ 10%, P 2 O 5 0-10%, Li 2 O 2-20%, Na 2 O 0.5-10%, K 2 O 0-5%, MgO + ZnO + CaO + SrO + BaO 0-15%, ZrO 2 + TiO 2 0-5%, It may be.
 本発明の化学強化ガラスの製造方法は、ガラス板を400℃~500℃のカリウム含有強化塩に1~8時間浸漬することと、その後ガラス板を300℃以下の温度にすることと、を含み、該カリウム含有強化塩は、該強化塩に含まれる金属イオンの質量を100質量%として、カリウムイオンを70質量%以上含有する、化学強化ガラスの製造方法であってもよい。
 また、上記の本発明の化学強化ガラスの製造方法において、ガラス板の化学強化前のガラス組成は、酸化物基準のモル%表示でSiOを50%以上、Alを5%以上含有し、LiO、NaOおよびKOの合計の含有量が5%以上であり、かつ、LiOの含有量と、LiO、NaOおよびKOの合計の含有量との比が0.5以上であってよい。
The method for producing a chemically strengthened glass of the present invention includes immersing a glass plate in a potassium-containing strengthening salt at 400 ° C. to 500 ° C. for 1 to 8 hours, and thereafter, bringing the glass plate to a temperature of 300 ° C. or less. The potassium-containing strengthened salt may be a method for producing chemically strengthened glass, which contains 70% by mass or more of potassium ions, with the mass of metal ions contained in the strengthened salt being 100% by mass.
In the above-described method for producing a chemically strengthened glass according to the present invention, the glass composition of the glass sheet before chemical strengthening contains 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis. and is a Li 2 O, the total content of Na 2 O and K 2 O is more than 5%, and the content of Li 2 O, containing a total of Li 2 O, Na 2 O and K 2 O The ratio with the amount may be 0.5 or more.
 本発明によれば、強度が高く、破壊した時の破片の飛散が抑制され、かつ、化学強化後に表面を研磨したときにも特性の変化が小さい化学強化ガラスが得られる。 According to the present invention, it is possible to obtain a chemically strengthened glass having a high strength, which suppresses the scattering of fragments at the time of breaking, and has a small change in characteristics even when the surface is polished after the chemical strengthening.
図1は、例1の化学強化ガラスについて、光導波表面応力計で測定された表面付近の応力プロファイルを示す図である。FIG. 1 is a diagram showing a stress profile near the surface of the chemically strengthened glass of Example 1 measured by an optical waveguide surface stress meter. 図2は、例1の化学強化ガラスについて、散乱光光弾性応力計を用いて測定された応力プロファイルを示す図である。FIG. 2 is a diagram showing a stress profile of the chemically strengthened glass of Example 1 measured using a scattered light photoelastic stress meter. 図3は、光導波表面応力計のデータと散乱光光弾性応力計によるデータを合成して得られた応力プロファイル図である。FIG. 3 is a stress profile diagram obtained by synthesizing data of the optical waveguide surface stress meter and data of the scattered light photoelastic stress meter.
 本明細書において特段の定めがない限り数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 に お い て In this specification, unless otherwise specified, “to”, which indicates a numerical range, is used to mean that the numerical values described before and after it are included as the lower limit and the upper limit.
 本明細書において「応力プロファイル」はガラス表面から中央部までの圧縮応力値を、ガラス表面からの深さを変数として表したものをいう。また、「圧縮応力深さ(DOL)」は、応力プロファイルにおいて、圧縮応力値がゼロとなる深さである。
 「内部引張応力(CT)」は、ガラスの板厚tの1/2の深さにおける引張応力値をいう。
As used herein, the term “stress profile” refers to a value representing a compressive stress value from a glass surface to a central portion, with the depth from the glass surface as a variable. The “compression stress depth (DOL)” is a depth at which the compression stress value becomes zero in the stress profile.
“Internal tensile stress (CT)” refers to a tensile stress value at a depth of の of the thickness t of the glass.
 本明細書において、「化学強化ガラス」は、化学強化処理を施した後のガラスを指し、「化学強化用ガラス」は、化学強化処理を施す前のガラスを指す。
 本明細書において、化学強化用ガラスのガラス組成を「化学強化ガラスの母組成」ということがある。極端なイオン交換処理がされた場合を除いて、化学強化ガラスのDOLより深い部分のガラス組成は化学強化ガラスの母組成である。
In this specification, “chemically strengthened glass” refers to glass that has been subjected to chemical strengthening treatment, and “glass for chemical strengthening” refers to glass that has not been subjected to chemical strengthening treatment.
In this specification, the glass composition of the glass for chemical strengthening may be referred to as “the mother composition of chemically strengthened glass”. Except when an extreme ion exchange treatment is performed, the glass composition at a portion deeper than the DOL of the chemically strengthened glass is the mother composition of the chemically strengthened glass.
 本明細書において、ガラス組成は、特に断らない限り酸化物基準のモル百分率表示で表し、モル%を単に「%」と表記する。
 また、ガラス組成について「実質的に含有しない」とは、原材料等に含まれる不純物レベル以下である、つまり意図的に含有させたものではないことをいう。具体的には、たとえば0.1%未満である。
In the present specification, the glass composition is expressed in terms of mole percentage on an oxide basis unless otherwise specified, and mol% is simply expressed as “%”.
Further, “substantially not contained” in the glass composition means that the glass composition is at or below the level of impurities contained in raw materials and the like, that is, it is not intentionally contained. Specifically, for example, it is less than 0.1%.
<ガラスの破壊>
 ガラス板が衝撃を受けて撓む場合、その撓み量が大きくなると、ガラス表面に大きな引張応力が加わることでガラスが破壊する。本明細書では、このような破壊を「曲げモードによるガラス破壊」とよぶ。本発明の化学強化ガラス(以下、「本強化ガラス」ということがある。)は、ガラス表面に大きな圧縮応力が形成されているので、曲げモードによるガラス破壊が抑制される。
 一方、小さくて硬いものがガラス板に衝突した場合には、ガラス板内部に衝撃による応力が生じ、それによってガラス板が内部から破壊する。本明細書では、このような破壊を「衝撃モードによるガラス破壊」とよぶ。本強化ガラスは、ガラス板の内部にまで圧縮応力層が形成されているので衝撃モードによるガラス破壊が抑制される。
 ガラス表面の圧縮応力値が大きく、かつ、ガラス板内部にまで圧縮応力層が形成されていれば、曲げモードによるガラス破壊と衝撃モードによるガラス破壊がともに抑制されるので、ガラスは非常に割れにくくなるはずである。しかし、ガラス板内部に圧縮応力層を形成すると、それを相殺する内部引張応力が発生する。内部引張応力が大きいとガラスが割れる際に激しい破壊が生じて破片が飛散する。
 本強化ガラスは、ガラス内部の応力プロファイルを適切に調整されているので、曲げモードによるガラス破壊と衝撃モードによるガラス破壊がともに抑制され、かつ、割れた際にも破片の飛散が少ない。
<Destruction of glass>
When the glass plate bends due to an impact, if the amount of the bending increases, a large tensile stress is applied to the glass surface to break the glass. In the present specification, such a fracture is referred to as “glass fracture by a bending mode”. In the chemically strengthened glass of the present invention (hereinafter sometimes referred to as “the present tempered glass”), since a large compressive stress is formed on the glass surface, glass breakage due to a bending mode is suppressed.
On the other hand, when a small and hard object collides with the glass plate, a stress is generated inside the glass plate by the impact, and the glass plate is broken from the inside. In the present specification, such a fracture is referred to as “glass fracture by an impact mode”. In the present tempered glass, since a compressive stress layer is formed up to the inside of the glass plate, glass breakage due to the impact mode is suppressed.
If the compressive stress value on the glass surface is large and the compressive stress layer is formed even inside the glass plate, both glass breakage in the bending mode and glass breakage in the impact mode are suppressed, making the glass very hard to break. Should be. However, when a compressive stress layer is formed inside a glass sheet, an internal tensile stress that cancels out the layer is generated. If the internal tensile stress is large, severe breakage occurs when the glass breaks, and fragments are scattered.
Since the stress profile of the tempered glass according to the present invention is appropriately adjusted, both the glass breakage in the bending mode and the glass breakage in the impact mode are suppressed, and the shards are less scattered even when broken.
 曲げモードによるガラス破壊と衝撃モードによるガラス破壊がともに抑制され、かつ、割れた際にも破片の飛散が少ない化学強化ガラスを得る方法として、リチウムアルミノシリケートガラスをイオン交換処理して、傾きの異なる2つの応力プロファイルを生じさせる方法が知られている。 As a method of obtaining chemically strengthened glass in which both glass breakage in the bending mode and glass breakage in the impact mode are suppressed, and there is little scattering of fragments even when broken, ion exchange treatment of lithium aluminosilicate glass and different inclinations Methods for producing two stress profiles are known.
 この場合において、リチウムアルミノシリケートガラスは、ナトリウムイオンとカリウムイオンとを含有する強化塩を用いたイオン交換処理によって化学強化できる。または、ナトリウムイオンを含有する強化塩を用いたイオン交換処理の後、カリウムイオンを含有する強化塩を用いたイオン交換処理によって化学強化できる。
 これらの方法によれば、表面から比較的浅い領域に、ナトリウムイオンとカリウムイオンのイオン交換による比較的大きな圧縮応力が生じ、より深い領域にはリチウムイオンとナトリウムイオンのイオン交換によって比較的小さい圧縮応力が生じる。
 イオン半径が比較的小さいナトリウムイオンは、ガラス内部への拡散速度が速いのに対し、イオン半径が比較的大きいカリウムイオンは、ガラス内部への拡散速度が遅い。したがって、深い領域ではリチウムイオンとナトリウムイオンのイオン交換は生じてもナトリウムイオンとカリウムイオンのイオン交換は生じにくいのである。
In this case, the lithium aluminosilicate glass can be chemically strengthened by an ion exchange treatment using a strengthening salt containing sodium ions and potassium ions. Alternatively, chemical strengthening can be performed by an ion exchange treatment using a strengthening salt containing potassium ions after an ion exchange treatment using a strengthening salt containing sodium ions.
According to these methods, a relatively large compressive stress is generated in a relatively shallow region from the surface by ion exchange of sodium ions and potassium ions, and a relatively small compressive stress is generated in a deeper region by ion exchange of lithium ions and sodium ions. Stress occurs.
Sodium ions having a relatively small ionic radius have a high diffusion rate into the glass, whereas potassium ions having a relatively large ionic radius have a low diffusion rate into the glass. Therefore, in a deep region, ion exchange between lithium ions and sodium ions occurs, but ion exchange between sodium ions and potassium ions does not easily occur.
 ナトリウムイオンとカリウムイオンのイオン交換が生じる表面付近の領域では、イオン半径の大きいカリウムイオンがガラス中に入ることで大きな圧縮応力が生じる。それより深い領域では、リチウムイオンとナトリウムイオンのイオン交換によって、深い領域にまで比較的小さい圧縮応力が生じる。こうして得られる化学強化ガラスは、表面付近が急峻であり、深い部分では比較的緩やかな、2段階に屈曲する応力プロファイルを有することになる。このような応力プロファイルを形成することで、表面の強度が高く、かつ強い衝撃を受けた時にも破砕しにくく、かつ、割れた時に破片が飛散しにくい化学強化ガラスが得られる。 (4) In a region near the surface where ion exchange between sodium ions and potassium ions occurs, a large compressive stress is generated when potassium ions having a large ionic radius enter the glass. In a deeper region, a relatively small compressive stress is generated even in a deeper region due to ion exchange between lithium ions and sodium ions. The chemically strengthened glass obtained in this manner has a stress profile that is sharp in the vicinity of the surface and relatively gentle in a deep part and is bent in two stages. By forming such a stress profile, it is possible to obtain a chemically strengthened glass that has a high surface strength, is hardly crushed even when subjected to a strong impact, and hardly shards when broken.
 しかし、この応力プロファイルでは、最表面の圧縮応力値が非常に大きくなるので、表面付近にいわゆる「遅れチッピング」が生じやすい。遅れチッピングは、化学強化によって過大な応力が導入された部分において、わずかな力が加わっただけで端部が欠ける現象である。また、このような応力プロファイルを有する化学強化ガラスの表面を研磨すると、わずかな研磨量の違いでも最表面の応力が大きく異なってしまう。
 本強化ガラスは、ガラス表面付近の応力プロファイルが調節されているので、これらの問題も生じにくい。
However, in this stress profile, since the compressive stress value on the outermost surface becomes very large, so-called “delay chipping” tends to occur near the surface. Delayed chipping is a phenomenon in which an edge is chipped at a portion where an excessive stress is introduced by chemical strengthening with a small force. Further, when the surface of the chemically strengthened glass having such a stress profile is polished, even the slightest difference in the amount of polishing greatly changes the stress on the outermost surface.
In the tempered glass, these problems are unlikely to occur because the stress profile near the glass surface is adjusted.
<圧縮応力の測定>
 光導波表面応力計および散乱光光弾性応力計の2種類の装置を組み合わせて用いることで化学強化ガラス内の圧縮応力を正確に測定できる。
<Measurement of compressive stress>
By using a combination of two types of devices, an optical waveguide surface stress meter and a scattered light photoelastic stress meter, the compressive stress in chemically strengthened glass can be accurately measured.
 2種類の装置を用いて圧縮応力を測定するのは、以下の理由による。
 光導波表面応力計を用いる方法は、短時間で正確にガラス試料の応力を測定できる方法として広く知られている。しかしこの方法は原理的に、試料表面から内部に向かって、屈折率が低くなる場合にしか応力を測定できない。
 化学強化ガラスにおいて、ガラス中のナトリウムイオンをカリウムイオンに置換した層は、表面から内部に向かって屈折率が低くなるから、光導波表面応力計を用いて応力を測定できる。しかし、ガラス中のリチウムイオンをナトリウムイオンに置換した層は、そのような屈折率分布が生じないから光導波表面応力計では応力を測定できない。
 図1は、本強化ガラスについて、光導波表面応力計を用いて応力を測定して得られる応力プロファイルの例である。グラフの破線部分は、実際には、リチウムイオンとナトリウムイオンとのイオン交換による応力が生じているが、光導波表面応力計では応力を測定できない。
The reason for measuring the compressive stress using two types of devices is as follows.
A method using an optical waveguide surface stress meter is widely known as a method capable of accurately measuring the stress of a glass sample in a short time. However, in principle, this method can measure stress only when the refractive index decreases from the sample surface toward the inside.
In chemically strengthened glass, the layer in which sodium ions in the glass are replaced with potassium ions has a lower refractive index from the surface toward the inside, so that the stress can be measured using an optical waveguide surface stress meter. However, in a layer in which lithium ions in glass are replaced with sodium ions, such a refractive index distribution does not occur, so that stress cannot be measured with an optical waveguide surface stress meter.
FIG. 1 is an example of a stress profile obtained by measuring stress of the present tempered glass using an optical waveguide surface stress meter. Although the broken line portion of the graph actually causes stress due to ion exchange between lithium ions and sodium ions, the stress cannot be measured by the optical waveguide surface stress meter.
 散乱光光弾性応力計を用いる応力測定方法は、原理的に屈折率分布に依存せず応力を測定できる。しかし、散乱光光弾性応力計はガラス表面の光散乱の影響を受けるので、ガラス表面付近の応力を正しく測定できない。図2は、本強化ガラスについて、散乱光光弾性応力計を用いて応力を測定して得られる応力プロファイルの例である。グラフの破線部分は、ガラス表面での光散乱の影響を受けているので信頼できない。
 そこで2種類の応力計で応力を測定し、その結果を合成して応力を解析できる。この方法は、国際公開第2018/056121号に詳しく説明されている。図3は、合成して得られた応力プロファイル図の一例である。
The stress measurement method using the scattered light photoelastic stress meter can measure the stress in principle without depending on the refractive index distribution. However, since the scattered light photoelastic stress meter is affected by light scattering on the glass surface, the stress near the glass surface cannot be measured correctly. FIG. 2 is an example of a stress profile obtained by measuring the stress of the present tempered glass using a scattered light photoelastic stress meter. The broken line in the graph is not reliable because it is affected by light scattering on the glass surface.
Therefore, the stress can be analyzed by measuring the stress with two types of stress meters and combining the results. This method is described in detail in WO2018 / 056121. FIG. 3 is an example of a stress profile diagram obtained by synthesis.
 光導波表面応力計としては、たとえば折原製作所製FSM-6000が使用できる。FSM-6000および付属ソフトウェアFsmVを用いると、高精度の応力測定が可能である。
 散乱光光弾性応力計としては、たとえば折原製作所製SLP-1000が使用できる。光導波表面応力計としてFSM-6000、散乱光光弾性応力計としてSLP-1000を用いる場合は、専用ソフトウェアを利用して容易にデータを合成できる。
As the optical waveguide surface stress meter, for example, FSM-6000 manufactured by Orihara Seisakusho can be used. Using the FSM-6000 and the attached software FsmV enables highly accurate stress measurement.
For example, SLP-1000 manufactured by Orihara Seisakusho can be used as the scattered light photoelastic stress meter. When FSM-6000 is used as the optical waveguide surface stress meter and SLP-1000 is used as the scattered light photoelastic stress meter, data can be easily synthesized using dedicated software.
<化学強化ガラス>
 本強化ガラスは板状が好ましく、通常は平坦な板状であるが、曲面状でもよい。
<Chemically tempered glass>
The present tempered glass preferably has a plate shape, and is usually a flat plate shape, but may be a curved surface shape.
 本強化ガラスの厚さは、400μm以上が好ましく、600μm以上がより好ましく、700μm以上がさらに好ましい。これはガラスの強度が高くなるからである。本強化ガラスの厚さは、強度を高くするためには大きいほどよいが、重量を軽くするためには、2000μm以下が好ましく、1000μm以下がより好ましい。 The thickness of the tempered glass is preferably 400 μm or more, more preferably 600 μm or more, and even more preferably 700 μm or more. This is because the strength of the glass increases. The thickness of the tempered glass is preferably as large as possible to increase the strength, but is preferably 2000 μm or less, more preferably 1000 μm or less, to reduce the weight.
 本強化ガラスは、表面から比較的浅い領域に、ナトリウムイオンとカリウムイオンのイオン交換による圧縮応力が生じ、より深い領域ではリチウムイオンとナトリウムイオンのイオン交換による圧縮応力が生じていることが好ましい。そのような化学強化ガラスは、表面付近が急峻で深い部分では比較的緩やかな、2段階に屈曲する応力プロファイルを有し、その結果、表面の強度が高く、かつ強い衝撃を受けた時にも破砕しにくいからである。 (4) In the tempered glass, it is preferable that a compressive stress is generated by ion exchange of sodium ions and potassium ions in a relatively shallow region from the surface, and a compressive stress is generated by ion exchange of lithium ions and sodium ion in a deeper region. Such chemically tempered glass has a stress profile that bends in two steps, which is steep near the surface and relatively gentle in deep parts, resulting in high surface strength and crushing even when subjected to strong impact. Because it is hard to do.
 本強化ガラスは、光導波表面応力計を用いて測定されるガラス表面における圧縮応力値CSが500MPa以上であり、そのため強度が高い。たとえば図1において、矢印aで示されるガラス表面のCS値がCSである。CSは、より好ましくは900MPa以上、さらに好ましくは950MPa以上、特に好ましくは1000MPa以上である。
 本強化ガラスは、ガラス表面における圧縮応力値CSが1200MPa以下であると、遅れチッピングが抑制されるので好ましい。CSは、より好ましくは1100MPa以下、さらに好ましくは1050MPa以下である。
This tempered glass, compressive stress value CS 0 in the glass surface to be measured using the optical waveguide surface stress meter is not less than 500 MPa, therefore has high strength. For example, in FIG. 1, CS value of the glass surface shown by the arrow a is CS 0. CS 0 is more preferably 900 MPa or more, further preferably 950 MPa or more, and particularly preferably 1000 MPa or more.
This tempered glass, the compressive stress value CS 0 in the glass surface is less than 1200 MPa, preferably since the late chipping is suppressed. CS 0 is more preferably 1100 MPa or less, still more preferably 1050 MPa or less.
 本強化ガラスは、「光導波表面応力計で測定される圧縮応力値」がゼロになる深さD[単位:μm]が3μm以上であると、曲げモードによる破壊を抑制できるので好ましい。曲げモードによる破壊を抑制するためには、Dは、より好ましくは4μm以上、さらに好ましくは5μm以上である。曲げモードによる破壊を抑制するためには、Dは、10μm程度あればさらによい。Dが大きすぎるとガラス中心層に生じている引張応力の増大を招く。この引っ張り応力による激しい破壊を防止するためには、Dは20μm以下が好ましく、より好ましくは15μm以下、さらに好ましくは10μm以下である。 (4) It is preferable that the tempered glass has a depth D [unit: μm] at which the “compressive stress value measured by the optical waveguide surface stress meter” is zero is 3 μm or more, because it can suppress breakage in a bending mode. In order to suppress breakage due to the bending mode, D is more preferably 4 μm or more, and further preferably 5 μm or more. In order to suppress the destruction due to the bending mode, D is more preferably about 10 μm. If D is too large, the tensile stress generated in the central glass layer will increase. In order to prevent the severe destruction due to the tensile stress, D is preferably 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less.
 たとえば図1において、矢印dで示される「CS値が0となる点」の深さがDである。前述のように、ガラス内部にリチウムイオンとナトリウムイオンのイオン交換による強化層が形成されている場合、CS値が0となる点付近ではリチウムイオンとナトリウムイオンのイオン交換による強化層が形成されているので光導波表面応力計では応力を正確に測定できない。Dは、カリウムイオンが拡散した深さを表すと考えられる。 {For example, in FIG. 1, the depth of the “point at which the CS value becomes 0” indicated by the arrow d is D. As described above, when a strengthening layer formed by ion exchange of lithium ions and sodium ions is formed inside glass, a strengthened layer formed by ion exchange of lithium ions and sodium ions is formed near a point where the CS value becomes zero. Therefore, stress cannot be measured accurately with an optical waveguide surface stress meter. D is thought to represent the depth at which potassium ions diffused.
 本強化ガラスは、光導波表面応力計を用いて測定されるガラス表面から(D/2)[単位:μm]の深さまでの応力プロファイルの傾きx[単位:MPa/μm]が-200MPa/μm以上200MPa/μm以下であると好ましい。傾きxは-100MPa/μm以上100MPa/μm以下がより好ましく、-70MPa/μm以上70MPa/μm以下がさらに好ましい。xの絶対値が小さいほど、適切な圧縮応力値を有する層の厚みが増え、表面を研磨した時にも優れた特性が得られる。
 また、傾きxは負の値であることが好ましい。最も高い圧縮応力が必要とされるのは、曲げモードによる破壊抑制に高い圧縮応力を要するガラス表面である。応力プロファイルの傾きに正の部分があると、ガラス内部に必要以上の応力が導入される箇所が生じて遅れチッピングが生じやすくなるか、または最表面の応力値が不足して曲げモードによる破壊が生じやすくなる。
The tempered glass has a stress profile gradient x [unit: MPa / μm] from the glass surface measured using an optical waveguide surface stress meter to a depth of (D / 2) [unit: μm], which is −200 MPa / μm. It is preferably at least 200 MPa / μm. The gradient x is more preferably −100 MPa / μm or more and 100 MPa / μm or less, and still more preferably −70 MPa / μm or more and 70 MPa / μm or less. As the absolute value of x is smaller, the thickness of the layer having an appropriate compressive stress value increases, and excellent characteristics can be obtained even when the surface is polished.
Also, the slope x is preferably a negative value. The highest compressive stress is required for a glass surface that requires a high compressive stress to suppress fracture in a bending mode. If there is a positive part in the slope of the stress profile, there will be places where excessive stress is introduced inside the glass, which will cause delayed chipping, or the stress on the outermost surface will be insufficient, and fracture due to bending mode will occur. It is easy to occur.
 たとえば図1において、矢印aで示されるガラス表面から、矢印cで示されるガラス表面から(D/2)の深さまでの応力プロファイルの傾きがxである。
 xは、前記D、ガラス表面の圧縮応力値CSおよびガラス表面から(D/2)の深さにおける圧縮応力値CSから下の式で求められる。
  x=(CS-CS)/((D/2)-0)
   =2×(CS-CS)/D
For example, in FIG. 1, x is the slope of the stress profile from the glass surface indicated by arrow a to the glass surface indicated by arrow c to a depth of (D / 2).
x is the D, obtained from the compression stress value CS 2 at a depth of a compression stress value CS 0 and glass surfaces of the glass surface (D / 2) in the equation below.
x = (CS 2 -CS 0 ) / ((D / 2) -0)
= 2 × (CS 2 −CS 0 ) / D
 本強化ガラスは、光導波表面応力計を用いて測定される深さD/2から深さDまでの応力プロファイルの傾きy[単位:MPa/μm]が-125MPa/μm以下であると、曲げモードによる破壊抑制に必要な高圧縮応力層を薄く最表層に形成できるため、好ましい。傾きyは小さいほどよいが、通常は-500MPa/μm以上である。 This tempered glass bends when the gradient y [unit: MPa / μm] of the stress profile from depth D / 2 to depth D measured using an optical waveguide surface stress meter is −125 MPa / μm or less. This is preferable because a high compressive stress layer necessary for suppressing breakage by a mode can be formed as a thin outermost layer. The smaller the slope y, the better, but it is usually at least -500 MPa / μm.
 たとえば図1において、矢印cで示されるガラス表面からD/2の深さの点から、矢印dで示される深さDの点までの応力プロファイルの傾きがyである。
 ここでyは、前記DおよびCSから下の式で求められる。
  y=(0-CS)/(D-(D/2))
   =-2×CS/D
For example, in FIG. 1, the slope of the stress profile from a point at a depth of D / 2 from the glass surface indicated by an arrow c to a point at a depth D indicated by an arrow d is y.
Where y is obtained by the equation below from the D and CS 2.
y = (0−CS 2 ) / (D− (D / 2))
= −2 × CS 2 / D
 本強化ガラスは、前述の応力プロファイルの傾きxの絶対値とyの絶対値との比|x|/|y|が0.8以下であると、ガラス最表層の高圧縮応力層を薄く保ちつつ、遅れチッピングと曲げモードによる破壊の双方の抑制に適した応力域を厚く形成できるので好ましい。より好ましくは、0.6以下である。また、|x|/|y|の最小値は0である。すなわち、|x|/|y|は0~0.8であることが好ましく、0~0.6であることがより好ましい。
 また、xは0以下が好ましくyは負の値が好ましいので、x/yが0~0.8であることが好ましく、0~0.6であることがより好ましい。x/yは、正の値であれば、小さい程好ましい。
When the ratio | x | / | y | of the absolute value of the gradient x and the absolute value of the stress profile described above | x | / | y | is 0.8 or less, the tempered glass keeps the high compressive stress layer of the glass outermost layer thin. On the other hand, it is preferable because a stress region suitable for suppressing both the delayed chipping and the fracture caused by the bending mode can be formed thick. More preferably, it is 0.6 or less. The minimum value of | x | / | y | is 0. That is, | x | / | y | is preferably from 0 to 0.8, and more preferably from 0 to 0.6.
Further, x is preferably 0 or less, and y is preferably a negative value. Therefore, x / y is preferably from 0 to 0.8, and more preferably from 0 to 0.6. The smaller the value of x / y is, the more preferable it is.
 本強化ガラスは、光導波表面応力計で測定される、ガラス表面から深さ1μmまでの応力プロファイルの傾きzが-100MPa/μm以上であると、遅れチッピングと曲げモードによる破壊の双方の抑制に適した応力域の厚みが増えるため、好ましい。zは、より好ましくは-80MPa/μm以上である。zは、通常は100MPa/μm以下であり、好ましくは0MPa/μm以下である。 When the gradient z of the stress profile from the glass surface to the depth of 1 μm from the glass surface measured by an optical waveguide surface stress meter is -100 MPa / μm or more, this tempered glass can suppress both delayed chipping and fracture due to bending mode. This is preferable because the thickness of a suitable stress region increases. z is more preferably −80 MPa / μm or more. z is usually 100 MPa / μm or less, preferably 0 MPa / μm or less.
 たとえば図1において、矢印aで示されるガラス表面から、矢印bで示されるガラス表面から1μmの深さの点までの応力プロファイルの傾きがzである。
 光導波表面応力計で測定される深さ1μmにおける圧縮応力値をCS[単位:MPa]とすると、zは次の式で求められる。
  z=(CS-CS)/(1μm-0μm)
   =(CS-CS)/1μm
For example, in FIG. 1, the slope of the stress profile from the glass surface indicated by arrow a to the point at a depth of 1 μm from the glass surface indicated by arrow b is z.
Assuming that a compressive stress value at a depth of 1 μm measured by an optical waveguide surface stress meter is CS 1 [unit: MPa], z is obtained by the following equation.
z = (CS 1 -CS 0 ) / (1 μm-0 μm)
= (CS 1 -CS 0 ) / 1 μm
 本強化ガラスにおいて、散乱光光弾性応力計で測定される圧縮応力深さDOLは50μm以上が好ましい。たとえば図2において、矢印eで示されるCS値が0になる点の深さがDOLである。一般的なアスファルトの突起は、50μm程度の場合があるから、ガラス板がアスファルトに衝突した時の割れを防止するためには、ガラスの表層から50μmの深さまで圧縮応力が形成されていることが好ましい。板厚をtμmとした際、DOL/tは、好ましくは0.1以上、より好ましくは0.12以上、さらに好ましくは0.14以上である。一方、tに対してDOLが大きすぎると板厚中心層に過大な引張応力が発生し、加傷時に激しい破壊が起こるようになってしまう。そのため、DOL/tは好ましくは0.25以下、より好ましくは0.22以下、特に好ましくは0.2以下である。 に お い て In this tempered glass, the compressive stress depth DOL measured by a scattered light photoelastic stress meter is preferably 50 μm or more. For example, in FIG. 2, the depth of the point at which the CS value indicated by the arrow e becomes 0 is DOL. Since a typical asphalt projection may be about 50 μm, in order to prevent cracking when the glass plate collides with the asphalt, a compressive stress is formed from the surface of the glass to a depth of 50 μm from the surface layer of the glass. preferable. When the plate thickness is t μm, DOL / t is preferably 0.1 or more, more preferably 0.12 or more, and still more preferably 0.14 or more. On the other hand, if DOL is too large with respect to t, an excessive tensile stress will be generated in the center layer of the plate thickness, and severe damage will occur at the time of injury. Therefore, DOL / t is preferably 0.25 or less, more preferably 0.22 or less, and particularly preferably 0.2 or less.
 DとDOLの間には概ね正の相関があり、Dが大きいほどDOLが大きくなる傾向がある。DOLはリチウムイオンとナトリウムイオンがイオン交換した深さ、Dはナトリウムイオンとカリウムイオンが交換した深さにより決定されるが、一般的にイオン交換の進みやすさは、ガラスの組成に依存するからである。 There is generally a positive correlation between D and DOL, and DOL tends to increase as D increases. DOL is determined by the depth at which lithium and sodium ions are exchanged, and D is determined by the depth at which sodium and potassium ions are exchanged. Generally, the ease of ion exchange depends on the glass composition. It is.
<化学強化用ガラス>
 本発明の化学強化ガラスは、リチウムアルミノシリケートガラスである化学強化用ガラス(以下、「本強化用ガラス」という)を化学強化して得られる。なお、極端な化学強化処理を施した場合を除いて、化学強化用ガラスの組成は化学強化ガラスの厚さ方向の中央部分のガラス組成と同じであり、すなわち、以下の化学強化用ガラスの組成の説明は、化学強化ガラスの厚さ方向の中央部分の組成に対してもあてはまる。
 リチウムアルミノシリケートガラスは、たとえば酸化物基準のモル%表示でSiOを50%以上、Alを5%以上含有し、LiO、NaOおよびKOの合計の含有量が5%以上であり、かつ、LiOの含有量と、LiO、NaOおよびKOの合計の含有量との比(LiO/(LiO+NaO+KO))が0.5以上のガラスである。
<Glass for chemical strengthening>
The chemically strengthened glass of the present invention is obtained by chemically strengthening a glass for chemical strengthening which is a lithium aluminosilicate glass (hereinafter, referred to as “glass for strengthening”). The composition of the glass for chemical strengthening is the same as the glass composition of the central part in the thickness direction of the chemically strengthened glass, except for the case where the chemical strengthening treatment is extremely performed. The above description also applies to the composition of the central part in the thickness direction of the chemically strengthened glass.
The lithium aluminosilicate glass contains, for example, 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis, and has a total content of Li 2 O, Na 2 O and K 2 O. is 5% or more, and the content of Li 2 O, Li 2 O, Na 2 O and K 2 O ratio of the sum of the content of (Li 2 O / (Li 2 O + Na 2 O + K 2 O)) Is 0.5 or more glass.
 本強化用ガラスは、酸化物基準のモル百分率表示で、以下の組成を有するものがより好ましい。
 SiO 50~80%、Al 5~25%、B 0~10%、P 0~10%、LiO 2~20%、NaO 0.5~10%、KO  0~5%。
 また、MgO+ZnO+CaO+SrO+BaO(MgO、ZnO、CaO、SrO、及びBaOの合計の含有量)は0~15%が好ましく、ZrO+TiO(ZrO、及びTiOの合計の含有量)は0~5%が好ましい。
 そのようなガラスは、化学強化処理によって好ましい応力プロファイルを形成しやすい。以下、この好ましいガラス組成について説明する。
The present tempering glass more preferably has the following composition in terms of mole percentage on an oxide basis.
SiO 2 50 ~ 80%, Al 2 O 3 5 ~ 25%, B 2 O 3 0 ~ 10%, P 2 O 5 0 ~ 10%, Li 2 O 2 ~ 20%, Na 2 O 0.5 ~ 10 %, K 2 O 0-5%.
The content of MgO + ZnO + CaO + SrO + BaO (total content of MgO, ZnO, CaO, SrO, and BaO) is preferably 0 to 15%, and the content of ZrO 2 + TiO 2 (total content of ZrO 2 and TiO 2 ) is 0 to 5%. Is preferred.
Such a glass tends to form a favorable stress profile by a chemical strengthening treatment. Hereinafter, this preferred glass composition will be described.
 SiOはガラスの骨格を構成する成分である。また、化学的耐久性を上げる成分であり、ガラス表面に傷がついた時のクラックの発生を低減させる成分である。SiOの含有量は50%以上が好ましく、55%以上がより好ましく、58%以上がさらに好ましい。
 また、ガラスの溶融性を高くするためにSiOの含有量は80%以下が好ましく、75%以下がより好ましく、70%以下がさらに好ましい。
SiO 2 is a component constituting the skeleton of glass. Further, it is a component that increases chemical durability and is a component that reduces the occurrence of cracks when the glass surface is damaged. The content of SiO 2 is preferably at least 50%, more preferably at least 55%, even more preferably at least 58%.
Further, the content of SiO 2 is preferably 80% or less, more preferably 75% or less, and even more preferably 70% or less, in order to enhance the melting property of the glass.
 Alは化学強化の際のイオン交換性を向上させ、強化後の表面圧縮応力を大きくするために有効な成分であり、ガラス転移温度(Tg)を高くし、ヤング率を高くする成分でもある。Alの含有量は5%以上が好ましく、7%以上がより好ましく、13%以上がさらに好ましい。
 また、Alの含有量は、溶融性を高くするために、好ましくは25%以下、より好ましくは23%以下、さらに好ましくは20%以下である。
Al 2 O 3 is an effective component for improving the ion exchange property during chemical strengthening and increasing the surface compressive stress after strengthening, and is a component for increasing the glass transition temperature (Tg) and increasing the Young's modulus. But also. The content of Al 2 O 3 is preferably at least 5%, more preferably at least 7%, even more preferably at least 13%.
Further, the content of Al 2 O 3 is preferably 25% or less, more preferably 23% or less, and further preferably 20% or less, in order to enhance the melting property.
 Bは、必須ではないが、ガラス製造時の溶融性を向上させる等のために含有させてもよい。化学強化ガラスの表面付近における応力プロファイルの傾きを小さくするためには、Bを含有することが好ましく、その場合の含有量は好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは2%以上である。
 Bは、化学強化後の応力緩和を生じやすくする成分なので、応力緩和による表面圧縮応力の低下を防止するためには、Bの含有量は10%以下が好ましく、より好ましくは8%以下、さらに好ましくは5%以下、特に好ましくは3%以下である。
B 2 O 3 is not essential, but may be included for the purpose of improving the melting property during glass production and the like. In order to reduce the gradient of the stress profile near the surface of the chemically strengthened glass, it is preferable to contain B 2 O 3 , in which case the content is preferably 0.5% or more, more preferably 1% or more. More preferably, it is at least 2%.
Since B 2 O 3 is a component that easily causes stress relaxation after chemical strengthening, the content of B 2 O 3 is preferably 10% or less, more preferably, in order to prevent a decrease in surface compressive stress due to stress relaxation. Is at most 8%, more preferably at most 5%, particularly preferably at most 3%.
 LiOは、イオン交換により表面圧縮応力を形成させる成分であり、リチウムアルミノシリケートガラスの必須成分である。リチウムアルミノシリケートガラスを化学強化することにより、好ましい応力プロファイルを有する化学強化ガラスが得られる。LiOの含有量は、圧縮応力層深さDOLを大きくするために、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは5%以上である。
 また、ガラスを製造する際または曲げ加工を行う際に、失透が生じるのを抑制するためには、LiOの含有量は20%以下が好ましく、より好ましくは15%以下、さらに好ましくは10%以下である。
Li 2 O is a component that forms a surface compressive stress by ion exchange, and is an essential component of lithium aluminosilicate glass. By chemically strengthening the lithium aluminosilicate glass, a chemically strengthened glass having a favorable stress profile can be obtained. The content of Li 2 O is preferably 2% or more, more preferably 3% or more, and still more preferably 5% or more, in order to increase the depth DOL of the compressive stress layer.
In addition, in order to suppress the occurrence of devitrification when producing glass or performing bending, the content of Li 2 O is preferably 20% or less, more preferably 15% or less, and still more preferably. 10% or less.
 NaOはカリウムを含有する溶融塩を利用したイオン交換により表面圧縮応力層を形成する成分であり、またガラスの溶融性を向上させる成分である。NaOの含有量は0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がさらに好ましい。
 また、NaOの含有量は、好ましくは10%以下であり、より好ましくは8%以下、さらに好ましくは6%以下である。
Na 2 O is a component that forms a surface compressive stress layer by ion exchange using a molten salt containing potassium, and is a component that improves the meltability of glass. The content of Na 2 O is preferably 0.5% or more, more preferably 1% or more, and still more preferably 1.5% or more.
Further, the content of Na 2 O is preferably at most 10%, more preferably at most 8%, further preferably at most 6%.
 KOは必須ではないが、ガラスの溶融性を向上し、失透を抑制するために含有してよい。KOの含有量は、好ましくは0.1%以上、より好ましくは0.5%以上、さらに好ましくは1%以上である。
 また、KOの含有量は、イオン交換による圧縮応力値を大きくするために、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下である。
K 2 O is not essential, but may be contained in order to improve the meltability of the glass and suppress devitrification. The content of K 2 O is preferably at least 0.1%, more preferably at least 0.5%, further preferably at least 1%.
Further, the content of K 2 O is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less, in order to increase the compressive stress value due to ion exchange.
 LiO、NaOおよびKO等のアルカリ金属酸化物は、いずれもガラスの溶解温度を低下させる成分であり、合計で5%以上含有することが好ましい。LiO、NaO、KOの含有量の合計(LiO+NaO+KO)は、5%以上が好ましく、7%以上がより好ましく、8%以上がさらに好ましい。
 (LiO+NaO+KO)は、ガラスの強度を維持するために20%以下が好ましく、18%以下がより好ましい。
Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O are components that lower the melting temperature of glass, and are preferably contained in a total amount of 5% or more. The total content of Li 2 O, Na 2 O, and K 2 O (Li 2 O + Na 2 O + K 2 O) is preferably 5% or more, more preferably 7% or more, and even more preferably 8% or more.
(Li 2 O + Na 2 O + K 2 O) is preferably at most 20%, more preferably at most 18%, in order to maintain the strength of the glass.
 MgO、CaO、SrO、BaO、ZnO等のアルカリ土類金属酸化物は、いずれもガラスの溶融性を高める成分であるが、イオン交換性能を低下させる傾向がある。
 MgO、CaO、SrO、BaO、ZnOの含有量の合計(MgO+CaO+SrO+BaO+ZnO)は15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましい。
Alkaline earth metal oxides such as MgO, CaO, SrO, BaO, and ZnO are components that enhance the melting property of glass, but tend to decrease ion exchange performance.
The total content of MgO, CaO, SrO, BaO, and ZnO (MgO + CaO + SrO + BaO + ZnO) is preferably 15% or less, more preferably 10% or less, and even more preferably 5% or less.
 MgO、CaO、SrO、BaO、ZnOのいずれかを含有する場合は、化学強化ガラスの強度を高くするためにMgOを含有することが好ましい。
 MgOを含有する場合の含有量は0.1%以上が好ましく0.5%以上がより好ましい。またイオン交換性能を高くするために10%以下が好ましく、8%以下がより好ましい。
When containing any of MgO, CaO, SrO, BaO and ZnO, it is preferable to contain MgO in order to increase the strength of the chemically strengthened glass.
When MgO is contained, the content is preferably 0.1% or more, more preferably 0.5% or more. In order to enhance ion exchange performance, the content is preferably 10% or less, more preferably 8% or less.
 CaOを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。イオン交換性能を高くするためには5%以下が好ましく、3%以下がより好ましい。 The content of CaO when contained is preferably 0.5% or more, more preferably 1% or more. In order to enhance ion exchange performance, the content is preferably 5% or less, more preferably 3% or less.
 SrOを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。イオン交換性能を高くするためには5%以下が好ましく、3%以下がより好ましい。 The content when SrO is contained is preferably 0.5% or more, more preferably 1% or more. In order to enhance ion exchange performance, the content is preferably 5% or less, more preferably 3% or less.
 BaOを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。イオン交換性能を高くするためには5%以下が好ましく、1%以下がより好ましく、実質的に含有しないことがさらに好ましい。 The content of BaO when contained is preferably 0.5% or more, more preferably 1% or more. In order to enhance ion exchange performance, the content is preferably 5% or less, more preferably 1% or less, and further preferably substantially no content.
 ZnOはガラスの溶融性を向上させる成分であり、含有させてもよい。ZnOを含有させる場合の含有量は、好ましくは0.2%以上であり、より好ましくは0.5%以上である。ガラスの耐候性を高くするために、ZnOの含有量は5%以下が好ましく、3%以下がより好ましい。 ZnO is a component for improving the melting property of glass, and may be contained. When ZnO is contained, the content is preferably 0.2% or more, and more preferably 0.5% or more. In order to increase the weather resistance of the glass, the content of ZnO is preferably 5% or less, more preferably 3% or less.
 TiOは、化学強化ガラスの破壊時に破片が飛散することを抑制する成分であり、含有させてもよい。TiOを含有させる場合の含有量は、好ましくは0.1%以上である。TiOの含有量は、溶融時の失透を抑制するために5%以下が好ましく、1%以下がより好ましく、実質的に含有しないことがさらに好ましい。 TiO 2 is a component that suppresses scattering of fragments when the chemically strengthened glass is broken, and may be contained. When TiO 2 is contained, the content is preferably 0.1% or more. The content of TiO 2 is preferably 5% or less, more preferably 1% or less, and further preferably substantially no content, in order to suppress devitrification at the time of melting.
 ZrOは、イオン交換による表面圧縮応力を増大させる成分であり、含有させてもよい。ZrOを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。また溶融時の失透を抑制するために5%以下が好ましく、3%以下がより好ましい。 ZrO 2 is a component that increases the surface compressive stress due to ion exchange, and may be included. When ZrO 2 is contained, the content is preferably 0.5% or more, and more preferably 1% or more. In order to suppress the devitrification at the time of melting, the content is preferably 5% or less, more preferably 3% or less.
 また、TiOとZrOの含有量(TiO+ZrO)は、5%以下が好ましく、3%以下がより好ましい。 The content of TiO 2 and ZrO 2 (TiO 2 + ZrO 2 ) is preferably 5% or less, more preferably 3% or less.
 Y、LaおよびNbは、化学強化ガラスの破砕を抑制する成分であり、含有させてもよい。これらの成分を含有させる場合のそれぞれの含有量は、好ましくは0.5%以上であり、より好ましくは0.5%以上、さらに好ましくは1%以上、特に好ましくは1.5%以上、最も好ましくは2%以上である。 Y 2 O 3 , La 2 O 3 and Nb 2 O 5 are components that suppress the fracture of chemically strengthened glass, and may be contained. When these components are contained, the content of each component is preferably 0.5% or more, more preferably 0.5% or more, further preferably 1% or more, particularly preferably 1.5% or more, and most preferably 1.5% or more. It is preferably at least 2%.
 また、Y、LaおよびNbの含有量は合計で9%以下が好ましく、8%以下がより好ましい。そのようであると溶融時にガラスが失透しにくくなり化学強化ガラスの品質が低下するのを防ぐことができる。またY、LaおよびNbの含有量はそれぞれ、7%以下が好ましく、より好ましくは6%以下、さらに好ましくは5%以下、特に好ましくは4%以下、最も好ましくは3%以下である。 The total content of Y 2 O 3 , La 2 O 3 and Nb 2 O 5 is preferably 9% or less, more preferably 8% or less. In such a case, the glass is less likely to be devitrified at the time of melting, so that the quality of the chemically strengthened glass can be prevented from lowering. The content of each of Y 2 O 3 , La 2 O 3 and Nb 2 O 5 is preferably at most 7%, more preferably at most 6%, further preferably at most 5%, particularly preferably at most 4%, most preferably. Is not more than 3%.
 Ta、Gdは、化学強化ガラスの破砕を抑制するために少量含有してもよいが、屈折率や反射率が高くなるので、これらの含有量はそれぞれ1%以下が好ましく、0.5%以下がより好ましく、実質的に含有しないことがさらに好ましい。 Ta 2 O 5 and Gd 2 O 3 may be contained in small amounts in order to suppress the fracture of the chemically strengthened glass. However, since the refractive index and the reflectance become high, the contents of these are each preferably 1% or less. , 0.5% or less, more preferably, substantially not contained.
 Pは、イオン交換性能を向上させるために含有してもよい。Pを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。化学的耐久性を高くするためにはPの含有量は10%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましい。 P 2 O 5 may be contained in order to improve the ion exchange performance. When P 2 O 5 is contained, the content is preferably 0.5% or more, and more preferably 1% or more. In order to increase the chemical durability, the content of P 2 O 5 is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
 ガラスを着色する場合は、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、TiO、CeO、Er、Ndが挙げられる。これらは単独で用いてもよく、組み合わせて用いてもよい。 When coloring the glass, a coloring component may be added in a range that does not hinder achievement of the desired chemical strengthening properties. As the coloring component, for example, Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , TiO 2 , CeO 2 , Er 2 O 3 and Nd 2 O 3 are mentioned. These may be used alone or in combination.
 着色成分の含有量は、合計で7%以下が好ましい。それによって、ガラスの失透を抑制できる。着色成分の含有量は、より好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。ガラスの可視光透過率を高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。 The total content of the coloring components is preferably 7% or less. Thereby, devitrification of glass can be suppressed. The content of the coloring component is more preferably 5% or less, further preferably 3% or less, and particularly preferably 1% or less. When it is desired to increase the visible light transmittance of the glass, it is preferable that these components are not substantially contained.
 また、ガラス溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは実質的に含有しないことが好ましい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、実質的に含有しないことが最も好ましい。 Further, SO 3 , chloride, fluoride, and the like may be appropriately contained as a fining agent at the time of glass melting. It is preferable that As 2 O 3 is not substantially contained. When Sb 2 O 3 is contained, the content is preferably 0.3% or less, more preferably 0.1% or less, and most preferably substantially no content.
 本強化用ガラスのガラス転移温度(Tg)は、化学強化時の応力緩和を抑制するために480℃以上が好ましく、500℃以上がより好ましく、520℃以上がさらに好ましい。
 またTgは、化学強化時にイオン拡散速度が速くなるために、700℃以下が好ましい。深いDOLを得やすいために、Tgは650℃以下がより好ましく、600℃以下がさらに好ましい。
The glass transition temperature (Tg) of the present tempering glass is preferably 480 ° C. or higher, more preferably 500 ° C. or higher, even more preferably 520 ° C. or higher, in order to suppress stress relaxation during chemical strengthening.
Tg is preferably 700 ° C. or lower because the ion diffusion rate is increased during chemical strengthening. In order to easily obtain a deep DOL, Tg is preferably 650 ° C. or lower, more preferably 600 ° C. or lower.
 本強化用ガラスのヤング率は、70GPa以上が好ましい。ヤング率が高いほど、強化ガラスが破壊した時に破片が飛散しにくくなる傾向がある。そのためヤング率は75GPa以上がより好ましく、80GPa以上がさらに好ましい。一方、ヤング率が高すぎると、化学強化時のイオンの拡散が遅く、深いDOLを得ることが困難になる傾向がある。そこでヤング率は110GPa以下が好ましく、100GPa以下がより好ましく、90GPa以下がさらに好ましい。 The tempering glass preferably has a Young's modulus of 70 GPa or more. The higher the Young's modulus, the more difficult it is for fragments to be scattered when the tempered glass breaks. Therefore, the Young's modulus is more preferably at least 75 GPa, even more preferably at least 80 GPa. On the other hand, if the Young's modulus is too high, diffusion of ions during chemical strengthening is slow, and it tends to be difficult to obtain a deep DOL. Therefore, the Young's modulus is preferably 110 GPa or less, more preferably 100 GPa or less, and even more preferably 90 GPa or less.
 本強化用ガラスのビッカース硬度は575以上が好ましい。化学強化用ガラスのビッカース硬度が大きいほど化学強化後のビッカース硬度が大きくなりやすく、化学強化ガラスが落下したときにも傷がつきにくい。そこで化学強化用ガラスのビッカース硬度は、より好ましくは600以上、さらに好ましくは625以上である。
 なお、化学強化後のビッカース硬度は600以上が好ましく、625以上がより好ましく、650以上がさらに好ましい。
The Vickers hardness of the tempering glass is preferably 575 or more. The higher the Vickers hardness of the glass for chemical strengthening, the greater the Vickers hardness after chemical strengthening, and the less likely the glass when chemically strengthened falls. Therefore, the Vickers hardness of the glass for chemical strengthening is more preferably 600 or more, and further preferably 625 or more.
The Vickers hardness after chemical strengthening is preferably 600 or more, more preferably 625 or more, and even more preferably 650 or more.
 ビッカース硬度は大きいほど傷つきにくくなるので好ましいが、通常は本強化用ガラスのビッカース硬度は850以下である。ビッカース硬度が大きすぎるガラスでは十分なイオン交換性を得るのが難しい傾向がある。そのため、ビッカース硬度は800以下が好ましく、750以下がより好ましい。 (4) The larger the Vickers hardness is, the more difficult it is to be damaged. Therefore, it is preferable that the tempered glass generally has a Vickers hardness of 850 or less. Glasses having too high a Vickers hardness tend to have difficulty in obtaining sufficient ion exchangeability. Therefore, the Vickers hardness is preferably 800 or less, more preferably 750 or less.
 本強化用ガラスの破壊靱性値は0.7MPa・m1/2以上が好ましい。破壊靱性値が大きいほど、化学強化ガラスの破壊時に破片の飛散が抑制される傾向がある。破壊靱性値は、より好ましくは0.75MPa・m1/2以上、さらに好ましくは0.8MPa・m1/2以上である。
 破壊靱性値は、通常は1MPa・m1/2以下である。
The fracture toughness value of the present tempering glass is preferably 0.7 MPa · m 1/2 or more. As the fracture toughness value increases, the scattering of fragments tends to be suppressed when the chemically strengthened glass is broken. The fracture toughness value is more preferably 0.75 MPa · m 1/2 or more, and still more preferably 0.8 MPa · m 1/2 or more.
The fracture toughness value is usually 1 MPa · m 1/2 or less.
 本強化用ガラスの50℃から350℃における平均熱膨張係数(α)は、100×10-7/℃以下が好ましい。平均膨張係数(α)が小さいと、ガラスの成型時や化学強化後の冷却時にガラスが反りにくい。平均膨張係数(α)は95×10-7/℃以下がより好ましく、90×10-7/℃以下がさらに好ましい。
 化学強化ガラスの反りを抑制するためには、平均熱膨張係数(α)は小さい程好ましいが、通常は60×10-7/℃以上である。
The average thermal expansion coefficient (α) of the tempering glass at 50 ° C. to 350 ° C. is preferably 100 × 10 −7 / ° C. or less. If the average coefficient of expansion (α) is small, the glass is less likely to warp during molding or cooling after chemical strengthening. The average expansion coefficient (α) is more preferably not more than 95 × 10 −7 / ° C., and further preferably not more than 90 × 10 −7 / ° C.
In order to suppress the warpage of the chemically strengthened glass, the average coefficient of thermal expansion (α) is preferably as small as possible, but is usually 60 × 10 −7 / ° C. or more.
 本強化用ガラスにおいて、粘度が10dPa・sとなる温度(T)は、1750℃以下が好ましく、1700℃以下がより好ましく、1680℃以下がさらに好ましい。Tは通常は1400℃以上である。 In the tempering glass, the temperature (T 2 ) at which the viscosity becomes 10 2 dPa · s is preferably 1750 ° C. or lower, more preferably 1700 ° C. or lower, and further preferably 1680 ° C. or lower. T 2 is usually at 1400 ℃ or more.
 本強化用ガラスにおいて、粘度が10dPa・sとなる温度(T)は、1350℃以下が好ましく、1300℃以下がより好ましく、1250℃以下がさらに好ましい。Tは通常は1000℃以上である。 In the present tempering glass, the temperature (T 4 ) at which the viscosity becomes 10 4 dPa · s is preferably 1350 ° C. or lower, more preferably 1300 ° C. or lower, and further preferably 1250 ° C. or lower. T 4 is usually at 1000 ℃ or more.
<化学強化ガラスの製造方法>
 本強化ガラスは、たとえば前述の組成を有する化学強化用ガラスを化学強化処理して製造できる。
 化学強化用ガラスは、たとえば以下のような一般的なガラス製造方法を用いて製造できる。以下の製造方法は、板状の化学強化ガラスを製造する場合の例であるが、化学強化用ガラスは板状以外の形状でもよい。
<Production method of chemically strengthened glass>
The present tempered glass can be produced, for example, by chemically tempering glass having the above-mentioned composition for chemical tempering.
The glass for chemical strengthening can be manufactured using, for example, the following general glass manufacturing method. The following manufacturing method is an example of manufacturing a plate-shaped chemically strengthened glass, but the glass for chemical strengthening may have a shape other than the plate shape.
 好ましい組成のガラスが得られるように、ガラス原料を適宜調合し、ガラス溶融窯で加熱溶融する。その後、バブリング、撹拌、清澄剤の添加等によりガラスを均質化し、所定の厚さのガラス板に成形し、徐冷する。またはブロック状に成形して徐冷した後に切断する方法で板状に成形してもよい。 (4) The glass raw materials are appropriately prepared so that a glass having a preferable composition is obtained, and the mixture is heated and melted in a glass melting furnace. Thereafter, the glass is homogenized by bubbling, stirring, addition of a fining agent, etc., formed into a glass plate having a predetermined thickness, and gradually cooled. Alternatively, it may be formed into a plate by a method of cutting into a block, followed by slow cooling, and then cutting.
 板状に成形する方法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大型のガラス板を製造する場合は、フロート法が好ましい。また、フロート法以外の連続成形法、たとえば、フュージョン法及びダウンドロー法も好ましい。 方法 Examples of the method of forming into a plate shape include a float method, a press method, a fusion method, and a downdraw method. In particular, when manufacturing a large glass plate, the float method is preferred. Further, a continuous molding method other than the float method, for example, a fusion method and a downdraw method are also preferable.
 成形して得られたガラスリボンを必要に応じて研削及び研磨処理して、ガラス板を形成する。なお、ガラス板を所定の形状及びサイズに切断したり、ガラス板の面取り加工を行ったりする場合、後述する化学強化処理を施す前に、ガラス板の切断や面取り加工を行えば、化学強化処理によって端面にも圧縮応力層が形成されるため、好ましい。 ガ ラ ス The glass ribbon obtained by molding is ground and polished as required to form a glass plate. When the glass plate is cut into a predetermined shape and size or the glass plate is chamfered, if the glass plate is cut or chamfered before performing the chemical strengthening process described later, the chemical strengthening process is performed. Thus, a compressive stress layer is also formed on the end face, which is preferable.
 そして、形成したガラス板に化学強化処理を施した後、洗浄及び乾燥することにより、化学強化ガラスが得られる。 Then, the chemically strengthened glass is obtained by subjecting the formed glass plate to a chemical strengthening treatment, followed by washing and drying.
<化学強化処理>
 化学強化処理は、大きなイオン半径の金属イオン(典型的には、ナトリウムイオンまたはカリウムイオン)を含む金属塩(例えば、硝酸カリウム)の融液に浸漬する等の方法で、ガラスを金属塩に接触させ、ガラス中の小さなイオン半径の金属イオン(典型的には、リチウムイオンまたはナトリウムイオン)と金属塩中の大きなイオン半径の金属イオン(典型的には、リチウムイオンに対してはナトリウムイオンまたはカリウムイオンであり、ナトリウムイオンに対してはカリウムイオン)とを置換させる処理である。
<Chemical strengthening treatment>
Chemical strengthening treatment involves contacting glass with a metal salt, such as by immersing the glass in a melt of a metal salt (eg, potassium nitrate) containing a metal ion having a large ionic radius (typically, sodium ion or potassium ion). Metal ions of small ionic radius in glass (typically lithium or sodium ions) and metal ions of large ionic radius in metal salts (typically sodium or potassium ions for lithium ions) This is a treatment for replacing sodium ions with potassium ions.
 ガラス中のリチウムイオンをナトリウムイオンと交換する「Li-Na交換」を利用する方法は、化学強化処理速度が速いので好ましい。またイオン交換により大きな圧縮応力を形成するためには、ガラス中のナトリウムイオンをカリウムイオンと交換する「Na-K交換」を利用する方法が好ましい。
 「Li-Na交換」と「Na-K交換」を行う方法を併用すれば、比較的短い処理時間で高い表面圧縮応力と、深い圧縮応力層を形成できるのでより好ましい。その場合、「Li-Na交換」をおこなった後に「Na-K交換」を行うことがより効果的である。
The method using “Li—Na exchange” in which lithium ions in glass are exchanged for sodium ions is preferred because the chemical strengthening treatment speed is high. In order to form a large compressive stress by ion exchange, a method utilizing "Na-K exchange" in which sodium ions in glass are exchanged for potassium ions is preferable.
It is more preferable to use the method of performing “Li—Na exchange” and “Na—K exchange” in combination, since a high surface compressive stress and a deep compressive stress layer can be formed in a relatively short processing time. In that case, it is more effective to perform “Na—K exchange” after performing “Li—Na exchange”.
 化学強化処理を行うための溶融塩としては、硝酸塩、硫酸塩、炭酸塩、塩化物などが挙げられる。このうち硝酸塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸銀などが挙げられる。硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、硫酸銀などが挙げられる。炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。塩化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化銀などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。 溶 融 Examples of the molten salt for performing the chemical strengthening treatment include nitrate, sulfate, carbonate, and chloride. Among these, examples of the nitrate include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, and silver nitrate. Examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, and silver sulfate. Examples of the carbonate include lithium carbonate, sodium carbonate, potassium carbonate and the like. Examples of the chloride include lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride and the like. These molten salts may be used alone or in combination of two or more.
 より具体的には、本強化ガラスは、以下に説明する強化処理方法(以下、「本強化処理方法」という。)によって製造できる。
 本強化処理方法は、ガラス板をカリウム含有強化塩に浸漬する工程を有する。カリウム含有強化塩としては、該強化塩に含まれる金属イオンの質量を100質量%として、カリウムイオンを70質量%以上含有する塩が好ましく、90質量%以上含有するものがより好ましい。そのような強化塩を用いることで表層に高圧縮応力層を形成することができる。カリウム含有強化塩としては、沸点や危険性などの扱いやすさの観点から、カリウム含有硝酸塩が好ましい。
 強化塩中には、硝酸カリウムを含有することが好ましく、硝酸カリウム以外の成分として、硝酸ナトリウムや硝酸マグネシウムなど、アルカリ金属やアルカリ土類金属の硝酸塩が含まれても良い。また、不純物レベルのリチウムが含まれていても良い。
More specifically, the present tempered glass can be manufactured by a tempering treatment method described below (hereinafter, referred to as “the present tempering treatment method”).
This tempering treatment method includes a step of immersing the glass plate in a potassium-containing reinforcing salt. As the potassium-containing fortifying salt, a salt containing 70% by mass or more of potassium ion is preferable, and a salt containing 90% by mass or more is more preferable, with the mass of the metal ion contained in the reinforcing salt being 100% by mass. By using such a reinforcing salt, a high compressive stress layer can be formed on the surface layer. As the potassium-containing reinforcing salt, potassium-containing nitrate is preferable from the viewpoint of easy handling such as boiling point and danger.
The strengthening salt preferably contains potassium nitrate, and as a component other than potassium nitrate, a nitrate of an alkali metal or an alkaline earth metal such as sodium nitrate or magnesium nitrate may be contained. Further, lithium at an impurity level may be contained.
 本強化処理方法においては、ガラス板を400℃~500℃のカリウム含有強化塩に浸漬することが好ましい。カリウム含有強化塩の温度が400℃以上であると、イオン交換が進行しやすく好ましい。また、応力緩和が生じることで、応力プロファイルにおける|x|/|y|比が小さくなりやすい。より好ましくは、420℃以上である。また、カリウム含有強化塩の温度が500℃以下であると過剰な表層の応力緩和を抑制できるため、好ましい。より好ましくは、480℃以下である。 In this tempering treatment method, it is preferable to immerse the glass plate in a potassium-containing tempering salt at 400 ° C. to 500 ° C. When the temperature of the potassium-containing reinforcing salt is 400 ° C. or higher, ion exchange is easy to proceed, which is preferable. Also, the occurrence of stress relaxation tends to reduce the | x | / | y | ratio in the stress profile. More preferably, the temperature is 420 ° C. or higher. Further, it is preferable that the temperature of the potassium-containing reinforcing salt is 500 ° C. or lower, since excessive stress relaxation of the surface layer can be suppressed. More preferably, it is 480 ° C or lower.
 また、カリウム含有強化塩にガラスを浸漬する時間は、1時間以上であると表面圧縮応力が大きくなるので好ましい。また、応力緩和が生じることで、応力プロファイルにおける|x|/|y|比が小さくなりやすい。浸漬時間は、より好ましくは2時間以上、さらに好ましくは3時間以上である。浸漬時間が長すぎると、生産性が下がるだけでなく、緩和現象により圧縮応力が低下する場合がある。圧縮応力を大きくするためには8時間以下が好ましく、より好ましくは6時間以下、さらに好ましくは4時間以下である。 ガ ラ ス The time for immersing the glass in the potassium-containing reinforcing salt is preferably 1 hour or more because the surface compressive stress increases. Also, the occurrence of stress relaxation tends to reduce the | x | / | y | ratio in the stress profile. The immersion time is more preferably 2 hours or more, and still more preferably 3 hours or more. If the immersion time is too long, not only does the productivity decrease, but also the compressive stress may decrease due to the relaxation phenomenon. In order to increase the compressive stress, the time is preferably 8 hours or less, more preferably 6 hours or less, and further preferably 4 hours or less.
 ガラス板をカリウム含有強化塩に浸漬する前に、他の強化塩に浸漬してもよい。他の強化塩としては、ナトリウム含有強化塩が好ましい。ナトリウム含有強化塩は、硝酸カリウムと同じく扱いやすさの観点から、硝酸ナトリウム強化塩が好ましい。また、強化塩に含まれる金属イオンの質量を100質量%として、ナトリウムイオンを70質量%以上含有することが好ましい。 前 Before immersing the glass plate in the potassium-containing reinforcing salt, it may be immersed in another reinforcing salt. As another fortifying salt, a sodium-containing fortifying salt is preferable. The sodium-containing fortifying salt is preferably a sodium nitrate-reinforcing salt from the viewpoint of ease of handling, similarly to potassium nitrate. Further, it is preferable that 70% by mass or more of sodium ions be contained, with the mass of metal ions contained in the reinforcing salt being 100% by mass.
 ガラス板をカリウム含有強化塩に浸漬した後は、300℃以下の温度に保つのが好ましい。300℃超の高温になるとイオン交換処理によって発生した圧縮応力が緩和現象によって低下するからである。ガラス板をカリウム含有強化塩に浸漬した後の保持温度は、より好ましくは250℃以下、さらに好ましくは200℃以下である。 (4) After the glass plate is immersed in the potassium-containing reinforcing salt, the temperature is preferably maintained at 300 ° C. or lower. This is because when the temperature becomes higher than 300 ° C., the compressive stress generated by the ion exchange treatment is reduced by the relaxation phenomenon. The holding temperature after immersing the glass plate in the potassium-containing reinforcing salt is more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
 化学強化処理の処理条件は、ガラスの特性・組成や溶融塩の種類などを考慮して、時間及び温度等を適切に選択すればよい。 処理 The processing conditions of the chemical strengthening treatment may be appropriately selected such as time and temperature in consideration of the properties and composition of the glass and the type of the molten salt.
 本発明の化学強化ガラスは、携帯電話、スマートフォン等のモバイル機器等に用いられるカバーガラスとして、特に有用である。さらに、携帯を目的としない、テレビ、パーソナルコンピュータ、タッチパネル等のディスプレイ装置のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)にも有用である。また、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラスとして、また曲面形状を有する筺体等の用途にも有用である。 The chemically strengthened glass of the present invention is particularly useful as a cover glass used for mobile devices such as mobile phones and smartphones. Further, the present invention is also useful for cover glass of a display device such as a television, a personal computer, and a touch panel, an elevator wall surface, and a wall surface of a building such as a house or a building (entire display) which is not intended for carrying. It is also useful for building materials such as window glasses, table tops, interiors of automobiles and airplanes and the like, and as cover glasses for them, and for applications such as housings having a curved surface shape.
 以下、本発明を実施例によって説明するが、本発明はこれに限定されない。
 表1に酸化物基準のモル百分率表示で示したガラスA~ガラスEの組成となるようにガラス原料を調合し、ガラスとして400gになるように秤量した。ついで、混合した原料を白金るつぼに入れ、1500~1700℃の電気炉に投入して3時間程度溶融し、脱泡し、均質化した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
Glass raw materials were prepared so as to have the compositions of glass A to glass E shown in Table 1 in terms of mole percentage on an oxide basis, and weighed to 400 g as glass. Next, the mixed raw materials were put into a platinum crucible, put into an electric furnace at 1500 to 1700 ° C., melted for about 3 hours, defoamed, and homogenized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた溶融ガラスを金属型に流し込み、ガラス転移点より50℃程度高い温度に1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。得られたガラスブロックを切断、研削し、最後に両面を鏡面研磨して、厚さが800μmのガラス板を得た。 (4) The obtained molten glass was poured into a metal mold, kept at a temperature about 50 ° C. higher than the glass transition point for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block. The obtained glass block was cut and ground, and finally both surfaces were mirror-polished to obtain a glass plate having a thickness of 800 μm.
 ガラスA~Eを用いて、以下の例1~例15の化学強化ガラスを作製し、評価した。なお、例1、2、5、6、8、11、14が実施例であり、例3、4、7、9、10、12、13、15は比較例である。 化学 Using Glasses A to E, chemically strengthened glasses of the following Examples 1 to 15 were produced and evaluated. Examples 1, 2, 5, 6, 8, 11, and 14 are Examples, and Examples 3, 4, 7, 9, 10, 12, 13, and 15 are Comparative Examples.
[化学強化処理]
 (例1)
 ガラスAからなるガラス板を450℃の硝酸ナトリウム100%の強化塩(ナトリウム含有強化塩)に1時間浸漬した後、450℃の硝酸カリウム100%(カリウム含有強化塩)に1時間浸漬し、冷水にて洗浄した。
 (例2~15)
 表2のガラス欄に示したガラスを用い、ナトリウム含有強化塩に浸漬する時間を表2の処理時間1に示した時間(単位:時間)とし、カリウム含有強化塩に浸漬する時間を処理時間2に示す時間(単位:時間)とした他は、例1と同様にして例2~15の化学強化ガラスを得た。
[Chemical strengthening treatment]
(Example 1)
A glass plate made of glass A is immersed in 450% sodium nitrate 100% strengthening salt (sodium-containing strengthening salt) at 450 ° C. for 1 hour, and then immersed in 450 ° C. potassium nitrate 100% (potassium-containing strengthening salt) for 1 hour and cooled in cold water And washed.
(Examples 2 to 15)
Using the glass shown in the glass column of Table 2, the time of immersion in the sodium-containing reinforcing salt is the time (unit: hours) shown in processing time 1 of Table 2, and the time of immersing in the potassium-containing reinforcing salt is processing time 2 The chemically strengthened glasses of Examples 2 to 15 were obtained in the same manner as in Example 1 except that the time (unit: hours) shown in (1) was used.
[応力プロファイルの測定]
 折原製作所社製の光導波表面応力計FSM-6000及び散乱光光弾性応力計SLP-1000を用いて応力値を測定した。表2にCS(単位:MPa)、D(単位:μm)、x(単位:MPa/μm)、y(単位:MPa/μm)、x/y、z(単位:MPa/μm)、及びDOL(単位:μm)を示す。図1は例1の化学強化ガラスについて、FSM-6000で得られた応力プロファイルであり、図2はSLP-1000で得た応力プロファイルである。図3に合成した結果を示す。
[Measurement of stress profile]
The stress value was measured using an optical waveguide surface stress meter FSM-6000 and a scattered light photoelastic stress meter SLP-1000 manufactured by Orihara Seisakusho. Table 2 shows CS 0 (unit: MPa), D (unit: μm), x (unit: MPa / μm), y (unit: MPa / μm), x / y, z (unit: MPa / μm), and DOL (unit: μm) is shown. FIG. 1 is a stress profile obtained by using FSM-6000 for the chemically strengthened glass of Example 1, and FIG. 2 is a stress profile obtained by using SLP-1000. FIG. 3 shows the result of the synthesis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 x/yが1である例4は、遅れチッピングが生じやすく、研磨時に歩留まりの低下を招く。同じガラスBを強化した例5は、上記の問題が起こらない。これは、強化処理時間が適切でx/yが0.19と低いためであろう。
 また、例2と例3は、どちらもガラスAを化学強化処理したものであるが、例2はDOLが180μmと深くまで圧縮応力層が導入されているのに対し、処理時間2が長すぎる例3はDOLが27μmと浅いので、砂上に落下させると容易に割れてしまう。
In Example 4 where x / y is 1, delayed chipping is apt to occur, which causes a decrease in yield during polishing. In Example 5 in which the same glass B was strengthened, the above-described problem did not occur. This may be because the reinforcement processing time is appropriate and x / y is as low as 0.19.
In both Examples 2 and 3, glass A was chemically strengthened. In Example 2, the compression stress layer was introduced as deep as 180 μm, but the processing time 2 was too long. In Example 3, since the DOL is as shallow as 27 μm, it is easily broken when dropped on sand.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2018年7月3日付けで出願された日本特許出願(特願2018-126894)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on Jul. 3, 2018 (Japanese Patent Application No. 2018-126894), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated in their entirety.

Claims (7)

  1.  ガラス表面に圧縮応力層を有する化学強化ガラスであって、
     光導波表面応力計を用いて測定されるガラス表面の圧縮応力値CSが500MPa以上であり、
     光導波表面応力計を用いて測定される圧縮応力値が0になる位置のガラス表面からの深さをD[単位:μm]、光導波表面応力計を用いて測定されるガラス表面からの深さが(D/2)の位置における圧縮応力値をCSとして、以下の式で求められるガラス表面から(D/2)の深さまでの応力プロファイルの傾きxの絶対値と、深さ(D/2)から深さDまでの応力プロファイルの傾きyの絶対値との比|x|/|y|が0~0.8であり、
     散乱光光弾性応力計を用いて測定される圧縮応力層深さDOLが50μm以上である、化学強化ガラス。
      x=(CS-CS)/((D/2)-0)=2×(CS-CS)/D
      y=(0-CS)/(D-(D/2))=-2×CS/D
    Chemically strengthened glass having a compressive stress layer on the glass surface,
    Compressive stress value CS 0 of the glass surface to be measured using the optical waveguide surface stress meter is not less than 500 MPa,
    The depth from the glass surface at the position where the compressive stress value measured using the optical waveguide surface stress meter becomes 0 is D [unit: μm], and the depth from the glass surface measured using the optical waveguide surface stress meter. Saga (D / 2) a compressive stress value at the position of the CS 2, the absolute value and the depth of the inclination x of the stress profile from the glass surface to be determined by the following equation to a depth of (D / 2) (D / 2) to the depth D, the ratio | x | / | y | of the gradient y of the stress profile from 0 to 0.8 is 0 to 0.8,
    A chemically strengthened glass having a compressive stress layer depth DOL measured using a scattered light photoelastic stress meter of 50 μm or more.
    x = (CS 2 -CS 0 ) / ((D / 2) -0) = 2 × (CS 2 -CS 0 ) / D
    y = (0−CS 2 ) / (D− (D / 2)) = − 2 × CS 2 / D
  2.  光導波表面応力計を用いて測定されるガラス表面からの深さが1μmの位置における圧縮応力値CSと前記CSとから以下の式で求められるガラス表面から深さ1μmまでの応力プロファイルの傾きzが-100MPa/μm以上0未満である、請求項1に記載の化学強化ガラス。
      z=(CS-CS)/(1μm-0μm)=(CS-CS)/1μm
    From the compressive stress value CS 1 at a position at a depth of 1 μm from the glass surface measured using an optical waveguide surface stress meter and the above-described CS 0 , the stress profile from the glass surface to a depth of 1 μm obtained from the following equation: 2. The chemically strengthened glass according to claim 1, wherein the slope z is at least -100 MPa / μm and less than 0.
    z = (CS 1 -CS 0 ) / (1 μm-0 μm) = (CS 1 -CS 0 ) / 1 μm
  3.  厚さが2000μm以下の板状である、請求項1または2に記載の化学強化ガラス。 The chemically strengthened glass according to claim 1 or 2, wherein the glass has a thickness of 2000 µm or less.
  4.  前記化学強化ガラスの厚さ方向の中央部分のガラス組成が、酸化物基準のモル%表示でSiOを50%以上、Alを5%以上含有し、
     LiO、NaOおよびKOの合計の含有量が5%以上であり、
     かつ、LiOの含有量と、LiO、NaOおよびKOの合計の含有量との比が0.5以上である、請求項1~3のいずれか1項に記載の化学強化ガラス。
    The glass composition of the central part in the thickness direction of the chemically strengthened glass contains 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis,
    The total content of Li 2 O, Na 2 O and K 2 O is 5% or more;
    And the content of Li 2 O, the ratio of Li 2 O, the total content of Na 2 O and K 2 O is 0.5 or more, according to any one of claims 1 to 3 Chemically tempered glass.
  5.  前記化学強化ガラスの母組成が、酸化物基準のモル%表示で
    SiO  50~80%、
    Al 5~25%、
      0~10%、
      0~10%、
    LiO  2~20%、
    NaO  0.5~10%、
    O   0~5%、
    MgO+ZnO+CaO+SrO+BaO   0~15%、
    ZrO+TiO   0~5%、
     である請求項1~4のいずれか1項に記載の化学強化ガラス。
    When the mother composition of the chemically strengthened glass is 50 to 80% of SiO 2 in terms of mol% on an oxide basis,
    Al 2 O 3 5 to 25%,
    B 2 O 3 0-10%,
    P 2 O 50 0-10%,
    Li 2 O 2-20%,
    Na 2 O 0.5-10%,
    K 2 O 0-5%,
    MgO + ZnO + CaO + SrO + BaO 0-15%,
    ZrO 2 + TiO 2 0-5%,
    The chemically strengthened glass according to any one of claims 1 to 4, wherein
  6.  請求項1~5のいずれか1項に記載の化学強化ガラスの製造方法であって、
     ガラス板を400℃~500℃のカリウム含有強化塩に1~8時間浸漬することと、
     その後前記ガラス板を300℃以下の温度にすることと、を含み、
     前記カリウム含有強化塩は、該強化塩に含まれる金属イオンの質量を100質量%として、カリウムイオンを70質量%以上含有する、化学強化ガラスの製造方法。
    The method for producing a chemically strengthened glass according to any one of claims 1 to 5, wherein
    Immersing the glass plate in a potassium-containing reinforcing salt at 400 ° C. to 500 ° C. for 1 to 8 hours;
    And thereafter bringing the glass plate to a temperature of 300 ° C. or less,
    The method for producing chemically strengthened glass, wherein the potassium-containing strengthening salt contains 70% by mass or more of potassium ions, with the mass of metal ions contained in the strengthening salt being 100% by mass.
  7.  前記ガラス板の化学強化前のガラス組成は、酸化物基準のモル%表示で
     SiOを50%以上、Alを5%以上含有し、
     LiO、NaOおよびKOの合計の含有量が5%以上であり、
     かつ、LiOの含有量と、LiO、NaOおよびKOの合計の含有量との比が0.5以上である、請求項6に記載の化学強化ガラスの製造方法。
    The glass composition of the glass plate before the chemical strengthening contains 50% or more of SiO 2 and 5% or more of Al 2 O 3 in terms of mol% on an oxide basis,
    The total content of Li 2 O, Na 2 O and K 2 O is 5% or more;
    And the content of Li 2 O, the ratio of the total content of Li 2 O, Na 2 O and K 2 O is 0.5 or more, a manufacturing method of chemically strengthened glass according to claim 6.
PCT/JP2019/024562 2018-07-03 2019-06-20 Chemically strengthened glass and method for manufacturing same WO2020008901A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020528790A JP7255594B2 (en) 2018-07-03 2019-06-20 Chemically strengthened glass and its manufacturing method
CN201980044625.9A CN112399964B (en) 2018-07-03 2019-06-20 Chemically strengthened glass and method for producing same
CN202211423155.7A CN115716714B (en) 2018-07-03 2019-06-20 Chemically strengthened glass and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-126894 2018-07-03
JP2018126894 2018-07-03

Publications (1)

Publication Number Publication Date
WO2020008901A1 true WO2020008901A1 (en) 2020-01-09

Family

ID=69060589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024562 WO2020008901A1 (en) 2018-07-03 2019-06-20 Chemically strengthened glass and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP7255594B2 (en)
CN (2) CN115716714B (en)
WO (1) WO2020008901A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116040A (en) * 2020-01-20 2020-05-08 科立视材料科技有限公司 Toughened glass product with non-single surface compressive stress slope and preparation method thereof
CN112592056A (en) * 2020-10-30 2021-04-02 重庆鑫景特种玻璃有限公司 Safety reinforced glass with low-variation-amplitude tensile stress area, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116553821B (en) * 2023-05-15 2024-01-30 北京工业大学 Anti-falling scratch-resistant alkali-resistant aluminosilicate glass and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126605A1 (en) * 2016-01-21 2017-07-27 旭硝子株式会社 Chemically strengthened glass and method for manufacturing chemically strengthened glass
WO2018043361A1 (en) * 2016-09-02 2018-03-08 旭硝子株式会社 Method for producing chemically toughened glass
WO2018056121A1 (en) * 2016-09-26 2018-03-29 有限会社折原製作所 Stress measuring device for tempered glass, stress measuring method for tempered glass, method for manufacturing tempered glass, and tempered glass

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041618A1 (en) * 2007-09-28 2009-04-02 Hoya Corporation Glass substrate for magnetic disk, process for producing the glass substrate, and magnetic disk
JP2015006959A (en) * 2011-10-31 2015-01-15 旭硝子株式会社 Glass substrate, method for manufacturing glass substrate, and cover glass
WO2013176150A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Chemically strengthened glass plate, cover glass, chemically strengthened glass with touch sensor, and display device
JP6197317B2 (en) * 2013-03-15 2017-09-20 セントラル硝子株式会社 Display device, display device manufacturing method, touch panel, and touch panel manufacturing method
JP6419595B2 (en) * 2015-01-30 2018-11-07 有限会社折原製作所 Surface stress measurement method, surface stress measurement device
CN107683269A (en) * 2015-06-15 2018-02-09 旭硝子株式会社 Chemically reinforced glass
TWI762083B (en) * 2015-09-17 2022-04-21 美商康寧公司 Methods of characterizing ion-exchanged chemically strengthened glasses containing lithium
WO2017123596A1 (en) * 2016-01-13 2017-07-20 Corning Incorporated Ultra-thin, non-frangible glass and methods of making
JP2019069861A (en) * 2016-03-01 2019-05-09 Agc株式会社 Chemically strengthened glass, sensor unit, portable device and method for producing chemically strengthened glass
CN115028360A (en) * 2016-05-27 2022-09-09 康宁股份有限公司 Breakage and scratch resistant glass articles
CN109219583A (en) * 2016-06-03 2019-01-15 Agc株式会社 Chemical strengthening glass and chemically reinforced glass
CN115231820B (en) * 2016-09-21 2023-06-23 Agc株式会社 Chemically strengthened glass and chemically strengthened glass
WO2018074335A1 (en) * 2016-10-18 2018-04-26 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
JP2018080096A (en) * 2016-11-18 2018-05-24 旭硝子株式会社 Cover glass, display device and manufacturing method of cover glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126605A1 (en) * 2016-01-21 2017-07-27 旭硝子株式会社 Chemically strengthened glass and method for manufacturing chemically strengthened glass
WO2018043361A1 (en) * 2016-09-02 2018-03-08 旭硝子株式会社 Method for producing chemically toughened glass
WO2018056121A1 (en) * 2016-09-26 2018-03-29 有限会社折原製作所 Stress measuring device for tempered glass, stress measuring method for tempered glass, method for manufacturing tempered glass, and tempered glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116040A (en) * 2020-01-20 2020-05-08 科立视材料科技有限公司 Toughened glass product with non-single surface compressive stress slope and preparation method thereof
CN112592056A (en) * 2020-10-30 2021-04-02 重庆鑫景特种玻璃有限公司 Safety reinforced glass with low-variation-amplitude tensile stress area, and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2020008901A1 (en) 2021-07-08
JP7255594B2 (en) 2023-04-11
CN112399964B (en) 2022-11-15
CN115716714B (en) 2024-02-13
CN115716714A (en) 2023-02-28
CN112399964A (en) 2021-02-23

Similar Documents

Publication Publication Date Title
JP7136096B2 (en) Chemically strengthened glass, method for producing the same, and glass for chemical strengthening
JP6891921B2 (en) Chemically tempered glass and manufacturing method of chemically tempered glass
JP7260041B2 (en) chemically strengthened glass
KR102569434B1 (en) Chemically strengthened glass and glass for chemical strengthening
JP7400738B2 (en) Chemically strengthened glass and its manufacturing method
JP7184073B2 (en) glass for chemical strengthening
WO2018199046A1 (en) Chemically strengthened glass, and glass for chemical strengthening purposes
JP7420152B2 (en) Chemically strengthened glass article and its manufacturing method
JP7255594B2 (en) Chemically strengthened glass and its manufacturing method
JPWO2019194110A1 (en) Chemical strengthening glass
US20230060972A1 (en) Chemically strengthened glass article and manufacturing method thereof
WO2023243574A1 (en) Glass for chemical strengthening, and glass
WO2022215717A1 (en) Chemically strengthened glass and manufacturing method therefor
WO2022172813A1 (en) Strengthened glass sheet and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829979

Country of ref document: EP

Kind code of ref document: A1