WO2023066365A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2023066365A1
WO2023066365A1 PCT/CN2022/126619 CN2022126619W WO2023066365A1 WO 2023066365 A1 WO2023066365 A1 WO 2023066365A1 CN 2022126619 W CN2022126619 W CN 2022126619W WO 2023066365 A1 WO2023066365 A1 WO 2023066365A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
interface identifier
rnti
terminal device
interface
Prior art date
Application number
PCT/CN2022/126619
Other languages
English (en)
French (fr)
Other versions
WO2023066365A9 (zh
Inventor
徐小英
王燕
续斌
郭英昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023066365A1 publication Critical patent/WO2023066365A1/zh
Publication of WO2023066365A9 publication Critical patent/WO2023066365A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the embodiments of the present application relate to the communication field, and, more specifically, relate to a communication method and device.
  • a terminal device in an idle state or a deactivated state can perform data transmission without performing radio resource control (RRC) state switching, and this data transmission mechanism is called small data transmission ( small data transmission, SDT).
  • RRC radio resource control
  • SDT small data transmission
  • the centralized unit (CU) is separated from the distributed unit (DU)
  • the DU whenever a terminal device initiates an SDT, the DU must initiate a signaling interaction process with the CU to restore the relationship between the DU and the CU. The transmission in between will bring delay in sending, making the efficiency of data transmission lower.
  • Embodiments of the present application provide a communication method and device, which can reduce the processing load of DUs and improve communication efficiency.
  • a communication method is provided, and the method is applied to a distributed unit DU, or may also be executed by a chip or a circuit configured in the DU, which is not limited in the present application.
  • the method includes: receiving uplink data from a terminal device; assigning a first cell radio network temporary identifier C-RNTI and a first DU interface identifier to the terminal device; sending a first message to a centralized unit CU, the first message Including the first C-RNTI and the first DU interface identifier; receiving a second message from the CU, where the second message includes the first C-RNTI or the first DU interface identifier.
  • the CU does not need to send a context establishment request to the DU, but only needs to send the message carrying the CU interface identifier and the DU interface identifier stored on the DU to the DU, and send the DU to the newly allocated C-RNTI of the UE Inform the DU so that the DU uses the new C-RNTI to scramble the PDCCH. It avoids interactive redundant configuration between CU and DU, which can reduce the processing burden of DU and improve processing efficiency.
  • the terminal device is in an RRC idle state or an RRC inactive state.
  • the method further includes: before receiving the uplink data, the DU stores context information of the terminal device, and the context information includes the second C-RNTI: After receiving the second message, update the second C-RNTI to the first C-RNTI.
  • the method further includes: after allocating the first C-RNTI and the first DU interface identifier to the terminal device, storing the first C-RNTI and the first DU interface identifier; after receiving the second message, delete the first DU interface identifier, or update the second DU interface identifier to the first DU interface identifier.
  • the DU when the DU determines the identity of the UE and the context information of the UE, the DU will take back the first DU interface identifier assigned to the UE or update the second DU interface identifier to the first DU interface identifier, saving interface identifiers. and storage resources.
  • the updating the second C-RNTI to the first C-RNTI specifically includes: determining the first C-RNTI according to the first DU interface identifier; and updating the second C-RNTI to the first C-RNTI.
  • the deletion of the first DU interface identifier, or the second DU is updated to the first DU interface identifier, specifically including: determining the first DU interface identifier according to the first C-RNTI; deleting the first DU interface identifier, or changing the second DU interface identifier to Update to the first DU interface identifier.
  • the context information further includes a second DU interface identifier.
  • the receiving the uplink data from the terminal device specifically includes: receiving the uplink data from the terminal device in a random access process.
  • the first message further includes an RRC recovery request message
  • the uplink data includes the RRC recovery request message
  • the second message further includes the second DU interface identifier and the second CU interface identifier, and the second CU interface identifier is stored in the context information middle.
  • the second message is a context modification request message.
  • context modification request message may also be referred to as a terminal context modification request message.
  • the method further includes sending a context modification response message to the CU.
  • context modification response message may also be referred to as a terminal context modification response message.
  • the UE by using the UE to modify the context flow between the CU and the DU, the interactive redundant configuration between the CU and the DU is avoided, the processing burden of the DU can be reduced, and the processing efficiency can be improved.
  • the method further includes, before receiving the uplink data, receiving an RRC release message and indication information of the CU, the indication information indicating that the DU Save the context information of the terminal device; send the RRC release message to the terminal device.
  • a communication method wherein the distributed DU receives uplink data from the terminal equipment; the DU allocates the first cell wireless network temporary identifier C-RNTI and the first DU interface to the terminal equipment ID; the DU sends a first message to the centralized unit CU, the first message includes the first C-RNTI and the first DU interface ID; the CU sends a second message to the DU, the The second message includes the first C-RNTI or the first DU interface identifier.
  • the CU notifies the DU of the C-RNTI newly allocated by the DU to the UE, which avoids interactive redundant configuration between the CU and the DU, reduces the processing burden of the DU, and improves processing efficiency.
  • the terminal device is in an RRC idle state or an RRC inactive state.
  • the method further includes: before receiving the uplink data, the DU stores context information of the terminal device, and the context information includes the second C-RNTI: After receiving the second message, the DU updates the second C-RNTI to the first C-RNTI.
  • the DU after the DU allocates the first C-RNTI and the first DU interface identifier to the terminal device, the DU stores the first C-RNTI and the first DU interface identifier; after receiving the second message, the DU deletes the first DU interface identifier, or updates the second DU interface identifier to the first DU Interface ID.
  • the updating the second C-RNTI to the first C-RNTI specifically includes: the DU according to the first DU interface identifier The first C-RNTI is determined; the DU updates the second C-RNTI to the first C-RNTI.
  • the deleting the first DU interface identifier, or updating the second DU interface identifier to the first DU interface identifier specifically includes: The DU determines the first DU interface identifier according to the first C-RNTI; the DU deletes the first DU interface identifier, or updates the second DU interface identifier to the first DU interface identifier.
  • the context information further includes a second DU interface identifier.
  • the DU receiving the uplink data from the terminal device specifically includes: the DU receiving the uplink data from the terminal device in a random access process.
  • the first message further includes an RRC recovery request message
  • the uplink data includes the RRC recovery request message
  • the second message further includes the second DU interface identifier and the second CU interface identifier, and the second CU interface identifier is stored in the context information middle.
  • the second message is a context modification request message.
  • context modification request message may also be referred to as a terminal context modification request message.
  • the method further includes receiving a context modification response message from the DU.
  • context modification response message may also be referred to as a terminal context modification response message.
  • the UE by using the UE to modify the context flow between the CU and the DU, the interactive redundant configuration between the CU and the DU is avoided, the processing burden of the DU can be reduced, and the processing efficiency can be improved.
  • the method further includes:
  • the CU Before the DU receives the uplink data, the CU sends an RRC release message and indication information to the DU, and the indication information instructs the DU to save the context information of the terminal device; the DU sends the terminal device The device sends the RRC release message.
  • a communication device including a functional module for implementing the method in any possible implementation manner of the foregoing first aspect.
  • a communication device including a functional module for implementing the method in any possible implementation manner of the aforementioned second aspect.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in any possible implementation manner of the foregoing first aspect through a logic circuit or by executing code instructions.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transmit signals from the processor Sending to other communication devices other than the communication device, the processor implements the method in any possible implementation manner of the aforementioned second aspect through a logic circuit or by executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any possible implementation manner of the foregoing first aspect is realized. Methods.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed, any possible implementation manner of the foregoing second aspect is realized.
  • a computer program product including instructions is provided, and when the instructions are executed, the method in any possible implementation manner of the aforementioned first aspect is implemented.
  • a computer program product including instructions is provided, and when the instructions are executed, the method in any possible implementation manner of the aforementioned second aspect is implemented.
  • a computer program includes codes or instructions, and when the codes or instructions are executed, the method in any possible implementation manner of the aforementioned first aspect is implemented.
  • a computer program in a twelfth aspect, includes codes or instructions, and when the codes or instructions are executed, the method in any possible implementation manner of the foregoing second aspect is implemented.
  • a chip system includes a processor and may further include a memory, configured to implement the method in any possible implementation manner of the aforementioned first aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a chip system in a fourteenth aspect, includes a processor and may further include a memory, configured to implement the method in any possible implementation manner of the aforementioned second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system includes the device described in the third aspect or the fourth aspect.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a CU-DU separation architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another CU-DU separation architecture provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a protocol stack distribution provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method 500 provided in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method 600 provided in an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another communication device 800 provided in an embodiment of the present application.
  • 5G long term evolution
  • 5G fifth generation
  • WiFi future communication system
  • NR new radio
  • the technical solution provided by the embodiment of the present application can be applied to various communication scenarios, for example, it can be applied to one or more of the following communication scenarios: enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (ultra -reliable low-latency communication (URLLC), machine type communication (machine type communication, MTC), large-scale machine type communication (massive machine type communications, mMTC), device-to-device (device-to-device, D2D), outside the vehicle Networking (vehicle to everything, V2X), vehicle to vehicle (vehicle to vehicle, V2V), and Internet of things (Internet of things, IoT), etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • MTC machine type communication
  • mMTC massive machine type communication
  • device-to-device device-to-device, D2D
  • V2X vehicle to everything
  • V2V vehicle to vehicle
  • IoT Internet of things
  • "/" can indicate that the objects associated before and after are in an "or” relationship, for example, A/B can indicate A or B; "and/or” can be used to describe that there are three types of associated objects A relationship, for example, A and/or B, may mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean that they must be different.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations or illustrations, and embodiments or designs described as “exemplary” or “for example” should not be interpreted as More preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • a terminal device can access a wireless network to obtain services from an external network (such as a data network (DN)) through the wireless network, or communicate with other devices through the wireless network, such as communicating with other terminals Device communication.
  • the network elements in the wireless network include radio access network (radio access network, RAN) network elements and core network (core network, CN) network elements.
  • the RAN is used to connect the terminal equipment to the wireless network
  • the CN is used to manage the terminal equipment and provide a gateway for communicating with the DN.
  • devices in the RAN may be called access network devices
  • devices in the CN may be called core network devices
  • both access network devices and core network devices may be called network devices.
  • one access network device may provide services for at least one terminal device, for example, one access network device may provide services for two terminal devices (not shown in FIG. 1 ).
  • Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • interface serial numbers refer to the meanings defined in relevant standard protocols, and there is no limitation here.
  • the 5G communication system is taken as an example in Fig. 1, and the solution in the embodiment of the present application can also be applied to other possible communication systems, such as the sixth generation (the 6th generation, 6G) communication system middle.
  • the foregoing network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • the terminal equipment, RAN, CN, and DN involved in FIG. 1 will be described in detail below.
  • Terminal devices include devices that provide voice and/or data connectivity to a user, and may include, for example, handheld devices with wireless connectivity, or processing devices connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (vehicle to everything, V2X) terminal equipment , machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (internet of things, IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station , access point (access point, AP), remote terminal, access terminal, user terminal, user agent, or user equipment, etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the RAN may include one or more RAN devices, and the interface between the RAN device and the terminal device may be a Uu interface (or called an air interface).
  • the names of these interfaces may remain unchanged, or may be replaced by other names, which is not limited in this application.
  • the RAN device is the access device for the terminal device to access the mobile communication system through wireless means. It can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), and a 5G mobile communication system.
  • the next generation base station (next generation NodeB, gNB), the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • the RAN device may include a centralized unit (centralized unit, CU), or a distributed unit (distributed unit, DU), or include a CU and a DU.
  • the functions of the RAN device may also be realized by multiple network function entities, and each network function entity is used to realize part of the functions of the RAN device.
  • These network functional entities may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (for example, a cloud platform).
  • the control plane protocol layer structure may include a radio resource control (radio resource control, RRC) layer, a packet data convergence protocol (packet data convergence protocol, PDCP) layer , radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical layer;
  • the user plane protocol layer structure may include PDCP layer, RLC layer, MAC layer and physical layer, in a possible implementation, the PDCP layer may further include a service data adaptation protocol (service data adaptation protocol, SDAP) layer.
  • the data transmission needs to go through the user plane protocol layer, such as the SDAP layer, PDCP layer, RLC layer, MAC layer, and physical layer.
  • the SDAP layer, PDCP layer, The RLC layer, the MAC layer, and the physical layer may also be collectively referred to as an access layer.
  • At least one data radio bearer (data radio bearer, DRB) is established between the access network device and the terminal device to transmit data, and each DRB may correspond to a set of functional entities, such as including a PDCP layer entity, the At least one RLC layer entity corresponding to the PDCP layer entity, at least one MAC layer entity corresponding to the at least one RLC layer entity, and at least one physical layer entity corresponding to the at least one MAC layer entity.
  • at least one signaling radio bearer (Signalling radio bearer, SRB) can also be established between the access network device and the terminal device to transmit signaling, and the DRB and the SRB can be collectively called a radio bearer (radio bearer, RB).
  • the RAN device may include one or more centralized units (centralized unit, CU) and one or more distributed units (distributed unit, DU), and multiple DUs may be centrally controlled by one CU.
  • the interface between the CU and the DU may be called an F1 interface, where a control plane (control panel, CP) interface may be F1-C, and a user plane (user panel, UP) interface may be F1-U.
  • CU and DU can be divided according to the protocol layer of the wireless network: For example, as shown in Figure 2, the functions of the PDCP layer and above protocol layers are set in the CU, and the functions of the protocol layers below the PDCP layer are set in the DU.
  • the DU can include RLC layer, MAC layer and physical (Physical, PHY) layer.
  • the DU may include functions of the RLC layer, functions of the MAC layer, and part of functions of the PHY layer.
  • a DU may include functions of higher layers in the PHY layer.
  • the high-level functions in the PHY layer may include cyclic redundancy check (cyclic redundancy check, CRC) function, channel coding, rate matching, scrambling, modulation, and layer mapping; or, the high-level functions in the PHY layer may include cyclic Redundancy checking, channel coding, rate matching, scrambling, modulation, layer mapping and precoding.
  • the functions of the middle and lower layers of the PHY layer can be realized by another network entity independent from the DU, wherein the functions of the middle and lower layers of the PHY layer can include precoding, resource mapping, physical antenna mapping and radio frequency functions; or, the functions of the middle and lower layers of the PHY layer can be Includes resource mapping, physical antenna mapping, and radio frequency functions.
  • the embodiment of the present application does not limit the function division of the upper layer and the lower layer in the PHY layer.
  • the DU sends data or information to other communication devices (such as terminal equipment, core network equipment), which can be understood as: DU executes RLC layer, MAC layer functions, and, some functions of the PHY layer.
  • the network independent of the DU that performs the functions of the middle and lower layers of the PHY layer
  • the entity performs the remaining functions of mapping and sending on physical resources.
  • the above-mentioned division of the processing functions of CU and DU according to the protocol layer is just some examples, and it can also be divided according to other methods.
  • the functions of the protocol layers above the RLC layer are set in the CU, the RLC layer and the following protocol layers.
  • the function is set in the DU, and for example, the CU or DU can be divided into functions with more protocol layers, and for example, the CU or DU can also be divided into partial processing functions with protocol layers.
  • part of the functions of the RLC layer and the functions of the protocol layers above the RLC layer are set in the CU, and the rest of the functions of the RLC layer and the functions of the protocol layers below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to the business type or other system requirements, for example, according to the delay, and the functions whose processing time needs to meet the delay requirement are set in the DU, which does not need to meet the delay
  • the required feature set is in the CU.
  • the CU may also have one or more functions of the core network.
  • the CU can be set on the network side to facilitate centralized management; the DU can have multiple radio functions, or the radio functions can be remotely set. This embodiment of the present application does not limit it.
  • the function of the CU may be implemented by one entity, or may also be implemented by different entities.
  • the functions of the CU can be further divided, that is, the control plane and the user plane are separated and realized by different entities, which are respectively the control plane CU entity (CU-CP entity) and the user plane CU entity (that is, the CU-UP entity), the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the functions of the RAN device.
  • the interface between CU-CP entity and CU-UP entity can be E1 interface
  • the interface between CU-CP entity and DU can be F1-C interface
  • the interface between CU-UP entity and DU can be F1-U interface.
  • one DU and one CU-UP can be connected to one CU-CP.
  • one DU can be connected to multiple CU-UPs
  • one CU-UP can be connected to multiple DUs.
  • FIG. 4 is a schematic diagram of distribution of an air interface protocol stack.
  • the air interface protocol stack can be RLC, MAC, and PHY in the DU, and PDCP and above protocol layers in the CU.
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU can directly encapsulate the signaling through the protocol layer and transparently transmit it to the terminal device or CU without parsing the signaling.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • signaling at the RRC or PDCP layer will eventually be processed as data at the physical layer and sent to the terminal device, or converted from received data at the physical layer.
  • the signaling at the RRC or PDCP layer can also be considered to be sent by the DU, or sent by the DU and the radio frequency device.
  • the CN may include one or more CN devices.
  • the CN may include access and mobility management function (access and mobility management function, AMF) network elements, session management function (session management function, SMF) ) network element, user plane function (UPF) network element, policy control function (PCF) network element, unified data management (unified data management, UDM) network element, application function (application function, AF) ) network elements, network exposure function (network exposure function, NEF) network elements, unified data storage (unified data repository, UDR) network elements, etc.
  • access and mobility management function access and mobility management function, AMF
  • session management function session management function, SMF
  • UPF user plane function
  • PCF policy control function
  • UDM user plane function
  • PCF policy control function
  • UDM unified data management
  • UDM application function
  • application function application function
  • AF application function
  • NEF network exposure function
  • NEF network exposure function
  • UDR unified data storage
  • the AMF network element is a control plane network element provided by the operator network, responsible for access control and mobility management of terminal equipment accessing the operator network, such as including mobility status management, assigning temporary user IDs, authenticating and authorizing users, etc. .
  • the SMF network element is a control plane network element provided by the operator network, and is responsible for managing the protocol data unit (protocol data unit, PDU) session of the terminal device.
  • a PDU session is a channel for transmitting PDUs, and terminal equipment needs to transmit PDUs with DN through the PDU session.
  • the PDU session is established, maintained and deleted by the SMF network element.
  • SMF network elements include session management (such as session establishment, modification and release, including tunnel maintenance between UPF and RAN), selection and control of UPF network elements, service and session continuity (service and session continuity, SSC) mode selection, Session-related functions such as roaming.
  • the UPF network element is the gateway provided by the operator, and is the gateway for communication between the operator's network and the DN.
  • the UPF network element includes functions related to the user plane such as data packet routing and transmission, packet detection, service usage reporting, Quality of Service (QoS) processing, lawful interception, uplink packet detection, and downlink data packet storage.
  • QoS Quality of Service
  • the PCF network element is a control plane function provided by the operator, and is used to provide the policy of the PDU session to the SMF network element.
  • Policies may include accounting-related policies, QoS-related policies, and authorization-related policies.
  • the UDM network element is a control plane network element provided by the operator, which is responsible for storing the subscriber permanent identifier (SUPI), security context (security context), subscription data and other information of the subscriber in the operator's network.
  • SUPI subscriber permanent identifier
  • security context security context
  • subscription data and other information of the subscriber in the operator's network.
  • the AF network element is a functional network element that provides various business services, can interact with the core network through other network elements, and can interact with the policy management framework for policy management.
  • CN may also include other possible network elements, such as network exposure function (network exposure function, NEF) network element, unified data repository (unified data repository, UDR) network element, NEF network element is used to provide network capability exposure related
  • network exposure function network exposure function
  • UDR unified data repository
  • NEF network element is used to provide network capability exposure related
  • UDR network elements are mainly used to store user-related subscription data, policy data, structured data for opening, and application data.
  • DN can also be called packet data network (packet data network, PDN), which is a network located outside the operator's network.
  • PDN packet data network
  • the operator's network can access multiple DNs, and application servers corresponding to various services can be deployed in the DN.
  • End devices offer a wide variety of possible services.
  • an application layer corresponding to the application layer of the terminal device may be set in the application server.
  • a terminal device in radio resource control connected (RRC CONNECTED) state means that an RRC connection has been established between the terminal device and the access network device, and the access network device stores the information of the terminal device (for example, the information of the terminal device One or more of access layer context information, wireless configuration information, etc.).
  • the RRC connection is a dedicated connection such as a data radio bearer (data radio bearer, DRB) or signaling radio bearer 1 (signaling radio bearer, SRB1) connection, excluding the public connection of SRB0;
  • a terminal device in the radio resource control idle (RRC IDLE) state means that there is no RRC connection between the terminal device and the access network device, and the access network device does not save the information of the terminal device;
  • a terminal device in the radio resource control inactive (RRC INACTIVE) state means that the terminal device moves under the notification area based on the radio access network (radio access network based notification area, RNA). network access equipment.
  • the terminal device saves its own context, and the last serving gNB saves the context of the terminal device, and it is related to the access and mobility management function (access and mobility management function, AMF) and the user plane function (user plane function (UPF) next generation (NG) interface connection.
  • AMF access and mobility management function
  • UPF user plane function
  • NG next generation
  • RRC INACTIVE the dedicated RRC connection between the terminal device and the access network device is suspended and can be resumed later. For example, the terminal device resumes the RRC connection by initiating an RRC resume process.
  • the terminal equipment can perform cell reselection in the RRC INACTIVE state.
  • SDT is also called early data transmission (EDT).
  • EDT early data transmission
  • small data transmission (such as data reporting by smart meters) can be performed through a simple signaling process to avoid causing RRC state failure. Change and RRC signaling overhead.
  • the way for the terminal device to perform decimal transmission includes configured grant (configured grant, CG)-SDT and random access (random access, RA)-SDT.
  • the DU will not save the context of the UE in the inactive state. Every time the UE initiates a small data transmission, the DU and the CU must go through the signaling interaction process to resume the transmission between the DU and the CU, which brings about transmission delay and low transmission efficiency. Therefore, considering that the DU saves the context of the inactive UE, based on the context information, the interaction between the DU and the CU redundant information is reduced, and the processing efficiency of the DU is improved.
  • FIG. 5 shows a schematic diagram of a communication method 500 provided by an embodiment of the present application, and the method 500 is applicable to SDT.
  • the communication methods include:
  • the DU receives uplink data sent by the UE, and correspondingly, the UE sends the uplink data to the DU.
  • the UE may send uplink data to the DU based on a random access procedure, where the UE may be in an RRC idle state or an RRC inactive state.
  • the uplink data may be SDTDRB data or SDTSRB data
  • the SDT SRB data may be SDT non access stratum (NAS) data.
  • NAS non access stratum
  • the uplink data may also include an RRC recovery request message sent by the UE, wherein the RRC recovery request message carries the UE's inactive-radio network temporary identification I-RNTI (Inactive Radio network temporary identify) and identity verify message.
  • the uplink data may be Msg3 in the four-step random access process.
  • the I-RNTI is used to identify the identity of the base station where the UE is located and is used to uniquely identify the identity of the UE in the base station.
  • the DU allocates a first cell radio network temporary identify (cell radio network temporary identify, C-RNTI) and a first DU interface identifier to the UE.
  • C-RNTI cell radio network temporary identify
  • the DU allocates the first C-RNTI and the first DU interface identifier for the UE.
  • the first DU interface identifier may be the F1 application protocol (F1application protocol, F1AP) interface identifier of the UE, for example, it may be the first UE DU F1AP ID, the For the F1 application protocol, reference may be made to current related technologies of 5G, which will not be repeated in this application.
  • the DU sends a first message to the CU.
  • the DU sends a first message to the CU, and carries the first C-RNTI and the first DU interface identifier.
  • the first message also includes an RRC recovery request.
  • the first message may be an F1AP message, for example, may be an initial uplink RRC message transfer (initial uplink RRC message transfer).
  • the initial uplink RRC transmission may carry the first C-RNTI allocated to the UE by the DU in S502, the first DU F1AP ID and an RRC recovery request, and the RRC recovery request carries the UE's I-RNTI and identity verification information.
  • the first message may also carry information for instructing the UE to initiate SDT.
  • the DU stores the first C-RNTI and the first DU interface identifier.
  • the CU sends a second message to the DU.
  • the CU When the CU receives the first message sent by the DU, the CU verifies the UE's identity information through the UE's identity in the first message, and determines that the context of the UE that initiated the SDT is stored on the DU, so there is no need to reassign the CU interface to the UE.
  • the interface identifier of the first DU is corresponding, so that the DU uses the first C-RNTI to scramble a physical downlink control channel (physical downlink control channel, PDCCH) and associates the first C-RNTI with the context of the UE.
  • PDCCH physical downlink control channel
  • the second message carries the first C-RNTI and/or the first DU interface identifier.
  • the second message may also carry the second DU interface identifier and/or the second CU interface identifier.
  • the context information of the UE stored by the DU may include the second DU interface identifier and/or the second CU interface identifier.
  • the context information of the UE stored in the DU may also include a second C-RNTI.
  • the second DU interface identifier and the second CU interface identifier are also stored on the CU, and are assigned to the UE through negotiation between the CU and the DU.
  • the second message may be a UE context modification request message.
  • the CU can instruct the notification DU to release the context of the UE, and notify the UE to go to the RRC IDLE state.
  • the CU successfully verifies the identity of the UE and determines that the context of the UE that initiates the SDT is stored on the DU, there is no need to assign a CU interface identifier to the UE, and there is no need to send a context establishment request to the DU , it only needs to carry the CU interface identifier and DU interface identifier stored on the DU through an F1AP message, and inform the DU of the C-RNTI newly allocated by the DU to the UE, so that the DU uses the new C-RNTI to scramble the PDCCH. That is, by using the UE to modify the context flow between the CU and the DU, the interactive redundant configuration between the CU and the DU is avoided, the processing burden of the DU can be reduced, and the processing efficiency can be improved.
  • the communication method 500 of the present application may also include other steps:
  • the CU sends a context release message to the DU.
  • the context release message may also be called “terminal context release message” or "UE context release message”.
  • the CU when the CU decides to notify the UE to switch from the RRC connected state to the RRC inactive state, the CU sends a context release message to the DU.
  • the context release message carries first indication information, where the first indication information is used to instruct the DU to save the context information of the UE.
  • the context release message may carry an RRC release message.
  • the RRC release message may carry the configuration of the radio bearer used for small data transmission.
  • the DU after the DU receives the context release message sent by the CU, the DU will retain the context information of the UE instead of deleting it.
  • the context information of the UE may include at least one of the following information: F1-AP dedicated connection, F1 tunnel configuration, radio link control (radio link control, RLC) radio bearer configuration, pre-configuration scheduling reconfiguration The transmitted RNTI and the second C-RNTI.
  • the UE context information is associated with the second C-RNTI.
  • the F1-AP dedicated connection may include the F1AP identity of the CU associated with the UE, for example, it may be the second gNB-CU UE F1AP ID, which uniquely identifies the UE on the F1 interface within the gNB-CU associated.
  • the F1-AP dedicated connection can also include the F1AP identifier of the DU associated with the UE, for example, it can be the second gNB-DU UE F1AP ID, and the second gNB-DU UE F1AP ID uniquely identifies the F1 interface in the gNB-DU UE association.
  • the F1 tunnel configuration may include downlink user plane transport layer information, for example, the transport layer address assigned by the DU and GTP tunnel identification information, and the F1 tunnel configuration may also include uplink user plane transport layer information, such as the transport layer address and GTP assigned by the CU Tunnel identification information.
  • the configuration information of the radio bearer of the RLC is the configuration information of the RLC used to identify the bearer.
  • context release message may be replaced by other F1AP messages, such as downlink RRC messages.
  • the DU sends an RRC release message to the UE.
  • the DU stores the context of the UE and sends an RRC release message to the UE, where the RRC release message is used to instruct the UE to enter the inactive state.
  • the DU sends a broadcast message.
  • the DU configures random access resources for SDT in a broadcast message.
  • the UE triggers the SDT based on random access.
  • the UE when the UE needs to initiate the SDT based on random access, the UE triggers the SDT process based on random access, and sends uplink data to the DU through S501.
  • the random access-based SDT process triggered by the UE can refer to the description of the current related technology, for example, it can include the UE sending the SDT preamble to the DU, and the DU sending a random access response message to the UE, etc. repeat.
  • the CU verifies the identity of the UE.
  • the CU verifies the UE identity information according to the UE's I-RNTI and identity verification information carried by it.
  • the CU may execute S504, for example, the CU sends a UE context modification request message to the DU. If the verification fails, the CU can instruct the notifying DU to release the context of the UE, and notify the UE to go to the RRC IDLE state.
  • the DU updates the second C-RNTI to the first C-RNTI.
  • the DU can Identify, find the stored UE context information, associate the first C-RNTI to the UE context, and at the same time, the DU deletes or releases the second C-RNTI in the UE context information, that is, updates the second C-RNTI to the first C-RNTI.
  • the DU determines the first C-RNTI according to the first DU interface identifier, and at the same time, according to the second message find the stored UE context information, associate the first C-RNTI with the UE context, and delete the second C-RNTI in the UE context information.
  • S510 may be performed immediately after S504 or after the SDT of the UE ends. Preferably, it is executed after the SDT of the UE ends.
  • the DU deletes the first DU interface identifier, or updates the second DU interface identifier to the first DU interface identifier.
  • the DU since the DU has determined the identity of the UE, the DU can choose to continue to retain the second DU interface identifier in its stored UE context information and assign it to the UE The first DU interface identifier is deleted or released.
  • the DU may update the interface identifier of the second DU to the interface identifier of the first DU.
  • the DU can determine the first DU interface identifier according to the first C-RNTI and delete or release the first C-RNTI.
  • the first DU interface identifier or update the second DU interface identifier to the first DU interface identifier.
  • the DU determines the first C-RNTI according to the first DU interface identifier, and uses the first After the C-RNTI is associated to the context of the UE, delete or release the first DU interface identifier, or update the second DU interface identifier to the first DU interface identifier.
  • the above-mentioned process of releasing the first DU interface identifier may be after the end of the SDT.
  • the DU sends a response message of the second message to the CU.
  • the DU sends a terminal context modification response message to the CU, which is used to indicate that the DU has completed the modification of the UE context information.
  • the F1AP interface identifier of the UE, for example, it can be the first UE DU F1AP ID, the second UE DU F1AP ID, and the second UE CU F1AP ID.
  • the above-mentioned second message may be replaced by other F1 interface messages, such as RRC message transmission signaling and the like.
  • the CU successfully verifies the identity of the UE and determines that the context of the UE that initiated the SDT is stored on the DU, there is no need to assign a CU interface identifier to the UE, and there is no need to send a context establishment request to the DU , it only needs to carry the CU interface identifier and DU interface identifier stored on the DU through an F1AP message, and inform the DU of the C-RNTI newly allocated by the DU to the UE, so that the DU uses the new C-RNTI to scramble the PDCCH. That is, by using the UE to modify the context flow between the CU and the DU, the interactive redundant configuration between the CU and the DU is avoided, the processing burden of the DU can be reduced, and the processing efficiency can be improved.
  • FIG. 6 shows a schematic diagram of a communication method 600 provided by an embodiment of the present application, and the method 600 is applicable to an SDT process based on pre-configuration authorization.
  • the communication methods include:
  • the DU receives uplink data sent by the UE, and correspondingly, the UE sends the uplink data to the DU.
  • the UE may send uplink data to the DU based on the pre-configured authorized SDT process, where the UE may be in an RRC idle state or an RRC inactive state.
  • the uplink data may be SDTDRB data or SDTSRB data.
  • the uplink data may also include an RRC recovery request message sent by the UE, wherein the RRC recovery request message carries the UE's inactive-radio network temporary identification I-RNTI (Inactive Radio network temporary identify) and identity verify message.
  • I-RNTI Inactive Radio network temporary identify
  • identity verify message the UE's inactive-radio network temporary identification
  • the I-RNTI is used to identify the identity of the base station where the UE is located and is used to uniquely identify the identity of the UE in the base station.
  • the UE starts to monitor the configured scheduling radio network temporary identification (configured scheduling radio network temporary identify, CS-RNTI) and the connected C-RNTI.
  • the CS-RNTI is used for scheduling the uplink sent on the retransmission pre-configuration grant.
  • the C-RNTI is used to schedule uplink new transmissions, downlink new transmissions or send control instructions.
  • the DU determines the stored context information of the UE.
  • the DU After the DU receives the uplink data sent by the UE on the dedicated uplink grant of the UE, the DU determines the stored context information of the UE.
  • the context information of the UE stored in the DU may include the second DU interface identifier and/or the second CU interface identifier.
  • the context information of the UE stored in the DU may also include a second C-RNTI.
  • the second DU interface identifier and the second CU interface identifier are also stored on the CU, and are assigned to the UE through negotiation between the CU and the DU.
  • the DU sends a first message to the CU.
  • the DU sends the first message to the CU, and carries the second DU interface identifier.
  • the first message also includes an RRC recovery request.
  • the first message may be an F1AP message, for example, may be an initial uplink RRC message transfer (initial uplink RRC message transfer) or may be an uplink RRC message transfer.
  • the RRC recovery request message is carried in the initial uplink RRC message transmission or in the uplink RRC message transmission.
  • the uplink data received by the DU on the UE's dedicated uplink grant is SDT SRB data
  • the SDT SRB data is carried in the initial uplink RRC message transmission or in the uplink RRC message transmission, for example, the PDCP PDU of SRB2.
  • the CU can instruct the notification DU to release the context of the UE, and notify the UE to go to the RRC IDLE state.
  • the DU determines that the context of the UE that initiated the SDT is stored on the DU, it only needs to pass an F1AP message, carrying the DU interface identifier stored on the DU and sending uplink data to the CU . It avoids interactive redundant configuration between CU and DU, which can reduce the processing burden of DU and improve processing efficiency.
  • the communication method 600 of the present application may further include other steps:
  • the CU sends a context release message to the DU.
  • the context release message may also be called “terminal context release message” or "UE context release message”.
  • the CU when the CU decides to notify the UE to switch from the RRC connected state to the RRC inactive state, the CU sends a context release message to the DU.
  • the context release message carries first indication information, where the first indication information is used to instruct the DU to save the context information of the UE.
  • the context release message may carry an RRC release message.
  • the RRC release message may carry configurations of pre-configured grants for small data transmission and configurations of radio bearers that allow small data transmissions.
  • the pre-configuration grant may be received by the CU from the DU before initiating the RRC release.
  • the DU after the DU receives the context release message sent by the CU, the DU will retain the context information of the UE instead of deleting it.
  • the context information of the UE may include at least one of the following information: F1-AP dedicated connection, F1 tunnel configuration, radio link control (radio link control, RLC) radio bearer configuration, pre-configuration authorization configuration information.
  • the UE context information is associated with the second C-RNTI.
  • the F1-AP dedicated connection may include the F1AP identity of the CU associated with the UE, for example, it may be the second gNB-CU UE F1AP ID, which uniquely identifies the UE on the F1 interface within the gNB-CU associated.
  • the F1-AP dedicated connection can also include the F1AP identifier of the DU associated with the UE, for example, it can be the second gNB-DU UE F1AP ID, and the second gNB-DU UE F1AP ID uniquely identifies the F1 interface in the gNB-DU UE association.
  • the F1 tunnel configuration may include downlink user plane transport layer information, for example, the transport layer address assigned by the DU and GTP tunnel identification information, and the F1 tunnel configuration may also include uplink user plane transport layer information, such as the transport layer address and GTP assigned by the CU Tunnel identification information.
  • the configuration information of the radio bearer of the RLC is the configuration information of the RLC used to identify the bearer.
  • the pre-configured authorization configuration information may include: time-frequency resources, PDCCH search space, and CS-RNTI.
  • context release message may be replaced by other F1AP messages, such as downlink RRC messages.
  • the DU sends an RRC release message to the UE.
  • the DU stores the context of the UE and sends an RRC release message to the UE, where the RRC release message is used to instruct the UE to enter the inactive state.
  • the UE stores the configuration of the pre-configuration configuration authorization for small data transmission.
  • the UE after receiving the RRC connection release message, the UE stores the configuration of the preconfiguration configuration authorization for small data transmission, and enters the inactive state.
  • the UE triggers the SDT based on the pre-configuration authorization.
  • the UE when the UE needs to initiate the SDT based on the pre-configuration authorization, the UE triggers the SDT process based on the pre-configuration authorization, and sends uplink data to the DU through S601.
  • the CU verifies the identity of the UE.
  • the CU After the CU receives the initial uplink RRC transmission sent by the DU, when the CU receives the SDT SRB data, the CU performs integrity verification through the message authentication code for integrity (MAC-I). If successful, the identity verification is passed.
  • MAC-I message authentication code for integrity
  • the CU When the CU receives the RRC connection recovery request, it checks the short MAC-I, and if it succeeds, it passes the identity verification.
  • the CU sends the second message to the DU.
  • the CU After the CU successfully verifies the identity of the UE, if the CU wants to modify the context information of the UE, the CU sends the second message to the DU.
  • the second message may carry the second DU interface identifier and/or the second CU interface identifier.
  • the context information of the UE stored by the DU may include the second DU interface identifier and/or the second CU interface identifier.
  • the second message may be a UE context modification request message.
  • the DU sends a response message of the second message to the CU.
  • the DU sends a terminal context modification response message to the CU to indicate that the DU has completed the modification of the UE context information.
  • the F1AP interface identifier of the UE, for example, it can be the first UE DU F1AP ID, the second UE DU F1AP ID, and the second UE CU F1AP ID.
  • the above-mentioned second message may be replaced by other F1 interface messages, such as RRC message transmission signaling and the like.
  • the DU determines to store the context of the UE initiating the SDT, and only needs to pass an F1AP message carrying the DU interface identifier stored on the DU and complete the uplink data transmission.
  • the CU needs to modify the UE context information, it can use the UE to modify the context flow between the CU and the DU, which avoids the interactive redundant configuration between the CU and the DU, reduces the processing burden of the DU, and improves the processing efficiency.
  • step numbers of the various flow charts described in the embodiment are only an example of the execution flow, and do not constitute a restriction on the sequence of execution of the steps. There is no strict order of execution.
  • steps that must be executed are steps that must be executed, and some steps may be added or deleted on the basis of each flow chart according to actual needs.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application.
  • a communication device 700 includes a processing unit 710 and a transceiver unit 720 .
  • the communication device 700 is used to realize the function or operation module of the DU in the method embodiment shown in FIG. 5 and FIG. 6 above, or the communication device 700 is used to realize the CU in the method embodiment shown in FIG. 5 and FIG.
  • a module of function or operation which can be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the processing unit 710 is used to allocate the first cell radio network temporary identifier C-RNTI and the first DU interface identifier to the terminal equipment; the transceiver unit 720 It is used to receive uplink data from the terminal device, send the first message to the CU, and receive the second message from the CU.
  • the processing unit 710 is used to verify the identity of the terminal device; the transceiver unit 720 is used to send the second message to the DU.
  • the processing unit 710 is used to determine the saved context information of the UE; the transceiver unit 720 is used to receive uplink data from the terminal device and send The first message, and receiving the second message from the CU.
  • the processing unit 710 is used to verify the identity of the terminal device; the transceiver unit 720 is used to send the second message to the DU.
  • processing unit 710 and the transceiver unit 720 can be directly obtained by referring to related descriptions in the method embodiment shown in FIG. 5 or FIG. 6 , and details are not repeated here.
  • FIG. 8 is a schematic structural diagram of another possible communication device provided by an embodiment of the present application.
  • the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810, or storing input data required by the processor 810 to execute the instructions, or storing data generated by the processor 810 after executing the instructions.
  • the processor 810 is used to implement the functions of the processing unit 710
  • the interface circuit 820 is used to implement the functions of the transceiver unit 720 .
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable In addition to programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和装置,该方法包括:DU接收来自终端设备的上行数据;DU为该终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;DU向集中式单元CU发送第一消息,该第一消息包括该第一C-RNTI和该第一DU接口标识;DU接收来自该CU的第二消息,该第二消息包括该第一C-RNTI或该第一DU接口标识。本申请实施例提供一种通信的方法和装置,能够降低DU的处理负担,提升通信的效率。

Description

一种通信方法和装置
本申请要求于2021年10月22日提交中国国家知识产权局、申请号202111236395.1、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且,更具体地,涉及一种通信方法和装置。
背景技术
在通信系统中,处于空闲态或去激活态的终端设备,可以在不进行无线资源控制(radio resource control,RRC)状态切换的情况下进行数据传输,这种数据传输机制即为小数据传输(small data transmission,SDT)。在集中式单元(central unit,CU)和分布式单元(distributed unit,DU)分离的场景中,每当终端设备发起SDT时,DU都要与CU发起信令交互过程,才能恢复DU和CU之间的传输,带来发送的时延,使得数据传输的效率变低。
发明内容
本申请实施例提供一种通信方法和装置,能够降低DU的处理负担,提升通信的效率。
第一方面,提供了一种通信方法,所述方法应用于分布式单元DU,或者,也可以由配置于DU中的芯片或电路执行,本申请对此不作限定。该方法包括:接收来自终端设备的上行数据;为所述终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;向集中式单元CU发送第一消息,所述第一消息包括所述第一C-RNTI和所述第一DU接口标识;接收来自所述CU的第二消息,所述第二消息包括所述第一C-RNTI或所述第一DU接口标识。
基于上述方案,在SDT过程中时,CU无需向DU发送上下文建立请求,只需要将携带DU上存储的CU接口标识和DU接口标识消息发送给DU,并将DU给UE新分配的C-RNTI告知DU,从而使得DU使用新C-RNTI加扰PDCCH。避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
结合第一方面,在第一方面的某些实现方式中,所述终端设备处于无线资源控制RRC空闲态或RRC非激活态。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:在接收所述上行数据之前,所述DU存储有所述终端设备的上下文信息,所述上下文信息包括第二C-RNTI;在接收到所述第二消息之后,将所述第二C-RNTI更新为所述第一C-RNTI。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:为所述终端设备分配所述第一C-RNTI和所述第一DU接口标识之后,存储所述第一C-RNTI和所述第一DU 接口标识;在接收到所述第二消息之后,删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
基于上述方案,当DU确定了UE身份并确定该UE的上下文信息后,DU将分配给UE的第一DU接口标识收回或将第二DU接口标识更新为第一DU接口标识,节约了接口标识以及存储资源。
结合第一方面,在第一方面的某些实现方式中,当所述第二消息包括所述第一DU接口标识时,所述将所述第二C-RNTI更新为所述第一C-RNTI,具体包括:根据所述第一DU接口标识确定所述第一C-RNTI;将所述第二C-RNTI更新为所述第一C-RNTI。
结合第一方面,在第一方面的某些实现方式中,当所述第二消息包括所述第一C-RNTI时,所述删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识,具体包括:根据所述第一C-RNTI确定所述第一DU接口标识;删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
结合第一方面,在第一方面的某些实现方式中,所述上下文信息还包括第二DU接口标识。
结合第一方面,在第一方面的某些实现方式中,所述接收来自终端设备的上行数据,具体包括:在随机接入过程中接收来自所述终端设备的上行数据。
结合第一方面,在第一方面的某些实现方式中,所述第一消息还包括RRC恢复请求消息,所述上行数据包括所述RRC恢复请求消息。
结合第一方面,在第一方面的某些实现方式中,所述第二消息还包括所述第二DU接口标识和第二CU接口标识,所述第二CU接口标识存储在所述上下文信息中。
结合第一方面,在第一方面的某些实现方式中,所述第二消息为上下文修改请求消息。
需要说明的是,该上下文修改请求消息,也可以称为终端上下文修改请求消息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括,向所述CU发送上下文修改响应消息。
需要说明的是,该上下文修改响应消息,也可以称为终端上下文修改响应消息。
基于上述方案,通过CU和DU间使用UE修改上下文流程,避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括,在接收所述上行数据之前,接收所述CU的RRC释放消息和指示信息,所述指示信息指示所述DU保存所述终端设备的上下文信息;向所述终端设备发送所述RRC释放消息。
第二方面,提供了一种通信方法,其特征在于,分布式DU接收来自终端设备的上行数据;所述DU为所述终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;所述DU向集中式单元CU发送第一消息,所述第一消息包括所述第一C-RNTI和所述第一DU接口标识;所述CU向所述DU发送第二消息,所述第二消息包括所述第一C-RNTI或所述第一DU接口标识。
基于上述方案,在SDT过程中时,CU将DU给UE新分配的C-RNTI告知DU,避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
结合第二方面,在第二方面的某些实现方式中,所述终端设备处于RRC空闲态或RRC非激活态。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:在接收所述上行数据之前,所述DU存储有所述终端设备的上下文信息,所述上下文信息包括第二C-RNTI;所述DU在接收到所述第二消息之后,将所述第二C-RNTI更新为所述第一C-RNTI。
结合第二方面,在第二方面的某些实现方式中,所述DU为所述终端设备分配所述第一C-RNTI和所述第一DU接口标识之后,所述DU存储所述第一C-RNTI和所述第一DU接口标识;所述DU在接收到所述第二消息之后,删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
结合第二方面,在第二方面的某些实现方式中,
当所述第二消息包括所述第一DU接口标识时,所述将所述第二C-RNTI更新为所述第一C-RNTI,具体包括:所述DU根据所述第一DU接口标识确定所述第一C-RNTI;所述DU将所述第二C-RNTI更新为所述第一C-RNTI。
结合第二方面,在第二方面的某些实现方式中,
当所述第二消息包括所述第一C-RNTI时,所述删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识,具体包括:所述DU根据所述第一C-RNTI确定所述第一DU接口标识;所述DU删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
结合第二方面,在第二方面的某些实现方式中,所述上下文信息还包括第二DU接口标识。
结合第二方面,在第二方面的某些实现方式中,所述DU接收来自终端设备的上行数据,具体包括:所述DU在随机接入过程中接收来自所述终端设备的上行数据。
结合第二方面,在第二方面的某些实现方式中,所述第一消息还包括RRC恢复请求消息,所述上行数据包括所述RRC恢复请求消息。
结合第二方面,在第二方面的某些实现方式中,所述第二消息还包括所述第二DU接口标识和第二CU接口标识,所述第二CU接口标识存储在所述上下文信息中。
结合第二方面,在第二方面的某些实现方式中,所述第二消息为上下文修改请求消息。
需要说明的是,该上下文修改请求消息,也可以称为终端上下文修改请求消息。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括,接收来自所述DU的上下文修改响应消息。
需要说明的是,该上下文修改响应消息,也可以称为终端上下文修改响应消息。
基于上述方案,通过CU和DU间使用UE修改上下文流程,避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括,
在所述DU接收所述上行数据之前,所述CU向所述DU发送RRC释放消息和指示信息,所述指示信息指示所述DU保存所述终端设备的上下文信息;所述DU向所述终端设备发送所述RRC释放消息。
第三方面,提供了一种通信装置,包括用于实现前述第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种通信装置,包括用于实现前述第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第二方面的任意可能的实现方式中的方法。
第十三方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第二方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,提供一种通信系统,该通信系统包括第三方面或者第四方面所述的装置。
附图说明
图1为本申请实施例适用的一种网络架构示意图。
图2为本申请实施例提供的一种CU-DU分离架构的示意图。
图3为本申请实施例提供的又一种CU-DU分离架构的示意图。
图4为本申请实施例提供的一种协议栈分布示意图。
图5为本申请实施例提供的一种通信方法500的流程示意图。
图6为本申请实施例提供的一种通信方法600的流程示意图。
图7为本申请实施例提供的通信装置700的示意性框图。
图8为本申请实施例提供的另一种通信装置800的示意性框图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、WiFi系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、和物联网(internet of things,IoT)等。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1为本申请实施例适用的一种网络架构示意图。如图1所示,终端设备可接入到无线网络,以通过无线网络获取外网(例如数据网络(data network,DN))的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络中的网元包括无线接入网(radio access network,RAN)网元和核心网(core network,CN)网元。RAN用于将终端设备接入到无线网络,CN用于对终端设备进行管理并提供与DN通信的网关。在本申请实施例中,RAN中的设备可以称为接入网设备,CN中的设备可以称为核心网设备,接入网设备和核心网设备都可以称为网络设备。其中,一个接入网设备可以为至少一个终端设备提供服务,例如,一个接入网设备可以为两个终端设备提供服务(图1未示出)。
图1中Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见相关标准协议中定义的含义,在此不做限制。
可以理解的是,图1中是以5G通信系统为例进行示意的,本申请实施例中的方案还可以适用于其它可能的通信系统中,比如第六代(the 6th generation,6G)通信系统中。上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
下面分别对图1中所涉及的终端设备、RAN、CN、DN进行详细说明。
一、终端设备
终端设备包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元、订户站,移动站、远程站、接入点(access point,AP)、远程终端、接入终端、用户终端、用户代理、或用户装备等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
二、RAN设备
RAN中可以包括一个或多个RAN设备,RAN设备与终端设备之间的接口可以为Uu接口(或称为空口)。当然,在未来通信中,这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不限定。
RAN设备是终端设备通过无线方式接入到移动通信系统中的接入设备,可以是基站、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。RAN设备可以包括集中单元(centralized unit,CU)、或分布单元(distributed unit,DU)、或包括CU和DU。
在本申请实施例中,也可以通过多个网络功能实体来实现RAN设备的功能,每个网络功能实体用于实现RAN设备的部分功能。这些网络功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
(1)协议层结构
RAN设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层,在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
以接入网设备和终端设备之间的数据传输为例,数据传输需要经过用户面协议层,比如经过SDAP层、PDCP层、RLC层、MAC层、物理层,其中,SDAP层、PDCP层、RLC层、MAC层、物理层也可以统称为接入层。示例性地,接入网设备和终端设备之间 通过建立至少一个数据无线承载(data radio bearer,DRB)来传输数据,每个DRB可以对应一组功能实体集合,比如包括一个PDCP层实体,该PDCP层实体对应的至少一个RLC层实体,至少一个RLC层实体对应的至少一个MAC层实体,至少一个MAC层实体对应的至少一个物理层实体。需要说明的是,接入网设备和终端设备之间还可以通过建立至少一个信令无线承载(signalling radio bearer,SRB)来传输信令,DRB和SRB可以统称为无线承载(radio bearer,RB)。
(2)CU和DU
本申请实施例中,RAN设备可以包括一个或多个集中单元(centralized unit,CU)和一个或多个分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。作为示例,CU和DU之间的接口可以称为F1接口,其中,控制面(control panel,CP)接口可以为F1-C,用户面(user panel,UP)接口可以为F1-U。CU和DU可以根据无线网络的协议层划分:比如图2所示,PDCP层及以上协议层的功能设置在CU,PDCP层以下协议层的功能设置在DU,例如,DU可以包括RLC层、MAC层和物理(Physical,PHY)层。
在一种可能的设计中,DU可以包括RLC层的功能、MAC层的功能,和,PHY层的部分功能。示例性地,DU可以包括PHY层中高层的功能。其中,PHY层中高层的功能可以包括循环冗余校验(cyclic redundancy check,CRC)功能、信道编码、速率匹配、加扰、调制、和层映射;或者,PHY层中高层的功能可以包括循环冗余校验、信道编码、速率匹配、加扰、调制、层映射和预编码。PHY层中低层的功能可以通过另一个与DU独立的网络实体实现,其中,PHY层中低层的功能可以包括预编码、资源映射、物理天线映射和射频功能;或者,PHY层中低层的功能可以包括资源映射、物理天线映射和射频功能。本申请实施例对PHY层中高层和底层的功能划分不作限制。当PHY层中低层的功能可以以另一个与DU独立的网络实体实现时,DU向其它通信装置(例如终端设备、核心网设备)发送数据或信息,可以理解为:DU执行RLC层、MAC层的功能,和,PHY层的部分功能。例如,DU在完成RLC层、MAC层的功能,以及,循环冗余校验、信道编码、速率匹配、加扰、调制、层映射后,由执行PHY层中低层的功能的与DU独立的网络实体执行剩余的在物理资源上映射和发送的功能。
可以理解的,上述对CU和DU的处理功能按照协议层的划分仅仅是一些举例,也可以按照其他的方式进行划分,比如RLC层以上协议层的功能设置在CU,RLC层及以下协议层的功能设置在DU,又比如可以将CU或者DU划分为具有更多协议层的功能,又比如CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。示例性地,CU可以设置在网络侧方便集中管理;DU可以具有多个射频功能,也可以将射频功能拉远设置。本申请实施例对此并不进行限定。
示例性地,CU的功能可以由一个实体来实现,或者也可以由不同的实体来实现。例如,如图3所示,可以对CU的功能进行进一步切分,即将控制面和用户面分离并通过不 同实体来实现,分别为控制面CU实体(即CU-CP实体)和用户面CU实体(即CU-UP实体),CU-CP实体和CU-UP实体可以与DU相耦合,共同完成RAN设备的功能。CU-CP实体与CU-UP实体之间的接口可以为E1接口,CU-CP实体与DU之间的接口可以为F1-C接口,CU-UP实体与DU之间的接口可以为F1-U接口。其中,一个DU和一个CU-UP可以连接到一个CU-CP。在同一个CU-CP控制下,一个DU可以连接到多个CU-UP,一个CU-UP可以连接到多个DU。
基于图3,图4为一种空口协议栈分布示意图。如图4所示,针对用户面和控制面来说,空口协议栈都可以是RLC、MAC、PHY在DU,PDCP及以上协议层在CU。
需要说明的是:在上述图2至图4所示意的架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装后透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为物理层的数据发送给终端设备,或者,由接收到的物理层的数据转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装置发送的。
三、CN
CN中可以包括一个或多个CN设备,以5G通信系统为例,CN中可以包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元、网络开放功能(network exposure function,NEF)网元、统一数据存储(unified data repository,UDR)网元等。
AMF网元是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和授权用户等功能。
SMF网元是由运营商网络提供的控制面网元,负责管理终端设备的协议数据单元(protocol data unit,PDU)会话。PDU会话是一个用于传输PDU的通道,终端设备需要通过PDU会话与DN互相传送PDU。PDU会话由SMF网元负责建立、维护和删除等。SMF网元包括会话管理(如会话建立、修改和释放,包含UPF和RAN之间的隧道维护)、UPF网元的选择和控制、业务和会话连续性(service and session continuity,SSC)模式选择、漫游等会话相关的功能。
UPF网元是由运营商提供的网关,是运营商网络与DN通信的网关。UPF网元包括数据包路由和传输、包检测、业务用量上报、服务质量(Quality of Service,QoS)处理、合法监听、上行包检测、下行数据包存储等用户面相关的功能。
PCF网元是由运营商提供的控制面功能,用于向SMF网元提供PDU会话的策略。策略可以包括计费相关策略、QoS相关策略和授权相关策略等。
UDM网元是由运营商提供的控制面网元,负责存储运营商网络中签约用户的用户永久标识符(subscriber permanent identifier,SUPI)、安全上下文(security context)、签约数据等信息。
AF网元是提供各种业务服务的功能网元,能够通过其它网元与核心网交互,以及能够和策略管理框架交互进行策略管理。
此外,CN中还可以包括其它可能的网元,比如网络开放功能(network exposure function,NEF)网元、统一数据仓储(unified data repository,UDR)网元,NEF网元用于提供网络能力开放相关的框架、鉴权和接口,在5G系统网络功能和其他网络功能之间传递信息;UDR网元主要用来存储用户相关的签约数据、策略数据、用于开放的结构化数据、应用数据。
四、DN
DN也可以称为分组数据网络(packet data network,PDN),是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN中可部署有多种业务对应的应用服务器,为终端设备提供多种可能的服务。其中,应用服务器中可以设置有与终端设备的应用层相对等的应用层。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。
一、RRC状态
1)无线资源控制连接(radio resource control connected,RRC CONNECTED)态的终端设备是指终端设备和接入网设备之间建立了RRC连接,接入网设备保存终端设备的信息(例如,终端设备的接入层上下文信息、无线配置信息等中的一项或多项)。该RRC连接是数据无线承载(data radio bearer,DRB)或信令无线承载1(signaling radio bearer,SRB1)的连接等专用连接,不包括SRB0的公共连接;
2)无线资源控制空闲(radio resource control idle,RRC IDLE)态的终端设备是指终端设备和接入网设备之间没有RRC连接,接入网设备没有保存终端设备的信息;
3)无线资源控制非激活(radio resource control inactive,RRC INACTIVE)态的终端设备是指终端设备在基于无线接入网络的通知区域(radio access network based notification area,RNA)下移动,可以不知会接入网设备。终端设备保存自己的上下文,前服务接入网设备(last serving gNB)保存终端设备的上下文,以及与接入和移动性管理功能网元(access and mobility management function,AMF)和用户面功能(user plane function,UPF)的下一代(next generation,NG)接口连接。在RRC INACTIVE下,终端设备与接入网设备的专用的RRC连接是挂起的,后续可以恢复的,例如,终端设备通过发起RRC恢复(resume)过程,恢复RRC连接。终端设备可以在RRC INACTIVE态执行小区重选。
二、小数据传输(small data transmission,SDT)
SDT又称为早期数据传输(early data transmission,EDT),对于处于非连接态的UE,可以通过简单的信令过程进行小数据的传输(例如智能仪表的数据上报),以避免造成RRC状态的改变和RRC信令的开销。
终端设备进行小数传输的方式包括配置授权(configured grant,CG)-SDT和随机接入(random access,RA)-SDT。
当前若服务基站由分离的CU和DU组成时,DU不会保存非激活态下UE的上下文。每次UE发起小数据传输的时候,DU和CU都要通过信令交互过程才能恢复DU和CU之间的传输,带来发送时延,以及发送效率低的问题。因此,考虑DU保存了非激活态UE的上下文情况下,基于该上下文信息来降低DU与CU冗余信息的交互,提高DU的 处理效率。
图5示出了本申请实施例提供的一种通信方法500的示意图,该方法500适用于SDT。如图5所示,该通信的方法包括:
S501,DU接收UE发送的上行数据,对应的,UE向DU发送上行数据。
示例性地,UE可以基于随机接入过程向DU发送上行数据,其中,UE可以处于RRC空闲态或者RRC非激活态。
可选地,该上行数据可以为SDTDRB数据或者SDTSRB数据,该SDT SRB数据可以是SDT非接入层(non access stratum,NAS)数据。
此外,需要注意的是,该上行数据还可以包括UE发送的RRC恢复请求消息,其中该RRC恢复请求消息中携带UE的非活动-无线网络临时标识I-RNTI(Inactive Radio network temporary identify)和身份验证信息。可选地,该上行数据可以是四步随机接入过程中的Msg3。其中,I-RNTI用于标识UE所在的基站标识以及用于唯一标识基站内的UE标识。
S502,DU为UE分配第一小区无线网络临时标识(cell radio network temporary identify,C-RNTI)和第一DU接口标识。
具体地,当DU在上行授权的资源上监听到UE发送的上行数据后,由于该DU不能解码UE发送的RRC恢复请求消息,也无法识别该UE的上下文已经存储在该DU上,因此,该DU为UE分配第一C-RNTI以及第一DU接口标识,该第一DU接口标识可以是UE的F1应用协议(F1application protocol,F1AP)接口标识,例如,可以是第一UE DU F1AP ID,该F1应用协议可以参照当前5G的相关技术,本申请在此不再赘述。
S503,DU向CU发送第一消息。
具体地,当DU为UE分配第一C-RNTI和第一DU接口标识后,该DU向CU发送第一消息,并携带第一C-RNTI和第一DU接口标识。
需要说明的是,该第一消息还包括RRC恢复请求。
在一种可实现的方式中,该第一消息可以是F1AP消息,例如,可以是初始上行RRC消息传输(initial uplink RRC message transfer)。该初始上行RRC传输中可以携带S502中DU给UE分配的第一C-RNTI、第一DU F1AP ID以及RRC恢复请求,该RRC恢复请求携带UE的I-RNTI和身份验证信息等。
可选地,该第一消息还可以携带用于指示UE发起SDT的信息。
可选地,当DU为UE分配第一C-RNTI和第一DU接口标识后,该DU将该第一C-RNTI和第一DU接口标识储存。
S504,CU向DU发送第二消息。
当CU接收到DU发送的第一消息后,该CU通过第一消息中UE的身份标识验证UE的身份信息,确定发起SDT的UE的上下文保存在DU上,因此不必再给UE重新分配CU接口标识,也无需向DU发送上下文建立请求,只需要向DU发送第二消息,通过第二消息告知DU该UE的身份,使得DU能够将存储的该UE的上下文信息与该第一C-RNTI或该第一DU接口标识对应,便于该DU使用该第一C-RNTI加扰物理下行控制信道(physical downlink control channel,PDCCH)以及将该第一C-RNTI关联到UE的上下文。
可选地,第二消息携带第一C-RNTI和/或第一DU接口标识。
可选地,第二消息还可以携带第二DU接口标识和/或第二CU接口标识。
应理解,在DU收到CU的第二消息之前,该DU存储的该UE的上下文信息可以包括第二DU接口标识和/或第二CU接口标识。可选地,该DU存储的该UE的上下文信息还可以包括第二C-RNTI。其中,第二DU接口标识以及第二CU接口标识也存储在该CU上,并且是CU和DU协商为UE分配的。
在一种可实现的方式中,该第二消息可以是UE上下文修改请求消息。
此外,若验证失败,CU可指示通知DU释放UE的上下文,通知UE转到RRC IDLE态。
基于本申请的实施例,在SDT过程中,当CU成功验证UE的身份后,确定发起SDT的UE的上下文保存在DU上时,不必给UE分配CU接口标识,也无需向DU发送上下文建立请求,只需要通过一个F1AP消息,携带DU上存储的CU接口标识和DU接口标识,并将DU给UE新分配的C-RNTI告知DU,从而使得DU使用新C-RNTI加扰PDCCH。即通过CU和DU间使用UE修改上下文流程,避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
在一种可实现的方式中,本申请的通信方法500还可以包括其他步骤:
S505,CU向DU发送上下文释放消息。在本申请实施例中,上下文释放消息也可以称为“终端上下文释放消息”、“UE上下文释放消息”。
示例性地,当CU决定通知UE从RRC连接态转换到RRC非激活态时,CU向DU发送上下文释放消息。
可选地,该上下文释放消息中携带第一指示信息,该第一指示信息用于指示DU保存UE的上下文信息。
可选地,该上下文释放消息可以携带RRC释放消息。可选地,该RRC释放消息可以携带用于小数据传输的无线承载的配置。
应理解,在本申请实施例中,当DU收到CU发送的上下文释放消息后,该DU会将UE的上下文信息进行保留,而非删除。
其中,该UE的上下文信息可以包括至少以下信息中的一种:F1-AP专用连接、F1隧道配置、无线链路控制(radio link control,RLC)的无线承载的配置、用于预配置调度重传的RNTI以及第二C-RNTI。其中,UE上下文信息与第二C-RNTI关联。F1-AP专用连接可以包括与UE关联的CU的F1AP标识,例如,可以是第二gNB-CU UE F1AP ID,该第二gNB-CU UE F1AP ID在gNB-CU内唯一标识F1接口上的UE关联。以及F1-AP专用连接还可以包括与UE关联的DU的F1AP标识,例如,可以是第二gNB-DU UE F1AP ID,该第二gNB-DU UE F1AP ID在gNB-DU内唯一标识F1接口上的UE关联。F1隧道配置可以包括下行用户面传输层信息,例如,可以是DU分配的传输层地址和GTP隧道标识信息,F1隧道配置还可以包括上行用户面传输层信息,例如CU分配的传输层地址和GTP隧道标识信息。RLC的无线承载的配置信息是用于标识承载的RLC的配置信息。
可以理解,上下文释放消息可替换为其他F1AP消息,比如,下行RRC消息等。
S506,DU向UE发送RRC释放消息。
具体地,当DU收到CU发送的RRC释放消息后,DU存储UE的上下文,并向UE发送RRC释放消息,该RRC释放消息用于指示UE进入非激活态。
S507,DU发送广播消息。
具体地,DU在广播消息中配置用于SDT的随机接入资源。
S508,UE触发基于随机接入的SDT。
具体地,当UE需要发起基于随机接入的SDT时,UE触发基于随机接入的SDT流程,并通过S501向DU发送上行数据。
应理解,该UE触发的基于随机接入的SDT过程可以参照当前相关技术的说明,例如可以包括UE向DU发送SDT前导码,以及DU向UE发送随机接入响应消息等,本申请在此不作赘述。
S509,CU验证UE身份。
具体地,CU接收到DU发送的初始上行RRC传输后,根据其携带的UE的I-RNTI和身份验证信息来验证UE身份信息。当CU验证UE的身份正确时,CU可以执行S504,比如,CU向DU发送UE上下文修改请求消息。若验证失败,CU可指示通知DU释放UE的上下文,通知UE转到RRC IDLE态。
S510,DU将第二C-RNTI更新为第一C-RNTI。
具体地,当DU接收到CU发送的第二消息后,若第二消息中携带的是第一C-RNTI时,该DU可以根据第二消息中携带的第二DU接口标识以及第二CU接口标识,找到存储的UE上下文信息,将该第一C-RNTI关联到UE的上下文中,同时该DU删除或者释放UE上下文信息中的第二C-RNTI,即将第二C-RNTI更新为第一C-RNTI。
或者,当DU接收到CU发送的第二消息后,若第二消息中携带的是第一DU接口标识时,该DU根据该第一DU接口标识确定第一C-RNTI,同时根据第二消息中携带的第二DU接口标识以及第二CU接口标识,找到存储的UE上下文信息,将该第一C-RNTI关联到UE的上下文中,并删除UE上下文信息中的第二C-RNTI。
需要说明的是,S510可在S504后立即执行或者在UE的SDT结束后执行。优选的,在UE的SDT结束后执行。
S511,DU删除第一DU接口标识,或将所述第二DU接口标识更新为第一DU接口标识。
具体地,在一种可实现的方式中,由于该DU已经确定了UE的身份,因此,该DU可以选择继续保留其存储的UE上下文信息中的第二DU接口标识,并将其分配给UE的第一DU接口标识删除或释放。
或者,在另一种可实现的方式,该DU可以将第二DU接口标识更新为第一DU接口标识。
具体地,当DU接收到CU发送的第二消息后,若第二消息中携带的是第一C-RNTI时,该DU可以根据该第一C-RNTI确定第一DU接口标识并删除或者释放该第一DU接口标识,或将第二DU接口标识更新为第一DU接口标识。
或者,当DU接收到CU发送的第二消息后,若第二消息中携带的是第一DU接口标识时,该DU根据该第一DU接口标识确定第一C-RNTI,并将该第一C-RNTI关联到UE的上下文中后,删除或者释放该第一DU接口标识,或将第二DU接口标识更新为第一DU接口标识。
需要说明的是,上述释放第一DU接口标识的过程,可以在SDT结束后。
S512,DU向CU发送第二消息的响应消息。
具体地,当第二消息为终端上下文修改请求消息时,该DU向CU发送终端上下文修改响应消息,用于指示该DU完成了对UE上下文信息的修改。
需要说明的是,上述无论是CU接口标识还是DU接口标识,可以是UE的F1AP接口标识,例如,可以是第一UE DU F1AP ID、第二UE DU F1AP ID、第二UE CU F1AP ID。此外,上述第二消息可以替换为其他F1接口的消息,如RRC消息传输信令等。
基于本申请提供的方案,在SDT过程中,当CU成功验证UE的身份后,确定发起SDT的UE的上下文保存在DU上时,不必给UE分配CU接口标识,也无需向DU发送上下文建立请求,只需要通过一个F1AP消息,携带DU上存储的CU接口标识和DU接口标识,并将DU给UE新分配的C-RNTI告知DU,从而使得DU使用新C-RNTI加扰PDCCH。即通过CU和DU间使用UE修改上下文流程,避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
图6示出了本申请实施例提供的一种通信方法600的示意图,该方法600适用于基于预配置授权的SDT过程。如图6所示,该通信的方法包括:
S601,DU接收UE发送的上行数据,对应的,UE向DU发送上行数据。
示例性地,UE可以基于预配置授权的SDT过程向DU发送上行数据,其中,UE可以处于RRC空闲态或者RRC非激活态。
可选地,该上行数据可以为SDTDRB数据或者SDTSRB数据。
此外,需要注意的是,该上行数据还可以包括UE发送的RRC恢复请求消息,其中该RRC恢复请求消息中携带UE的非活动-无线网络临时标识I-RNTI(Inactive Radio network temporary identify)和身份验证信息。其中,I-RNTI用于标识UE所在的基站标识以及用于唯一标识基站内的UE标识。
可选地,该UE开始监听配置调度无线网络临时标识(configured scheduling radio network temporary identify,CS-RNTI)和连接态的C-RNTI。其中,CS-RNTI用于调度重传预配授权上发送的上行。C-RNTI用于调度上行新传、下行新传或发送控制指令。
S602,DU确定存储的该UE的上下文信息。
当DU在UE的专用上行授权上收到UE发送的上行数据后,DU确定存储的该UE的上下文信息。
应理解,该DU存储的该UE的上下文信息可以包括第二DU接口标识和/或第二CU接口标识。可选地,该DU存储的该UE的上下文信息还可以包括第二C-RNTI。其中,第二DU接口标识以及第二CU接口标识也存储在该CU上,并且是CU和DU协商为UE分配的。
S603,DU向CU发送第一消息。
具体地,当DU确定存储的该UE的上下文信息后,该DU向CU发送第一消息,并携带第二DU接口标识。
需要说明的是,该第一消息还包括RRC恢复请求。
在一种可实现的方式中,该第一消息可以是F1AP消息,例如,可以是初始上行RRC消息传输(initial uplink RRC message transfer)或可以是上行RRC消息传输。
可选地,若DU在UE的专用上行授权上收到的上行数据和RRC恢复请求消息,则 在初始上行RRC消息传输或上行RRC消息传输中携带RRC恢复请求消息。
可选地,若DU在UE的专用上行授权上收到的上行数据是SDT SRB数据,则在初始上行RRC消息传输中或上行RRC消息传输中携带SDT SRB数据,比如,SRB2的PDCP PDU。
此外,若验证失败,CU可指示通知DU释放UE的上下文,通知UE转到RRC IDLE态。
基于本申请的实施例,在SDT过程中,当DU确定存储了发起SDT的UE的上下文保存在DU上时,只需要通过一个F1AP消息,携带DU上存储的DU接口标识并向CU发送上行数据。避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
在一种可实现的方式中,本申请的通信方法600还可以包括其他步骤:
S604,CU向DU发送上下文释放消息。在本申请实施例中,上下文释放消息也可以称为“终端上下文释放消息”、“UE上下文释放消息”。
示例性地,当CU决定通知UE从RRC连接态转换到RRC非激活态时,CU向DU发送上下文释放消息。
可选地,该上下文释放消息中携带第一指示信息,该第一指示信息用于指示DU保存UE的上下文信息。
可选地,该上下文释放消息可以携带RRC释放消息。可选地,该RRC释放消息可以携带用于小数据传输的预配置授权的配置以及允许小数据传输的无线承载的配置。其中,预配置授权可以是CU在发起RRC释放前从DU收到的。
应理解,在本申请实施例中,当DU收到CU发送的上下文释放消息后,该DU会将UE的上下文信息进行保留,而非删除。
其中,该UE的上下文信息可以包括至少以下信息中的一种:F1-AP专用连接、F1隧道配置、无线链路控制(radio link control,RLC)的无线承载的配置、预配置授权配置信息。其中,UE上下文信息与第二C-RNTI关联。F1-AP专用连接可以包括与UE关联的CU的F1AP标识,例如,可以是第二gNB-CU UE F1AP ID,该第二gNB-CU UE F1AP ID在gNB-CU内唯一标识F1接口上的UE关联。以及F1-AP专用连接还可以包括与UE关联的DU的F1AP标识,例如,可以是第二gNB-DU UE F1AP ID,该第二gNB-DU UE F1AP ID在gNB-DU内唯一标识F1接口上的UE关联。F1隧道配置可以包括下行用户面传输层信息,例如,可以是DU分配的传输层地址和GTP隧道标识信息,F1隧道配置还可以包括上行用户面传输层信息,例如CU分配的传输层地址和GTP隧道标识信息。RLC的无线承载的配置信息是用于标识承载的RLC的配置信息。预配置授权配置信息可以包括:时频资源,PDCCH搜索空间,CS-RNTI。
可以理解,上下文释放消息可替换为其他F1AP消息,比如,下行RRC消息等。
S605,DU向UE发送RRC释放消息。
具体地,当DU收到CU发送的RRC释放消息后,DU存储UE的上下文,并向UE发送RRC释放消息,该RRC释放消息用于指示UE进入非激活态。
S606,UE存储用于小数据传输的预配配置授权的配置。
具体地,UE收到RRC连接释放消息后,存储用于小数据传输的预配配置授权的配置, 并进入非激活态。
S607,UE触发基于预配置授权的SDT。
具体地,当UE需要发起基于预配置授权的SDT时,UE触发基于预配置授权的SDT流程,并通过S601向DU发送上行数据。
S608,CU验证UE身份。
具体地,CU接收到DU发送的初始上行RRC传输后,当CU收到SDT SRB数据时,CU通过用于完整性的消息身份验证代码(message authentication code for integrity,MAC-I)进行完整性校验,成功则通过身份验证。
当CU收到RRC连接恢复请求,通过校验短MAC-I进行校验,成功则通过身份验证。
S609,CU向DU发送第二消息。
可选地,当CU验证成功验证UE身份后,若CU想要修改UE的上下文信息时,该CU向DU发送第二消息。
可选地,第二消息可以携带第二DU接口标识和/或第二CU接口标识。
应理解,在DU收到CU的第二消息之前,该DU存储的该UE的上下文信息可以包括第二DU接口标识和/或第二CU接口标识。
在一种可实现的方式中,该第二消息可以是UE上下文修改请求消息。
S610,DU向CU发送第二消息的响应消息。
具体地,若CU向DU发送第二消息后,若第二消息为终端上下文修改请求消息时,该DU向CU发送终端上下文修改响应消息,用于指示该DU完成了对UE上下文信息的修改。
需要说明的是,上述无论是CU接口标识还是DU接口标识,可以是UE的F1AP接口标识,例如,可以是第一UE DU F1AP ID、第二UE DU F1AP ID、第二UE CU F1AP ID。此外,上述第二消息可以替换为其他F1接口的消息,如RRC消息传输信令等。
基于本申请提供的方案,在SDT过程中,DU确定存储了发起SDT的UE的上下文,只需要通过一个F1AP消息,携带DU上存储的DU接口标识并完成上行数据的传输。当CU需要修改UE上下文信息时,可通过CU和DU间使用UE修改上下文流程,避免了CU和DU间交互冗余配置,能够减低DU的处理负担,提高处理效率。
针对于上述图5以及图6的实施例,需要说明的是:
(1)实施例所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。此外,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。
(2)上述实施例中采用了一些5G通信系统中的消息和参数,但在具体实施中,可能使用不同的消息或消息名称,本申请实施例对此不做限制。
以上,结合图5和图6详细说明了本申请实施提供的通信方法,以下,结合图7和图8详细说明本申请实施例提供的通信装置。
图7和图8为本申请实施例提供的可能的通信装置的结构示意图。如图7所示,通信装置700包括处理单元710和收发单元720。
通信装置700用于实现上述图5和图6所示的方法实施例中DU的功能或操作的模块, 或者该通信装置700用于实现上述图5和图6所示的方法实施例中CU的功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当通信装置700用于实现图5所示的方法实施例中DU的功能时,处理单元710用于为终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;收发单元720用于接收来自终端设备的上行数据、向CU发送第一消息,以及接收来自CU的第二消息。
当通信装置700用于实现图5所示的方法实施例中CU的功能时,处理单元710用于验证终端设备的身份;收发单元720用于向DU发送第二消息。
当通信装置700用于实现图6所示的方法实施例中DU的功能时,处理单元710用于确定保存的UE的上下文信息;收发单元720用于接收来自终端设备的上行数据、向CU发送第一消息,以及接收来自CU的第二消息。
当通信装置700用于实现图6所示的方法实施例中CU的功能时,处理单元710用于验证终端设备的身份;收发单元720用于向DU发送第二消息。
有关上述处理单元710和收发单元720更详细的描述可以直接参考图5或图6所示的方法实施例中相关描述直接得到,这里不加赘述。
图8为本申请实施例提供的另一种可能的通信装置的结构示意图。如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图5或图6所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用 计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (30)

  1. 一种通信方法,其特征在于,所述方法应用于分布式单元DU,所述方法包括:
    接收来自终端设备的上行数据;
    为所述终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;
    向集中式单元CU发送第一消息,所述第一消息包括所述第一C-RNTI和所述第一DU接口标识;
    接收来自所述CU的第二消息,所述第二消息包括所述第一C-RNTI或所述第一DU接口标识。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备处于无线资源控制RRC空闲态或RRC非激活态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在接收所述上行数据之前,所述DU存储有所述终端设备的上下文信息,所述上下文信息包括第二C-RNTI;
    在接收到所述第二消息之后,将所述第二C-RNTI更新为所述第一C-RNTI。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述上下文信息还包括第二DU接口标识。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在接收到所述第二消息之后,删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  6. 根据权利要求3所述的方法,其特征在于,当所述第二消息包括所述第一DU接口标识时,所述将所述第二C-RNTI更新为所述第一C-RNTI,具体包括:
    根据所述第一DU接口标识确定所述第一C-RNTI;
    将所述第二C-RNTI更新为所述第一C-RNTI。
  7. 根据权利要求5所述的方法,其特征在于,当所述第二消息包括所述第一C-RNTI时,所述删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识,具体包括:
    根据所述第一C-RNTI确定所述第一DU接口标识;
    删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述接收来自终端设备的上行数据,具体包括:
    在随机接入过程中接收来自所述终端设备的上行数据。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一消息还包括RRC恢复请求消息,所述上行数据包括所述RRC恢复请求消息。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述第二消息还包括所述第二DU接口标识和第二CU接口标识,所述第二CU接口标识存储在所述上下文信息中。
  11. 根据权利要求7至9中任一项所述的方法,其特征在于,所述第二消息为上下文修改请求消息。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括,向所述CU发送上下文修改响应消息。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括,在接收所述上行数据之前,接收来自所述CU的RRC释放消息和指示信息,所述指示信息指示所述DU保存所述终端设备的上下文信息;
    向所述终端设备发送所述RRC释放消息。
  14. 一种通信方法,其特征在于,
    分布式DU接收来自终端设备的上行数据;
    所述DU为所述终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;
    所述DU向集中式单元CU发送第一消息,所述第一消息包括所述第一C-RNTI和所述第一DU接口标识;
    所述CU向所述DU发送第二消息,所述第二消息包括所述第一C-RNTI或所述第一DU接口标识。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备处于无线资源控制RRC空闲态或RRC非激活态。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    在接收所述上行数据之前,所述DU存储有所述终端设备的上下文信息,所述上下文信息包括第二C-RNTI;
    所述DU在接收到所述第二消息之后,将所述第二C-RNTI更新为所述第一C-RNTI。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述上下文信息还包括第二DU接口标识。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述DU在接收到所述第二消息之后,删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  19. 根据权利要求16所述的方法,其特征在于,当所述第二消息包括所述第一DU接口标识时,所述将所述第二C-RNTI更新为所述第一C-RNTI,具体包括:
    所述DU根据所述第一DU接口标识确定所述第一C-RNTI;
    所述DU将所述第二C-RNTI更新为所述第一C-RNTI。
  20. 根据权利要求18所述的方法,其特征在于,当所述第二消息包括所述第一C-RNTI时,所述删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识,具体包括:
    所述DU根据所述第一C-RNTI确定所述第一DU接口标识;
    所述DU删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述DU接收来自终端设备的上行数据,具体包括:
    所述DU在随机接入过程中接收来自所述终端设备的上行数据。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一消息还包括RRC恢复请求消息,所述上行数据包括所述RRC恢复请求消息。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,所述第二消息还包括所述第二DU接口标识和第二CU接口标识,所述第二CU接口标识存储在所述上下文信息中。
  24. 根据权利要求20至22中任一项所述的方法,其特征在于,所述第二消息为上下文修改请求消息。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括,
    所述DU向所述CU发送上下文修改响应消息。
  26. 根据权利要求14至25中任一项所述的方法,其特征在于,所述方法还包括,在所述DU接收所述上行数据之前,所述CU向所述DU发送RRC释放消息和指示信息,所述指示信息指示所述DU保存所述终端设备的上下文信息;
    所述DU向所述终端设备发送所述RRC释放消息。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述方法的模块或用于执行如权利要求14至26中任一项所述方法的模块。
  28. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至13中任一项所述的方法或控制所述装置实现如权利要求14至26中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法或实现如权利要求14至26中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法或实现如权利要求14至26中任一项所述的方法。
PCT/CN2022/126619 2021-10-22 2022-10-21 一种通信方法和装置 WO2023066365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111236395.1 2021-10-22
CN202111236395.1A CN116017771A (zh) 2021-10-22 2021-10-22 一种通信方法和装置

Publications (2)

Publication Number Publication Date
WO2023066365A1 true WO2023066365A1 (zh) 2023-04-27
WO2023066365A9 WO2023066365A9 (zh) 2024-05-10

Family

ID=86021730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126619 WO2023066365A1 (zh) 2021-10-22 2022-10-21 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN116017771A (zh)
WO (1) WO2023066365A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541032A (zh) * 2017-09-22 2018-09-14 中兴通讯股份有限公司 无线基站分离架构下的通信方法、功能实体及无线基站
CN110139386A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
CN110139387A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
US20190350019A1 (en) * 2018-05-08 2019-11-14 Htc Corporation Device and Method of Handling a Radio Network Temporary Identifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541032A (zh) * 2017-09-22 2018-09-14 中兴通讯股份有限公司 无线基站分离架构下的通信方法、功能实体及无线基站
CN110139386A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
CN110139387A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
US20190350019A1 (en) * 2018-05-08 2019-11-14 Htc Corporation Device and Method of Handling a Radio Network Temporary Identifier

Also Published As

Publication number Publication date
WO2023066365A9 (zh) 2024-05-10
CN116017771A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
JP7187580B2 (ja) セッション管理の方法、装置、およびシステム
US11246172B2 (en) Method for selecting session and service continuity mode in wireless communication system and device therefor
WO2019196847A1 (zh) 通信方法及装置
EP3598840B1 (en) Relay communication method and apparatus
WO2018027988A1 (zh) 网络切片的选择方法、无线接入设备和终端
CN110381554B (zh) 通信方法、装置、系统和计算机存储介质
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
CN111385830B (zh) 通信方法和装置
CN113873478B (zh) 通信方法及装置
US11470674B2 (en) Communication method and communications apparatus
CN114143871B (zh) 网络连接方法、网络去连接方法及通信装置
CN110649997B (zh) 数据处理方法及装置
EP4271043A1 (en) Communication method, apparatus and system
WO2021254353A1 (zh) 一种释放中继连接的方法、设备及系统
CN108781403B (zh) 终端设备、接入网设备、空口配置方法和无线通信系统
WO2022253083A1 (zh) 一种公私网业务的隔离方法、装置及系统
CN109076642B (zh) 一种ran服务器、无线通信系统和终端附着方法
WO2022206362A1 (zh) 一种通信的方法及装置
WO2023066365A1 (zh) 一种通信方法和装置
WO2021213014A1 (zh) 一种通信方法及装置
CN117296382A (zh) 用于侧链路中继通信的方法和装置
WO2024104118A1 (zh) 一种通信方法及装置
WO2023125259A1 (zh) 一种网络功能创建方法及通信装置
WO2022000496A1 (zh) 一种通信方法及装置
WO2022170798A1 (zh) 确定策略的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882970

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882970

Country of ref document: EP

Effective date: 20240430