WO2023126010A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2023126010A1
WO2023126010A1 PCT/CN2023/070016 CN2023070016W WO2023126010A1 WO 2023126010 A1 WO2023126010 A1 WO 2023126010A1 CN 2023070016 W CN2023070016 W CN 2023070016W WO 2023126010 A1 WO2023126010 A1 WO 2023126010A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
access network
information
network device
terminal device
Prior art date
Application number
PCT/CN2023/070016
Other languages
English (en)
French (fr)
Inventor
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023126010A1 publication Critical patent/WO2023126010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a data transmission method and device.
  • wired industrial Internet of things IIoT
  • TSN wired time sensitive network
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the present application provides a data transmission method and device, which are used to improve the reliability of data transmission.
  • the present application provides a data transmission method, where the method is executed by a terminal device.
  • the terminal device sends the first data packet to the access network device on the first uplink resource; the terminal device starts a timer and monitors feedback information from the access network device, wherein the feedback information is used to feedback whether the received to the first data packet; if the feedback information or retransmission scheduling information from the access network device is received during the running of the timer, the terminal device stops the timer; if the timer expires
  • the terminal device sends first indication information to the access network device, where the first indication information indicates that uplink packet loss occurs in the access network device.
  • the terminal device when the terminal device has service data packets to transmit, especially when there are aperiodic service data packets to be transmitted, the terminal device starts to send the aperiodic service data packets or sends the data packets Afterwards, start the timer, and when the timer expires, send an instruction message to the access network device to indicate packet loss, so that the access network device can adjust the transmission mode to improve the reliability of subsequent transmissions, and avoid failures caused by the time-to-live timeout.
  • Application layer interruption when the terminal device has service data packets to transmit, especially when there are aperiodic service data packets to be transmitted.
  • the terminal device judges whether the first data packet contains data of the first data radio bearer (DRB), where, when the terminal device transmits When the data packet of the first DRB is received, it is necessary to start the timer and monitor the feedback information.
  • DRB data radio bearer
  • the access network equipment can perform differentiated configurations for different DRBs, thereby effectively balancing reliability and resource utilization.
  • the first uplink resource is a configuration grant CG or a dynamic grant DG.
  • the feedback information includes one or more items of CG information, Hybrid Automatic Repeat Request (HARQ) process information, and DRB information.
  • HARQ Hybrid Automatic Repeat Request
  • the first indication information includes one or more items of CG information, Hybrid Automatic Repeat Request (HARQ) process information, and DRB information.
  • HARQ Hybrid Automatic Repeat Request
  • the first indication information is carried on uplink control information UCI, and a resource carrying the UCI is a physical uplink control channel PUCCH resource associated with the first uplink resource.
  • the radio link control RLC entity corresponding to the second DRB is activated to perform packet data convergence layer protocol PDCP replication transmission, wherein the second DRB is The DRB associated with the first uplink resource or the DRB associated with the CG to which the first uplink resource belongs.
  • the RLC entity corresponding to the second DRB is preconfigured.
  • the duration of the timer is preconfigured, where: the duration of the timer is configured based on each DRB; or, the duration of the timer is Based on each logical channel configuration; or, the duration of the timer is configured based on each set of CG; or, the duration of the timer is configured based on each partial bandwidth BWP; or, the duration of the timer It is configured based on each serving cell; or, the duration of the timer is configured based on each terminal device.
  • the present application provides a data transmission method, and the subject of execution of the method is an access network device.
  • the access network device receives the first data packet from the terminal device on the first uplink resource; the access network device receives first indication information from the terminal device, and the first indication information indicates that the access network device has Uplink packet loss.
  • the first uplink resource is a configuration grant CG or a dynamic grant DG.
  • the first indication information includes one or more items of CG information, Hybrid Automatic Repeat Request (HARQ) process information, and DRB information.
  • HARQ Hybrid Automatic Repeat Request
  • the first indication information is carried on uplink control information UCI
  • a resource carrying the UCI is a physical uplink control channel PUCCH resource associated with the first uplink resource.
  • a communication device including functional modules for implementing the method in the foregoing first aspect, any possible implementation manner of the first aspect, the second aspect, and any possible implementation manner of the second aspect.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the aforementioned first aspect, any possible implementation of the first aspect, the second aspect, and any possible implementation of the second aspect through a logic circuit or by executing code instructions. method in the implementation.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any possibility of the aforementioned first aspect and the first aspect can be realized.
  • a computer program product containing instructions is provided. When the instructions are executed, the aforementioned first aspect, any possible implementation of the first aspect, the second aspect, and any possible implementation of the second aspect are realized methods in methods.
  • a computer program includes codes or instructions, and when the codes or instructions are executed, the aforementioned first aspect, any possible implementation of the first aspect, the second aspect, the second A method in any possible implementation of an aspect.
  • a chip system in a seventh aspect, includes a processor, and may also include a memory, for realizing the first aspect, any possible implementation of the first aspect, the second aspect, and any possible implementation of the second aspect At least one of the methods described in the implementation of .
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2a is an example diagram of a protocol layer structure between a terminal device and an access network device provided in an embodiment of the present application
  • FIG. 2b is a schematic diagram of a CU-DU separation architecture provided by an embodiment of the present application.
  • FIG. 2c is a schematic diagram of an architecture of a 5G system supporting a TSN network provided by an embodiment of the present application.
  • FIG. 3 is an example of service interruption at the application layer provided by the embodiment of the present application.
  • Figure 4, Figure 5 and Figure 6 are schematic flowcharts of the data transmission method provided by the embodiment of the present application.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application.
  • 5G long term evolution
  • 5G fifth generation
  • WiFi future communication system
  • NR new radio
  • the technical solution provided by the embodiment of the present application can be applied to various communication scenarios, for example, it can be applied to one or more of the following communication scenarios: enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (ultra -reliable low-latency communication (URLLC), machine type communication (machine type communication, MTC), large-scale machine type communication (massive machine type communications, mMTC), device-to-device (device-to-device, D2D), outside the vehicle Networking (vehicle to everything, V2X), vehicle to vehicle (vehicle to vehicle, V2V), and Internet of things (Internet of things, IoT), etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • MTC machine type communication
  • mMTC massive machine type communication
  • device-to-device device-to-device, D2D
  • V2X vehicle to everything
  • V2V vehicle to vehicle
  • IoT Internet of things
  • "/" can indicate that the objects associated before and after are in an "or” relationship, for example, A/B can indicate A or B; "and/or” can be used to describe that there are three types of associated objects A relationship, for example, A and/or B, may mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean that they must be different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and embodiments or designs described as “exemplary” or “for example” should not be interpreted as More preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • a terminal device can access a wireless network to obtain services from an external network (such as a data network (DN)) through the wireless network, or communicate with other devices through the wireless network, such as communicating with other terminals Device communication.
  • the network elements in the wireless network include radio access network (radio access network, RAN) network elements and core network (core network, CN) network elements.
  • the RAN is used to connect the terminal equipment to the wireless network
  • the CN is used to manage the terminal equipment and provide a gateway for communicating with the DN.
  • devices in the RAN may be referred to as access network devices
  • devices in the CN may be referred to as access network devices.
  • both the access network device and the access network device may be referred to as network devices.
  • the terminal equipment, RAN, CN, and DN involved in FIG. 1 will be described in detail below.
  • Terminal devices include devices that provide voice and/or data connectivity to a user, and may include, for example, handheld devices with wireless connectivity, or processing devices connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (vehicle to everything, V2X) terminal equipment , Machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (Internet of things, IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station , access point (access point, AP), remote terminal, access terminal, user terminal, user agent, or user equipment, etc.
  • user equipment user equipment
  • UE wireless terminal equipment
  • mobile terminal equipment mobile terminal equipment
  • device-to-device communication device-to-device, D2D) terminal equipment
  • vehicle to everything vehicle to everything
  • V2X vehicle to everything
  • Machine-to-machine/machine-type communications machine-to-machine/machine-type communications, M2M/MTC
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the RAN may include one or more RAN devices, and the interface between the RAN device and the terminal device may be a Uu interface (or called an air interface).
  • the names of these interfaces may remain unchanged, or may be replaced by other names, which is not limited in this application.
  • the RAN device is the access device for the terminal device to access the mobile communication system through wireless means. It can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), and a 5G mobile communication system.
  • the next generation base station (next generation NodeB, gNB), the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • the RAN device may include a centralized unit (centralized unit, CU), or a distributed unit (distributed unit, DU), or include a CU and a DU.
  • the functions of the RAN device may also be realized by multiple network function entities, and each network function entity is used to realize part of the functions of the RAN device.
  • These network functional entities may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (for example, a cloud platform).
  • the control plane protocol layer structure may include a radio resource control (radio resource control, RRC) layer, a packet data convergence protocol (packet data convergence protocol, PDCP) layer , radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical layer;
  • the user plane protocol layer structure may include PDCP layer, RLC layer, MAC layer and physical layer, in a possible implementation, the PDCP layer may further include a service data adaptation protocol (service data adaptation protocol, SDAP) layer.
  • the data transmission needs to go through the user plane protocol layer, such as the SDAP layer, PDCP layer, RLC layer, MAC layer, and physical layer.
  • the SDAP layer, PDCP layer, The RLC layer, the MAC layer, and the physical layer may also be collectively referred to as an access layer.
  • At least one data radio bearer (data radio bearer, DRB) is established between the access network device and the terminal device to transmit data, and each DRB may correspond to a set of functional entities, such as including a PDCP layer entity, the At least one RLC layer entity corresponding to the PDCP layer entity, at least one MAC layer entity corresponding to the at least one RLC layer entity, and at least one physical layer entity corresponding to the at least one MAC layer entity.
  • at least one signaling radio bearer (Signalling radio bearer, SRB) can also be established between the access network device and the terminal device to transmit signaling, and the DRB and the SRB can be collectively called a radio bearer (radio bearer, RB).
  • the downward arrow in FIG. 2a indicates data transmission
  • the upward arrow indicates data reception.
  • the SDAP layer entity obtains the data from the upper layer, it can map the data to the PDCP layer entity of the corresponding DRB according to the QoS flow indicator (QFI) of the data, and the PDCP layer entity can transmit the data to at least one corresponding to the PDCP layer entity.
  • An RLC layer entity is further transmitted by at least one RLC layer entity to the corresponding MAC layer entity, and then the MAC layer entity generates a transmission block, and then performs wireless transmission through the corresponding physical layer entity.
  • the data is encapsulated correspondingly in each layer.
  • the data received by a certain layer from the upper layer of the layer is regarded as the service data unit (service data unit, SDU) of the layer, which becomes a protocol data unit (protocol data unit) after layer encapsulation. unit, PDU), and then passed to the next layer.
  • SDU service data unit
  • PDU protocol data unit
  • the data received by the PDCP layer entity from the upper layer is called PDCP SDU
  • the data sent by the PDCP layer entity to the lower layer is called PDCP PDU
  • the data received by the RLC layer entity from the upper layer is called RLC SDU
  • RLC PDU the data sent by the RLC layer entity to the lower layer It is called RLC PDU.
  • data can be transmitted between different layers through corresponding channels, for example, data can be transmitted between RLC layer entities and MAC layer entities through a logical channel (logical channel, LCH), and between MAC layer entities and physical layer entities can be transmitted through Transport channel (transport channel) to transmit data.
  • logical channel logical channel
  • transport channel transport channel
  • the terminal device also has an application layer and a non-access layer; wherein, the application layer can be used to provide services to applications installed in the terminal device, for example, the received Downlink data can be sequentially transmitted from the physical layer to the application layer, and then provided to the application program by the application layer; for another example, the application layer can obtain the data generated by the application program, and transmit the data to the physical layer in sequence, and send it to other communication devices.
  • the non-access layer can be used to forward user data, such as forwarding uplink data received from the application layer to the SDAP layer or forwarding downlink data received from the SDAP layer to the application layer.
  • the RAN device may include one or more centralized units (centralized unit, CU) and one or more distributed units (distributed unit, DU), and multiple DUs may be centrally controlled by one CU.
  • the interface between the CU and the DU may be called an F1 interface, where a control plane (control panel, CP) interface may be F1-C, and a user plane (user panel, UP) interface may be F1-U.
  • CU and DU can be divided according to the protocol layer of the wireless network: for example, as shown in Figure 2b, the functions of the PDCP layer and above protocol layers are set in the CU, and the functions of the protocol layers below the PDCP layer are set in the DU.
  • the DU can include RLC layer, MAC layer and physical (Physical, PHY) layer.
  • the DU may include functions of the RLC layer, functions of the MAC layer, and part of functions of the PHY layer.
  • a DU may include functions of higher layers in the PHY layer.
  • the high-level functions in the PHY layer may include cyclic redundancy check (cyclic redundancy check, CRC) function, channel coding, rate matching, scrambling, modulation, and layer mapping; or, the high-level functions in the PHY layer may include cyclic Redundancy checking, channel coding, rate matching, scrambling, modulation, layer mapping and precoding.
  • the functions of the middle and lower layers of the PHY layer can be realized by another network entity independent from the DU, wherein the functions of the middle and lower layers of the PHY layer can include precoding, resource mapping, physical antenna mapping and radio frequency functions; or, the functions of the middle and lower layers of the PHY layer can be Includes resource mapping, physical antenna mapping, and radio frequency functions.
  • the embodiment of the present application does not limit the function division of the upper layer and the lower layer in the PHY layer.
  • the DU sends data or information to other communication devices (such as terminal equipment, core network equipment), which can be understood as: DU executes RLC layer, MAC layer functions, and, some functions of the PHY layer.
  • the network independent of the DU that performs the functions of the middle and lower layers of the PHY layer
  • the entity performs the remaining functions of mapping and sending on physical resources.
  • the CN may include one or more CN devices.
  • the CN may include access and mobility management function (access and mobility management function, AMF) network elements, session management function (session management function, SMF) ) network element, user plane function (UPF) network element, policy control function (PCF) network element, unified data management (unified data management, UDM) network element, application function (application function, AF) ) network elements, network exposure function (network exposure function, NEF) network elements, unified data storage (unified data repository, UDR) network elements, etc.
  • access and mobility management function access and mobility management function, AMF
  • session management function session management function, SMF
  • UPF user plane function
  • PCF policy control function
  • UDM user plane function
  • PCF policy control function
  • UDM unified data management
  • UDM application function
  • application function application function
  • AF application function
  • NEF network exposure function
  • NEF network exposure function
  • UDR unified data storage
  • DN can also be called packet data network (packet data network, PDN), which is a network located outside the operator's network.
  • PDN packet data network
  • the operator's network can access multiple DNs, and application servers corresponding to various services can be deployed in the DN.
  • End devices offer a wide variety of possible services.
  • an application layer corresponding to the application layer of the terminal device may be set in the application server.
  • Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • interface serial numbers refer to the meanings defined in relevant standard protocols, and there is no limitation here.
  • the 5G communication system is taken as an example in FIG. 1, and the solution in the embodiment of the present application can also be applied to other possible communication systems, such as the future sixth generation (the 6th generation, 6G) in the communication system.
  • the foregoing network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • FIG. 2c is a schematic diagram of the architecture of a 5GS-supported TSN network applicable to the embodiment of the present application.
  • the TSN network can regard 5GS as a TSN bridge device, and data packets for various industrial applications can be sent uplink/downlink through 5GS.
  • Industrial application data can be sent to UPF by DN (such as TSN controller), sent by UPF to UE connected to industrial equipment (such as sensor, operating arm, etc.), and sent to connected industrial equipment by UE; similarly, industrial data It can also be sent to the DN by industrial equipment.
  • DN such as TSN controller
  • industrial equipment such as sensor, operating arm, etc.
  • industrial data can also be sent to the DN by industrial equipment.
  • data transmission is performed between the UE and the base station through the Uu interface, and data transmission is performed between the base station and the core network data plane node UPF through the N3 interface/N3 tunnel.
  • the TSN controller can be deployed on the network side, such as the side connected to the UPF, or on the user side, such as the side connected to the UE.
  • the 5G communication system can support a variety of possible services, such as URLLC services, which need to guarantee 1 millisecond delay and 99.999% reliability requirements.
  • the required delay guarantee and reliability guarantee requirements may be higher, for example, a delay guarantee of 0.5ms and a reliability requirement of 99.9999% are required.
  • the application layer of the IIoT device can set the lifetime. Time-to-live means that if the application layer of the IIoT device does not receive the data packet within the expected arrival time range of a certain data packet, it will start the time-to-live timer.
  • the timer stops; if the timer runs until it times out, that is, no expected application layer data packet arrives during the running time of the time-to-live timer, the application layer interrupts. After the application layer is interrupted, it will enter a predefined state, such as business interruption, downtime, etc.
  • the survival time can be defined as the number of consecutive unsuccessfully transmitted data packets (such as a), if the number of consecutive unsuccessfully transmitted data packets is greater than or equal to a, it will cause business interruption at the application layer.
  • one data packet can be transmitted in one transmission period, and a is 2. That is to say, when two consecutive data packets are not successfully transmitted, the service is interrupted at the application layer.
  • the timer starts; when the data packet 3 of the next cycle is successfully transmitted, the timer stops; When the transmission is successful, start the timer again. If the data packet 5 is still not successfully transmitted, the timer times out and the application layer is interrupted.
  • the survival time may also be defined as the number of consecutive unsuccessful transmission cycles (such as c), where the unsuccessful transmission cycle may refer to a transmission cycle in which there are data packets that have not been successfully transmitted, Or the number of unsuccessfully transmitted data packets is greater than or equal to the transmission period of the first threshold, or the transmission period of the amount of unsuccessfully transmitted data is greater than or equal to the second threshold, wherein the first threshold and the second threshold can be preset of. If the number of consecutive unsuccessful transmission cycles is greater than or equal to c, the service will be interrupted at the application layer.
  • c the number of consecutive unsuccessful transmission cycles
  • TSCAI delay-sensitive communication assistance information
  • the TSCAI can be used to describe the service characteristics of delay-sensitive services used in the 5G system, which is conducive to effective resource scheduling of access network equipment.
  • the TSCAI may include the lifetime of the delay-sensitive service.
  • the access network device may determine the lifetime corresponding to the QoS flow in the TSCAI, and schedule the QoS flow based on the lifetime.
  • the TSC service may enter the survival time, and the access network device improves the transmission reliability of subsequent uplink data packets to avoid continuous service packet loss, thereby avoiding the survival time
  • a timeout causes the application to be interrupted.
  • the TSCAI may also include the flow direction (flow direction) of the QoS flow of the delay-sensitive service, such as downlink or uplink; the TSCAI may also include a period, indicating the delay-sensitive service between two bursts Time interval; TSCAI may also include burst arrival time (burst arrival time).
  • An implementation manner of uplink data transmission between the terminal device and the network device may be grant free transmission, that is, the terminal device uses grant free resources to send uplink data to the network device.
  • the uplink transmission of the terminal equipment does not need to be completed through the scheduling of the network equipment. For example, when uplink data arrives, the terminal device does not need to send a scheduling request (scheduling request, SR) to the network device and wait for a dynamic grant (DG) from the network device, but can directly use the uplink transmission pre-allocated by the network device The resource sends uplink data to the network device.
  • SR scheduling request
  • DG dynamic grant
  • the above-mentioned dynamically allocated uplink transmission resources may be called DG or DG resources; the above-mentioned pre-allocated uplink transmission resources may be called “configured grant (CG)", uplink configuration grant, or CG resources, where such resources are Periodically.
  • CG configured grant
  • the access network device can configure periodic CG resources for the terminal device to transmit service data.
  • periodic services that is, services in which data packets are always generated and arrive at the base station side at a certain period
  • the access network device can configure periodic CG resources for the terminal device to transmit service data.
  • the access network device fails to decode a data packet on a CG resource, the access network device realizes that an uplink packet loss occurs, and immediately schedules retransmission resources for the terminal device. After receiving the retransmission schedule, the terminal device can improve the reliability of subsequent data packet transmission by activating PDCP copy transmission and other methods, so as to avoid continuous packet loss.
  • the access network equipment cannot recognize packet loss in time.
  • the access network device configures periodic CG resources for the terminal device, but since service data arrives at the application layer of the terminal device aperiodically, not every CG resource will have data to be transmitted. Because in the prior art, when the CG resource arrives but the terminal device has no data to transmit, the terminal device will actively ignore the CG resource. As a result, when the terminal device transmits an aperiodic service data packet using a CG resource, but the access network device fails to decode the data packet, the access network device will mistakenly think that the terminal device has no data transmission and ignore the CG assets without realizing that there is a packet loss.
  • the access network device is not aware of the packet loss, it will not schedule resources or adjust the transmission mode to improve the reliability of subsequent transmissions. As a result, packet loss may still occur in subsequent transmissions, resulting in time-to-live timeouts. Causes an interruption at the application layer.
  • the present invention provides a data transmission method for improving the reliability of data transmission, especially the reliability of data transmission of aperiodic services.
  • FIG. 4 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • This embodiment relates to a specific process of data transmission between an access network device and a terminal device.
  • the executors of this embodiment may be the access network device and the terminal device, or may be modules respectively applied to the access network device and the terminal device, for example, a chip.
  • the access network device and the terminal device are taken as the execution subjects as an example for description.
  • the method may include: S401, S402 and S403.
  • the embodiment of the present application does not limit the execution sequence of each step.
  • the terminal device sends a first data packet to the access network device on the first uplink resource; correspondingly, the access network device receives the first data packet from the terminal device on the first uplink resource.
  • the first uplink resource may be a CG resource or a DG resource. The following takes the first uplink resource being a CG resource as an example for description.
  • the terminal device starts a timer, and monitors feedback information from the access network device. Wherein, the feedback information is used to feed back whether the access network device successfully receives the first data packet.
  • the terminal device may start the timer when the transmission of the first data packet starts or after the transmission is completed.
  • the timer is associated with a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the terminal device uses the HARQ process 1 to send the first data packet on the first uplink resource, and the terminal device starts a timer associated with the HARQ process 1 after sending the first data packet.
  • the duration of the timer may be pre-configured by the access network device, which may include but not limited to the following methods:
  • the access network device configures the duration of the timer for each DRB.
  • the access network device configures the duration of the timer in the DRB configuration information element.
  • the timer is started, and the duration of the timer may be determined according to the duration of the timer corresponding to the DRB associated with the first data packet. Specifically, if the first uplink data includes data of one DRB (such as DRB1), the duration of the timer is the duration of the timer corresponding to DRB1; if the first uplink data includes data of multiple DRBs, then the duration of the timer The duration is the minimum or maximum value among the durations of the timers corresponding to multiple DRBs.
  • the access network device configures the duration of the timer for each LCH.
  • the access network device configures the duration of the timer in the information element configuring the LCH.
  • the timer is started, and the duration of the timer may be determined according to the duration of the timer corresponding to the LCH associated with the first data packet. Specifically, if the first uplink data includes data of one LCH (such as LCH1), the duration of the timer is the timer duration corresponding to LCH1; if the first uplink data includes data of multiple LCHs, then the duration of the timer The duration is the minimum or maximum value among the durations of the timers corresponding to multiple LCHs.
  • the access network device configures the duration of the timer for each set of CGs.
  • the access network device configures the duration of the timer in the CG configuration information element. After the terminal device uses the first uplink resource to send the first data packet, the duration of the timer may be determined according to the duration of the timer corresponding to the CG to which the first uplink resource belongs.
  • the access network device configures the duration of the timer for each part of bandwidth (Bandwidth part, BWP).
  • BWP Bandwidth part
  • the access network device configures the duration of the timer in the information element configuring the BWP.
  • the duration of the timer may be determined according to the duration of the timer corresponding to the BWP to which the first uplink resource belongs.
  • one BWP may be configured with multiple sets of CG resources, wherein the duration of the timer corresponding to the CG resources configured with the first function is the same.
  • the first function may be understood as: a function with reliability guarantee.
  • the access network device configures the duration of the timer for each serving cell.
  • the access network device configures the duration of the timer in the information element configuring the serving cell.
  • the duration of the timer may be determined according to the duration of the timer corresponding to the serving cell to which the first uplink resource belongs.
  • one serving cell may be configured with multiple sets of CG resources, wherein the duration of the timers corresponding to the CG resources configured with the first function is the same.
  • the access network device configures the duration of the timer for each terminal device.
  • the access network device configures the duration of the timer in the cell group configuration information element or the MAC entity configuration information element.
  • the access network device configures multiple sets of CG resources for the terminal device, wherein the durations of the timers corresponding to the CG resources configured with the first function are the same.
  • the terminal device first judges whether the first data packet contains data of the first DRB. If the data of the first DRB is included, the timer is started.
  • the first DRB is a DRB configured with the first function.
  • the terminal device stops the timer.
  • the terminal device receives the feedback information transmitted by the access network device for the HARQ process 1, or receives the scheduling retransmission information of the HARQ process 1, the above timer is stopped.
  • the above feedback information may be borne on downlink control information (DCI), or may be borne on MAC control element (control element, CE) or other signaling, which is not limited in this embodiment of the present application.
  • DCI downlink control information
  • CE control element
  • the foregoing feedback information may include one or more items of CG information, HARQ process information, and DRB information.
  • the CG information may be a CG index value
  • the HARQ process information may be a HARQ process number
  • the DRB information may be a DRB ID or a logical channel ID (logical channel ID, LCH ID).
  • the foregoing feedback information may include an acknowledgment message (acknowledgment, ACK) or a negative acknowledgment (negative acknowledgment, NACK), which is used to indicate that the access network device successfully or fails to parse the first data packet.
  • the ACK/NACK information may be displayed and carried in the above-mentioned feedback information, for example, ACK and NACK are indicated by bits "0" and "1" respectively.
  • the ACK/NACK information may be carried implicitly. For example, when the terminal device receives the feedback information, it means that the first data packet, ie, ACK, has been successfully received.
  • the terminal device can actively improve the reliability of data transmission.
  • the terminal device activates the RLC entity corresponding to the second DRB to perform PDCP replication transmission, or the terminal device activates the RLC entity pre-configured by the access network device for the second DRB, so as to perform PDCP replication transmission.
  • the second DRB is the DRB associated with the first uplink resource or the DRB associated with the CG to which the first uplink resource belongs.
  • the terminal device may send first indication information to the access network device, where the first indication information indicates that the access network device has lost uplink packets, or indicates that the access network device has a timer that expires.
  • the indication information may carry one or more items of CG information, HARQ process information, and DRB information.
  • the CG information may be a CG index value
  • the HARQ process information may be a HARQ process number
  • the DRB information may be a DRB ID or an LCH ID.
  • the first indication information may be carried on uplink control information (uplink control information, UCI), or may be carried on MAC CE or other signaling, which is not limited in this embodiment of the present application.
  • uplink control information uplink control information
  • MAC CE MAC CE
  • the access network device may associate a set of physical uplink control channel (physical uplink control channel, PUCCH) resources for the CG to which the first uplink resource belongs, and the PUCCH resources are used for Transmit first indication information.
  • PUCCH physical uplink control channel
  • the terminal device may also notify the access network device through the first indication information that the terminal device has activated PDCP replication transmission, and after receiving the first indication information, the access network device may allocate the newly activated RLC entity in time. Transfer resources, used for subsequent transfers.
  • the terminal device can actively improve the reliability of data transmission to ensure subsequent transmission, or the terminal device can also notify the access network device by sending the first indication information to the access network device.
  • Network equipment loses packets to ensure subsequent transmission, or the terminal equipment can actively improve the reliability of data transmission and send the first indication information to the access network equipment to ensure subsequent transmission, this embodiment of the application does not make any limit.
  • the above embodiments provide a method for data transmission.
  • the terminal device When a terminal device has a service data packet to transmit, especially a data packet of an aperiodic service needs to be transmitted, the terminal device starts to send the data packet of the aperiodic service or sends the data packet of the aperiodic service.
  • the timer After the data packet, the timer is started, and when the timer expires, an indication message is sent to the access network device to indicate packet loss, so that the access network device can adjust the transmission mode to improve the reliability of subsequent transmissions and avoid The resulting application layer interruption.
  • FIG. 5 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • This embodiment relates to a specific process of data transmission between an access network device and a terminal device.
  • the executors of this embodiment may be the access network device and the terminal device, or may be modules respectively applied to the access network device and the terminal device, for example, a chip.
  • an access network device and a terminal device are taken as execution bodies as examples for description.
  • the method may include: S501 and S502.
  • the embodiment of the present application does not limit the execution sequence of each step.
  • the terminal device sends a first data packet to the access network device on the first uplink resource; correspondingly, the access network device receives the first data packet from the terminal device on the first uplink resource.
  • the first uplink resource is a CG resource.
  • the CG resources are used to transmit aperiodic services.
  • the terminal device sends second indication information to the access network device on the second uplink resource; correspondingly, the access network device receives the second indication information from the terminal device on the second uplink resource.
  • the second uplink resource is a PUCCH resource.
  • the second indication information is used to indicate that the uplink data packet is transmitted on the first uplink resource.
  • the access network device In a CG cycle, as long as the access network device successfully parses at least one of the first data packet carried on the CG resource and its corresponding PUCCH signal, it can confirm that the terminal device uses the CG resource in the CG cycle to transmit . At this time, if the access network device fails to decode the first data packet within the CG cycle or does not receive the first data packet, the access network device considers that packet loss occurred in the uplink transmission, and at this time, the access network device Retransmission resources may be scheduled for the terminal device, and/or the terminal device may be triggered to improve the reliability of subsequent data packet transmission.
  • the access network device will pre-configure the corresponding relationship between the first uplink resource and the second uplink resource.
  • the access network device may configure a set of PUCCH resources for each CG resource in each CG period, or configure a set of PUCCH resources in each CG period, and the set of PUCCH resources corresponds to the N CG resources. If the terminal device does not use the CG resource to transmit uplink data, the terminal device will automatically ignore the PUCCH resource corresponding to the CG resource and the accompanying PUCCH resource in the CG period.
  • the above embodiments provide a data transmission method.
  • the terminal device When transmitting aperiodic services, when the terminal device sends the data packets of the aperiodic services on the CG resources, it will also send indication information on the PUCCH resources corresponding to the CG resources.
  • the access network device can confirm that the terminal device has used the CG resource in the CG period for transmission, thereby avoiding access
  • the network device mistakenly thinks that the terminal device did not send uplink data and is unaware of packet loss, so it will not adjust the transmission mode to improve the reliability of subsequent transmission, resulting in packet loss in subsequent transmitted data packets, which will cause the time-to-live timeout to occur Application layer interruption.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • This embodiment relates to a specific process of data transmission between an access network device and a terminal device.
  • the executors of this embodiment may be the access network device and the terminal device, or may be modules respectively applied to the access network device and the terminal device, for example, a chip.
  • the access network device and the terminal device are taken as the execution subjects as an example for description.
  • the method may include: S601, S602, and S603. Wherein, the embodiment of the present application does not limit the execution sequence of each step.
  • the access network device configures a scheduling request (scheduling request, SR) resource for the terminal device. Specifically, the access network device configures two sets of SR resources for one LCH, one of which is a default configuration and the other is an enhanced configuration. Optionally, the SR resource density in the enhanced configuration is higher than that in the default configuration, and/or, the sr-ProhibitTimer timer for prohibiting SR transmission has a shorter duration.
  • SR scheduling request
  • the access network device can configure SR resources at the granularity of DRB/LCH, that is, the access network device can configure two sets of SR resources for one DRB/LCH, and the access network device configures two sets of SR resources for the first LCH.
  • a set of SR resources is used as an example for description.
  • the service may be an aperiodic service.
  • the terminal device receives the resource scheduled by the access network device, and the resource can be used to transmit the data of the first LCH, or the SR corresponding to the first LCH is cancelled, stop the first LCH. Two timers.
  • the terminal device cancels the default SR triggered by the first LCH, and triggers the enhanced SR corresponding to the LCH, and the terminal device switches to the enhanced SR resource to continue sending SR; or, if the second timer expires, The terminal device does not cancel the default SR corresponding to the first LCH, but additionally triggers the enhanced SR corresponding to the first LCH, and the terminal device simultaneously uses the default SR resource and the enhanced SR resource to send the SR.
  • the foregoing embodiments provide a method for data transmission.
  • the access network device configures SR resources of different levels for the LCH/DRB of the terminal device.
  • the default SR is triggered first, and when no response is received from the access network device after sending a certain number of times, it can switch to the enhanced SR resource and continue sending SR.
  • the reliability of SR can be improved , so that the access network device can allocate uplink resources in time, and avoid application layer interruption caused by the time-to-live timeout.
  • step numbers of the various flow charts described in the embodiment are only an example of the execution flow, and do not constitute a restriction on the sequence of execution of the steps. There is no strict order of execution.
  • steps that must be executed are steps that must be executed, and some steps may be added or deleted on the basis of each flow chart according to actual needs. It should be understood that performing some of the steps in the illustration or adjusting the order of the steps for specific implementation falls within the protection scope of the present application.
  • FIG. 7 to FIG. 8 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application.
  • a communication device 700 includes a processing unit 710 and a transceiver unit 720 .
  • the transceiver unit 720 is used to send the first data packet to the access network device on the first uplink resource; the processing unit 710 is used to start timer, and monitor the feedback information from the access network device, wherein the feedback information is used to feed back whether the access network device has successfully received the first data packet; the processing unit 710 is also used to receive a message from Feedback information or retransmission scheduling information from access network equipment, stop the timer; if the timer times out, send first indication information to the access network equipment, the first indication information indicates that the access network Uplink packet loss occurs on the device.
  • the transceiver unit 720 is used to send the first data packet to the access network device on the first uplink resource; the transceiver unit 720 is also used to Sending second indication information to the access network device on the second uplink resource; wherein, there is a corresponding relationship between the first uplink resource and the second uplink resource, and the second indication information is used to indicate that an uplink data packet is transmitted on the first uplink resource .
  • the processing unit 710 is used to send an SR using a default SR resource after a service arrives and an SR corresponding to the first LCH is triggered, And start the second timer; the processing unit 710 is also used to cancel the default SR triggered by the first LCH if the second timer expires, and trigger the enhanced SR corresponding to the LCH; the sending unit 720 is used to use the enhanced SR resource to send Sr.
  • FIG. 8 is a schematic structural diagram of another possible communication device provided by an embodiment of the present application.
  • the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute the instructions or storing data generated after the processor 810 executes the instructions.
  • the processor 810 is used to implement the functions of the processing unit 710
  • the interface circuit 820 is used to implement the functions of the transceiver unit 720 .
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable In addition to programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer programs or instructions may be stored in or transmitted via computer-readable storage media.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输的方法和装置。终端设备在第一上行资源上向接入网设备发送第一数据包;终端设备启动定时器,并监听来自所述接入网设备的反馈信息,其中,所述反馈信息用于反馈是否成功接收到所述第一数据包;若在所述定时器运行期间接收到来自所述接入网设备的所述反馈信息或重传调度信息,终端设备停止所述定时器;若所述定时器超时,终端设备向所述接入网设备发送第一指示信息,所述第一指示信息指示所述接入网设备发生上行丢包。通过实施该方法,终端设备在开始发送该非周期业务的数据包或发送该数据包之后,启动定时器,当定时器超时时,向接入网设备发送指示信息以指示发生丢包,避免由于生存时间超时导致的应用层中断。

Description

数据传输的方法和装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及数据传输的方法和装置。
背景技术
在工业控制场景中,通常部署有线的工业互联网(industrial Internet of things,IIoT)进行产线控制,例如部署有线时延敏感网络(time sensitive network,TSN)来控制产线。然而这种方式存在一些固有的缺陷,例如线缆部署成本较高、存在安全风险、灵活性较低等。为解决上述缺陷,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了将5G系统(5th generation system,5GS)应用于TSN的方案,其中,5GS作为一个TSN桥接设备应用到TSN中,TSN的数据包可以通过5GS进行传输。
发明内容
本申请提供了一种数据传输的方法和装置,用于提高数据传输的可靠性。
第一方面,本申请提供了数据传输的方法,该方法的执行主体为终端设备。终端设备在第一上行资源上向接入网设备发送第一数据包;终端设备启动定时器,并监听来自所述接入网设备的反馈信息,其中,所述反馈信息用于反馈是否成功接收到所述第一数据包;若在所述定时器运行期间接收到来自所述接入网设备的所述反馈信息或重传调度信息,终端设备停止所述定时器;若所述定时器超时,终端设备向所述接入网设备发送第一指示信息,所述第一指示信息指示所述接入网设备发生上行丢包。
通过实施第一方面所描述的方法,在终端设备有业务数据包传输,特别是有非周期性业务的数据包需要传输时,终端设备在开始发送该非周期业务的数据包或发送该数据包之后,启动定时器,当定时器超时时,向接入网设备发送指示信息以指示发生丢包,这样接入网设备可以调整传输方式以提高后续传输的可靠性,避免由于生存时间超时导致的应用层中断。
在第一方面的一种可能的实现方式中,在启动所述定时器之前,终端设备判断所述第一数据包中是否包含第一数据无线承载DRB的数据,其中,当所述终端设备传输了所述第一DRB的数据包时,需要启动所述定时器并监听所述反馈信息。
通过实施该方法,接入网设备可以为不同的DRB进行差异化配置,从而可以有效平衡可靠性和资源利用率。
在第一方面的一种可能的实现方式中,所述第一上行资源为配置授权CG或动态授权DG。
在第一方面的一种可能的实现方式中,所述反馈信息包括CG信息、混合自动重传请求HARQ进程信息、DRB信息中的一项或多项。
在第一方面的一种可能的实现方式中,所述第一指示信息包括CG信息、混合自动重传请求HARQ进程信息、DRB信息中的一项或多项。
在第一方面的一种可能的实现方式中,所述第一指示信息承载在上行控制信息UCI上,承载所述UCI的资源为所述第一上行资源关联的物理上行控制信道PUCCH资源。
在第一方面的一种可能的实现方式中,若所述定时器超时,激活第二DRB对应的无线链路控制RLC实体进行分组数据汇聚层协议PDCP复制传输,其中,所述第二DRB为所述第一上行资源关联的DRB或者所述第一上行资源所属的CG所关联的DRB。
在第一方面的一种可能的实现方式中,所述第二DRB对应的RLC实体为预配置的。
在第一方面的一种可能的实现方式中,,所述定时器的时长为预配置的,其中:所述定时器的时长是基于每个DRB配置的;或者,所述定时器的时长是基于每个逻辑信道配置的;或者,所述定时器的时长是基于每套CG配置的;或者,所述定时器的时长是基于每个部分带宽BWP配置的;或者,所述定时器的时长是基于每个服务小区配置的;或者,所述定时器的时长是基于每个终端设备配置的。
第二方面,本申请提供了数据传输的方法,该方法的执行主体为接入网设备。接入网设备在第一上行资源上接收来自终端设备的第一数据包;接入网设备接收来自所述终端设备的第一指示信息,所述第一指示信息指示所述接入网设备发生上行丢包。
在第二方面的一种可能的实现方式中,所述第一上行资源为配置授权CG或动态授权DG。
在第二方面的一种可能的实现方式中,所述第一指示信息包括CG信息、混合自动重传请求HARQ进程信息、DRB信息中的一项或多项。
在第二方面的一种可能的实现方式中,所述第一指示信息承载在上行控制信息UCI上,承载所述UCI的资源为所述第一上行资源关联的物理上行控制信道PUCCH资源。
第三方面,提供了一种通信装置,包括用于实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式中的方法的功能模块。
第三方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式中的方法。
第五方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式中的方法。
第六方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式中的方法。
第七方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式中描述的至少一种方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2a为本申请实施例提供的终端设备与接入网设备之间的协议层结构示例图;
图2b为本申请实施例提供的一种CU-DU分离架构的示意图;
图2c为本申请实施例提供的一种5G系统支持TSN网络的架构示意图。
图3为本申请实施例提供的业务在应用层发生中断的一种示例;
图4、图5和图6为本申请实施例提供的数据传输方法的流程示意图;
图7和图8为本申请实施例提供的可能的通信装置的结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、WiFi系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、和物联网(internet of things,IoT)等。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1为本申请实施例适用的一种网络架构示意图。如图1所示,终端设备可接入到无线网络,以通过无线网络获取外网(例如数据网络(data network,DN))的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络中的网元包括无线接入网(radio access network,RAN)网元和核心网(core network,CN)网元。RAN用于将终端设备接入到无线网络,CN用于对终端设备进行管理并提供与DN通信的网关。在本申请实施例中,RAN中的设备可以称为接入网设备,CN中的设备可以称为接入网设备。其中,接入网设备和接入网设备都可以称为网络设备。
下面分别对图1中所涉及的终端设备、RAN、CN、DN进行详细说明。
一、终端设备
终端设备包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元、订户站,移动站、远程站、接入点(access point,AP)、远程终端、接入终端、用户终端、用户代理、或用户装备等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS) 电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
二、RAN设备
RAN中可以包括一个或多个RAN设备,RAN设备与终端设备之间的接口可以为Uu接口(或称为空口)。当然,在未来通信中,这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不限定。
RAN设备是终端设备通过无线方式接入到移动通信系统中的接入设备,可以是基站、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。RAN设备可以包括集中单元(centralized unit,CU)、或分布单元(distributed unit,DU)、或包括CU和DU。
在本申请实施例中,也可以通过多个网络功能实体来实现RAN设备的功能,每个网络功能实体用于实现RAN设备的部分功能。这些网络功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
(1)协议层结构
RAN设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层,在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
以接入网设备和终端设备之间的数据传输为例,数据传输需要经过用户面协议层,比如经过SDAP层、PDCP层、RLC层、MAC层、物理层,其中,SDAP层、PDCP层、RLC层、MAC层、物理层也可以统称为接入层。示例性地,接入网设备和终端设备之间通过建立至少一个数据无线承载(data radio bearer,DRB)来传输数据,每个DRB可以对应一组功能实体集合,比如包括一个PDCP层实体,该PDCP层实体对应的至少一个RLC层实体,至少一个RLC层实体对应的至少一个MAC层实体,至少一个MAC层实体对应的至少一个物理层实体。需要说明的是,接入网设备和终端设备之间还可以通过建立至少一个信令无线承载(signalling radio bearer,SRB)来传输信令,DRB和SRB可以统称为无线承载(radio bearer,RB)。
以下行数据传输为例,图2a中向下的箭头表示数据发送,向上的箭头表示数据接收。SDAP层实体自上层取得数据后,可以根据数据的服务质量流标识(QoS flow indicator,QFI)将数据映射到相应DRB的PDCP层实体,PDCP层实体可以将数据传送到该PDCP层实体对应的至少一个RLC层实体,进而由至少一个RLC层实体传输到对应的MAC层实体,再由MAC层实体生成传输块,然后通过对应的物理层实体进行无线传输。数据在各个层中进行相对应的封装,某一层从该层的上层收到的数据视为该层的服务数据单元(service data unit,SDU),经过层封装后成为协议数据单元(protocol data unit,PDU),再传递给下一个层。例如PDCP层实体从上层接收到的数据称为PDCP SDU,PDCP层实体发送到下层的数据称为 PDCP PDU;RLC层实体从上层接收到的数据称为RLC SDU,RLC层实体发送到下层的数据称为RLC PDU。其中,不同层之间可以通过相应的通道来传输数据,比如RLC层实体与MAC层实体之间可以通过逻辑信道(logical channel,LCH)来传输数据,MAC层实体与物理层实体之间可以通过传输通道(transport channel)来传输数据。
示例性地,根据图2a还可以看出,终端设备还具有应用层和非接入层;其中,应用层可以用于向终端设备中所安装的应用程序提供服务,比如,终端设备接收到的下行数据可以由物理层依次传输到应用层,进而由应用层提供给应用程序;又比如,应用层可以获取应用程序产生的数据,并将数据依次传输到物理层,发送给其它通信装置。非接入层可以用于转发用户数据,比如将从应用层接收到的上行数据转发给SDAP层或者将从SDAP层接收到的下行数据转发给应用层。
(2)CU和DU
本申请实施例中,RAN设备可以包括一个或多个集中单元(centralized unit,CU)和一个或多个分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。作为示例,CU和DU之间的接口可以称为F1接口,其中,控制面(control panel,CP)接口可以为F1-C,用户面(user panel,UP)接口可以为F1-U。CU和DU可以根据无线网络的协议层划分:比如图2b所示,PDCP层及以上协议层的功能设置在CU,PDCP层以下协议层的功能设置在DU,例如,DU可以包括RLC层、MAC层和物理(Physical,PHY)层。
在一种可能的设计中,DU可以包括RLC层的功能、MAC层的功能,和,PHY层的部分功能。示例性地,DU可以包括PHY层中高层的功能。其中,PHY层中高层的功能可以包括循环冗余校验(cyclic redundancy check,CRC)功能、信道编码、速率匹配、加扰、调制、和层映射;或者,PHY层中高层的功能可以包括循环冗余校验、信道编码、速率匹配、加扰、调制、层映射和预编码。PHY层中低层的功能可以通过另一个与DU独立的网络实体实现,其中,PHY层中低层的功能可以包括预编码、资源映射、物理天线映射和射频功能;或者,PHY层中低层的功能可以包括资源映射、物理天线映射和射频功能。本申请实施例对PHY层中高层和底层的功能划分不作限制。当PHY层中低层的功能可以以另一个与DU独立的网络实体实现时,DU向其它通信装置(例如终端设备、核心网设备)发送数据或信息,可以理解为:DU执行RLC层、MAC层的功能,和,PHY层的部分功能。例如,DU在完成RLC层、MAC层的功能,以及,循环冗余校验、信道编码、速率匹配、加扰、调制、层映射后,由执行PHY层中低层的功能的与DU独立的网络实体执行剩余的在物理资源上映射和发送的功能。
三、CN
CN中可以包括一个或多个CN设备,以5G通信系统为例,CN中可以包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元、网络开放功能(network exposure function,NEF)网元、统一数据存储(unified data repository,UDR)网元等。
四、DN
DN也可以称为分组数据网络(packet data network,PDN),是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN中可部署有多种业务对应的应用服务器,为终端设备提供多种可能的服务。其中,应用服务器中可以设置有与终端设备的应用层相对等的应用层。
图1中Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见相关标准协议中定义的含义,在此不做限制。
可以理解的是,图1中是以5G通信系统为例进行示意的,本申请实施例中的方案还可以适用于其它可能的通信系统中,比如未来的第六代(the 6th generation,6G)通信系统中。上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
图2c为本申请实施例适用的一种5GS支持TSN网络的架构示意图。如下图2c所示,TSN网络可以将5GS看成是一个TSN桥接设备,各类工业应用的数据包可以通过5GS进行上行/下行发送。工业应用数据可以由DN(如TSN控制器)发送至UPF,由UPF发送到连接了工业设备(如传感器、操作臂等)的UE,并由UE给所连接的工业设备;同样的,工业数据也可以由工业设备发送至DN。在5GS内,UE和基站之间通过Uu接口进行数据传输,基站和核心网数据面节点UPF通过N3接口/N3隧道进行数据传输。在一中可能的实现方式中,TSN控制器可以部署在网络侧,如与UPF相连的一侧,也可以部署在用户侧,如与UE相连的那一侧。
下面对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
一、生存时间survival time
5G通信系统可以支持多种可能的业务,比如URLLC业务,需要保证1毫秒时延,以及99.999%的可靠性需求。对于IIoT业务,所需要的延时保证和可靠性保障要求可能会更高,例如需要0.5ms的时延保证和99.9999%的可靠性需求。为了避免网络层偶然性的通信错误对应用层产生较大的影响,IIoT设备的应用层可以设置生存时间。生存时间是指,IIoT设备的应用层如果在某一数据包期望到达的时间范围内没有收到该数据包,将会启动生存时间定时器,如果该定时器运行过程中若有期望的应用层数据包到达,则定时器停止;如果该定时器一直运行直到超时,即在生存时间定时器运行的这段时间内没有任何一个期望的应用层数据包到达,则应用层发生中断。应用层中断后会进入一个预定义的状态,如业务中断、宕机等。
对于周期性产生数据包的业务而言,在一个示例中,生存时间可以定义为连续未传输成功的数据包的个数(比如a),如果连续未传输成功的数据包的个数大于或等于a,则会导致业务在应用层发生中断。举个例子,参见图3所示,一个传输周期内可以传输一个数据包,a为2,也就是说,当连续两个数据包未传输成功时,业务在应用层发生中断。具体地,如4所示,当图3中的数据包2未传输成功时,定时器启动;当下一个周期的数据包3传输成功时,定时器停止;当再下一个周期的数据包4未传输成功时,再次启动定时器,若数据包5依然未传输成功,则该定时器超时,应用层发生中断。
在另一个示例中,生存时间也可以定义为连续未传输成功的传输周期的个数(比如c),其中,未传输成功的传输周期可以是指,存在未传输成功的数据包的传输周期,或者未传输成功的数据包的个数大于或等于第一阈值的传输周期,或者未传输成功的数据量大于或等于第二阈值的传输周期,其中,第一阈值和第二阈值可以是预设的。如果连续未传输成功的传输周期的个数大于或等于c,则会导致业务在应用层发生中断。
二、时延敏感通信辅助信息
对于时延敏感业务(例如TSC业务),为了避免这类业务由于生存时间超时导致的应用层中断,SMF可以在建立QoS流时向接入网设备提供该业务的时延敏感通信辅助信息(time sensitive communication assistance information,TSCAI)。其中,TSCAI可以用于刻画在5G系统内使用的时延敏感业务的业务特征,有利于接入网设备进行有效的资源调度。例如,TSCAI可以包括该时延敏感业务的生存时间,接入网设备获取到QoS流的TSCAI后,可以确定TSCAI中该QoS流对应的生存时间,并基于该生存时间调度该QoS流。示例性地,对于一个上行QoS流,如果发生上行传输丢包,则TSC业务可能进入survival time,接入网设备通过提高后续上行数据包的传输可靠性,避免业务连续丢包,从而避免生存时间超时而导致应用的中断。
可选地,TSCAI中还可以包括该时延敏感业务的QoS流的流动方向(flow direction),例如是下行或上行;TSCAI中还可以包括周期,表示该时延敏感业务两个burst之间的时间间隔;TSCAI中还可以包括突发到达时间(burst arrival time)。
三、配置授权
终端设备与网络设备进行上行数据传输的一种实现方式可以是免授权传输(grant free),即终端设备使用免授权资源向网络设备发送上行数据。在免授权传输中,终端设备的上行传输不需要通过网络设备的调度完成。例如,当上行数据到达时,终端设备不需要向网络设备发送调度请求(scheduling request,SR)并等待网络设备的动态授权(dynamic grant,DG),而是可以直接使用网络设备预先分配的上行传输资源向网络设备发送上行数据。上述动态分配的上行传输资源可以称为DG或DG资源;上述预先分配的上行传输资源可以称为“配置授权(configured grant,CG)”、上行配置授权、或CG资源,其中,这类资源是周期性的。
对于周期性业务,即数据包总是以确定的周期产生和到达基站侧的业务,接入网设备可以为终端设备配置周期性的CG资源用于传输业务数据。示例性地,若接入网设备在一个CG资源上没有成功解码出数据包,则接入网设备意识到发生上行丢包,会立即给终端设备调度重传资源。终端设备接收到重传调度后,可以通过激活PDCP复制传输等方式来提高后续数据包传输的可靠性,以避免连续丢包。
然而,对于非周期性业务,若采用上述方式,接入网设备无法及时识别到出现丢包。示例性地,接入网设备为终端设备配置了周期性的CG资源,但是由于业务数据到达终端设备的应用层是非周期性的,这会导致并非每个CG资源上都会有数据需要传输。由于在现有技术中,当CG资源到达但终端设备没有数据需要传输时,终端设备会主动忽略该CG资源。这会导致,当终端设备利用一个CG资源传输了非周期业务数据包,但接入网设备未能成功解码出数据包时,接入网设备会误以为是终端设备没有数据传输而忽略了该CG资源,而不会意识到出现了丢包。此时接入网设备由于没有意识到出现丢包,因而不会调度资源或者调整传输方式以提高后续传输的可靠性,从而导致后续传输的数据包仍可能出现丢包,导致生存时间超时,进而导致应用层发生中断。
有鉴于此,本发明提供了一种数据传输方法,用于提高数据传输的可靠性,尤其是非周期性业务的数据传输的可靠性。
图4为本申请实施例提供的一种数据传输方法的流程示意图,本实施例涉及的是接入网设备和终端设备之间进行数据传输的具体过程。本实施例的执行主体可以是接入网设备和终端设备,也可以是分别应用于接入网设备和终端设备中的模块,例如,芯片。下面以接入网 设备和终端设备作为执行主体为例进行描述。
如图4所示,该方法可以包括:S401、S402和S403。其中,本申请实施例对各个步骤的执行顺序不作限制。
S401、终端设备在第一上行资源上向接入网设备发送第一数据包;对应的,接入网设备在第一上行资源上接收来自终端设备的第一数据包。可选地,该第一上行资源可以是CG资源,也可以是DG资源。以下以第一上行资源是CG资源为例进行说明。
S402、终端设备启动定时器,并监听来自接入网设备的反馈信息。其中,该反馈信息用于反馈接入网设备是否成功接收到第一数据包。
可选地,终端设备可以在上述第一数据包传输开始时,或者传输完成后启动该定时器。可选地,该定时器关联一个混合自动重传请求(hybrid automatic repeat request,HARQ)进程。示例性地,终端设备使用HARQ进程1在第一上行资源上发送第一数据包,终端设备在发送第一数据包后,启动HARQ进程1关联的定时器。
可选地,定时器的时长可以是接入网设备预先配置的,具体可以包括但不限于以下几种方式:
一种可选的方式1,接入网设备为每个DRB配置定时器的时长。示例性地,接入网设备在配置DRB的信元中配置定时器的时长。当终端设备使用第一上行资源发送第一数据包后,启动定时器,该定时器的时长可以根据该第一数据包关联的DRB所对应的定时器时长确定。具体地,若第一上行数据包括了一个DRB(例如DRB1)的数据,则定时器的时长为DRB1对应的定时器时长;若第一上行数据包括了多个DRB的数据,则该定时器的时长为多个DRB对应的定时器时长中的最小值或最大值。
另一种可选的方式2,接入网设备为每个LCH配置定时器的时长。示例性地,接入网设备在配置LCH的信元中配置定时器的时长。当终端设备使用第一上行资源发送第一数据包后,启动定时器,该定时器的时长可以根据该第一数据包关联的LCH所对应的定时器时长确定。具体地,若第一上行数据包括了一个LCH(例如LCH1)的数据,则定时器的时长为LCH1对应的定时器时长;若第一上行数据包括了多个LCH的数据,则该定时器的时长为多个LCH对应的定时器时长中的最小值或最大值。
再一种可选的方式3,接入网设备为每套CG配置定时器的时长。示例性地,接入网设备在配置CG的信元中配置定时器的时长。当终端设备使用第一上行资源发送第一数据包后,该定时器的时长可以根据该第一上行资源所属的CG所对应的定时器时长确定。
又一种可选的方式4,接入网设备为每个部分带宽(Bandwidth part,BWP)配置定时器的时长。示例性地,接入网设备在配置BWP的信元中配置定时器的时长。当终端设备使用第一上行资源发送第一数据包后,该定时器的时长可以根据该第一上行资源所属的BWP所对应的定时器时长确定。可选地,一个BWP可以配置多套CG资源,其中,配置了第一功能的CG资源对应的定时器时长相同。其中,第一功能可以理解为:具有可靠性保障的功能。当终端设备利用配置了第一功能的CG资源进行数据传输后,需要监听接入网设备的反馈确认信息。
又一种可选的方式5,接入网设备为每个服务小区配置定时器的时长。示例性地,接入网设备在配置服务小区的信元中配置定时器的时长。当终端设备使用第一上行资源发送第一数据包后,该定时器的时长可以根据该第一上行资源所属的服务小区所对应的定时器时长确定。可选地,一个服务小区可以配置多套CG资源,其中,配置了第一功能的CG资源对应的定时器的时长相同。
又一种可选的方式6,接入网设备为每个终端设备配置定时器的时长。示例性地,接入网设备在配置小区组的信元或者MAC实体的配置信元中配置定时器的时长。可选地,接入网设备为该终端设备配置多套CG资源,其中,配置了第一功能的CG资源对应的定时器的时长相同。
可选地,终端设备在启动定时器之前,先判断第一数据包中是否包含了第一DRB的数据。若包含第一DRB的数据,则启动定时器。其中,第一DRB是配置了第一功能的DRB。
S403、若在定时器运行期间接收到来自接入网设备的反馈信息或重传调度信息,终端设备停止该定时器。示例性地,终端设备接收到接入网设备针对HARQ进程1传输的反馈信息,或者接收到HARQ进程1的调度重传信息时,停止上述定时器。
可选地,上述反馈信息可以承载在下行控制信息(downlink control information,DCI)上,也可以承载在MAC控制元素(control element,CE)或其它信令上,本申请实施例对此不作限制。
可选地,上述反馈信息中可以包括CG信息、HARQ进程信息、DRB信息中的一项或多项。示例性地,CG信息可以是CG索引值,HARQ进程信息可以是HARQ进程号,DRB信息可以是DRB ID,或逻辑信道ID(logical channel ID,LCH ID)。
可选地,上述反馈信息中可以包括应答消息(acknowledgment,ACK)或否定应答(negative acknowledgment,NACK),用于表示接入网设备成功或未能成功解析该第一数据包。可选地,该ACK/NACK信息可以是显示携带在上述反馈信息中,例如分别以比特“0”和“1”标识ACK和NACK。可选地,该ACK/NACK信息可以是隐式携带的,例如,当终端设备接收到了该反馈信息,就表示成功接收了第一数据包,即ACK。
若定时器超时,终端设备可以主动提高数据传输的可靠性。示例性地,终端设备激活第二DRB所对应的RLC实体进行PDCP复制传输,或者,终端设备激活接入网设备为第二DRB所预先配置的RLC实体,从而进行PDCP复制传输。其中,第二DRB为该第一上行资源关联的DRB或者第一上行资源所属的CG所关联的DRB。
若定时器超时,终端设备可以向接入网设备发送第一指示信息,该第一指示信息指示接入网设备发生上行丢包,或者指示接入网设备定时器超时。可选的,该指示信息中可以携带CG信息、HARQ进程信息、DRB信息中的一项或多项。示例性地,CG信息可以是CG索引值,HARQ进程信息可以是HARQ进程号,DRB信息可以是DRB ID或LCH ID。
可选地,该第一指示信息可以承载在上行控制信息(uplink control information,UCI)上,也可以承载在MAC CE或其它信令上,本申请实施例对此不作限制。示例性地,当第一指示信息通过UCI承载时,接入网设备可以为该第一上行资源所属的CG关联一套物理上行控制信道(physical uplink control channel,PUCCH)资源,该PUCCH资源用于传输第一指示信息。
可选地,终端设备也可以通过第一指示信息告知接入网设备,该终端设备激活了PDCP复制传输,当接入网设备接收到第一指示信息后,可以及时为新激活的RLC实体分配传输资源,用于后续传输。
本领域技术人员应当理解,当定时器超时时,终端设备可以通过主动提高数据传输的可靠性来保障后续传输,或者,终端设备也可以通过向接入网设备发送第一指示信息来告知接入网设备发生丢包,以保障后续的传输,又或者,终端设备可以既主动提高数据传输可靠性又向接入网设备发送第一指示信息,以保障后续的传输,本申请实施例对此不作限制。
上述实施例提供了一种数据传输的方法,在终端设备有业务数据包传输,特别是有非周期性业务的数据包需要传输时,终端设备在开始发送该非周期业务的数据包或发送该数据包 之后,启动定时器,当定时器超时时,向接入网设备发送指示信息以指示发生丢包,这样接入网设备可以调整传输方式以提高后续传输的可靠性,避免由于生存时间超时导致的应用层中断。
图5为本申请实施例提供的一种数据传输方法的流程示意图,本实施例涉及的是接入网设备和终端设备之间进行数据传输的具体过程。本实施例的执行主体可以是接入网设备和终端设备,也可以是分别应用于接入网设备和终端设备中的模块,例如,芯片。下面以接入网设备和终端设备作为执行主体为例进行描述。
如图5所示,该方法可以包括:S501和S502。其中,本申请实施例对各个步骤的执行顺序不作限制。
S501、终端设备在第一上行资源上向接入网设备发送第一数据包;对应的,接入网设备在第一上行资源上接收来自终端设备的第一数据包。可选地,该第一上行资源是CG资源。可选地,该CG资源用于传输非周期性业务。
S502、终端设备在第二上行资源上向接入网设备发送第二指示信息;对应的,接入网设备在第二上行资源上接收来自终端设备的第二指示信息。其中,第一上行资源和第二上行资源存在对应关系,第二上行资源为PUCCH资源。其中,第二指示信息用于指示在第一上行资源上传输了上行数据包。
在一个CG周期内,接入网设备只要成功解析到CG资源上承载的第一数据包和其对应PUCCH信号中的至少一个,即可确认终端设备利用了该CG周期内的CG资源进行了传输。此时,如果接入网设备在该CG周期内解码该第一数据包失败或者这没有收到第一数据包,则接入网设备认为上行传输发生了丢包,此时,接入网设备可以为终端设备调度重传资源,和/或,触发终端设备提高后续数据包传输的可靠性。
这里需要说明的是,第一上行资源(CG资源)和第二上行资源(PUCCH资源)在每个CG周期内总是伴随出现的。可选地,接入网设备会预先配置好第一上行资源和第二上行资源的对应关系。
值得说明的是,当终端设备被配置了多套CG资源用于传输非周期业务时,在一个CG周期内有N个CG资源,其中,N为大于1的整数。此时,接入网设备可以在每个CG周期内为每个CG资源配置一套PUCCH资源,也可以在每个CG周期内配置一套PUCCH资源,这套PUCCH资源对应该N个CG资源。若终端设备未利用CG资源传输上行数据,则终端设备会自动忽略该CG资源对应的PUCCH资源,以及该CG周期内的伴随PUCCH资源。
上述实施例提供了一种数据传输的方法,在传输非周期性业务时,终端设备在CG资源上发送该非周期业务的数据包时,还会在该CG资源对应的PUCCH资源上发送指示信息,接入网设备只要成功解析到CG资源上承载的第一数据包和其对应PUCCH信号中的至少一个,即可确认终端设备利用了该CG周期内的CG资源进行了传输,从而避免接入网设备误以为是终端设备没有发送上行数据而没有意识到出现丢包,从而不会调整传输方式以提高后续传输的可靠性,导致后续传输的数据包仍出现丢包,进而导致生存时间超时引发应用层中断。
图6为本申请实施例提供的一种数据传输方法的流程示意图,本实施例涉及的是接入网设备和终端设备之间进行数据传输的具体过程。本实施例的执行主体可以是接入网设备和终端设备,也可以是分别应用于接入网设备和终端设备中的模块,例如,芯片。下面以接入网 设备和终端设备作为执行主体为例进行描述。
如图6所示,该方法可以包括:S601、S602和S603。其中,本申请实施例对各个步骤的执行顺序不作限制。
S601、接入网设备为终端设备配置调度请求(scheduling request,SR)资源。具体的,接入网设备为一个LCH配置两套SR资源,其中一套为默认配置,另一套为增强配置。可选地,增强配置中的SR资源比默认配置中的SR资源密度更高,和/或,禁止SR传输的sr-ProhibitTimer定时器定时时长更短。
可选地,接入网设备也可以以DRB/LCH为粒度配置SR资源,即,接入网设备可以为一个DRB/LCH配置两套SR资源,以下以接入网设备为第一LCH配置两套SR资源为例进行描述。
S602、当终端设备有业务到达并且触发了第一LCH对应的SR后,使用默认SR资源发送SR(即,可以理解为此时触发的是默认SR),并且启动第二定时器(注:图4所示的实施例中的定时器可以称为第一定时器)。可选地,该业务可以是非周期性业务。
S603、在第二定时器运行时,如果终端设备接收到接入网设备调度的资源,且该资源能够用于传输第一LCH的数据,或者该第一LCH对应的SR被取消,则停止第二定时器。
若第二定时器超时,则终端设备取消该第一LCH触发的默认SR,并触发该LCH对应的增强SR,终端设备切换到增强SR资源上继续发送SR;或者,若第二定时器超时,终端设备不取消第一LCH对应的默认SR,而是额外触发第一LCH对应的增强SR,终端设备同时使用默认SR资源和增强SR资源发送SR。
上述实施例提供了一种数据传输的方法,接入网设备为终端设备的LCH/DRB配置不同级别的SR资源。当有非周期业务到达时,先触发默认SR,在发送了一定次数后没有得到接入网设备的响应时可以切换到增强SR资源上继续发送SR,通过这种方式,可以提升SR的可靠性,从而可以使得接入网设备及时分配上行资源,避免生存时间超时引发应用层中断。
针对于上述图4至图6的实施例,需要说明的是:
(1)实施例所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。此外,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。应理解,执行图示中的部分步骤或调整步骤的顺序进行具体实施,均落在本申请的保护范围内。
(2)上述图4至图6的实施例可以独立实施,也可以互相结合。
(3)上述实施例中采用了一些5G通信系统中的消息和参数,但在具体实施中,可能使用不同的消息或消息名称,本申请实施例对此不做限制。
图7至图8为本申请实施例提供的可能的通信装置的结构示意图。如图7所示,通信装置700包括处理单元710和收发单元720。
当通信装置700用于实现图4所示的方法实施例中终端设备的功能时,收发单元720用于在第一上行资源上向接入网设备发送第一数据包;处理单元710用于启动定时器,并监听来自接入网设备的反馈信息,其中,该反馈信息用于反馈接入网设备是否成功接收到第一数据包;处理单元710还用于若在定时器运行期间接收到来自接入网设备的反馈信息或重传调度信息,停止该定时器;若所述定时器超时,向所述接入网设备发送第一指示信息,所述第 一指示信息指示所述接入网设备发生上行丢包。
当通信装置700用于实现图5所示的方法实施例中终端设备的功能时,收发单元720用于在第一上行资源上向接入网设备发送第一数据包;收发单元720还用于在第二上行资源上向接入网设备发送第二指示信息;其中,第一上行资源和第二上行资源存在对应关系,第二指示信息用于指示在第一上行资源上传输了上行数据包。
当通信装置700用于实现图5所示的方法实施例中终端设备的功能时,处理单元710用于在当有业务到达并且触发了第一LCH对应的SR后,使用默认SR资源发送SR,并且启动第二定时器;处理单元710还用于若第二定时器超时,则取消该第一LCH触发的默认SR,并触发该LCH对应的增强SR;发送单元720用于使用增强SR资源发送SR。
图8为本申请实施例提供的另一种可能的通信装置的结构示意图。如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图4、图5或图6所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (18)

  1. 一种数据传输的方法,其特征在于,所述方法应用于终端设备或终端设备中的芯片,所述方法包括:
    在第一上行资源上向接入网设备发送第一数据包;
    启动定时器,并监听来自所述接入网设备的反馈信息,其中,所述反馈信息用于反馈是否成功接收到所述第一数据包;
    若在所述定时器运行期间接收到来自所述接入网设备的所述反馈信息或重传调度信息,停止所述定时器;
    若所述定时器超时,向所述接入网设备发送第一指示信息,所述第一指示信息指示所述接入网设备发生上行丢包。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在启动所述定时器之前,判断所述第一数据包中是否包含第一数据无线承载DRB的数据,其中,当所述终端设备传输了所述第一DRB的数据包时,需要启动所述定时器并监听所述反馈信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一上行资源为配置授权CG或动态授权DG。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述反馈信息包括CG信息、混合自动重传请求HARQ进程信息、DRB信息中的一项或多项。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一指示信息包括CG信息、混合自动重传请求HARQ进程信息、DRB信息中的一项或多项。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一指示信息承载在上行控制信息UCI上,承载所述UCI的资源为所述第一上行资源关联的物理上行控制信道PUCCH资源。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    若所述定时器超时,激活第二DRB对应的无线链路控制RLC实体进行分组数据汇聚层协议PDCP复制传输,其中,所述第二DRB为所述第一上行资源关联的DRB或者所述第一上行资源所属的CG所关联的DRB。
  8. 根据权利要求7所述的方法,其特征在于,所述第二DRB对应的RLC实体为预配置的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述定时器的时长为预配置的,其中:
    所述定时器的时长是基于每个DRB配置的;或者,
    所述定时器的时长是基于每个逻辑信道配置的;或者,
    所述定时器的时长是基于每套CG配置的;或者,
    所述定时器的时长是基于每个部分带宽BWP配置的;或者,
    所述定时器的时长是基于每个服务小区配置的;或者,
    所述定时器的时长是基于每个终端设备配置的。
  10. 一种数据传输的方法,其特征在于,所述方法应用于接入网设备或接入网设备中的芯片,所述方法包括:
    在第一上行资源上接收来自终端设备的第一数据包;
    接收来自所述终端设备的第一指示信息,所述第一指示信息指示所述接入网设备发生上 行丢包。
  11. 根据权利要求10所述的方法,其特征在于,所述第一上行资源为配置授权CG或动态授权DG。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一指示信息包括CG信息、混合自动重传请求HARQ进程信息、DRB信息中的一项或多项。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第一指示信息承载在上行控制信息UCI上,承载所述UCI的资源为所述第一上行资源关联的物理上行控制信道PUCCH资源。
  14. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述方法的模块。
  15. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至13中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至13中任一项所述的方法。
PCT/CN2023/070016 2021-12-31 2023-01-03 数据传输的方法和装置 WO2023126010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111670787.9A CN116419274A (zh) 2021-12-31 2021-12-31 数据传输的方法和装置
CN202111670787.9 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023126010A1 true WO2023126010A1 (zh) 2023-07-06

Family

ID=86998207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070016 WO2023126010A1 (zh) 2021-12-31 2023-01-03 数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN116419274A (zh)
WO (1) WO2023126010A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181893A1 (zh) * 2016-04-22 2017-10-26 华为技术有限公司 码流传输方法、装置及网络摄像头
CN109756996A (zh) * 2017-11-03 2019-05-14 中国移动通信有限公司研究院 Drx配置下的上行传输方法及装置、设备、存储介质
WO2021035535A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2021233401A1 (zh) * 2020-05-22 2021-11-25 维沃移动通信有限公司 数据传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181893A1 (zh) * 2016-04-22 2017-10-26 华为技术有限公司 码流传输方法、装置及网络摄像头
CN109756996A (zh) * 2017-11-03 2019-05-14 中国移动通信有限公司研究院 Drx配置下的上行传输方法及装置、设备、存储介质
WO2021035535A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2021233401A1 (zh) * 2020-05-22 2021-11-25 维沃移动通信有限公司 数据传输方法和设备

Also Published As

Publication number Publication date
CN116419274A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN111182584B (zh) 激活scg的方法、装置、设备以及存储介质
EP3742766A1 (en) Data transmission method and apparatus
WO2020221246A1 (zh) 取消待处理sr的方法及装置
US20220159696A1 (en) Wireless communication method, terminal device, and network device
WO2021056589A1 (zh) 一种数据传输方法及装置
WO2020259363A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019028792A1 (zh) 一种配置资源的方法及设备
CN108702649B (zh) 状态指示的传输装置、方法以及通信系统
US20230188267A1 (en) Indication information receiving method, and apparatus
WO2021128350A1 (zh) 一种ue自动传输处理方法及其装置
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2023126010A1 (zh) 数据传输的方法和装置
WO2022155821A1 (zh) 无线通信的方法及设备
WO2022027692A1 (zh) 用于上行传输的方法、设备、通信装置及存储介质
WO2022199338A1 (zh) 数据传输的方法和装置
WO2021142706A1 (zh) 资源冲突的解决方法、装置、终端和存储介质
WO2023036052A1 (zh) 数据传输的方法和装置
CN116711247A (zh) 数据传输方法及通信装置
WO2021238668A1 (zh) 一种通信方法及装置
WO2023207631A1 (zh) 一种通信方法及通信装置
CN114902637B (zh) 一种数据传输方法及装置
WO2023231907A1 (zh) 数据传输的方法、装置和系统
WO2022027691A1 (zh) 一种通信方法及装置
WO2023066365A1 (zh) 一种通信方法和装置
WO2022204999A1 (zh) 存活时间的处理方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23735115

Country of ref document: EP

Kind code of ref document: A1