WO2023125381A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023125381A1
WO2023125381A1 PCT/CN2022/141835 CN2022141835W WO2023125381A1 WO 2023125381 A1 WO2023125381 A1 WO 2023125381A1 CN 2022141835 W CN2022141835 W CN 2022141835W WO 2023125381 A1 WO2023125381 A1 WO 2023125381A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
transmission segment
random access
uplink channel
terminal device
Prior art date
Application number
PCT/CN2022/141835
Other languages
English (en)
French (fr)
Inventor
雷珍珠
周化雨
徐志昆
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2023125381A1 publication Critical patent/WO2023125381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the change rate of the uplink timing advance (timing advance, TA) and the Doppler change rate are related to the position between the terminal device and the satellite. Due to the fast moving speed of the satellite, the propagation delay between the terminal device and the satellite changes quickly, which will lead to uplink out-of-synchronization. In order to reduce the risk of uplink out-of-synchronization, the terminal equipment needs to perform TA adjustment frequently.
  • Embodiments of the present application provide a communication method and device, which can realize fast uplink synchronization of terminal equipment in a scenario where TA changes rapidly, and help improve uplink communication performance.
  • the embodiment of the present application provides a communication method, including:
  • the terminal device determines the first information according to the ephemeris information and/or GNSS positioning information of the global navigation satellite system, the first information is used to indicate the length or beam of the uplink channel transmission section, and the length or beam of the uplink channel transmission section is related to the random access resource association;
  • the terminal device sends a random access request message based on resources.
  • the terminal device can determine the resources used to send the random access request message according to the ephemeris information and/or GNSS positioning information of the global navigation satellite system, which can In a scenario where the TA changes rapidly, maintaining uplink synchronization helps improve uplink communication performance.
  • the resource is a carrier
  • the length of the uplink channel transmission segment is associated with the resource, including:
  • the length of the transmission segment of the uplink channel is associated with the carrier, or the length of the transmission segment of the uplink channel is associated with the carrier group, and the carrier group includes the carrier.
  • the first information is used to indicate the length of the uplink channel transmission segment, including:
  • the first information is used to indicate the transmission segment length of the physical random access channel PRACH and the transmission segment length of the physical uplink shared channel PUSCH.
  • the above method further includes:
  • the terminal device sends uplink data according to the length of the PUSCH transmission segment.
  • the first information is used to indicate the length of the uplink channel transmission segment, including:
  • the first information is used to indicate the length of the PRACH transmission segment, where the length of the PRACH transmission segment is associated with the length of the PUSCH transmission segment.
  • the above method further includes:
  • the terminal device sends uplink data according to the length of the PUSCH transmission segment associated with the length of the PRACH transmission segment.
  • the resource is a random access opportunity RO and/or preamble
  • the length of the uplink channel transmission segment is associated with the resource, including:
  • the length of the uplink channel transmission segment is associated with the RO and/or the preamble.
  • the first information is used to indicate the length of the uplink channel transmission segment, including:
  • the first information is used to indicate the length of the PUSCH transmission segment.
  • the first information is used to indicate a beam
  • the beam is associated with a resource, including:
  • Beams are associated with carriers.
  • the above method further includes:
  • the terminal device receives the random access response message, and the random access response message is used to indicate the length of the PUSCH transmission segment.
  • the above method further includes:
  • the terminal device receives indication information, where the indication information is used to indicate the length of the uplink channel transmission segment or the beam associated with the resources used for random access.
  • the embodiment of the present application also provides a communication method, including:
  • the network device receives the random access request message based on the resource used for random access, and the resource is associated with the length of the transmission segment of the uplink channel or the beam;
  • the network device sends a random access response message to the terminal device.
  • the resource is a carrier, and the resource is associated with the length of the uplink channel transmission segment, including:
  • the carrier is associated with the length of the transmission segment of the uplink channel, or the carrier group is associated with the length of the transmission segment of the uplink channel, and the carrier group includes the carrier.
  • the length of the transmission segment of the uplink channel includes the length of the transmission segment of the physical random access channel PRACH and the length of the transmission segment of the physical uplink shared channel PUSCH; or,
  • the length of the uplink channel transmission segment is the length of the PRACH transmission segment, and the length of the PRACH transmission segment is associated with the length of the PUSCH transmission segment.
  • the network device receives the random access request message based on resources used for random access, including:
  • the network device receives the random access request message on the resource according to the length of the PRACH transmission segment associated with the resource.
  • the resource is a random access opportunity RO and/or a preamble, and the resource is associated with the length of the uplink channel transmission segment.
  • the network device receives the random access request message based on resources used for random access, including:
  • the network device receives the random access request message according to the RO and/or the preamble associated with the transmission segment length of the uplink channel.
  • the length of the uplink channel transmission segment is the length of the PUSCH transmission segment.
  • the resource is a carrier, and the resource is associated with a beam, and the network device receives the random access request message based on the resource used for random access, including:
  • a network device receives a random access request message based on a beam associated with a resource.
  • the random access response message is used to indicate the length of the PUSCH transmission segment.
  • the above method further includes:
  • the network device receives uplink data according to the length of the PUSCH transmission segment.
  • the above method further includes:
  • the network device sends indication information, where the indication information is used to indicate the length of the uplink channel transmission segment or the beam associated with the resources used for random access.
  • an embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program; the processor is used to run the computer program, and execute the communication method as described in the first aspect.
  • the embodiment of the present application further provides a communication device, including: a processor and a memory, the memory is used to store a computer program; the processor is used to run the computer program, and execute the communication method as described in the second aspect.
  • the embodiment of the present application provides a computer-readable storage medium, in which a computer program is stored in the computer-readable storage medium, and when it is run on a computer, the computer can realize the computer programs described in the first aspect to the second aspect. the communication method described above.
  • the embodiment of the present application provides a computer program product, the computer program product includes a computer program, when the above computer program is executed by a computer, the computer realizes the communication described in the first aspect or the second aspect method.
  • the program in the sixth aspect may be stored in whole or in part on a storage medium packaged with the processor, or stored in part or in whole in a memory not packaged with the processor.
  • the embodiment of the present application provides a communication device, including: one or more functional modules, where the one or more functional modules are configured to execute any one of the communication methods provided in the first aspect.
  • the embodiment of the present application provides a communication device, including: one or more functional modules, where the one or more functional modules are configured to execute any one of the communication methods provided in the second aspect.
  • a ninth aspect provides a communication system, including: a communication device for performing any one of the methods provided in the first aspect and a communication device for performing any one of the methods provided in the second aspect.
  • the communication device in the third aspect and the seventh aspect may be a chip or a terminal device
  • the communication device in the fourth aspect and the eighth aspect may be a chip or a network device.
  • FIG. 1 is a schematic diagram of segmented uplink data transmission provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the architecture of the non-terrestrial network scenario provided by the present application.
  • FIG. 3 is a schematic flow diagram of an embodiment of a communication method provided by the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the communication method provided by the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of the communication method provided by the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of the communication method provided by the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of the communication method provided by the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of the communication method provided by the present application.
  • FIG. 9 is a schematic flowchart of another embodiment of the communication method provided by the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • FIG. 11 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • Fig. 12 is a schematic structural diagram of another embodiment of the communication device provided by the present application.
  • the character "/" indicates that the contextual objects are an OR relationship.
  • A/B can mean either A or B.
  • "And/or" describes the association relationship of associated objects, indicating that there may be three kinds of relationships.
  • a and/or B may mean that A exists alone, A and B exist simultaneously, and B exists alone.
  • At least one means one or more, and “multiple” means two or more.
  • at least one of the following" or similar expressions thereof refers to any combination of these items, and may include any combination of a single item or a plurality of items.
  • at least one item (one) of A, B or C may represent: A, B, C, A and B, A and C, B and C, or A, B and C.
  • each of A, B, and C can be an element itself, or a set containing one or more elements.
  • transmit may include send and/or receive and may be a noun or a verb.
  • the equals involved in the embodiments of the present application can be used in conjunction with greater than, applicable to the technical solution adopted when greater than, and can also be used in conjunction with less than, applicable to the technical solution adopted when less than. It should be noted that when equal to is used in conjunction with greater than, it cannot be used in conjunction with less than; when equal to is used in conjunction with less than, it cannot be used in conjunction with greater than.
  • the terminal device is a device with a wireless transceiver function, which can be referred to as a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc. .
  • Terminal equipment can be fixed or mobile.
  • the terminal device may support at least one wireless communication technology, such as long term evolution (long term evolution, LTE), new air interface (new radio, NR), and so on.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a vehicle terminal, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications
  • the terminal device may also be a device having a
  • the network device in the embodiment of the present application is a device that provides a wireless communication function for a terminal device, and may also be referred to as an access network device, a radio access network (radio access network, RAN) device, or the like. Wherein, the network device may support at least one wireless communication technology, such as LTE, NR and so on.
  • the network equipment includes but is not limited to: a next-generation base station (generation nodeB, gNB), an evolved node B (evolved node B, eNB) in a fifth-generation mobile communication system (5th-generation, 5G), a wireless network control radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit, BBU), transmitting and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • generation nodeB generation nodeB, gNB
  • an evolved node B evolved node B
  • eNB evolved node B
  • 5th-generation 5G
  • 5G fifth-generation mobile communication system
  • RNC wireless network control radio network controller
  • node B node B
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device may It is a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, a network device in future mobile communications or a network device in a future evolved PLMN, etc.
  • the network device may also be an apparatus having a wireless communication function for the terminal device, such as a chip system.
  • the system-on-a-chip may include a chip, and may also include other discrete devices.
  • the uplink channel transmission segment in this embodiment of the present application refers to a plurality of uplink data repeated transmission units.
  • the terminal device needs to use a repeated transmission mechanism for uplink data transmission, that is, a transmission block (Transmission Block, TB) or a random preamble needs to be repeatedly sent multiple times, This results in an uplink data transmission lasting for a long time.
  • the uplink data transmission can be segmented, that is, N uplink data repeated transmission units are one transmission segment, and the value of N is configured by the network, and N is the length of the uplink channel transmission segment.
  • the length of the uplink channel transmission segment can be understood as the number of repeated transmission units for each segment of uplink data after the uplink data transmission is segmented.
  • the length of the uplink channel transmission segment may also be expressed in milliseconds as the number of repeated transmission units of each segment of uplink data after the uplink data transmission segment, which is not limited.
  • the uplink channel transmission segment may include a physical random access channel (Physical Random Access Channel, PRACH) transmission segment and/or a physical downlink shared channel (physical downlink shared channel, PDSCH) transmission segment.
  • PRACH Physical Random Access Channel
  • PDSCH physical downlink shared channel
  • the resources used for random access in this embodiment of the present application refer to resources used by terminal devices to initiate random access, and may include time domain resources, frequency domain resources, and/or code domain resources.
  • the resource may include a carrier, a random access opportunity (PRACH occasion, RO) and a preamble (Preamble).
  • the terminal equipment needs to frequently perform TA and frequency offset adjustments to achieve synchronization with satellites.
  • FIG. 1 exemplarily shows a schematic diagram of a transmission manner of a PUSCH transmission segment.
  • the rate of change of the uplink TA and the rate of change of Doppler are related to the positions of the terminal equipment and the satellite. If the terminal device is directly below the satellite, the rate of change of TA and the Doppler rate of change are very small; and if the terminal device is at the edge of the satellite coverage area (that is, the elevation angle of the terminal device relative to the satellite is large), the rate of change of TA The rate of change as well as the Doppler rate of change can be very large.
  • the length of the transmission segment is the length of a segment of uplink data.
  • an embodiment of the present application proposes a communication method.
  • FIG. 2 is a schematic diagram of an architecture of the NTN provided by the embodiment of the present application.
  • the NTN includes satellites, terminal equipment, and gateways (gateways, which may also be referred to as ground stations).
  • the wireless link between the satellite and the terminal device can be called the service link
  • the wireless link between the satellite and the gateway can be called the feedback link
  • PDN Public Data Network
  • the network equipment in the NTN may be located on land, for example, the gateway in FIG. 2 may have the function of the network equipment.
  • the satellite will act as a relay between the terminal device and the gateway, receive the data sent by the terminal device through the service link, and then forward the data to the ground gateway.
  • the network equipment in the NTN can also be set up on the satellite, for example, the satellite in FIG. 2 can have the function of the network equipment.
  • the terminal device can communicate with the network device.
  • the method involved in the present application will be described exemplarily below by taking the network device as a satellite with a base station function as an example.
  • FIG. 3 it is a schematic flow diagram of the communication method provided in the embodiment of the present application, which specifically includes the following steps:
  • Step 301 the terminal device determines first information according to ephemeris information and/or Global Navigation Satellite System (Global Navigation Satellite System, GNSS) positioning information, the first information is used to indicate the length or beam of the uplink channel transmission segment, and the uplink channel transmission segment A length or beam is associated with resources used for random access.
  • ephemeris information and/or Global Navigation Satellite System (Global Navigation Satellite System, GNSS) positioning information the first information is used to indicate the length or beam of the uplink channel transmission segment, and the uplink channel transmission segment A length or beam is associated with resources used for random access.
  • GNSS Global Navigation Satellite System
  • the ephemeris information is used to indicate satellite orbit information, satellite position information or satellite running speed information.
  • a terminal device can obtain ephemeris information in the following ways:
  • Terminal equipment can obtain ephemeris information through system information.
  • the GNSS positioning information is used to indicate the current location information of the terminal device.
  • a terminal device can obtain GNSS positioning information in the following ways:
  • the terminal device can obtain GNSS positioning information through the Global Positioning System (GPS).
  • GPS Global Positioning System
  • the terminal device may trigger the determination of the first information according to the ephemeris information and/or the GNSS positioning information by initiating random access.
  • the first information may be the number of uplink data repeated transmission units.
  • the terminal device determines the first information according to the ephemeris information and/or GNSS information, which may be understood as: the terminal device determines the uplink channel transmission segment length according to the ephemeris information and/or GNSS information. For example, the terminal device determines the current TA change rate and Doppler change rate according to the ephemeris information and GNSS information; and then determines an appropriate uplink channel transmission segment length according to the current TA change rate and Doppler change rate.
  • the first information may be a beam index or a beam identifier, and the like.
  • the terminal device determines the first information according to the ephemeris information and/or GNSS information, which can be understood as: the terminal device determines the current location information according to the ephemeris information and/or GNSS information, and determines the location information according to the location information The coverage area corresponding to the beam.
  • the association relationship between the length of the uplink channel transmission segment or the beam and the resource used for random access can be predefined by the protocol, preset in the terminal device and the network device, or can be set by the network device Indicate to the terminal device through indication information, where the indication information is used to indicate the length of the uplink channel transmission section or the beam associated with the resources used for random access, or the indication information is used to indicate the length of the uplink channel transmission section or the beam and Association relationship between resources used for random access.
  • This embodiment of the present application does not specifically limit it.
  • the network device may send it to the terminal device in a broadcast or unicast manner
  • the network device may carry the above indication information in high-layer signaling (for example, system information, radio resource control (radio resource control, RRC) signaling) or downlink control information (downlink control information, DCI) and send it to the terminal device.
  • RRC radio resource control
  • DCI downlink control information
  • the terminal device receives the indication information sent from the network device, so as to obtain the association between the length of the uplink channel transmission segment and the resources used for random access.
  • step 302 the terminal device sends a random access request message based on resources used for random access.
  • the network device receives the random access request message based on the resources used for random access.
  • the terminal device may send a random access request message to the network device based on the resource associated with the transmission segment length of the uplink channel or the beam.
  • the random access request message may also be called Msg1.
  • Step 303 the network device receives the random access request message, and sends a random access response message to the terminal device.
  • the random access response message may also be called Msg2.
  • the terminal device can segment the random access request message according to the length of the uplink channel transmission segment, and can use the resources associated with the length of the uplink channel transmission segment to segment the multiple random access request messages Segments are sent to network devices.
  • the terminal device may also perform uplink time-frequency synchronization adjustment with the network device, that is, TA adjustment. For example, each time the terminal device sends a segment of a random access request message, it can perform uplink time-frequency synchronization adjustment with the network device, so that the terminal device can maintain uplink synchronization in a scenario where the TA changes rapidly, effectively Helps improve uplink communication performance.
  • the network device can receive the random access request message sent by the terminal device on the above resource, and can determine the length of the uplink channel transmission segment associated with the resource according to the resource, so that the network device can determine the length of the uplink channel transmission segment according to the resource. Receive a random access request message sent by the terminal device.
  • the terminal device can determine the resources used to send the random access request message according to the ephemeris information and/or GNSS positioning information of the global navigation satellite system, In the scenario where the TA changes rapidly, the uplink synchronization can be maintained, which helps to improve the uplink communication performance.
  • the communication method in the embodiment of the present application will be specifically introduced below in combination with different situations in which the length of the uplink channel transmission segment or the association between the beam and the resources used for random access is used.
  • Embodiment 1 The length of the PRACH transmission segment and the length of the PUSCH transmission segment are associated with the carrier.
  • the terminal device determines an appropriate uplink channel transmission segment length (including a PRACH transmission segment length and a PUSCH transmission segment length) according to ephemeris information and/or GNSS positioning information.
  • the terminal device determines the current TA change rate and Doppler change rate according to the ephemeris information and/GNSS positioning information. Then, the terminal device determines an appropriate uplink channel transmission segment length according to the current TA change rate and Doppler change rate.
  • the terminal device selects a carrier associated with the uplink channel transmission segment length determined in step 401 above, and initiates random access to the network device. That is to say, the terminal device sends a random access request message to the network device on the carrier associated with the uplink channel transmission segment length determined in step 401 above.
  • the network device receives the random access request message based on the carrier associated with the length of the uplink channel transmission segment. For example, the network device receives the random access request message on the carrier associated with the length of the transmission segment of the uplink channel according to the length of the transmission segment of the PRACH.
  • the terminal device sends a random access request message to the network device according to the PRACH transmission segment length determined in step 401 on the carrier associated with the uplink channel transmission segment length determined in step 401 above.
  • the terminal device may send uplink data to the network device based on the length of the PUSCH transmission segment determined in step 401.
  • the uplink data may be a radio resource control connection request message (ie, Msg3 ) or uplink data (eg, Msg5 ) sent by the terminal device after completing the random access process (ie, entering the connected state).
  • the network device receives uplink data from the terminal device according to the length of the PUSCH transmission segment.
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the association relationship between the length of the PRACH transmission segment and the length of the PUSCH transmission segment and the carrier.
  • the indication information is used to indicate the length of the PRACH transmission segment and the length of the PUSCH transmission segment associated with the carrier.
  • the terminal device receives the indication information sent from the network device, so as to obtain the association between the length of the uplink channel transmission segment and the carrier.
  • the indication information may be used to indicate one or more sets of associations between the lengths of the PRACH transmission segment and the lengths of the PUSCH transmission segment and carriers.
  • the indication information is used to indicate the length of the PRACH transmission segment and the length of the PUSCH transmission segment associated with at least one carrier.
  • different uplink channel transmission segment lengths may be associated with the same carrier, that is, one carrier may be associated with multiple uplink channel transmission segment lengths.
  • one carrier is associated with one PRACH transmission segment length and one PUSCH transmission segment length.
  • the association relationship between the length of the PRACH transmission segment and the length of the PUSCH transmission segment and the carrier may be implemented through an association relationship table.
  • Table 1 shows the relationship between the length of the PRACH transmission segment and the length of the PUSCH transmission segment and the carrier.
  • carrier 1 is associated with N1 and M1, where N1 is the length of the PRACH transmission segment, and M1 is the length of the PUSCH transmission segment.
  • the association between carrier 1 and N1 and M1 may be realized by establishing a mapping relationship or association relationship between the index or identifier of carrier 1 and N1 and M1. It should be understood that the above is only an introduction to a specific implementation of the association between the carrier and the length of the uplink channel transmission segment. Of course, in the embodiment of the present application, the relationship between the carrier and the length of the uplink channel transmission segment can also be established in other ways.
  • the association relationship is not limited.
  • the carriers are respectively associated with the PRACH transmission segment length and the PUSCH transmission segment length. Taking carrier 1 associated with N1 and M1 in Table 1 as an example, carrier 1 is associated with N1, and carrier 1 is associated with M1.
  • Embodiment 2 The length of the PRACH transmission segment and the length of the PUSCH transmission segment are associated with the carrier group.
  • a carrier group may include one or more carriers. It should be noted that the number of carriers included in different carrier groups may be the same or different, which is not limited.
  • FIG. 5 it is a schematic flowchart of a communication method according to another embodiment of the present application, which specifically includes the following steps:
  • the terminal device determines an appropriate uplink channel transmission segment length (including a PRACH transmission segment length and a PUSCH transmission segment length) according to ephemeris information and/or GNSS positioning information.
  • step 501 for the specific implementation manner of step 501, reference may be made to the relevant introduction in step 401, which will not be repeated here.
  • the terminal device selects a carrier from the carrier group associated with the uplink channel transmission segment length determined in step 501 above, and initiates random access to the network device. That is to say, the terminal device sends a random access request message to the network device on the carrier selected in step 502 above.
  • the network device receives the random access request message based on the carrier group associated with the length of the uplink channel transmission segment. For example, the network device receives the random access request message on the carrier associated with the length of the transmission segment of the uplink channel according to the length of the transmission segment of the PRACH.
  • the terminal device may randomly select a carrier from the carrier group associated with the uplink channel transmission segment length determined in step 501 above.
  • the terminal device may also select a carrier from the carrier group associated with the uplink channel transmission segment length determined in step 501 based on a certain carrier selection strategy.
  • the carrier selection strategy may be indicated to the terminal device by the network device, or may be It is predefined by the protocol, and can also be determined by the terminal device in combination with its own requirements, which is not limited.
  • the terminal device may send a random access request message to the network device on the carrier selected in step 502 above according to the length of the PRACH transmission segment.
  • the terminal device may send uplink data to the network device based on the length of the PUSCH transmission segment determined in step 501 .
  • the network device receives uplink data from the network device based on the length of the PUSCH transmission segment.
  • the uplink data may be a radio resource control connection request message (ie, Msg3 ) or uplink data (eg, Msg5 ) sent by the terminal device after completing the random access process (ie, entering the connected state).
  • Msg3 radio resource control connection request message
  • uplink data eg, Msg5
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the association relationship between the length of the PRACH transmission segment and the length of the PUSCH transmission segment and the carrier group.
  • the indication information is used to indicate the length of the PRACH transmission segment and the length of the PUSCH transmission segment associated with the carrier group.
  • the indication information may be used to indicate one or more groups of associations between PRACH transmission segment lengths and PUSCH transmission segment lengths and carrier groups.
  • the indication information is used to indicate the length of the PRACH transmission segment and the length of the PUSCH transmission segment associated with at least one carrier group.
  • the association relationship between the length of the PRACH transmission segment, the length of the PUSCH transmission segment and the carrier group can be realized through an association relationship table.
  • Table 2 shows the relationship between the length of the PRACH transmission segment, the length of the PUSCH transmission segment and the carrier group.
  • carrier group 1 is associated with N1 and M1, where N1 is the length of the PRACH transmission segment, and M1 is the length of the PUSCH transmission segment.
  • the association between carrier group 1 and N1 and M1 may be realized by establishing a mapping relationship or association relationship between the index or identifier of carrier group 1 and N1 and M1. It should be understood that the above is only an introduction to a specific implementation of the association between the carrier group and the length of the uplink channel transmission segment. Of course, in the embodiment of this application, other methods can also be used to establish the relationship between the carrier group and the length of the uplink channel transmission segment. The association relationship is not limited.
  • a carrier group is associated with a PRACH transmission segment length and a PUSCH transmission segment length respectively.
  • carrier group 1 is associated with N1
  • carrier group 1 is associated with M1.
  • Embodiment 3 The length of the PRACH transmission segment is associated with the carrier, and the length of the PRACH transmission segment is associated with the length of the PUSCH transmission segment.
  • FIG. 6 it is a schematic flowchart of a communication method according to another embodiment of the present application, which specifically includes the following steps:
  • the terminal device determines an appropriate PRACH transmission segment length according to ephemeris information and/or GNSS positioning information.
  • step 601 For the specific implementation manner of step 601, reference may be made to the related introduction of determining an appropriate uplink channel transmission segment length in step 401, which will not be repeated here.
  • the terminal device selects a carrier associated with the PRACH transmission segment length determined in step 601, and initiates random access to the network device. That is to say, the terminal device sends a random access request message to the network device on the carrier selected in step 602 above. Further, the terminal device sends a random access request message to the network device on the carrier selected in step 602 above according to the length of the PRACH transmission segment.
  • the network device receives the random access request message based on the carrier associated with the length of the PRACH transmission segment. For example, the network device receives the random access request message on the carrier associated with the length of the transmission segment of the uplink channel according to the length of the transmission segment of the PRACH.
  • the association between the length of the PRACH transmission segment and the carrier may be predefined, or may be indicated to the terminal device by the network device.
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the association relationship between the length of the PRACH transmission segment and the carrier, or the indication information is used to indicate the length of the PRACH transmission segment associated with the carrier.
  • the indication information may be used to indicate the association relationship between one or more groups of PRACH transmission segment lengths and carriers.
  • the indication information is used to indicate the length of the PRACH transmission segment associated with at least one carrier.
  • the association relationship between the length of the PRACH transmission segment and the carrier refer to a specific implementation manner of associating the carrier with the length of the PRACH transmission segment and the length of the PUSCH transmission segment in the embodiment, which will not be repeated here.
  • the terminal device sends uplink data according to the PUSCH transmission segment length associated with the PRACH transmission segment length determined in step 601 .
  • the network device receives uplink data based on the PUSCH transmission segment length associated with the PRACH transmission segment length determined in step 601 .
  • the uplink data can be Msg3, or uplink data (such as Msg5) sent after the terminal device completes the random access process (that is, enters the connected state). After the terminal device completes the random access process (that is, enters the connected state) The uplink data sent (such as Msg5).
  • the association relationship between the length of the PRACH transmission segment and the length of the PUSCH transmission segment may be preconfigured or predefined.
  • the network device may indicate to the terminal device the association relationship between one or more sets of PRACH transmission segment lengths and PUSCH transmission segment lengths, or the PUSCH transmission segment lengths associated with one or more PRACH transmission segment lengths through system information.
  • association relationship between the length of the PRACH transmission segment and the length of the PUSCH transmission segment can be realized through an association relationship table.
  • Table 3 shows the relationship between the PRACH transmission segment length and the PUSCH transmission segment length.
  • the length of the PRACH transmission segment is 1 uplink data repeated transmission unit and the PUSCH transmission segment length is 2 uplink data repeated transmission units.
  • the terminal device determines that the length of the PRACH transmission segment is 1 uplink data repeated transmission unit, the terminal device sends uplink data based on 2 uplink data repeated transmission units. That is, the terminal device sends two PUSCH transmission segments of uplink data repeated transmission units each time it sends one PRACH transmission segment of uplink data repeated transmission units.
  • Table 3 it is introduced by taking a PRACH transmission segment length associated with a PUSCH transmission segment length as an example.
  • different PRACH transmission segment lengths may be associated with the same PUSCH transmission segment length.
  • Embodiment 4 The length of the PRACH transmission segment is associated with the carrier group, and the length of the PRACH transmission segment is associated with the length of the PUSCH transmission segment.
  • FIG. 7 it is a schematic flowchart of a communication method according to another embodiment of the present application, which specifically includes the following steps:
  • the terminal device determines an appropriate PRACH transmission segment length according to ephemeris information and/or GNSS positioning information.
  • the terminal device selects a carrier from the carrier group associated with the PRACH transmission segment length determined in step 701, and initiates random access to the network device. That is to say, the terminal device sends a random access request message to the network device on the carrier selected in step 702 above.
  • the network device receives the random access request message based on the carrier group associated with the length of the PRACH transmission segment. For example, the network device receives the random access request message on the carrier associated with the length of the transmission segment of the uplink channel according to the length of the transmission segment of the PRACH.
  • Embodiment 2 The difference with Embodiment 2 is that compared with Embodiment 2, the terminal device needs to select a carrier from the carrier group to initiate random access.
  • association relationship etc., please refer to the related introduction in the third embodiment, and will not repeat them here.
  • specific implementation of the association between the length of the PRACH transmission segment and the carrier group refer to the implementation of the association between the length of the PRACH transmission segment and the carrier, and will not be repeated here.
  • Embodiment 5 The RO and/or the preamble (Preamble) are associated with the length of the PUSCH transmission segment.
  • FIG. 8 it is a schematic flowchart of a communication method according to another embodiment of the present application, which specifically includes the following steps:
  • the terminal device determines an appropriate PUSCH transmission segment length according to ephemeris information and/or GNSS positioning information.
  • the terminal device determines the current TA change rate and Doppler change rate according to the ephemeris information and/or GNSS positioning information; then, the terminal device determines a suitable one according to the current TA change rate and Doppler change rate PUSCH transmission segment length.
  • the terminal device initiates random access to the network device according to the RO associated with the PUSCH transmission segment length determined in step 801 and/or the Preamble associated with the PUSCH transmission segment length determined in step 801. That is to say, the terminal device sends a random access request message to the network device according to the RO associated with the PUSCH transmission segment length determined in step 801 and/or the Preamble associated with the PUSCH transmission segment length determined in step 801 .
  • the network device receives the random access request message based on the RO associated with the length of the PUSCH transmission segment and/or the preamble associated with the length of the PUSCH transmission segment.
  • the terminal device sends uplink data according to the length of the PUSCH transmission segment determined in step 801 above.
  • the network device receives uplink data based on the length of the PUSCH transmission segment.
  • the terminal device sends Msg3 according to the length of the PUSCH transmission segment determined in step 801 above.
  • the terminal device sends uplink data (such as Msg5 ) according to the length of the PUSCH transmission segment determined in step 801 above.
  • the network device determines the length of the PUSCH transmission segment according to the RO and/or preamble corresponding to the received random access request message, and then receives uplink data according to the length of the PUSCH transmission segment to implement uplink communication.
  • the association relationship between the RO and/or the preamble (Preamble) and the length of the PUSCH transmission segment may be predefined, or may be indicated to the terminal device by the network device.
  • the network device sends indication information to the terminal device, the indication information is used to indicate the association between one or more groups of ROs and/or preambles (Preamble) and the length of the PUSCH transmission segment, or the indication information is used to indicate PUSCH transmission segment length associated with at least one RO and/or preamble.
  • one RO or preamble can be associated with one or more PUSCH transmission segment lengths, but one PUSCH transmission segment length is associated with one RO and/or preamble.
  • Embodiment 6 Beams are associated with carriers.
  • FIG. 9 it is a schematic flowchart of a communication method according to another embodiment of the present application, which specifically includes the following steps:
  • the terminal device determines a current beam according to ephemeris information and/or GNSS positioning information.
  • the terminal device determines the current location information according to the ephemeris information and/or GNSS positioning information, and determines the downlink beam covering the terminal device according to the location information. It can be understood that the downlink beam covering the terminal device is the current position of the terminal device. the beam in which it is located.
  • the terminal device selects a carrier associated with the beam determined in step 901, and initiates random access to the network device. That is to say, the terminal device sends Msg1 to the network device on the carrier associated with the beam determined in step 901 .
  • the network device receives Msg1, and sends Msg2 to the terminal device, and Msg2 is used to indicate the length of the PUSCH transmission segment, so that the terminal device receives Msg2, and the length of the PUSCH transmission segment can be obtained based on Msg2, so that the terminal The device sends Msg3 based on the length of the PUSCH transmission segment; or, the terminal device sends uplink data (eg Msg5) after completing random access and entering the connected state.
  • Msg2 is used to indicate the length of the PUSCH transmission segment, so that the terminal device receives Msg2, and the length of the PUSCH transmission segment can be obtained based on Msg2, so that the terminal The device sends Msg3 based on the length of the PUSCH transmission segment; or, the terminal device sends uplink data (eg Msg5) after completing random access and entering the connected state.
  • the association relationship between the beam and the carrier may be indicated to the terminal device by the network device, or may be predefined, which is not limited.
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the association relationship between at least one beam and a carrier, or the indication information is used to indicate a beam associated with at least one carrier, or a beam associated with at least one beam Carrier etc.
  • the indication information may be carried by the network device in the system information and sent to the terminal device. It can be understood that the network device may also carry the above indication information through other information or messages and send it to the terminal device.
  • the terminal device in each of the above embodiments determines the length of the uplink channel transmission segment based on at least one of the ephemeris information and GNSS positioning information. In addition to the information, other information can also be combined to determine an appropriate uplink channel transmission segment length.
  • the communication method provided in the embodiments of the present application is introduced from the perspective of the network device and the terminal device as execution subjects.
  • the terminal device and the network device may include a hardware structure and/or a software module, and realize the above-mentioned various functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Function. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application, which may include: a determining module 1010 and a sending module 1020; wherein,
  • the determining module 1010 is used for the terminal device to determine the first information according to the ephemeris information and/or the GNSS positioning information of the global navigation satellite system, the first information is used to indicate the length or beam of the uplink channel transmission section, the length of the uplink channel transmission section or the beam and Resource association for random access;
  • the sending module 1020 is configured for the terminal device to send a random access request message based on resources.
  • the length of the uplink channel transmission segment is associated with a carrier, or the length of the uplink channel transmission segment is associated with a carrier group, and the carrier group includes carriers.
  • the first information is used to indicate the transmission segment length of the physical random access channel PRACH and the transmission segment length of the physical uplink shared channel PUSCH.
  • the sending module 1020 is further configured for the terminal device to send uplink data according to the length of the PUSCH transmission segment.
  • the first information is used to indicate the length of the PRACH transmission segment, where the length of the PRACH transmission segment is associated with the length of the PUSCH transmission segment.
  • the sending module 1020 is further configured for the terminal device to send uplink data according to the length of the PUSCH transmission segment associated with the length of the PRACH transmission segment.
  • the length of the uplink channel transmission segment is associated with the RO and/or the preamble.
  • the first information is used to indicate the length of the PUSCH transmission segment.
  • beams are associated with carriers.
  • the foregoing communication device 1000 further includes:
  • the receiving module 1030 is configured for the terminal device to receive a random access response message, where the random access response message is used to indicate the length of the PUSCH transmission segment.
  • the receiving module 1030 is further configured for the terminal device to receive indication information, where the indication information is used to indicate the length of an uplink channel transmission section or a beam associated with resources used for random access.
  • the communication device 30 may be a chip or a terminal device.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application, which may include: a receiving module 1110 and a sending module 1120; wherein,
  • the receiving module 1110 is used for the network device to receive a random access request message based on resources used for random access, where the resources are associated with uplink channel transmission segment lengths or beams;
  • the sending module 1120 is configured for the network device to send a random access response message to the terminal device.
  • the carrier is associated with the length of the uplink channel transmission segment, or the carrier group is associated with the length of the uplink channel transmission segment, and the carrier group includes carriers.
  • the length of the transmission segment of the uplink channel includes the length of the transmission segment of the physical random access channel PRACH and the length of the transmission segment of the physical uplink shared channel PUSCH; or,
  • the length of the uplink channel transmission segment is the length of the PRACH transmission segment, and the length of the PRACH transmission segment is associated with the length of the PUSCH transmission segment.
  • the receiving module 1110 is further configured for the network device to receive the random access request message on the resource according to the length of the PRACH transmission segment associated with the resource.
  • the resource is a random access opportunity RO and/or a preamble, and the resource is associated with an uplink channel transmission segment length.
  • the receiving module 1110 is further configured for the network device to receive the random access request message according to the RO and/or the preamble associated with the length of the uplink channel transmission segment.
  • the length of the uplink channel transmission segment is the length of the PUSCH transmission segment.
  • the receiving module 1110 is further configured for the network device to receive the random access request message based on the beam associated with the resource.
  • the random access response message is used to indicate the length of the PUSCH transmission segment.
  • the receiving module 1110 is further configured for the network device to receive uplink data according to the length of the PUSCH transmission segment.
  • the sending module 1120 is further configured for the network device to send indication information, where the indication information is used to indicate the length of an uplink channel transmission segment or a beam associated with resources used for random access.
  • the communication device 40 may be a chip or a network device.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided in an embodiment of the present application.
  • the communication device 1200 may include: at least one processor; and at least one memory communicatively connected to the processor.
  • the foregoing communication apparatus 1200 may be a network device or a terminal device.
  • the memory stores program instructions that can be executed by the processor. If the communication device 1200 is a network device, the processor can call the program instructions to execute the actions performed by the network device in the communication method provided by the embodiment of the present application. If the communication device 1200 1200 is a terminal device, and the processor invokes the above-mentioned program instructions to perform actions performed by the terminal device in the communication method provided by the embodiment of the present application.
  • the communication apparatus 1200 may be in the form of a general-purpose computing device.
  • Components of the communication device 1200 may include, but are not limited to: one or more processors 1210 , a memory 1220 , a communication bus 1240 connecting different system components (including the memory 1220 and the processor 1210 ), and a communication interface 1230 .
  • Communication bus 1240 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (Industry Standard Architecture, ISA) bus, Micro Channel Architecture (Micro Channel Architecture, MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association, VESA) local bus and peripheral component interconnection (Peripheral Component Interconnection, PCI) bus.
  • Communications device 1200 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by communication device 1200 and include both volatile and nonvolatile media, removable and non-removable media.
  • the memory 1220 may include computer system-readable media in the form of volatile memory, such as random access memory (Random Access Memory, RAM) and/or cache memory.
  • the communication device 1200 may further include other removable/non-removable, volatile/nonvolatile computer system storage media.
  • a disk drive for reading and writing to a removable nonvolatile disk such as a "floppy disk”
  • a removable nonvolatile disk such as a Compact Disk ROM (Compact Disk).
  • CD-ROM Compact Disk ROM
  • DVD-ROM Digital Video Disc Read Only Memory
  • each drive may be connected to communication bus 1240 through one or more data media interfaces.
  • the memory 1220 may include at least one program product having a group (for example, at least one) of program modules configured to execute the functions of the various embodiments of the present application.
  • a program/utility having a set (at least one) of program modules may be stored in memory 1220, such program modules including, but not limited to, an operating system, one or more application programs, other program modules, and program data, in which Each or some combination of these may include implementations of network environments.
  • the program modules generally perform the functions and/or methods in the embodiments described herein.
  • the communication device 1200 may also communicate with one or more external devices (such as keyboards, pointing devices, displays, etc.), and may also communicate with one or more devices that enable the user to interact with the communication device 1200, and/or communicate with the device that enables the user to interact with the communication device 1200.
  • Communications apparatus 1200 is capable of communicating with any device (eg, network card, modem, etc.) that communicates with one or more other computing devices. Such communication may occur through communication interface 1230 .
  • the communication device 1200 can also communicate with one or more networks (such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN) and/or a public network, such as Internet) communication, the above-mentioned network adapter can communicate with other modules of the electronic device through the communication bus 1240 .
  • networks such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN) and/or a public network, such as Internet
  • networks such as a local area network (Local Area Network, LAN), a wide area network (Wide Area Network, WAN) and/or a public network, such as Internet) communication
  • the above-mentioned network adapter can communicate with other modules of the electronic device through the communication bus 1240 .
  • other hardware and/or software modules may be used in conjunction with communication device 1200, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, disk arrays (Re
  • Each functional unit in each embodiment of the embodiment of the present application may be integrated into one processing unit, or each unit may physically exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage
  • the medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other various media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,涉及通信技术领域,该方法包括:终端设备根据星历信息和/或全球导航卫星系统GNSS定位信息确定第一信息,第一信息用于指示上行信道传输段长度或波束,上行信道传输段长度或波束与用于随机接入的资源关联;终端设备基于资源,发送随机接入请求消息。本申请实施例提供的方法,能够在TA变化较快的场景下,维持上行同步,有助于提高上行通信性能。

Description

通信方法及装置
本申请要求于2021年12月30日提交中国专利局、申请号为202111645990.0、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在非陆地网络(Non Terrestrial Networks,NTN)中,上行定时提前量(timing advance,TA)的变化速率以及多普勒变化率的大小与终端设备和卫星之间的位置相关。由于卫星的移动速度较快,导致终端设备与卫星之间的传播时延变化较快,由此会导致上行失步。为了降低上行失步的风险,终端设备需要频繁的进行TA调整。
然而,在NTN中,一次上行数据的传输需要持续很长一段时间。因此,针对如何在上行数据传输期间维持上行同步的研究,对于提高卫星通信性能具有重要的实用价值。
发明内容
本申请实施例提供了一种通信方法及装置,能够在TA变化较快的场景下,实现终端设备的快速上行同步,有助于提高上行通信性能。
第一方面,本申请实施例提供了一种通信方法,包括:
终端设备根据星历信息和/或全球导航卫星系统GNSS定位信息,确定第一信息,第一信息用于指示上行信道传输段长度或波束,上行信道传输段长度或波束与用于随机接入的资源关联;
终端设备基于资源,发送随机接入请求消息。
本申请实施例中,由于资源和传输段长度或波束存在关联关系,使得终端设备可以根据星历信息和/或全球导航卫星系统GNSS定位信息,确定用于发送随机接入请求消息的资源,能够在TA变化较快的场景下,维持上行同步,有助于提高上行通信性能。
其中一种可能的实现方式中,资源为载波,上行信道传输段长度与资源关联,包括:
上行信道传输段长度与载波关联,或者,上行信道传输段长度与载波组关联,载波组包括载波。
其中一种可能的实现方式中,第一信息用于指示上行信道传输段长度,包括:
第一信息用于指示物理随机接入信道PRACH传输段长度和物理上行共享信道PUSCH传输段长度。
其中一种可能的实现方式中,上述方法还包括:
终端设备根据PUSCH传输段长度,发送上行数据。
其中一种可能的实现方式中,第一信息用于指示上行信道传输段长度,包括:
第一信息用于指示PRACH传输段长度,其中,PRACH传输段长度与PUSCH传输段长度关联。
其中一种可能的实现方式中,上述方法还包括:
终端设备根据与PRACH传输段长度关联的PUSCH传输段长度,发送上行数据。
其中一种可能的实现方式中,资源为随机接入时机RO和/或前导码,上行信道传输段长度与资源关联,包括:
上行信道传输段长度与RO和/或所述前导码关联。
其中一种可能的实现方式中,第一信息用于指示上行信道传输段长度,包括:
第一信息用于指示PUSCH传输段长度。
其中一种可能的实现方式中,第一信息用于指示波束,波束与资源关联,包括:
波束与载波关联。
其中一种可能的实现方式中,上述方法还包括:
终端设备接收随机接入响应消息,随机接入响应消息用于指示PUSCH传输段长度。
其中一种可能的实现方式中,上述方法还包括:
终端设备接收指示信息,指示信息用于指示与用于随机接入的资源关联的上行信道传输段长度或波束。
第二方面,本申请实施例还提供了一种通信方法,包括:
网络设备基于用于随机接入的资源,接收随机接入请求消息,资源与上行信道传输段长度或波束关联;
网络设备向终端设备发送随机接入响应消息。
其中一种可能的实现方式中,资源为载波,资源与上行信道传输段长度关联,包括:
载波与上行信道传输段长度关联,或者,载波组与上行信道传输段长度关联,载波组包括载波。
其中一种可能的实现方式中,上行信道传输段长度包括物理随机接入信道PRACH传输段长度和物理上行共享信道PUSCH传输段长度;或者,
上行信道传输段长度为PRACH传输段长度,PRACH传输段长度与PUSCH传输段长度关联。
其中一种可能的实现方式中,网络设备基于用于随机接入的资源,接收随机接入请求消息,包括:
网络设备根据与资源关联的PRACH传输段长度,在资源上接收随机接入请求消息。
其中一种可能的实现方式中,资源为随机接入时机RO和/或前导码,资源与上行 信道传输段长度关联。
其中一种可能的实现方式中,网络设备基于用于随机接入的资源,接收随机接入请求消息,包括:
网络设备根据与上行信道传输段长度关联的RO和/或前导码,接收随机接入请求消息。
其中一种可能的实现方式中,上行信道传输段长度为PUSCH传输段长度。
其中一种可能的实现方式中,资源为载波,资源与波束关联,网络设备基于用于随机接入的资源,接收随机接入请求消息,包括:
网络设备基于与资源关联的波束,接收随机接入请求消息。
其中一种可能的实现方式中,随机接入响应消息用于指示PUSCH传输段长度。
其中一种可能的实现方式中,上述方法还包括:
网络设备根据PUSCH传输段长度,接收上行数据。
其中一种可能的实现方式中,上述方法还包括:
网络设备发送指示信息,指示信息用于指示与用于随机接入的资源关联的上行信道传输段长度或波束。
第三方面,本申请实施例提供一种通信装置,包括:处理器和存储器,存储器用于存储计算机程序;处理器用于运行计算机程序,执行如第一方面所述的通信方法。
第四方面,本申请实施例还提供一种通信装置,包括:处理器和存储器,存储器用于存储计算机程序;处理器用于运行计算机程序,执行如第二方面所述的通信方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机实现如第一方面至第二方面所述的通信方法。
第六方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括计算机程序,当上述计算机程序被计算机执行时,使得计算机实现如第一方面或至第二方面所述的通信方法。
在一种可能的实现方式中,第六方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
第七方面,本申请实施例提供了一种通信装置,包括:一个或多个功能模块,该一个或多个功能模块用于执行第一方面提供的任意一种的通信方法。
第八方面,本申请实施例提供了一种通信装置,包括:一个或多个功能模块,该一个或多个功能模块用于执行第二方面提供的任意一种的通信方法。
第九方面,提供了一种通信系统,包括:用于执行第一方面提供的任意一种方法的通信装置和用于执行第二方面提供的任意一种方法的通信装置。
其中,第三方面和第七方面中的通信装置可以为芯片或终端设备,第四方面和第八方面中的通信装置可以为芯片或网络设备。
附图说明
图1为本申请实施例提供的上行数据分段传输示意图;
图2为本申请提供的非陆地网络场景的架构示意图;
图3为本申请提供的通信方法一个实施例的流程示意图;
图4为本申请提供的通信方法另一个实施例的流程示意图;
图5为本申请提供的通信方法再一个实施例的流程示意图;
图6为本申请提供的通信方法再一个实施例的流程示意图;
图7为本申请提供的通信方法再一个实施例的流程示意图;
图8为本申请提供的通信方法再一个实施例的流程示意图;
图9为本申请提供的通信方法再一个实施例的流程示意图;
图10为本申请提供的通信装置一个实施例的结构示意图;
图11为本申请提供的通信装置另一个实施例的结构示意图;
图12为本申请提供的通信装置再一个实施例的结构示意图。
具体实施方式
本申请实施例中,除非另有说明,字符“/”表示前后关联对象是一种或的关系。例如,A/B可以表示A或B。“和/或”描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,也不能理解为指示或暗示顺序。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。此外,“以下至少一项(个)”或者其类似表达,是指的这些项中的任意组合,可以包括单项(个)或复数项(个)的任意组合。例如,A、B或C中的至少一项(个),可以表示:A,B,C,A和B,A和C,B和C,或A、B和C。其中,A、B、C中的每个本身可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中,“示例的”、“在一些实施例中”、“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中的“的(of)”、“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,所要表达的含义是一致的。本申请实施例中,通信、传输有时可以混用,应当指出的是,在不强调其区别时,其所表达的含义是一致的。例如,传输可以包括发送和/或接收,可以为名词,也可以是动词。
本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于小于时所采用的技术方案。需要说明的是,当等于与大于连用时,不能与小于连用;当等于与小于连用时,不与大于连用。
以下对本申请实施例涉及的部分术语进行解释说明,以便于本领域技术人员理解。
1、终端设备。本申请实施例中终端设备是一种具有无线收发功能的设备,可以称之为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station, MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如长期演进(long term evolution,LTE)、新空口(new radio,NR)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端设备还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
2、网络设备。本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,也可称之为接入网设备、无线接入网(radio access network,RAN)设备等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
3、上行信道传输段。本申请实施例中的上行信道传输段指多个上行数据重复传输单元。具体的,以NTN为例,为了保证上行数据传输的可靠性,终端设备需要采用重复传输机制进行上行数据的传输,即一个传输块(Transmission Block,TB)或者随机前导码需要重复发送多次,这就导致一次上行数据传输会持续很长的时间。考虑到NTN快速的时延变化,可以对上行数据传输进行分段,即N个上行数据重复传输单元为一个传输段,N值由网络配置,N即为上行信道传输段长度。也就是说,上行信道传输段长度可以理解为上行数据传输分段后,每段上行数据重复传输单元的个数。或 者,在本申请实施例中,上行信道传输段长度也可以以毫秒表征上行数据传输分段后,每段上行数据重复传输单元的个数,对此不做限定。
示例的,在本申请实施例中,上行信道传输段可以包括物理随机接入信道(Physical Random Access Channel,PRACH)传输段和/或物理下行共享信道(physical downlink shared channel,PDSCH)传输段。
4、用于随机接入的资源。本申请实施例中的用于随机接入的资源指的是终端设备发起随机接入所使用的资源,可以包括时域资源、频域资源和/或码域资源等。示例性的,该资源可以包括载波、随机接入时机(PRACH occasion,RO)及前导码(Preamble)。
在NTN中,由于卫星相对于终端设备的快速移动,终端设备与卫星之间的传播时延会随着时间发生快速的变化,这样会造成上行失步。因此,终端设备需要频繁的进行TA以及频偏调整,由此来达到和卫星的同步。
在随机接入过程中,为了保证传输的可靠性,通常需要对上行数据进行重复发送,因此对于一次上行传输(包括随机接入前导码和上行数据的传输),例如,一个TB的传输通常需要持续很长一段时间才能完成传输。考虑到NTN快速的时延变化,可以对一次上行传输进行分段,即将一次上行传输分成多个上行传输段(或称上行信道传输段),终端设备完成一次上行传输段的发送就重新进行时频调整,以适应快速的时延变化。图1示例性的示出了PUSCH传输段传输方式示意图。
此外,在NTN中,上行TA的变化速率以及多普勒变化率的大小与终端设备和卫星的位置相关。若终端设备处于卫星的正下方,TA的变化速率以及多普勒变化率非常小;而若终端设备处于卫星覆盖区域的边缘(也就是说,终端设备相对于卫星的仰角较大),TA的变化速率以及多普勒变化率会非常大。可以理解的是,TA的变化速率以及多普勒变化率越大,上行数据的传输段长度就越小;当TA的变化速率以及多普勒变化率越小,上行数据的传输段长度就越大。其中,传输段长度为一个上行数据的分段的长度。
可见,若上行数据的传输段长度过小,则一次上行数据传输的分段数很多,会增加终端设备发送上行数据的功耗以及复杂度。若上行数据的传输段长度过长,则会影响上行数据发送的时频同步精度。考虑到NTN场景中快速的空口传播时延变化,终端如何确定合适的上行数据的传输段长度值以确保上行数据传输过程中保持上行同步,提高上行通信性能是亟需解决的问题。
基于上述问题,本申请实施例提出了一种通信方法。
现结合图2和图3对本申请实施例提供的通信方法进行说明。
本申请实施例提供的通信方法可以应用于NTN中,请参阅图2,图2是本申请实施例提供的一种NTN的架构示意图。
如图2所示,该NTN中包括卫星、终端设备、网关(gateway,也可以称为地面站)。卫星与终端设备之间的无线链路可以称为服务链路,卫星与网关之间的无线链路可以称为反馈链路,卫星与卫星之间可以存在用于提供数据回程的星间链路。
一般情况下,该NTN的一个或几个网关需要连接到公共数据网络(Public Data Network,PDN),如图2中的网络。
在一些实施例中,NTN中的网络设备可以设在陆地,例如图2中的网关可以具备网络设备的功能。此时,卫星将作为终端设备与网关之间的中继,通过服务链路接收 终端设备发送的数据,再将该数据转发给地面的网关。
在另一些实施例中,NTN中的网络设备也可以设在卫星上,例如图2中的卫星可以具备网络设备的功能。
本申请实施例中,终端设备可以和网络设备进行通信,为便于描述,下文中以网络设备为具备基站功能的卫星为例对本申请所涉及的方法作示例性说明。
如图3所示,为本申请实施例提供的通信方法的流程示意图,具体包括以下步骤:
步骤301,终端设备根据星历信息和/或全球导航卫星系统(Global Navigation Satellite System,GNSS)定位信息,确定第一信息,第一信息用于指示上行信道传输段长度或波束,上行信道传输段长度或波束与用于随机接入的资源关联。
示例的,星历信息用于指示卫星轨道信息、卫星的位置信息或卫星的运行速度信息。例如,终端设备可以通过下述方式获得星历信息:
终端设备可以通过系统信息获取星历信息。
示例的,GNSS定位信息用于指示终端设备当前的位置信息。例如,终端设备可以通过下述方式获得GNSS定位信息:
终端设备可以通过全球定位系统(Global Positioning System,GPS)获得GNSS定位信息。
在一些实施例中,终端设备可以通过发起随机接入,触发根据星历信息和/或GNSS定位信息,确定第一信息。
示例的,以第一信息用于指示上行信道传输段长度为例,第一信息可以为上行数据重复传输单元的个数。具体的,终端设备根据星历信息和/或GNSS信息,确定第一信息,可以理解为:终端设备根据星历信息和/或GNSS信息,确定上行信道传输段长度。例如,终端设备根据星历信息和GNSS信息,确定当前TA的变化速率和多普勒变化率;然后根据当前TA的变化速率和多普勒变化率,确定一个合适的上行信道传输段长度。
示例的,以第一信息用于指示波束为例,第一信息可以为波束索引或波束标识等。具体的,终端设备根据星历信息和/或GNSS信息,确定第一信息,可以理解为:终端设备根据星历信息和/或GNSS信息,确定当前所处位置信息,并根据位置信息确定所处的覆盖区域对应的波束。
本申请实施例在具体实现时,上行信道传输段长度或波束与用于随机接入的资源之间的关联关系可以由协议预定义,在终端设备和网络设备中预先设置,也可以由网络设备通过指示信息指示给终端设备,其中,该指示信息用于指示与用于随机接入的资源关联的上行信道传输段长度或波束,或者,该指示信息用于指示上行信道传输段长度或波束与用于随机接入的资源之间的关联关系。本申请实施例对此不作特殊限定。
示例的,在上行信道传输段长度或波束与用于随机接入的资源之间的关联关系由网络设备通过指示消息指示给终端设备的情况下,网络设备可以通过广播或单播方式发送给终端设备,本申请实施例对此不作特殊限定。在一些实施例中,网络设备可以将上述指示信息携带在高层信令(例如,系统信息,无线资源控制(radio resource control,RRC)信令)或下行控制消息(downlink control information,DCI)中发送给终端设备。本申请实施例对此不作特殊限定。对应的,终端设备接收来自网络设备发送的指 示信息,从而获得上行信道传输段长度与用于随机接入的资源之间的关联关系。
步骤302,终端设备基于用于随机接入的资源,发送随机接入请求消息。对应的,网络设备基于用于随机接入的资源,接收随机接入请求消息。
具体地,终端设备可以基于与上行信道传输段长度或波束关联的资源,向网络设备发送随机接入请求消息。
其中,在本申请实施例中,对于4步随机接入来说,随机接入请求消息又可以称之为Msg1。
步骤303、网络设备接收到随机接入请求消息,向终端设备发送随机接入响应消息。其中,对于4步随机接入来说,随机接入响应消息又可以称之为Msg2。
在具体实现时,终端设备可以根据上行信道传输段长度对随机接入请求消息进行分段,并可以使用上行信道传输段长度所关联的资源将分段后得到的多个随机接入请求消息的分段发送给网络设备。其中,在终端设备将随机接入请求消息发送给网络设备的期间,终端设备还可以与网络设备进行上行时频同步调整,也就是TA调整。例如,每当终端设备发送完一个随机接入请求消息的分段后,可以与网络设备进行上行时频同步调整,由此可以使得终端设备在TA变化较快的场景下,维持上行同步,有助于提高上行通信性能。相应的,网络设备可以在上述资源上接收终端设备发送的随机接入请求消息,并可以根据该资源确定与该资源关联的上行信道传输段长度,由此可以使得网络设备根据上行信道传输段长度接收终端设备发送的随机接入请求消息。
本申请实施例中,由于资源和上行信道传输段或波束存在关联关系,使得终端设备可以根据星历信息和/或全球导航卫星系统GNSS定位信息,确定用于发送随机接入请求消息的资源,能够在TA变化较快的场景下,维持上行同步,有助于提高上行通信性能。
以下结合上行信道传输段长度或波束与用于随机接入的资源关联的不同情况,对本申请实施例的通信方法进行具体介绍。
实施例一:PRACH传输段长度和PUSCH传输段长度与载波关联。
如图4所示,为本申请实施例的通信方法的流程示意图,具体包括以下步骤:
401、终端设备根据星历信息和/或GNSS定位信息,确定一个合适的上行信道传输段长度(包括PRACH传输段长度和PUSCH传输段长度)。
示例的,终端设备根据星历信息和/GNSS定位信息,确定当前TA的变化速率和多普勒变化率。然后,终端设备根据当前TA的变化速率和多普勒变化率,确定一个合适的上行信道传输段长度。
402、终端设备选择与上述步骤401中确定的上行信道传输段长度关联的载波,向网络设备发起随机接入。也就是说,终端设备在与上述步骤401中确定的上行信道传输段长度关联的载波上,向网络设备发送随机接入请求消息。对应的,网络设备基于与上行信道传输段长度关联的载波,接收随机接入请求消息。例如,网络设备根据PRACH传输段长度,在与上行信道传输段长度关联的载波上,接收随机接入请求消息。
具体的,终端设备在与上述步骤401中确定的上行信道传输段长度关联的载波上,根据步骤401中确定的PRACH传输段长度,向网络设备发送随机接入请求消息。
进一步的,在一些实施例中,终端设备可以基于步骤401中确定的PUSCH传输 段长度,向网络设备发送上行数据。例如,上行数据可以为无线资源控制连接请求消息(即Msg3)或者终端设备完成随机接入过程(即进入连接态)后发送的上行数据(如Msg5)。对应的,网络设备根据PUSCH传输段长度,接收来自终端设备的上行数据。
在本申请的另一些实施例中,网络设备向终端设备发送指示信息,该指示信息用于指示PRACH传输段长度和PUSCH传输段长度与载波之间的关联关系。或者,该指示信息用于指示与载波关联的PRACH传输段长度和PUSCH传输段长度。对应的,终端设备接收来自网络设备发送的指示信息,从而获得上行信道传输段长度与载波之间的关联关系。
需要说明的是,该指示信息可以用于指示一组或多组PRACH传输段长度和PUSCH传输段长度与载波之间的关联关系。或者,该指示信息用于指示与至少一个载波关联的PRACH传输段长度和PUSCH传输段长度。还需要说明的是,不同的上行信道传输段长度可以与同一载波关联,也就是说,一个载波可以与多个上行信道传输段长度关联。但是,在本申请实施例中,一个载波关联一个PRACH传输段长度和一个PUSCH传输段长度。
示例的,在本申请实施例中,PRACH传输段长度和PUSCH传输段长度与载波的关联关系可以通过关联关系表实现。例如,PRACH传输段长度和PUSCH传输段长度与载波的关联关系表如表1所示。
表1
载波 PRACH传输段长度 PUSCH传输段长度
载波1 N1 M1
载波2 N2 M2
载波3 N3 M3
例如,如表1所示,载波1与N1和M1关联,其中,N1为PRACH传输段长度,M1为PUSCH传输段长度。在一些实施例中,在具体实现时,可以通过建立载波1的索引或标识与N1、M1的映射关系或关联关系,实现载波1与N1和M1关联。应理解,上述仅为一种载波与上行信道传输段长度之间关联的具体实现方式的介绍,当然,在本申请实施例中,也可以通过其它方式建立载波与上行信道传输段长度之间的关联关系,对此不做限定。例如,载波分别与PRACH传输段长度、和PUSCH传输段长度关联。以表1中的载波1与N1和M1关联为例,载波1与N1关联,载波1与M1关联。
实施例二:PRACH传输段长度和PUSCH传输段长度与载波组关联。其中,一个载波组可以包括一个或多个载波。需要说明的是,不同的载波组包括的载波的个数可以相同,也可以不同,对此不做限定。
如图5所示,为本申请又一实施例的通信方法的流程示意图,具体包括以下步骤:
501、终端设备根据星历信息和/或GNSS定位信息,确定一个合适的上行信道传输段长度(包括PRACH传输段长度和PUSCH传输段长度)。
其中,步骤501的具体实现方式可以参见步骤401中的相关介绍,在此不再赘述。
502、终端设备从与上述步骤501中确定的上行信道传输段长度关联的载波组中选 择一个载波,向网络设备发起随机接入。也就是说,终端设备在与上述步骤502选择的载波上,向网络设备发送随机接入请求消息。
对应的,网络设备基于与上行信道传输段长度关联的载波组,接收随机接入请求消息。例如,网络设备根据PRACH传输段长度,在与上行信道传输段长度关联的载波上,接收随机接入请求消息。
示例的,终端设备可以从与上述步骤501中确定的上行信道传输段长度关联的载波组中随机选择一个载波。或者,终端设备也可以基于某一载波选择策略,从与上述步骤501中确定的上行信道传输段长度关联的载波组中选择一个载波,该载波选择策略可以为网络设备指示给终端设备,也可以是通过协议预定义的,还可以是终端设备结合自身的需求确定的,对此不做限定。
具体的,终端设备可以根据PRACH传输段长度,在与上述步骤502选择的载波上,向网络设备发送随机接入请求消息。
进一步的,在一些实施例中,终端设备可以基于步骤501中确定的PUSCH传输段长度,向网络设备发送上行数据。对应的,网络设备基于PUSCH传输段长度,接收来自网络设备的上行数据。
例如,上行数据可以为无线资源控制连接请求消息(即Msg3)或者终端设备完成随机接入过程(即进入连接态)后发送的上行数据(如Msg5)。
在本申请的另一些实施例中,网络设备向终端设备发送指示信息,该指示信息用于指示PRACH传输段长度和PUSCH传输段长度与载波组之间的关联关系。或者,该指示信息用于指示与载波组关联的PRACH传输段长度和PUSCH传输段长度。
需要说明的是,该指示信息可以用于指示一组或多组PRACH传输段长度和PUSCH传输段长度与载波组之间的关联关系。或者,该指示信息用于指示与至少一个载波组关联的PRACH传输段长度和PUSCH传输段长度。
示例的,在本申请实施例中,PRACH传输段长度和PUSCH传输段长度与载波组的关联关系可以通过关联关系表实现。例如,PRACH传输段长度和PUSCH传输段长度与载波组的关联关系表如表2所示。
表2
载波组 PRACH传输段长度 PUSCH传输段长度
载波组1 N1 M1
载波组2 N2 M2
载波组3 N3 M3
例如,如表2所示,载波组1与N1和M1关联,其中,N1为PRACH传输段长度,M1为PUSCH传输段长度。在一些实施例中,在具体实现时,可以通过建立载波组1的索引或标识与N1、M1的映射关系或关联关系,实现载波组1与N1和M1关联。应理解,上述仅为一种载波组与上行信道传输段长度之间关联的具体实现方式的介绍,当然,在本申请实施例中,也可以通过其它方式建立载波与上行信道传输段长度之间的关联关系,对此不做限定。例如,载波组分别与PRACH传输段长度、和PUSCH传输段长度关联。以表2中的载波组1与N1和M1关联为例,载波组1与N1关联, 载波组1与M1关联。
实施例三:PRACH传输段长度与载波关联,PRACH传输段长度与PUSCH传输段长度关联。
如图6所示,为本申请又一实施例的通信方法的流程示意图,具体包括以下步骤:
601、终端设备根据星历信息和/或GNSS定位信息,确定一个合适的PRACH传输段长度。
其中,步骤601的具体实现方式可以参见步骤401中的确定一个合适的上行信道传输段长度的相关介绍,在此不再赘述。
602、终端设备选择与步骤601中确定的PRACH传输段长度关联的载波,向网络设备发起随机接入。也就是说,终端设备在与上述步骤602选择的载波上,向网络设备发送随机接入请求消息。进一步的,终端设备根据PRACH传输段长度,在与上述步骤602选择的载波上,向网络设备发送随机接入请求消息。
对应的,网络设备基于与PRACH传输段长度关联的载波,接收随机接入请求消息。例如,网络设备根据PRACH传输段长度,在与上行信道传输段长度关联的载波上,接收随机接入请求消息。
在一些实施例中,PRACH传输段长度与载波之间的关联关系可以是预定义的,也可以是由网络设备指示给终端设备。例如,网络设备向终端设备发送指示信息,该指示信息用于指示PRACH传输段长度与载波之间的关联关系,或者,该指示信息用于指示与载波关联的PRACH传输段长度。需要说明的是,该指示信息可以用于指示一组或多组PRACH传输段长度与载波之间的关联关系。或者,该指示信息用于指示与至少一个载波关联的PRACH传输段长度。关于PRACH传输段长度与载波之间的关联关系可以参见实施例一种载波与PRACH传输段长度和PUSCH传输段长度关联的具体实现方式在此不再赘述。
进一步的,在一些实施例中,终端设备根据与步骤601中确定的PRACH传输段长度关联的PUSCH传输段长度,发送上行数据。对应的,网络设备基于与步骤601中确定的PRACH传输段长度关联的PUSCH传输段长度,接收上行数据。
需要说明的是,上行数据可以为Msg3,也可以为终端设备完成随机接入过程(即进入连接态)后发送的上行数据(如Msg5)终端设备完成随机接入过程(即进入连接态)后发送的上行数据(如Msg5)。
具体的,PRACH传输段长度与PUSCH传输段长度的关联关系可以是预配置或预定义的。例如,网络设备可以通过系统信息向终端设备指示一组或多组PRACH传输段长度与PUSCH传输段长度的关联关系、或者与一个或多个PRACH传输段长度关联的PUSCH传输段长度。
示例的,PRACH传输段长度与PUSCH传输段长度之间的关联关系可以通过关联关系表实现。例如,PRACH传输段长度与PUSCH传输段长度的关联关系表如表3所示。
表3
PRACH传输段长度 PUSCH传输段长度
(单位:上行数据重复传输单元) (单位:上行数据重复传输单元)
1 2
2 4
4 8
6 16
8 32
以表3中的第一组数据为例,PRACH传输段长度为1个上行数据重复传输单元与PUSCH传输段长度为2个上行数据重复传输单元关联。在终端设备确定PRACH传输段长度为1个上行数据重复传输单元的情况下,终端设备基于2个上行数据重复传输单元发送上行数据。即终端设备在每次发送1个上行数据重复传输单元的PRACH传输段的情况下,发送2个上行数据重复传输单元的PUSCH传输段。
需要说明的是,表3中是以一个PRACH传输段长度关联一个PUSCH传输段长度为例进行介绍的。在本申请实施例中,不同的PRACH传输段长度可以关联同一个PUSCH传输段长度。
实施例四:PRACH传输段长度与载波组关联,PRACH传输段长度与PUSCH传输段长度关联。
如图7所示,为本申请又一实施例的通信方法的流程示意图,具体包括以下步骤:
701、终端设备根据星历信息和/或GNSS定位信息,确定一个合适的PRACH传输段长度。
702、终端设备从与步骤701中确定的PRACH传输段长度关联的载波组中选择一个载波,向网络设备发起随机接入。也就是说,终端设备在与上述步骤702选择的载波上,向网络设备发送随机接入请求消息。
对应的,网络设备基于与PRACH传输段长度关联的载波组,接收随机接入请求消息。例如,网络设备根据PRACH传输段长度,在与上行信道传输段长度关联的载波上,接收随机接入请求消息。
其中,关于终端设备从载波组中选择一个载波的方式可以参见实施例二中的相关介绍,在此不再赘述。
与实施例二不同之处在于,相比实施例二增加了终端设备需要从载波组中选择一个载波再发起随机接入,其它关于确定PRACH传输段长度、PRACH传输段长度与PUSCH传输段之间的关联关系等均可以参见实施例三中的相关介绍,在此不再赘述。另外,关于PRACH传输段长度与载波组之间的关联关系的具体实现可以参见PRACH传输段长度与载波之间的关联关系的实现方式,在此也不再赘述。
实施例五:RO和/或前导码(Preamble)与PUSCH传输段长度关联。
如图8所示,为本申请又一实施例的通信方法的流程示意图,具体包括以下步骤:
801、终端设备根据星历信息和/或GNSS定位信息,确定一个合适的PUSCH传输段长度。
示例的,终端设备根据星历信息和/或GNSS定位信息,确定当前TA的变化率和多普勒变化率;然后,终端设备根据当前TA的变化率和多普勒变化率,确定一个合适的PUSCH传输段长度。
802、终端设备根据与步骤801中确定的PUSCH传输段长度关联的RO、和/或与步骤801中确定的PUSCH传输段长度关联的Preamble,向网络设备发起随机接入。也就是说,终端设备根据与步骤801中确定的PUSCH传输段长度关联的RO、和/或与步骤801中确定的PUSCH传输段长度关联的Preamble,向网络设备发送随机接入请求消息。
对应的,网络设备基于与PUSCH传输段长度关联的RO和/或与PUSCH传输段长度关联的前导码,接收随机接入请求消息。
进一步的,在一些实施例中,终端设备根据上述步骤801中确定的PUSCH传输段长度,发送上行数据。对应的,网络设备基于PUSCH传输段长度,接收上行数据。
例如,终端设备根据上述步骤801中确定的PUSCH传输段长度,发送Msg3。再例如,终端设备完成随机接入,进入连接态后,根据上述步骤801中确定的PUSCH传输段长度,发送上行数据(如Msg5)。
示例的,网络设备根据接收到的随机接入请求消息对应的RO和/或前导码,确定PUSCH传输段长度,然后根据PUSCH传输段长度,接收上行数据,实现上行通信。
此外,在本申请的一些实施例中,RO和/或前导码(Preamble)与PUSCH传输段长度之间的关联关系可以是预定义的,也可以是网络设备指示给终端设备的。例如,网络设备向终端设备发送指示信息,该指示信息用于指示一组或多组RO和/或前导码(Preamble)与PUSCH传输段长度之间的关联关系、或者,该指示信息用于指示与至少一个RO和/或前导码关联的PUSCH传输段长度。需要说明的是,一个RO或前导码可以与一个或多个PUSCH传输段长度关联,但是一个PUSCH传输段长度与一个RO和/或前导码关联。
实施例六:波束与载波关联。
如图9所示,为本申请又一实施例的通信方法的流程示意图,具体包括以下步骤:
901、终端设备根据星历信息和/或GNSS定位信息,确定当前所处的波束。
示例的,终端设备根据星历信息和/或GNSS定位信息,确定当前所处位置信息,并根据位置信息确定覆盖终端设备的下行波束,可以理解的是,覆盖终端设备的下行波束为终端设备当前所处的波束。
902、终端设备选择与步骤901中确定的波束关联的载波,向网络设备发起随机接入。也就是说,终端设备在与步骤901中确定的波束关联的载波上,向网络设备发送Msg1。
进一步的,在一些实施例中,网络设备接收到Msg1,向终端设备发送Msg2,Msg2用于指示PUSCH传输段长度,以便于终端设备接收到Msg2,可以基于Msg2获取PUSCH传输段长度,进而使得终端设备基于PUSCH传输段长度,发送Msg3;或者,终端设备完成随机接入,进入连接态后,发送上行数据(如Msg5)。
在本申请的另一些实施例中,波束与载波之间的关联关系可以是由网络设备指示给终端设备的,也可以是预定义的,对此不做限定。例如,网络设备向终端设备发送指示信息,该指示信息用于指示至少一个波束与载波之间的关联关系,或者该指示信息用于指示与至少一个载波关联的波束,或与至少一个波束关联的载波等。比如,该指示信息可以由网络设备携带在系统信息中发送给终端设备。可以理解的是,网络设 备也可以通过其它信息或消息携带上述指示信息,并发送给终端设备。
需要说明的是,上述各个实施例终端设备是基于星历信息、GNSS定位信息中的至少一个信息确定上行信道传输段长度的,但是本申请实施例中终端设备除了参考星历信息、或GNSS定位信息以外,还可以结合其它信息,确定一个合适的上行信道传输段长度。
以上各个实施例可以单独使用,也可以相互结合使用,以达到不同的技术效果。
上述本申请提供的实施例中,从网络设备和终端设备作为执行主体的角度对本申请实施例提供的通信方法进行了介绍。为了实现上述本申请实施例提供的通信方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图10为本申请实施例提供的一种通信装置1000的结构示意图,可以包括:确定模块1010及发送模块1020;其中,
确定模块1010,用于终端设备根据星历信息和/或全球导航卫星系统GNSS定位信息,确定第一信息,第一信息用于指示上行信道传输段长度或波束,上行信道传输段长度或波束与用于随机接入的资源关联;
发送模块1020,用于终端设备基于资源,发送随机接入请求消息。
在一种可能的实现方式中,上行信道传输段长度与载波关联,或者,上行信道传输段长度与载波组关联,载波组包括载波。
在一种可能的实现方式中,第一信息用于指示物理随机接入信道PRACH传输段长度和物理上行共享信道PUSCH传输段长度。
在一种可能的实现方式中,上述发送模块1020还用于终端设备根据PUSCH传输段长度,发送上行数据。
在一种可能的实现方式中,第一信息用于指示PRACH传输段长度,其中,PRACH传输段长度与PUSCH传输段长度关联。
在一种可能的实现方式中,上述发送模块1020还用于终端设备根据与PRACH传输段长度关联的PUSCH传输段长度,发送上行数据。
在一种可能的实现方式中,上行信道传输段长度与RO和/或前导码关联。
在一种可能的实现方式中,第一信息用于指示PUSCH传输段长度。
在一种可能的实现方式中,波束与载波关联。
在一种可能的实现方式中,上述通信装置1000还包括:
接收模块1030,用于终端设备接收随机接入响应消息,随机接入响应消息用于指示PUSCH传输段长度。
在一种可能的实现方式中,上述接收模块1030还用于终端设备接收指示信息,指示信息用于指示与用于随机接入的资源关联的上行信道传输段长度或波束。
在一种可能的实现方式中,该通信装置30可以为芯片或终端设备。
图11为本申请实施例提供的一种通信装置1100的结构示意图,可以包括:接收模块1110及发送模块1120;其中,
接收模块1110,用于网络设备基于用于随机接入的资源,接收随机接入请求消息,资源与上行信道传输段长度或波束关联;
发送模块1120,用于网络设备向终端设备发送随机接入响应消息。
在一种可能的实现方式中,载波与上行信道传输段长度关联,或者,载波组与上行信道传输段长度关联,载波组包括载波。
在一种可能的实现方式中,上行信道传输段长度包括物理随机接入信道PRACH传输段长度和物理上行共享信道PUSCH传输段长度;或者,
上行信道传输段长度为PRACH传输段长度,PRACH传输段长度与PUSCH传输段长度关联。
在一种可能的实现方式中,上述接收模块1110还用于网络设备根据与资源关联的PRACH传输段长度,在资源上接收随机接入请求消息。
在一种可能的实现方式中,资源为随机接入时机RO和/或前导码,资源与上行信道传输段长度关联。
在一种可能的实现方式中,上述接收模块1110还用于网络设备根据与上行信道传输段长度关联的RO和/或前导码,接收随机接入请求消息。
在一种可能的实现方式中,上行信道传输段长度为PUSCH传输段长度。
在一种可能的实现方式中,上述接收模块1110还用于网络设备基于与资源关联的波束,接收随机接入请求消息。
在一种可能的实现方式中,随机接入响应消息用于指示PUSCH传输段长度。
在一种可能的实现方式中,上述接收模块1110还用于网络设备根据PUSCH传输段长度,接收上行数据。
在一种可能的实现方式中,上述发送模块1120还用于网络设备发送指示信息,指示信息用于指示与用于随机接入的资源关联的上行信道传输段长度或波束。
在一种可能的实现方式中,该通信装置40可以为芯片或网络设备。
图12为本申请实施例提供的一种通信装置1200的结构示意图,上述通信装置1200可以包括:至少一个处理器;以及与上述处理器通信连接的至少一个存储器。上述通信装置1200可以为网络设备或终端设备。上述存储器存储有可被上述处理器执行的程序指令,若通信装置1200为网络设备,则处理器调用上述程序指令能够执行本申请实施例提供的通信方法中的网络设备执行的动作,若通信装置1200为终端设备,则处理器调用上述程序指令能够执行本申请实施例提供的通信方法中的终端设备执行的动作。
如图12所示,通信装置1200可以以通用计算设备的形式表现。通信装置1200的组件可以包括但不限于:一个或者多个处理器1210,存储器1220,连接不同系统组件(包括存储器1220和处理器1210)的通信总线1240及通信接口1230。
通信总线1240表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA) 局域总线以及外围组件互连(Peripheral Component Interconnection,PCI)总线。
通信装置1200典型地包括多种计算机系统可读介质。这些介质可以是任何能够被通信装置1200访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器1220可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)和/或高速缓存存储器。通信装置1200可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。尽管图12中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如:光盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、数字多功能只读光盘(Digital Video Disc Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与通信总线1240相连。存储器1220可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请各实施例的功能。
具有一组(至少一个)程序模块的程序/实用工具,可以存储在存储器1220中,这样的程序模块包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块通常执行本申请所描述的实施例中的功能和/或方法。
通信装置1200也可以与一个或多个外部设备(例如键盘、指向设备、显示器等)通信,还可与一个或者多个使得用户能与该通信装置1200交互的设备通信,和/或与使得该通信装置1200能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过通信接口1230进行。并且,通信装置1200还可以通过网络适配器(图12中未示出)与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信,上述网络适配器可以通过通信总线1240与电子设备的其它模块通信。应当明白,尽管图5中未示出,可以结合通信装置1200使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Drives,RAID)系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件 产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备根据星历信息和/或全球导航卫星系统GNSS定位信息,确定第一信息,所述第一信息用于指示上行信道传输段长度或波束,所述上行信道传输段长度或所述波束与用于随机接入的资源关联;
    所述终端设备基于所述资源,发送随机接入请求消息。
  2. 根据权利要求1所述的方法,其特征在于,所述资源为载波,所述上行信道传输段长度与所述资源关联,包括:
    所述上行信道传输段长度与所述载波关联,或者,所述上行信道传输段长度与载波组关联,所述载波组包括所述载波。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息用于指示上行信道传输段长度,包括:
    所述第一信息用于指示物理随机接入信道PRACH传输段长度和物理上行共享信道PUSCH传输段长度。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述PUSCH传输段长度,发送上行数据。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一信息用于指示上行信道传输段长度,包括:
    所述第一信息用于指示PRACH传输段长度,其中,所述PRACH传输段长度与PUSCH传输段长度关联。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据与所述PRACH传输段长度关联的所述PUSCH传输段长度,发送上行数据。
  7. 根据权利要求1所述的方法,其特征在于,所述资源为随机接入时机RO和/或前导码,所述上行信道传输段长度与所述资源关联,包括:
    所述上行信道传输段长度与所述RO和/或所述前导码关联。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息用于指示上行信道传输段长度,包括:
    所述第一信息用于指示PUSCH传输段长度。
  9. 根据权利要求1所述的方法,其特征在于,所述第一信息用于指示波束,所述波束与所述资源关联,包括:
    所述波束与载波关联。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收随机接入响应消息,所述随机接入响应消息用于指示PUSCH传输段长度。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收指示信息,所述指示信息用于指示与用于随机接入的资源关联的上行信道传输段长度或波束。
  12. 一种通信方法,其特征在于,所述方法包括:
    网络设备基于用于随机接入的资源,接收随机接入请求消息,所述资源与上行信道传输段长度或波束关联;
    所述网络设备向终端设备发送随机接入响应消息。
  13. 根据权利要求12所述的方法,其特征在于,所述资源为载波,所述资源与上行信道传输段长度关联,包括:
    所述载波与上行信道传输段长度关联,或者,所述载波组与上行信道传输段长度关联,所述载波组包括所述载波。
  14. 根据权利要求12所述的方法,其特征在于,所述上行信道传输段长度包括物理随机接入信道PRACH传输段长度和物理上行共享信道PUSCH传输段长度;或者,
    所述上行信道传输段长度为PRACH传输段长度,所述PRACH传输段长度与PUSCH传输段长度关联。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备基于用于随机接入的资源,接收随机接入请求消息,包括:
    所述网络设备根据与所述资源关联的PRACH传输段长度,在所述资源上接收所述随机接入请求消息。
  16. 根据权利要求12所述的方法,其特征在于,所述资源为随机接入时机RO和/或前导码,所述资源与上行信道传输段长度关联。
  17. 根据权利要求16所述的方法,其特征在于,所述网络设备基于用于随机接入的资源,接收随机接入请求消息,包括:
    所述网络设备根据与上行信道传输段长度关联的RO和/或前导码,接收随机接入请求消息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述上行信道传输段长度为PUSCH传输段长度。
  19. 根据权利要求12所述的方法,其特征在于,所述资源为载波,所述资源与波束关联,所述网络设备基于用于随机接入的资源,接收随机接入请求消息,包括:
    所述网络设备基于与所述资源关联的波束,接收随机接入请求消息。
  20. 根据权利要求19所述的方法,其特征在于,所述随机接入响应消息用于指示PUSCH传输段长度。
  21. 根据权利要求14、18或20所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述PUSCH传输段长度,接收上行数据。
  22. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送指示信息,所述指示信息用于指示与所述用于随机接入的资源关联的上行信道传输段长度或波束。
  23. 一种通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如权利要求1-11任一所述的通信方法。
  24. 根据权利要求23所述的通信装置,其特征在于,所述通信装置为芯片,或者,所述通信装置为终端设备。
  25. 一种通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储 计算机程序;所述处理器用于运行所述计算机程序,实现如权利要求12-22任一所述的通信方法。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信装置为芯片,或者,所述通信装置为网络设备。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,实现如权利要求1-11任一所述的方法、或者如权利要求12-22任一所述的方法。
PCT/CN2022/141835 2021-12-30 2022-12-26 通信方法及装置 WO2023125381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111645990.0A CN116419146A (zh) 2021-12-30 2021-12-30 通信方法及装置
CN202111645990.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125381A1 true WO2023125381A1 (zh) 2023-07-06

Family

ID=86997927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141835 WO2023125381A1 (zh) 2021-12-30 2022-12-26 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116419146A (zh)
WO (1) WO2023125381A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426274A (zh) * 2007-10-29 2009-05-06 大唐移动通信设备有限公司 一种随机接入过程中资源分配位置的指示方法、系统及装置
WO2017133004A1 (zh) * 2016-02-05 2017-08-10 华为技术有限公司 空闲态上行信息发送方法、装置和系统
CN110636633A (zh) * 2018-06-22 2019-12-31 中国移动通信有限公司研究院 一种随机接入方法、终端及网络设备
CN112583463A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种波束的指示方法及装置
CN113596995A (zh) * 2020-04-30 2021-11-02 大唐移动通信设备有限公司 一种随机接入方法及设备
CN113853822A (zh) * 2019-06-03 2021-12-28 高通股份有限公司 随机接入过程中的波束关联

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426274A (zh) * 2007-10-29 2009-05-06 大唐移动通信设备有限公司 一种随机接入过程中资源分配位置的指示方法、系统及装置
WO2017133004A1 (zh) * 2016-02-05 2017-08-10 华为技术有限公司 空闲态上行信息发送方法、装置和系统
CN110636633A (zh) * 2018-06-22 2019-12-31 中国移动通信有限公司研究院 一种随机接入方法、终端及网络设备
CN113853822A (zh) * 2019-06-03 2021-12-28 高通股份有限公司 随机接入过程中的波束关联
CN112583463A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种波束的指示方法及装置
CN113596995A (zh) * 2020-04-30 2021-11-02 大唐移动通信设备有限公司 一种随机接入方法及设备

Also Published As

Publication number Publication date
CN116419146A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
EP3494726B1 (en) Information indication method and terminal device
WO2019184956A1 (zh) 一种随机接入的方法及装置
WO2021190278A1 (zh) 业务的请求方法及装置
WO2020173415A1 (zh) 通信方法、终端设备和网络设备
WO2022028552A1 (zh) 一种通信方法及装置
WO2021109816A1 (zh) 随机接入前导的传输方法、装置及存储介质
EP4307767A1 (en) Wireless communication method, apparatus and system
WO2021062680A1 (zh) 数据传输方法及相关设备
WO2022116839A1 (zh) 通信方法、装置、设备、存储介质及程序产品
WO2022052562A1 (zh) 定时偏移参数更新方法、设备及系统
TW202015476A (zh) 傳輸信號的方法、終端設備和網路設備
US20230354438A1 (en) Wireless communication method and apparatus
WO2023125381A1 (zh) 通信方法及装置
US20220312460A1 (en) Base Station (BS) Supplemental BSR Procedures for Reduced Latency in High-Propagation-Delay Networks
WO2022027453A1 (en) User equipment (ue) supplemental bsr for reduced latency in high-propagation-delay networks
WO2024093789A1 (zh) 一种随机接入方法、装置、芯片及模组设备
US20240214034A1 (en) Doppler Shift Estimate Reporting with Pre-Compensation
WO2024012298A1 (zh) 随机接入方法、装置及系统
US20220312489A1 (en) User Equipment (UE) RACH Procedures for Reduced Latency in High-Propagation-Delay Networks
WO2023232121A1 (zh) 一种测量方法及通信装置
WO2023169290A1 (zh) 一种定时提前量的确定方法和装置
WO2023207749A1 (zh) 通信方法及装置
WO2022027412A1 (en) Base station (bs) rach procedures for reduced latency in high-propagation-delay networks
WO2023124753A1 (zh) D2d通信的资源分配方法及装置、介质、程序产品
EP4013080A1 (en) Data transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914635

Country of ref document: EP

Kind code of ref document: A1