WO2023127261A1 - Auto-focus device - Google Patents

Auto-focus device Download PDF

Info

Publication number
WO2023127261A1
WO2023127261A1 PCT/JP2022/039867 JP2022039867W WO2023127261A1 WO 2023127261 A1 WO2023127261 A1 WO 2023127261A1 JP 2022039867 W JP2022039867 W JP 2022039867W WO 2023127261 A1 WO2023127261 A1 WO 2023127261A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
autofocus
sample
optical
image
Prior art date
Application number
PCT/JP2022/039867
Other languages
French (fr)
Japanese (ja)
Inventor
安井真人
Original Assignee
株式会社Zido
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Zido filed Critical 株式会社Zido
Publication of WO2023127261A1 publication Critical patent/WO2023127261A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present invention is an autofocus device installed in an optical device, which prevents defocus due to deviation or distortion of an optical element arranged in an optical system (hereinafter referred to as an optical system), and prevents a sample from being defocused.
  • the present invention relates to an autofocus technique for achieving high-speed focusing while suppressing the amount of light given to the subject.
  • Autofocus is one of the important elemental technologies for automating microscopes.
  • optical microscopes the following two methods are mainly used as autofocus methods.
  • the first method is the contrast method.
  • the objective lens or stage is moved in the direction of the optical axis, the actually formed image is photographed with an image sensor, and the focus is scanned while evaluating the sharpness of the image by image processing.
  • the position of maximum sharpness is the in-focus position. In this case, since scanning in the focal direction is required, it takes a long time to focus. In addition, since the sample is exposed to a large amount of light, fading is a problem during fluorescence observation. becomes.
  • the second method is a phase difference method.
  • the stage is irradiated with near-infrared light from one direction, and the reflected light is used to form an image of the diaphragm on the image pickup device.
  • This is a method of driving a distance adjustment mechanism that moves the objective lens or stage in the optical axis direction.
  • the scanning described above is not required, and since near-infrared light is used, the problem of fading does not occur, so microscopes of this type are often used in life science research.
  • the second method is mainly used in life science research, but there is also the problem that the focus shifts after a long period of time, so the current situation is that the autofocus device is manually fine-tuned before shooting.
  • the autofocus device is manually fine-tuned before shooting.
  • there is a shortage of experimenters for acquiring data in research and development in the field of life science so there is a high need for automation of microscopic photography in the field.
  • In order to automate the microscope it is essential to develop an autofocus technology that does not shift focus even after a long period of time.
  • irradiation of a sample with near-infrared light does not cause the problem of fading due to fluorescent molecules, but it does affect the measurement results to some extent.
  • a small amount of near-infrared light passes through the dichroic mirror, and there is also the problem of light leaking into high-sensitivity observation cameras such as those used in life science research. Therefore, the amount of near-infrared light that irradiates the sample is required to be suppressed as much as possible.
  • the phase-contrast method is often used in the automation of microscopes.
  • the focus is on a position shifted from the glass surface, and the focus is shifted from the target object to be observed.
  • the focal position is within the range of the optical axis direction, such as with a confocal microscope or fluorescence microscope, that is, when the observation target is the entire thick cell, defocusing is allowed as long as the focal position is within the thickness of the cell. sometimes you can.
  • the focal point shifts from the glass surface in the direction of the optical axis, causing the image to blur and the captured image to be used for observation.
  • Patent document 1 or patent document 2 is disclosed as a prior art of the phase difference method that addresses the above-mentioned problems.
  • the light used for focusing is made to enter from one direction, and the position of the aperture image detected by the image sensor is controlled to be in the center.
  • the position of the diaphragm changes due to the shift or distortion of the optical system, it is difficult to maintain the in-focus state for a long time.
  • Patent Document 1 A phase-difference autofocus technology developed to solve the problems of the conventional technology is disclosed.
  • AF light autofocus light
  • An image of the formed image (hereinafter referred to as an aperture image) is obtained, and the position of the aperture image is measured from the image.
  • the difference between the image positions of the diaphragm images is calculated, and the stage is moved in the Z direction (optical axis direction) and controlled so that the difference becomes a constant value.
  • the optical system is distorted, the position of the diaphragm image accompanies the same change in each image.
  • the AF light reflected at one point on the sample glass surface is separated by a microlens array, photographed by an autofocus camera, and autofocus is performed.
  • the autofocus camera light images condensed on the sample are separated by a microlens array and displayed in a grid pattern. Moving the stage along the optical axis changes the spacing of the grid.
  • Focusing is performed by controlling a distance adjustment mechanism that moves the objective lens or the stage in the optical axis direction so that the distance becomes a predetermined value. Positional deviation of the AF light image occurs due to deviation or distortion of the optical system, and the position of the grating moves, but the spacing of the grating does not change, so it is possible to maintain the focused position for a long time. Autofocus is disclosed.
  • the inventor of the present application has been developing an autofocus device that is resistant to optical system deviation and distortion and that suppresses the amount of AF light that irradiates the sample. If high accuracy of autofocus operation can be maintained for a long time with low phototoxicity, the probability of defocusing during automatic imaging with a super-resolution microscope can be suppressed, and the toxicity to cells is reduced, which is life-threatening. An accurate observation of the state can be achieved. Also, in the case of fluorescence microscopes, etc., if the autofocus accuracy is high, images can be taken for a long time at a fixed height from the glass surface, and the focal point does not shift in the direction of the optical axis. There is an advantage that it can be improved and the reliability of the data increases.
  • An object of the present invention is to provide an autofocus device for an optical device that is structured and compact.
  • a further object of the present invention is to provide an autofocus device for an optical device that can reduce the influence of AF light on samples used in life science research.
  • the autofocus device of the present invention is an autofocus device that automatically adjusts the distance between a sample to be observed and an objective lens for focusing, wherein an optical element array extends from a light source to the sample.
  • the light emitted from the light source is separated by the optical element array, and a plurality of lights with different incident angles are made incident on the sample, and the autofocus imaging device is arranged on the optical path of the A plurality of light images formed by the reflected light from the sample are acquired, and the control unit calculates the intervals between the plurality of light images, and calculates the distance between the plurality of light images, which is set in advance as a reference value for focusing. It is characterized by obtaining a difference from the grid spacing reference value and outputting a movement operation command signal to the distance adjusting mechanism.
  • the autofocus device of the present invention can be configured by moving an optical element arranged between the optical element array and the autofocus imaging device in the optical axis direction of the light emitted from the light source, or by moving the grating interval.
  • the focal position in the optical axis direction is changed or corrected by changing the reference value.
  • the autofocus device of the present invention is characterized by arranging a polarizer and a wavelength plate between an optical element for extracting or separating autofocus light from an observation optical system and an autofocus imaging device. .
  • the microscope of the present invention is characterized by having the aforementioned autofocus device.
  • the autofocus is performed by operating the galvanomirror to change the angle of the light incident on the diaphragm, capturing images a plurality of times, and detecting the state of defocus.
  • a plurality of light beams incident on different positions on a plane perpendicular to the optical axis have different angles. It is possible to measure the distance, acquire the state of defocus, and adjust the focus using a distance adjustment mechanism (hereinafter referred to as a focus movement mechanism) that moves the objective lens or stage in the optical axis direction. have some effect.
  • a distance adjustment mechanism hereinafter referred to as a focus movement mechanism
  • the mechanism of the optical system can be simplified because the galvanomirror is not required.
  • the time required to obtain the focus state can be shortened, and the speed of autofocus can be increased.
  • Patent Document 2 a single line of light is incident locally on the sample to be observed and then divided by the lens array, so the sample may be affected by phototoxicity depending on the intensity of the AF light.
  • the autofocus device of the present invention since the AF light is separated by the lens array and then irradiated onto the sample to be observed, there is no need to separate the reflected light after that, and the reflected light is strong enough to affect the sample. No light is incident locally on the specimen.
  • the result is that the light is concentrated at one point on the sample.
  • the amount of light to be applied is 1/9. Therefore, by separating the AF light before irradiating the sample, the intensity of the light can be reduced to about 1/10, and the effect on the sample can be suppressed. Furthermore, by placing a shielding plate before irradiating the sample to reduce the number of light rays passing through, it is possible to further suppress the amount of light applied to the sample.
  • the lenses placed between the sample and the autofocus camera are, in principle, only the objective lens and the imaging lens for AF. Loss of light quantity can be suppressed.
  • the position of the diaphragm is measured from the images obtained by the light incident at a plurality of angles at the same time, and the relative difference is obtained.
  • the optical system is resistant to distortion and is less likely to be out of focus even after a long period of time.
  • the microscope of the present invention in life science research that requires the acquisition of a large amount of data, it is possible to inexpensively increase the speed of microscopic observation and save labor.
  • a microscope equipped with an autofocus device with an automatic dispensing machine, it becomes possible to apply it to automation of drug screening. Specifically, an image of the state of the living body before adding the drug is taken with an automated microscope, and an image of the state of the living body is taken again after the drug is added, and the effects of the drug are evaluated by comparing both images. can do.
  • FIG. 1 is a conceptual diagram showing the basic configuration of an optical system of an autofocus device 1 of the present invention
  • FIG. 2 is a diagram showing an image of AF light captured by an autofocus camera 50 in the optical system of FIG. 1
  • FIG. FIG. 5 is a diagram showing a flowchart for calculating a deviation distance amount from an in-focus position in the autofocus device 1 of the present invention
  • It is a figure explaining the principle of the autofocus apparatus 1 of this invention.
  • 5 is a diagram showing an image of the diaphragm 30 photographed by the autofocus camera 50 in the optical system of FIG. 4.
  • FIG. 10 is a diagram showing an example of an image of an aperture image AI(n) in an N ⁇ N grid obtained by an autofocus camera 50 having a wide imaging range; 1 is a diagram showing one embodiment of an autofocus device 2 of the present invention; FIG. FIG. 4 is a diagram showing another embodiment of the autofocus device 3 of the present invention;
  • FIG. 1 is a conceptual diagram showing the basic configuration of the optical system of the autofocus device 1 of the present invention.
  • the autofocus device 1 is a camera (hereinafter referred to as an AF camera 50) including a light source 20, an optical element array, a half mirror 40, an objective lens 110, an AF imaging lens 66, and an autofocus imaging device. ).
  • a light source 20 in FIG. 1 indicates a point light source 20 .
  • a light ray R emitted from a point light source is indicated by a solid line (same below).
  • a planar lens array 10 in which a plurality of lenses are arranged in the XY axis direction is suitable for the optical element array.
  • FIG. 1 is a conceptual diagram showing the basic configuration of the optical system of the autofocus device 1 of the present invention.
  • the autofocus device 1 is a camera (hereinafter referred to as an AF camera 50) including a light source 20, an optical element array, a half mirror 40, an objective lens 110, an AF
  • the light emitted from the point light source 20 is the AF light.
  • the AF light passes through the lens array 10, the half mirror 40, and the objective lens 110, and the AF light image RI is formed on the sample 100.
  • the lens array 10 splits the light so that the light spot is at a corner.
  • a plurality of these square images are formed and are basically formed in the same lattice pattern as the arrangement of the lens array 10 . In FIG. 1, only rays in the X-axis direction are shown, and rays in the Y-axis direction are not shown.
  • the light emitted from the point light source 20 is represented by one ray that travels straight on the optical axis (on the Z axis) and two rays that pass from the optical axis in the positive or negative direction of the X axis at an angle, Three light spots are imaged on the sample 100 .
  • the angles of the incident light rays differ depending on the position of each lens in the lens array 10 in which the lenses are arranged in a grid pattern.
  • the central image is formed by rays traveling straight along the optical axis (Z-axis) in the positive direction.
  • Z-axis optical axis
  • the angle of the ray with respect to the Z-axis increases as the distance from the Z-axis increases.
  • the optical image RI becomes a grid-like two-dimensional image.
  • the AF light emitted from the point light source 20 to the sample 100 is reflected by the sample 100 (indicated by a dashed line in the drawing), and further, a part of the light amount is reflected by the half mirror 40, and is reflected by the AF camera 50. be filmed. Since the surface of the sample 100 and the surface of the AF camera 50 are conjugate, the AF camera 50 also captures a grid-like image of the AF light emitted from the point light source 20 .
  • FIG. 2 is a diagram showing an image of AF light captured by the AF camera 50 in the optical system of FIG.
  • the AF optical image RI split by the lens array 10 is photographed in a grid pattern on the autofocus imaging device.
  • a square frame is a photographing area FV of the AF camera.
  • the lattice spacing in focus is determined by the spacing of each lens in the lens array 10, the focal point of the lens, and the magnification of the objective lens 110. Therefore, the direction and distance for focusing by the autofocus operation are derived by comparing the size of the grid spacing and calculating the dimensional difference between the grid in focus and the grid image currently being photographed. be able to. Autofocus is realized by operating a focus movement mechanism that moves the objective lens 110 or the stage in the optical axis direction so that the grating interval always maintains a predetermined interval.
  • FIG. 3 shows a flowchart for calculating the amount of deviation from the in-focus position and operating the focus movement mechanism in the autofocus device 1 of the present invention.
  • the flowchart is constructed based on FIG. 1 for ease of explanation. Further, the flowchart is programmed and executed by the control unit.
  • step S20 the lens array 10 splits the AF light emitted from the point light source 20 into a grid pattern, and the AF light image RI formed on the sample 100 is captured by the AF camera 50. to shoot. At that time, it is determined whether or not the photographing of the spectroscopic AF optical image RI has succeeded (S30). If the photographing fails because the AF optical image RI is not captured, it is judged that an error has occurred, and step S80. process and exit. If the AF optical image RI has been successfully photographed, the lattice spacing ⁇ (delta) of the image obtained by photographing the AF optical image RI is measured in step S40.
  • step S70 it is determined whether or not to end the autofocus operation.
  • the termination process of step S80 is performed.
  • the process returns to the photographing of the AF optical image RI in step S20, and the above steps are repeated.
  • a specific method for calculating dx and dz will be described later.
  • Patent Document 1 AF light is applied to a sample at different angles, and a plurality of images taken by an AF camera are compared to calculate the difference in the position of the AF light image.
  • the focusing device 1 by using the lens array 10, AF optical images RI at a plurality of angles are acquired in a single photographing operation, and the difference between the AF optical images RI is calculated. You can get results with the same precision at high speed. Further, even if the optical system is misaligned or distorted, according to the autofocus device 1 of the present invention, only the position of the grating formed by the AF optical image RI is changed, and the grating interval is the same as that of the optical system.
  • the autofocus device 1 of the present invention Since there is no change from before deviation or distortion occurs, there is no effect on autofocus accuracy.
  • the autofocus device of Patent Document 1 since a plurality of images are taken with a time difference (several hundred milliseconds), if the optical system shifts or is distorted between the first and second shots, the focus movement mechanism
  • an image for calculating the difference can be obtained in one shot. Therefore, even if the optical system is misaligned or distorted for about several hundred milliseconds, it does not affect the calculation accuracy of the difference up to the in-focus position. Therefore, the autofocus device 1 of the present invention has a very strong effect on optical system shifts and distortions on all time scales.
  • the advantage of simultaneously irradiating the light divided into multiple angles is that the structure is very simple because there is no need for moving parts such as galvanometer mirrors, and the autofocus operation can be processed in a short time because the shooting can be done only once. It is possible.
  • the advantage of arranging the lens array 10 in the front stage of the sample 100 on the optical path is that the maximum light intensity applied to the sample 100 can be dispersed by dispersing the AF light that irradiates the sample 100.
  • the maximum light intensity at the condensing point on the sample increases, and the AF light is likely to enter a camera for observing the sample as stray light. There is an upper limit.
  • the maximum light intensity of the AF light is lowered, the exposure time required for autofocusing becomes longer, and the time required for the autofocusing operation becomes longer.
  • the AF light is dispersed in the above-described manner, the reflected light from the sample 100 can be captured by the AF camera 50 without passing through the lens array 10, unlike in Patent Document 2.
  • the amount of light applied to the sample 100 can be suppressed by the number of gratings to be separated, and the autofocus exposure time can be shortened. Play.
  • the amount of light applied to the sample 100 can be further suppressed.
  • the accuracy of autofocus will be reduced and the range will be narrowed, so careful design is required. The details of the relationship between the autofocus accuracy and focus range and the number of grids will be described later.
  • FIG. 4 is a diagram explaining the principle of the autofocus device 1 of the present invention.
  • a basic autofocus optical system (hereinafter referred to as an AF optical system) comprises a light source 20, a lens A60, a diaphragm 30, a lens array 10 and a lens B62.
  • the lens A60 is a condensing lens
  • the lens B62 is a lens for forming the lattice of the aperture image AI.
  • the diaphragm 30 is not essential in terms of construction, and it is sufficient if the characteristics of the light source 20 are suitable for AF light as shown in FIG. For example, it can be applied by using a laser focal point or by making the shape of the diaphragm 30 polygonal.
  • AF light emitted from the light source 20 toward the sample passes through the aperture 30, and the reflected light of the aperture image AI formed on the sample is separated using a half mirror 40 or the like at an arbitrary position on the reflected light path.
  • the current focus state is detected and adjusted to be in focus by forming an image on the take-out AF camera 50 .
  • the AF optical image RI formed by the AF light emitted from the light source was captured by the AF camera 50.
  • AI is filmed.
  • the virtual plane P, the sample, and the AF camera 50 are in a conjugate relationship.
  • the light source 20 is not particularly limited, such as a light-emitting diode (LED (Light Emitting Diode)), laser light, or the like.
  • LED Light Emitting Diode
  • the wavelength of light a wavelength not used in microscopic photography is selected, but in principle any wavelength is acceptable.
  • the lens array 10 is arranged in the XY direction, that is, as a surface of N ⁇ N (N is an integer) perpendicular to the Z axis. In this specification, the case where N is an odd number will be explained, but in principle there is no need for the center of one lens of the lens array 10 to be on the optical axis, and there is no problem even if it is an even number.
  • the lens A60 is used to condense the light, pass through the diaphragm 30, approximate the point light source 20, and then irradiate the lens array 10, the diaphragm A grid-like image is obtained with the image AI as the intersection point.
  • FIG. 4 shows only light rays that have passed through individual lens centers in the lens array 10 .
  • FIG. 5 is a diagram showing an image of the diaphragm 30 captured by the AF camera 50 in the optical system of FIG.
  • the aperture image AI appears in a grid pattern.
  • the aperture image AI is a two-dimensional image in the same N ⁇ N grid pattern as the lens arrangement.
  • FIG. 6 shows an example of an image of an aperture image AI(n) in the form of an N ⁇ N lattice captured by the AF camera 50 having a wide imaging range.
  • the AF light split by the lens array 10 is condensed by the lens B62 to form an aperture image AI on a virtual plane P perpendicular to the optical axis.
  • the virtual plane P, the sample plane, and the plane of the AF camera 50 are conjugate.
  • FIG. 6 shows the state in which the lens at the center of the lens array 10 is arranged on the optical axis. No need to place.
  • Formula 5 shows that if dz is constant, the change in dx increases as n increases. Therefore, high accuracy can be achieved by performing calculations using grid intervals with a large n.
  • n is large, the movement of the light spot of the aperture image AI forming the lattice becomes large, so that the selected n aperture image AI(n) may deviate from the photographing area of the AF camera 50 in some cases. Sometimes I end up doing it. If the selected n-th aperture image AI(n) is out of the imaging area, select the aperture image AI with a smaller n within the imaging area, for example, the n-1th aperture image AI(n-1).
  • the focus moving mechanism is driven to return the selected n aperture images AI(n) to the photographing area of the AF camera 50, thereby realizing a wide autofocus range. That is, by switching n when performing calculations, it is possible to achieve both a wide autofocus range and high accuracy.
  • the current focus deviation distance amount dz (equation 5) can be known from dx calculated by the control unit using the image captured by the AF camera 50 .
  • the deviation distance amount dz becomes 0, wide-range, high-speed, and high-precision autofocus can be achieved.
  • FIG. 7 is a diagram showing one embodiment of the autofocus device 2 of the present invention.
  • the observation optical system is composed of an observation camera 130 , an observation imaging lens 120 , a dichroic mirror 44 and an objective lens 110 .
  • the AF optical system comprises a light source 20, a lens A60, a diaphragm 30, a lens B62, a lens C64, a half mirror 40, a dichroic mirror 44, an objective lens 110, an AF imaging lens 66, and an AF camera in order through which AF light passes. 50.
  • the lens A60 is a condensing lens
  • the lens B62 is a lens for forming the lattice of the diaphragm image AI
  • the lens C64 is a lens for forming the diaphragm image AI.
  • the observation optical system is configured in the microscope device. The observation optical system and the AF optical system share some optical elements.
  • the dichroic mirror 44 and the objective lens 110 are used as common components.
  • the AF optical system of Example 1 the diaphragm 30, the virtual plane P, the surface of the sample 100 and the AF camera are in a conjugate relationship.
  • the autofocus device 2 includes a control unit, which is not shown in FIG.
  • the control unit has at least a power supply unit, a calculation unit that calculates the displacement distance (dz), etc., an input unit that acquires an image from the AF camera 50, an output unit such as a command signal to the focus movement mechanism, and a storage unit.
  • a control unit has at least a power supply unit, a calculation unit that calculates the displacement distance (dz), etc.
  • an input unit that acquires an image from the AF camera 50
  • an output unit such as a command signal to the focus movement mechanism
  • a storage unit such as a command signal to the focus movement mechanism.
  • it is not limited to this, and may have functions similar to those of a general-purpose computer.
  • the AF light emitted from the light source 20 is condensed through the lens A60, enters the diaphragm 30, and approximates the light emitted from the point light source 20.
  • the AF light passes through the lens array 10 and the lens B62 and is focused on the position of the virtual plane P as the diaphragm image AI.
  • a grid-like aperture image AI split by the lens array 10 appears on the virtual plane P.
  • the AF light that forms the grid-like aperture image AI on the virtual plane P passes through the lens C64 and the half mirror 40, and the dichroic mirror 44 reflects light of wavelengths other than the specific region, and enters the objective lens 110.
  • the sample 100 is irradiated with an image formed in a grid pattern.
  • Reflected light from the sample 100 passes through the objective lens 110 and the dichroic mirror 44 , is reflected by the half mirror 40 , passes through the AF imaging lens 66 , and forms an image on the imaging device of the AF camera 50 .
  • the AF camera 50 captures an aperture image AI on the virtual plane P and in the same grid pattern as the sample 100 surface.
  • the method of separating the reflected light of the AF light by arranging the half mirror 40 between the dichroic mirror 44 and the lens C64 can be used when constructing an integrated optical observation apparatus in which the autofocus device 2 is built into the microscope. This is effective because the size of the device 2 can be reduced and the number of components can be reduced.
  • the grating interval changes.
  • the optical axis direction corresponding to the difference ( dx ) between the changed grating spacing and the predetermined grating spacing value Df is adjusted so that the changed grating spacing value becomes equal to the predetermined grating spacing value Df.
  • Auto-focusing is performed by moving the objective lens 110 or the stage in the optical axis direction by the distance difference, ie, the displacement distance amount (dz).
  • the direction of movement at that time can be determined by the positive or negative value of the shift distance amount (dz).
  • An image of the sample 100 itself is captured by the observation camera 130 through the objective lens 110 of the observation optical system, the dichroic mirror 44 and the observation imaging lens 120 .
  • the dichroic mirror 44 reflects only the AF light and transmits the illumination light for observation.
  • an illumination light source for observation is not shown.
  • FIG. 8 is a diagram showing another embodiment of the autofocus device 3 of the present invention.
  • the observation optical system is composed of an observation camera 130 , an observation imaging lens 120 , a dichroic mirror 44 and an objective lens 110 .
  • the AF optical system is composed of a light source 20, a lens A60, a diaphragm 30, a lens B62, a polarizer, a lens C64, a wave plate, a dichroic mirror 44, an objective lens 110, and an AF camera 50 in order through which AF light passes.
  • the polarizer is preferably a polarizing beam splitter 42 capable of splitting incident light into P and S polarization components.
  • lens A60, lens B62 and lens C64 play the same role as in FIG.
  • the observation optical system and the AF optical system share some optical elements.
  • the dichroic mirror 44 and the objective lens 110 are used as common components.
  • the controller is not shown in FIG. 8, it may have the same configuration as the first embodiment.
  • the virtual plane P, the sample 100 plane, and the AF camera 50 are in a conjugate relationship.
  • the AF light emitted from the light source 20 is condensed by the lens A60, passes through the diaphragm 30, and the diaphragm image AI is formed on the virtual plane P in a grid pattern, which is the same as in the first embodiment.
  • the AF light that has passed through the virtual plane P passes through the polarizing beam splitter 42, the lens C64, and the ⁇ /4 wavelength plate 70, is reflected by the dichroic mirror 44, passes through the objective lens 110, and forms a grating on the sample 100.
  • An aperture image AI is formed.
  • Reflected light from the sample 100 passes through the objective lens 110 and is reflected by the dichroic mirror 44, then passes through the ⁇ /4 wavelength plate 70, then the lens C64, is reflected by the polarizing beam splitter 42, and is reflected by the imaging device of the AF camera. image on.
  • the AF camera 50 captures an aperture image AI on the virtual plane P and in the same grid pattern as the sample 100 surface.
  • the advantage of the configuration of the AF optical system of Example 2 is that it is not necessary to dispose the half mirror 40 between the lens C64 and the objective lens 110.
  • the reflected light from the sample 100 is separated by disposing the polarizing beam splitter 42 after the reflected light path of the lens C64, not between the lens C64 and the objective lens 110.
  • the focal length of the lens C64 must be set long because the AF optical system is combined with the observation optical system. 42 can be sufficiently secured.
  • the ⁇ /4 wavelength plate 70 must be placed in front of the reflected light path of the polarizing beam splitter 42 .
  • the structure of the autofocus device 3 has more space and the design becomes easier.
  • the half mirror 40 is not used to split the light into two directions, so the total amount of light can be incident on the AF camera 50, so the amount of light to the sample 100 can be reduced, thereby suppressing phototoxicity. be able to.
  • An image of the sample 100 itself is captured by the observation camera 130 through the objective lens 110 of the observation optical system, the dichroic mirror 44 and the observation imaging lens 120 .
  • the dichroic mirror 44 reflects only the AF light and transmits the illumination light for observation.
  • an illumination light source for observation is not shown.
  • the autofocus device of the present invention is particularly effective in the life science research field.
  • the autofocus device of the present invention is not affected by misalignment or distortion of the optical system even when the autofocus operation is performed for a long time, so it is possible to realize automation of life science observation. is.
  • By scanning the stage on which a large number of samples are set in the XY directions while continuing the autofocus operation it is possible to automatically photograph a large number of microscope images of the samples.

Abstract

[Problem] The object of the present invention is to provide an autofocus device which is for an optical device, which has a simple configuration and is compact while also making it possible to maintain, for a long period, a high accuracy of focus in an autofocus operation, with the ability to adapt to distortion and misalignment of an optical system, and which further makes it possible to reduce the effects of autofocus light on a sample used in bioscience research. [Solution] An autofocus device according to the present invention is characterized in that: an optical element array is disposed on the light path from a light source to a sample; light emitted by the light source is dispersed by the optical element array so that a plurality of light beams having differing angles of incidence are incident on the sample; an imaging element for autofocus acquires a plurality of optical images formed by light reflected by the sample; and a control unit calculates the spacing between the plurality of optical images, acquires the difference from a grid spacing reference value of an optical image that is a preset reference value for focusing, and outputs a command signal for a movement operation to a distance adjustment mechanism.

Description

オートフォーカス装置auto focus device
 本発明は、光学装置に装備されるオートフォーカス装置において、光学系に配置された光学素子(以下、光学系という。)のずれ又は歪みに伴って、焦点にずれが生じることを防止し、試料へ与える光量を抑えつつ、高速で焦点を合わせるオートフォーカスの技術に関する。 The present invention is an autofocus device installed in an optical device, which prevents defocus due to deviation or distortion of an optical element arranged in an optical system (hereinafter referred to as an optical system), and prevents a sample from being defocused. The present invention relates to an autofocus technique for achieving high-speed focusing while suppressing the amount of light given to the subject.
 近年、カメラなどの光学装置と同様に、人が行う焦点合わせの操作を自動化したオートフォーカス装置が装備された顕微鏡が開発され、生命科学研究分野や工業分野の品質管理に使用されるようになってきた。 In recent years, similar to optical devices such as cameras, microscopes equipped with an autofocus device that automates manual focusing operations have been developed, and have come to be used for quality control in life science research and industrial fields. It's here.
 現代の生命科学研究においては、コンピュータを用いた計算コストの低下により、大量のデータを処理して、スクリーニングや統計分析を行うことが可能となった。そのために、顕微鏡を用いて多数の試料を観察し大量のデータを取得する顕微鏡の自動化のニーズが高まっている。 In modern life science research, it has become possible to process large amounts of data for screening and statistical analysis due to the reduction in computational costs using computers. For this reason, there is a growing need for automation of microscopes for observing a large number of samples and acquiring a large amount of data.
 顕微鏡の自動化において重要な要素技術の一つがオートフォーカスである。光学顕微鏡において、オートフォーカスの方法として、主だったものは以下の二方式である。 Autofocus is one of the important elemental technologies for automating microscopes. In optical microscopes, the following two methods are mainly used as autofocus methods.
 第一の方式は、コントラスト方式である。当該方式は、対物レンズ又はステージを光軸方向に移動させ、実際に結像した画像を撮像素子で撮影して、画像処理により画像のシャープさを評価しながら焦点をスキャンする方法で、画像のシャープさが最大となる位置が、合焦の位置である。この場合、焦点方向のスキャニングが必要となるため、合焦までに時間が掛かることが問題になることに加えて、試料が多量の光に曝されるので、蛍光観察の際には退色が問題となる。 The first method is the contrast method. In this method, the objective lens or stage is moved in the direction of the optical axis, the actually formed image is photographed with an image sensor, and the focus is scanned while evaluating the sharpness of the image by image processing. The position of maximum sharpness is the in-focus position. In this case, since scanning in the focal direction is required, it takes a long time to focus. In addition, since the sample is exposed to a large amount of light, fading is a problem during fluorescence observation. becomes.
 第二の方式は、位相差方式である、当該方式は、近赤外光を一方向からステージに照射して、その反射光を用いて撮像素子に結像させた絞りの画像の相対距離から、現在の焦点の状態が後ピン(焦点が試料より向う側にある場合)であるのか、又は前ピン(焦点が試料より手前側にある場合)であるのかを判断して、焦点を合わせる方向に対物レンズ又はステージを光軸方向に移動させる距離調節機構を駆動する方法である。この場合、前述のスキャニングが不要で、かつ近赤外光を使うため退色の問題が生じないため、生命科学研究においては、当該方式の顕微鏡が使用されることが多い。 The second method is a phase difference method. In this method, the stage is irradiated with near-infrared light from one direction, and the reflected light is used to form an image of the diaphragm on the image pickup device. , determine whether the current focus state is rear focus (when the focus is on the far side of the sample) or front focus (when the focus is on the front side of the sample), and This is a method of driving a distance adjustment mechanism that moves the objective lens or stage in the optical axis direction. In this case, the scanning described above is not required, and since near-infrared light is used, the problem of fading does not occur, so microscopes of this type are often used in life science research.
 第二方式が、生命科学研究において主に使用されているが、長時間経過すると合焦がずれる問題もあり、人手によってオートフォーカス装置の微調整を行って、撮影している現状がある。その一方で、生命科学分野の研究開発におけるデータを取得するための実験者は人手不足の状況にあるため、現場においては、顕微鏡撮影の自動化に対して、高いニーズがある。顕微鏡の自動化のためには、長時間経過しても、合焦がずれることがないオートフォーカス技術の開発が必要不可欠となる。また、近赤外光の試料への照射は蛍光分子による退色の問題は生じないものの、計測結果には少なからず影響を与えることになる。近赤外光がわずかにダイクロイックミラーを通過し、生命科学研究で用いられるような高感度観察用カメラに漏光が入り込む問題も生じる。そのため、試料に照射する近赤外光は、可能な限り光量を抑えることが求められる。 The second method is mainly used in life science research, but there is also the problem that the focus shifts after a long period of time, so the current situation is that the autofocus device is manually fine-tuned before shooting. On the other hand, there is a shortage of experimenters for acquiring data in research and development in the field of life science, so there is a high need for automation of microscopic photography in the field. In order to automate the microscope, it is essential to develop an autofocus technology that does not shift focus even after a long period of time. Also, irradiation of a sample with near-infrared light does not cause the problem of fading due to fluorescent molecules, but it does affect the measurement results to some extent. A small amount of near-infrared light passes through the dichroic mirror, and there is also the problem of light leaking into high-sensitivity observation cameras such as those used in life science research. Therefore, the amount of near-infrared light that irradiates the sample is required to be suppressed as much as possible.
 前述したように、顕微鏡の自動化では、位相差方式が使用されることが多いが、焦点を合わせた後長時間が経過すると、通常ガラス面に合っている焦点が、光学系のずれや歪みによりガラス面からずれた位置に焦点が合うことになり、観察対象の目標物からは焦点がずれるという問題点を有する。共焦点顕微鏡や蛍光顕微鏡のように焦点の位置が光軸方向のレンジ内、すなわち、観察対象が厚みのある細胞全体のときには、細胞の厚み内に焦点位置が入っていれば焦点のずれを許容することができる場合がある。しかし、超解像顕微鏡の一種の全反射顕微鏡のようにガラス面を観察する場合には、焦点位置がガラス面から光軸方向にずれることにより像がぼやけてしまい、撮影した画像が観察に使用できない状況が発生する。上記から超解像顕微鏡では、顕微鏡撮影の自動化が特に進んでいないのが現状であり、未だに手動で焦点合わせの操作をして撮影が行われている。また、オートフォーカスの動作において、長時間焦点合わせの高い正確性を維持することができないため、超解像顕微鏡による長時間にわたるタイムラプスの実現も難しい状況にある。 As mentioned above, the phase-contrast method is often used in the automation of microscopes. There is a problem that the focus is on a position shifted from the glass surface, and the focus is shifted from the target object to be observed. When the focal position is within the range of the optical axis direction, such as with a confocal microscope or fluorescence microscope, that is, when the observation target is the entire thick cell, defocusing is allowed as long as the focal position is within the thickness of the cell. sometimes you can. However, when observing a glass surface, such as with a total internal reflection microscope, which is a type of super-resolution microscope, the focal point shifts from the glass surface in the direction of the optical axis, causing the image to blur and the captured image to be used for observation. An impossible situation arises. From the above, in the super-resolution microscope, the current situation is that the automation of microscopic photography has not particularly progressed, and the photography is still performed by manual focusing operation. In addition, it is difficult to achieve long-term time-lapse with a super-resolution microscope because high accuracy in autofocus operation cannot be maintained for a long period of time.
 前述した課題に取り組んだ位相差方式の先行技術として、特許文献1又は特許文献2が開示されている。 Patent document 1 or patent document 2 is disclosed as a prior art of the phase difference method that addresses the above-mentioned problems.
WO2019/159627A1WO2019/159627A1 特許第5626367号公報Japanese Patent No. 5626367
 従来のオートフォーカス技術では、フォーカスに使用する光を一方向から入射させて、撮像素子によって検出された絞り像の位置が、中央になるように制御していた。しかし、当該方法によれば、光学系がずれたり歪んだりすることで絞りの位置が変化するため、長時間合焦の状態を維持することが困難であった。 With conventional autofocus technology, the light used for focusing is made to enter from one direction, and the position of the aperture image detected by the image sensor is controlled to be in the center. However, according to this method, since the position of the diaphragm changes due to the shift or distortion of the optical system, it is difficult to maintain the in-focus state for a long time.
  従来技術の問題を解決するために開発された、位相差方式のオートフォーカス技術が開示されている。特許文献1は、まず絞りに対して入射するオートフォーカス光(以下、AF光という。)の角度を二方向から入射させて、試料に対して照射した各々のAF光が絞りを通過することによって形成された像(以下、絞り像という。)の画像を取得し、画像から絞り像の位置を計測する。そして、各々の絞り像の画像位置の差分を計算し、当該差分が一定値になるようにステージをZ方向(光軸方向)に移動させて制御する。光学系が歪んだ場合、各々の画像において絞り像の位置は同じ変化を伴うので、画像を二回撮影する間に光学的なずれ又は歪みがなければ、相対的な絞り像の位置の差分は変化しない。したがって、長時間経過後も焦点をガラス面に合わせることが可能な技術であるともいえる。しかし、特許文献1では、ガルバノミラーを使用して、AF光の角度を複数回変えて、絞り像を撮影することで焦点合わせを行っているため、ガルバノミラーを可動させる機構が必要であり、かつ複数回絞り像の画像を撮影する必要がある。その結果、オートフォーカスに時間がかかるという問題が生じるとともに、構成部品が多くなり、小型化と価格の低廉化に課題があった。 A phase-difference autofocus technology developed to solve the problems of the conventional technology is disclosed. In Patent Document 1, first, autofocus light (hereinafter referred to as AF light) incident on the diaphragm is incident from two directions, and each AF light irradiated to the sample passes through the diaphragm. An image of the formed image (hereinafter referred to as an aperture image) is obtained, and the position of the aperture image is measured from the image. Then, the difference between the image positions of the diaphragm images is calculated, and the stage is moved in the Z direction (optical axis direction) and controlled so that the difference becomes a constant value. When the optical system is distorted, the position of the diaphragm image accompanies the same change in each image. It does not change. Therefore, it can be said that this technique is capable of focusing on the glass surface even after a long period of time. However, in Patent Literature 1, a galvanomirror is used to change the angle of the AF light multiple times, and focusing is performed by capturing an aperture image, so a mechanism for moving the galvanomirror is required. In addition, it is necessary to photograph the aperture image multiple times. As a result, there is a problem that autofocusing takes a long time, and the number of constituent parts increases, which poses a problem of miniaturization and price reduction.
 特許文献2では、試料ガラス面において一点に集光したAF光の反射を、マイクロレンズアレイにより分離して、オートフォーカス用カメラにより撮影してオートフォーカスを行う技術である。オートフォーカス用カメラには、試料上で集光した光像がマイクロレンズアレイによって分離され格子状に表示されており、ステージを光軸方向に移動することで格子の間隔が変化する。当該間隔を所定値になるように対物レンズ又はステージを光軸方向に移動させる距離調節機構を制御することで、焦点合わせを行う。光学系のずれ又は歪みによってAF光画像の位置ずれが生じて、格子の位置は移動するが、格子の間隔は変化することはないので、長時間合焦のフォーカス位置を維持することが可能なオートフォーカスが開示されている。しかし、試料で一点に集中した光を観察系においてハーフミラーで二方向に分離し、さらにマイクロレンズアレイで光を格子の数だけ分離すると、光の強度が弱くなり、オートフォーカス時における撮影の露光時間が長くなるためオートフォーカス速度が低下する問題がある。したがって、特許文献2の先行技術では、光は特許文献1と比較すると少なくとも分離する格子数より光強度を強くする必要性が生じる。光強度を強くした場合には、たとえ近赤外光であっても、以下の問題が生じる。第一に、光強度が増すと細胞などの生物試料に対する光毒性が強くなることである。細胞が光毒性の影響を受けると、現在の生命の状態を正確に観察することができない問題が生じる。第二に、試料の集光点においてAF光の最大光強度が高いと、当該光が観察用カメラに迷光として入射しやすくなる問題がある。 In Patent Document 2, the AF light reflected at one point on the sample glass surface is separated by a microlens array, photographed by an autofocus camera, and autofocus is performed. In the autofocus camera, light images condensed on the sample are separated by a microlens array and displayed in a grid pattern. Moving the stage along the optical axis changes the spacing of the grid. Focusing is performed by controlling a distance adjustment mechanism that moves the objective lens or the stage in the optical axis direction so that the distance becomes a predetermined value. Positional deviation of the AF light image occurs due to deviation or distortion of the optical system, and the position of the grating moves, but the spacing of the grating does not change, so it is possible to maintain the focused position for a long time. Autofocus is disclosed. However, if the light concentrated at one point on the sample is split into two directions by a half mirror in the observation system, and if the light is split by the number of gratings by the microlens array, the intensity of the light becomes weaker and the exposure for photography during autofocusing. There is a problem that the autofocus speed decreases because the time is long. Therefore, in the prior art of Patent Document 2, it is necessary to make the light intensity stronger than at least the number of gratings to be separated compared to Patent Document 1. When the light intensity is increased, even near-infrared light causes the following problems. First, as the light intensity increases, the phototoxicity to biological samples such as cells increases. When cells are affected by phototoxicity, the problem arises that the current state of life cannot be accurately observed. Secondly, if the maximum light intensity of the AF light is high at the focal point of the sample, there is a problem that the light is likely to enter the observation camera as stray light.
 以上の問題から、本願発明者は、光学系のずれや歪みに強く、試料に照射するAF光の光量を抑えたオートフォーカス装置の開発を進めてきた。オートフォーカス動作における焦点合わせの高い正確性を光毒性が弱い状態で長時間維持できると、超解像顕微鏡の自動撮影の際の焦点ずれ確率を抑えられるとともに、細胞に与える毒性が弱くなり生命の状態について正確な観察が実現できる。また、蛍光顕微鏡などにおいても、オートフォーカスの精度が高いと、ガラス面から決まった高さの位置で長時間撮影でき、光軸方向に焦点のずれが生じないため、取得したデータの定量性を向上させることができデータの信頼性が高くなる利点がある。 Due to the above problems, the inventor of the present application has been developing an autofocus device that is resistant to optical system deviation and distortion and that suppresses the amount of AF light that irradiates the sample. If high accuracy of autofocus operation can be maintained for a long time with low phototoxicity, the probability of defocusing during automatic imaging with a super-resolution microscope can be suppressed, and the toxicity to cells is reduced, which is life-threatening. An accurate observation of the state can be achieved. Also, in the case of fluorescence microscopes, etc., if the autofocus accuracy is high, images can be taken for a long time at a fixed height from the glass surface, and the focal point does not shift in the direction of the optical axis. There is an advantage that it can be improved and the reliability of the data increases.
 本発明は、上記課題に鑑みてなされたものであり、光学系のずれや歪みにも対応してオートフォーカス動作における焦点合わせの高い正確性を長時間維持することが可能でありながら、シンプルな構造かつ小型の光学装置用オートフォーカス装置を提供することを目的とする。さらに、生命科学的研究に使用する試料に対するAF光の影響を軽減させることを可能とした光学装置用オートフォーカス装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems. An object of the present invention is to provide an autofocus device for an optical device that is structured and compact. A further object of the present invention is to provide an autofocus device for an optical device that can reduce the influence of AF light on samples used in life science research.
 上記課題を解決するため、本発明のオートフォーカス装置は、観察対象である試料と対物レンズとの距離を自動で調整して焦点を合わせるオートフォーカス装置において、光学素子アレイが、光源から前記試料までの光路上に配置されて、前記光源から発せられた光が、前記光学素子アレイによって分光され、前記試料に対して入射角度が異なる複数の光を入射させて、オートフォーカス用撮像素子が、前記試料からの反射光によって結像される複数の光像を取得して、制御部が、前記複数の光像の間隔を算出し、予め設定される合焦の際の基準値となる光像の格子間隔基準値との差分を取得して、距離調節機構に移動動作の指令信号を出力すること、を特徴とする。 In order to solve the above problems, the autofocus device of the present invention is an autofocus device that automatically adjusts the distance between a sample to be observed and an objective lens for focusing, wherein an optical element array extends from a light source to the sample. The light emitted from the light source is separated by the optical element array, and a plurality of lights with different incident angles are made incident on the sample, and the autofocus imaging device is arranged on the optical path of the A plurality of light images formed by the reflected light from the sample are acquired, and the control unit calculates the intervals between the plurality of light images, and calculates the distance between the plurality of light images, which is set in advance as a reference value for focusing. It is characterized by obtaining a difference from the grid spacing reference value and outputting a movement operation command signal to the distance adjusting mechanism.
 さらに、本発明のオートフォーカス装置は、前記光学素子アレイ及びオートフォーカス用撮像素子の間に配置された光学素子を前記光源から発せられる光の光軸方向に移動することによって、又は、前記格子間隔基準値を変更することによって、光軸方向の焦点位置の変更又は補正を行うこと、を特徴とする。 Further, the autofocus device of the present invention can be configured by moving an optical element arranged between the optical element array and the autofocus imaging device in the optical axis direction of the light emitted from the light source, or by moving the grating interval. The focal position in the optical axis direction is changed or corrected by changing the reference value.
 さらに、本発明のオートフォーカス装置は、観察光学系からオートフォーカス光を取り出す、又は分離する光学素子とオートフォーカス用撮像素子との間に、偏光子及び波長板を配置すること、を特徴とする。 Further, the autofocus device of the present invention is characterized by arranging a polarizer and a wavelength plate between an optical element for extracting or separating autofocus light from an observation optical system and an autofocus imaging device. .
 また、本発明の顕微鏡は、前述のオートフォーカス装置を有すること、を特徴とする。 Further, the microscope of the present invention is characterized by having the aforementioned autofocus device.
 特許文献1では、ガルバノミラーを操作し絞りに入射する光の角度を変更して、複数回画像を撮影し焦点のずれの状態を検出することによってオートフォーカスを行っていた。一方で、本発明のオートフォーカス装置によれば、光軸に垂直な面上の異なった位置に入射する複数の光は角度が異なるので、一回の画像撮影によって、複数の光像の相対的な間隔を計測して、焦点のずれの状態を取得して、対物レンズ又はステージを光軸方向に移動させる距離調節機構(以下、フォーカス移動機構という。)を用いて焦点を合わせることが可能である効果を奏する。 In Patent Document 1, the autofocus is performed by operating the galvanomirror to change the angle of the light incident on the diaphragm, capturing images a plurality of times, and detecting the state of defocus. On the other hand, according to the autofocus device of the present invention, a plurality of light beams incident on different positions on a plane perpendicular to the optical axis have different angles. It is possible to measure the distance, acquire the state of defocus, and adjust the focus using a distance adjustment mechanism (hereinafter referred to as a focus movement mechanism) that moves the objective lens or stage in the optical axis direction. have some effect.
 本発明のオートフォーカス装置によれば、ガルバノミラーを必要としないため、光学系の機構を簡素化することができる。また、ガルバノミラーの角度を変えて光像を複数回撮影する必要がないため、焦点の状態を取得する時間を短縮できて、オートフォーカスの高速化を図ることが可能となる効果を奏する。 According to the autofocus device of the present invention, the mechanism of the optical system can be simplified because the galvanomirror is not required. In addition, since it is not necessary to photograph the optical image multiple times by changing the angle of the galvanomirror, the time required to obtain the focus state can be shortened, and the speed of autofocus can be increased.
 さらに、ガルバノミラーなどを可動させる機構を必要としないことから部品点数を減少させることができ、オートフォーカス装置の製造においてコストダウンを図ることができる効果を奏する。 Furthermore, since a mechanism for moving a galvanomirror or the like is not required, the number of parts can be reduced, and there is an effect that the cost can be reduced in manufacturing the autofocus device.
 特許文献2では、一筋の光が観察対象である試料の局所に入射し、その後レンズアレイで分けるため、AF光の強度によって試料が光毒性の影響を受ける可能性がある。一方で、本発明のオートフォーカス装置によれば、AF光をレンズアレイで分離した後に観察対象である試料に照射するため、その後反射光を分離する必要がなく、試料に影響を与える程度の強い光を試料の局所に入射させることがない。例えば、光を3×3の格子を備えたレンズアレイで分光して試料に照射した場合と、分光せずに一筋の光を試料に照射させた場合とを比較すると、試料上の一点に集中する光量は1/9となる。したがって、AF光を試料に照射する前に分離することで、光の強度を1/10程度に減少させることができ、試料への影響を抑制することができる効果を奏する。さらに、試料に照射する前に遮蔽板を配置し、通過する光線の数を少なくすることによって、さらに試料に与える光量を抑制することも可能である。 In Patent Document 2, a single line of light is incident locally on the sample to be observed and then divided by the lens array, so the sample may be affected by phototoxicity depending on the intensity of the AF light. On the other hand, according to the autofocus device of the present invention, since the AF light is separated by the lens array and then irradiated onto the sample to be observed, there is no need to separate the reflected light after that, and the reflected light is strong enough to affect the sample. No light is incident locally on the specimen. For example, when comparing the case where the light is dispersed by a lens array with a 3×3 grid and is irradiated onto the sample, and the case where the sample is irradiated with a single line of light without being dispersed, the result is that the light is concentrated at one point on the sample. The amount of light to be applied is 1/9. Therefore, by separating the AF light before irradiating the sample, the intensity of the light can be reduced to about 1/10, and the effect on the sample can be suppressed. Furthermore, by placing a shielding plate before irradiating the sample to reduce the number of light rays passing through, it is possible to further suppress the amount of light applied to the sample.
 さらに、本発明のオートフォーカス装置によれば、試料からオートフォーカス用カメラまでの間に配置されるレンズは、原則として対物レンズとAF用結像レンズのみでよく、特許文献2と比較するとレンズによる光量の損失を抑制することができる。 Furthermore, according to the autofocus device of the present invention, the lenses placed between the sample and the autofocus camera are, in principle, only the objective lens and the imaging lens for AF. Loss of light quantity can be suppressed.
 本発明のオートフォーカス装置によれば、同時に複数角度で入射する光で得られる像によって絞りの位置を計測し相対的な差分をとることから、熱や経時変化による機械的な光学系のずれや歪みに対して強く、長期間経過しても合焦がずれにくい光学系である効果を奏する。 According to the autofocus device of the present invention, the position of the diaphragm is measured from the images obtained by the light incident at a plurality of angles at the same time, and the relative difference is obtained. The optical system is resistant to distortion and is less likely to be out of focus even after a long period of time.
 本発明の顕微鏡によれば、大量のデータの取得が求められる生命科学研究において、安価に顕微鏡観察の高速化及び省力化を図ることが可能となる効果を奏する。また、オートフォーカス装置を装備した顕微鏡を自動分注機と組み合わせることで、薬剤スクリーニングの自動化に応用することが可能となる。具体的には、薬剤添加前における生体の状態の画像を自動化された顕微鏡で撮影し、薬剤添加後に再度生体の状態の画像を撮影して、両方の画像を比較することで薬剤の効果を評価することができる。 According to the microscope of the present invention, in life science research that requires the acquisition of a large amount of data, it is possible to inexpensively increase the speed of microscopic observation and save labor. In addition, by combining a microscope equipped with an autofocus device with an automatic dispensing machine, it becomes possible to apply it to automation of drug screening. Specifically, an image of the state of the living body before adding the drug is taken with an automated microscope, and an image of the state of the living body is taken again after the drug is added, and the effects of the drug are evaluated by comparing both images. can do.
本発明のオートフォーカス装置1の光学系の基本構成を示した概念図である。1 is a conceptual diagram showing the basic configuration of an optical system of an autofocus device 1 of the present invention; FIG. 図1の光学系においてオートフォーカス用カメラ50で撮影されたAF光の画像を示した図である。2 is a diagram showing an image of AF light captured by an autofocus camera 50 in the optical system of FIG. 1; FIG. 本発明のオートフォーカス装置1において、合焦位置とのずれ距離量を算出するフローチャートを示した図である。FIG. 5 is a diagram showing a flowchart for calculating a deviation distance amount from an in-focus position in the autofocus device 1 of the present invention; 本発明のオートフォーカス装置1の原理を説明した図である。It is a figure explaining the principle of the autofocus apparatus 1 of this invention. 図4の光学系においてオートフォーカス用カメラ50で撮影された絞り30の画像を示した図である。5 is a diagram showing an image of the diaphragm 30 photographed by the autofocus camera 50 in the optical system of FIG. 4. FIG. 撮影範囲が広いオートフォーカス用カメラ50で、N×N格子状の絞り像AI(n)を撮影した画像の一例を示した図である。FIG. 10 is a diagram showing an example of an image of an aperture image AI(n) in an N×N grid obtained by an autofocus camera 50 having a wide imaging range; 本発明のオートフォーカス装置2の一の実施例を示した図である。1 is a diagram showing one embodiment of an autofocus device 2 of the present invention; FIG. 本発明のオートフォーカス装置3の他の実施例を示した図である。FIG. 4 is a diagram showing another embodiment of the autofocus device 3 of the present invention;
 図1は、本発明のオートフォーカス装置1の光学系の基本構成を示した概念図である。図1において、オートフォーカス装置1は、光源20、光学素子アレイ、ハーフミラー40、対物レンズ110、AF用結像レンズ66及びオートフォーカス用撮像素子を備えたカメラ(以下、AF用カメラ50という。)で構成される。図1における光源20は、点光源20を示している。点光源から発せられた光線Rを実線で示している(以下、同じ。)。光学素子アレイは、複数のレンズをX-Y軸方向に配列した面状のレンズアレイ10が好適である。図1では、Z軸を中心にX軸方向に三個、Y軸方向に三個のレンズを配置したものを想定している。レンズの配置は任意であるが、説明を容易にするため、本明細書では格子状とする。図1の光学系においては、点光源20、試料100面とAF用カメラ50とが共役である。 FIG. 1 is a conceptual diagram showing the basic configuration of the optical system of the autofocus device 1 of the present invention. In FIG. 1, the autofocus device 1 is a camera (hereinafter referred to as an AF camera 50) including a light source 20, an optical element array, a half mirror 40, an objective lens 110, an AF imaging lens 66, and an autofocus imaging device. ). A light source 20 in FIG. 1 indicates a point light source 20 . A light ray R emitted from a point light source is indicated by a solid line (same below). A planar lens array 10 in which a plurality of lenses are arranged in the XY axis direction is suitable for the optical element array. In FIG. 1, it is assumed that three lenses are arranged in the X-axis direction and three lenses are arranged in the Y-axis direction centering on the Z-axis. The arrangement of the lenses is arbitrary, but for ease of explanation, a grid pattern is used in this specification. In the optical system of FIG. 1, the point light source 20, the surface of the sample 100, and the AF camera 50 are conjugate.
 点光源20から発せられた光が、AF光である。AF光は、レンズアレイ10、ハーフミラー40、対物レンズ110を通過し、AF光像RIが試料100上に結像するが、その際に、レンズアレイ10で分光されるため光点が角に位置する四角形状の画像となり、これらの四角形状の像が複数形成され、基本的にはレンズアレイ10の配列と同じ格子状に結像する。図1では、X軸方向のみの光線が表され、Y軸方向の光線が表れていない。そのため、点光源20から発せられた光を、光軸上(Z軸上)を直進する1光線と光軸からX軸正又は負の方向に角度を有して通過する二光線で表すと、試料100上には三つの光点が結像される。 The light emitted from the point light source 20 is the AF light. The AF light passes through the lens array 10, the half mirror 40, and the objective lens 110, and the AF light image RI is formed on the sample 100. At that time, the lens array 10 splits the light so that the light spot is at a corner. A plurality of these square images are formed and are basically formed in the same lattice pattern as the arrangement of the lens array 10 . In FIG. 1, only rays in the X-axis direction are shown, and rays in the Y-axis direction are not shown. Therefore, if the light emitted from the point light source 20 is represented by one ray that travels straight on the optical axis (on the Z axis) and two rays that pass from the optical axis in the positive or negative direction of the X axis at an angle, Three light spots are imaged on the sample 100 .
 この際、レンズが格子状に配置されたレンズアレイ10の各々のレンズの位置に対応して、入射する光線の角度が各々異なる。三光線のうち、中央の像は光軸(Z軸)上を正方向に向けて直進した光線が結像したものである。点光源20から発せられる光線がZ軸から離れたレンズを通過する場合には、Z軸から離れるほど光線の角度がZ軸に対して大きくなる。実際には、Y軸方向にも複数のレンズが配置されるため、光像RIは、格子状の二次元の画像となる。点光源20から試料100に照射されたAF光は、試料100によって反射され(図では一点鎖線で示した。)、さらにはハーフミラー40によって光量の一部が反射されて、AF用カメラ50で撮影される。試料100面とAF用カメラ50面は共役のため、AF用カメラ50においても点光源20から発せられたAF光の格子状の像が撮影される。 At this time, the angles of the incident light rays differ depending on the position of each lens in the lens array 10 in which the lenses are arranged in a grid pattern. Among the three rays, the central image is formed by rays traveling straight along the optical axis (Z-axis) in the positive direction. When a ray emitted from the point light source 20 passes through a lens distant from the Z-axis, the angle of the ray with respect to the Z-axis increases as the distance from the Z-axis increases. Actually, since a plurality of lenses are also arranged in the Y-axis direction, the optical image RI becomes a grid-like two-dimensional image. The AF light emitted from the point light source 20 to the sample 100 is reflected by the sample 100 (indicated by a dashed line in the drawing), and further, a part of the light amount is reflected by the half mirror 40, and is reflected by the AF camera 50. be filmed. Since the surface of the sample 100 and the surface of the AF camera 50 are conjugate, the AF camera 50 also captures a grid-like image of the AF light emitted from the point light source 20 .
 図2は、図1の光学系においてAF用カメラ50で撮影されたAF光の画像を示した図である。レンズアレイ10によって分光されたAF光像RIがオートフォーカス用撮像素子上において格子状に撮影される。四角枠は、AF用カメラの撮影領域FVである。対物レンズ110又はステージ(不図示)の位置をZ軸方向に変化させると、撮影された画像においてはAF光像RIによる格子間隔が広がったり狭まったりする。 FIG. 2 is a diagram showing an image of AF light captured by the AF camera 50 in the optical system of FIG. The AF optical image RI split by the lens array 10 is photographed in a grid pattern on the autofocus imaging device. A square frame is a photographing area FV of the AF camera. When the position of the objective lens 110 or the stage (not shown) is changed in the Z-axis direction, the lattice spacing of the AF optical image RI widens or narrows in the captured image.
 AF光像RIにおいて、合焦の状態にある格子間隔は、レンズアレイ10における各々のレンズの間隔、レンズの焦点、及び対物レンズ110の倍率によって定まる。したがって、オートフォーカス動作によって焦点を合わせるための方向と距離は、合焦の状態にある格子と、現在撮影されている格子画像とにおいて、格子間隔の大小比較及び寸法差を演算することによって、導き出すことができる。格子間隔が常に所定の間隔を維持するように、対物レンズ110又はステージを光軸方向に移動させるフォーカス移動機構を動作させることでオートフォーカスを実現する。 In the AF optical image RI, the lattice spacing in focus is determined by the spacing of each lens in the lens array 10, the focal point of the lens, and the magnification of the objective lens 110. Therefore, the direction and distance for focusing by the autofocus operation are derived by comparing the size of the grid spacing and calculating the dimensional difference between the grid in focus and the grid image currently being photographed. be able to. Autofocus is realized by operating a focus movement mechanism that moves the objective lens 110 or the stage in the optical axis direction so that the grating interval always maintains a predetermined interval.
 図3は、本発明のオートフォーカス装置1において、合焦位置とのずれ距離量を算出して、フォーカス移動機構を動作させるフローチャートを示した。当該フローチャートは、説明を容易にするために、図1に基づいて構成した。また、当該フローチャートは、プログラム化されて制御部によって実行される。 FIG. 3 shows a flowchart for calculating the amount of deviation from the in-focus position and operating the focus movement mechanism in the autofocus device 1 of the present invention. The flowchart is constructed based on FIG. 1 for ease of explanation. Further, the flowchart is programmed and executed by the control unit.
 オートフォーカスを開始(S10)すると、ステップS20において、点光源20から発せられたAF光がレンズアレイ10によって格子状に分光され、試料100上に結像したAF光像RIをAF用カメラ50で撮影する。その際、分光されたAF光像RIの撮影に成功したか否かを判断(S30)し、AF光像RIが映っていないなど撮影に失敗した場合は、エラーが発生したと判断しステップS80を処理して終了する。AF光像RIの撮影に成功した場合は、ステップS40でAF光像RIが撮影された画像の格子間隔Δ(デルタ)を計測する。続いて、光学系が有する特性によって予め設定される合焦の基準値として取り扱う格子間隔値DとΔとの差分dx=Δ-Dを計算する(S50)。格子間隔値Dについて詳述すると、原則AF光学系において、レンズアレイ10、試料100面とAF用カメラ50とが共役である際に結像するAF光像RI間の距離である。その後、比例定数aをかけてZ軸方向のずれ距離量dz=a(Δ-D)=a×dxを算出し、dzだけZ軸方向にフォーカス移動機構を駆動する(S60)。ステップS70では、オートフォーカス動作を終了するか否かを判断する。オートフォーカス動作を終了する場合は、ステップS80の終了処理を行い、オートフォーカス動作を継続する場合には、ステップS20のAF光像RIの撮影に戻って、以下、上記のステップを繰り返す。dx及びdzの具体的な算出方法については、後述する。 When the autofocus is started (S10), in step S20, the lens array 10 splits the AF light emitted from the point light source 20 into a grid pattern, and the AF light image RI formed on the sample 100 is captured by the AF camera 50. to shoot. At that time, it is determined whether or not the photographing of the spectroscopic AF optical image RI has succeeded (S30). If the photographing fails because the AF optical image RI is not captured, it is judged that an error has occurred, and step S80. process and exit. If the AF optical image RI has been successfully photographed, the lattice spacing Δ (delta) of the image obtained by photographing the AF optical image RI is measured in step S40. Subsequently, the difference dx=Δ−D f between the grating interval value D f treated as a reference value for focusing set in advance according to the characteristics of the optical system and Δ is calculated (S50). More specifically, the grating interval value Df is, in principle, the distance between the AF optical images RI formed when the lens array 10, the surface of the sample 100 and the AF camera 50 are conjugate in the AF optical system. After that, the displacement distance amount in the Z-axis direction dz=a(Δ−D f )=a×dx is calculated by multiplying by the proportionality constant a, and the focus moving mechanism is driven in the Z-axis direction by dz (S60). In step S70, it is determined whether or not to end the autofocus operation. When the autofocus operation is terminated, the termination process of step S80 is performed. When the autofocus operation is continued, the process returns to the photographing of the AF optical image RI in step S20, and the above steps are repeated. A specific method for calculating dx and dz will be described later.
 特許文献1では、角度を変えてAF光を試料に照射して、AF用カメラで撮影した複数枚の画像を比較してAF光像の位置の差分を算出しているが、本発明のオートフォーカス装置1によれば、レンズアレイ10を用いることにより、複数角度のAF光像RIを一回の撮影で取得してAF光像RIの差分を算出しているので、特許文献1と実質的に同じ精度の結果を高速に得ることができる。また、光学系にずれや歪みが生じた場合であっても、本発明のオートフォーカス装置1によれば、AF光像RIで形成される格子の位置が変わるだけで、格子間隔は光学系のずれや歪みが生じる前と変化しないため、オートフォーカス精度には影響を及ぼすことはない。
 特許文献1のオートフォーカス装置では、複数枚の画像を時間差(数百ミリ秒)で撮影するため、一回目と二回目の撮影の間に光学系のずれ又は歪みが生じた場合、フォーカス移動機構を動作させるために演算した合焦位置までの差分値の精度が低下するが、本発明のオートフォーカス装置1によれば、差分を算出するための画像は、一回の撮影で得ることができるため、数百ミリ秒程度で光学系にずれや歪みが生じた場合であっても、合焦位置までの差分の演算精度に影響を及ぼすことはない。したがって、本発明のオートフォーカス装置1は、あらゆる時間スケールにおいて光学系のずれや歪みに非常に強い効果を奏する。
In Patent Document 1, AF light is applied to a sample at different angles, and a plurality of images taken by an AF camera are compared to calculate the difference in the position of the AF light image. According to the focusing device 1, by using the lens array 10, AF optical images RI at a plurality of angles are acquired in a single photographing operation, and the difference between the AF optical images RI is calculated. You can get results with the same precision at high speed. Further, even if the optical system is misaligned or distorted, according to the autofocus device 1 of the present invention, only the position of the grating formed by the AF optical image RI is changed, and the grating interval is the same as that of the optical system. Since there is no change from before deviation or distortion occurs, there is no effect on autofocus accuracy.
In the autofocus device of Patent Document 1, since a plurality of images are taken with a time difference (several hundred milliseconds), if the optical system shifts or is distorted between the first and second shots, the focus movement mechanism However, according to the autofocus device 1 of the present invention, an image for calculating the difference can be obtained in one shot. Therefore, even if the optical system is misaligned or distorted for about several hundred milliseconds, it does not affect the calculation accuracy of the difference up to the in-focus position. Therefore, the autofocus device 1 of the present invention has a very strong effect on optical system shifts and distortions on all time scales.
 複数角度に分離した光を同時に照射することによる利点は、ガルバノミラーなど可動部分が必要でなくなり構造が非常にシンプルであること、及び撮影が一回で済むため、オートフォーカス動作を短時間で処理できることである。 The advantage of simultaneously irradiating the light divided into multiple angles is that the structure is very simple because there is no need for moving parts such as galvanometer mirrors, and the autofocus operation can be processed in a short time because the shooting can be done only once. It is possible.
 また、レンズアレイ10を光路上の試料100の前段に配置することによる利点は、試料100に照射するAF光を分散させることで、試料100へ加える最大光強度を分散できることである。特許文献2では、試料における集光点での最大光強度が高くなり、AF光が試料観察用のカメラに迷光として入射しやすくなるため、AF光を試料に加える最大光強度には実質的な上限がある。一方で、AF光の最大光強度を下げると、オートフォーカスに必要な露光時間が長くなり、オートフォーカス動作にかかる時間も長くなるが、本発明のオートフォーカス装置1では、試料100に照射する前にAF光を分散させるため、特許文献2とは異なり、試料100からの反射光をレンズアレイ10に通過させずにAF用カメラ50でとらえることができる。その結果、特許文献2と比べて、分離する格子の数だけ試料100へ与える光量を抑制することができるとともに、オートフォーカスの露光時間を短くすることができ撮影時間が相対的に短縮する利点を奏する。 Also, the advantage of arranging the lens array 10 in the front stage of the sample 100 on the optical path is that the maximum light intensity applied to the sample 100 can be dispersed by dispersing the AF light that irradiates the sample 100. In Patent Document 2, the maximum light intensity at the condensing point on the sample increases, and the AF light is likely to enter a camera for observing the sample as stray light. There is an upper limit. On the other hand, if the maximum light intensity of the AF light is lowered, the exposure time required for autofocusing becomes longer, and the time required for the autofocusing operation becomes longer. Since the AF light is dispersed in the above-described manner, the reflected light from the sample 100 can be captured by the AF camera 50 without passing through the lens array 10, unlike in Patent Document 2. As a result, compared to Patent Document 2, the amount of light applied to the sample 100 can be suppressed by the number of gratings to be separated, and the autofocus exposure time can be shortened. Play.
 光学系の構成をハーフミラー40とレンズアレイ10の間に遮蔽板を配置するように変更して、通過する光線の数を少なくすることによって、さらに試料100に与える光量を抑制することができる。しかし、オートフォーカス動作に際して重要な光線を削減してしまうと、オートフォーカスの精度を低下させ、レンジを狭めることになるため、注意深く設計する必要がある。オートフォーカスの精度やフォーカスレンジと、格子の数との関係の詳細については、後述する。 By changing the configuration of the optical system to place a shielding plate between the half mirror 40 and the lens array 10 to reduce the number of light rays passing through, the amount of light applied to the sample 100 can be further suppressed. However, if the light rays that are important for autofocus operation are reduced, the accuracy of autofocus will be reduced and the range will be narrowed, so careful design is required. The details of the relationship between the autofocus accuracy and focus range and the number of grids will be described later.
 図4は、本発明のオートフォーカス装置1の原理を説明した図である。基本的なオートフォーカス光学系(以下、AF光学系という。)は、光源20、レンズA60、絞り30、レンズアレイ10及びレンズB62から構成される。ここで、レンズA60は、集光用レンズ、またレンズB62は、絞り像AIの格子を形成するためのレンズである。絞り30は構成上必須ではなく、図1に示すように光源20の特性がAF光に適していればよい。例えば、レーザの集光点を用いたり、絞り30の形状を多角形にしたりすることでも適用が可能である。光源20から試料に向かって発せられたAF光が絞り30を通過し、試料上に結像された絞り像AIの反射光を、反射光路上の任意の位置でハーフミラー40等を用いて分離し又は取り出しAF用カメラ50に結像させることによって、現時点でのフォーカスの状態を検知し、合焦に調整する。図1では、光源から発せられるAF光が結像したAF光像RIをAF用カメラ50で撮影していたが、図4では、絞りを採用しているため、AF用カメラ50では、絞り像AIが撮影される。仮想面P、試料及びAF用カメラ50は、共役の関係とする。 FIG. 4 is a diagram explaining the principle of the autofocus device 1 of the present invention. A basic autofocus optical system (hereinafter referred to as an AF optical system) comprises a light source 20, a lens A60, a diaphragm 30, a lens array 10 and a lens B62. Here, the lens A60 is a condensing lens, and the lens B62 is a lens for forming the lattice of the aperture image AI. The diaphragm 30 is not essential in terms of construction, and it is sufficient if the characteristics of the light source 20 are suitable for AF light as shown in FIG. For example, it can be applied by using a laser focal point or by making the shape of the diaphragm 30 polygonal. AF light emitted from the light source 20 toward the sample passes through the aperture 30, and the reflected light of the aperture image AI formed on the sample is separated using a half mirror 40 or the like at an arbitrary position on the reflected light path. The current focus state is detected and adjusted to be in focus by forming an image on the take-out AF camera 50 . In FIG. 1, the AF optical image RI formed by the AF light emitted from the light source was captured by the AF camera 50. In FIG. AI is filmed. The virtual plane P, the sample, and the AF camera 50 are in a conjugate relationship.
 光源20は、発光ダイオード(LED(Light Emitting Diode))、レーザ光など特に制限はない。光の波長としては、顕微鏡撮影で使用しない波長を選択するが、原理上いかなる波長でも問題ない。また、レンズアレイ10は、X-Y軸方向に、すなわちZ軸に垂直にN×N(Nは整数である。)の面として配置されるものとする。本明細書においては、Nが奇数の場合について説明を行うが、原理上は光軸上にレンズアレイ10の一のレンズの中心がある必要性はなく、偶数であっても問題ない。レンズアレイ10は、Nが奇数の場合には、Z軸上に中央のレンズを配置して、当該レンズをn=0(nは整数である。)とし、レンズがZ軸から離れるごとに、nの数が±1ずつ大きくなるように配置することが好適である。 The light source 20 is not particularly limited, such as a light-emitting diode (LED (Light Emitting Diode)), laser light, or the like. As the wavelength of light, a wavelength not used in microscopic photography is selected, but in principle any wavelength is acceptable. It is also assumed that the lens array 10 is arranged in the XY direction, that is, as a surface of N×N (N is an integer) perpendicular to the Z axis. In this specification, the case where N is an odd number will be explained, but in principle there is no need for the center of one lens of the lens array 10 to be on the optical axis, and there is no problem even if it is an even number. The lens array 10 has a central lens on the Z axis when N is an odd number, and n=0 (where n is an integer). It is preferable to arrange so that the number of n increases by ±1.
 AF光は所定の放射角度を有した状態で光源20から発せられるため、レンズA60を用いて集光し絞り30を通過させて点光源20に近似させたうえでレンズアレイ10に照射すると、絞り像AIを交点とする格子状の画像が得られる。図4では、レンズアレイ10において個々のレンズ中心を通過した光線のみを図示した。 Since the AF light is emitted from the light source 20 with a predetermined radiation angle, the lens A60 is used to condense the light, pass through the diaphragm 30, approximate the point light source 20, and then irradiate the lens array 10, the diaphragm A grid-like image is obtained with the image AI as the intersection point. FIG. 4 shows only light rays that have passed through individual lens centers in the lens array 10 .
 図5は、図4の光学系においてAF用カメラ50で撮影された絞り30の画像を示した図である。前述したように、絞り像AIは、格子状に現れる。格子状の交点にある絞り像AIは、Nが奇数の場合には、画像中央の絞り像AIが、n=0のレンズの絞り像AI(0)である。絞り像AIが画像中央から離れるごとに、nの数が±1ずつ大きくなる。n=0のレンズは光軸上にあるので、フォーカスが変化してもAF用カメラ50で撮影されたn=0の絞り像AI(0)の画像上の位置は変化しない。仮に、n=0のレンズが光軸からずれた場合には、フォーカスが変化するのと比例して絞り像AI(0)の位置は変化する。 FIG. 5 is a diagram showing an image of the diaphragm 30 captured by the AF camera 50 in the optical system of FIG. As described above, the aperture image AI appears in a grid pattern. Regarding the aperture images AI at the intersections of the grid, if N is an odd number, the aperture image AI at the center of the image is the aperture image AI(0) of the lens with n=0. The number of n increases by ±1 each time the aperture image AI moves away from the center of the image. Since the lens with n=0 is on the optical axis, the position of the diaphragm image AI(0) with n=0 captured by the AF camera 50 does not change even if the focus changes. If the lens of n=0 is displaced from the optical axis, the position of the aperture image AI(0) changes in proportion to the change in focus.
 光源20から発せられるAF光線がレンズアレイ10を通過する場合には、AF光線がZ軸から離れたnの大きいレンズを通過するにしたがって、Z軸に対してAF光線の角度が大きくなる。Y軸方向も同様である。そのため、絞り像AIは、レンズの配列と同じN×N格子状の二次元の画像となる。図6に、撮影範囲が広いAF用カメラ50で、N×N格子状の絞り像AI(n)を撮影した画像の一例を示した。 When the AF ray emitted from the light source 20 passes through the lens array 10, the angle of the AF ray with respect to the Z axis increases as the AF ray passes through a lens with a larger n that is farther from the Z axis. The same applies to the Y-axis direction. Therefore, the aperture image AI is a two-dimensional image in the same N×N grid pattern as the lens arrangement. FIG. 6 shows an example of an image of an aperture image AI(n) in the form of an N×N lattice captured by the AF camera 50 having a wide imaging range.
 レンズアレイ10で分光されたAF光は、レンズB62によって集光し、光軸に垂直の仮想面Pに絞り像AIを結像するものとする。実際の顕微鏡では、仮想面P、試料面及びAF用カメラ50面は共役であるため、AF用カメラ50においても絞り像AIが格子状に撮影される。合焦位置へフォーカス移動機構を動作させてオートフォーカスを行うためには、フォーカス移動機構の移動方向と移動量をAF用カメラ50で撮影した画像から算出する必要がある。そのために、まず試料に入射する複数の絞り像AIの格子間隔、角度及び直径を計算する。 The AF light split by the lens array 10 is condensed by the lens B62 to form an aperture image AI on a virtual plane P perpendicular to the optical axis. In an actual microscope, the virtual plane P, the sample plane, and the plane of the AF camera 50 are conjugate. In order to operate the focus movement mechanism to the in-focus position and perform autofocus, it is necessary to calculate the movement direction and movement amount of the focus movement mechanism from the image captured by the AF camera 50 . For this purpose, first, the grid spacing, angle and diameter of a plurality of aperture images AI incident on the sample are calculated.
 レンズアレイ10の一のレンズが光軸上にあった場合、AF光の光軸(Z軸)上の面Pでの中央(n=0)からn(=・・,-n,・・・,-2,-1,0,1,2,・・・,n,・・)番目における絞り像AI(n)について、格子間隔Δ(n)(図6参照)、光軸に対する光線の入射角度θ(n)(図4参考)、絞り像AI(n)の直径D(n)(図6参照)を計算すると以下のようになる。図6では、レンズアレイ10中心のレンズを光軸上に配置した状態を示したが、絞り像AIによって形成された格子を撮影することができればよく、レンズアレイ10中心のレンズを光軸上に配置する必要はない。
(式1) Δ(n)=(f/f)nd
(式2) tanθ(n)=2nd/f
(式3) D(n)=D×f/f
 ここで、fとfは各々レンズアレイ10とレンズB62の焦点距離であり、dはレンズアレイ10における隣接するレンズの間隔であり、Dは絞り30の直径である。式1より隣接する絞り像AI(n)と絞り像AI(n+1)との格子間隔Δ=(f/f)dとなる。
When one lens of the lens array 10 is on the optical axis, from the center (n=0) on the plane P on the optical axis (Z-axis) of the AF light to n (= . , −2, −1, 0, 1, 2, . Calculation of the angle θ(n) (see FIG. 4) and the diameter D P (n) of the aperture image AI(n) (see FIG. 6) yields the following. FIG. 6 shows the state in which the lens at the center of the lens array 10 is arranged on the optical axis. No need to place.
(Formula 1) Δ(n)=(f 0 /f)nd
(Formula 2) tan θ(n)=2nd/ f0
(Formula 3) D P (n)=D×f 0 /f
where f and f0 are the focal lengths of lens array 10 and lens B 62 respectively, d is the distance between adjacent lenses in lens array 10, and D is the diameter of aperture 30. From Equation 1, the lattice spacing Δ between adjacent aperture images AI(n) and AI(n+1) is given by =(f 0 /f)d.
 合焦が光軸方向に距離dzだけずれると、絞り像AI(n)と光軸(Z軸)との距離のずれdxは、n=0の絞り像AI(0)は光軸上から移動しないため、n=0の絞り像AI(0)とn番目の絞り像AI(n)との距離のずれと等しい。したがって、dx及びdzは、以下のようになる。
(式4) dx=Δ(n)-D
図4より、tanθ(n)=dx/dzである。式2より、dx/dz=2nd/fとなる。
(式5) dz={f/(2nd)}×dx
 したがって、a=f/(2nd)とおくと、dz=a×dxとなる。
When the focus shifts in the direction of the optical axis by a distance dz, the shift dx in the distance between the aperture image AI(n) and the optical axis (Z-axis) means that the aperture image AI(0) at n=0 moves from the optical axis. Therefore, it is equal to the difference in distance between the aperture image AI(0) of n=0 and the n-th aperture image AI(n). Therefore, dx and dz are as follows.
(Formula 4) dx=Δ(n)−D f
From FIG. 4, tan θ(n)=dx/dz. From Equation 2, dx/dz=2nd/ f0 .
(Formula 5) dz={f 0 /(2nd)}×dx
Therefore, if a=f 0 /(2nd), then dz=a×dx.
 式5よりdzが一定ならば、nが大きくなるにしたがって、dxの変化が大きくなることがわかる。そのため、nが大きい格子間隔を使用して演算を行えば、高い精度を実現できる。一方で、nが大きいと格子を形成している絞り像AIの光点の移動が大きくなるので、場合によっては、選択したnの絞り像AI(n)がAF用カメラ50の撮影領域から逸脱してしまうことがある。選択したn番目の絞り像AI(n)が撮影領域外に出た場合には、撮影領域内にあるnが小さい絞り像AI、例えばn-1番目の絞り像AI(n-1)を選択して演算を行い、フォーカス移動機構を駆動して選択したnの絞り像AI(n)がAF用カメラ50の撮影領域内に復帰させることで、幅広いオートフォーカスレンジを実現することができる。すなわち、演算を行う際にnを切り替えることで、幅広いオートフォーカスレンジと高精度を両立することが可能となる。  Formula 5 shows that if dz is constant, the change in dx increases as n increases. Therefore, high accuracy can be achieved by performing calculations using grid intervals with a large n. On the other hand, when n is large, the movement of the light spot of the aperture image AI forming the lattice becomes large, so that the selected n aperture image AI(n) may deviate from the photographing area of the AF camera 50 in some cases. Sometimes I end up doing it. If the selected n-th aperture image AI(n) is out of the imaging area, select the aperture image AI with a smaller n within the imaging area, for example, the n-1th aperture image AI(n-1). Then, the focus moving mechanism is driven to return the selected n aperture images AI(n) to the photographing area of the AF camera 50, thereby realizing a wide autofocus range. That is, by switching n when performing calculations, it is possible to achieve both a wide autofocus range and high accuracy.
 以上のように、AF用カメラ50で撮影された画像を用いて制御部によって計算したdxから現在のフォーカスのずれ距離量dz(式5)を知ることができる。ずれ距離量dzが0になるようにフォーカス移動機構を駆動することによって、ワイドレンジ、高速及び高精度のオートフォーカスを実現できる。 As described above, the current focus deviation distance amount dz (equation 5) can be known from dx calculated by the control unit using the image captured by the AF camera 50 . By driving the focus movement mechanism so that the deviation distance amount dz becomes 0, wide-range, high-speed, and high-precision autofocus can be achieved.
 図7は、本発明のオートフォーカス装置2の一の実施例を示した図である。観察光学系は、観察用カメラ130、観察用結像レンズ120、ダイクロイックミラー44及び対物レンズ110で構成される。一方AF光学系は、AF光が通過する順に、光源20、レンズA60、絞り30、レンズB62、レンズC64、ハーフミラー40、ダイクロイックミラー44、対物レンズ110、AF用結像レンズ66及びAF用カメラ50で構成される。ここで、レンズA60は、集光用レンズ、レンズB62は、絞り像AIの格子を形成するためのレンズ、またレンズC64は、絞り像AIを結像するためのレンズである。観察光学系は、顕微鏡装置に構成される。観察光学系及びAF光学系は、一部の光学素子を共通の構成部品とする。実施例1では、ダイクロイックミラー44と対物レンズ110を共通の構成部品としている。実施例1のAF光学系では、絞り30、仮想面P、試料100面とAFカメラとは共役の関係である。 FIG. 7 is a diagram showing one embodiment of the autofocus device 2 of the present invention. The observation optical system is composed of an observation camera 130 , an observation imaging lens 120 , a dichroic mirror 44 and an objective lens 110 . On the other hand, the AF optical system comprises a light source 20, a lens A60, a diaphragm 30, a lens B62, a lens C64, a half mirror 40, a dichroic mirror 44, an objective lens 110, an AF imaging lens 66, and an AF camera in order through which AF light passes. 50. Here, the lens A60 is a condensing lens, the lens B62 is a lens for forming the lattice of the diaphragm image AI, and the lens C64 is a lens for forming the diaphragm image AI. The observation optical system is configured in the microscope device. The observation optical system and the AF optical system share some optical elements. In Example 1, the dichroic mirror 44 and the objective lens 110 are used as common components. In the AF optical system of Example 1, the diaphragm 30, the virtual plane P, the surface of the sample 100 and the AF camera are in a conjugate relationship.
 オートフォーカス装置2には、制御部が含まれるが、図7には示していない。制御部には、電源部、ずれ距離量(dz)等を算出する演算部、AF用カメラ50から画像を取得する入力部、フォーカス移動機構への指令信号等の出力部及び記憶部を少なくとも有する。しかし、これに限定されるわけではなく、汎用コンピュータと同程度の機能を有していてもよい。 The autofocus device 2 includes a control unit, which is not shown in FIG. The control unit has at least a power supply unit, a calculation unit that calculates the displacement distance (dz), etc., an input unit that acquires an image from the AF camera 50, an output unit such as a command signal to the focus movement mechanism, and a storage unit. . However, it is not limited to this, and may have functions similar to those of a general-purpose computer.
 光源20から発せられたAF光は、レンズA60を通して集光され絞り30へ入射して点光源20から発せられた光に近似される。AF光は、絞り30を通過した後、レンズアレイ10とレンズB62を通過して仮想面Pの位置に絞り像AIとして結像される。仮想面P上ではレンズアレイ10によって分光された格子状の絞り像AIが現れる。仮想面P上に格子状の絞り像AIを形成したAF光は、レンズC64、ハーフミラー40を通過し、ダイクロイックミラー44で特定領域以外の波長の光が反射され対物レンズ110に入射して、試料100には格子状に結像した状態で照射される。 The AF light emitted from the light source 20 is condensed through the lens A60, enters the diaphragm 30, and approximates the light emitted from the point light source 20. After passing through the diaphragm 30, the AF light passes through the lens array 10 and the lens B62 and is focused on the position of the virtual plane P as the diaphragm image AI. On the virtual plane P, a grid-like aperture image AI split by the lens array 10 appears. The AF light that forms the grid-like aperture image AI on the virtual plane P passes through the lens C64 and the half mirror 40, and the dichroic mirror 44 reflects light of wavelengths other than the specific region, and enters the objective lens 110. The sample 100 is irradiated with an image formed in a grid pattern.
 試料100からの反射光は、対物レンズ110、ダイクロイックミラー44を通過し、ハーフミラー40で反射してAF用結像レンズ66を通過しAF用カメラ50の撮像素子に結像することになる。AF用カメラ50では、仮想面P上及び試料100面と同じ格子状となった絞り像AIが撮影される。ダイクロイックミラー44とレンズC64との間にハーフミラー40を配置してAF光の反射光を分離する方法は、オートフォーカス装置2を顕微鏡に内蔵し一体化した光学観察装置を構成する場合にオートフォーカス装置2部分を小型化することができ、かつ構成部品を少なくすることができるため有効である。 Reflected light from the sample 100 passes through the objective lens 110 and the dichroic mirror 44 , is reflected by the half mirror 40 , passes through the AF imaging lens 66 , and forms an image on the imaging device of the AF camera 50 . The AF camera 50 captures an aperture image AI on the virtual plane P and in the same grid pattern as the sample 100 surface. The method of separating the reflected light of the AF light by arranging the half mirror 40 between the dichroic mirror 44 and the lens C64 can be used when constructing an integrated optical observation apparatus in which the autofocus device 2 is built into the microscope. This is effective because the size of the device 2 can be reduced and the number of components can be reduced.
 対物レンズ110又はステージを光軸方向に移動させて、試料100の位置を変化させると、格子間隔が変化する。変化した格子間隔の値が、予め定められた格子間隔値Dと等しくなるように、変化した格子間隔と予め定められた格子間隔値Dとの差分(dx)に対応する光軸方向の距離の差分、すなわち、ずれ距離量(dz)だけ、対物レンズ110又はステージを光軸方向に移動することでオートフォーカスを実行する。その際の移動方向は、ずれ距離量(dz)の値の正負によって判断することができる。 When the objective lens 110 or the stage is moved in the optical axis direction to change the position of the sample 100, the grating interval changes. The optical axis direction corresponding to the difference ( dx ) between the changed grating spacing and the predetermined grating spacing value Df is adjusted so that the changed grating spacing value becomes equal to the predetermined grating spacing value Df. Auto-focusing is performed by moving the objective lens 110 or the stage in the optical axis direction by the distance difference, ie, the displacement distance amount (dz). The direction of movement at that time can be determined by the positive or negative value of the shift distance amount (dz).
 焦点位置をガラス102面から光軸方向に移動させる場合は、格子間隔値Dを変更、又はレンズC64若しくはAF用結像レンズ66の光軸方向の位置を物理的に変更することで行う。前者はレンズが実際に移動することがないため高速に行うことができるが、絞り像AIがぼやけるのでオートフォーカスの精度が低下する。そのため、ずれ距離量(dz)を算出する前に、ぼやけた絞り像AIを画像処理によってシャープな像に補正し、絞り像AIの中心を検出しておく必要がある。 To move the focal position from the glass 102 surface in the optical axis direction, change the lattice spacing value Df or physically change the position of the lens C64 or the AF imaging lens 66 in the optical axis direction. The former can be performed at high speed because the lens does not actually move. Therefore, it is necessary to correct the blurred diaphragm image AI to a sharp image by image processing and detect the center of the diaphragm image AI before calculating the displacement distance (dz).
 試料100自体の像は、観察光学系の対物レンズ110とダイクロイックミラー44と観察用結像レンズ120を通して観察用カメラ130で捉えられる。ダイクロイックミラー44ではAF光のみを反射して、観察用の照明光は透過する。実施例1では、観察用の照明光源は示していない。 An image of the sample 100 itself is captured by the observation camera 130 through the objective lens 110 of the observation optical system, the dichroic mirror 44 and the observation imaging lens 120 . The dichroic mirror 44 reflects only the AF light and transmits the illumination light for observation. In Example 1, an illumination light source for observation is not shown.
 図8は、本発明のオートフォーカス装置3の他の実施例を示した図である。観察光学系は、観察用カメラ130、観察用結像レンズ120、ダイクロイックミラー44及び対物レンズ110で構成される。一方AF光学系は、AF光が通過する順に、光源20、レンズA60、絞り30、レンズB62、偏光子、レンズC64、波長板、ダイクロイックミラー44、対物レンズ110及びAF用カメラ50で構成される。偏光子は、入射光をP偏光成分とS偏光成分とに分割することができる偏向ビームスプリッタ42が好適である。また、波長板は、入射光を偏光面においてπ/2(=λ/4)の位相差を加えるλ/4波長板70が好適である。偏向ビームスプリッタ42とλ/4波長板70とを組み合わせることにより、不要な戻り反射光などを除去することができる利点が生じる。ここで、レンズA60、レンズB62及びレンズC64は図7と同じ役割を果たす。観察光学系及びAF光学系は、一部の光学素子を共通の構成部品とする。実施例2では、ダイクロイックミラー44と対物レンズ110を共通の構成部品としている。なお、図8において、制御部は図示していないが、実施例1と同じ構成であればよい。実施例2のAF光学系では、仮想面P、試料100面とAF用カメラ50とは共役の関係である。 FIG. 8 is a diagram showing another embodiment of the autofocus device 3 of the present invention. The observation optical system is composed of an observation camera 130 , an observation imaging lens 120 , a dichroic mirror 44 and an objective lens 110 . On the other hand, the AF optical system is composed of a light source 20, a lens A60, a diaphragm 30, a lens B62, a polarizer, a lens C64, a wave plate, a dichroic mirror 44, an objective lens 110, and an AF camera 50 in order through which AF light passes. . The polarizer is preferably a polarizing beam splitter 42 capable of splitting incident light into P and S polarization components. Also, the wavelength plate is preferably a λ/4 wavelength plate 70 that adds a phase difference of π/2 (=λ/4) to the incident light in the plane of polarization. By combining the polarizing beam splitter 42 and the λ/4 wavelength plate 70, there is an advantage that unnecessary return reflected light can be removed. Here, lens A60, lens B62 and lens C64 play the same role as in FIG. The observation optical system and the AF optical system share some optical elements. In Example 2, the dichroic mirror 44 and the objective lens 110 are used as common components. In addition, although the controller is not shown in FIG. 8, it may have the same configuration as the first embodiment. In the AF optical system of Example 2, the virtual plane P, the sample 100 plane, and the AF camera 50 are in a conjugate relationship.
 光源20から発せられたAF光が、レンズA60で集光され絞り30を通過して、仮想面P上で絞り像AIが格子状に結像する点は、実施例1と同じである。実施例2では、仮想面Pを通過したAF光は、偏向ビームスプリッタ42、レンズC64、λ/4波長板70を通過しダイクロイックミラー44で反射し、対物レンズ110を通り試料100で格子状の絞り像AIを結像させる。 The AF light emitted from the light source 20 is condensed by the lens A60, passes through the diaphragm 30, and the diaphragm image AI is formed on the virtual plane P in a grid pattern, which is the same as in the first embodiment. In Example 2, the AF light that has passed through the virtual plane P passes through the polarizing beam splitter 42, the lens C64, and the λ/4 wavelength plate 70, is reflected by the dichroic mirror 44, passes through the objective lens 110, and forms a grating on the sample 100. An aperture image AI is formed.
 試料100からの反射光は、対物レンズ110を通過しダイクロイックミラー44で反射した後、λ/4波長板70、続いてレンズC64を通過し偏向ビームスプリッタ42で反射してAF用カメラの撮像素子上で結像する。AF用カメラ50では、仮想面P上及び試料100面と同じ格子状となった絞り像AIが撮影される。 Reflected light from the sample 100 passes through the objective lens 110 and is reflected by the dichroic mirror 44, then passes through the λ/4 wavelength plate 70, then the lens C64, is reflected by the polarizing beam splitter 42, and is reflected by the imaging device of the AF camera. image on. The AF camera 50 captures an aperture image AI on the virtual plane P and in the same grid pattern as the sample 100 surface.
 フォーカスの位置をガラス102面から光軸方向に移動させる場合は、格子間隔値Dを変更、又はレンズC64若しくはAF用結像レンズ66の光軸方向の位置を物理的に変更することで行う。前者はレンズが実際に移動することがないため高速に行うことができるが、絞り像AIがぼやけるのでフォーカスの精度が低下する。そのため、ずれ距離量(dz)を算出する前に、ぼやけた絞り像AIをシャープな像に補正し、絞り像AIの中心を検出する画像処理を行う。 When moving the focus position from the surface of the glass 102 in the optical axis direction, change the lattice spacing value Df , or physically change the position of the lens C64 or the AF imaging lens 66 in the optical axis direction. . The former can be performed at high speed because the lens does not actually move. Therefore, image processing is performed to correct the blurred aperture image AI to a sharp image and to detect the center of the aperture image AI before calculating the displacement distance (dz).
 実施例2のAF光学系の構成の利点は、レンズC64と対物レンズ110の間にハーフミラー40を配置する必要がない点にある。オートフォーカス装置3として顕微鏡に付属する場合、顕微鏡の構造上、対物レンズ110とレンズC64の間にハーフミラー40を挿入して、光を二方向に分離することは難しい。そこで、実施例2の構成の場合は、レンズC64と対物レンズ110の間ではなく、レンズC64の反射光路後段に偏向ビームスプリッタ42を配置することにより試料100からの反射光を分離する。オートフォーカス装置3を顕微鏡に付属する場合、AF光学系を観察光学系に結合して組み込むためレンズC64の焦点距離は長く設定しておく必要があり、レンズC64の反射光路後段では、偏向ビームスプリッタ42を配置するスペースを十分に確保することができる。その際、偏向ビームスプリッタ42の反射光路前段にλ/4波長板70を入れる必要がある。これによって、実施例1と比較すると、オートフォーカス装置3の構造に空間的な余裕が生じ、設計が容易になる利点がある。また、ハーフミラー40を使用して二方向に光を分離することがないため、全光量をAF用カメラ50に入射させることができるので試料100への光量は少なくて済み、光毒性を抑制することができる。 The advantage of the configuration of the AF optical system of Example 2 is that it is not necessary to dispose the half mirror 40 between the lens C64 and the objective lens 110. When attached to a microscope as the autofocus device 3, it is difficult to split the light into two directions by inserting the half mirror 40 between the objective lens 110 and the lens C64 due to the structure of the microscope. Therefore, in the configuration of the second embodiment, the reflected light from the sample 100 is separated by disposing the polarizing beam splitter 42 after the reflected light path of the lens C64, not between the lens C64 and the objective lens 110. FIG. When the autofocus device 3 is attached to the microscope, the focal length of the lens C64 must be set long because the AF optical system is combined with the observation optical system. 42 can be sufficiently secured. In this case, the λ/4 wavelength plate 70 must be placed in front of the reflected light path of the polarizing beam splitter 42 . As a result, as compared with the first embodiment, there is an advantage that the structure of the autofocus device 3 has more space and the design becomes easier. In addition, since the half mirror 40 is not used to split the light into two directions, the total amount of light can be incident on the AF camera 50, so the amount of light to the sample 100 can be reduced, thereby suppressing phototoxicity. be able to.
 試料100自体の像は、観察光学系の対物レンズ110とダイクロイックミラー44と観察用結像レンズ120を通して観察用カメラ130で捉えられる。ダイクロイックミラー44ではAF光のみを反射して、観察用の照明光は透過する。実施例2では、観察用の照明光源は示していない。 An image of the sample 100 itself is captured by the observation camera 130 through the objective lens 110 of the observation optical system, the dichroic mirror 44 and the observation imaging lens 120 . The dichroic mirror 44 reflects only the AF light and transmits the illumination light for observation. In Example 2, an illumination light source for observation is not shown.
 本発明のオートフォーカス装置は、生命科学的研究分野において特に有効性を発揮する。本発明のオートフォーカス装置は、長時間のオートフォーカス動作を行った場合であっても、光学系のずれや歪みに影響されることがないため、生命科学的観察の自動化を実現することが可能である。オートフォーカス動作を継続したまま、多数の試料がセットされたステージをXY方向にスキャンすることで、自動的に多数の試料の顕微鏡画像を撮影することができる。 The autofocus device of the present invention is particularly effective in the life science research field. The autofocus device of the present invention is not affected by misalignment or distortion of the optical system even when the autofocus operation is performed for a long time, so it is possible to realize automation of life science observation. is. By scanning the stage on which a large number of samples are set in the XY directions while continuing the autofocus operation, it is possible to automatically photograph a large number of microscope images of the samples.
 さらには、自動分注機と組み合わせることで、薬剤スクリーニングに使用することができる。薬液添加前における生体の状態の画像を自動化された顕微鏡で撮影し、自動分注機によって薬剤添加後に再度生体の状態の画像を撮影して、両方の画像を比較することで薬剤スクリーニングを行うことができる。また、自動撮影により、病理検査にも応用できる可能性がある。 Furthermore, it can be used for drug screening by combining it with an automatic pipetting machine. Perform drug screening by taking an image of the state of the living body before adding the drug solution with an automated microscope, taking an image of the state of the living body again after adding the drug with an automatic dispenser, and comparing both images. can be done. In addition, there is a possibility that automatic imaging can be applied to pathological examinations.
1 オートフォーカス装置
2 オートフォーカス装置(一の実施例)
3 オートフォーカス装置(他の実施例)
10 レンズアレイ
20 光源(又は、点光源)
30 絞り
40 ハーフミラー
42 偏向ビームスプリッタ
44 ダイクロイックミラー
50 オートフォーカス用カメラ(AF用カメラ)
60 レンズA
62 レンズB
64 レンズC
66 AF用結像レンズ
70 λ/4波長板
100 試料
102 ガラス
110 対物レンズ
120 観察用結像レンズ
130 観察用カメラ
 
D 絞り直径
d レンズアレイの間隔
f レンズアレイ焦点距離
 レンズB焦点距離
AI 絞り像
FV AF用カメラの撮影領域
P 仮想面
R 光線
RI 光像
Δ(n) 格子間隔
θ(n) 光線入射角度
(n) 絞り像の直径
 
1 autofocus device 2 autofocus device (one embodiment)
3 Autofocus device (another embodiment)
10 lens array 20 light source (or point light source)
30 diaphragm 40 half mirror 42 deflection beam splitter 44 dichroic mirror 50 autofocus camera (AF camera)
60 Lens A
62 Lens B
64 Lens C
66 AF imaging lens 70 λ/4 wavelength plate 100 Sample 102 Glass 110 Objective lens 120 Observation imaging lens 130 Observation camera
D aperture diameter d lens array interval f lens array focal length f 0 lens B focal length AI aperture image FV AF camera imaging area P virtual surface R light ray RI light image Δ(n) lattice interval θ(n) light ray incident angle D P (n) Diaphragm image diameter

Claims (4)

  1.  観察対象である試料と対物レンズとの距離を自動で調整して焦点を合わせるオートフォーカス装置において、
     光学素子アレイが、
     光源から前記試料までの光路上に配置されて、
     前記光源から発せられた光が、
     前記光学素子アレイによって分光され、前記試料に対して入射角度が異なる複数の光を入射させて、
     オートフォーカス用撮像素子が、
     前記試料からの反射光によって結像される複数の光像を取得して、
     制御部が、
     前記複数の光像の間隔を算出し、予め設定される合焦の際の基準値となる光像の格子間隔基準値との差分を取得して、距離調節機構に移動動作の指令信号を出力すること、
    を特徴とするオートフォーカス装置。
    In an autofocus device that automatically adjusts the distance between the sample to be observed and the objective lens to focus,
    the optical element array
    arranged on the optical path from the light source to the sample,
    The light emitted from the light source is
    making a plurality of lights separated by the optical element array and having different angles of incidence with respect to the sample,
    The image sensor for autofocus is
    Acquiring a plurality of optical images formed by reflected light from the sample,
    The control unit
    The distance between the plurality of light images is calculated, the difference between the light image lattice distance reference value which is a preset reference value for focusing is acquired, and a command signal for movement operation is output to the distance adjustment mechanism. to do
    An autofocus device characterized by:
  2.  前記光学素子アレイ及びオートフォーカス用撮像素子の間に配置された光学素子を前記光源から発せられる光の光軸方向に移動することによって、
    又は、
     前記格子間隔基準値を変更することによって、
     光軸方向の焦点位置の変更又は補正を行うこと、
    を特徴とする請求項1に記載するオートフォーカス装置。
    By moving the optical element arranged between the optical element array and the autofocus imaging element in the optical axis direction of the light emitted from the light source,
    or
    By changing the grid spacing reference value,
    changing or correcting the focal position in the direction of the optical axis;
    The autofocus device according to claim 1, characterized by:
  3.  観察光学系からオートフォーカス光を取り出す、又は分離する光学素子とオートフォーカス用撮像素子との間に、偏光子及び波長板を配置すること、
    を特徴とする請求項1又は請求項2に記載するオートフォーカス装置。
    Arranging a polarizer and a wave plate between an optical element for extracting or separating autofocus light from an observation optical system and an autofocus imaging device;
    3. The autofocus device according to claim 1 or 2, characterized by:
  4.  請求項1又は請求項2に記載するオートフォーカス装置を有すること、
    を特徴とする顕微鏡。
     
     
    Having the autofocus device according to claim 1 or claim 2,
    A microscope characterized by

PCT/JP2022/039867 2021-12-30 2022-10-26 Auto-focus device WO2023127261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021215465A JP7036396B1 (en) 2021-12-30 2021-12-30 Autofocus device
JP2021-215465 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023127261A1 true WO2023127261A1 (en) 2023-07-06

Family

ID=81213539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039867 WO2023127261A1 (en) 2021-12-30 2022-10-26 Auto-focus device

Country Status (2)

Country Link
JP (1) JP7036396B1 (en)
WO (1) WO2023127261A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123953A (en) * 2000-10-12 2002-04-26 Hitachi Ltd High density optical recorder
JP2013065015A (en) * 2011-09-15 2013-04-11 Leica Microsystems (Schweiz) Ag Automatic focusing method and device for microscope
JP2013235110A (en) * 2012-05-08 2013-11-21 Nikon Corp Autofocus device and microscope including the same
JP5626367B2 (en) * 2011-01-21 2014-11-19 株式会社ニコン Focus position maintaining device and microscope
WO2019159627A1 (en) * 2018-02-14 2019-08-22 国立研究開発法人理化学研究所 Autofocus device and optical device and microscope equipped with same
WO2020171173A1 (en) * 2019-02-20 2020-08-27 ソニー株式会社 Microscope system, focus adjustment program and focus adjustment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123953A (en) * 2000-10-12 2002-04-26 Hitachi Ltd High density optical recorder
JP5626367B2 (en) * 2011-01-21 2014-11-19 株式会社ニコン Focus position maintaining device and microscope
JP2013065015A (en) * 2011-09-15 2013-04-11 Leica Microsystems (Schweiz) Ag Automatic focusing method and device for microscope
JP2013235110A (en) * 2012-05-08 2013-11-21 Nikon Corp Autofocus device and microscope including the same
WO2019159627A1 (en) * 2018-02-14 2019-08-22 国立研究開発法人理化学研究所 Autofocus device and optical device and microscope equipped with same
WO2020171173A1 (en) * 2019-02-20 2020-08-27 ソニー株式会社 Microscope system, focus adjustment program and focus adjustment system

Also Published As

Publication number Publication date
JP2023099250A (en) 2023-07-12
JP7036396B1 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
US8027548B2 (en) Microscope system
JP4847690B2 (en) Microscope system
JP5999121B2 (en) Confocal light scanner
JP5199407B2 (en) Microscope system and observation method
JP2017167535A (en) Light field microscope and illumination method
JP4553030B2 (en) Automatic focus control unit, electronic equipment, automatic focus control method
JPWO2005114293A1 (en) Microscope equipment
JP2004212067A (en) Defect inspecting apparatus and defect inspection method
CN108254853B (en) Microscopic imaging system and real-time focusing method thereof
US11567293B2 (en) Autofocus device, and optical apparatus and microscope including the same
JP6090607B2 (en) Confocal scanner, confocal microscope
WO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
WO2016157291A1 (en) Measuring head and eccentricity measuring device provided with same
JP5322368B2 (en) Microscope system, observation method and observation program
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP4547526B2 (en) Microscope Farcus Control Device and Control Method
WO2023127261A1 (en) Auto-focus device
JP2008267842A (en) Organism observation container, biological microscope using the same, and organism observation apparatus
JP5822067B2 (en) Microscope equipment
JP2018017970A (en) Optical sheet microscope and method for controlling optical sheet microscope
JP2008261829A (en) Surface measuring device
JP2007147756A (en) Optical measuring device
JP2013167898A (en) Microscope system, observation method and observation program
US20220365328A1 (en) Light sheet microscope having streamlined field of view changes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915495

Country of ref document: EP

Kind code of ref document: A1