WO2023125853A1 - 一种冷源系统多设备运行的热力学模型计算方法和设备 - Google Patents

一种冷源系统多设备运行的热力学模型计算方法和设备 Download PDF

Info

Publication number
WO2023125853A1
WO2023125853A1 PCT/CN2022/143589 CN2022143589W WO2023125853A1 WO 2023125853 A1 WO2023125853 A1 WO 2023125853A1 CN 2022143589 W CN2022143589 W CN 2022143589W WO 2023125853 A1 WO2023125853 A1 WO 2023125853A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature
cooling
outlet
chiller
Prior art date
Application number
PCT/CN2022/143589
Other languages
English (en)
French (fr)
Inventor
刘雪峰
黄彬
毕梦波
曾德强
彭志波
Original Assignee
华南理工大学
广东威垦阿尔法创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广东威垦阿尔法创新科技有限公司 filed Critical 华南理工大学
Publication of WO2023125853A1 publication Critical patent/WO2023125853A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the present application relates to the technical field of air conditioning system control, and in particular to a thermodynamic model calculation method and equipment for multi-device operation of a cold source system.
  • the rapid diagnosis analysis and optimization of the air conditioning system need to be established on the basis of a perfect thermodynamic model.
  • the operating conditions under the design conditions are the best.
  • the operation of the air conditioning system deviates from the optimal working condition.
  • the cooling load and humidity load are not the same.
  • the influence of atmospheric temperature, humidity, and wind speed will be transmitted to the inside of the air conditioning system through the cooling tower. All factors will lead to changes in the operating conditions of the air conditioning system.
  • the air-conditioning system often operates under relatively stable working conditions in reality, so the actual operation data of the air-conditioning obtained will be limited to a small number of working conditions. Some data points may be missing in the original data due to measurement failures such as sensors. Not only that, there is a complex correspondence between the causes and phenomena that lead to the decline in energy efficiency of air conditioning systems.
  • thermodynamic models of air-conditioning systems are mostly analyzed with actual data, which is easily limited by the sparsity of actual data.
  • the running memory of commercial simulation software is too large, and the threshold for using the software is relatively high.
  • the influence of group control among chillers, cooling towers, and water pumps has not been taken into account, and the calculation rate of the thermodynamic model is low, so it is difficult to calculate a sufficient amount of data in a short time for rapid diagnosis and analysis of the air conditioning system use.
  • thermodynamic model calculation method and equipment for the multi-equipment operation of the cold source system, which is used to solve the problem that the influence of group control among chillers, cooling towers and water pumps is not considered in the existing ones, and the calculation rate of the thermodynamic model is low and difficult Calculate a sufficient amount of data in a short period of time for the technical problems used in the rapid diagnosis and analysis of the air conditioning system.
  • the first aspect of the present application provides a method for calculating a thermodynamic model of multi-equipment operation of a cold source system.
  • the thermodynamic model includes a thermal model of a water chiller, a thermal model of a cooling tower, and a thermal model of a water pump.
  • the calculation method includes:
  • step S3 Calculate the first difference between the pressure difference of the third water inlet and outlet, the first water inlet and outlet, the second water inlet and outlet, and the first resistance fitting, and determine the Whether the first difference is less than the first preset threshold; if so, enter step S4, otherwise return to step S1;
  • This application is not limited to the analysis of a single device, but expands the analysis object to the entire cold source system, taking group control among devices into consideration, that is, building a thermodynamic model of the cold source system based on chillers, cooling towers and water pumps. , There is a close relationship between the cooling tower and the water pump, and they are coupled and influenced each other to achieve hydraulic balance and thermal balance.
  • This application separates the hydraulic calculation of the model from the thermal calculation, and first calculates the hydraulic of the chiller, cooling tower and water pump. parameters, and then calculate the thermal parameters of chillers, cooling towers, and water pumps.
  • the calculation rate is relatively fast, which is conducive to saving iterative calculation time and laying the foundation for rapid diagnosis of the system. Influenced by the group control between groups, and the calculation rate of the thermodynamic model is low, it is difficult to calculate a sufficient amount of data in a short period of time for the technical problems of the air-conditioning system for rapid diagnosis and analysis.
  • the hydraulic calculation of the chiller to obtain the first inlet and outlet water header pressure difference of the cooling water of the chiller includes: calculating the first pipeline total resistance coefficient according to the preset pressure drop and preset flow rate of the chiller; According to the total resistance coefficient of the first pipeline, the flow velocity ratio and the branch flow ratio among multiple chillers are calculated; the flow rate of each branch is obtained through the branch flow ratio and the preset total flow, so as to calculate the cooling water of the chillers The pressure difference between the first inlet and outlet water mains.
  • the thermal calculation of the chiller unit to obtain the cooling water outlet temperature of the chiller unit includes: S41, obtaining the chilled water flow rate, the chilled water inlet temperature, and the chilled water outlet temperature, and according to the chilled water flow rate, the freezing
  • the cooling capacity is obtained by calculating the water inlet temperature and the chilled water outlet temperature; S42, according to the cooling capacity, the chilled water inlet temperature, the chilled water outlet temperature, and a preset condensation thermometer
  • the hydraulic calculation of the cooling water pump to obtain the pressure difference of the third inlet and outlet water main pipes of the cooling water pump includes: S11, obtaining the total water flow of several water pumps; S12, preset the pressure difference between the inlet and outlet water pipes of the water pumps, and calculating The branch water flow of the branch where the water pump is located; S13. Determine whether the difference between the total branch water flow and the total water flow of the water pump is less than the fourth preset threshold; The pressure difference between the inlet and outlet water main pipes, if not, return to step S12.
  • the thermal model of the cooling tower is a thermal model of a counterflow cooling tower that can ignore the influence of backflow, a thermal model of a counterflow cooling tower that considers the influence of backflow, a thermal model of a crossflow cooling tower that can ignore the influence of backflow, or a thermal model that considers the influence of backflow Any one of the thermal models of cross-flow cooling towers.
  • the second aspect of the present application provides a thermodynamic model calculation device for multi-device operation of a cold source system
  • the device includes a processor and a memory: the memory is used to store program codes, and transmit the program codes to the processing The processor; the processor is configured to execute the thermodynamic model calculation method for multi-equipment operation of the cold source system described in the first aspect according to the instructions in the program code.
  • Fig. 1 is the structural representation of a kind of cold source system provided by the present invention
  • Fig. 2 is a schematic diagram of the connection relationship of each thermal model of the cold source system provided by the present invention
  • Fig. 3 is a schematic flow chart of a thermodynamic model calculation method for multi-equipment operation of a cold source system provided by the present invention
  • Fig. 4 is a schematic flow chart of part of the hydraulic calculation of the chiller provided by the present invention.
  • Fig. 5 is a partial schematic flow chart of the thermal calculation of the chiller provided by the present invention.
  • Fig. 6 is a partial schematic flow chart of the hydraulic calculation of the water pump provided by the present invention.
  • Fig. 7 is the schematic diagram of microelement division of the counterflow cooling tower provided by the present invention.
  • Fig. 8 is the flow chart of the thermodynamic model of the counter-flow cooling tower that the present invention provides
  • Fig. 9 is the flow chart of the thermal model of the counterflow cooling tower considering the impact of backflow provided by the present invention.
  • Fig. 10 is the schematic diagram of microelement division of the cross-flow cooling tower provided by the present invention.
  • Fig. 11 is the flow chart of the thermal model of the cross-flow cooling tower that can ignore the impact of backflow provided by the present invention
  • Fig. 12 is the flow chart of the thermal model of the cross-flow cooling tower considering the impact of reflux provided by the present invention
  • FIG. 13 is a schematic diagram of an iterative process of the optimized step-size acceleration method provided by the present invention.
  • thermodynamic model calculation method for multi-equipment operation of the cold source system.
  • the thermodynamic model includes the thermal model of the chiller, the thermal model of the cooling tower and the thermal model of the water pump.
  • Figure 1 is the implementation The structural diagram of the cold source system provided in the example shows the actual application of each device when the cold source system is running.
  • Figure 2 is a schematic diagram of the connection relationship of each thermal model of the cold source system provided in this embodiment, showing the Thermodynamic models are based on chillers, cooling towers and pumps. Calculation methods include:
  • step S3. Calculate the first difference between the pressure difference of the third water inlet and outlet, the first water inlet and outlet, the second water inlet and outlet, and the pressure difference of the first resistance fitting, and determine whether the first difference is less than the first predetermined value. Set the threshold. If yes, go to step S4, otherwise return to step S1.
  • both the first preset threshold and the second preset threshold can be set to 0.01, and the total flow of chilled water depends on the user's demand and the setting of the differential pressure bypass valve. Therefore, for the cold source system, the total flow of chilled water It can be used as a known quantity and obtained directly to calculate the pressure difference of the inlet and outlet water main pipes of the chilled water of the chiller, the pressure difference of the inlet and outlet water pipes of the chilled water pump, and the pressure difference of the second resistance fitting of the main pipe of the chilled water loop to calculate the subsequent hydraulic parameters.
  • thermodynamic model of the cold source system in this embodiment separates the hydraulic calculation from the thermal calculation.
  • the existing conventional processing method is to calculate the hydraulic parameters and thermal parameters of the chilled water unit, and then calculate the hydraulic parameters and thermal parameters of the chilled water pump, and so on.
  • the calculation of the hydraulic parameters does not depend on the thermal parameters, but the calculation of the thermal parameters depends on the hydraulic parameters, so the hydraulic parameters can be calculated first, and then the thermal parameters can be calculated.
  • such a processing method is conducive to saving iterative calculation time and laying the foundation for rapid diagnosis of the system.
  • the hydraulic calculation is relatively simple, while the thermal calculation is more complicated and has more iterations.
  • iterating the total flow of chilled water and cooling water if the internal calculation of the thermal calculation of a single device is involved, it will lead to nested iterations, and the calculation time will increase exponentially. . Therefore, in this embodiment, the relatively complex iteration of chilled water and cooling water flow is combined with hydraulic calculation, and the relatively simple iteration of cooling water inlet temperature is combined with thermal calculation.
  • the chilled water pump and chiller are associated with the chilled water pipe network and terminal, and the differential pressure bypass valve is used as a flexible connection between the former and the latter to adjust the cooling capacity of the cold source side and the user side.
  • the deviation between the required cooling capacity; in the cooling water system, the cooling tower, the cooling water pump and the chiller are associated. The two are coupled to each other through chillers.
  • the equal relationship is established by the pressure difference of the water pump in the chilled water system, the pressure drop of the chiller, the pressure drop of the chilled water pipeline, and the pressure difference of the supply and return water main pipe of the chilled water pipe network, and the pressure difference of the water pump in the cooling water system, the pressure drop of the cooling tower, the cooling
  • the water line pressure drop establishes an equality relationship. Based on this, the distribution of water in each branch and the total flow of chilled water and cooling water can be calculated. After obtaining the water distribution of each branch and the total flow of chilled water and cooling water, the thermal calculation of the cold source system is still lacking the cooling water inlet temperature of the chiller.
  • the cooling water inlet temperature of the chiller is a variable coupled between the chiller and the cooling tower, and it needs to be assumed. Therefore, it is assumed that the chiller presets the cooling water inlet temperature to iterate until the cooling tower outlet temperature and the chiller preset Set the cooling water inlet temperature to be similar.
  • the hydraulic calculation of the chiller unit is performed to obtain the first inlet and outlet water header pressure difference of the chiller cooling water, including: calculating the total resistance coefficient of the first pipeline according to the preset pressure drop and preset flow rate of the chiller unit; Calculate the flow rate ratio and branch flow ratio between multiple chillers by calculating the total resistance coefficient of the pipeline; obtain the flow of each branch through the branch flow ratio and preset total flow, and calculate the pressure difference of the first inlet and outlet water main pipes of the cooling water of the chiller .
  • the thermal calculation of the chiller is performed to obtain the cooling water outlet temperature of the chiller, including:
  • Steps S42 to S45 are repeated until the difference between the preset evaporating temperature and the actual evaporating temperature, and the difference between the preset condensing temperature and the actual condensing temperature are both smaller than the third preset threshold, then output the cooling water outlet temperature of the chiller.
  • the third preset threshold may be set to 0.1.
  • the thermal model of the water chiller in this embodiment is shown in Figures 4 and 5.
  • the pressure difference between the beginning and the end of each branch is equal, Based on the principle that the sum of the branch flows of each branch is equal to the total flow, the total flow is distributed to each branch according to the along-path resistance and local resistance of the branch where each chiller is located.
  • the parallel piping pressure drop is negligible compared to the chiller pressure drop. Based on this, a thermodynamic model of parallel operation of multiple chillers is established.
  • the condensing temperature and evaporation temperature are used as variables for iteration, and based on the known geometric dimensions of the heat exchanger and compressor, the chilled water flow rate, chilled water inlet and outlet temperature, The cooling water flow rate and the cooling water inlet temperature are used as input variables.
  • the energy balance is analyzed for the evaporator side.
  • the actual power consumption of the compressor can be obtained from the total efficiency of the compressor and the power consumption of isentropic compression.
  • the hydraulic calculation of the cooling water pump is carried out to obtain the pressure difference of the third inlet and outlet water main pipes of the cooling water pump, including:
  • the fourth preset threshold can be 0.01, that is, the total branch water flow is approximately the same as the total water flow of the water pump.
  • it can be determined by Preset the pressure difference of the inlet and outlet water pipes of the pump (effective head), and combine the effective head-flow curve of each water pump to calculate the branch water flow of each water pump through the preset pressure difference of the water inlet and outlet water pipes of the pump. Add the branch water flow of each pump and iterate until it is equal to the total water flow of the pump. Output the result, and calculate the pump efficiency according to the branch flow combined with the pump efficiency curve, and then calculate the inverter efficiency, motor efficiency and pump power consumption.
  • the pressure difference of the piping fittings in the water pump branch cannot be known.
  • the resistance coefficient of pipeline fittings can be known, the pressure difference is related to the quadratic power of the flow velocity, that is, it is related to the flow of the branch, and this flow is exactly the physical quantity we require. In this case, there is no need to iterate the flow, and we can convert the total head-flow curve into an effective head-flow curve. Since the total water flow is known. Combined with the known total resistance coefficient of the branch pipeline fittings, the pressure difference of the fittings is obtained, and the effective head-flow curve can be obtained by subtracting the pressure difference of the fittings from the total head corresponding to the flow rate.
  • the thermal model of the cooling tower is a counterflow cooling tower thermal model that can ignore the influence of reflux, a thermal model of a counterflow cooling tower that considers the influence of reflux, a thermal model of a cross-flow cooling tower that can ignore the influence of reflux, and a cross-flow cooling tower that considers the influence of reflux. Any one of the tower thermal models.
  • FIG. 7 shows the micro-element division of the counter-flow cooling tower.
  • the micro-element division method is to calculate each micro-element accordingly from bottom to top.
  • the temperature of the water entering the tower and the state of the air entering the tower are known, by assuming the temperature of the water leaving the tower and dividing n micro-elements, it is approximately considered that the cooling water temperature drop of each micro-element is the same, and the calculation of each The cooling numbers of the microelements are accumulated and iterated until the cooling number of the cooling tower is equal to its characteristic number.
  • the water temperature and air inlet status of the first micro-element of the cooling tower are known, and the air outlet state can be calculated, and the air outlet state can be used as the air inlet state of the next micro-element, and the calculation is carried out until the last micro-element Yuan.
  • Figure 9 shows that when the reflux of the cooling tower cannot be ignored, it is necessary to nest a layer of iterations of the reflux rate on the basis of Figure 8.
  • the state of the air entering the tower is no longer the state of the atmospheric environment. Therefore, the assumptions about the state of the air entering the cooling tower are mainly based on the dry bulb temperature and relative humidity. Afterwards, calculate with the calculation method that does not consider reflux. After obtaining the cooling tower outlet air temperature and the relative humidity of the tower air, combined with the ambient air state, the dry bulb temperature and relative humidity can be used to calculate the dry bulb temperature and moisture content. The calculated value of the reflux rate calculated by the volume calculation is compared with the known reflux rate, and iterated until the two calculated reflux rates are equal to the known reflux rate.
  • the micro-element division diagram of the cross-flow cooling tower is shown in Figure 10
  • the thermal model of the cross-flow cooling tower that can ignore the influence of backflow is shown in Figure 11.
  • nL in the L direction there are nL in the L direction, nW in the W direction, and nH in the H direction, totaling nL*nW*nH.
  • the division of micro-units in the L direction is taken into account: there is a difference in wind speed in the horizontal direction on the wind inlet surface.
  • the division of the micro-units in the W direction is to take into account: the state change of the air in the process of passing through the packing.
  • the division of microelements in the H direction takes into account: the constant change of the state of the water during the falling process, and the velocity gradient existing in the vertical direction of the wind inlet surface.
  • the air state of the cooling tower entering the tower is the ambient air state.
  • the temperature of the inlet water and the state of the air inlet are known, and the characteristic number of each packing micro-element is calculated, and the cooling number is equal to it, the temperature difference of the cooling water in and out of the micro-element can be obtained, and then the micro-element outlet water temperature.
  • the outlet parameters of the previous packing micro-element are used as the import parameters of the next micro-element.
  • the thermal model of the cross-flow cooling tower considering the influence of return flow first uses the total return rate and total air volume to calculate the return air volume. Assume the tower temperature and relative humidity, and calculate the enthalpy and moisture content. The enthalpy value and moisture content of each inlet air element are calculated by using the sub-reflux rate. However, the partial return flow rate is used, and since the air volume of each micro-element can be determined (because when the total air volume of the fan is determined, the flow field of the wind inside the cooling tower does not change much, that is, the wind provided by each micro-element should not change.
  • This embodiment is not limited to the analysis of a single device, but expands the analysis object to the entire cold source system, taking group control among Units, cooling towers and water pumps are closely related, coupled with each other, and interact with each other to achieve hydraulic balance and thermal balance.
  • This application separates the hydraulic calculation of the model from the thermal calculation, and calculates the chiller, cooling tower and water pump first. Hydraulic parameters, and then calculate the thermal parameters of chillers, cooling towers and water pumps.
  • the calculation rate is relatively fast, which is conducive to saving iterative calculation time and laying the foundation for rapid diagnosis of the system.
  • the impact of group control among water pumps and the low calculation rate of thermodynamic models make it difficult to calculate a sufficient amount of data in a short period of time for rapid diagnosis and analysis of air-conditioning systems.
  • the iterative method used in this paper is an optimized step size acceleration method, which can significantly increase the iterative speed and optimize the iterative efficiency.
  • the purpose of iterative optimization is to find the corresponding point where the assumed value is equal to the calculated value.
  • the step size When using the step size to search and shrink from five points to one point, it is also constantly looking for the point with the smallest deviation, which is the deviation between the assumed value and the calculated value.
  • This iterative method has two optimization points:
  • the deviation that has been calculated in the previous step can be directly used on the corresponding point in the next step without recalculation. This increases the calculation rate.
  • the calculation of 2 diagonal points can be skipped in the calculation of the 5 points; in the contraction link of the algorithm, the calculation of the center point can be skipped in the calculation of the 5 points.
  • the above method is very convenient for the iteration of two variables, and the same can be applied to the iteration of one variable.
  • thermodynamic model calculation device for multi-device operation of a cold source system.
  • the device includes a processor and a memory: the memory is used to store program codes and transmit the program codes to the processor;
  • the processor is configured to execute the thermodynamic model calculation method for multi-equipment operation of the cold source system described in the above embodiments according to the instructions in the program code.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or Can be integrated into another grid network to be installed, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for enabling a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-OnlyMemory), random access memory (RAM, RandomAccessMemory), magnetic disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种冷源系统多设备运行的热力学模型计算方法和设备,本申请不局限于对单一设备的分析,而是分析整个冷源系统,考虑设备间的群控,即基于冷水机组、冷却塔和水泵构建冷源系统的热力学模型,由于冷水机组、冷却塔和水泵之间存在着紧密联系,相互耦合及影响,实现了水力平衡和热力平衡,且本申请将水力计算与热力计算分开,先计算冷水机组、冷却塔和水泵的水力参数,再计算冷水机组、冷却塔和水泵的热力参数,计算速率比较快,不仅节省迭代计算时间,还为系统的快速诊断打下基础,从而解决了现有没有考虑到冷水机组、冷却塔和水泵之间群控的影响,计算速率低,难以快速计算出足量的数据量,以供空调系统快速诊断与分析使用的技术问题。

Description

一种冷源系统多设备运行的热力学模型计算方法和设备 技术领域
本申请涉及空调系统控制技术领域,尤其涉及一种冷源系统多设备运行的热力学模型计算方法和设备。
背景技术
空调系统的快速诊断分析与优化需建立在完善的热力学模型之上。在实际空调系统中,设计工况下的运行状况是最佳的。然而,现实中常常由于外界条件的改变,空调系统的运行偏离了最佳工况。当建筑因需求的改变而用于不同的用途时,如办公、餐饮等,冷负荷、湿负荷不尽相同,另外,大气温湿度、风速的影响,会通过冷却塔传递至空调系统内部,这些因素均会导致空调系统的运行状况发生改变。而且,空调系统是否偏离了最佳工况、偏离的程度有多大、偏离的程度达到多大的阈值会对空调系统的影响以及影响的程度有多大,最终会在系统的能效上体现。目前仅有较少的文献对此进行定量分析。
技术问题
随着建筑规模的日益扩大,首先是现实中空调系统往往在较为稳定的工况下运行,因此获得的空调实际运行数据会局限于一小部分的工况中。原始数据内部由于传感器等测量故障的原因,亦有可能出现部分数据点缺失的情况。不仅如此,导致空调系统能效下降的原因与现象之间存在复杂的对应关系。
目前空调系统的热力学模型较多以实际数据进行分析,容易为实际数据的稀疏性所限制。不仅如此,商业模拟软件运行内存占用过大、软件使用门槛较高。再者,现有没有考虑到冷水机组、冷却塔、水泵之间群控的影响,且热力学模型计算速率低,难以在短时间内计算出足量的数据量,以供空调系统快速诊断与分析使用。
技术解决方案
本申请提供了一种冷源系统多设备运行的热力学模型计算方法和设备,用于解决现有没有考虑到冷水机组、冷却塔、水泵之间群控的影响,且热力学模型计算速率低,难以在短时间内计算出足量的数据量,以供空调系统快速诊断与分析使用的技术问题。
本申请第一方面提供了一种冷源系统多设备运行的热力学模型计算方法,热力学模型包括冷水机组热力模型、冷却塔热力模型和水泵热力模型,计算方法包括:
S1、对冷水机组进行水力计算得到冷水机组冷却水的第一进出水总管压差,对冷却塔进行水力计算得到冷却塔的第二进出水总管压差,对冷却水泵进行水力计算得到冷却水泵的第三进出水总管压差;
S2、根据预置冷却水总流量计算冷却水环路干管的第一阻力配件压差;
S3、计算所述第三进出水总管压差、所述第一进出水总管压差、所述第二进出水总管压差和所述第一阻力配件压差的第一差值,并判断所述第一差值是否小于第一预设阈值;若是则进入步骤S4,若否则返回步骤S1;
S4、对冷水机组进行热力计算得到冷水机组冷却水出水温度;
S5、根据所述冷水机组冷却水出水温度对冷却塔进行热力计算得到冷却塔出水温度;
S6、计算所述冷却塔出水温度和冷水机组预置冷却水进水温度的第二差值,并判断所述第二差值是否小于第二预设阈值;若是则输出冷源系统的总能耗,若否则返回步骤S4。
本申请不局限于对单一设备的分析,将分析对象扩大至整个冷源系统,将设备间的群控纳入考虑,即基于冷水机组、冷却塔和水泵构建冷源系统的热力学模型,由于冷水机组、冷却塔和水泵之间存在着紧密联系,相互耦合,相互影响,以实现水力平衡和热力平衡,且本申请将模型的水力计算与热力计算分开,先计算冷水机组、冷却塔和水泵的水力参数,再计算冷水机组、冷却塔和水泵的热力参数,计算速率比较快,有利于节省迭代计算时间,为系统的快速诊断打下基础,从而解决了现有没有考虑到冷水机组、冷却塔和水泵之间群控的影响,且热力学模型计算速率低,难以在短时间内计算出足量的数据量,以供空调系统快速诊断与分析使用的技术问题。
可选地,所述对冷水机组进行水力计算得到冷水机组冷却水的第一进出水总管压差,包括:根据冷水机组的预设压降和预设流量计算得到第一管路总阻力系数;根据所述第一管路总阻力系数计算得到多个冷水机组间的流速比和支流量比;通过所述支流量比和预置总流量得到各支路流量,以计算得到冷水机组冷却水的第一进出水总管压差。
可选地,所述对冷水机组进行热力计算得到冷水机组冷却水出水温度,包括:S41、获取冷冻水流量、冷冻水进水温度和冷冻水出水温度并根据所述冷冻水流量、所述冷冻水进水温度和所述冷冻水出水温度计算得到制冷量;S42、根据所述制冷量、所述冷冻水进水温度、所述冷冻水出水温度和预置冷凝温度计
算得到实际蒸发温度;S43、根据所述冷冻水流量、所述冷冻水进水温度、所述冷冻水出水温度、所述预置冷凝温度和预置蒸发温度计算得到压缩机功耗;S44、根据所述压缩机功耗和所述制冷量计算得到冷凝器散热量;S45、获取冷却水流量和冷却水进水温度,并根据所述冷凝器散热量、所述冷却水流量和所述冷却水进水温度计算得到实际冷凝温度;
重复步骤S42至S45直至所述预置蒸发温度和所述实际蒸发温度的差值,以及所述预置冷凝温度和实际冷凝温度的差值均小于第三预设阈值时,输出冷水机组冷却水出水温度。
可选地,所述对冷却水泵进行水力计算得到冷却水泵的第三进出水总管压差,包括:S11、获取若干台水泵的总水流量;S12、预设水泵进出水总管压差,并计算水泵所在支路的支路水流量;S13、判断总的支路水流量和水泵的总水流量的差值是否小于第四预设阈值;若是则将预设水泵进出水总管压差作为第三进出水总管压差,若否则返回步骤S12。
可选地,所述冷却塔热力模型为可忽略回流影响的逆流式冷却塔热力模型、考虑回流影响的逆流式冷却塔热力模型、可忽略回流影响的横流式冷却塔热力模型、考虑回流影响的横流式冷却塔热力模型中任意一种。
本申请第二方面提供了一种冷源系统多设备运行的热力学模型计算设备,所述设备包括处理器以及存储器:所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;所述处理器用于根据所述程序代码中的指令执行第一方面所述的冷源系统多设备运行的热力学模型计算方法。
有益效果
通过热力学模型模拟空调系统的实际运行,获得大量不同种工况的运行数据变化特征的组合与影响冷源侧高效运行的因素之间的关系,进而确定影响当前空调系统运行效率的各种因素优先级,可以为实际空调系统运维提供方便。
附图说明
图1为本发明提供的一种冷源系统的结构示意图;
图2为本发明提供的冷源系统各个热力模型的连接关系示意图;
图3为本发明提供的一种冷源系统多设备运行的热力学模型计算方法的流程示意图;
图4为本发明提供的冷水机组水力计算的部分流程示意图;
图5为本发明提供的冷水机组热力计算的部分流程示意图;
图6为本发明提供的水泵的水力计算的部分流程示意图;
图7为本发明提供的逆流式冷却塔的微元划分示意图;
图8为本发明提供的可忽略回流影响的逆流式冷却塔的热力模型流程图;
图9为本发明提供的考虑回流影响的逆流式冷却塔的热力模型流程图;
图10为本发明提供的横流式冷却塔的微元划分示意图;
图11为本发明提供的可忽略回流影响的横流式冷却塔的热力模型流程图;
图12为本发明提供的考虑回流影响的横流式冷却塔的热力模型流程图;
图13为本发明提供的经过优化的步长加速法迭代流程示意图。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参阅图1至图13,本申请实施例提供了一种冷源系统多设备运行的热力学模型计算方法,热力学模型包括冷水机组热力模型、冷却塔热力模型和水泵热力模型,图1为本实施例提供的冷源系统的结构图,展示了冷源系统运行时各个设备的实际应用情况,图2为本实施例提供的冷源系统各个热力模型的连接关系示意图,呈现出本实施例提供的热力学模型是基于冷水机组、冷却塔和水泵而构建的。计算方法包括:
S1、对冷水机组进行水力计算得到冷水机组冷却水的第一进出水总管压差,对冷却塔进行水力计算得到冷却塔的第二进出水总管压差,对冷却水泵进行水力计算得到冷却水泵的第三进出水总管压差。
S2、根据预置冷却水总流量计算冷却水环路干管的第一阻力配件压差。
S3、计算第三进出水总管压差、第一进出水总管压差、第二进出水总管压差和第一阻力配件压差的第一差值,并判断第一差值是否小于第一预设阈值。若是则进入步骤S4,若否则返回步骤S1。
S4、对冷水机组进行热力计算得到冷水机组冷却水出水温度。
S5、根据冷水机组冷却水出水温度对冷却塔进行热力计算得到冷却塔出水温度。
S6、计算冷却塔出水温度和冷水机组预置冷却水进水温度的第二差值,并判断第二差 [0029]值是否小于第二预设阈值。
若是则输出冷源系统的总能耗,若否则返回步骤S4。
需要说明的是,第一预设阈值和第二预设阈值均可以设置为0.01,冷冻水总流量取决于用户需求与压差旁通阀设置,因此对于冷源系统来说,冷冻水总流量可作为已知量,直接获取得到,以计算冷水机组冷冻水的进出水总管压差、冷冻水泵进出水总管压差,冷冻水环路干管的第二阻力配件压差,以计算得到后续的水力参数。
显然,从图3中可以看出,本实施例中的冷源系统热力学模型是将水力计算与热力计算分开。而现有常规的处理方法,是将冷水机组的水力参数与热力参数均计算完毕后,再计算冷冻水泵的水力参数与热力参数等以此类推。本实施例,是考虑到水力参数的计算并不依赖于热力参数,而热力参数的计算依赖于水力参数,因此可先计算水力参数,再计算热力参数。并且,这样的处理方式有利于节省迭代计算时间,为系统的快速诊断打下基础。
水力计算较为简单,而热力计算较为复杂且迭代较多,在迭代冷冻水、冷却水的总流量时,若内部涉及单个设备的热力计算,则会导致迭代的嵌套,计算时间呈指数级增长。因此,本实施例将较为复杂的冷冻水、冷却水流量的迭代与水力计算相结合,将较为简单的冷却水进水温度的迭代与热力计算相结合。
在冷冻水系统中,将冷冻水泵、冷水机组与冷冻水管网、末端相关联,其中压差旁通阀作为前者与后者之间的柔性关联,用于调节冷源侧供冷量与用户侧所需冷量之间的偏差;在冷却水系统中,将冷却塔、冷却水泵与冷水机组相关联。两者通过冷水机组相互耦合。
以冷冻水系统中的水泵压差、冷水机组压降、冷冻水管路压降以及冷冻水管网供回水总管压差构建相等关系,以冷却水系统中的水泵压差、冷却塔压降、冷却水管路压降构建相等关系。依此可计算得出在各个支路的水量分配情况与冷冻水、冷却水总流量。在获得各个支路的水量分配情况与冷冻水、冷却水总流量后,进行冷源系统的热力计算,仍缺少冷水机组的冷却水进水温度。冷水机组的冷却水进水温度为冷水机组与冷却塔相互耦合的变量,需对其假设,因此,先假设冷水机组预置冷却水进水温度,以迭代直至冷却塔的出水温度和冷水机组预置冷却水进水温度相近似。
进一步地,对冷水机组进行水力计算得到冷水机组冷却水的第一进出水总管压差,包括:根据冷水机组的预设压降和预设流量计算得到第一管路总阻力系数;根据第一管路总阻力系数计算得到多个冷水机组间的流速比和支流量比;通过支流量比和预置总流量得到各支路流量,以计算得到冷水机组冷却水的第一进出水总管压差。
进一步地,对冷水机组进行热力计算得到冷水机组冷却水出水温度,包括:
S41、获取冷冻水流量、冷冻水进水温度和冷冻水出水温度并根据冷冻水流量、冷冻水进水温度和冷冻水出水温度计算得到制冷量。
S42、根据制冷量、冷冻水进水温度、冷冻水出水温度和预置冷凝温度计算得到实际蒸发温度。
S43、根据冷冻水流量、冷冻水进水温度、冷冻水出水温度、预置冷凝温度和预置蒸发温度计算得到压缩机功耗。
S44、根据压缩机功耗和制冷量计算得到冷凝器散热量。
S45、获取冷却水流量和冷却水进水温度,并根据冷凝器散热量、冷却水流量和冷却水进水温度计算得到实际冷凝温度。
重复步骤S42至S45直至预置蒸发温度和实际蒸发温度的差值,以及预置冷凝温度和实际冷凝温度的差值均小于第三预设阈值时,输出冷水机组冷却水出水温度。
需要说明的是,第三预设阈值可以设置为0.1。
以下为本实施例对冷水机组热力模型的论述,其热力模型如图4和5所示,多台额定制冷量不同的冷水机组并联运行时,以每段支路的始末两端压差相等、每段支路的支流量之和等于总流量为原则,依据每台冷水机组所在支路的沿程阻力与局部阻力,将总流量分配给每段支路。相比于冷水机组压降,并联管道压降可忽略。以此建立多台冷水机组并联运行热力学模型。
在构建单台冷水机组热力学模型时,把冷凝温度、蒸发温度作为进行迭代的变量,并在已知换热器及压缩机的几何尺寸的基础上,以冷冻水流量、冷冻水进出水温度、冷却水流量以及冷却水进水温度作为输入变量。考虑压缩机的实际压缩过程、蒸发器出口过热度以及冷凝器出口过冷度,忽略壳管式冷凝器、壳管式蒸发器中壳侧壁面导热的影响,对蒸发器侧分析能量平衡。以压缩机总效率及等熵压缩耗功可求得压缩机实际耗功。并以压缩机为连结冷凝器与蒸发器的媒介,以下式表示制冷循环能量平衡:Qk=Q0+Pcomp其中,Qk为冷凝器散热量,Q0为制冷量,Pcomp为压缩机实际功率,其中全封闭式压缩机为电功率,半封闭式压缩机为轴功率。
进一步地,对冷却水泵进行水力计算得到冷却水泵的第三进出水总管压差,包括:
S11、获取若干台水泵的总水流量。
S12、预设水泵进出水总管压差,并计算水泵所在支路的支路水流量。
S13、判断总的支路水流量和水泵的总水流量的差值是否小于第四预设阈值。
若是则将预设水泵进出水总管压差作为第三进出水总管压差,若否则返回步骤S12。
需要说明的是,第四预设阈值可以是0.01,即总的支路水流量和水泵的总水流量近似相同,如图6所示,已知多台水泵总流量与各水泵频率时,可通过预设水泵进出水总管压差(有效扬程),通过预设水泵进出水总管压差,结合每一台水泵的有效扬程-流量曲线可计算得出每一台水泵的支路水流量。将每一台水泵的支路水流量相加,迭代直至与水泵的总水流量相等。输出结果,并依支路流量结合水泵效率曲线,计算水泵效率,进而计算变频器效率、电机效率与水泵耗功。
冷冻水泵与冷却水泵由于在通过压差计算出流量时,水泵支路中的管路配件的压差并不能作为已知。虽管路配件的阻力系数可作为已知,但压差与流速的二次方相关,即与支路的流量相关,而这个流量正是我们要求的物理量。在这种情况下,并不需要再迭代这个流量,我们可以将总扬程-流量的曲线,转化为有效扬程-流量的曲线。由于总水流量已知。结合已知的支管路配件总阻力系数,求得配件的压差,以流量对应的总扬程减去配件的压差,即可求得有效扬程-流量曲线。
进一步地,冷却塔热力模型为可忽略回流影响的逆流式冷却塔热力模型、考虑回流影响的逆流式冷却塔热力模型、可忽略回流影响的横流式冷却塔热力模型、考虑回流影响的横流式冷却塔热力模型中任意一种。
需要说明的是,如图7所示,展示了逆流式冷却塔的微元划分情况。微元划分方法为由下至上依此计算各微元。在已知各冷却塔的水力分配情况、进塔水温与进塔空气状态时,通过假设出塔水温,并划分n个微元,近似认为每一个微元的冷却水温降相同,计算出每一个微元的冷却数并累加,迭代直至冷却塔的冷却数等于其特性数。至此,冷却塔第一个微元的进出微元的水温、进风状态均已知,可计算出出风状态,以此出风状态作为下一个微元的进风状态,计算直至最后一个微元。
图9表示在冷却塔的回流不可忽略时,需在图8的基础上,嵌套一层回流率的迭代。
由于冷却塔回流的影响,进塔空气状态不再是大气环境的状态,因此对冷却塔进口空气状态进行假设,主要是假设干球温度、相对湿度。之后以不考虑回流的计算方法进行计算,在获得冷却塔出塔空气温度、出塔空气相对湿度后,结合环境空气状态,分别以干球温度、相对湿度可计算出以干球温度、含湿量计算的回流率计算值,与已知的回流率比较,迭代直至两个回流率计算值与已知的回流率相等。
横流式冷却塔的微元划分图如图10所示,可忽略回流影响的横流式冷却塔的热力模型如图11所示。
首先对填料划分微元,其中L方向nL个,W方向nW个,H方向nH个,共nL*nW*nH个。划分L方向的微元是考虑到:进风面存在水平方向上风速的不同。划分W方向的微元是考虑到:空气贯穿填料过程中状态的变化。划分H方向的微元是考虑到:水在下落过程中状态的不断变化,以及进风面在竖直方向上存在的速度梯度。
在不考虑回流时,冷却塔进塔空气状态即为环境空气状态。对于微元来说,已知进水温度与进风状态,计算每一个填料微元的特性数,并使冷却数与其相等,可求得微元的冷却水进出水温差,进而得到微元的出水温度。以上一个填料微元的出口参数作为下一个微元的进口参数。逐步累加,便可计算得到总换热量等,进而得出出塔空气状态、出塔水温。如图12所示,考虑回流影响的横流式冷却塔热力模型,先利用总的回流率和总风量把回流风量求出来。假设出塔温度与相对湿度,并求出焓值与含湿量。再利用分回流率求出每一个进风微元的焓值与含湿量。而利用分回流率,而由于每个微元的风量是可以确定的(因为当风机总风量确定时,冷却塔内部风的流场无多大变化,即每个微元所提供的风应该都不会有很大变化,因此每个微元的风量确定),利用分回流率也可以确定微元总风量中,回风占的比例。因此可以求出新风与回风分别所占的比例。同理于不考虑回流率时得计算,反求得到出塔的状态,与假设值对比。这样,不仅可以考虑到每个微元的差别,也不需要太多的计算量。
本实施例不局限于对单一设备的分析,将分析对象扩大至整个冷源系统,将设备间的群控纳入考虑,即基于冷水机组、冷却塔和水泵构建冷源系统的热力学模型,由于冷水机组、冷却塔和水泵之间存在着紧密联系,相互耦合,相互影响,以实现水力平衡和热力平衡,且本申请将模型的水力计算与热力计算分开,先计算冷水机组、冷却塔和水泵的水力参数,再计算冷水机组、冷却塔和水泵的热力参数,计算速率比较快,有利于节省迭代计算时间,为系统的快速诊断打下基础,从而解决了现有没有考虑到冷水机组、冷却塔和水泵之间群控的影响,且热力学模型计算速率低,难以在短时间内计算出足量的数据量,以供空调系统快速诊断与分析使用的技术问题。
在多个设备的热力模型计算中均涉及到迭代。本文所用到的迭代方法为经过优化的步长加速法,可显著提高迭代速度,优化迭代效率。如图13所示,进行迭代寻优的目的,是找到假设值与计算值相等的对应点。利用步长从搜索,以及五个点收缩至一个点时,也在不断地寻找偏差最小的点,这个偏差是假设值与计算值之间的偏差。先赋予一个初始值,作为搜索范围的中心点,并赋予步长作为边长,可确定5个点(4个角点与1个中心点),进而确定一个矩形的搜索范围。分别以5个点作为计算的假设值,计算出对应的计算值,统计假设值与计算值的误差。5次计算中每次计算均判断假设值与计算值是否相等。若相等,则提前跳出迭代过程;若不相等,则比较5个点的误差值,并找出误差最小的点。若连续两轮计算中,其误差最小的点不相同,则将搜索范围的中心不断地往误差最小的点移动;若连续两轮计算中,误差最小的点相同,则搜索范围中心不移动,步长减半,即搜索范围开始不断收缩,直至5个点收缩至1个点后,输出该点。
本迭代方法有2个优化点:
1、在计算过程中,只要假设值与计算值相等,满足步长小于某个值也不是必要的。因此,有必要在每一次i的计算后,就判断当前的i对应计算出来的假设值与计算值是否相等(或小于某个可容忍的误差),相等时直接跳出循环。相比于最初始的算法而言,经过优化后只会提前收敛,最差的结果也是跟原来计算速度一样。
2、在计算五个点的偏差时,在搜索范围不断移动时,会出现重复计算同一个点的偏差的问题。
如果能将上一步已经计算过的偏差,直接用到下一步对应的点上,而不再重新计算。这样能提高计算速率。在算法的搜索环节中,5个点的计算中有2个对角点的计算可以略过;在算法的收缩环节,5个点的计算中,中心点的计算可以略过。
以上方法针对两个变量的迭代十分方便,同理可应用于一个变量的迭代。
本申请还提供了一种冷源系统多设备运行的热力学模型计算设备的实施例,设备包括处理器以及存储器:存储器用于存储程序代码,并将程序代码传输给处理器;
处理器用于根据程序代码中的指令执行上述实施例所述的冷源系统多设备运行的热力学模型计算方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的网络,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个待安装电网网络,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (6)

  1. 一种冷源系统多设备运行的热力学模型计算方法,其特征在于,热力学模型包括冷水机组热力模型、冷却塔热力模型和水泵热力模型,计算方法包括:S1、对冷水机组进行水力计算得到冷水机组冷却水的第一进出水总管压差,对冷却塔进行水力计算得到冷却塔的第二进出水总管压差,对冷却水泵进行水力计算得到冷却水泵的第三进出水总管压差;S2、根据预置冷却水总流量计算冷却水环路干管的第一阻力配件压差;S3、计算所述第三进出水总管压差、所述第一进出水总管压差、所述第二进出水总管压差和所述第一阻力配件压差的第一差值,并判断所述第一差值是否小于第一预设阈值;若是则进入步骤S4,若否则返回步骤S1;S4、对冷水机组进行热力计算得到冷水机组冷却水出水温度;S5、根据所述冷水机组冷却水出水温度对冷却塔进行热力计算得到冷却塔出水温度;S6、计算所述冷却塔出水温度和冷水机组预置冷却水进水温度的第二差值,并判断所述第二差值是否小于第二预设阈值;若是则输出冷源系统的总能耗,若否则返回步骤S4。
  2. 根据权利要求1所述的冷源系统多设备运行的热力学模型计算方法,其特征在于,所述对冷水机组进行水力计算得到冷水机组冷却水的第一进出水总管压差,包括:
    根据冷水机组的预设压降和预设流量计算得到第一管路总阻力系数;
    根据所述第一管路总阻力系数计算得到多个冷水机组间的流速比和支流量比;
    通过所述支流量比和预置总流量得到各支路流量,以计算得到冷水机组冷却水的第一进出水总管压差。
  3. 根据权利要求1所述的冷源系统多设备运行的热力学模型计算方法,其特征在于,
    所述对冷水机组进行热力计算得到冷水机组冷却水出水温度,包括:
    S41、获取冷冻水流量、冷冻水进水温度和冷冻水出水温度并根据所述冷冻水流量、所述冷冻水进水温度和所述冷冻水出水温度计算得到制冷量;
    S42、根据所述制冷量、所述冷冻水进水温度、所述冷冻水出水温度和预置冷凝温度计算得到实际蒸发温度;
    S43、根据所述冷冻水流量、所述冷冻水进水温度、所述冷冻水出水温度、所述预置冷凝温度和预置蒸发温度计算得到压缩机功耗;
    S44、根据所述压缩机功耗和所述制冷量计算得到冷凝器散热量;
    S45、获取冷却水流量和冷却水进水温度,并根据所述冷凝器散热量、所述冷却水流量和所述冷却水进水温度计算得到实际冷凝温度;
    重复步骤S42至S45直至所述预置蒸发温度和所述实际蒸发温度的差值,以及所述预置冷凝温度和实际冷凝温度的差值均小于第三预设阈值时,输出冷水机组冷却水出水温度。
  4. 根据权利要求1所述的冷源系统多设备运行的热力学模型计算方法,其特征在于,所述对冷却水泵进行水力计算得到冷却水泵的第三进出水总管压差,包括:
    S11、获取若干台水泵的总水流量;
    S12、预设水泵进出水总管压差,并计算水泵所在支路的支路水流量;
    S13、判断总的支路水流量和水泵的总水流量的差值是否小于第四预设阈值;
    若是则将预设水泵进出水总管压差作为第三进出水总管压差,若否则返回步骤S12。
  5. 根据权利要求1所述的冷源系统多设备运行的热力学模型计算方法,其特征在于,所述冷却塔热力模型为可忽略回流影响的逆流式冷却塔热力模型、考虑回流影响的逆流式冷却塔热力模型、可忽略回流影响的横流式冷却塔热力模型、考虑回流影响的横流式冷却塔热力模型中任意一种。
  6. 一种冷源系统多设备运行的热力学模型计算设备,其特征在于,所述设备包括处理器以及存储器:
    所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
    所述处理器用于根据所述程序代码中的指令执行权利要求1-5任一项所述的冷源系统多设备运行的热力学模型计算方法。
PCT/CN2022/143589 2021-12-31 2022-12-29 一种冷源系统多设备运行的热力学模型计算方法和设备 WO2023125853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111670551.5A CN114330000A (zh) 2021-12-31 2021-12-31 一种冷源系统多设备运行的热力学模型计算方法和设备
CN202111670551.5 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125853A1 true WO2023125853A1 (zh) 2023-07-06

Family

ID=81021673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143589 WO2023125853A1 (zh) 2021-12-31 2022-12-29 一种冷源系统多设备运行的热力学模型计算方法和设备

Country Status (2)

Country Link
CN (1) CN114330000A (zh)
WO (1) WO2023125853A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706094A (zh) * 2021-07-29 2021-11-26 国电南瑞科技股份有限公司 一种基于消息总线的综合能源实时协同仿真系统及方法
CN116936010A (zh) * 2023-09-14 2023-10-24 江苏美特林科特殊合金股份有限公司 基于合金相图数据库的热力学参数影响分析方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114330000A (zh) * 2021-12-31 2022-04-12 华南理工大学 一种冷源系统多设备运行的热力学模型计算方法和设备
CN115292846B (zh) * 2022-08-15 2023-06-23 哈尔滨工业大学 一种基于传热的冷却塔建模方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190946A1 (en) * 2008-08-22 2011-08-04 Charles Ho Yuen Wong Method And System Of Energy-Efficient Control For Central Chiller Plant Systems
CN109000334A (zh) * 2018-06-29 2018-12-14 广州能迪能源科技股份有限公司 一种冷水机组节能控制策略的获得方法
CN109000949A (zh) * 2018-06-29 2018-12-14 广州能迪能源科技股份有限公司 基于冷水机组热力学模型的冷水机组评估方法及节能方法
CN109855238A (zh) * 2019-02-27 2019-06-07 四川泰立智汇科技有限公司 一种中央空调建模与能效优化方法及装置
CN113188363A (zh) * 2021-06-04 2021-07-30 上海美控智慧建筑有限公司 一种冷却塔监测方法、装置、设备及存储介质
CN114330000A (zh) * 2021-12-31 2022-04-12 华南理工大学 一种冷源系统多设备运行的热力学模型计算方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190946A1 (en) * 2008-08-22 2011-08-04 Charles Ho Yuen Wong Method And System Of Energy-Efficient Control For Central Chiller Plant Systems
CN109000334A (zh) * 2018-06-29 2018-12-14 广州能迪能源科技股份有限公司 一种冷水机组节能控制策略的获得方法
CN109000949A (zh) * 2018-06-29 2018-12-14 广州能迪能源科技股份有限公司 基于冷水机组热力学模型的冷水机组评估方法及节能方法
CN109855238A (zh) * 2019-02-27 2019-06-07 四川泰立智汇科技有限公司 一种中央空调建模与能效优化方法及装置
CN113188363A (zh) * 2021-06-04 2021-07-30 上海美控智慧建筑有限公司 一种冷却塔监测方法、装置、设备及存储介质
CN114330000A (zh) * 2021-12-31 2022-04-12 华南理工大学 一种冷源系统多设备运行的热力学模型计算方法和设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706094A (zh) * 2021-07-29 2021-11-26 国电南瑞科技股份有限公司 一种基于消息总线的综合能源实时协同仿真系统及方法
CN113706094B (zh) * 2021-07-29 2024-02-20 国电南瑞科技股份有限公司 一种基于消息总线的综合能源实时协同仿真系统及方法
CN116936010A (zh) * 2023-09-14 2023-10-24 江苏美特林科特殊合金股份有限公司 基于合金相图数据库的热力学参数影响分析方法
CN116936010B (zh) * 2023-09-14 2023-12-01 江苏美特林科特殊合金股份有限公司 基于合金相图数据库的热力学参数影响分析方法

Also Published As

Publication number Publication date
CN114330000A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023125853A1 (zh) 一种冷源系统多设备运行的热力学模型计算方法和设备
Zhao et al. Model-based optimization for vapor compression refrigeration cycle
CN102779217B (zh) 一种结霜工况下的制冷系统计算机仿真性能计算方法
Kinab et al. Reversible heat pump model for seasonal performance optimization
Jiang et al. Optimum compressor cylinder volume ratio for two-stage compression air source heat pump systems
CN102831302B (zh) 一种结霜工况下翅片管蒸发器的性能计算方法
WO2015109653A1 (zh) 热回收变频多联式热泵系统及其控制方法
Fu et al. Steady-state simulation of screw liquid chillers
JP2017101862A (ja) 熱源制御システムおよび制御方法
CN102460030B (zh) 制冷装置
Su et al. Performance investigation on a frost-free air source heat pump system employing liquid desiccant dehumidification and compressor-assisted regeneration based on exergy and exergoeconomic analysis
Shao et al. Simulation model for complex refrigeration systems based on two-phase fluid network–Part I: Model development
US11920843B2 (en) Chiller suction flow limiting with input power or motor current control
CN114636322A (zh) 用于控制自然冷却和集成自然冷却的系统和方法
Liang et al. Energy-efficient air conditioning system using a three-fluid heat exchanger for simultaneous temperature and humidity control
Chen et al. Development of a steady-state physical-based mathematical model for a direct expansion based enhanced dehumidification air conditioning system
Wang et al. Experimental investigations on a heat pump system for ventilation heat recovery of a novel dual-cylinder rotary compressor
Ge et al. Mathematical modelling of supermarket refrigeration systems for design, energy prediction and control
Li et al. Simulation on effects of subcooler on cooling performance of multi-split variable refrigerant flow systems with different lengths of refrigerant pipeline
Yang et al. A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil
Liu et al. A modeling study on developing the condensing-frosting performance maps for a variable speed air source heat pump
CN105518394A (zh) 运行控制装置及运行控制方法
Gayeski et al. Empirical modeling of a rolling-piston compressor heat pump for predictive control in low-lift cooling
Yan et al. Operating characteristics of a three-evaporator air conditioning (TEAC) system
WO2023169519A1 (zh) 多联机空调系统及多联机空调系统的容错控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915102

Country of ref document: EP

Kind code of ref document: A1