WO2023125702A1 - 换电站的云管理方法、系统、服务器及存储介质 - Google Patents

换电站的云管理方法、系统、服务器及存储介质 Download PDF

Info

Publication number
WO2023125702A1
WO2023125702A1 PCT/CN2022/142953 CN2022142953W WO2023125702A1 WO 2023125702 A1 WO2023125702 A1 WO 2023125702A1 CN 2022142953 W CN2022142953 W CN 2022142953W WO 2023125702 A1 WO2023125702 A1 WO 2023125702A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
cloud
swap
data
power
Prior art date
Application number
PCT/CN2022/142953
Other languages
English (en)
French (fr)
Inventor
闫龙宇
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2023125702A1 publication Critical patent/WO2023125702A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/26Visual data mining; Browsing structured data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to the field of power station management, and in particular relates to a cloud management method, system, server and storage medium for a power station.
  • the technical problem to be solved by the present invention is to provide a cloud management method, system, server and storage media.
  • a cloud management method for a power station is applied to a station end of a power station, and specifically includes:
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • the synchronously uploading the real-time battery swap data of the swap station to the cloud of the swap station specifically includes:
  • the real-time battery swap data of the battery swap station is synchronously uploaded to the cloud of the battery swap station.
  • the cloud management method further includes:
  • the local battery swap data of the swap station and the detection results are generated into a backup data set and sent to the cloud of the swap station for storage.
  • the local battery swap data and test results of the swap station are backed up and stored in the cloud for subsequent data analysis and research and development based on big data.
  • the cloud management method further includes:
  • Said generating a backup data set from the local power exchange data of the power exchange station and the detection results and sending it to the cloud of the power exchange station for storage specifically includes:
  • a backup data set is generated from the local battery swap data of the battery swap station and the detection results, and sent to the cloud of the battery swap station for storage.
  • the backup cycle corresponding to the power station is set to facilitate the statistical analysis of backup data.
  • different backup cycles can be set for different power stations to improve the backup rate, and at the same time, it can also ease the network load during data backup. congestion.
  • the cloud management method further includes:
  • an alarm notification can be generated in time through cloud monitoring and returned to the station of the swapping station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • the cloud management method further includes:
  • the target object includes at least one of the target replacement battery, the target replacement process, and/or the target replacement device
  • the abnormal events include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, and charging equipment. at least one of failure and battery removal failure.
  • a cloud management method for a power station is applied to the cloud of the power station, and specifically includes:
  • a detection result is generated based on the real-time power swap data and sent to the station end of the power swap station, and the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • the receiving the real-time power exchange data of the exchange station uploaded by the end of the exchange station specifically includes:
  • the cloud management method further includes:
  • the local battery swap data and test results of the swap station are backed up and stored in the cloud for subsequent data analysis and research and development based on big data.
  • the cloud management method further includes:
  • the receiving the backup data set generated based on the local power exchange data of the power exchange station and the detection result sent by the power exchange station terminal specifically includes:
  • the backup cycle corresponding to the power station is set to facilitate the statistical analysis of backup data.
  • different backup cycles can be set for different power stations to improve the backup rate, and at the same time, it can also ease the network load during data backup. congestion.
  • the cloud management method further includes:
  • An alarm notification is generated based on the abnormality detection result and sent to the station side of the switching station.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station of the swapping station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • the cloud management method further includes:
  • the target object includes at least one of the target replacement battery, the target replacement process, and/or the target replacement device
  • the abnormal events include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, and charging equipment. at least one of failure and battery removal failure.
  • a cloud management system for a power station is applied to the station end of the power station, and specifically includes:
  • a synchronization module configured to synchronously upload the real-time battery swap data of the swap station to the cloud of the swap station;
  • the abnormality information receiving module is configured to receive a detection result generated by the cloud of the power swap station based on the real-time power swap data, and the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • the synchronization module is specifically configured to synchronously upload the real-time power swap data of the swap station to the cloud of the swap station based on a preset VPN network.
  • the cloud management system also includes:
  • the backup module is used to generate a backup data set from the local power exchange data of the power exchange station and the detection results and send it to the cloud of the power exchange station for storage.
  • the local battery swap data and test results of the swap station are backed up and stored in the cloud for subsequent data analysis and research and development based on big data.
  • the cloud management system also includes:
  • the first cycle preset module is used to preset the first backup cycle corresponding to the power station;
  • the backup module is specifically configured to generate a backup data set based on the first backup period based on the local power swap data of the swap station and the detection results, and send it to the cloud of the swap station for storage.
  • the backup cycle corresponding to the power station is set to facilitate the statistical analysis of backup data.
  • different backup cycles can be set for different power stations to improve the backup rate, and at the same time, it can also ease the network load during data backup. congestion.
  • the cloud management system also includes:
  • the alarm receiving module is used to receive the alarm notification generated by the cloud of the power station based on the abnormal detection result.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station of the swapping station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • the cloud management system also includes:
  • the first abnormality determination module is used to determine the abnormal target objects and abnormal items in the battery swapping station according to the detection results
  • the target object includes at least one of the target replacement battery, the target replacement process, and/or the target replacement device
  • the abnormal events include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, and charging equipment. at least one of failure and battery removal failure.
  • a cloud management system for a power station is applied to the cloud of the power station, and specifically includes:
  • the synchronous data receiving module is used to receive the real-time power exchange data of the power exchange station synchronously uploaded by the station end of the power exchange station;
  • An abnormality information detection module configured to generate a detection result based on the real-time power swap data and send it to the station end of the power swap station, where the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • the synchronization data receiving module is specifically used to receive the real-time power swap data of the swap station uploaded by the swap station station based on the preset VPN network.
  • the cloud management system also includes:
  • the backup data receiving module is configured to receive the backup data set generated based on the local power swap data of the swap station and the detection result sent by the swap station.
  • the local battery swap data and test results of the swap station are backed up and stored in the cloud for subsequent data analysis and research and development based on big data.
  • the cloud management system also includes:
  • the second cycle preset module is used to preset the second backup cycle corresponding to the power station
  • the backup data receiving module is specifically configured to receive the backup data set generated based on the local power swap data of the swap station and the detection result sent by the swap station based on the second backup period.
  • the backup cycle corresponding to the power station is set to facilitate the statistical analysis of backup data.
  • different backup cycles can be set for different power stations to improve the backup rate, and at the same time, it can also ease the network load during data backup. congestion.
  • the cloud management system also includes:
  • the alarm module is configured to generate an alarm notification based on the abnormal detection result and send it to the station end of the switching station.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station of the swapping station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • the cloud management system also includes:
  • the second abnormality determination module is used to determine the abnormal target objects and abnormal items in the battery swapping station according to the detection results
  • the target object includes at least one of the target replacement battery, the target replacement process, and/or the target replacement device
  • the abnormal events include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, and charging equipment. at least one of failure and battery removal failure.
  • a server includes a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the above-mentioned cloud management method for a power-swapping station is realized.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned cloud management method for a power-swapping station is implemented.
  • the positive and progressive effect of the present invention lies in: in this application, the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting.
  • the unified management of the cloud reduces the need for manual site processing.
  • the time cost of the problem is also convenient for subsequent related research and development based on big data.
  • FIG. 1 is a flow chart of a cloud management method for a swapping station applied to a swapping station according to Embodiment 1 of the present invention.
  • Fig. 2 is a flow chart of a preferred implementation manner of the cloud management method of the swap station applied to the station end of the swap station according to Embodiment 1 of the present invention.
  • FIG. 3 is a flow chart of a cloud management method for a battery swapping station applied to the cloud of the battery swapping station according to Embodiment 2 of the present invention.
  • Fig. 4 is a flow chart of a preferred implementation manner of the cloud management method of the battery swapping station applied to the cloud of the battery swapping station according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram of a cloud management system applied to a swapping station at the station side of the swapping station according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram of a preferred implementation manner of the cloud management system applied to the swap station at the station end of the third embodiment of the present invention.
  • FIG. 7 is a block diagram of a cloud management system of a battery swapping station applied to the cloud of the swapping station according to Embodiment 4 of the present invention.
  • FIG. 8 is a block diagram of a preferred implementation of the cloud management system of the battery swapping station applied to the cloud of the swapping station according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present invention.
  • a cloud management method for a power exchange station is applied to the station side of the power station, and can be realized by using station-side electronic equipment and/or a site server of the power station.
  • the embedded chip of the power exchange equipment, etc., the site server of the power exchange station can be but not limited to a server or server cluster, etc., as shown in Figure 1, specifically including:
  • Step 11 Synchronously upload the real-time power swap data of the swap station to the cloud of the swap station;
  • the real-time battery swap data of the battery swap station is the data related to battery swap obtained in the swap station, including but not limited to: battery swap data, charging data, battery data, battery swap user data, operating status data, etc.
  • the power station initiates an access request; then receives the access message generated by the cloud of the power station in response to the access request; and then based on the access message Realize the deployment of the site server of the power station, and generate a management account corresponding to the site server for subsequent login connections.
  • Step 12 Receive the detection result generated by the cloud of the power swap station based on the real-time power swap data, and the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • step 11 specifically includes:
  • Step 111 synchronously upload the real-time battery swap data of the swap station to the cloud of the swap station based on the preset VPN network.
  • real-time data synchronization is realized based on the preset VPN network to ensure the efficiency and security of data transmission.
  • the cloud management method also includes:
  • Step 13 Generate a backup data set from the local power swap data and detection results of the power swap station and send it to the cloud of the power swap station for storage.
  • the backup data set is generated by data backup based on shell script and ansible at the power station end, and the backup set is uploaded to the cloud of the power station. Back up the local power swap data and test results of the power swap station and save them in the cloud for subsequent data analysis and research and development based on big data.
  • a backup data set can be generated from the local swap data and detection results of the swap station and sent to the cloud of the swap station for storage; or, based on the second backup data generated by the swap station.
  • the backup request generates a backup data set from the local battery swap data and detection results of the swap station and sends it to the cloud of the swap station for storage.
  • the cloud management method also includes:
  • Step 121 preset the first backup cycle corresponding to the power station
  • step 13 specifically includes:
  • a backup data set is generated from the local power swap data and detection results of the power swap station and sent to the cloud of the power swap station for storage.
  • the backup period corresponding to the power station is set to facilitate the statistical analysis of the backup data.
  • different backup periods can be set for different power stations to improve the backup rate and alleviate the data backup. Network congestion.
  • the cloud management method also includes:
  • Step 14 Receive an alarm notification generated by the cloud of the battery swapping station based on the abnormal detection result.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station terminal of the swap station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • Step 15 according to the detection results, determine the abnormal target objects and abnormal items in the power station;
  • the target object includes at least one of the target replacement battery, the target replacement process and/or the target replacement device
  • the abnormal items include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, failure of the charging device, and battery removal at least one of the faults.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • a cloud management method for a substation is applied to the cloud of the substation, and can be realized by using cloud electronic devices and/or cloud servers.
  • the cloud electronic devices can be but not limited to mobile terminals, computers, etc.
  • the cloud servers can be but not limited to servers. Or server clusters, etc., as shown in Figure 3, specifically include:
  • Step 21 Receive the real-time power swap data of the swap station synchronously uploaded by the station end of the swap station;
  • the real-time battery swap data of the battery swap station is the data related to battery swap obtained in the swap station, including but not limited to: battery swap data, charging data, battery data, battery swap user data, operation status data, etc.
  • a corresponding access message is generated and sent to the switching station, where the access request is used to indicate that the switching station has successfully accessed the cloud of the switching station.
  • the station end of the swap station will generate a management account corresponding to the site server based on the access message for subsequent login and connection use.
  • Step 22 Generate a detection result based on the real-time power swap data and send it to the power swap station.
  • the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • step 21 specifically includes:
  • Step 211 receiving the real-time power swap data of the swap station uploaded by the swap station based on the preset VPN network.
  • real-time data synchronization is realized based on the preset VPN network to ensure the efficiency and security of data transmission.
  • the cloud management method also includes:
  • Step 23 Receive the backup data set generated based on the local power swap data and detection results of the swap station sent by the swap station.
  • the backup data set is generated by data backup based on shell script and ansible at the power station end, and the backup set is uploaded to the cloud of the power station. Back up the local power swap data and test results of the power swap station and save them in the cloud for subsequent data analysis and research and development based on big data.
  • a backup data set can be generated from the local swap data and detection results of the swap station and sent to the cloud of the swap station for storage; or, based on the second backup data generated by the swap station.
  • the backup request generates a backup data set from the local battery swap data and detection results of the swap station and sends it to the cloud of the swap station for storage.
  • the cloud management method also includes:
  • Step 221 preset the second backup period corresponding to the power station
  • step 23 specifically includes:
  • the backup data set generated based on the local power swap data of the swap station and the detection result sent by the swap station based on the second backup cycle is received.
  • the backup period corresponding to the power station is set to facilitate the statistical analysis of the backup data.
  • different backup periods can be set for different power stations to improve the backup rate and alleviate the data backup. Network congestion.
  • the cloud management method also includes:
  • Step 24 Generate an alarm notification based on the abnormal detection result and send it to the station end of the battery swapping station.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station terminal of the swap station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • Step 25 according to the detection results, determine the abnormal target objects and abnormal items in the power station;
  • the target object includes at least one of the target replacement battery, the target replacement process and/or the target replacement device
  • the abnormal items include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, failure of the charging device, and battery removal at least one of the faults.
  • the detection result can be modified to be normal, and synchronized to the cloud server.
  • the detection results in the cloud of the battery swap station it is further determined that there are abnormal target objects and abnormal items in the battery swap station, such as abnormal battery swap procedures, battery swap failures, swap equipment failures, charging equipment failures, and battery removal failures, etc. It can quickly and effectively let the on-site maintenance personnel know the specific abnormal situation, so as to deal with the problem in time and reduce the troubleshooting time.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • a cloud management system for a power station is applied to the station side of the power station and can be implemented based on the electronic equipment at the station and/or the site server of the power station.
  • the electronic equipment at the station can be, but not limited to, mobile terminals, computers, charging stations
  • the embedded chip of the power exchange equipment, etc., the site server of the power exchange station can be but not limited to a server or server cluster, etc., as shown in Figure 5, specifically including:
  • Synchronization module 31 for synchronously uploading the real-time power exchange data of the power exchange station to the cloud of the power exchange station;
  • the real-time battery swap data of the battery swap station is the data related to battery swap obtained in the swap station, including but not limited to: battery swap data, charging data, battery data, battery swap user data, operation status data, etc.
  • the power station initiates an access request; then receives the access message generated by the cloud of the power station in response to the access request; and then based on the access message Realize the deployment of the site server of the power station, and generate a management account corresponding to the site server for subsequent login connections.
  • the abnormality information receiving module 32 is used to receive the detection result generated by the cloud of the power swap station based on the real-time power swap data, and the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • the synchronization module 31 is specifically used to synchronously upload the real-time power swap data of the swap station to the cloud of the swap station based on a preset VPN network.
  • real-time data synchronization is realized based on the preset VPN network to ensure the efficiency and security of data transmission.
  • the cloud management system also includes:
  • the backup module 33 is used to generate a backup data set from the local power swap data and detection results of the power swap station and send it to the cloud of the power swap station for storage.
  • the backup data set is generated by data backup based on shell script and ansible at the power station end, and the backup set is uploaded to the cloud of the power station. Back up the local power swap data and test results of the power swap station and save them in the cloud for subsequent data analysis and research and development based on big data.
  • a backup data set can be generated from the local swap data and detection results of the swap station and sent to the cloud of the swap station for storage; or, based on the second backup data generated by the swap station.
  • the backup request generates a backup data set from the local battery swap data and detection results of the swap station and sends it to the cloud of the swap station for storage.
  • the first cycle preset module 34 is used to preset the first backup cycle corresponding to the power station;
  • the backup module 33 is specifically configured to generate a backup data set based on the first backup period based on the local power swap data and detection results of the power swap station and send it to the cloud of the power swap station for storage.
  • setting the backup period corresponding to the power station is convenient for statistical analysis of backup data.
  • different backup periods can be set for different power stations to improve the backup rate and relieve network congestion during data backup.
  • the alarm receiving module 35 is configured to receive an alarm notification generated by the cloud of the switching station based on an abnormal detection result.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station terminal of the swap station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • the first abnormality determination module 36 is used to determine the abnormal target objects and abnormal items in the power-swapping station according to the detection results;
  • the target object includes at least one of the target replacement battery, the target replacement process and/or the target replacement device
  • the abnormal items include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, failure of the charging device, and battery removal at least one of the faults.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • a cloud management system for a power station is applied to the cloud of the power station. It can be implemented based on cloud electronic devices and/or cloud servers. Cloud electronic devices can be but not limited to mobile terminals, computers, etc., and cloud servers can be but not limited to servers. Or server clusters, etc., as shown in Figure 7, specifically include:
  • the synchronous data receiving module 41 is used to receive the real-time power exchange data of the power exchange station synchronously uploaded by the station end of the power exchange station;
  • the real-time battery swap data of the battery swap station is the data related to battery swap obtained in the swap station, including but not limited to: battery swap data, charging data, battery data, battery swap user data, operation status data, etc.
  • a corresponding access message is generated and sent to the switching station, where the access request is used to indicate that the switching station has successfully accessed the cloud of the switching station.
  • the station end of the swap station will generate a management account corresponding to the site server based on the access message for subsequent login and connection use.
  • the abnormality information detection module 42 is used to generate a detection result based on the real-time power swap data and send it to the station end of the power swap station.
  • the detection result is used to indicate whether the real-time power swap data is abnormal.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • the synchronization data receiving module 41 is specifically used to receive the real-time battery swap data of the battery swap station uploaded by the station side of the swap station based on the preset VPN network.
  • real-time data synchronization is realized based on the preset VPN network to ensure the efficiency and security of data transmission.
  • the cloud management system also includes:
  • the backup data receiving module 43 is configured to receive the backup data set generated based on the local power swap data and detection results of the swap station sent by the swap station.
  • the backup data set is generated by data backup based on shell script and ansible at the power station end, and the backup set is uploaded to the cloud of the power station. Back up the local power swap data and test results of the power swap station and save them in the cloud for subsequent data analysis and research and development based on big data.
  • a backup data set can be generated from the local swap data and detection results of the swap station and sent to the cloud of the swap station for storage; or, based on the second backup data generated by the swap station.
  • the backup request generates a backup data set from the local battery swap data and detection results of the swap station and sends it to the cloud of the swap station for storage.
  • the second cycle preset module 44 is used to preset the second backup cycle corresponding to the power station;
  • the backup data receiving module 43 is specifically configured to receive the backup data set generated based on the local power swap data of the swap station and the detection results sent by the swap station based on the second backup cycle.
  • setting the backup period corresponding to the power station is convenient for statistical analysis of backup data.
  • different backup periods can be set for different power stations to improve the backup rate and relieve network congestion during data backup.
  • the alarm module 45 is configured to generate an alarm notification based on the abnormal detection result and send it to the station end of the power exchange station.
  • an alarm notification can be generated in time through cloud monitoring and returned to the station terminal of the swap station, so that on-site maintenance personnel can quickly respond and deal with the problem, reducing the time for troubleshooting.
  • the second abnormality determination module 46 is used to determine the abnormal target objects and abnormal items in the power station according to the detection results;
  • the target object includes at least one of the target replacement battery, the target replacement process and/or the target replacement device
  • the abnormal items include abnormalities in the replacement procedure, failure of the replacement battery, failure of the replacement device, failure of the charging device, and battery removal at least one of the faults.
  • the detection result can be modified to be normal, and synchronized to the cloud server.
  • the detection results of the swap station cloud it is further determined that there are abnormal target objects and abnormal items in the swap station, such as abnormal replacement procedures, replacement battery failures, replacement equipment failures, charging equipment failures, and battery removal failures, etc., which can be quickly and effectively Let the on-site maintenance personnel know the specific abnormal situation, so as to deal with the problem in time and reduce the troubleshooting time.
  • abnormal replacement procedures such as abnormal replacement procedures, replacement battery failures, replacement equipment failures, charging equipment failures, and battery removal failures, etc.
  • the data of the power station is synchronized to the cloud in real time, and the cloud further detects and feeds back the data in real time.
  • Real-time data synchronization ensures the timeliness of the cloud database. Once an abnormal battery change occurs, it can be monitored and alarmed in a timely manner through the cloud. It is also convenient for maintenance personnel to quickly respond to the problem and reduce the time for troubleshooting. The unified management of the cloud reduces the need for manual site processing. The time cost of the problem is also convenient for subsequent related research and development based on big data.
  • a server including a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the computer program, the cloud management method for the power station described in Embodiment 1 or 2 is implemented .
  • FIG. 9 is a schematic structural diagram of a server provided in this embodiment.
  • Figure 9 shows a block diagram of an exemplary server 90 suitable for use in implementing embodiments of the present invention.
  • the server 90 shown in FIG. 9 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
  • the server 90 may take the form of a general-purpose computing device, for example, it may be a server device.
  • Components of the server 90 may include, but are not limited to: at least one processor 91 , at least one memory 92 , and a bus 93 connecting different system components (including the memory 92 and the processor 91 ).
  • the bus 93 includes a data bus, an address bus, and a control bus.
  • the memory 92 may include a volatile memory, such as a random access memory (RAM) 921 and/or a cache memory 922 , and may further include a read only memory (ROM) 923 .
  • RAM random access memory
  • ROM read only memory
  • Memory 92 may also include program means 925 having a set (at least one) of program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, in which case Each or some combination of these may include implementations of network environments.
  • the processor 91 executes various functional applications and data processing by executing a computer program stored in the memory 92 .
  • Server 90 may also communicate with one or more external devices 94 (eg, keyboards, pointing devices, etc.). Such communication may occur through input/output (I/O) interface 95 .
  • the server 90 can also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN) and/or a public network, such as the Internet) through a network adapter 96 .
  • Network adapter 96 communicates with other modules of server 90 via bus 93 .
  • other hardware and/or software modules may be used in conjunction with server 90, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID (array of disks) systems , tape drives, and data backup storage systems.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the cloud management method for a battery swapping station described in Embodiment 1 or 2 is implemented.
  • the readable storage medium may more specifically include but not limited to: portable disk, hard disk, random access memory, read-only memory, erasable programmable read-only memory, optical storage device, magnetic storage device or any of the above-mentioned the right combination.
  • the present invention can also be implemented in the form of a program product, which includes program code, and when the program product runs on a terminal device, the program code is used to make the terminal device execute The cloud management method of the battery swapping station described in Embodiment 1 or 2.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, or used as an independent
  • the package executes, partly on the user device and partly on the remote device, or entirely on the remote device.

Abstract

本发明公开了一种换电站的云管理方法、系统、服务器及存储介质,所述云管理方法应用于换电站站端,具体包括:将换电站的实时换电数据同步上传到所述换电站云端;接收所述换电站云端基于所述实时换电数据生成的检测结果,所述检测结果用于表征所述实时换电数据是否异常。本申请将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。

Description

换电站的云管理方法、系统、服务器及存储介质
本申请要求申请日为2021/12/31的中国专利申请2021116728042的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于换电站管理领域,特别涉及一种换电站的云管理方法、系统、服务器及存储介质。
背景技术
随着换电站布点的越来越多,在遇到换电设备数据库版本发布或者遇到问题时,需要运维人员去现场为站点的排查解决问题等操作,不但速度慢,还耽误业务的影响时间、数据的时效性等问题。如果让站点工作人员操作,首先要懂运维知识,还需要懂数据库技能,很容易发生误操作删除系统数据的风险。在此背景下,如何实现换电站的及时高效的远程管理是当前需要解决的问题。
发明内容
本发明要解决的技术问题是为了克服现有技术中的上述换电站站点的排查解决异常速度慢、耽误业务响应时间、数据的时效性差等缺陷,提供一种换电站的云管理方法、系统、服务器及存储介质。
本发明是通过下述技术方案来解决上述技术问题:
一种换电站的云管理方法,所述云管理方法应用于换电站站端,具体包括:
将换电站的实时换电数据同步上传到所述换电站云端;
接收所述换电站云端基于所述实时换电数据生成的检测结果,所述检测结果用于表征所述实时换电数据是否异常。
本方案中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
较佳地,所述将换电站的实时换电数据同步上传到所述换电站云端,具体包括:
基于预设的VPN网络将换电站的实时换电数据同步上传到所述换电站云端。
本方案中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
较佳地,所述云管理方法还包括:
将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储。
本方案中,对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。
较佳地,所述云管理方法还包括:
预设与换电站对应的第一备份周期;
所述将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储,具体包括:
基于所述第一备份周期将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储。
本方案中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
较佳地,所述云管理方法还包括:
接收换电站云端基于异常的检测结果生成的告警通知。
本方案中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
较佳地,所述云管理方法还包括:
根据所述检测结果确定所述换电站存在异常的目标对象及异常事项;
其中,所述目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,所述异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
本方案中,根据换电站云端返回的检测结果进一步确定所述换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
一种换电站的云管理方法,所述云管理方法应用于换电站云端,具体包括:
接收换电站站端同步上传的换电站的实时换电数据;
基于所述实时换电数据生成检测结果并发送至所述换电站站端,所述检测结果用于表征所述实时换电数据是否异常。
本方案中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
较佳地,所述接收换电站站端上传的换电站的实时换电数据,具体包括:
接收换电站站端基于预设的VPN网络上传的换电站的实时换电数据。
本方案中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
较佳地,所述云管理方法还包括:
接收所述换电站站端发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集。
本方案中,对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。
较佳地,所述云管理方法还包括:
预设与换电站对应的第二备份周期;
所述接收所述换电站站端发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集,具体包括:
接收所述换电站站端基于所述第二备份周期发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集。
本方案中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
较佳地,所述云管理方法还包括:
基于异常的检测结果生成告警通知并发送至所述换电站站端。
本方案中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
较佳地,所述云管理方法还包括:
根据所述检测结果确定所述换电站存在异常的目标对象及异常事项;
其中,所述目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,所述异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
本方案中,根据检测结果进一步确定所述换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
一种换电站的云管理系统,所述云管理系统应用于换电站站端,具体包括:
同步模块,用于将换电站的实时换电数据同步上传到所述换电站云端;
异常信息接收模块,用于接收所述换电站云端基于所述实时换电数据生成的检测结果,所述检测结果用于表征所述实时换电数据是否异常。
本方案中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
较佳地,所述同步模块具体用于基于预设的VPN网络将换电站的实时换电数据同步上传到所述换电站云端。
本方案中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
较佳地,所述云管理系统还包括:
备份模块,用于将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储。
本方案中,对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。
较佳地,所述云管理系统还包括:
第一周期预设模块,用于预设与换电站对应的第一备份周期;
所述备份模块具体用于基于所述第一备份周期将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储。
本方案中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
较佳地,所述云管理系统还包括:
告警接收模块,用于接收换电站云端基于异常的检测结果生成的告警通知。
本方案中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
较佳地,所述云管理系统还包括:
第一异常确定模块,用于根据所述检测结果确定所述换电站存在异常的目标对象及异常事项;
其中,所述目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,所述异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
本方案中,根据换电站云端返回的检测结果进一步确定所述换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
一种换电站的云管理系统,所述云管理系统应用于换电站云端,具体包括:
同步数据接收模块,用于接收换电站站端同步上传的换电站的实时换电数据;
异常信息检测模块,用于基于所述实时换电数据生成检测结果并发送至所述换电站站端,所述检测结果用于表征所述实时换电数据是否异常。
本方案中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
较佳地,所述同步数据接收模块具体用于接收换电站站端基于预设的VPN网络上传的换电站的实时换电数据。
本方案中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
较佳地,所述云管理系统还包括:
备份数据接收模块,用于接收所述换电站站端发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集。
本方案中,对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。
较佳地,所述云管理系统还包括:
第二周期预设模块,用于预设与换电站对应的第二备份周期;
所述备份数据接收模块具体用于接收所述换电站站端基于所述第二备份周期发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集。
本方案中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
较佳地,所述云管理系统还包括:
告警模块,用于基于异常的检测结果生成告警通知并发送至所述换电站站端。
本方案中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
较佳地,所述云管理系统还包括:
第二异常确定模块,用于根据所述检测结果确定所述换电站存在异常的目标对象及异常事项;
其中,所述目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,所述异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
本方案中,根据换电站云端返回的检测结果进一步确定所述换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
一种服务器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的换电站的云管理方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的换电站的云管理方法。
本发明的积极进步效果在于:本申请中将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
附图说明
图1为本发明实施例1的应用于换电站站端的换电站的云管理方法的流程图。
图2为本发明实施例1的应用于换电站站端的换电站的云管理方法的一种优选实现方式的流程图。
图3为本发明实施例2的应用于换电站云端的换电站的云管理方法的流程图。
图4为本发明实施例2的应用于换电站云端的换电站的云管理方法的一种优选实现方式的流程图。
图5为本发明实施例3的应用于换电站站端的换电站的云管理系统的模块示意图。
图6为本发明实施例3的应用于换电站站端的换电站的云管理系统的一种优选实现方式的模块示意图。
图7为本发明实施例4的应用于换电站云端的换电站的云管理系统的模块示意图。
图8为本发明实施例4的应用于换电站云端的换电站的云管理系统的一种优选实现方式的模块示意图。
图9为本发明实施例5的电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
一种换电站的云管理方法,云管理方法应用于换电站站端,可以采用站端电子设备和/或换电站的站点服务器实现,站端电子设备可以但不限于移动终端、电脑、站内充换电设备的嵌入式芯片等,换电站的站点服务器可以但不限于服务器或服务器集群等,如图1所示,具体包括:
步骤11、将换电站的实时换电数据同步上传到换电站云端;
其中,换电站的实时换电数据为在换电站内获取到的与换电相关的数据,包括但不限于:换电数据、充电数据、 电池数据、换电用户数据、运营状态数据等。响应成功接入换电站云端的接入消息后再进行数据的实时同步,具体的,由换电站发起接入请求;然后接收换电站云端响应接入请求生成的接入消息;再基于接入消息实现换电站的站点服务器的部署,并生成与站点服务器对应的管理账号,以用于后续的登陆连接使用。
步骤12、接收换电站云端基于实时换电数据生成的检测结果,检测结果用于表征实时换电数据是否异常。
其中,可以通过集成工具,比如集成了archery,soar,zabbix,xtrabackup,ansible等来操作、管理、备份、监控换电站数据。研发或者业务人员收到告警,也可通过集成在本地的工具查看是应用问题、电池问题还是换电过程中出现了异常,及时处理提高换电效率。
上述实现方式中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
本实施例中,提供换电站的云管理方法的一种优选实现方式,如图2所示,步骤11具体包括:
步骤111、基于预设的VPN网络将换电站的实时换电数据同步上传到换电站云端。
其中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
参见图2,步骤12之后,云管理方法还包括:
步骤13、将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
其中,通过在换电站端基于shell脚本加ansible实现数据备份生成备份数据集,并把备份集上传到换电站云端。对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。另外,可以在响应换电站云端发起的第一备份请求后,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储;亦或者,基于换电站生成的第二备份请求,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
参见图2,步骤13之前,云管理方法还包括:
步骤121、预设与换电站对应的第一备份周期;
进一步的,步骤13具体包括:
基于第一备份周期将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
上述实现方式中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
参见图2,步骤13之后,云管理方法还包括:
步骤14、接收换电站云端基于异常的检测结果生成的告警通知。
其中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
步骤15、根据检测结果确定换电站存在异常的目标对象及异常事项;
其中,目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
其中,还可以在通知换电站工作人员修复异常目标对象及异常事项后,修复后修改为检测结果正常,并同步上传 到云端服务器。
上述实现方式中,根据换电站云端返回的检测结果进一步确定换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
本实施例中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
实施例2
一种换电站的云管理方法,云管理方法应用于换电站云端,可以采用云端电子设备和/或云端服务器实现,云端电子设备可以但不限于移动终端、电脑等,云端服务器可以但不限于服务器或服务器集群等,如图3所示,具体包括:
步骤21、接收换电站站端同步上传的换电站的实时换电数据;
其中,换电站的实时换电数据为在换电站内获取到的与换电相关的数据,包括但不限于:换电数据、充电数据、电池数据、换电用户数据、运营状态数据等。通过响应换电站发起的接入请求,生成对应的接入消息并发送至所述换电站,所述接入请求用于表征所述换电站成功接入所述换电站云端。同时,换电站站端会基于接入消息生成与站点服务器对应的管理账号,以用于后续的登陆连接使用。
步骤22、基于实时换电数据生成检测结果并发送至换电站站端,检测结果用于表征实时换电数据是否异常。
其中,可以通过集成工具,比如集成了archery,soar,zabbix,xtrabackup,ansible等来操作、管理、备份、监控换电站数据。研发或者业务人员收到告警,也可通过集成在本地的工具查看是应用问题、电池问题还是换电过程中出现了异常,及时处理提高换电效率。
上述实现方式中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
本实施例中,提供换电站的云管理方法的一种优选实现方式,如图4所示,步骤21具体包括:
步骤211、接收换电站站端基于预设的VPN网络上传的换电站的实时换电数据。
其中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
参见图4,步骤22之后,云管理方法还包括:
步骤23、接收换电站站端发送的基于换电站的本地换电数据和检测结果生成的备份数据集。
其中,通过在换电站端基于shell脚本加ansible实现数据备份生成备份数据集,并把备份集上传到换电站云端。对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。另外,可以在响应换电站云端发起的第一备份请求后,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储;亦或者,基于换电站生成的第二备份请求,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
参见图4,步骤23之前,云管理方法还包括:
步骤221、预设与换电站对应的第二备份周期;
进一步的,步骤23具体包括:
接收换电站站端基于第二备份周期发送的基于换电站的本地换电数据和检测结果生成的备份数据集。
上述实现方式中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
参见图4,步骤13之后,云管理方法还包括:
步骤24、基于异常的检测结果生成告警通知并发送至换电站站端。
其中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
步骤25、根据检测结果确定换电站存在异常的目标对象及异常事项;
其中,目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
其中,还可以在通知换电站工作人员修复异常目标对象及异常事项后,修复后修改为检测结果正常,并同步到云端服务器。
上述实现方式中,根据换电站云端的检测结果进一步确定换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
本实施例中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
实施例3
一种换电站的云管理系统,云管理系统应用于换电站站端,可以基于站端电子设备和/或换电站的站点服务器实现,站端电子设备可以但不限于移动终端、电脑、站内充换电设备的嵌入式芯片等,换电站的站点服务器可以但不限于服务器或服务器集群等,如图5所示,具体包括:
同步模块31,用于将换电站的实时换电数据同步上传到换电站云端;
其中,换电站的实时换电数据为在换电站内获取到的与换电相关的数据,包括但不限于:换电数据、充电数据、电池数据、换电用户数据、运营状态数据等。响应成功接入换电站云端的接入消息后再进行数据的实时同步,具体的,由换电站发起接入请求;然后接收换电站云端响应接入请求生成的接入消息;再基于接入消息实现换电站的站点服务器的部署,并生成与站点服务器对应的管理账号,以用于后续的登陆连接使用。
异常信息接收模块32,用于接收换电站云端基于实时换电数据生成的检测结果,检测结果用于表征实时换电数据是否异常。
其中,可以通过集成工具,比如集成了archery,soar,zabbix,xtrabackup,ansible等来操作、管理、备份、监控换电站数据。研发或者业务人员收到告警,也可通过集成在本地的工具查看是应用问题、电池问题还是换电过程中出现了异常,及时处理提高换电效率。
上述实现方式中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了 云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
本实施例中,提供换电站的云管理系统的一种优选实现方式,同步模块31具体用于基于预设的VPN网络将换电站的实时换电数据同步上传到换电站云端。
其中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
如图6所示,云管理系统还包括:
备份模块33,用于将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
其中,通过在换电站端基于shell脚本加ansible实现数据备份生成备份数据集,并把备份集上传到换电站云端。对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。另外,可以在响应换电站云端发起的第一备份请求后,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储;亦或者,基于换电站生成的第二备份请求,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
第一周期预设模块34,用于预设与换电站对应的第一备份周期;
备份模块33具体用于基于第一备份周期将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
其中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
告警接收模块35,用于接收换电站云端基于异常的检测结果生成的告警通知。
其中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
第一异常确定模块36,用于根据检测结果确定换电站存在异常的目标对象及异常事项;
其中,目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
其中,还可以在通知换电站工作人员修复异常目标对象及异常事项后,修复后修改为检测结果正常,并同步上传到云端服务器。
上述实现方式中,根据换电站云端返回的检测结果进一步确定换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
本实施例中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
实施例4
一种换电站的云管理系统,云管理系统应用于换电站云端,可以基于云端电子设备和/或云端服务器实现,云端电子设备可以但不限于移动终端、电脑等,云端服务器可以但不限于服务器或服务器集群等,如图7所示,具体包括:
同步数据接收模块41,用于接收换电站站端同步上传的换电站的实时换电数据;
其中,换电站的实时换电数据为在换电站内获取到的与换电相关的数据,包括但不限于:换电数据、充电数据、电池数据、换电用户数据、运营状态数据等。通过响应换电站发起的接入请求,生成对应的接入消息并发送至所述换电站,所述接入请求用于表征所述换电站成功接入所述换电站云端。同时,换电站站端会基于接入消息生成与站点服务器对应的管理账号,以用于后续的登陆连接使用。
异常信息检测模块42,用于基于实时换电数据生成检测结果并发送至换电站站端,检测结果用于表征实时换电数据是否异常。
其中,可以通过集成工具,比如集成了archery,soar,zabbix,xtrabackup,ansible等来操作、管理、备份、监控换电站数据。研发或者业务人员收到告警,也可通过集成在本地的工具查看是应用问题、电池问题还是换电过程中出现了异常,及时处理提高换电效率。
上述实现方式中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
本实施例中,提供换电站的云管理系统的一种优选实现方式,同步数据接收模块41具体用于接收换电站站端基于预设的VPN网络上传的换电站的实时换电数据。
其中,基于预设的VPN网络实现实时数据的同步,确保数据传输的高效性和安全性。
如图8所示,云管理系统还包括:
备份数据接收模块43,用于接收换电站站端发送的基于换电站的本地换电数据和检测结果生成的备份数据集。
其中,通过在换电站端基于shell脚本加ansible实现数据备份生成备份数据集,并把备份集上传到换电站云端。对换电站的本地换电数据以及检测结果进行备份并于云端保存,以用于后续基于大数据进行相关数据分析及研发。另外,可以在响应换电站云端发起的第一备份请求后,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储;亦或者,基于换电站生成的第二备份请求,将换电站的本地换电数据和检测结果生成备份数据集并发送至换电站云端进行存储。
第二周期预设模块44,用于预设与换电站对应的第二备份周期;
备份数据接收模块43具体用于接收换电站站端基于第二备份周期发送的基于换电站的本地换电数据和检测结果生成的备份数据集。
其中,设定与换电站对应的备份周期,便于对备份数据的统计分析,其中,针对不同的换电站可以设定不同的备份周期,提高备份速率,同时也能缓解数据备份时的网络拥堵。
告警模块45,用于基于异常的检测结果生成告警通知并发送至换电站站端。
其中,一旦换电站云端检测出换电异常,可以通过云端监控及时生成告警通知并返回换电站站端,以便于现场维护人员快速反应并处理问题,减少故障处理时间。
第二异常确定模块46,用于根据检测结果确定换电站存在异常的目标对象及异常事项;
其中,目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
其中,还可以在通知换电站工作人员修复异常目标对象及异常事项后,修复后修改为检测结果正常,并同步到云端服务器。
其中,根据换电站云端的检测结果进一步确定换电站存在异常的目标对象及异常事项,比如换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障等,能够快速有效的让现场维护人员知晓具体异常情况,以便于及时处理问题,减少故障处理时间。
本实施例中,将换电站的数据实时同步至云端,并由云端进一步对数据实时检测反馈。数据实时同步确保了云端数据库的时效性,一旦出现换电异常,可以通过云端监控及时报警,也便于维护人员快速反应处理问题,减少故障处理时间,而通过云端统一管理,降低了人工到站点处理问题的时间成本,也方便基于大数据进行后续相关研发。
实施例5
一种服务器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现实施例1或2所述的换电站的云管理方法。
图9为本实施例提供的一种服务器的结构示意图。图9示出了适于用来实现本发明实施方式的示例性服务器90的框图。图9显示的服务器90仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图9所示,服务器90可以以通用计算设备的形式表现,例如其可以为服务器设备。服务器90的组件可以包括但不限于:至少一个处理器91、至少一个存储器92、连接不同系统组件(包括存储器92和处理器91)的总线93。
总线93包括数据总线、地址总线和控制总线。
存储器92可以包括易失性存储器,例如随机存取存储器(RAM)921和/或高速缓存存储器922,还可以进一步包括只读存储器(ROM)923。
存储器92还可以包括具有一组(至少一个)程序模块924的程序工具925,这样的程序模块924包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器91通过运行存储在存储器92中的计算机程序,从而执行各种功能应用以及数据处理。
服务器90也可以与一个或多个外部设备94(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口95进行。并且,服务器90还可以通过网络适配器96与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器96通过总线93与服务器90的其它模块通信。应当明白,尽管图中未示出,可以结合服务器90使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了服务器的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例6
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现实施例1或2所述的换电站的云管理方法。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可 擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例1或2所述的换电站的云管理方法。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (15)

  1. 一种换电站的云管理方法,其特征在于,所述云管理方法应用于换电站站端,具体包括:
    将换电站的实时换电数据同步上传到所述换电站云端;
    接收所述换电站云端基于所述实时换电数据生成的检测结果,所述检测结果用于表征所述实时换电数据是否异常。
  2. 如权利要求1所述的换电站的云管理方法,其特征在于,所述将换电站的实时换电数据同步上传到所述换电站云端,具体包括:
    基于预设的VPN网络将换电站的实时换电数据同步上传到所述换电站云端。
  3. 如权利要求1-2任一项所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储。
  4. 如权利要求3所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    预设与换电站对应的第一备份周期;
    所述将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储,具体包括:
    基于所述第一备份周期将换电站的本地换电数据和所述检测结果生成备份数据集并发送至所述换电站云端进行存储。
  5. 如权利要求1-4任一项所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    接收换电站云端基于异常的检测结果生成的告警通知。
  6. 如权利要求1-5任一项所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    根据所述检测结果确定所述换电站存在异常的目标对象及异常事项;
    其中,所述目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,所述异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
  7. 一种换电站的云管理方法,其特征在于,所述云管理方法应用于换电站云端,具体包括:
    接收换电站站端同步上传的换电站的实时换电数据;
    基于所述实时换电数据生成检测结果并发送至所述换电站站端,所述检测结果用于表征所述实时换电数据是否异常。
  8. 如权利要求7所述的换电站的云管理方法,其特征在于,所述接收换电站站端上传的换电站的实时换电数据,具体包括:
    接收换电站站端基于预设的VPN网络上传的换电站的实时换电数据。
  9. 如权利要求7-8任一项所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    接收所述换电站站端发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集。
  10. 如权利要求9所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    预设与换电站对应的第二备份周期;
    所述接收所述换电站站端发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数据集,具体包括:
    接收所述换电站站端基于所述第二备份周期发送的基于所述换电站的本地换电数据和所述检测结果生成的备份数 据集。
  11. 如权利要求7-10任一项所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    基于异常的检测结果生成告警通知并发送至所述换电站站端。
  12. 如权利要求7-11任一项所述的换电站的云管理方法,其特征在于,所述云管理方法还包括:
    根据所述检测结果确定所述换电站存在异常的目标对象及异常事项;
    其中,所述目标对象包括目标换电电池、目标换电流程和/或目标换电设备中的至少一个,所述异常事项包括换电程序异常、换电电池故障、换电设备故障、充电设备故障和电池取出故障中的至少一个。
  13. 一种换电站的云管理系统,其特征在于,所述云管理系统应用于换电站站端,具体包括:
    同步模块,用于将换电站的实时换电数据同步上传到所述换电站云端;
    异常信息接收模块,用于接收所述换电站云端基于所述实时换电数据生成的检测结果,所述检测结果用于表征所述实时换电数据是否异常。
  14. 一种服务器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至12任一项所述的换电站的云管理方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至12任一项所述的换电站的云管理方法。
PCT/CN2022/142953 2021-12-31 2022-12-28 换电站的云管理方法、系统、服务器及存储介质 WO2023125702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111672804.2 2021-12-31
CN202111672804.2A CN116416085A (zh) 2021-12-31 2021-12-31 换电站的云管理方法、系统、服务器及存储介质

Publications (1)

Publication Number Publication Date
WO2023125702A1 true WO2023125702A1 (zh) 2023-07-06

Family

ID=86998042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142953 WO2023125702A1 (zh) 2021-12-31 2022-12-28 换电站的云管理方法、系统、服务器及存储介质

Country Status (2)

Country Link
CN (1) CN116416085A (zh)
WO (1) WO2023125702A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709243A (zh) * 2023-08-07 2023-09-05 北京这房行信息技术有限公司 一种智能换电站系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331051A (ja) * 2003-04-18 2004-11-25 Apex Communications:Kk 車両状態監視システム
CN106873508A (zh) * 2016-12-27 2017-06-20 上海蔚来汽车有限公司 电动车换电站调度系统与方法
CN109510965A (zh) * 2017-11-09 2019-03-22 蔚来汽车有限公司 换电监控系统
CN112140936A (zh) * 2020-09-29 2020-12-29 中国铁塔股份有限公司 充电监控方法、系统和存储介质
CN112488436A (zh) * 2019-09-12 2021-03-12 北京新能源汽车股份有限公司 换电站运营系统
CN114694354A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电站安全告警方法及系统、云端服务器及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331051A (ja) * 2003-04-18 2004-11-25 Apex Communications:Kk 車両状態監視システム
CN106873508A (zh) * 2016-12-27 2017-06-20 上海蔚来汽车有限公司 电动车换电站调度系统与方法
CN109510965A (zh) * 2017-11-09 2019-03-22 蔚来汽车有限公司 换电监控系统
CN112488436A (zh) * 2019-09-12 2021-03-12 北京新能源汽车股份有限公司 换电站运营系统
CN112140936A (zh) * 2020-09-29 2020-12-29 中国铁塔股份有限公司 充电监控方法、系统和存储介质
CN114694354A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电站安全告警方法及系统、云端服务器及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709243A (zh) * 2023-08-07 2023-09-05 北京这房行信息技术有限公司 一种智能换电站系统
CN116709243B (zh) * 2023-08-07 2023-10-13 北京这房行信息技术有限公司 一种智能换电站电池管理与调度系统

Also Published As

Publication number Publication date
CN116416085A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
TWI746512B (zh) 實體機器故障分類處理方法、裝置和虛擬機器恢復方法、系統
WO2021027481A1 (zh) 故障处理方法、装置、计算机设备、存储介质及存储系统
CN106462206B (zh) 用于监控具有不同冗余度等级的ups组的配置的系统和方法
CN104126182A (zh) 远程通信的系统和方法
CN101753357A (zh) 一种网络服务器集中监控系统和方法
CN106802854B (zh) 一种多控制器系统的故障监控系统
WO2023125702A1 (zh) 换电站的云管理方法、系统、服务器及存储介质
CN104618501A (zh) 一种服务器集群系统的无线智能监控管理装置
CN102902615A (zh) 一种Lustre并行文件系统错误报警方法及其系统
CN105335256A (zh) 在整机柜服务器中切换备份磁盘的方法、装置和系统
CN105051692A (zh) 通过隔离的自动化故障处理
CN112882901A (zh) 一种分布式处理系统健康状态智能监控器
CN107026759A (zh) 一种基于bmc的远程管理bbu模块的固件及其开发方法
CN110912755A (zh) 一种云环境下网卡故障监控与自动恢复的系统及方法
CN108519940A (zh) 一种存储设备告警方法、系统及计算机可读存储介质
CN203289491U (zh) 一种故障节点可自动修复的集群存储系统
US8819481B2 (en) Managing storage providers in a clustered appliance environment
CN109995597A (zh) 一种网络设备故障处理方法及装置
CN112905410B (zh) 设备状态监控系统及方法
CN105550065A (zh) 一种进行数据库服务器通信管理的方法和装置
CN114243914A (zh) 电力监控系统
CN111447329A (zh) 呼叫中心中状态服务器的监控方法、系统、设备及介质
CN110647435A (zh) 服务器、硬盘远程控制方法及控制组件
CN101741654B (zh) 操作系统的监控装置与方法
TW202026879A (zh) 運用於資料中心的機櫃異常狀態的遠端排除方法(三)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914953

Country of ref document: EP

Kind code of ref document: A1