WO2023125465A1 - 岩矿石标本阻抗远程测量系统及方法 - Google Patents

岩矿石标本阻抗远程测量系统及方法 Download PDF

Info

Publication number
WO2023125465A1
WO2023125465A1 PCT/CN2022/142137 CN2022142137W WO2023125465A1 WO 2023125465 A1 WO2023125465 A1 WO 2023125465A1 CN 2022142137 W CN2022142137 W CN 2022142137W WO 2023125465 A1 WO2023125465 A1 WO 2023125465A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
data
mobile device
smart mobile
specimen
Prior art date
Application number
PCT/CN2022/142137
Other languages
English (en)
French (fr)
Inventor
王小杰
陈儒军
陈兴生
淳少恒
李生杰
王子辉
姚红春
申瑞杰
刘志同
侯胜蓝
王飞飞
Original Assignee
长沙巨杉智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙巨杉智能科技有限公司 filed Critical 长沙巨杉智能科技有限公司
Publication of WO2023125465A1 publication Critical patent/WO2023125465A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention relates to the technical field of impedance measurement of rock ore specimens, in particular to a remote measurement system and method for impedance of rock ore specimens.
  • the physical characteristics of geoelectric anomalies are determined by the amplitude spectrum and phase spectrum characteristics and spatial distribution reflected by the real and imaginary parts of the apparent complex resistivity.
  • the indoor rock and ore specimen impedance measurement instruments corresponding to the spectrum IP method are based on impedance analyzers or LCR bridges, and the other is a self-made measurement system.
  • the control system in the device is an important part of the rock ore impedance measuring instrument. It plays the role of controlling the acquisition system for data acquisition, data storage, data transmission, data preview and data processing, which is related to the quality of subsequent data processing.
  • the existing measuring instruments generally use an external signal source as the excitation source, and the control system with PC and windows software as the core usually uses bus and Ethernet for acquisition control and data transmission, and it is impossible to uniformly configure the signal source and acquisition .
  • PCs are relatively heavy in field surveys, are not easy to carry, and have poor battery life.
  • the present invention provides a remote measurement system and method for the impedance of rock ore specimens, the purpose of which is to solve the problems that traditional measurement devices cannot perform remote measurement, are not highly intelligent, have poor battery life and slow data transmission speed.
  • an embodiment of the present invention provides a remote measurement system for impedance of rock ore specimens, including:
  • An intelligent mobile device includes a parameter setting module, an acquisition control module, a measurement result module, a data visualization module, a data upload module and a software navigation module, and the parameter setting module is used to set various parameters of specimen measurement, so
  • the acquisition control module is used to control the acquisition control process of specimen measurement
  • the measurement result module is used to perform Fourier transform and calculation on the received data and store it in the file of the smart mobile device
  • the data visualization module is used for The measurement results and raw data are displayed on the interface as a graph
  • the data upload module is used to upload various files about the specimen on the smart mobile device to the PC
  • the software navigation module is used to switch and function each interface navigation;
  • a wireless communication module the first end of the wireless communication module is electrically connected to the smart mobile device, the wireless communication module includes a bluetooth unit and a WIFI hotspot unit, the bluetooth unit is used to send commands, and the WIFI hotspot unit uses to transmit data;
  • a sample impedance tester the sample impedance tester is electrically connected to the second end of the wireless communication module, the sample impedance tester includes an embedded control system, a data acquisition module and a signal source module, the embedded control system Used to receive and send commands and data; the first end of the data acquisition module is electrically connected to the embedded control system, the data acquisition module is used to receive control commands and collect data, and the data acquisition module adopts a CPLD-based Acquisition system; the signal source module is electrically connected to the second end of the data acquisition module, the signal source module is used to receive control commands and generate excitation signals, and the signal source module adopts a signal source board.
  • the embedded control system includes:
  • a command analysis module includes a main control chip, the first end of the main control chip is electrically connected to the first end of the data acquisition module, and the order analysis module is used to transmit information from the smart mobile device String commands are parsed into 64-bit hardware commands;
  • a data receiving and storing module includes an SD card, the SD card is electrically connected to the second end of the main control chip, and the data receiving and storing module is used to receive and store the data collected The data collected by the module;
  • a data sending module includes a bluetooth module and a WIFI module, the first end of the bluetooth module is electrically connected to the third end of the main control chip, and the second end of the bluetooth module is connected to the bluetooth unit
  • the first end of the bluetooth unit is electrically connected to the first end of the bluetooth unit and the first end of the Android mobile phone and the WIFI hotspot unit;
  • the first end of the WIFI module is connected to the fourth end of the main control chip Electrically connected
  • the second end of the WIFI module is electrically connected to the second end of the WIFI hotspot unit, the third end of the WIFI hotspot unit is electrically connected to the PC end, and the data sending module is used to transmit data to on the smart mobile device.
  • Embodiments of the present invention also provide a remote measurement method for impedance of rock ore specimens, including:
  • Step 1 establish a wireless network connection between the smart mobile device and the specimen impedance tester through the wireless communication module;
  • Step 2 on the smart mobile device, set the collection parameters and take photos of the samples through the parameter setting module, and store the collected parameters and photos of the samples;
  • Step 3 send a self-test command to the specimen impedance tester through the smart mobile device, obtain the self-test information of the specimen impedance tester, send measurement configuration information and acquisition commands to the embedded control system through the smart mobile device, and the embedded control system will receive command analysis of the acquisition command;
  • Step 4 carry out data acquisition through the data acquisition module and control the signal source module to generate the excitation signal;
  • Step 5 the embedded control system stores the collected data and sends it to the smart mobile device
  • Step 6 the smart mobile device stores and performs Fourier transform on the received collected data to obtain data processing results
  • step 7 the smart mobile device displays the data processing result as a graph and uploads the data processing result to the PC through the wireless communication module.
  • step 1 specifically includes:
  • the smart mobile device establishes a wireless connection and communicates with the embedded control system in the specimen impedance tester through the Bluetooth unit and the WIFI hotspot unit of the wireless communication module.
  • step 2 specifically includes:
  • the parameter information is sent to the acquisition control module, and the acquisition control module receives the parameters from the parameter setting module and uses the received parameters to control the number of measurements and errors in the measurement process.
  • step 3 specifically includes:
  • the smart mobile device sends a self-test command to the specimen impedance tester, and the specimen impedance tester receives the self-test command sent by the smart mobile device to obtain self-test information, and the smart mobile device sends measurement configuration information and collection commands to the embedded control system, and collects
  • the command includes signal frequency, sampling frequency, measurement signal mode, measurement signal amplitude value and frequency control word.
  • the embedded control system parses the acquisition command through the command analysis module, parses the plaintext string into a 64-bit hardware protocol command and sends it to the data acquisition module Perform acquisition control.
  • step 4 specifically includes:
  • step 5 specifically includes:
  • the collected data from the data acquisition module is received through the data receiving and storage module, the collected data is stored in the SD card of the embedded control system by the data receiving and storage module, and the collected data is transmitted to the smart mobile device through the data sending module.
  • step 6 specifically includes:
  • the smart mobile device stores the collected data received, and the smart mobile device uses the data volume corresponding to the signal frequency designed according to the frequency sweep algorithm. After receiving the target data volume, the smart mobile device stops receiving the collected data and sends a command to stop the collection.
  • the measurement result module the The collected data received from the data acquisition module is subjected to Fourier transform, and the collected data is calculated to obtain the response of the rock ore specimen under the excitation of the signal frequency and store the original data and measurement results.
  • the original data is The domain binary data is directly stored in the file, and the measurement results are written in the text file in a fixed format.
  • step 7 specifically includes:
  • the data visualization module Read the previous measurement results through the data visualization module and use the Android drawing framework to display the data on the interface.
  • the data upload module Through the data upload module, the corresponding specimen photos, time series files, result files and The database files corresponding to the work area are processed, and the local area network is constructed using smart mobile devices, and the entire work area files are uploaded to the PC through TCP transmission.
  • the rock ore specimen impedance remote measurement system and method described in the above-mentioned embodiments of the present invention 1. Utilize the intelligent mobile device to directly interact with the user, the operation is simple, portable and intelligent; 2. The STM32 based on the CortexM4 kernel is used as the embedded control The core of the system translates commands, stores and transmits data, and the command response is timely, the interruption is fast and the power consumption is low; 3. The portable signal source further reduces the size of the instrument, which is convenient for users to perform spectrum IP measurement of rock ore; 4. Using Bluetooth connection for wireless control, the operator can operate the instrument more flexibly, avoiding the influence of factors such as unfavorable terrain and vegetation; 5. Use WIFI connection to transmit data, and the data transmission speed is faster; 6.
  • the specimen impedance tester is completely sealed, Improve the dust-proof, shock-proof, and moisture-proof capabilities of the specimen impedance tester; 7.
  • the smart mobile device can perform data processing, calculation, and result display into graphs and calculations in a timely manner Parameters are dynamically displayed, which is convenient for users to grasp and monitor the measurement process, thereby reducing the rework rate in the measurement process and improving measurement efficiency;
  • the application software based on smart mobile devices has rich and flexible programming and development capabilities, which will provide new methods and functions for the future. There is a large design margin in the application, which is convenient for expansion maintenance and upgrade.
  • Fig. 1 is a flowchart of the present invention
  • Fig. 2 is the overall structure schematic diagram of the present invention
  • Fig. 3 is the concrete structure schematic diagram of the present invention.
  • Fig. 4 is the working flowchart of the smart mobile device of the present invention.
  • Fig. 5 is a working flowchart of the specimen impedance tester of the present invention.
  • 1-Intelligent mobile device 2-Wireless communication module; 3-Specimen impedance tester; 4-Embedded control system; 5-Data acquisition module; 6-Signal source module; 7-Bluetooth unit; 8-WIFI hotspot unit; 9 -Main control chip; 10-Bluetooth module; 11-WIFI module; 12-SD card; 13-Parameter setting module; 14-Acquisition control module; 15-Measurement result module; 16-Data visualization module; 17-Data upload module; 18-software navigation module; 19-command analysis module; 20-data receiving and storage module; 21-data sending module.
  • the invention provides a remote measurement system and method for the impedance of a rock ore specimen, aiming at the problems that the existing measurement device cannot perform remote measurement, is not highly intelligent, has poor battery life and slow data transmission speed.
  • the embodiment of the present invention provides a kind of rock ore specimen impedance remote measurement system, comprises: intelligent mobile device, and described intelligent mobile device comprises parameter setting module 13, acquisition control module 14, measurement result Module 15, data visualization module 16, data upload module 17 and software navigation module 18, the parameter setting module 13 is used to set the parameters of the sample measurement, the collection control module 14 is used to control the collection control process of the sample measurement, The measurement result module 15 is used to perform Fourier transform and calculation on the received data and store it in the file of the smart mobile device, and the data visualization module 16 is used to graphically display the measurement results and raw data on the interface , the data upload module 17 is used to upload various files about the specimen on the smart mobile device to the PC end, and the software navigation module 18 is used to switch and function navigate each interface; the wireless communication module, the wireless communication module The first end of the module is electrically connected with the smart mobile device, the wireless communication module includes a bluetooth unit and a WIFI hotspot unit, the bluetooth unit is used to send commands, and the WIFI
  • the embedded control system includes: a command parsing module 19, the command parsing module 19 includes a main control chip, the first end of the main control chip is electrically connected with the first end of the data acquisition module, the Command parsing module 19 is used for being resolved into the hardware command of 64 from the character string command of smart mobile equipment;
  • Data receiving and storage module 20, described data receiving and storage module 20 comprise SD card, described SD card and described The second end of the main control chip is electrically connected, and the data receiving and storage module 20 is used to receive and store the data collected by the data acquisition module;
  • the data transmission module 21, the data transmission module 21 includes a bluetooth module and a WIFI module , the first end of the bluetooth module is electrically connected to the third end of the main control chip, the second end of the bluetooth module is electrically connected to the first end of the bluetooth unit, and the second end of the bluetooth unit Respectively electrically connected with the first end of the Android mobile phone and the WIFI hotspot unit;
  • the first end of the WIFI module is electrically connected with the fourth end of
  • the wireless communication module 2 communicates with the embedded control system 4 in two ways, Bluetooth connection and WIFI connection, and the Bluetooth connection is used to send commands,
  • the WIFI connection is used to transmit data;
  • the parameter setting module 13 sets the measurement sample parameters, measurement control parameters, sample information, etc.;
  • the collection control module 14 is used to control the sample measurement process;
  • the measurement result module 15 sets the parameters
  • the information is stored using an SQLite database, the time series collected is stored as a binary file, and the data collected is carried out by Fourier transform to obtain a measurement result and stored in a text file;
  • the data visualization module 16 collects the data Carry out data graph display on the interface with the result after data processing, described software navigation module 18 is used for switching and function navigation of each interface, and described data upload module 17 utilizes described embedded control system 4
  • the WIFI module 11 is in AP mode, and the PC end and the smart mobile device 1 build a local area network for STA access, and the smart mobile device 1 uses
  • the command parsing module 19 parses the command character string sent from the smart mobile device 1, resolves the clear code into a 64-bit hardware protocol command, and sends it to the collection control module 14 for collection control;
  • the data received by the data collection module 5 is sent to the smart mobile device 1 through a WIFI connection;
  • the data receiving and storage module 20 stores the collected raw data in the SD card 12 .
  • Described data collection module 5 comprises buffer, filter circuit and four-way ADC, and described data collection module 5 plays the role of analyzing the order and control collection from described embedded control system 4, and described data collection module 5 uses CPLD To control the core, use ADS1282 high-precision 32-bit ADC for sampling.
  • the signal source module 6 is used to generate an excitation signal of a certain frequency according to the control command sent by the data acquisition module 5, and the signal source module 6 uses DDS technology, which is portable and reliable.
  • the main control chip 9 of the embedded control system 4 is selected from the high-performance 32-bit microcontroller STM32F429IGT6 produced by STMicroelectronics.
  • the core of the embedded control system 4 is the Cortex-M4 core designed by ARM Company
  • the main control chip 9 includes 6 SPIs, 3 I2Cs, 1 SDIO, 4 USARTs, 4 UARTs, the SPI1 Configured as the master mode to communicate with the WIFI module 11, it can support a transmission speed of up to 45Mbps, and is used to transmit the collected data to the smart mobile device 1.
  • SPI2 and SPI4 communicate with the data acquisition module 5, and SPI4 is a high-speed SPI, whose speed can reach 45Mbps, is used to receive the data sent from the data acquisition module 5, and the highest speed of SPI2 is 22.5Mbps, and is used to transmit the control command sent to the data acquisition module 5 by the embedded control system 4 , the USART1 is connected to the Bluetooth module 10, interacts with the smart mobile device 1, and obtains the control command sent by the smart mobile device 1.
  • the embodiment of the present invention also provides a kind of rock ore specimen impedance remote measurement method, comprises: the embodiment of the present invention also provides a kind of rock ore specimen impedance remote measurement method, comprises: Step 1, by The wireless communication module establishes a wireless network connection between the smart mobile device and the specimen impedance tester; step 2, on the smart mobile device, through the parameter setting module 13, the collection parameter setting and the photographing of the specimen are carried out and the collected parameters and photographs taken by the specimen are stored ; Step 3, send a self-test command to the specimen impedance tester through the smart mobile device, obtain the self-test information of the specimen impedance tester, send measurement configuration information and acquisition commands to the embedded control system through the smart mobile device, and the embedded control system will receive command analysis of the acquired command; Step 4, collect data through the data acquisition module and control the signal source module to generate the excitation signal; Step 5, the embedded control system stores the collected data and sends it to the smart mobile device; Step 6 , the smart mobile device stores and performs Fourier transform on the received
  • the rock ore specimen impedance remote measurement system and method described in the above-mentioned embodiments of the present invention the steps: the intelligent mobile device 1 and the embedded control system 4 establish a WIFI and Bluetooth connection; on the intelligent mobile device 1 Set acquisition parameters and configure information such as signal frequency during self-inspection, self-inspection sampling rate, etc., including setting specimen parameters, measurement control parameters, specimen information and work area information, taking pictures of specimens, and storing photos and acquisition parameters;
  • the control system 4 sends a self-inspection command to obtain self-inspection information, calculates after the smart mobile device 1 obtains the data, checks whether the data acquisition module 5 and the signal source module 6 can work normally, and confirms the normal operation Afterwards, configure and collect information, carry out formal measurement, adopt the mode of wireless control to provide convenience to the operator, more portable; Send configuration information to described embedded control system 4; Send collection command to described embedded control system 4, collect
  • the command includes clear codes such as signal frequency, sampling frequency, measurement signal mode, measurement signal amplitude value and frequency control
  • the smart mobile device 1 adopts an Android APP, which is low in power consumption, small in size, light in weight, and easy to use, and uses WIFI and Bluetooth wireless communication to control and send data to the specimen impedance tester 3, which overcomes the factors such as terrain and weather.
  • the step 1 specifically includes: the smart mobile device establishes a wireless connection and communicates with the embedded control system in the specimen impedance tester through the Bluetooth unit and the WIFI hotspot unit of the wireless communication module.
  • the step 2 specifically includes: setting the sample parameters, measurement control parameters, sample information and work area information through the parameter setting module 13 on the smart mobile device, taking pictures of the samples, and setting the parameter setting information through the measurement result module 15
  • the parameter setting module 13 sends the parameter information of setting to the acquisition control module 14, and the acquisition control module 14 receives the parameters from the parameter setting module 13 and utilizes the received parameter to carry out the measurement times and the number of times in the measurement process error control.
  • the parameter setting module 13 sets specimen physical parameters, measurement control information, specimen information, and geographic location information, and stores these information with a database, and at the same time Send to the acquisition control module 14 to provide calculation parameters for the acquisition control module 14.
  • the acquisition control module 14 receives the parameters from the parameter setting module 13 and uses these parameters to control the acquisition process such as the number of measurements and errors during the measurement process.
  • the step 3 specifically includes: the smart mobile device sends a self-test command to the specimen impedance tester, the specimen impedance tester receives the self-test command sent by the smart mobile device, obtains self-test information, and the smart mobile device sends a self-test command to the embedded control system
  • the acquisition command includes signal frequency, sampling frequency, measurement signal mode, measurement signal amplitude value and frequency control word
  • the embedded control system parses the acquisition command through the command analysis module 19, and parses the plaintext string into 64 Bit hardware protocol command and sent to the data acquisition module for acquisition control.
  • the command analysis module 19 receives the clear code sent from the smart mobile device 1 through the Bluetooth connection in the embedded control system 4 , that is, a string command, the string command is translated into a 64-bit hardware protocol agreed with the data acquisition module 5 through an analytic function, and the data acquisition module 5 is allowed to configure its own parameters and the parameters of the signal source module 6.
  • the step 4 specifically includes: receiving control commands from the embedded control system through the data acquisition module to configure the ADC and the signal source module, performing data acquisition through the data acquisition module and transmitting the collected data to the embedded control system, and the signal source module Receive control commands from the data acquisition module and generate excitation signals.
  • the data acquisition module 5 takes the CPLD as the control core to control the acquisition of the ADC and simultaneously control the generation of signal source excitation.
  • the signal source module 6 After receiving the configuration command sent by the data acquisition module 5, the signal source module 6 will perform configuration to generate the current or voltage source required by the user and the specified value.
  • the step 5 specifically includes: receiving the collected data from the data acquisition module through the data receiving and storage module 20, the data receiving and storing module 20 storing the collected data in the SD card of the embedded control system, and passing the data through the data sending module 21.
  • the collected data is transmitted to the smart mobile device.
  • the data acquisition module 5 starts to collect data, and the data collected by the data acquisition module 5 passes the data through the SPI.
  • the data receiving and storage module 20 stores data in the SD card 12 of the embedded control system 4, and the data sending module 21 will obtain from the data acquisition module 5
  • the data is sent to the smart mobile device 1 in time by using the WIFI module 11 of the embedded control system 4 for processing.
  • the step 6 specifically includes: the smart mobile device stores the received collected data, the smart mobile device designs the data volume corresponding to the signal frequency according to the frequency sweep algorithm, stops receiving the collected data after receiving the target data volume and stops sending The order of collection, through the measurement result module 15, the collection data received from the data collection module is subjected to Fourier transform, and the collection data is calculated to obtain the response of the rock ore specimen under the excitation of the signal frequency and compare the original data with the measurement The results are stored.
  • the original data is time-domain binary data, which is directly stored in a file, and the measurement results are written in a text file in a fixed format.
  • the measurement result module 15 performs Fourier transform on the collected data received from the data collection module 5, and performs a Fourier transform on the data of each channel. Calculate and obtain the response of the rock ore specimen under the excitation of the signal frequency, and store the original data and measurement results.
  • the original data is time-domain binary data, which is directly stored in the file, and the measurement results are written in a fixed format. into a text file.
  • the step 7 specifically includes: reading the previous measurement results through the data visualization module 16 and using the Android drawing framework to display the data as a graph on the interface, and using the data upload module 17 to correspond to each sample after the measurement in the work area is completed.
  • Specimen photos, time series files, result files and database files corresponding to the work area are processed, and smart mobile devices are used to build a local area network, and the entire work area files are uploaded to the PC through TCP transmission.
  • the data visualization module 16 reads the previous measurement results, and uses the Android drawing framework to display the data as a graph on the interface.
  • the graphs include: time-domain raw data graphs, phase and resistivity spectrum graphs.
  • the upload module 17 utilizes the smart mobile device 1 to build a simple local area network, and uploads the entire work area file to the PC through TCP transmission.
  • the data upload module 17 uses the Zip compression algorithm to compress the entire work area folder. The transmission efficiency is greatly improved.
  • the specimen impedance tester 3 performs system initialization, automatically turns on Bluetooth and WIFI after the system initialization, and establishes a wireless connection.
  • the command is parsed, and the 64-bit hardware command protocol is obtained, and then the data acquisition module 5 and the signal source module 6 are configured, and the signal source module 6 generates an excitation signal, and the rock ore specimen generates a response, and the data acquisition module 5 sends the collected data to the embedded control system 4, and the embedded control system 4 uploads the collected data to the smart mobile device 1, and the data The transfer speed is fast.
  • the rock ore specimen impedance remote measurement system and method described in the above-mentioned embodiments of the present invention realize remote measurement through the wireless interaction between the intelligent mobile device 1 and the specimen impedance tester 3, and the specimen impedance tester 3
  • the measured data can be sent to the smart mobile device 1 in real time, so that the smart mobile device 1 can continuously monitor the specimen impedance tester 3, and can perform data calculations to obtain samples of rock ore at this frequency point impedance.

Abstract

一种岩矿石标本阻抗远程测量方法,涉及岩矿石标本阻抗测量领域,包括:通过无线通讯模块(2)将智能移动设备(1)与标本阻抗测试仪(3)建立无线网络连接;在智能移动设备(1)上通过参数设置模块(13)进行采集参数设置和标本拍照并将采集到的参数和标本拍照的照片进行存储;通过智能移动设备(1)向标本阻抗测试仪(3)发送自检命令,获取标本阻抗测试仪(3)的自检信息,通过智能移动设备(1)向嵌入式控制系统(4)发送测量配置信息和采集命令。测量方法实现了岩矿石标本阻抗远程测量,采用智能移动设备(1)进行控制,具有功耗低、体积小、重量轻、便于使用,利用 WIFI和蓝牙无线通讯的方式进行标本阻抗测试仪(3)的控制和数据发送,克服了地形和植被等因素的影响,使用更加方便。一种岩矿石标本阻抗远程测量系统。

Description

岩矿石标本阻抗远程测量系统及方法
本申请要求于2021年12月30日提交中国专利局、申请号为202111658524.6、发明名称为“岩矿石标本阻抗远程测量系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及岩矿石标本阻抗测量技术领域,特别是涉及一种岩矿石标本阻抗远程测量系统及方法。
背景技术
复电阻率法经过“变频法”、“相位激电法”等阶段的发展,现已成为以测量振幅和相位谱为主的“频谱激电法”。频谱激电法通常采用常规的电阻率法电极装置,向地下发送交变电流,然后在超低频段(f=10 -2–n×10 2Hz)观测视复电阻率频谱,通过研究观测所得的视复电阻率的实部与虚部所反映的振幅谱和相位谱特征以及空间分布来确定地电异常的物性特征。
目前频谱激电法对应的室内岩矿石标本阻抗测量仪器,一类是基于阻抗分析仪或LCR电桥,另外一类是自制测量系统。装置中的控制系统是岩矿石阻抗测量仪的重要组成部分,其起着控制采集系统进行数据采集,数据存储、数据传输、数据预览和进行数据处理的作用,关乎后续数据处理质量的好坏。但是现有的测量仪器普遍是外接信号源作为激发源,以PC机和windows软件为核心的控制系统常用总线、以太网的方式进行采集控制、数据传输,无法对信号源和采集进行统一的配置。PC机在野外勘测中相对较重,不易携带,并且续航能力较差,同时外接信号源的使用会使测量工作不够智能化,通过有线的方式进行控制也无法实现远程测量。市面上也存在基于掌上电脑和蓝牙通讯的控制系统,但蓝牙传输速度较慢,掌上电脑的造价通常较高。PC端的大部分软件也仅仅为接收数据,缺乏数据处理、成图显示的功能。当前信息技术发展日新月异,以上测量装置无法适应智能地球物理仪器的发展和便携式工作的需求。
发明内容
本发明提供了一种岩矿石标本阻抗远程测量系统及方法,其目的是为 了解决传统的测量装置无法远程测量、智能化程度不高、续航能力差和数据传输速度慢的问题。
为了达到上述目的,本发明的实施例提供了一种岩矿石标本阻抗远程测量系统,包括:
智能移动设备,所述智能移动设备包括参数设置模块、采集控制模块、测量结果模块、数据可视化模块、数据上传模块和软件导航模块,所述参数设置模块用于设置标本测量的各项参数,所述采集控制模块用于控制标本测量的采集控制过程,所述测量结果模块用于将接收到的数据进行傅里叶变换和计算并存储到智能移动设备的文件中,所述数据可视化模块用于将测量结果和原始数据成图显示到界面上,所述数据上传模块用于将智能移动设备上关于标本的各项文件上传到PC端,所述软件导航模块用于进行各个界面的切换和功能导航;
无线通讯模块,所述无线通讯模块的第一端与所述智能移动设备电连接,所述无线通讯模块包括蓝牙单元和WIFI热点单元,所述蓝牙单元用于发送命令,所述WIFI热点单元用于传输数据;
标本阻抗测试仪,所述标本阻抗测试仪与所述无线通讯模块的第二端电连接,所述标本阻抗测试仪包括嵌入式控制系统、数据采集模块和信号源模块,所述嵌入式控制系统用于接收与发送命令和数据;所述数据采集模块的第一端与所述嵌入式控制系统电连接,所述数据采集模块用于接收控制命令和采集数据,所述数据采集模块采用基于CPLD采集系统;所述信号源模块与所述数据采集模块的第二端电连接,所述信号源模块用于接收控制命令和产生激励信号,所述信号源模块采用信号源板。
其中,所述嵌入式控制系统包括:
命令解析模块,所述命令解析模块包括主控芯片,所述主控芯片的第一端与所述数据采集模块的第一端电连接,所述命令解析模块用于将来自于智能移动设备的字符串命令解析成64位的硬件命令;
数据接收与存储模块,所述数据接收与存储模块包括SD卡,所述SD卡与所述主控芯片的第二端电连接,所述数据接收与存储模块用于接收和存储所述数据采集模块采集到的数据;
数据发送模块,所述数据发送模块包括蓝牙模块和WIFI模块,所述 蓝牙模块的第一端与所述主控芯片的第三端电连接,所述蓝牙模块的第二端与所述蓝牙单元的第一端电连接,所述蓝牙单元的第二端分别与安卓手机和所述WIFI热点单元的第一端电连接;所述WIFI模块的第一端与所述主控芯片的第四端电连接,所述WIFI模块的第二端与所述WIFI热点单元的第二端电连接,所述WIFI热点单元的第三端与PC端电连接,所述数据发送模块用于将数据传输到所述智能移动设备上。
本发明的实施例还提供了一种岩矿石标本阻抗远程测量方法,包括:
步骤1,通过无线通讯模块将智能移动设备与标本阻抗测试仪建立无线网络连接;
步骤2,在智能移动设备上通过参数设置模块进行采集参数设置和标本拍照并将采集到的参数和标本拍照的照片进行存储;
步骤3,通过智能移动设备向标本阻抗测试仪发送自检命令,获取标本阻抗测试仪自检信息,通过智能移动设备向嵌入式控制系统发送测量配置信息和采集命令,嵌入式控制系统将接收到的采集命令进行命令解析;
步骤4,通过数据采集模块进行数据采集并控制信号源模块产生激励信号;
步骤5,嵌入式控制系统将采集到的数据进行存储并发送到智能移动设备;
步骤6,智能移动设备将接收到的采集数据进行存储和傅里叶变换,获得数据处理结果;
步骤7,智能移动设备将数据处理结果进行成图显示并将数据处理结果通过无线通讯模块上传到PC端。
其中,所述步骤1具体包括:
智能移动设备通过无线通讯模块的蓝牙单元和WIFI热点单元与标本阻抗测试仪中的嵌入式控制系统建立无线连接并进行通讯。
其中,所述步骤2具体包括:
在智能移动设备上通过参数设置模块对标本参数、测量控制参数、标本信息和工区信息进行设置,对标本进行拍照,通过测量结果模块将参数设置的信息使用SQLite数据库进行存储,参数设置模块将设置的参数信息发送到采集控制模块中,采集控制模块接收来自于参数设置模块的参数 并利用接收到的参数进行测量过程中的测量次数和误差的控制。
其中,所述步骤3具体包括:
智能移动设备向标本阻抗测试仪发送自检命令,标本阻抗测试仪接收到智能移动设备发送的自检命令,获得自检信息,智能移动设备向嵌入式控制系统发送测量配置信息和采集命令,采集命令包括信号频率、采样频率、测量信号模式、测量信号幅度值和频率控制字,嵌入式控制系统通过命令解析模块解析采集命令,将明码字符串解析成64位硬件协议命令并发送到数据采集模块进行采集控制。
其中,所述步骤4具体包括:
通过数据采集模块接收来自嵌入式控制系统的控制命令配置ADC和信号源模块,通过数据采集模块进行数据采集并将采集数据传输到嵌入式控制系统,信号源模块接收来自数据采集模块的控制命令并产生激励信号。
其中,所述步骤5具体包括:
通过数据接收与存储模块接收来自于数据采集模块的采集数据,数据接收与存储模块将采集数据存储到嵌入式控制系统的SD卡中,通过数据发送模块将采集数据传输到智能移动设备中。
其中,所述步骤6具体包括:
智能移动设备将接收到的采集数据进行存储,智能移动设备按照扫频算法设计的信号频率对应的数据量,接收到目标数据量之后停止接收采集数据并发送停止采集的命令,通过测量结果模块将从数据采集模块接收到的采集数据进行傅里叶变换,将采集数据进行计算,得到岩矿石标本在该信号频率激励下产生的响应并将原始数据和测量结果存储起来,其中,原始数据为时域二进制数据,直接存储到文件中,测量结果按照固定的格式写入文本文件中。
其中,所述步骤7具体包括:
通过数据可视化模块将历次测量结果读取出来并利用安卓绘图框架将数据成图显示到界面上,通过数据上传模块将工区内测量完成后的各个标本对应的标本照片、时间序列文件、结果文件和工区对应的数据库文件进行处理,利用智能移动设备构建局域网,将整个工区文件通过TCP传 输上传至PC端。
本发明的上述方案有如下的有益效果:
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,1.利用智能移动设备与用户直接交互,操作简单又便携且智能化;2.采用基于CortexM4内核的STM32为嵌入式控制系统核心进行翻译命令、存储并传输数据,命令响应及时、中断快速和功耗低;3.便携式信号源进一步减小了仪器的体积,方便了用户进行岩矿石的频谱激电测量;4.利用蓝牙连接进行无线控制,操作人员可以更加灵活地操作仪器,避免了不利地形和植被等因素的影响;5.利用WIFI连接来传输数据,数据传输速度更快;6.标本阻抗测试仪完全密封,提高了标本阻抗测试仪的防尘、防震、防潮的能力;7.通过将采集到的数据及时传输到智能移动设备上,智能移动设备可以及时地进行数据处理、计算、结果显示成图和计算参数动态显示,便于用户掌握和监控测量过程,从而降低测量过程中的返工率,提高测量效率;8.基于智能移动设备的应用软件具有丰富灵活的编程开发能力,为今后新方法和新功能的应用留有很大的设计余量,便于扩展维护和升级。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的流程图;
图2为本发明的整体结构示意图;
图3为本发明具体结构示意图;
图4为本发明智能移动设备工作流程图;
图5为本发明的标本阻抗测试仪工作流程图。
附图标记说明:
1-智能移动设备;2-无线通讯模块;3-标本阻抗测试仪;4-嵌入式控制系统;5-数据采集模块;6-信号源模块;7-蓝牙单元;8-WIFI热点单元;9-主控芯片;10-蓝牙模块;11-WIFI模块;12-SD卡;13-参数设置模块;14-采集控制模块;15-测量结果模块;16-数据可视化模块;17-数据上传 模块;18-软件导航模块;19-命令解析模块;20-数据接收与存储模块;21-数据发送模块。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明针对现有的测量装置无法远程测量、智能化程度不高、续航能力差和数据传输速度慢的问题,提供了一种岩矿石标本阻抗远程测量系统及方法。
如图1至图5所示,本发明的实施例提供了一种岩矿石标本阻抗远程测量系统,包括:智能移动设备,所述智能移动设备包括参数设置模块13、采集控制模块14、测量结果模块15、数据可视化模块16、数据上传模块17和软件导航模块18,所述参数设置模块13用于设置标本测量的各项参数,所述采集控制模块14用于控制标本测量的采集控制过程,所述测量结果模块15用于将接收到的数据进行傅里叶变换和计算并存储到智能移动设备的文件中,所述数据可视化模块16用于将测量结果和原始数据成图显示到界面上,所述数据上传模块17用于将智能移动设备上关于标本的各项文件上传到PC端,所述软件导航模块18用于进行各个界面的切换和功能导航;无线通讯模块,所述无线通讯模块的第一端与所述智能移动设备电连接,所述无线通讯模块包括蓝牙单元和WIFI热点单元,所述蓝牙单元用于发送命令,所述WIFI热点单元用于传输数据;标本阻抗测试仪,所述标本阻抗测试仪与所述无线通讯模块的第二端电连接,所述标本阻抗测试仪包括嵌入式控制系统、数据采集模块和信号源模块,所述嵌入式控制系统用于接收与发送命令和数据;所述数据采集模块的第一端与所述嵌入式控制系统电连接,所述数据采集模块用于接收控制命令和采集数据,所述数据采集模块采用基于CPLD采集系统;所述信号源模块与所述数据采集模块的第二端电连接,所述信号源模块用于接收控制命令和产生激励信号,所述信号源模块采用信号源板。
其中,所述嵌入式控制系统包括:命令解析模块19,所述命令解析模块19包括主控芯片,所述主控芯片的第一端与所述数据采集模块的第一端电连接,所述命令解析模块19用于将来自于智能移动设备的字符串 命令解析成64位的硬件命令;数据接收与存储模块20,所述数据接收与存储模块20包括SD卡,所述SD卡与所述主控芯片的第二端电连接,所述数据接收与存储模块20用于接收和存储所述数据采集模块采集到的数据;数据发送模块21,所述数据发送模块21包括蓝牙模块和WIFI模块,所述蓝牙模块的第一端与所述主控芯片的第三端电连接,所述蓝牙模块的第二端与所述蓝牙单元的第一端电连接,所述蓝牙单元的第二端分别与安卓手机和所述WIFI热点单元的第一端电连接;所述WIFI模块的第一端与所述主控芯片的第四端电连接,所述WIFI模块的第二端与所述WIFI热点单元的第二端电连接,所述WIFI热点单元的第三端与PC端电连接,所述数据发送模块21用于将数据传输到所述智能移动设备上。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述无线通讯模块2采用蓝牙连接和WIFI连接两种方式和嵌入式控制系统4进行通讯,蓝牙连接用于发送命令、WIFI连接用于传输数据;所述参数设置模块13将测量标本参数、测量控制参数、标本信息等进行设置;所述采集控制模块14用于控制标本测量过程;所述测量结果模块15将参数设置的信息使用SQLite数据库进行存储、将采集上来的时间序列存储成二进制文件和将采集上来的数据进行傅里叶变换得到测量结果并使用文本文件进行存储;所述数据可视化模块16将采集上来的数据和经过数据处理之后的结果进行数据成图显示到界面上,所述软件导航模块18用于进行各个界面的切换和功能导航,所述数据上传模块17利用所述嵌入式控制系统4的所述WIFI模块11为AP模式,PC端和所述智能移动设备1为STA接入构建局域网,所述智能移动设备1利用WIFI连接将数据发送到PC端上做进一步处理。所述命令解析模块19解析来自于智能移动设备1发送的命令字符串,将明码解析成64位硬件协议命令,发送到所述采集控制模块14进行采集控制;所述数据发送模块21将从所述数据采集模块5接收到的数据利用WIFI连接将数据发送至所述智能移动设备1;所述数据接收与存储模块20将采集到的原始数据存储到SD卡12中。所述数据采集模块5包括缓冲器、滤波电路和四路ADC,所述数据采集模块5起到解析来自所述嵌入式控制系统4的命令并控制采集的作用,所述数据采集模块5使用CPLD为控制核心,使用ADS1282高精度的32 位ADC进行采样。所述信号源模块6起到根据所述数据采集模块5发送的控制命令产生一定频率的激励信号,所述信号源模块6使用DDS技术,便携可靠。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述嵌入式控制系统4的所述主控芯片9选用的是意法半导体公司生产的高性能32位微控制器STM32F429IGT6,所述嵌入式控制系统4的内核是由ARM公司设计的Cortex-M4内核,所述主控芯片9包含6个SPI、3个I2C、1个SDIO、4个USART、4个UART,将SPI1配置成主模式与所述WIFI模块11通讯,最高可以支持45Mbps的传输速度,用来传输采集到的数据至所述智能移动设备1,SPI2、SPI4与所述数据采集模块5通讯,SPI4是高速SPI,速度可以达到45Mbps,用于接收从所述数据采集模块5发送过来的数据,SPI2速度最高为22.5Mbps,用于传输所述嵌入式控制系统4发送给所述数据采集模块5的控制命令,USART1与蓝牙模块10相连,与所述智能移动设备1进行交互,获取所述智能移动设备1发送的控制指令。
如图3所示,本发明的实施例还提供了一种岩矿石标本阻抗远程测量方法,包括:本发明的实施例还提供了一种岩矿石标本阻抗远程测量方法,包括:步骤1,通过无线通讯模块将智能移动设备与标本阻抗测试仪建立无线网络连接;步骤2,在智能移动设备上通过参数设置模块13进行采集参数设置和标本拍照并将采集到的参数和标本拍照的照片进行存储;步骤3,通过智能移动设备向标本阻抗测试仪发送自检命令,获取标本阻抗测试仪自检信息,通过智能移动设备向嵌入式控制系统发送测量配置信息和采集命令,嵌入式控制系统将接收到的采集命令进行命令解析;步骤4,通过数据采集模块进行数据采集并控制信号源模块产生激励信号;步骤5,嵌入式控制系统将采集到的数据进行存储并发送到智能移动设备;步骤6,智能移动设备将接收到的采集数据进行存储和傅里叶变换,获得数据处理结果;步骤7,智能移动设备将数据处理结果进行成图显示并将数据处理结果通过无线通讯模块上传到PC端。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,步骤:将所述智能移动设备1与所述嵌入式控制系统4建立WIFI和蓝牙连 接;在所述智能移动设备1上设置采集参数并配置自检时信号频率、自检采样率等信息,包括设置标本参数、测量控制参数、标本信息和工区信息,进行标本拍照,并将照片和采集参数进行存储;向所述嵌入式控制系统4发送自检命令,获取自检信息,在智能移动设备1获取到数据之后进行计算,检查所述数据采集模块5和所述信号源模块6等能否正常工作,在确认正常工作之后再配置采集信息,进行正式测量,采用无线控制的方式给操作人员提供了方便,更加便携;向所述嵌入式控制系统4发送配置信息;向所述嵌入式控制系统4发送采集命令,采集命令包括信号频率、采样频率、测量信号模式、测量信号幅度值和频率控制字等明码;所述嵌入式控制系统4进行命令解析,命令解析为所述嵌入式控制系统4将明码字符串按照一定格式翻译成64位的硬件命令协议,并将命令发送给所述数据采集模块5配置;所述数据采集模块5接收控制命令,配置ADC和信号源模块6,所述数据采集模块5进行数据采集并传输到嵌入式控制系统4;所述信号源模块6接收来自所述数据采集模块5的控制命令产生激励信号;所述嵌入式控制系统4将数据进行存储转发;所述智能移动设备1将数据接收进行存储和傅里叶变换,所述智能移动设备1将数据进行存储,所述智能移动设备1按照扫频算法设计的信号频率对应的数据量,接收到目标数据量之后停止接收数据并发送停止采集的命令;所述智能移动设备1将数据处理结果进行存储和结果成图显示;所述智能移动设备1将数据上传至PC端。所述智能移动设备1采用安卓APP,安卓APP功耗低、体积小、重量轻、便于使用,并且利用WIFI、蓝牙无线通讯的方式进行所述标本阻抗测试仪3的控制和数据发送,克服了地形和天气等因素的影响。
其中,所述步骤1具体包括:智能移动设备通过无线通讯模块的蓝牙单元和WIFI热点单元与标本阻抗测试仪中的嵌入式控制系统建立无线连接并进行通讯。
其中,所述步骤2具体包括:在智能移动设备上通过参数设置模块13对标本参数、测量控制参数、标本信息和工区信息进行设置,对标本进行拍照,通过测量结果模块15将参数设置的信息使用SQLite数据库进行存储,参数设置模块13将设置的参数信息发送到采集控制模块14中, 采集控制模块14接收来自于参数设置模块13的参数并利用接收到的参数进行测量过程中的测量次数和误差的控制。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述参数设置模块13设置标本物理参数、测量控制信息、标本信息、地理位置信息,并用数据库将这些信息进行存储,同时发送到采集控制模块14中,为采集控制模块14提供计算参数。所述采集控制模块14接收来自于所述参数设置模块13的参数之后并利用这些参数进行测量过程中的测量次数、误差等采集过程中的控制。
其中,所述步骤3具体包括:智能移动设备向标本阻抗测试仪发送自检命令,标本阻抗测试仪接收到智能移动设备发送的自检命令,获得自检信息,智能移动设备向嵌入式控制系统发送测量配置信息和采集命令,采集命令包括信号频率、采样频率、测量信号模式、测量信号幅度值和频率控制字,嵌入式控制系统通过命令解析模块19解析采集命令,将明码字符串解析成64位硬件协议命令并发送到数据采集模块进行采集控制。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述命令解析模块19在所述嵌入式控制系统4中通过蓝牙连接接收到来自于所述智能移动设备1发送的明码,也就是字符串命令,将字符串命令通过解析函数翻译成与所述数据采集模块5约定的64位硬件协议,让所述数据采集模块5配置自身参数和信号源模块6的参数。
其中,所述步骤4具体包括:通过数据采集模块接收来自嵌入式控制系统的控制命令配置ADC和信号源模块,通过数据采集模块进行数据采集并将采集数据传输到嵌入式控制系统,信号源模块接收来自数据采集模块的控制命令并产生激励信号。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述数据采集模块5以CPLD为控制核心,控制ADC的采集,同时控制信号源激励的产生,所述信号源模块6在接收到所述数据采集模块5发送过来的配置命令之后,所述信号源模块6将进行配置,产生用户需求的电流或电压源和指定的数值大小。
其中,所述步骤5具体包括:通过数据接收与存储模块20接收来自于数据采集模块的采集数据,数据接收与存储模块20将采集数据存储到 嵌入式控制系统的SD卡中,通过数据发送模块21将采集数据传输到智能移动设备中。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,在信号源产生激励之后,所述数据采集模块5开始进行数据采集,所述数据采集模块5采集到数据通过SPI将数据持续不断地发送到所述嵌入式控制系统4,所述数据接收与存储模块20将数据存储到嵌入式控制系统4的SD卡12中,所述数据发送模块21将从数据采集模块5获取到的数据,利用所述嵌入式控制系统4的WIFI模块11将数据及时发送到所述智能移动设备1上进行处理。
其中,所述步骤6具体包括:智能移动设备将接收到的采集数据进行存储,智能移动设备按照扫频算法设计的信号频率对应的数据量,接收到目标数据量之后停止接收采集数据并发送停止采集的命令,通过测量结果模块15将从数据采集模块接收到的采集数据进行傅里叶变换,将采集数据进行计算,得到岩矿石标本在该信号频率激励下产生的响应并将原始数据和测量结果存储起来,其中,原始数据为时域二进制数据,直接存储到文件中,测量结果按照固定的格式写入文本文件中。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述测量结果模块15将从所述数据采集模块5接收到的采集数据进行傅里叶变换,将各道的数据进行计算,得到岩矿石标本在该信号频率激励下产生的响应,并将原始数据和测量结果存储起来,其中,原始数据为时域二进制数据,直接存储到文件中,将测量结果按照固定的格式写入文本文件中。
其中,所述步骤7具体包括:通过数据可视化模块16将历次测量结果读取出来并利用安卓绘图框架将数据成图显示到界面上,通过数据上传模块17将工区内测量完成后的各个标本对应的标本照片、时间序列文件、结果文件和工区对应的数据库文件进行处理,利用智能移动设备构建局域网,将整个工区文件通过TCP传输上传至PC端。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,所述数据可视化模块16在所述测量结果模块15将测量结果按照固定格式将本次测量结果存储到文本文件中后,所述数据可视化模块16将历次测量 结果读取出来,利用安卓绘图框架将数据成图显示到界面上,所成图包括:时间域原始数据图,相位和电阻率频谱图。所述数据上传模块17将一个工区内所有标本测量完成后,所述数据上传模块17将各个标本对应的标本照片、时间序列文件、结果文件和该工区对应的数据库文件做进一步处理,所述数据上传模块17利用所述智能移动设备1构建简单的局域网,通过TCP传输将整个工区文件上传至PC端,所述数据上传模块17为了提升上传速度,采用Zip压缩算法将整个工区文件夹进行压缩,极大提高了传输效率。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,如图4所示,所述智能移动设备1启动时首先获取位置、读写文件等软件正常使用的权限,然后进入WIFI设置界面,用户连接热点,所述智能移动设备1会自动判定当前连接的热点是否为仪器热点,并提示用户进行设置,在与所述嵌入式控制系统4通讯的过程中,所述智能移动设备1作为客户端发起TCP连接,建立与嵌入式控制系统4的数据发送通道,然后打开蓝牙与嵌入式控制系统4的蓝牙模块10配对、连接,建立命令传输通道,在所述参数设置模块13输入各项参数进行保存同时将参数传递到采集控制界面,经过自检、校准后进行数据采集,采集过程中进行数据处理、误差控制、测量结果存储。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,如图5所示,所述标本阻抗测试仪3进行系统初始化,系统初始化后自动开启蓝牙和WIFI,建立无线连接,在接收到由所述智能移动设备1发送的字符串命令之后对命令进行解析,获取到64位的硬件命令协议,然后配置所述数据采集模块5和所述信号源模块6,所述信号源模块6产生激励信号,岩矿石标本产生响应,所述数据采集模块5将采集到数据发送给所述嵌入式控制系统4,所述嵌入式控制系统4将采集到数据上传至智能移动设备1,数据传输速度快。
本发明的上述实施例所述的岩矿石标本阻抗远程测量系统及方法,通过所述智能移动设备1与所述标本阻抗测试仪3的无线交互,实现了远程测量,所述标本阻抗测试仪3能够实时地将测量得到的数据发送给所述智能移动设备1,使所述智能移动设备1能够对所述标本阻抗测试仪3持续 监控,可以进行数据计算,得到该频点下岩矿石的标本阻抗。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种岩矿石标本阻抗远程测量系统,其特征在于,包括:
    智能移动设备,所述智能移动设备包括参数设置模块、采集控制模块、测量结果模块、数据可视化模块、数据上传模块和软件导航模块,所述参数设置模块用于设置标本测量的各项参数,所述采集控制模块用于控制标本测量的采集控制过程,所述测量结果模块用于将接收到的数据进行傅里叶变换和计算并存储到智能移动设备的文件中,所述数据可视化模块用于将测量结果和原始数据成图显示到界面上,所述数据上传模块用于将智能移动设备上关于标本的各项文件上传到PC端,所述软件导航模块用于进行各个界面的切换和功能导航;
    无线通讯模块,所述无线通讯模块的第一端与所述智能移动设备电连接,所述无线通讯模块包括蓝牙单元和WIFI热点单元,所述蓝牙单元用于发送命令,所述WIFI热点单元用于传输数据;
    标本阻抗测试仪,所述标本阻抗测试仪与所述无线通讯模块的第二端电连接,所述标本阻抗测试仪包括嵌入式控制系统、数据采集模块和信号源模块,所述嵌入式控制系统用于接收与发送命令和数据;所述数据采集模块的第一端与所述嵌入式控制系统电连接,所述数据采集模块用于接收控制命令和采集数据,所述数据采集模块采用基于CPLD采集系统;所述信号源模块与所述数据采集模块的第二端电连接,所述信号源模块用于接收控制命令和产生激励信号,所述信号源模块采用信号源板。
  2. 根据权利要求1所述的岩矿石标本阻抗远程测量系统,其特征在于,所述嵌入式控制系统包括:
    命令解析模块,所述命令解析模块包括主控芯片,所述主控芯片的第一端与所述数据采集模块的第一端电连接,所述命令解析模块用于将来自于智能移动设备的字符串命令解析成64位的硬件命令;
    数据接收与存储模块,所述数据接收与存储模块包括SD卡,所述SD卡与所述主控芯片的第二端电连接,所述数据接收与存储模块用于接收和存储所述数据采集模块采集到的数据;
    数据发送模块,所述数据发送模块包括蓝牙模块和WIFI模块,所述蓝牙模块的第一端与所述主控芯片的第三端电连接,所述蓝牙模块的第二端与所述蓝牙单元的第一端电连接,所述蓝牙单元的第二端分别与安卓手 机和所述WIFI热点单元的第一端电连接;所述WIFI模块的第一端与所述主控芯片的第四端电连接,所述WIFI模块的第二端与所述WIFI热点单元的第二端电连接,所述WIFI热点单元的第三端与PC端电连接,所述数据发送模块用于将数据传输到所述智能移动设备上。
  3. 一种岩矿石标本阻抗远程测量方法,应用于如权利要求1-2任一项所述的岩矿石标本阻抗远程测量系统,其特征在于,包括:
    步骤1,通过无线通讯模块将智能移动设备与标本阻抗测试仪建立无线网络连接;
    步骤2,在智能移动设备上通过参数设置模块进行采集参数设置和标本拍照并将采集到的参数和标本拍照的照片进行存储;
    步骤3,通过智能移动设备向标本阻抗测试仪发送自检命令,获取标本阻抗测试仪自检信息,通过智能移动设备向嵌入式控制系统发送测量配置信息和采集命令,嵌入式控制系统将接收到的采集命令进行命令解析;
    步骤4,通过数据采集模块进行数据采集并控制信号源模块产生激励信号;
    步骤5,嵌入式控制系统将采集到的数据进行存储并发送到智能移动设备;
    步骤6,智能移动设备将接收到的采集数据进行存储和傅里叶变换,获得数据处理结果;
    步骤7,智能移动设备将数据处理结果进行成图显示并将数据处理结果通过无线通讯模块上传到PC端。
  4. 根据权利要求3所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤1具体包括:
    智能移动设备通过无线通讯模块的蓝牙单元和WIFI热点单元与标本阻抗测试仪中的嵌入式控制系统建立无线连接并进行通讯。
  5. 根据权利要求4所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤2具体包括:
    在智能移动设备上通过参数设置模块对标本参数、测量控制参数、标本信息和工区信息进行设置,对标本进行拍照,通过测量结果模块将参数设置的信息使用SQLite数据库进行存储,参数设置模块将设置的参数信 息发送到采集控制模块中,采集控制模块接收来自于参数设置模块的参数并利用接收到的参数进行测量过程中的测量次数和误差的控制。
  6. 根据权利要求5所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤3具体包括:
    智能移动设备向标本阻抗测试仪发送自检命令,标本阻抗测试仪接收到智能移动设备发送的自检命令,获得自检信息,智能移动设备向嵌入式控制系统发送测量配置信息和采集命令,采集命令包括信号频率、采样频率、测量信号模式、测量信号幅度值和频率控制字,嵌入式控制系统通过命令解析模块解析采集命令,将明码字符串解析成64位硬件协议命令并发送到数据采集模块进行采集控制。
  7. 根据权利要求6所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤4具体包括:
    通过数据采集模块接收来自嵌入式控制系统的控制命令配置ADC和信号源模块,通过数据采集模块进行数据采集并将采集数据传输到嵌入式控制系统,信号源模块接收来自数据采集模块的控制命令并产生激励信号。
  8. 根据权利要求7所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤5具体包括:
    通过数据接收与存储模块接收来自于数据采集模块的采集数据,数据接收与存储模块将采集数据存储到嵌入式控制系统的SD卡中,通过数据发送模块将采集数据传输到智能移动设备中。
  9. 根据权利要求8所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤6具体包括:
    智能移动设备将接收到的采集数据进行存储,智能移动设备按照扫频算法设计的信号频率对应的数据量,接收到目标数据量之后停止接收采集数据并发送停止采集的命令,通过测量结果模块将从数据采集模块接收到的采集数据进行傅里叶变换,将采集数据进行计算,得到岩矿石标本在该信号频率激励下产生的响应并将原始数据和测量结果存储起来,其中,原始数据为时域二进制数据,直接存储到文件中,测量结果按照固定的格式写入文本文件中。
  10. 根据权利要求9所述的岩矿石标本阻抗远程测量方法,其特征在于,所述步骤7具体包括:
    通过数据可视化模块将历次测量结果读取出来并利用安卓绘图框架将数据成图显示到界面上,通过数据上传模块将工区内测量完成后的各个标本对应的标本照片、时间序列文件、结果文件和工区对应的数据库文件进行处理,利用智能移动设备构建局域网,将整个工区文件通过TCP传输上传至PC端。
PCT/CN2022/142137 2021-12-30 2022-12-27 岩矿石标本阻抗远程测量系统及方法 WO2023125465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111658524.6A CN114325104A (zh) 2021-12-30 2021-12-30 岩矿石标本阻抗远程测量系统及方法
CN202111658524.6 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125465A1 true WO2023125465A1 (zh) 2023-07-06

Family

ID=81019234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142137 WO2023125465A1 (zh) 2021-12-30 2022-12-27 岩矿石标本阻抗远程测量系统及方法

Country Status (2)

Country Link
CN (1) CN114325104A (zh)
WO (1) WO2023125465A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325104A (zh) * 2021-12-30 2022-04-12 长沙巨杉智能科技有限公司 岩矿石标本阻抗远程测量系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080270051A1 (en) * 2005-08-02 2008-10-30 Impedimed Limited Impedance Parameter Values
CN102175921A (zh) * 2011-03-16 2011-09-07 中国民航大学 一种基于fpga的便携式阻抗测量仪表
CN103399777A (zh) * 2013-06-28 2013-11-20 华中科技大学 一种基于智能终端的虚拟仪器测量系统及方法
CN103558048A (zh) * 2013-11-13 2014-02-05 重庆大学 Android平台上的虚拟式机械故障诊断仪和方法
US20140095102A1 (en) * 2012-09-28 2014-04-03 General Electric Company Systems and methods for monitoring sensors
CN205158065U (zh) * 2015-12-03 2016-04-13 李端有 一种基于蓝牙的便携式双通道传感器采集装置
CN105699729A (zh) * 2016-04-19 2016-06-22 北京理工大学珠海学院 智能电学采集系统
CN205920590U (zh) * 2016-07-25 2017-02-01 广东技术师范学院 便携式手持终端装置
CN107948251A (zh) * 2017-11-06 2018-04-20 武汉科技大学 一种基于安卓的远程机械故障诊断系统
CN114325104A (zh) * 2021-12-30 2022-04-12 长沙巨杉智能科技有限公司 岩矿石标本阻抗远程测量系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080270051A1 (en) * 2005-08-02 2008-10-30 Impedimed Limited Impedance Parameter Values
CN102175921A (zh) * 2011-03-16 2011-09-07 中国民航大学 一种基于fpga的便携式阻抗测量仪表
US20140095102A1 (en) * 2012-09-28 2014-04-03 General Electric Company Systems and methods for monitoring sensors
CN103399777A (zh) * 2013-06-28 2013-11-20 华中科技大学 一种基于智能终端的虚拟仪器测量系统及方法
CN103558048A (zh) * 2013-11-13 2014-02-05 重庆大学 Android平台上的虚拟式机械故障诊断仪和方法
CN205158065U (zh) * 2015-12-03 2016-04-13 李端有 一种基于蓝牙的便携式双通道传感器采集装置
CN105699729A (zh) * 2016-04-19 2016-06-22 北京理工大学珠海学院 智能电学采集系统
CN205920590U (zh) * 2016-07-25 2017-02-01 广东技术师范学院 便携式手持终端装置
CN107948251A (zh) * 2017-11-06 2018-04-20 武汉科技大学 一种基于安卓的远程机械故障诊断系统
CN114325104A (zh) * 2021-12-30 2022-04-12 长沙巨杉智能科技有限公司 岩矿石标本阻抗远程测量系统及方法

Also Published As

Publication number Publication date
CN114325104A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN102331485B (zh) 一种便携式水质监测仪
CN105547139B (zh) 一种基于Wi-Fi的无线应变测量系统
WO2023125465A1 (zh) 岩矿石标本阻抗远程测量系统及方法
CN201725422U (zh) 超级数据采集装置
CN104461534A (zh) 基于Android移动终端的便携式智能超声探伤系统
CN103558352A (zh) 一种基于移动终端的便携式水质分析仪
CN202522915U (zh) 一种基于振弦式传感器的数据采集系统
CN102507907A (zh) 基于gps/gprs/gsm的新型便携式土壤水分监测仪
CN207198217U (zh) 一种基于可扩展平台的多功能虚拟示波器
CN205158065U (zh) 一种基于蓝牙的便携式双通道传感器采集装置
CN106131957B (zh) 一种通过Wi-Fi信号强度进行距离测量的方法及系统
CN210578580U (zh) 一种无线信号测试装置
CN207197578U (zh) 一种设施农业物联网环境监测系统的测试分析装置
CN209514376U (zh) 一种智能动态管控数采仪
CN204348062U (zh) 一种基于电力线通讯的用电计量终端数据采集设备
CN202548187U (zh) 电网供电电压合格率监测系统
CN202339622U (zh) 基于gps/gprs/gsm技术的土壤水分数据便携采集与无线发送设备
CN206460114U (zh) 智能变电站通流试验的检测系统
CN204440632U (zh) 手持式无线抄表装置
CN204495398U (zh) 一种基于云技术的太阳光辐照度测试记录装置
CN201917896U (zh) 数模信号转换测试装置
CN203630121U (zh) 一种基于移动终端的便携式水质分析仪
CN203759084U (zh) 一种多通讯方式电力仪表
CN210871592U (zh) 关节运动智能测量系统
CN202904298U (zh) 一种抽油机远程测控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18577233

Country of ref document: US