WO2023125994A1 - 一种基金会现场总线冗余方法和装置 - Google Patents
一种基金会现场总线冗余方法和装置 Download PDFInfo
- Publication number
- WO2023125994A1 WO2023125994A1 PCT/CN2022/144259 CN2022144259W WO2023125994A1 WO 2023125994 A1 WO2023125994 A1 WO 2023125994A1 CN 2022144259 W CN2022144259 W CN 2022144259W WO 2023125994 A1 WO2023125994 A1 WO 2023125994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus
- message
- foundation fieldbus
- interface modules
- network segment
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000001012 protector Effects 0.000 claims abstract description 26
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims abstract description 4
- 238000004891 communication Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0421—Multiprocessor system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24182—Redundancy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present application relates to the technical field of communication, in particular to a foundation field bus redundancy method and device.
- FF Fluorescence Fieldbus, Foundation Fieldbus
- IEC61158-2 physical layer standard. FF has been widely used abroad, and there are more and more application cases in the process industry in China in recent years. But the topology of the single bus is basically adopted.
- FF interface module FF is connected to the interface module of the DCS system to realize the conversion of FF protocol and DCS internal protocol;
- FF power regulator To complete the power supply for multiple FF instruments on the network segment, it needs to be undertaken by a special FF distributor, and each bus needs to be equipped with a FF power regulator (redundant configuration);
- FF junction box all FF bus branches are connected to the main line in the junction box, and the junction box is equipped with a built-in branch protector (also called a wiring module or a network segment protector) or a FF bus safety barrier, and the main line It is connected to the FF power regulator on the side of the system cabinet, and the instrument is connected to the bus branch (one instrument is connected to one branch);
- a built-in branch protector also called a wiring module or a network segment protector
- FF bus cable Generally, type A cable is used, and the main cable and branch cable use the same type.
- the single-bus mode may cause part or even the entire FF network to be paralyzed when the FF interface module, FF network components are damaged (FF power regulator, FF segment protector/FF bus safety barrier), the bus is disturbed, or the FF cable is damaged/poor wiring. This greatly limits the popularization and application of FF fieldbus.
- the bus redundancy topology of prior art is as shown in Figure 2, and its bus topology is a ring network topology, and AFD is a bus junction box.
- the program AFD requires an intelligent device, which can detect the fault conditions of two ring network ports: 1. When a ring network port fails, its internal terminal resistor is enabled to ensure that the ring network becomes a physically independent bus and can be used normally; 2. When both ring network ports are faultless, its internal terminal resistor is not enabled to ensure Only the two terminal resistors on the PAlink are enabled in the entire ring network.
- the Siemens solution is a typical ring network structure.
- the disadvantage of this structure is that only one fault point is allowed. If there are two fault points in the ring network, some instruments or even the entire bus instrument will be lost.
- This application mainly solves the problem of lack of FF bus redundancy topology in the prior art, and provides a foundation field bus redundancy method and device.
- a foundation field bus redundancy method comprising the following steps: each FF interface module generates and modulates the message for the first time and sends it to the FF redundant bus Above; the Y-type FF network segment protector receives all the messages, selects one of the messages to decode according to the negotiation mechanism, and then performs secondary modulation, and sends the secondary modulated message to the downstream instrument.
- Each FF redundant bus runs independently and is wired separately to improve the reliability of FF communication. When one FF bus has multiple failure points, the other bus is completely unaffected. It can ensure the normal communication of FF as a whole.
- the downstream instrument performs signal feedback after receiving the message;
- the Y-type FF network segment protector is equipped with the same number of CPUs as the FF interface modules, and each CPU receives the signal fed back by the downstream instrument; after the CPU analyzes the feedback signal, all Send the analysis signal to the FF redundant bus; the FF interface module receives the analysis signal transmitted by the FF redundant bus.
- the FF redundant bus is provided with the same number of buses as the number of FF interface modules.
- the FF interface module selects an analysis signal transmitted by one of the buses according to a decision-making mechanism.
- the negotiation mechanism is: setting a priority stack and a secondary stack, the selection right of the priority stack is higher than that of the secondary stack, and within the same stack, message selection is performed according to the first-in-first-out principle.
- the decision-making mechanism is: selecting the analysis signal according to a first-come, first-served rule.
- the application also provides a foundation fieldbus redundancy device, including: a plurality of FF interface modules used to generate and modulate messages for the first time; a FF redundant bus connected to the FF interface modules and carrying out message transmission; and FF A Y-type FF network segment protector for redundant bus connection and secondary message modulation; and a downstream instrument for receiving messages and performing signal feedback.
- a foundation fieldbus redundancy device including: a plurality of FF interface modules used to generate and modulate messages for the first time; a FF redundant bus connected to the FF interface modules and carrying out message transmission; and FF A Y-type FF network segment protector for redundant bus connection and secondary message modulation; and a downstream instrument for receiving messages and performing signal feedback.
- the Y-type FF network segment protector is provided with the same number of CPUs as FF interface modules.
- the FF redundant bus is provided with the same number of buses as the number of FF interface modules.
- each FF redundant bus runs independently, separates the wiring, and improves the reliability of FF communication.
- the other bus is not affected at all, which can ensure the normal communication of the overall FF.
- FIG. 1 is a schematic diagram of bus redundancy in the present application.
- Fig. 2 is a schematic diagram of Siemens PA bus ring network redundancy in the prior art.
- a foundation field bus redundancy device including a plurality of FF interface modules used to generate and carry out initial modulation messages; FF redundant bus connected with FF interface modules and carrying out message transmission; connected with FF redundant bus and Y-type FF network segment protector for secondary message modulation and downstream instruments for receiving messages and performing signal feedback.
- Y-type FF network segment protector is equipped with the same number of CPUs as FF interface modules, and FF redundant bus The same bus as the number of FF interface modules is provided; the FF interface modules of the present application can be configured redundantly, or can be configured as a single module; the application uses two FF interface modules of redundant configuration as an example to illustrate the embodiment, as shown in Figure 1 As shown, it includes the first FF interface module 1, the second FF interface module 2, bus A12, bus B11, power regulator, base 20, Y-type FF network segment protector and downstream instrument 19, the first FF interface module, The second FF interface module and the Y-type FF network segment protector are respectively connected to bus A and bus B, the power regulator is installed in the base, the first FF interface module and the second FF interface module are installed on the base, and the power adjustment The converter supplies power to devices connected to bus A and bus B.
- the power regulator includes a power distribution modulation module 9 and a terminal 10, the terminal is used to adjust and display the power supply situation, and the power distribution modulation module is connected to the terminal and bus A or bus B respectively.
- Both the first FF interface module and the second FF interface module include a processing chip 3, a MAC chip 4, a first receiving module 5, a first sending module 6, a second sending module 7 and a power distribution module 8, and the power distribution module is used to provide Power supply voltage, the processing chip is used to generate messages, the MAC chip is connected to the processing chip, and is used to modulate messages, the modulated messages are transmitted to bus B through the first sending module, and the modulated messages are transmitted through the second sending module To the bus A, the feedback signals on the bus A and the bus B are transmitted to the MAC chip through the first receiving module, modulated by the MAC chip and then transmitted to the processing chip.
- the Y-type FF network segment protector is installed in the junction box, powered by bus A and bus B, and can be extended and cascaded.
- the Y-type FF network segment protector includes the first CPU15, the second CPU16 and the first CPU and the second CPU16 respectively.
- the first CPU and the second CPU send feedback signals to bus A or bus B through the third sending module, the first CPU and the second CPU receive the feedback signal from the downstream instrument through the third receiving module, and the first CPU and the second CPU pass the 4.
- the sending module sends the message to the downstream instrument.
- the present application also provides a foundation fieldbus redundancy method, comprising the following steps:
- Each FF interface module generates and modulates the message for the first time and sends it to the FF redundant bus;
- the Y-type FF network segment protector receives all the messages and selects one of the messages according to the negotiation mechanism to decode and perform secondary modulation, and sends the secondary modulated message to the downstream instrument;
- the downstream instrument performs signal feedback after receiving the message
- the Y-type FF network segment protector is equipped with the same number of CPUs as the number of FF interface modules, and each CPU receives the signal fed back by the downstream instrument;
- the CPU After the CPU parses the feedback signal, it sends the parsed signal to the FF redundant bus;
- the FF interface module receives the analysis signal transmitted by the FF redundant bus
- the FF interface module selects the analysis signal transmitted by one of the buses according to the decision-making mechanism
- the negotiation mechanism is: set the priority stack and the secondary stack.
- the priority stack has a higher option than the secondary stack.
- the message selection is based on the first-in-first-out principle;
- the decision-making mechanism is: select the analysis signal according to the first-come-first-served rule.
- the processing chip When the FF interface module sends message data, the processing chip generates and sends a message to the MAC chip, and the MAC chip modulates two packets of the same message data packet, and sends them to bus A and bus B at the same time.
- the two CPUs of the Y-type FF network segment protector both receive the message data packet sent by the FF interface module, and the two CPUs negotiate to decide which CPU will re-modulate the message data packet and send it to the downstream instrument.
- the negotiation mechanism is: put the first CPU and the second CPU into the priority stack, the first CPU is on the top, and the second CPU is on the bottom, then the message data packet is decoded and modulated by the first CPU and sent to the downstream instrument After a CPU has a decoding error, the first CPU is put into the secondary stack.
- the second message data packet arrives, because the second CPU is still in the priority stack, it is decoded and modulated by the second CPU and then sent to the For downstream instruments, when the second CPU also has a decoding error, the second CPU is put into the secondary stack, and since the first CPU enters first, the first CPU will decode and modulate first next time, and at this time, the priority stack If there is no CPU, the priority stack will be placed one level lower, and its priority will be lowered to the back of the secondary stack, and so on.
- the downstream instrument After receiving the message data packet, the downstream instrument feeds back the corresponding message B according to the protocol.
- the two CPUs of the Y-type FF network segment protector analyze the message B at the same time, and send it to bus A and bus B at the same time.
- the processing chip decides to use the message B of bus A or bus B through a decision-making mechanism. If the message B of bus A is normal and the message is normal, use the message B transmitted by bus A. If the message B transmitted by bus B arrives first and is normal, then use the message B transmitted by bus B. If the message B of bus A is abnormal, the message B of bus B is used.
- the failure on the redundant bus is divided into: 1) single FF interface module level failure; 2) FF interface module single sending/receiving circuit failure; 2) single FF bus failure; 3) Single FF power regulator failure; 4) Y-type FF section protector trunk failure; 2 or more fault points appear on the above unilateral FF bus, which does not affect the normal operation of the bus; Y-type FF section protector can be corrected by MCU FF signal and control the signal flow direction, can filter the interference of the trunk, ensure the integrity of the branch signal, and greatly improve the anti-interference of the bus.
- the FF redundant bus set up in this application operates independently, and the two buses are wired separately to improve the reliability of FF communication; when one FF bus has multiple failure points, the other bus is completely unaffected, which can ensure the overall FF communication is normal;
- the FF interface module can transform the existing 2-segment module into a single-segment redundant module, and only needs to upgrade the embedded firmware to reduce development costs.
- each FF interface module is used to generate and modulate the message for the first time and send it to the FF redundant bus;
- Y-type FF network segment protector Receive all the messages and select one of the messages to decode according to the negotiation mechanism, then perform secondary modulation, and send the secondary modulated message to the downstream instrument.
- Set multiple FF interface modules and multiple FF redundant buses, each FF redundant bus runs independently and is wired separately. The reliability of FF communication has been improved. When one FF bus has multiple failure points, the other bus will not be affected at all, which can ensure the normal technical effect of overall FF communication.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Small-Scale Networks (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
一种基金会现场总线冗余方法和装置,包括用于产生并进行初次调制报文的多个FF接口模块(1, 2);与FF接口模块(1, 2)连接并进行报文传输的FF冗余总线A、B(11, 12);与FF冗余总线A、B(11, 12)连接并进行二次报文调制的Y型FF网段保护器;以及用于接收报文并进行信号反馈的下游仪表(19);每个FF接口模块(1, 2)产生并初次调制报文后均发送至FF冗余总线A、B(11, 12)上;Y型FF网段保护器接收全部的报文并根据协商机制选择其中一个报文进行解码后进行二次调制,将二次调制后的报文发送给下游仪表(19)。
Description
本申请涉及通信技术领域,尤其涉及一种基金会现场总线冗余方法和装置。
FF(Foundation Fieldbus,基金会现场总线)使用IEC61158-2物理层标准,FF在国外有着广泛的应用,在国内近几年在流程工业的应用案例也越来越多。但基本采用单总线的拓扑方式。
常规FF的应用场合,具有以下部件构成:
1)FF接口模块:FF接入DCS系统的接口模块,实现FF协议与DCS内部协议的转化;
2)FF电源调整器:完成对网段上多台FF仪表供电,需由专门的FF配电器承担,每条总线需配一个FF电源调整器(可冗余配置);
3)FF接线箱:所有FF总线分支与主干线的连接都在接线箱中完成,接线箱中配置内置的分支保护器(也称接线模块或网段保护器)或者FF总线安全栅,主干线与系统机柜侧的FF电源调整器相连,仪表与总线分支相连(一个仪表接一个分支);
4)FF总线电缆:一般采用A类电缆,主干电缆与分支电缆使用同一种型号。
单总线方式在FF接口模块、FF网络部件损坏(FF电源调整器、FF段保护器/FF总线安全栅)、总线被干扰或FF电缆损坏/接线不良时可能会导致部分甚至整个FF网络瘫痪,这大大限制了FF现场总线的推广应用。
现有技术的总线冗余拓扑如图2所示,其总线拓扑为环网拓扑,AFD为总线接线箱,该方案AFD要求为一个智能设备,能够检测两个环网端口的故障情况:1、当一个环网端口故障时,其内部的终端电阻启用,确保环网变成物理独立的总线能够正常使用;2、当两个环网端口都无故障时,其内部的终端电阻不启用,保证整个环网只有PAlink上两个终端电阻启用。
西门子方案为典型的环网结构,该结构缺点为只能允许有一个故障点,如果环网中出现两个故障点,将导致部分仪表甚至整条总线仪表丢失。
发明内容
本申请主要解决现有的技术中缺少FF总线冗余拓扑的问题,提供一种基金会现场总线冗余方法和装置。
本申请的上述技术问题主要是通过下述技术方案得以解决的:一种基金会现场总线冗余方法,包括以下步骤:每个FF接口模块产生并初次调制报文后均发送至FF冗余总线上;Y型FF网段保护器接收全部的报文并根据协商机制选择其中一个报文进行解码后进行二次调制,将二次调制后的报文发送给下游仪表。设置多个FF接口模块和多条FF冗余总线,每条FF冗余总线独立运行,分开布线,提高FF通讯的可靠性,当FF一条总线有多个故障点时,另一总线完全不受影响,能够保证整体FF通讯正常。
可选地,下游仪表收到报文后进行信号反馈;Y型FF网段保护器设置有与FF接口模块数量相同的CPU,每个CPU均接收下游仪表反馈的信号;CPU解析反馈信号后均将解析信号发送到FF冗余总线;FF接口模块接收FF冗余总线传递的解析信号。
可选地,所述的FF冗余总线设置有与FF接口模块数量相同的总线。
可选地,所述的FF接口模块根据决策机制选取其中一个总线传递的解析信号。
可选地,所述的协商机制为:设置优先堆栈和次级堆栈,优先堆栈的选择权高于次级堆栈的选择权,对于同一堆栈内,根据先入先出的原则进行报文选择。
可选地,所述的决策机制为:根据先来后到的规则进行解析信号的选取。
本申请还提供一种基金会现场总线冗余装置,包括:用于产生并进行初次调制报文的多个FF接口模块;与FF接口模块连接并进行报文传输的FF冗余总线;与FF冗余总线连接并进行二次报文调制的Y型FF网段保护器;以及用于接收报文并进行信号反馈的下游仪表。
可选地,所述的Y型FF网段保护器设置有与FF接口模块数量相同的CPU。
可选地,所述的FF冗余总线设置有与FF接口模块数量相同的总线。
本申请的有益效果是:通过设置多个FF接口模块和多条FF冗余总线,每条FF冗余总线独立运行,分开布线,提高FF通讯的可靠性,当FF一条总线有多个故障点时,另一总线完全不受影响,能够保证整体FF通讯正常。
图1是本申请的一种总线冗余示意图。
图2是现有技术中的西门子PA总线环网冗余示意图。
图中1、第一FF接口模块,2、第二FF接口模块,3、处理芯片,4、MAC芯片,5、第一接收模块,6、第一发送模块,7、第二发送模块,8、配电模块,9、配电调制模块,10、终端,11、总线B,12、总线A,13、第二接收模块,14、第三发送模块,15、第一CPU,16、第二CPU,17、第三接收模块,18、第四发送模块,19、下游仪表,20、基座。
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本申请的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定。这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“固持”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包含”、“包括”表明存在所述的特征、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。应当进一步理解,此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味 着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
为了使本申请的目的、技术方案及优点更加清楚明白,通过下述实施例并结合附图,对本申请实施例中的技术方案的进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定发明。
一种基金会现场总线冗余装置,包括用于产生并进行初次调制报文的多个FF接口模块;与FF接口模块连接并进行报文传输的FF冗余总线;与FF冗余总线连接并进行二次报文调制的Y型FF网段保护器以及用于接收报文并进行信号反馈的下游仪表,Y型FF网段保护器设置有与FF接口模块数量相同的CPU,FF冗余总线设置有与FF接口模块数量相同的总线;本申请的FF接口模块可以冗余配置,也可以单模块配置;本申请以冗余配置的两个FF接口模块为例进行实施例说明,如图1所示,包括第一FF接口模块1、第二FF接口模块2、总线A12、总线B11、电源调整器、基座20、Y型FF网段保护器和下游仪表19,第一FF接口模块、第二FF接口模块、Y型FF网段保护器分别与总线A和总线B连接,电源调整器安装在基座内,第一FF接口模块和第二FF接口模块安装在基座上,电源调整器为连接在总线A和总线B上的设备供电。
其中,电源调整器包括配电调制模块9和终端10,终端用于调节和显示供电情况,配电调制模块分别与终端和总线A或总线B连接。
第一FF接口模块和第二FF接口模块均包括处理芯片3、MAC芯片4、第一接收模块5、第一发送模块6、第二发送模块7和配电模块8,配电模块用于提供供电电压,处理芯片用于产生报文,MAC芯片与处理芯片连接,用于调制报文,调制后的报文通过第一发送模块传递到总线B,调制后的报文通过第二发送模块传递到总线A,总线A以及总线B上的反馈信号通过第一接收模块传递到MAC芯片,经MAC芯片调制后传递给处理芯片。
Y型FF网段保护器安装在接线箱内,通过总线A和总线B供电,可进行扩展级联,Y型FF网段保护器包括第一CPU15、第二CPU16以及分别与第一CPU和第二CPU连接的第二接收模块13、第三接收模块17、第三发送模块14和第四发送模块18,第一CPU和第二CPU通过第二接收模块接收总线A或总线B的报文,第一CPU和第二CPU通过第三发送模块向总线A或总线B发送反馈信号,第一CPU和第二CPU通过第三接收模块接收下游仪表的反馈信号,第一CPU和第二CPU通过第四发送模块发送报文给下游仪表。
本申请还提供一种基金会现场总线冗余方法,包括以下步骤:
每个FF接口模块产生并初次调制报文后均发送至FF冗余总线上;
Y型FF网段保护器接收全部的报文并根据协商机制选择其中一个报文进行解码后进行二次调制,将二次调制后的报文发送给下游仪表;
下游仪表收到报文后进行信号反馈;
Y型FF网段保护器设置有与FF接口模块数量相同的CPU,每个CPU均接收下游仪表反馈的信号;
CPU解析反馈信号后均将解析信号发送到FF冗余总线;
FF接口模块接收FF冗余总线传递的解析信号;
FF接口模块根据决策机制选取其中一个总线传递的解析信号;
协商机制为:设置优先堆栈和次级堆栈,优先堆栈的选择权高于次级堆栈的选择权,对于同一堆栈内,根据先入先出的原则进行报文选择;
决策机制为:根据先来后到的规则进行解析信号的选取。
下面结合两个FF接口模块进行本申请的总线冗余方法详细举例:
FF接口模块发送报文数据时,处理芯片产生发送报文给MAC芯片,MAC芯片调制出两包相同的报文数据包,同时发送至总线A个总线B。
Y型FF网段保护器的两个CPU均接收到FF接口模块发送的报文数据包,由两个CPU协商决定由哪个CPU将报文数据包重新调制后发送给下游仪表。
协商机制为:将第一CPU和第二CPU放入优先堆栈中,第一CPU在上,第二CPU在下,则本次报文数据包由第一CPU解码调制后发送给下游仪表,当第一CPU出现解码错误后,将第一CPU放入次级堆栈,当第二次报文数据包到来时,由于第二CPU仍处于优先堆栈中,因此,由第二CPU进行解码调制后发送给下游仪表,当第二CPU也存在解码错误后,将第二CPU放入次级堆栈,而由于第一CPU先进入,因此,下次由第一CPU优先解码调制,而此时,优先堆栈中没有CPU了,则将优先堆栈进行更次一级放置,将其优先级降为次级堆栈后面,以此往复。
下游仪表收到报文数据包后根据协议反馈相应的报文B,Y型FF网段保护器的两个CPU同时解析报文B,并同时朝总线A和总线B上发送。
第一FF接口模块和第二FF接口模块接收到总线A和总线B的报文之后,由处理芯片通过决策机制决定使用总线A或总线B的报文B,其决策机制为:当最先到达的为总线A的报文B且报文正常,则使用总线A传递的报文B,若总线B传递的报 文B先到达且正常,则使用总线B传递的报文B,若先到达的总线A的报文B异常,则使用总线B的报文B。
基于本申请的总线冗余装置的设置,冗余总线上的故障分为:1)单FF接口模块级故障;2)FF接口模块单个发送/接收电路故障;2)单条FF总线故障;3)单个FF电源调整器故障;4)Y型FF段保护器主干一路故障;以上单侧FF总线上出现2个甚至多个故障点,不影响总线正常运行;Y型FF段保护器可通过MCU修正FF信号并控制信号流向,可将主干的干扰过滤,确保分支信号的完整,大大提高总线抗干扰性。
本申请设置的FF冗余总线独立运行,两条总线分开布线,提高FF通讯的可靠性;当FF一条总线有多个故障点时,另一总线完全不受影响,能够保证整体FF通讯正常;FF接口模块可将现有2网段模块改造为单网段冗余模块,只需升级嵌入式固化程序,降低开发成本。
以上所述的实施例只是本申请的一种较佳的方案,并非对本申请作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。
本申请实施例提供的方案可应用于通信技术领域,在本申请实施例中,采用每个FF接口模块产生并初次调制报文后均发送至FF冗余总线上;Y型FF网段保护器接收全部的报文并根据协商机制选择其中一个报文进行解码后进行二次调制,将二次调制后的报文发送给下游仪表。设置多个FF接口模块和多条FF冗余总线,每条FF冗余总线独立运行,分开布线。取得了提高FF通讯的可靠性,当FF一条总线有多个故障点时,另一总线完全不受影响,能够保证整体FF通讯正常的技术效果。
Claims (9)
- 一种基金会现场总线冗余方法,包括:每个FF接口模块产生并初次调制报文后均发送至FF冗余总线上;Y型FF网段保护器接收全部的报文并根据协商机制选择其中一个报文进行解码后进行二次调制,将二次调制后的报文发送给下游仪表。
- 根据权利要求1所述的基金会现场总线冗余方法,其中,下游仪表收到报文后进行信号反馈;Y型FF网段保护器设置有与FF接口模块数量相同的CPU,每个CPU均接收下游仪表反馈的信号;CPU解析反馈信号后均将解析信号发送到FF冗余总线;FF接口模块接收FF冗余总线传递的解析信号。
- 根据权利要求2所述的基金会现场总线冗余方法,其中,所述FF冗余总线设置有与FF接口模块数量相同的总线。
- 根据权利要求3所述的基金会现场总线冗余方法,其中,所述FF接口模块根据决策机制选取其中一个总线传递的解析信号。
- 根据权利要求1至3中任意一项所述的基金会现场总线冗余方法,其中,所述协商机制为:设置优先堆栈和次级堆栈,所述优先堆栈的选择权高于所述次级堆栈的选择权,对于同一堆栈内,根据先入先出的原则进行报文选择。
- 根据权利要求4所述的基金会现场总线冗余方法,其中,所述决策机制为:根据先来后到的规则进行解析信号的选取。
- 一种基金会现场总线冗余装置,包括:用于产生并进行初次调制报文的多个FF接口模块;与FF接口模块连接并进行报文传输的FF冗余总线;与FF冗余总线连接并进行二次报文调制的Y型FF网段保护器;以及用于接收报文并进行信号反馈的下游仪表。
- 根据权利要求7所述的基金会现场总线冗余装置,其中,所述Y型FF网段保护器设置有与FF接口模块数量相同的CPU。
- 根据权利要求7所述的基金会现场总线冗余装置,其中,所述FF冗余总线设置有与FF接口模块数量相同的总线。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111669827.8A CN114563962A (zh) | 2021-12-31 | 2021-12-31 | 一种基金会现场总线冗余方法和装置 |
CN202111669827.8 | 2021-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023125994A1 true WO2023125994A1 (zh) | 2023-07-06 |
Family
ID=81712726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/144259 WO2023125994A1 (zh) | 2021-12-31 | 2022-12-30 | 一种基金会现场总线冗余方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114563962A (zh) |
WO (1) | WO2023125994A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114563962A (zh) * | 2021-12-31 | 2022-05-31 | 浙江中控技术股份有限公司 | 一种基金会现场总线冗余方法和装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201620868U (zh) * | 2010-03-26 | 2010-11-03 | 中国石油天然气集团公司 | 利用ff现场总线实现控压钻井的装置 |
CN204790516U (zh) * | 2015-06-11 | 2015-11-18 | 神华集团有限责任公司 | 火电厂现场总线系统 |
CN107612800A (zh) * | 2017-09-14 | 2018-01-19 | 北京鼎实创新科技股份有限公司 | 一种连接profibus冗余网络与单总线网络的y型转换设备的实现方法及控制装置 |
US20190171609A1 (en) * | 2017-12-05 | 2019-06-06 | Qualcomm Incorporated | Non-destructive outside device alerts for multi-lane i3c |
US20200334173A1 (en) * | 2019-04-18 | 2020-10-22 | Emerson Process Management Power & Water Solutions, Inc. | Implementing and configuring a universal i/o card for a process control i/o network |
CN114563962A (zh) * | 2021-12-31 | 2022-05-31 | 浙江中控技术股份有限公司 | 一种基金会现场总线冗余方法和装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2640136Y (zh) * | 2003-09-11 | 2004-09-08 | 北京华控技术有限责任公司 | 连接高速以太网与ff _h1总线的现场总线网络互联单元 |
CN102291286A (zh) * | 2010-06-18 | 2011-12-21 | 北京华控技术有限责任公司 | 一种基金会现场总线网关 |
US8769072B2 (en) * | 2011-05-31 | 2014-07-01 | General Electric Company | Systems and methods for identifying foundation fieldbus linking devices |
DE102012101957B3 (de) * | 2012-03-08 | 2013-05-29 | Softing Ag | Busteilnehmer-Einrichtung zum Anschluss an einen linienredundanten, seriellen Datenbus und Verfahren zur Steuerung der Kommunikation eines Busteilnehmers mit einem linienredundanten, seriellen Datenbus |
-
2021
- 2021-12-31 CN CN202111669827.8A patent/CN114563962A/zh active Pending
-
2022
- 2022-12-30 WO PCT/CN2022/144259 patent/WO2023125994A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201620868U (zh) * | 2010-03-26 | 2010-11-03 | 中国石油天然气集团公司 | 利用ff现场总线实现控压钻井的装置 |
CN204790516U (zh) * | 2015-06-11 | 2015-11-18 | 神华集团有限责任公司 | 火电厂现场总线系统 |
CN107612800A (zh) * | 2017-09-14 | 2018-01-19 | 北京鼎实创新科技股份有限公司 | 一种连接profibus冗余网络与单总线网络的y型转换设备的实现方法及控制装置 |
US20190171609A1 (en) * | 2017-12-05 | 2019-06-06 | Qualcomm Incorporated | Non-destructive outside device alerts for multi-lane i3c |
US20200334173A1 (en) * | 2019-04-18 | 2020-10-22 | Emerson Process Management Power & Water Solutions, Inc. | Implementing and configuring a universal i/o card for a process control i/o network |
CN114563962A (zh) * | 2021-12-31 | 2022-05-31 | 浙江中控技术股份有限公司 | 一种基金会现场总线冗余方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114563962A (zh) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11444791B2 (en) | Transmission of pulse power and data in a communications network | |
EP4351093A1 (en) | Transmission of pulse power and data over a wire pair | |
ES2657850T3 (es) | Transmisión de energía a través de un dispositivo alimentado | |
TWI388153B (zh) | 網路設備 | |
US7917675B2 (en) | Method and apparatus for interconnecting modules | |
US8693497B2 (en) | Long-reach ethernet system and relay | |
JP2017038364A (ja) | 電力線通信及びパワー・オーバー・イーサネット用カプラ | |
WO2023125994A1 (zh) | 一种基金会现场总线冗余方法和装置 | |
US9306755B2 (en) | Data transmission device | |
WO2011123314A1 (en) | Method and apparatus for distributing power over communication cabling | |
US9014248B2 (en) | BASE-T common mode testing in an Ethernet subsystem | |
JP2000106562A (ja) | 産業環境に適合したコンピュ―タ・ネットワ―ク | |
CN113852529B (zh) | 轨旁设备数据通信用背板总线系统及其数据传输方法 | |
US9294604B1 (en) | Serial wrap-around redundancy system | |
WO2013086720A1 (zh) | 供电方法、均流模块和供电系统 | |
CN111262888A (zh) | 一种列车连网控制的系统 | |
CN102123070A (zh) | 一种实现主从框级联保护及负荷分担的系统 | |
WO2014067470A1 (en) | Port mode synchronization between switches | |
US20180069713A1 (en) | Dual power over ethernet redundancy | |
CN113194048B (zh) | 一种动态切换cpu与gpu拓扑的装置及使用方法 | |
KR20030066498A (ko) | 네트워크 카메라 시스템의 전원 공급 방법 및 장치 | |
AU2014202838A1 (en) | Integrated network communications device | |
CN109167615A (zh) | 一种基于g3-plc通信网络的上下行分时通信的方法 | |
CN111385172A (zh) | 一种基于总线的控制系统、控制方法及存储介质 | |
CN212785425U (zh) | 一种以太网通信系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22915241 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |