WO2023125670A1 - 机架式电子设备和机柜 - Google Patents

机架式电子设备和机柜 Download PDF

Info

Publication number
WO2023125670A1
WO2023125670A1 PCT/CN2022/142858 CN2022142858W WO2023125670A1 WO 2023125670 A1 WO2023125670 A1 WO 2023125670A1 CN 2022142858 W CN2022142858 W CN 2022142858W WO 2023125670 A1 WO2023125670 A1 WO 2023125670A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
expansion module
height
housing
mounted electronic
Prior art date
Application number
PCT/CN2022/142858
Other languages
English (en)
French (fr)
Inventor
吴圣美
张显明
伍锡杰
卢桂明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023125670A1 publication Critical patent/WO2023125670A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1488Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the embodiments of the present application relate to the technical field of racks, and in particular, to a rack-mounted electronic device and a cabinet.
  • Rack-mounted electronic equipment such as rack-mounted servers
  • the chassis length, height and width of the rack-mounted server have uniform standards, and functional units such as the motherboard, hard disk, optical floppy drive, memory, CPU, radiator, control card, and power supply are assembled in the chassis.
  • Embodiments of the present application provide a rack-mounted electronic device and a cabinet.
  • the first aspect of the embodiment of the present application provides a rack-mounted electronic device, including: a device casing, the device casing has a first height, and the first height is a standard height suitable for rack-mounted installation; a main board, the The main board is installed in the device housing, and the main board is provided with a CPU component; the liquid cooling heat dissipation component is installed above the CPU component and is configured to dissipate heat for the CPU component.
  • the sum of the heights of the motherboard, the CPU component and the liquid cooling component is a second height; the expansion module is arranged above the liquid cooling component, and the expansion module has a third height , the sum of the third height and the second height is less than or equal to the first height.
  • the second aspect of the embodiments of the present application provides a cabinet, including at least one rack-mounted electronic device according to any one of the first aspect.
  • FIG. 1 is a schematic diagram of a rack structure of a rack server
  • Fig. 2 is a partially enlarged view of the main board in Fig. 1;
  • Fig. 3 is a comparative schematic diagram of a radiator and a heat dissipation assembly provided by an embodiment of the present application
  • Fig. 4 is a schematic diagram of the installation of a heat dissipation assembly provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a frame structure provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of an extension module provided by an embodiment of the present application.
  • Fig. 7 is another schematic diagram of the extended module structure provided by an embodiment of the present application.
  • Fig. 8 is another schematic diagram of the extension module structure provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the rotation of the expansion module provided by an embodiment of the present application.
  • first”, “second” and the like in the specification and claims and the above drawings are used to distinguish similar objects, and not necessarily used to describe a specific sequence or sequence. It should be understood that if it involves orientation descriptions, for example, the orientation or positional relationship indicated by up, down, front, rear, left, right, etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and The description is simplified, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed in a specific orientation, and operate, and thus should not be construed as limiting the application.
  • Rack-mounted electronic equipment such as rack-mounted servers
  • the chassis length, height and width of the rack-mounted server have uniform standards, and functional units such as the motherboard, hard disk, optical floppy drive, memory, CPU, radiator, control card, and power supply are assembled in the chassis to realize corresponding functions.
  • an embodiment of the present application provides a rack-mounted electronic device.
  • a device housing wherein the device housing has a first height, and the first height is a standard height suitable for rack-mounted installation.
  • the main board wherein the main board is installed in the device housing, the main board is provided with a CPU component, and also includes a liquid cooling heat dissipation component, wherein the liquid cooling heat dissipation component is installed above the CPU component, and is set to dissipate heat for the CPU component, the main board, the CPU component and the liquid cooling
  • the sum of the heights of the heat dissipation components is the second height; and the expansion module, wherein the expansion module is arranged above the liquid cooling heat dissipation component, the expansion module has a third height, and the sum of the third height and the second height is less than or equal to the first height high.
  • This embodiment can effectively increase the storage capacity or computing power of the hard disk in the rack-mounted electronic equipment without changing the standard size of the rack-mounted electronic
  • Rack servers are installed in standard 19-inch cabinets and are generally functional servers. As shown in FIG. 1 , it is a schematic diagram of a rack structure of a rack server in the related art.
  • Fig. 1 it is a rack server with 2U specifications, its main structure is a rack structure 100, the rack structure 100 includes a device housing 110, and the equipment housing 110 is arranged sequentially: a basic hard disk module 120, A fan module 130 , a radiator 140 , a motherboard 150 and a rear card 160 .
  • the basic hard disk module 120 is made up of a plurality of hard disks, such as commonly used are 12 3.5-inch hard disks or 25 2.5-inch hard disks, which are used to realize the storage function of the rack server; the fan module 130 is set to dissipate heat; the mainboard 150
  • the size is about 400mm*400mm in length and width.
  • a CPU component (not shown) is installed above the motherboard 150.
  • the radiator 140 is located on the motherboard 150 and is set for the CPU component and Other components perform heat dissipation; the rear plug-in card 160 is an expansion function component, which is configured to implement function expansion of the rack server by means of hot swapping.
  • FIG. 2 it is a partial enlarged view of the motherboard in FIG. 1 .
  • a heat sink 140 is installed on the main board 150, and the height of the heat sink 140 is relatively high, occupying the entire height space above the main board 150 of the rack structure 100.
  • Other components such as the basic hard disk module 120, The heights of the fan module 130 , the motherboard 150 and the rear plug-in card 160 are all located in a space of about 1 U in the lower half of the height of the rack structure 100 .
  • this embodiment optimizes and reorganizes the rack structure of the rack-mounted electronic equipment.
  • the heat sink in the related art is replaced with a liquid-cooled heat dissipation component with stronger performance but smaller size, so as to free up space for capacity expansion from the rack structure.
  • FIG. 3 it is a schematic diagram comparing the radiator and the liquid-cooled heat dissipation assembly in this embodiment. It can be seen from Figure 3 that in the related art, 2U rack-mounted servers mostly use air-cooled radiators, which are large in size, have many heat pipes, and are relatively high, so they occupy most of the deep space above the motherboard. In the present invention, a liquid-cooled heat dissipation component with a smaller height is used to replace the air-cooled radiator for heat dissipation. It can be seen from FIG. Reserve a certain depth of space for expansion.
  • FIG. 4 it is a schematic diagram of the installation of the liquid-cooled heat dissipation component in an embodiment of the present application.
  • the main board 150 includes: a CPU component, and the liquid cooling component 170 is installed on the CPU component to dissipate heat for the CPU component.
  • the sum of the heights of the motherboard 150, the CPU component and the liquid cooling component 170 is within a preset height range, for example, the preset height range is [1U-preset distance, 1U+preset distance], and the preset distance It can be 3 mm to 10 mm, that is, the height of the liquid cooling component 170 can be similar to the height of other components on the main board, so that a space of about 1 U can be added above the main board 150 for capacity expansion.
  • the liquid-cooled heat dissipation assembly 170 may be a liquid-cooled cold plate radiator or a two-phase flow radiator, wherein the liquid-cooled radiator includes: an open-loop radiator and a closed-loop radiator, and the two-phase flow radiator includes: a loop Road heat pipe radiator and loop gravity heat pipe (Loop Thermosiphon, LTS) radiator.
  • the liquid-cooled radiator includes: an open-loop radiator and a closed-loop radiator
  • the two-phase flow radiator includes: a loop Road heat pipe radiator and loop gravity heat pipe (Loop Thermosiphon, LTS) radiator.
  • the liquid-cooled radiator in this embodiment, since the heat dissipation rate of the liquid is much greater than that of the air, the heat dissipation effect of the liquid-cooled radiator is better than that of the air-cooled radiator.
  • the liquid-cooled radiator generally includes: a water cooling block, a circulating fluid, a water pump , pipes and tanks or heat exchangers.
  • the water cooling block is a metal block with a water channel inside, made of copper or aluminum, in contact with the CPU and will absorb the heat of the CPU; the circulating fluid flows in the circulating pipeline by the action of the water pump, and the liquid that absorbs the heat of the CPU becomes It will flow away from the water cooling block on the CPU, and the new low-temperature circulating fluid will continue to absorb the heat of the CPU; the water pipe connects the water pump, the water cooling block and the water tank, and its function is to allow the circulating fluid to circulate in a closed channel without The external leakage allows the liquid cooling system to work normally; the water tank is used to store the circulating fluid, and the heat exchanger is a device similar to a radiator. The circulating fluid transfers heat to the radiator with a large surface area, and the fan on the radiator will flow into the air heat away.
  • two-phase flow means that at least one phase in a flow system is a fluid, and the two-phase flow radiator is powered by a pump or a compressor, and the air bubbles in the liquid are
  • the heat exchange wall surface is continuously generated, detached, and broken, and pumps, compressors and other power drive the cooling medium to flow on the heat exchange surface, thereby realizing heat dissipation.
  • FIG. 5 it is a schematic diagram of a rack structure according to an embodiment of the present application.
  • FIG. 5 is optimized on the basis of FIG. 1.
  • the rack structure 100 includes an equipment housing 110, which is a frame structure.
  • the equipment housing 110 has a first height h 1 , and the first height h 1 is adapted to the rack.
  • Standard height for vertical installation such as 2U, 4U, 6U or 8U.
  • the internal layout of the device housing 110 is: a basic hard disk module 120 , a fan module 130 , a liquid cooling heat dissipation assembly 170 , an expansion module 180 , a main board 150 and a rear card 160 .
  • the expansion module 180 is placed in the depth space reserved above the main board 150, and the main board 150 and the liquid cooling heat dissipation assembly 170 are below the expansion module 180.
  • the main board 150 and the liquid cooling heat dissipation assembly 170 are not shown in the figure.
  • the structural relationship is as follows:
  • the motherboard 150 is installed in the device housing 110 .
  • low-height components are also installed on the motherboard 150, and the low-height components are arranged adjacent to the CPU component.
  • the expansion module 180 covers the top of the cooling assembly 170 and the low-height components, wherein the low-height components include memory Bar components and other necessary devices to realize the functions of the motherboard.
  • the liquid cooling heat dissipation assembly 170 is installed on the CPU assembly to dissipate heat for the CPU assembly and the memory module assembly, wherein the sum of the heights of the motherboard 150 , the CPU assembly 152 and the liquid cooling heat dissipation assembly 170 is the second height h 2 .
  • the expansion module 180 is located above the motherboard 150, in some embodiments: above the liquid cooling heat dissipation assembly 170, the expansion module 180 has a third height h 3 , in one embodiment, the third height h 3 and the second height h
  • the sum of 2 is less than or equal to the first height h 1 , that is, after installing the liquid-cooling heat dissipation assembly 170 and the expansion module 180 inside the equipment housing 110, the height of the equipment housing 110 still meets the standard size of rack-mounted equipment, for example,
  • the expansion module housing 182 is snapped into the equipment housing 110, and when the expansion module housing 182 is flat, the upper surface of the expansion module housing 182 is flush with the upper surface of the equipment housing 110 or slightly lower than the equipment housing 110.
  • the upper surface of the casing 110 that is, the expansion module 180 can be placed in the device casing 110 .
  • the second height h2 when the first height h1 is 2U, the second height h2 may be about 1U, that is, the second height h2 is less than or equal to the height of 1U, or greater than the height of the preset error value of 1U, Expressed as: 1U- ⁇ h 2 ⁇ 1U+ ⁇ , where ⁇ represents a preset error value, which can be any value from 1mm to 17mm, and is not specifically limited here.
  • FIG. 6 it is a schematic structural diagram of the expansion module in this embodiment.
  • the expansion module 180 includes: at least one expansion unit 181, an expansion module housing 182 and a cable 184, wherein at least one expansion unit 181 is plugged into the expansion module housing 182, and the expansion module housing 182 is installed in the device housing 110 , and the expansion module housing 182 is communicatively connected with the main board 150 through the cable 184 .
  • the expansion module housing 182 is a frame structure, and in some embodiments includes: an expansion module housing upper cover 1821, an expansion module housing partition 1822, an expansion module housing bottom plate 1823, a housing back plate 1824 and Two expansion module housing side panels 1828.
  • the expansion module housing upper cover 1821, the expansion module housing bottom plate 1823, two expansion module housing side plates 1828 and the housing back plate 1824 constitute a frame structure, and the expansion module housing partition 1822 will
  • the frame structure is divided into accommodating areas of at least two extension units 181 , namely installation slots, and the at least two installation slots correspond to at least two extension units.
  • the expansion unit 181 is plugged into the corresponding installation slot, and communicates with the housing backplane 1824.
  • the housing backplane 1824 communicates with the main board 150 through the cable 184, that is, one end of the expansion unit 181 is in contact with the housing backplane 1824. , and then communicated with the motherboard 150 through the cable 184, which can increase the storage capacity or computing power of the hard disk.
  • the expansion unit 181 may be a hard disk component or a GPU component, which can be selected according to actual performance requirements. For example, if it is necessary to expand storage performance, the expansion unit 181 is a hard disk component; when it is necessary to expand computing capabilities, the expansion unit 181 is a GPU component.
  • the extension unit 181 is a GPU component
  • the length of the GPU component is not greater than 312 mm, that is, the GPU is a full-length GPU.
  • a GPU of this size is not easy to be placed in a rack server
  • the rack structure is optimized and adjusted so that the expansion module of the rack server can be adapted to install a GPU component of this size.
  • the power of the CPU component is above 250W, such as 350W or 400W. Because the higher the power of the CPU, the more heat it generates. If an air-cooled radiator is used, the size of the air-cooled radiator will be larger. Therefore, the high-performance and small-sized liquid-cooled heat dissipation components used in this embodiment can adapt to high-power CPUs. Components that can improve the computing performance of rack-mounted servers.
  • the height of the expansion module 180 ranges from 22 mm to 32 mm, that is, the third height h3 ranges from 22 mm to 32 mm, for example, 27 mm.
  • FIG. 6 shows four accommodating areas, where four expansion units 181 can be inserted.
  • the expansion unit 181 is a hard disk assembly
  • the hard disk assembly is a 3.5-inch hard disk or a 2.5-inch hard disk.
  • four 3.5-inch hard disks can be plugged into the installation slot of the expansion module 180 to increase the storage capacity by about 33%, or insert Connect 10 2.5-inch hard drives to increase the storage capacity by about 40%, which is not specifically limited here.
  • the cable 184 adopts a Slimline cable, and the Slimline cable is connected through a Slimline interface.
  • the Slimline interface is a high-density, small-sized connection interface, and the signal type transmitted by the Slimline interface is a SATA signal, which can realize the The communication interconnection between the CPU component in 150 and the expansion unit 181 realizes fast, reliable and seamless data transmission, and ensures the safe circulation of data.
  • FIG. 7 is another schematic diagram of the expansion module.
  • the device case 110 also includes: two side plates of the device case, and the extension module case 182 also includes: a rotating shaft 183 , one end of the extension module case 182 is connected to one of the device case sides of the device case 110 through the rotating shaft 183
  • the board is connected so that the open end of the expansion module housing 182 (that is, the end for inserting the expansion unit 181) rotates at a preset angle along the rotating shaft 183, where the preset angle refers to limiting the rotation angle of the expansion module, Avoid affecting other components inside the device housing.
  • the rotating shaft 183 is installed on at least one side plate 1828 of the expansion module housing, for example, there are two groups of rotating shafts 183 symmetrically distributed on both sides of the expansion module housing 182 .
  • FIG. 8 is another schematic diagram of the expansion module. It can be seen in the figure that at least one end of the rotating shaft 183 is also sleeved with a torsion spring 1831 .
  • the spring clamping slot 1832 of 1831 that is, the rotating shaft 183 is clamped in the spring clamping slot 1832 through the torsion spring 1831 , one side is connected with the rotating shaft 183 , and the other side is sleeved with the expansion module housing 182 .
  • the torsion spring 1831 stores force, and when the expansion module housing 182 is disengaged from the equipment housing 110, the torsion spring 1831 drives the expansion module housing with the help of the previously stored force 182 rotates upwards along the rotating shaft 183.
  • the expansion module housing 182 is installed above the main board 150, it can be placed in a way, or can be clamped and fixed.
  • the expansion module housing 182 is clamped in the device housing 110
  • the expansion module housing 182 further includes: a housing clamping structure arranged at one end of the side plate 1828 of the expansion module housing 1825, the housing clamping structure 1825 is located on the same side as the rotating shaft 183, one side plate of the device housing 110 includes a clamping groove 1833, and the expansion module housing 182 is clamped with the inner side of the device housing 110 through the housing clamping structure 1825
  • the open end of the expansion module housing 182 is engaged with the side plate of the device housing 110 through the engaging groove 1833 through the engaging structure 1825 of the shell.
  • the housing engagement structure 1825 and the corresponding rotating shaft 183 can also be symmetrically arranged on the two side plates of the device housing 110 .
  • the housing clamping structure 1825 includes: a buckle 1826 and a stop structure 1827. Referring to FIG. The connecting groove 1833 is engaged, and when the buckle 1826 is disengaged from the side plate of the device housing, that is, the buckle 1826 is disengaged from the engaging groove 1833, and the torsion spring 1831 makes the opening end of the expansion module housing 182 rotate around the rotating shaft 183 As far as the stop structure 1827 , the stop structure 1827 is locked on the side plate of the device casing 110 to ensure that the extension module casing 182 does not rotate beyond a preset angle.
  • the buckle 1826 when the expansion module 180 is installed, the buckle 1826 is disengaged from the engagement groove 1833 of the side plate of the device housing 110, and the expansion module 180 is rotated around the rotating shaft 183 until the front end (the expansion module housing The stop structure 1827 of the opening end of 182) is attached to the device housing 110. At this time, the buckle 1826 is engaged with the inner side of the device housing 110, and the installation process is completed.
  • FIG. 9 it is a schematic diagram of the rotation of the expansion module in this embodiment.
  • the accommodation area realizes operations such as replacement, hot-swapping and maintenance of expansion units such as hard disk components or GPU components.
  • An embodiment of the present application provides a rack structure, including: a device case, wherein the device case has a first height, the first height is a standard height suitable for rack installation, a main board, wherein the main board is installed in the device case,
  • the motherboard is provided with a CPU component, and also includes a liquid-cooled heat dissipation component, wherein the liquid-cooled heat dissipation component is installed above the CPU component, and is configured to dissipate heat for the CPU component, and the sum of the heights of the motherboard, the CPU component, and the liquid-cooled heat dissipation component is the second height ; and an extension module, wherein the extension module is arranged above the liquid cooling heat dissipation component, the extension module has a third height, and the sum of the third height and the second height is less than or equal to the first height.
  • This embodiment can effectively increase the storage capacity or computing power of the hard disk in the rack-mounted electronic equipment without changing the standard size of the rack-mounted electronic equipment, expand the application range of the
  • the rack-mounted electronic device is a server or a storage device, which is not specifically limited here.
  • an embodiment of the present application further provides a cabinet, including at least one rack-mounted electronic device as described in any one of the above items.
  • a rack-mounted electronic device provided in an embodiment of the present application, compared with related technologies, includes: a device housing, wherein the device housing has a first height, the first height is a standard height suitable for rack-mounted installation, a main board, Wherein the mainboard is installed in the device housing, the mainboard is provided with a CPU component, and also includes a liquid cooling heat dissipation component, wherein the liquid cooling heat dissipation component is installed above the CPU component, and is set to dissipate heat for the CPU component, the mainboard, the CPU component and the liquid cooling heat dissipation component The sum of the heights is the second height; and the extension module, wherein the extension module is arranged above the liquid cooling heat dissipation assembly, the extension module has a third height, and the sum of the third height and the second height is less than or equal to the first height.
  • This embodiment can expand the functional modules of the rack-mounted electronic equipment without changing the standard size of the rack-mounted equipment, thereby effectively improving the performance of the rack-mounted

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提出一种机架式电子设备和机柜,涉及机箱技术领域,机架式电子设备包括:设备壳体(110),设备壳体(110)具有第一高度,第一高度为适应机架式安装的标准高度,主板(150),其中主板(150)安装在设备壳体(110)内,主板(150)上设置有CPU组件(152),还包括液冷散热组件(170),其中液冷散热组件(170)安装在CPU组件(152)上方,被设置为为CPU组件(152)散热,主板(150)、CPU组件(152)和液冷散热组件(170)的高度之和为第二高度;以及扩展模组(180),其中扩展模组(180)设置在液冷散热组件(170)上方,扩展模组(180)具有第三高度,第三高度和第二高度之和小于或等于第一高度。

Description

机架式电子设备和机柜
相关申请的交叉引用
本申请基于申请号为202111678108.2、申请日为2021年12月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及机架技术领域,尤其涉及一种机架式电子设备和机柜。
背景技术
机架式电子设备,例如机架式服务器,是一种常见的服务器架构,具有良好的稳定性、安全性以及数据处理能力。机架式服务器的机箱长度、高度和宽度具有统一标准,将主板、硬盘、光软驱、内存、CPU、散热器、控制卡、电源等功能单元组装在机箱内。
随着机架式电子设备对性能要求越来越高,需要扩展功能模块以达到所需的性能要求,然而,受限于机架式设备标准尺寸和内部器件尺寸的限制,目前内部并无空间可用于扩展性能。例如,目前服务器或存储设备等机架式电子设备对存储密度或者运算能力的要求越来越高,服务器需要不断增加硬盘存储量以满足存储密度要求,或者利用GPU组件提升运算能力要求,但是在不改变机架式设备标准尺寸的前提下,直接进行硬盘扩容,一方面其内部也并无多余空间进行硬盘数量扩展,另一方面会带来散热问题和不稳定性的风险,直接采用大容量硬盘又受到工艺的限制,较难实现。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种机架式电子设备和机柜。
本申请实施例第一方面提供一种机架式电子设备,包括:设备壳体,所述设备壳体具有第一高度,所述第一高度为适应机架式安装的标准高度;主板,所述主板安装在所述设备壳体内,所述主板上设置有CPU组件;液冷散热组件,所述液冷散热组件安装在所述CPU组件上方,被设置为为所述CPU组件散热,所述主板、所述CPU组件和所述液冷散热组件的高度之和为第二高度;扩展模组,所述扩展模组设置在所述液冷散热组件上方,所述扩展模组具有第三高度,所述第三高度和所述第二高度之和小于或等于所述第一高度。
本申请实施例第二方面提供一种机柜,包括至少一个如第一方面任一项所述的机架式电子设备。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动性的前提下,还可以根据这些附 图获得其他的附图。
图1是一种机架式服务器的机架结构示意图;
图2是图1中主板部分局部放大图;
图3是本申请一个实施例提供的散热器和散热组件对比示意图;
图4是本申请一个实施例提供的散热组件的安装示意图;
图5是本申请一个实施例提供的机架结构示意图;
图6是本申请一个实施例提供的扩展模组结构示意图;
图7是本申请一个实施例提供的扩展模组结构又一示意图;
图8是本申请一个实施例提供的扩展模组结构又一示意图;
图9是本申请一个实施例提供的扩展模组旋转示意图;
附图标记:100-机架结构,110-机架壳体,120-基本硬盘模块、130-风扇模组、140-散热器、150-主板,160-后部插卡,151-CPU组件,170-散热组件,180-扩展模组、181-扩展单元、182-扩展模组壳体、183-转轴,1831-扭矩弹簧,184-线缆、1821-扩展模组壳体上盖、1822-扩展模组壳体隔板、1823-扩展模组壳体底板、1824-壳体背板,1825-壳体卡接结构,1826-卡扣,1827-止位结构、1828-扩展模组壳体侧板、1832-弹簧卡槽1833-卡接槽。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。需要理解的是,如果涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
需要说明的是,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同方案。
机架式电子设备,例如机架式服务器,是一种常见的服务器架构,具有良好的稳定性、安全性以及数据处理能力。机架式服务器的机箱长度、高度和宽度具有统一标准,将主板、硬盘、光软驱、内存、CPU、散热器、控制卡、电源等功能单元组装在机箱内实现相应的功能。
随着机架式电子设备对性能要求越来越高,需要扩展功能模块以达到所需的性能要求,然而,受限于机架式设备标准尺寸和内部器件尺寸的限制,目前内部并无空间可用于扩展性能。例如,目前服务器或存储设备等机架式电子设备对存储密度或者运算能力的要求越来越高,服务器需要不断增加硬盘存储量以满足存储密度要求,或者利用GPU组件提升运算能力要求。对于机架式服务器来说,如果需要进行存储扩容,一方面其内部也并无多余空间进行 硬盘数量扩展,直接增加硬盘数量会占用额外的空间,需要改变机架服务器的尺寸,从而导致机架服务器不能适配整体柜机。另一方面,由于机架式服务器在工作的时候其内部的电子元件会释放出较大的热量,机箱背部的电源、CPU以及显卡等发热量大的元件长期在过热的环境中会减少其使用的年限,因此直接增加硬盘数量或者插入GPU组件会带来散热和稳定性风险,需要解决散热问题,如果直接增加散热器,也会导致占用机箱内部较多的有效空间。另一方面,如果要保持硬盘尺寸不变,直接采用大容量硬盘又受到工艺的限制,较难实现。
因此,本申请实施例提供了一种机架式电子设备,与相关技术相比,包括:设备壳体,其中设备壳体具有第一高度,第一高度为适应机架式安装的标准高度,主板,其中主板安装在设备壳体内,主板上设置有CPU组件,还包括液冷散热组件,其中液冷散热组件安装在CPU组件上方,被设置为为CPU组件散热,主板、CPU组件和液冷散热组件的高度之和为第二高度;以及扩展模组,其中扩展模组设置在液冷散热组件上方,扩展模组具有第三高度,第三高度和第二高度之和小于或等于第一高度。本实施例能够在不改变机架式设备标准尺寸的前提下,有效提升机架式电子设备中硬盘存储容量或运算能力,扩展机架式电子设备的适用范围,提高产品竞争力。
下面结合附图,对本申请实施例作阐述。
本实施例中机架式电子设备有2U、4U、6U或者8U等不同规格,其中1U(1U=1.75英寸=44.45mm),下文以机架式服务器为例进行说明。
机架式服务器安装在标准的19英寸机柜里面,一般为功能型服务器。如图1所示,为相关技术中一种机架式服务器的机架结构示意图。
参照图1所示,为2U规格的一种机架式服务器,其主体结构为机架结构100,机架结构100包括设备壳体110,设备壳体110内依次布局的:基本硬盘模块120、风扇模组130、散热器140、主板150和后部插卡160。其中,基本硬盘模块120由多个硬盘构成,例如常用的是12个3.5寸硬盘或者25个2.5寸硬盘,用于实现机架式服务器的存储功能;风扇模组130被设置为散热;主板150的尺寸大约是长宽400mm*400mm,主板150的上方安装CPU组件(图中未示出),主板150上方有约400mm的深度空间,散热器140位于主板150上,被设置为给CPU组件和其他部件进行散热;后部插卡160为扩展功能组件,被设置为通过热插拔的方式实现对该机架式服务器进行功能扩展。
参照图2,为图1中主板部分局部放大图。
结合图1和图2可见,主板150上面安装有散热器140,且散热器140的高度较高,占据机架结构100的主板150上方的整个高度空间,其他的组件(例如基本硬盘模块120、风扇模组130、主板150和后部插卡160)的高度均位于机架结构100高度下半段大约1U的空间内。
根据图1和图2的内容可知,相关技术的机架结构中由于散热器的高度较高,影响机架结构的整体高度,主板上方深度1U的空间并没有被充分利用。因此为了在不改变机箱尺寸的情况下进行扩容,本实施例对机架式电子设备的机架结构进行优化和重整。
在一实施例中,将相关技术中散热器替换成性能更强但是尺寸更小的液冷散热组件,以从机架结构中腾出进行扩容的空间。参照图3,为该实施例中散热器和液冷散热组件对比示意图。从图3中可以看出,相关技术中2U结构机架式服务器多使用风冷散热器,该散热器体积大,热管多,高度较大,因此占据主板上方大部分深度空间,而本实施例中利用高度较 小的液冷散热组件替代风冷散热器进行散热,图3中可见,本实施例采用的液冷散热组件比相关技术中散热器的高度低,能够实现在主板上方空间中预留出一定深度的空间用于扩容。
参照图4,为本申请一实施例中液冷散热组件的安装示意图。
图4中,主板150包括:CPU组件,液冷散热组件170安装在CPU组件上,为CPU组件进行散热。
在一实施例中,主板150、CPU组件和液冷散热组件170的高度之和位于预设高度范围内,例如预设高度范围为[1U-预设距离,1U+预设距离],预设距离可以是3mm至10mm,即液冷散热组件170的高度可以近似于主板上其他部件的高度,使得主板150上方能够增加1U左右深度的空间,用于扩容。
在一实施例中,液冷散热组件170可以是液冷冷板散热器或两相流散热器,其中液冷散热器包括:开环散热器和闭环散热器,两相流散热器包括:环路热管散热器和环路重力热管(Loop Thermosiphon,LTS)散热器。
对于本实施例中液冷散热器来说,由于液体的散热速度远远大于空气,液冷散热器的散热效果优于风冷散热器,液冷散热器一般包含:水冷块、循环液、水泵、管道和水箱或换热器。水冷块是一个内部留有水道的金属块,由铜或铝制成,与CPU接触并将吸收CPU的热量;循环液由水泵的作用在循环的管路中流动,吸收了CPU热量的液体就会从CPU上的水冷块中流走,而新的低温的循环液将继续吸收CPU的热量;水管连接水泵、水冷块和水箱,其作用是让循环液在一个密闭的通道中循环流动而不外漏,让液冷散热系统正常工作;水箱用来存储循环液,换热器就是一个类似散热片的装置,循环液将热量传递给具有大表面积的散热片,散热片上的风扇则将流入空气的热量带走。
对于本实施例中两相流散热器来说,两相流是指在一个流动系统中至少有一相为流体,两相流散热器由泵或者压缩机等动力驱动来提供动力,液体中气泡在换热壁面不断产生、脱离、破碎,泵、压缩机等动力驱动冷却工质在换热表面流动,从而实现散热。
上述实施例,利用液冷散热组件替换散热器,降低高度,在主板上方预留出深度空间用于进行扩容。参照图5,为本申请一实施例的机架结构示意图。
图5在图1的基础上进行优化,机架结构100包括设备壳体110,设备壳体110为框式结构,设备壳体110具有第一高度h 1,第一高度h 1为适应机架式安装的标准高度,例如2U、4U、6U或者8U。
设备壳体110的内部布局为:基本硬盘模块120、风扇模组130、液冷散热组件170、扩展模组180、主板150和后部插卡160。其中,扩展模组180安置在主板150上方预留出深度空间内,主板150以及液冷散热组件170在扩展模组180的下方,图中未示出主板150以及液冷散热组件170,在一些实施例中结构关系如下所述:
主板150上面安装:CPU组件,主板150安装在设备壳体110内。参照图2,主板150上还安装有低高度元器件,低高度元器件与CPU组件相邻设置,扩展模组180覆盖于散热组件170和低高度元器件的上方,其中低高度元器件包括内存条组件和实现主板功能的其他必备器件。
液冷散热组件170安装在CPU组件上,为CPU组件和内存条组件进行散热,其中主板150、CPU组件152和液冷散热组件170的高度之和为第二高度h 2
扩展模组180位于主板150上方,在一些实施例中是:液冷散热组件170上方,扩展模 组180具有第三高度h 3,在一实施例中,第三高度h 3和第二高度h 2之和小于或等于第一高度h 1,即在设备壳体110内部安装液冷散热组件170和扩展模组180之后,设备壳体110的高度仍然满足机架式设备的标准尺寸,例如,扩展模组壳体182卡接在设备壳体110里,并且扩展模组壳体182平置时,扩展模组壳体182的上表面与设备壳体110的上表面齐平或者略低于设备壳体110的上表面,即扩展模组180能够安置设备壳体110内。
在一实施例中,当第一高度h 1为2U时,第二高度h 2可以是1U左右,即第二高度h 2小于或等于1U的高度,或者,大于1U预设误差值的高度,表示为:1U-σ≤h 2≤1U+σ,其中,σ表示预设误差值,可以是1mm至17mm中任意一个值,在此不做具体限定。
参照图6,为本实施例中扩展模组结构示意图。
结合图6可知,扩展模组180包括:至少一个扩展单元181、扩展模组壳体182和线缆184,其中至少一个扩展单元181插接在扩展模组壳体182内,扩展模组壳体182安装在设备壳体110内,扩展模组壳体182通过线缆184与主板150通信连接。
该实施例的细化结构如下所述:
扩展模组壳体182为框式结构,在一些实施例中包括:扩展模组壳体上盖1821、扩展模组壳体隔板1822、扩展模组壳体底板1823、壳体背板1824和两个扩展模组壳体侧板1828。
其中,扩展模组壳体上盖1821、扩展模组壳体底板1823、两个扩展模组壳体侧板1828和壳体背板1824构成框式结构,扩展模组壳体隔板1822将该框式结构划分成至少两个扩展单元181的容纳区域,即安装槽,至少两个安装槽与至少两个扩展单元相对应。
扩展单元181插接在相应的安装槽内,并与壳体背板1824通信连接,壳体背板1824通过线缆184与主板150通信连接,即扩展单元181的一端与壳体背板1824接触,再通过线缆184与主板150通信连接,能够增加硬盘存储量或者运算能力。
在一实施例中,扩展单元181可以是硬盘组件或者GPU组件,根据实际性能需求选取即可。例如需要进行存储性能扩展,扩展单元181为硬盘组件,需要进行运算能力扩展时,扩展单元181为GPU组件。
在一实施例中,如果扩展单元181为GPU组件,则GPU组件的长度不大于312mm,即GPU属于全长尺寸的GPU,相关技术中,该尺寸的GPU并不容易放入机架式服务器中,本实施例中对机架结构进行优化调整,使得机架式服务器的扩展模组能够适应安装该尺寸的GPU组件。
在一实施例中,如果扩展单元181为CPU组件,则CPU组件的功率为250W以上,例如350W或者400W。由于CPU的功率越高,其发热越多,如果采用风冷散热器,则风冷散热器的尺寸较大,因此本实施例中采用高性能小尺寸的液冷散热组件能够适应高功率的CPU组件,能够提高机架式服务器的运算性能。
在一实施例中,当扩展单元181为硬盘组件时,扩展模组180的高度范围为:22mm至32mm,即第三高度h 3的高度范围为:22mm至32mm,例如可以是27mm。该实施例中,图6中示出了4个容纳区域,能够插接4个扩展单元181。如果扩展单元181是硬盘组件,则硬盘组件为3.5寸硬盘,或者2.5寸硬盘,例如扩展模组180的安装槽内可以插接4个3.5寸硬盘,以增加大约33%的存储量,或者插接10个2.5寸硬盘,以增加大约40%的存储量,在此不做具体限定。
在一实施例中,线缆184采用Slimline线缆,Slimline线缆通过Slimline接口进行连接, Slimline接口是一种高密度、小尺寸的连接接口,Slimline接口传输的信号类型为SATA信号,能够实现主板150中CPU组件和扩展单元181之间的通信互联,实现快速、可靠及无缝连接地数据传输,保证数据安全流通。
另外,在一实施例中,参照图7,为扩展模组又一示意图。
设备壳体110还包括:两个设备壳体侧板,扩展模组壳体182还包括:转轴183,扩展模组壳体182的一端通过转轴183与设备壳体110的其中一个设备壳体侧板连接,以使扩展模组壳体182的开口一端(即用于插接扩展单元181的一端)沿着转轴183呈预设角度转动,这里的预设角度指限制扩展模组的转动角度,避免对设备壳体内其他的部件造成影响。
在一实施例中,转轴183安装在至少一个扩展模组壳体侧板1828上,例如转轴183有两组,对称分布在扩展模组壳体182的两侧。
在一实施例中,参照图8,为扩展模组又一示意图,图中可见,转轴183的至少一端还套接有扭矩弹簧1831,设备壳体110的一个侧板包括用于卡接扭矩弹簧1831的弹簧卡槽1832,即转轴183通过扭矩弹簧1831卡接在弹簧卡槽1832中,一边连接转轴183,另一边套接扩展模组壳体182。当扩展模组壳体182与设备壳体110卡接时,扭矩弹簧1831蓄力,当扩展模组壳体182与设备壳体110脱离时,扭矩弹簧1831借助之前蓄力驱动扩展模组壳体182沿着转轴183向上转动。
由于扩展模组壳体182安装在主板150上方,可以是放置的方式,也可以是卡接固定的方式。参照图7,该实施例中,扩展模组壳体182卡接在设备壳体110中,扩展模组壳体182还包括:设置在扩展模组壳体侧板1828一端的壳体卡接结构1825,壳体卡接结构1825与转轴183位于同一侧,设备壳体110的一个侧板包括卡接槽1833,扩展模组壳体182通过壳体卡接结构1825与设备壳体110的内侧卡接,在一些实施例中是:扩展模组壳体182的开口一端通过壳体卡接结构1825与设备壳体110的侧板通过卡接槽1833卡接。该实施例中,还可以在设备壳体110的两个侧板对称设置壳体卡接结构1825和对应的转轴183。
在一实施例中,壳体卡接结构1825包括:卡扣1826和止位结构1827,参照图8,扩展模组壳体182的开口一端通过卡扣1826与设备壳体110的侧板通过卡接槽1833卡接,当卡扣1826与设备壳体的侧板脱离时,即卡扣1826从卡接槽1833中脱离,扭矩弹簧1831使得扩展模组壳体182的开口一端绕着转轴183旋转至止位结构1827,止位结构1827卡在设备壳体110的侧板上,用于确保扩展模组壳体182的旋转不会超过预设角度。
该实施例中,安装扩展模组180时,卡扣1826与设备壳体110的侧板的卡接槽1833呈脱离状态,绕着转轴183旋转扩展模组180,直到前端(扩展模组壳体182的开口一端)的止位结构1827贴合到设备壳体110上,此时卡扣1826与设备壳体110的内侧卡接,即完成安装过程。
当需要维护扩展模块中扩展单元时,旋转扩展模块展现扩展单元,参照图9,为本实施例中扩展模组旋转示意图,将两侧的卡扣向设备壳体内部方向推动,此时卡扣脱离设备壳体的约束,打开卡扣,扩展模块在扭矩弹簧的作用下旋开,绕着转轴旋转,到达一定角度碰到止位结构即自动停止旋转,即可打开扩展模组,操作扩展单元的容纳区域,实现对硬盘组件或者GPU组件等扩展单元进行更换、热插拔维护等操作。
本申请实施例提供了一种机架结构,包括:设备壳体,其中设备壳体具有第一高度,第一高度为适应机架式安装的标准高度,主板,其中主板安装在设备壳体内,主板上设置有CPU 组件,还包括液冷散热组件,其中液冷散热组件安装在CPU组件上方,被设置为为CPU组件散热,主板、CPU组件和液冷散热组件的高度之和为第二高度;以及扩展模组,其中扩展模组设置在液冷散热组件上方,扩展模组具有第三高度,第三高度和第二高度之和小于或等于第一高度。本实施例能够在不改变机架式设备标准尺寸的前提下,有效提升机架式电子设备中硬盘存储容量或运算能力,扩展机架式电子设备的适用范围,提高产品竞争力。
另外,本申请一实施例中机架式电子设备为服务器或存储设备,在此不做具体限定。
另外,本申请一实施例中还提供一种机柜,包括至少一个如上述任一项所述的机架式电子设备。
本申请实施例提供的一种机架式电子设备,与相关技术相比,包括:设备壳体,其中设备壳体具有第一高度,第一高度为适应机架式安装的标准高度,主板,其中主板安装在设备壳体内,主板上设置有CPU组件,还包括液冷散热组件,其中液冷散热组件安装在CPU组件上方,被设置为为CPU组件散热,主板、CPU组件和液冷散热组件的高度之和为第二高度;以及扩展模组,其中扩展模组设置在液冷散热组件上方,扩展模组具有第三高度,第三高度和第二高度之和小于或等于第一高度。本实施例能够在不改变机架式设备标准尺寸的前提下,扩展机架式电子设备功能模块,从而有效提升机架式电子设备的性能,进而扩展机架式电子设备的适用范围,提高产品竞争力。
可以理解的是,本申请第二方面与相关技术相比存在的有益效果与第一方面与相关技术相比存在的有益效果相同,可以参见上述第一方面中的相关描述,在此不再赘述。
以上是对本申请实施例的一些实施进行了说明,但本申请实施例并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请实施例精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请实施例权利要求所限定的范围内。

Claims (19)

  1. 一种机架式电子设备,包括:
    设备壳体,所述设备壳体具有第一高度,所述第一高度为适应机架式安装的标准高度;
    主板,所述主板安装在所述设备壳体内,所述主板上设置有CPU组件;
    液冷散热组件,所述液冷散热组件安装在所述CPU组件上方,被设置为为所述CPU组件散热,所述主板、所述CPU组件和所述液冷散热组件的高度之和为第二高度;
    扩展模组,所述扩展模组设置在所述液冷散热组件上方,所述扩展模组具有第三高度,所述第三高度和所述第二高度之和小于或等于所述第一高度。
  2. 根据权利要求1所述的机架式电子设备,其中,所述第一高度为2U、4U、6U或者8U。
  3. 根据权利要求2所述的机架式电子设备,其中,所述第一高度为2U,所述第二高度小于或等于1U的高度,或者,所述第二高度大于1U预设误差值的高度。
  4. 根据权利要求1所述的机架式电子设备,其中,所述扩展模组包括:至少一个扩展单元、扩展模组壳体和线缆;至少一个所述扩展单元插接在所述扩展模组壳体内,所述扩展单元通过所述线缆与所述主板通信连接。
  5. 根据权利要求4所述的机架式电子设备,其中,所述扩展单元包括硬盘组件或GPU组件。
  6. 根据权利要求5所述的机架式电子设备,其中,所述扩展单元为硬盘组件,所述第三高度的高度范围为:22mm至32mm。
  7. 根据权利要求6所述的机架式电子设备,其中,所述硬盘组件为3.5寸硬盘,或者2.5寸硬盘。
  8. 根据权利要求4所述的机架式电子设备,其中,所述扩展模组壳体还包括:扩展模组壳体上盖、两个扩展模组壳体侧板、扩展模组壳体隔板、扩展模组壳体底板和壳体背板;
    所述扩展模组壳体上盖、所述扩展模组壳体底板、两个所述扩展模组壳体侧板和所述壳体背板构成框式结构,所述扩展模组壳体隔板将所述框式结构划分成至少两个安装槽,至少两个所述安装槽与至少两个所述扩展单元相对应;
    所述扩展单元插接在相应的所述安装槽内,并与所述壳体背板通信连接,所述壳体背板通过所述线缆与所述主板通信连接。
  9. 根据权利要求4所述的机架式电子设备,其中,所述设备壳体包括相对设置的两个设备壳体侧板,所述扩展模组还包括:转轴;
    所述扩展模组壳体的一端通过所述转轴与一个所述设备壳体的一个侧板连接,以使所述扩展模组壳体的开口一端可沿着所述转轴呈预设角度转动。
  10. 根据权利要求9所述的机架式电子设备,其中,所述转轴安装在至少一个所述扩展模组壳体侧板上,所述转轴的至少一端还套接有扭矩弹簧,所述设备壳体的一个侧板包括被设置为卡接所述扭矩弹簧的弹簧卡槽,所述扭矩弹簧卡接在所述弹簧卡槽中;
    所述扩展模组壳体还包括:设置在所述扩展模组壳体侧板一端的壳体卡接结构,所述壳体卡接结构与所述转轴位于同一侧,所述设备壳体的一个侧板包括卡接槽;
    当所述扩展模组壳体与所述设备壳体卡接时,所述扭矩弹簧蓄力;
    当所述扩展模组壳体与所述设备壳体脱离时,所述扭矩弹簧驱动所述扩展模组壳体沿着所述转轴向上转动。
  11. 根据权利要求10所述的机架式电子设备,其中,所述壳体卡接结构包括:卡扣和止位结构,所述扩展模组壳体的开口一端通过所述卡扣与所述设备壳体的侧板通过所述卡接槽卡接,当所述卡扣与所述设备壳体的侧板脱离时,所述扭矩弹簧使得所述扩展模组壳体的开口一端绕着所述转轴旋转至所述止位结构。
  12. 根据权利要求5所述的机架式电子设备,其中,所述扩展单元为GPU组件,所述GPU组件的长度不大于312mm。
  13. 根据权利要求1至12任一项所述的机架式电子设备,其中,所述主板上还安装有低高度元器件,所述低高度元器件与所述CPU组件相邻设置,所述扩展模组覆盖于所述散热组件和所述低高度元器件的上方。
  14. 根据权利要求1至12任一项所述的机架式电子设备,其中,所述液冷散热组件包括:液冷冷板散热器或两相流散热器。
  15. 根据权利要求4至12任一项所述的机架式电子设备,其中,所述扩展模组的线缆为Slimline线缆。
  16. 根据权利要求1至12任一项所述的机架式电子设备,其中,所述机架式电子设备还包括:基本硬盘模块,与所述主板通信连接,位于所述设备壳体内。
  17. 根据权利要求1至12任一项所述的机架式电子设备,其中,所述CPU组件的功率为250W以上。
  18. 根据权利要求1至12任一项所述的机架式电子设备,其中,所述机架式电子设备为服务器或存储设备。
  19. 一种机柜,包括至少一个如权利要求1至18任一项所述的机架式电子设备。
PCT/CN2022/142858 2021-12-31 2022-12-28 机架式电子设备和机柜 WO2023125670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111678108.2 2021-12-31
CN202111678108.2A CN116419513A (zh) 2021-12-31 2021-12-31 机架式电子设备和机柜

Publications (1)

Publication Number Publication Date
WO2023125670A1 true WO2023125670A1 (zh) 2023-07-06

Family

ID=86998035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142858 WO2023125670A1 (zh) 2021-12-31 2022-12-28 机架式电子设备和机柜

Country Status (2)

Country Link
CN (1) CN116419513A (zh)
WO (1) WO2023125670A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047753A (ja) * 1998-07-27 2000-02-18 Toshiba Corp 電子機器
US6404627B1 (en) * 1999-08-13 2002-06-11 Fujitsu Limited Radiator mechanism for information processor
CN201159867Y (zh) * 2007-12-21 2008-12-03 亚冠国际有限公司 一种扩充式内存护片
CN207992899U (zh) * 2018-03-15 2018-10-19 研祥智能科技股份有限公司 工控机
CN208904008U (zh) * 2018-10-30 2019-05-24 中国航天空气动力技术研究院 一种用于服务器芯片散热的并联式环路热管散热装置
CN209947829U (zh) * 2019-08-10 2020-01-14 山东超越数控电子股份有限公司 一种基于xmc扩展卡的lrm模块散热冷板
CN113655869A (zh) * 2021-07-22 2021-11-16 浪潮商用机器有限公司 一种模块式散热器及服务器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047753A (ja) * 1998-07-27 2000-02-18 Toshiba Corp 電子機器
US6404627B1 (en) * 1999-08-13 2002-06-11 Fujitsu Limited Radiator mechanism for information processor
CN201159867Y (zh) * 2007-12-21 2008-12-03 亚冠国际有限公司 一种扩充式内存护片
CN207992899U (zh) * 2018-03-15 2018-10-19 研祥智能科技股份有限公司 工控机
CN208904008U (zh) * 2018-10-30 2019-05-24 中国航天空气动力技术研究院 一种用于服务器芯片散热的并联式环路热管散热装置
CN209947829U (zh) * 2019-08-10 2020-01-14 山东超越数控电子股份有限公司 一种基于xmc扩展卡的lrm模块散热冷板
CN113655869A (zh) * 2021-07-22 2021-11-16 浪潮商用机器有限公司 一种模块式散热器及服务器

Also Published As

Publication number Publication date
CN116419513A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US7002799B2 (en) External liquid loop heat exchanger for an electronic system
EP1763978B1 (en) Liquid cooling system including hot-swappable components
US6490153B1 (en) Computer system for highly-dense mounting of system components
US6421240B1 (en) Cooling arrangement for high performance electronic components
US8655501B2 (en) Cooling assist module
US8094453B2 (en) Compliant conduction rail assembly and method facilitating cooling of an electronics structure
US8437129B2 (en) Server cabinet
US8164901B2 (en) High efficiency heat removal system for rack mounted computer equipment
EP2441317B1 (en) Liquid-cooled cooling apparatus, electronics rack and methods of fabrication thereof
US20120026668A1 (en) Mass storage retention, insertion, and removal in a conduction cooled system and stacking hard drive backplane
US9066444B2 (en) Power supply unit with articulating fan assembly
US9706675B2 (en) Systems and methods for insertion of an information handling resource in an information handling system
CN108701006B (zh) 服务器系统
US11497145B2 (en) Server rack and data center including a hybrid-cooled server
US9036351B2 (en) Passive cooling system and method for electronics devices
JP2004319628A (ja) システムモジュール
CN216017551U (zh) 一种液冷散热系统及一体化液冷机箱
WO2023125670A1 (zh) 机架式电子设备和机柜
JP2007072635A (ja) 液冷システム及び電子機器収納ラック
CN110007721B (zh) 计算机服务器和主板组件
US7626821B1 (en) Adaptor for graphics module
CN114258233A (zh) 混合式油浸服务器和相关联的计算机架
CN115568153B (zh) 服务器
CN216387952U (zh) 一种2u冷板式液冷服务器
CN109101090A (zh) 服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914922

Country of ref document: EP

Kind code of ref document: A1