WO2023232121A1 - 一种测量方法及通信装置 - Google Patents

一种测量方法及通信装置 Download PDF

Info

Publication number
WO2023232121A1
WO2023232121A1 PCT/CN2023/097900 CN2023097900W WO2023232121A1 WO 2023232121 A1 WO2023232121 A1 WO 2023232121A1 CN 2023097900 W CN2023097900 W CN 2023097900W WO 2023232121 A1 WO2023232121 A1 WO 2023232121A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
gnss measurement
measurement gap
time domain
domain resource
Prior art date
Application number
PCT/CN2023/097900
Other languages
English (en)
French (fr)
Inventor
雷珍珠
周化雨
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2023232121A1 publication Critical patent/WO2023232121A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of satellite communication technology, and in particular, to a measurement method and communication device.
  • the orbital altitude of satellites ranges from hundreds to tens of thousands of kilometers. Since the satellite moves rapidly relative to the terminal equipment, there is a very large Doppler frequency shift between the terminal equipment and the satellite and between the satellite and the base station, and the propagation delay between the terminal equipment and the base station will also change rapidly.
  • the first condition for data transmission is that the terminal device obtains its own location information. Further, in order to maintain uplink and downlink time-frequency synchronization.
  • the terminal device can obtain its own position information through GNSS (Global Navigation Satellite System) measurement. Therefore, how to determine the position of the GNSS measurement gap (Gap) has become an urgent technical problem to be solved.
  • GNSS Global Navigation Satellite System
  • This application discloses a measurement method and communication device, which are beneficial to flexibly determining the position of the GNSS measurement gap.
  • embodiments of the present application provide a measurement method.
  • the method includes: receiving downlink control information DCI; and determining the position of the global navigation satellite system GNSS measurement gap based on at least the time domain resource position of the DCI.
  • the DCI is used to Trigger the random access process, or the DCI is used to schedule data; or, at least based on the time domain resource location of the data, the location of the GNSS measurement gap is determined, and the DCI is used to schedule the data; where the GNSS measurement gap is used for GNSS Measurement.
  • the specific implementation method of determining the location of the GNSS measurement gap based on at least the time domain resource location of the DCI is: determining the location of the GNSS measurement gap based on the time domain resource location and time offset of the DCI. ; The time offset is the duration between the GNSS measurement gap and the time domain resource of the DCI.
  • the specific implementation method of determining the location of the GNSS measurement gap based on at least the time domain resource location of the data is: determining the location of the GNSS measurement gap based on the time domain resource location and time offset of the data. Position; where the time offset is the duration between the GNSS measurement gap and the time domain resource of the data.
  • the method before receiving the foregoing DCI, the method further includes: receiving first indication information, the first indication information being used to indicate the foregoing time offset.
  • the method further includes: receiving second indication information, the second indication information being used to indicate the duration of the GNSS measurement gap.
  • the DCI is also used to indicate enabling the GNSS measurement gap.
  • the method further includes: performing GNSS measurement within the GNSS measurement gap.
  • the method further includes: if the historical GNSS measurement result is invalid, perform a GNSS measurement within the GNSS measurement gap; the historical GNSS measurement result is the result of the latest GNSS measurement.
  • the failure of the historical GNSS measurement results includes: the timer corresponding to the historical GNSS measurement results times out.
  • the method further includes: receiving third indication information, the third indication information being used to indicate the timing duration of the aforementioned timer.
  • the method further includes: sending timing reference indication information, where the timing reference indication information is used to indicate a reference validity period of the GNSS measurement result.
  • the method further includes: sending a physical random access channel PRACH, where the DCI is used to trigger a random access process.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • embodiments of the present application provide another measurement method, which method includes: sending first indication information, the first indication information is used to indicate a time offset; sending downlink control information DCI; wherein the time offset
  • the amount is the time between the global navigation satellite system GNSS measurement gap and the time domain resource of DCI.
  • DCI is used to trigger the random access process, or DCI is used to schedule data; or the time offset is the time between the GNSS measurement gap and the data.
  • the duration between time domain resources, DCI is used to schedule the data; the GNSS measurement gap is used for GNSS measurements.
  • the method further includes: sending second indication information, where the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the DCI is also used to indicate enabling the GNSS measurement gap.
  • the method further includes: sending third indication information, where the third indication information is used to indicate the timing length of the timer corresponding to the GNSS measurement result.
  • the method further includes: receiving timing reference indication information, the timing reference indication information being used to indicate the reference valid duration of the GNSS measurement results; and determining the timing duration of the aforementioned timer based on the reference valid duration.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • embodiments of the present application provide another measurement method, which method includes: determining downlink control information DCI; and sending the DCI; wherein the DCI is used to trigger a random access process, or the DCI is used to schedule data; This DCI is also used to indicate the activation of the Global Navigation Satellite System GNSS measurement gap, which is used for GNSS measurements.
  • the method before sending the aforementioned DCI, further includes: sending first indication information, the first indication information being used to indicate a time offset; wherein the time offset is the GNSS measurement gap and the DCI The duration between time domain resources, DCI is used to trigger the random access process, or DCI is used to schedule data; or the time offset is the duration between the GNSS measurement gap and the time domain resource of the data, DCI is used to Schedule this data.
  • the method further includes: sending second indication information, where the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the method further includes: sending third indication information, where the third indication information is used to indicate the timing length of the timer corresponding to the GNSS measurement result.
  • the method further includes: receiving timing reference indication information, the timing reference indication information being used to indicate the reference validity duration of the GNSS measurement results; and determining the timing duration of the aforementioned timer based on the reference validity duration.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • embodiments of the present application provide a communication device, which includes a unit for implementing the method described in the first aspect, the second aspect, or the third aspect.
  • an embodiment of the present application provides another communication device, including a processor; the processor is configured to execute the method described in the first aspect, the second aspect, or the third aspect.
  • the communication device may further include a memory; the memory is used to store a computer program; and a processor is specifically used to call the computer program from the memory to execute the first aspect or the second aspect or the third aspect. methods described in three aspects.
  • embodiments of the present application provide a chip, which is used to execute the method described in the first aspect, the second aspect, or the third aspect.
  • inventions of the present application provide a chip module.
  • the chip module includes a communication interface and a chip, wherein: the communication interface is used for internal communication of the chip module, or for communication between the chip module and an external device. ;
  • the chip is used to perform the method described in the first aspect, the second aspect, or the third aspect.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions. When executed by a communication device, the program instructions cause the The communication device performs the method described in the first aspect, the second aspect, or the third aspect.
  • embodiments of the present application provide a computer program product including a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer executes the steps described in the first aspect, the second aspect, or the third aspect. method.
  • the location of the GNSS measurement gap is determined based on the time domain resource location of DCI or the time domain resource location of data scheduled by DCI, and the location of the GNSS measurement gap can be determined flexibly.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a measurement method provided by an embodiment of the present application.
  • Figure 3 is a timing diagram of a GNSS measurement gap provided by an embodiment of the present application.
  • Figure 4 is a timing diagram of another GNSS measurement gap provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of a scenario of whether to perform GNSS measurement provided by the embodiment of the present application.
  • Figure 6 is a timing diagram of data transmission provided by an embodiment of the present application.
  • Figure 7 is a timing diagram of another data transmission provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip module provided by an embodiment of the present application.
  • At least one of the following or similar expressions in the embodiments of this application refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
  • each of a, b, and c can be an element or a set containing one or more elements.
  • references to “of”, “corresponding (corresponding, relevant)”, “corresponding (corresponding)”, “associated (associated, related)”, and “mapped (mapped)” may sometimes be used. Mix it up. It should be noted that when the difference is not emphasized, the concepts or meanings to be expressed are consistent.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to a terminal device and a network device.
  • the number and form of devices shown in Figure 1 are for example only and do not constitute a limitation on the embodiments of the present application. In actual applications, it may include two or more Network equipment, two or more terminal devices.
  • the communication system shown in Figure 1 includes a terminal device 101 and a network device 102 as an example.
  • the terminal device in the embodiment of the present application is a device with wireless transceiver function, which can be called a terminal (terminal), user equipment (UE), mobile station (MS), mobile terminal (mobile terminal) terminal, MT), access terminal equipment, Internet of Things terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment , UE agent or UE device, etc.
  • Terminal equipment can be fixed or mobile.
  • the terminal device can support at least one wireless communication technology, such as long time evolution (LTE), new radio (NR), wideband code division multiple access (WCDMA) wait.
  • LTE long time evolution
  • NR new radio
  • WCDMA wideband code division multiple access
  • terminal The device can be a mobile phone, tablet, desktop, laptop, all-in-one, vehicle-mounted terminal, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, and future mobile communication networks terminal equipment or terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial Wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical surgery wireless terminals in smart grid
  • transportation safety Wireless terminals in safety wireless terminals in smart cities, wireless terminal
  • the terminal device may also be a device with transceiver functions, such as a chip module.
  • the chip module may include chips and may also include other discrete devices.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the network device is a device that provides wireless communication functions for terminal devices.
  • the network device can be an access network (AN) device or a satellite.
  • the AN device can be a radio access network (radio access network, RAN) equipment.
  • the access network equipment may support at least one wireless communication technology, such as LTE, NR, WCDMA, etc.
  • access network equipment examples include but are not limited to: next-generation base stations (generation nodeB, gNB), evolved node B (evolved node B, eNB), wireless Network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (e.g., home evolved node B, or home node B, HNB), baseband unit (BBU), TRP, transmitting point (TP), mobile switching center, etc.
  • generation nodeB generation nodeB, gNB
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC wireless Network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • home base station e.g., home evolved node B, or home node B, HNB
  • BBU baseband unit
  • TRP transmitting point
  • TP transmitting point
  • the network device can also be a wireless controller, centralized unit (CU) and/or distributed unit (DU) in a cloud radio access network (CRAN) scenario, or access network equipment It can be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, an access network device in future mobile communications or an access network device in a future evolved PLMN, etc.
  • the network device may also be a device with a wireless communication function for the terminal device, such as a chip module.
  • the chip module may include chips, and may also include other discrete devices. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • NTN Non-terrestrial networks
  • 5G mobile communication system 5G NR system
  • 5G NR system 5G NR system
  • 6G systems or other communication networks 6G systems or other communication networks.
  • test Measurement methods may include but are not limited to the following steps:
  • the network device sends downlink control information (DCI).
  • DCI downlink control information
  • the terminal device receives the DCI.
  • the network device determines the DCI and then sends the DCI to the end device.
  • the DCI is used to trigger a random access process, or the DCI is used to schedule data.
  • the DCI used to trigger the random access process can be carried in the Physical Downlink Control Channel (PDCCH) Order.
  • PDCCH Physical Downlink Control Channel
  • the terminal device determines the location of the GNSS measurement gap at least based on the time domain resource location of the DCI.
  • the DCI is used to trigger the random access process, or the DCI is used to schedule data; or the terminal device at least determines the location of the GNSS measurement gap based on the time domain resource location of the data.
  • Position determine the position of the GNSS measurement gap, and the DCI is used to schedule the data; where the GNSS measurement gap is used for GNSS measurement.
  • the GNSS measurement gap is a time domain window, and the time domain window represents a period of time domain resources.
  • the terminal device can determine the location of the GNSS measurement gap through one or more of the following methods: Method 1: If DCI is used to trigger the random access process, the terminal device determines the location of the GNSS measurement gap based on at least the time domain resource location of the DCI. GNSS measures the position of the gap. Method 2: If DCI is used to schedule data, the terminal device determines the location of the GNSS measurement gap at least based on the time domain resource location of the data.
  • Method 3 If DCI is used for scheduling data, the terminal device determines the location of the GNSS measurement gap at least based on the time domain resource location of the DCI.
  • the time domain resource position (such as the position of the GNSS measurement gap) may include but is not limited to: the starting position and/or the end position of the time domain resource.
  • the terminal equipment can determine the position of the GNSS measurement gap through one or more of the above three methods: these three methods can be used alone or in combination with each other.
  • Method 1 and Method 2 means: when DCI is used to trigger the random access process, the terminal device will determine the position of the GNSS measurement gap through Method 1, and when DCI is used to schedule data, The terminal equipment will determine the position of the GNSS measurement gap through method 2.
  • the terminal device determines the position of the GNSS measurement gap based on at least the time domain resource position of the DCI.
  • the specific implementation method may be: the terminal device determines the GNSS measurement gap based on the time domain resource position and time offset of the DCI. position; where the time offset is the duration between the GNSS measurement gap and the time domain resource of the DCI.
  • the time offset can be the duration between the start position of the GNSS measurement gap and the end position of the DCI time domain resource.
  • the terminal device can be based on the end position of the DCI time domain resource and the end position of the DCI time domain resource.
  • Time offset that determines the starting position of the GNSS measurement gap is the sum of the ending position of the DCI time domain resource and the time offset.
  • the end position of the DCI time domain resource is at subframe n1
  • the time offset is k subframes
  • the time offset can also be the duration between the end position of the GNSS measurement gap and the end position of the DCI time domain resource.
  • the terminal device can be based on the end position of the DCI time domain resource and the end position of the DCI time domain resource.
  • the time offset and the duration of the GNSS measurement gap determine the start and end positions of the GNSS measurement gap.
  • the end position of the GNSS measurement gap is the sum of the end position of the DCI time domain resource and the time offset
  • the start position of the GNSS measurement gap is the difference between the end position of the GNSS measurement gap and the duration of the GNSS measurement gap.
  • the end position of the DCI time domain resource is at subframe n1
  • the time offset is (k+m) subframes
  • the duration of the GNSS measurement gap is m subframes
  • the end position of the GNSS measurement gap is at Subframe n1+(k+m)
  • the unit of the time offset and the unit of the duration of the GNSS measurement gap are subframes.
  • the units of the time offset and the unit of the duration of the GNSS measurement gap are also subframes. It may be milliseconds, seconds, time slots, symbols (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols), frames or other units, which are not limited in the embodiments of this application.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device determines the position of the GNSS measurement gap based on at least the time domain resource position of the data.
  • the specific implementation method may be: the terminal device determines the GNSS measurement gap based on the time domain resource position and time offset of the data. The position of the measurement gap; where the time offset is the duration between the GNSS measurement gap and the time domain resource of the data.
  • the time offset can be the duration between the starting position of the GNSS measurement gap and the end position of the time domain resource of the data.
  • the terminal device can calculate the time interval according to the end position of the time domain resource of the data and This time offset determines the starting position of the GNSS measurement gap.
  • the starting position of the GNSS measurement gap is the sum of the end position of the time domain resource of the data and the time offset.
  • the end position of the time domain resource of the data scheduled by DCI is at subframe n2
  • the time offset is k subframes
  • the time offset can also be the duration between the end position of the GNSS measurement gap and the end position of the time domain resource of the data.
  • the terminal device can be based on the end position of the time domain resource of the data, This time offset and the duration of the GNSS measurement gap determine the start and end positions of the GNSS measurement gap.
  • the end position of the GNSS measurement gap is the sum of the end position of the time domain resource of the data and the time offset
  • the starting position of the GNSS measurement gap is the sum of the end position of the GNSS measurement gap and the duration of the GNSS measurement gap. Difference.
  • the network device may also send first indication information, and accordingly, the terminal device receives the first indication information, where the first indication information is used to indicate the aforementioned time offset.
  • the network device may send the first indication information before sending the DCI, and accordingly, the terminal device receives the first indication information before receiving the DCI.
  • the first indication information may be carried in high-layer signaling, system information or the foregoing DCI (that is, the foregoing DCI is also used to indicate the time offset).
  • the high-level signaling may be RRC (Radio Resource Control) signaling.
  • the time offset can also be predefined by the protocol.
  • the network device may also send second indication information, and accordingly, the terminal device receives the second indication information, where the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the network device may send the second indication information before sending the DCI.
  • the terminal device receives the second indication information before receiving the DCI.
  • the second indication information may be carried in high-layer signaling, system information or the foregoing DCI (that is, the foregoing DCI is also used to indicate the duration of the GNSS measurement gap).
  • the duration of the GNSS measurement gap can also be predefined through the protocol.
  • the aforementioned DCI can also be used to indicate whether to enable the GNSS measurement gap.
  • the GNSS measurement gap is a time domain window, and the time domain window represents a period of time domain resources. Enabling the GNSS measurement gap can mean that the terminal equipment is allowed to perform GNSS measurements within the time domain window; disabling the GNSS measurement gap can mean that the terminal equipment is not allowed to perform GNSS measurements within the time domain window.
  • the terminal device The equipment can perform GNSS measurements within the GNSS measurement gap. It should be noted that when the GNSS measurement gap is enabled, the terminal device may perform GNSS measurements within the GNSS measurement gap or may not perform GNSS measurement within the GNSS measurement gap. This is not limited in the embodiments of the present application.
  • DCI can indicate explicitly or implicitly whether to enable GNSS measurement gaps.
  • Explicit indication means that the DCI includes an indication field to indicate whether to enable the GNSS measurement gap.
  • the DCI includes indication information a (ie, the indication field), and the indication information a is used to indicate whether to enable the GNSS measurement gap. Taking 1 bit in DCI to carry the indication information a as an example, when the bit corresponding to the indication information a has a value of 0, the indication information a is used to indicate not to enable the GNSS measurement gap, and the bit corresponding to the indication information a is When the value is 1, the indication information a is used to indicate enabling the GNSS measurement gap.
  • the DCI can also be used to schedule data, or the DCI can also be used to trigger a random access process.
  • the implicit indication may mean that there is a corresponding relationship between the type of DCI and whether to enable the GNSS measurement gap (for example, it is called correspondence relationship 1).
  • the terminal device can determine whether to enable the GNSS measurement gap according to the correspondence relationship 1.
  • the type of DCI may include but is not limited to: DCI used to trigger a random access process, and DCI used to schedule data.
  • the correspondence 1 includes the following content: the DCI used to trigger the random access process has a corresponding relationship with the enabled GNSS measurement gap, and the DCI used for scheduling data has a corresponding relationship with the enabled GNSS measurement gap.
  • the terminal equipment receives the DCI used to trigger the random access process (i.e. PDCCH Order)
  • GNSS measurement gaps are enabled by default.
  • the terminal device receives the DCI used for scheduling data
  • the DCI implicitly indicates enabling the GNSS measurement gap; if the DCI received by the terminal device is not used to trigger the random access process or schedule data, then the DCI can implicitly indicate Indicates that GNSS measurement gaps are not enabled.
  • the implicit indication may also mean that the DCI includes information (such as information b) that has a corresponding relationship (such as called correspondence 2) with whether to enable the GNSS measurement gap.
  • the terminal device can use the information b and the corresponding relationship 2 Determine whether to enable GNSS measurement gaps.
  • the information b can be carried by the original indication field in DCI, that is, there is no need to extend a new indication field in DCI to indicate whether to enable the GNSS measurement gap.
  • the correspondence relationship 2 includes the following content: the value of the bit corresponding to the format indication field is 1, which corresponds to enabling the GNSS measurement gap.
  • the corresponding bit value of the format indication field is 0 and has a corresponding relationship with not enabling the GNSS measurement gap. If the bit corresponding to the format indication field in the DCI received by the terminal device has a value of 1, then the DCI implicitly indicates that the GNSS measurement gap is enabled; if the bit corresponding to the format indication field in the DCI received by the terminal device has a value of If 0, then the DCI implicitly indicates that the GNSS measurement gap is not enabled.
  • the DCI can also be used to schedule data, or the DCI can also be used to trigger a random access process.
  • whether to perform GNSS measurement within the GNSS measurement gap can also be determined by whether historical GNSS measurement results are invalid.
  • Historical GNSS measurement results are the results obtained from the most recent GNSS measurement.
  • the terminal device can perform GNSS measurements within the GNSS measurement gap. Among them, the historical GNSS measurement results are invalid, and the terminal equipment can determine that the GNSS measurement gap needs to be enabled. Further, the terminal equipment can perform GNSS measurements within the GNSS measurement gap. It can be understood that the historical GNSS measurement results are valid, and the terminal equipment can determine that there is no need to enable GNSS measurement gaps, and accordingly, GNSS measurements will not be performed.
  • the failure of the aforementioned historical GNSS measurement results means that the timer corresponding to the historical GNSS measurement results times out.
  • the timer corresponding to the historical GNSS measurement result is started when the historical GNSS measurement result is obtained.
  • the timer duration is the validity period of historical GNSS measurement results.
  • the timer times out or ends
  • the historical GNSS measurement results become invalid. If the timer has not expired (or the timer has not ended), then the historical GNSS measurement results are valid. It should be noted that each time a GNSS measurement is performed and a corresponding GNSS measurement result is generated, the corresponding timer can be started.
  • taking the validity period of historical GNSS measurement results as 3s as an example, when the terminal device completes the GNSS measurement and obtains the GNSS measurement result, it can start the timer corresponding to the GNSS measurement result, and the timer starts counting down from 3s. , when the timer displays 0s, the timer times out, and at this time, the GNSS measurement result becomes invalid.
  • the timer can also be a positive timer. For example, taking the validity period of historical GNSS measurement results as 3 seconds, when the terminal device completes the GNSS measurement and obtains the GNSS measurement result, it can start the corresponding GNSS measurement result. The timer starts counting from 0s. If the timer displays 3s or greater than 3s, the timer times out. At this time, the GNSS measurement result becomes invalid.
  • the invalidation of the aforementioned historical GNSS measurement results means that the cache duration of the historical GNSS measurement results is greater than the validity duration of the historical GNSS measurement results. If the cache duration of historical GNSS measurement results is less than or equal to the valid duration, the historical GNSS measurement results are valid.
  • the failure of historical GNSS measurement results can independently trigger GNSS measurements within the GNSS measurement gap.
  • the DCI does not need to be used to indicate whether to enable the GNSS measurement gap.
  • whether to perform GNSS measurement within the GNSS measurement gap can only refer to whether the historical GNSS measurement results are invalid, without referring to the indication content of the DCI or the DCI does not have the function of indicating whether to enable the GNSS measurement gap.
  • the terminal device After the terminal device performs GNSS measurement within the GNSS measurement gap, it starts a timer. While the timer does not expire (that is, the historical GNSS measurement results are valid), the terminal device does not need to start the GNSS measurement gap to perform GNSS measurements. When the timer times out (that is, the historical GNSS measurement results are invalid), the terminal device can enable the GNSS measurement gap and perform GNSS measurements within the GNSS measurement gap.
  • the terminal device can determine whether to perform GNSS measurements within the GNSS measurement gap based on the indication content of the DCI and whether historical GNSS measurement results are invalid. In this case, whether to perform GNSS measurements within the GNSS measurement gap requires reference to whether the historical GNSS measurement results are invalid and the DCI indication content. For example, DCI is used to indicate (implicit indication or explicit indication) that the GNSS measurement gap is enabled, and when the historical GNSS measurement results are invalid, the terminal equipment can perform GNSS measurements within the GNSS measurement gap; DCI is used to indicate (implicit indication) If the GNSS measurement gap is enabled (formal indication or explicit indication) and the historical GNSS measurement results are valid, the terminal device does not need to perform GNSS measurements.
  • the scenario diagram of whether to perform GNSS measurement is shown in Figure 5, in which the PDCCH Order also uses To trigger the random access process.
  • the terminal device After the terminal device performs GNSS measurement within GNSS measurement gap 1, it starts timer 1 and performs GNSS measurement to obtain GNSS measurement result 1.
  • the timing length of timer 1 is the valid duration of GNSS measurement result 1; the terminal device receives Timer 1 has not expired when PDCCH Order-1 is reached (that is, GNSS measurement result 1 is valid).
  • the terminal device determines that it does not need to start a GNSS measurement gap to perform GNSS measurements, and sends PRACH after receiving PDCCH Order-1.
  • PDCCH Order-2 timer 1 has timed out (that is, GNSS measurement result 1 is invalid).
  • the terminal equipment determines that it needs to start a GNSS measurement gap. 2 performs GNSS measurement. After the terminal device performs GNSS measurement within GNSS measurement gap 2, it starts a new timer 2 and sends PRACH after performing GNSS measurement.
  • the timing duration of timer 1 and timer 2 is the same.
  • 1 bit can be set in the PDCCH Order to carry the aforementioned indication information a (not shown in Figure 5).
  • the aforementioned indication information a is used to explicitly indicate whether to enable the GNSS measurement gap, and the indication information a corresponds to When the bit value of the indication information a is 0, the indication information a is used to indicate not to enable the GNSS measurement gap; when the corresponding bit value of the indication information a is 1, the indication information a is used to indicate to enable the GNSS measurement gap.
  • the timer 1 does not time out when the terminal device receives PDCCH Order-1, and the terminal The device determines that it does not need to start a GNSS measurement gap to perform GNSS measurements, and sends PRACH after receiving PDCCH Order-1.
  • timer 1 has timed out.
  • the terminal equipment determines that it needs to start GNSS measurement gap 2 to perform GNSS measurements. After the terminal equipment performs GNSS measurement within GNSS measurement gap 2, it starts a new timer 2. And send PRACH after performing GNSS measurement.
  • the terminal device can perform the following steps: If DCI is used to trigger the random access process, the terminal device can send a physical random access Access Channel (Physical Random Access Channel, PRACH); if DCI is used to schedule data, the terminal device can determine the time-frequency resource for data transmission according to the instructions in the DCI and transmit the data through the time-frequency resource.
  • the terminal device sending the PRACH means: sending a random access request on the PRACH.
  • the terminal device transmits this data by transmitting uplink data or receiving downlink data according to the scheduling information in the DCI. For example, the terminal device sends uplink data on the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), or the terminal device receives downlink data on the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • the network device may also send third indication information, and accordingly, the terminal device receives the third indication information, where the third indication information is used to indicate the timing duration of the aforementioned timer.
  • the network device may send the third indication information before sending the DCI, and accordingly, the terminal device receives the third indication information before receiving the DCI.
  • the third indication information may be carried in high-layer signaling, system information or the foregoing DCI (that is, the foregoing DCI is also used to indicate the timing duration of the timer).
  • the third indication information may occupy 1 bit or more bits.
  • a value of 1 for this 1 bit may indicate that the GNSS measurement gap is enabled, and a value of 0 for this 1 bit may indicate that the GNSS measurement gap is not enabled.
  • the timing duration of the timer can also be predefined through the protocol.
  • the validity period of historical GNSS measurement results can be indicated by the network device, or can be predefined by the protocol, which is not limited in the embodiments of this application.
  • the network device may determine the timing duration of the aforementioned timer in the following manner: the terminal device reports timing reference indication information, and the timing reference indication information is used to indicate the reference validity duration of the GNSS measurement results. Correspondingly, the network device receives the timing reference indication information; and determines the timing duration of the aforementioned timer based on the reference validity duration.
  • the reference validity period may be determined based on the capabilities of the terminal device and/or the mobility information of the terminal device. For example, if the battery capacity of the terminal device is larger, the reference valid time may be shorter. If the position of the terminal device can remain unchanged for a long time, the reference validity time can be longer. The terminal device is located in a shorter time remains unchanged, then the reference validity time can be shorter.
  • the network device can determine the reference validity period reported by the terminal device as the timing duration of the timer, or the network device can determine the sum of the reference validity duration reported by the terminal device and the preset duration as the timing duration of the timer.
  • the preset duration can be agreed upon by agreement.
  • the units of the timing duration of the timer and the valid duration of historical GNSS measurement results may be milliseconds, seconds, time slots, symbols, frames or other units, which are not limited in the embodiments of this application.
  • the terminal device when DCI is used to trigger a random access process, can send the PRACH after performing GNSS measurements within the GNSS measurement gap.
  • the terminal device initiates the random access process after performing GNSS measurements within the GNSS measurement gap, that is, the position of the GNSS measurement gap is before the time domain resource position of the PRACH.
  • the position information of the terminal device can be obtained.
  • the position information of the terminal device can be used to calculate the timing advance (Timing Advance, TA) amount. By accurately calculating the TA amount, it is beneficial to Improve the probability that the terminal device sends PRACH and successfully accesses the network.
  • Timing Advance Timing Advance
  • the position of the GNSS measurement gap may be before the time domain resource position of the data, or the time domain resource position of the data may be before the position of the GNSS measurement gap.
  • the timing of data transmission by the terminal equipment can be: first perform GNSS measurements within the GNSS measurement gap, and then transmit the data; or, the terminal equipment first transmits data, and then perform GNSS measurement within the GNSS measurement gap. Measurement.
  • the position of the GNSS measurement gap is before the time domain resource position of the data means that the terminal device first performs GNSS measurements within the GNSS measurement gap and then transmits the data.
  • the time domain resource position of this data is before the position of the GNSS measurement gap means: the terminal device first transmits the data and then performs GNSS measurements within the GNSS measurement gap.
  • the GNSS measurement gap is a time domain resource.
  • the relationship between the positions of two time domain resources can be determined by the time unit occupied by the time domain resources.
  • the time unit may be, for example, a frame, a subframe, a time slot, a symbol, or other units in the time domain, which are not limited in the embodiments of this application.
  • the relationship between the position of the GNSS measurement gap and the position of the time domain resource of the data can be determined by the first symbol or the last symbol occupied by the two time domain resources.
  • the position of the GNSS measurement gap is more accurate relative to the time domain resource position of the data. Come forward.
  • the symbol index of the last symbol occupied by the GNSS measurement gap is smaller than the symbol index of the first symbol occupied by the time domain resource of the data, it is considered that the position of the GNSS measurement gap is earlier than the time domain resource position of the data.
  • the symbol index of the last symbol occupied by the GNSS measurement gap is smaller than the symbol index of the last symbol occupied by the time domain resource of the data, it is considered that the position of the GNSS measurement gap is earlier than the time domain resource position of the data.
  • the symbol index of a certain symbol is used to represent the index position of the symbol. It should be noted that for two symbols (such as symbol 1 and symbol 2), the symbol index of symbol 1 is smaller than the symbol index of symbol 2, which can also be described as: symbol 1 is earlier than symbol 2.
  • the time unit occupied by the GNSS measurement gap and the time unit occupied by the time domain resource of the data do not overlap in the time domain.
  • GNSS measurement and data transmission are time-divided, and the terminal equipment will not perform GNSS measurement at the same time. and data transfer.
  • GNSS measurement can also be performed in business scenarios where terminal equipment performs long-term data transmission, so that data transmission can be performed without interrupting In this case, ensure that the accurate location information of the terminal device can be obtained.
  • GNSS measurement and data transmission time division can reduce the complexity of IoT terminal equipment.
  • the starting position of the time domain resource of the data can be determined by the end position of the GNSS measurement gap and the first time The delay value is determined, and the first delay value is the delay between the starting position of the time domain resource of the data and the end position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is the sum of the end position of the GNSS measurement gap and the first delay value.
  • the starting position of the time domain resource of the data can be determined by the end position of the DCI time domain resource and the second delay value.
  • the second delay value is the delay between the starting position of the time domain resource of the data and the end position of the time domain resource of the DCI.
  • the starting position of the time domain resource of the data is the sum of the end position of the time domain resource of the DCI and the second delay value. For example, as shown in Figure 7, if the end position of the time domain resource of DCI is at subframe n, and the second delay value is k2 subframe, then the starting position of the time domain resource of the data scheduled by DCI is at Subframe n+k2.
  • the position of the GNSS measurement gap in Figure 6 can be determined based on the time domain resource position and time offset of the DCI.
  • the time offset is the time length between the GNSS measurement gap and the time domain resource of the DCI. Specifically, See the previous description and will not go into details here.
  • the position of the GNSS measurement gap in Figure 7 can be determined based on the time domain resource position and time offset of the data scheduled by DCI.
  • the time offset is the duration between the GNSS measurement gap and the time domain resource of the data. For details, see It is described above and will not be repeated here.
  • both the first delay value and the second delay value may be indicated by the foregoing DCI, or indicated by fourth indication information sent by the network device, or predefined by the protocol.
  • the fourth indication information may be carried in high-layer signaling or system information.
  • the first indication information, the second indication information, the third indication information, and the fourth indication information may be carried in the same signaling or message, or may be carried in different signaling or messages.
  • the duration of the GNSS measurement gap, the time offset, and the timing of the timer The duration can be indicated using the same bit information or different bit information.
  • the terminal device can perform GNSS measurements in the RRC connected (RRC_Connected) state. For example, when the terminal device is in the RRC_Connected state, it can receive the DCI used to trigger the random access process, and then the terminal device performs GNSS measurements within the GNSS measurement gap during the RRC_Connected state and obtains the location information of the terminal device, Initiate the random access process.
  • RRC_Connected RRC connected
  • the terminal device while the terminal device is in the RRC_Connected state, it can receive DCI used for scheduling data, and then while it is in the RRC_Connected state, it first performs GNSS measurements within the GNSS measurement gap and obtains the location information of the terminal device, and then transmits data; or , the terminal device first performs data transmission while in the RRC_Connected state, and then performs GNSS measurements within the GNSS measurement gap and obtains the location information of the terminal device.
  • the terminal device can better adapt to more scenarios by performing GNSS measurements during the RRC_Connected state. For example, if the terminal device can only perform GNSS measurements in the RRC idle (RRC_Idle) state, it will cause the terminal device to be unable to support long-term Data transmission business scenarios. Because the terminal device needs to exit the RRC_Connected state first and then enter the RRC_Idle state to perform GNSS measurements, the terminal device cannot support long-term data transmission services. In this embodiment of the present application, the terminal device supports performing GNSS measurements during the RRC_Connected state, so it can support long-term data transmission services. In addition, by time-dividing data transmission and GNSS measurement, data transmission and GNSS measurement can be prevented from interfering with each other, and the complexity of the terminal equipment can also be reduced.
  • the terminal device determines the location of the GNSS measurement gap based on the time domain resource location of DCI or the time domain resource location of data scheduled by DCI.
  • the location of the GNSS measurement gap can be determined flexibly.
  • the terminal device supports performing GNSS measurements during the RRC_Connected state, so that the terminal device can support long-term data transmission services.
  • data transmission and GNSS measurement can be prevented from interfering with each other, and the complexity of the terminal equipment can also be reduced.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 80 includes a communication unit 801 and a processing unit 802 .
  • the communication device 80 can perform the relevant steps of the terminal equipment and network equipment in the foregoing method embodiments.
  • the communication device 80 is used to implement the functions of the terminal device in the above embodiment:
  • Communication unit 801 used to receive downlink control information DCI
  • the processing unit 802 is configured to determine the position of the global navigation satellite system GNSS measurement gap at least based on the time domain resource position of the DCI.
  • the DCI is used to trigger a random access process, or the DCI is used to schedule data; or, at least based on the data
  • the time domain resource location determines the location of the GNSS measurement gap, and the DCI is used to schedule the data; where the GNSS measurement gap is used for GNSS measurement.
  • the processing unit 802 is configured to determine the position of the GNSS measurement gap based on at least the time domain resource position of the DCI. Specifically, the processing unit 802 is configured to: determine the position of the GNSS measurement gap based on the time domain resource position and time offset of the DCI. The position of the GNSS measurement gap; the time offset is the duration between the GNSS measurement gap and the time domain resource of the DCI.
  • the processing unit 802 is configured to determine the location of the GNSS measurement gap based on at least the time domain resource location of the data, specifically: based on the time domain resource location and time offset of the data, Determine the position of the GNSS measurement gap; where the time offset is the duration between the GNSS measurement gap and the time domain resource of the data.
  • the communication unit 801 is further configured to receive first indication information, where the first indication information is used to indicate the aforementioned time offset.
  • the communication unit 801 is further configured to receive second indication information, where the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the DCI is also used to indicate enabling the GNSS measurement gap.
  • the processing unit 802 is also configured to: perform GNSS measurements within the GNSS measurement gap.
  • the processing unit 802 is also configured to: if the historical GNSS measurement results are invalid, perform GNSS measurements within the GNSS measurement gap; the historical GNSS measurement results are the results obtained from the latest GNSS measurement.
  • the failure of the historical GNSS measurement results includes: the timer corresponding to the historical GNSS measurement results times out.
  • the communication unit 801 is also configured to: receive third indication information, the third indication information The information is used to indicate the timing duration of the aforementioned timer.
  • the communication unit 801 is further configured to send timing reference indication information, where the timing reference indication information is used to indicate the reference validity period of the GNSS measurement results.
  • the communication unit 801 is further configured to: send the physical random access channel PRACH, where the DCI is used to trigger the random access process.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • the operations performed by the communication unit 801 and the processing unit 802 may refer to the introduction of the terminal device in the embodiment corresponding to FIG. 2 above.
  • Communication unit 801 configured to send first indication information, where the first indication information is used to indicate the time offset;
  • the communication unit 801 is also used to send downlink control information DCI;
  • the time offset is the duration between the Global Navigation Satellite System GNSS measurement gap and the time domain resource of DCI.
  • DCI is used to trigger the random access process, or DCI is used to schedule data; or the time offset is GNSS
  • the communication unit 801 is further configured to send second indication information, where the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the DCI is also used to indicate enabling the GNSS measurement gap.
  • the communication unit 801 is further configured to send third indication information, where the third indication information is used to indicate the timing duration of the timer corresponding to the GNSS measurement result.
  • the communication unit 801 is further configured to: receive timing reference indication information, which is used to indicate the reference validity period of the GNSS measurement results; the processing unit 802 is configured to determine the aforementioned reference validity period based on the reference validity period. The duration of the timer.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • the operations performed by the communication unit 801 and the processing unit 802 may refer to the introduction of the network device in the embodiment corresponding to FIG. 2 above.
  • Processing unit 802 used to determine downlink control information DCI
  • Communication unit 801 used to send DCI
  • the DCI is used to trigger the random access process, or the DCI is used to schedule data; the DCI is also used to indicate the activation of the Global Navigation Satellite System GNSS measurement gap, and the GNSS measurement gap is used for GNSS measurements.
  • the communication unit 801 is further configured to: send first indication information, the first indication information is used to indicate a time offset; wherein the time offset is the time domain of the GNSS measurement gap and DCI The duration between resources, DCI is used to trigger the random access process, or DCI is used to schedule data; or the time offset is the duration between the GNSS measurement gap and the time domain resource of the data, and DCI is used to schedule the data .
  • the communication unit 801 is further configured to send second indication information, where the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the communication unit 801 is further configured to send third indication information, where the third indication information is used to indicate the timing duration of the timer corresponding to the GNSS measurement result.
  • the communication unit 801 is also configured to: receive timing reference indication information, which is used to indicate the reference validity duration of the GNSS measurement results; the processing unit 802 is also configured to: according to the reference validity duration , determine the timing length of the aforementioned timer.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • the operations performed by the communication unit 801 and the processing unit 802 may refer to the introduction of the network device in the embodiment corresponding to FIG. 2 above.
  • the communication device 80 can also be used to implement other functions of the terminal equipment and network equipment in the corresponding embodiment of Figure 2, which will not be described again here. Based on the same inventive concept, the principles and beneficial effects of the communication device 80 in solving the problem provided in the embodiments of the present application are similar to the principles and beneficial effects of the terminal equipment and network equipment in the method embodiments of the present application. Please refer to the principle of implementation of the method. and beneficial effects are briefly described and will not be repeated here.
  • FIG. 9 shows yet another communication device 90 provided by an embodiment of the present application. It can be used to realize the functions of the terminal device in the above method embodiment, or to realize the functions of the network device in the above method embodiment.
  • the communication device 90 may include a transceiver 901 and a processor 902.
  • the communication device may also include a memory 903.
  • the transceiver 901, the processor 902, and the memory 903 can be connected through the bus 904 or other means.
  • the bus is represented by a thick line in Figure 9, and the connection methods between other components are only schematically illustrated and are not limiting.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, Mechanical or other form for information interaction between devices, units or modules.
  • the specific connection medium between the above-mentioned transceiver 901, processor 902, and memory 903 is not limited in the embodiment of the present application.
  • Memory 903 may include read-only memory and random access memory and provides instructions and data to processor 902. A portion of memory 903 may also include non-volatile random access memory.
  • the processor 902 can be a central processing unit (Central Processing Unit, CPU).
  • the processor 902 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC). ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, and optionally, the processor 902 may also be any conventional processor.
  • the processor in Figure 9 can perform the method performed by the terminal device in any of the above method embodiments.
  • the processor in Figure 9 can perform the method performed by the network device in any of the above method embodiments.
  • the memory 903 is used to store program instructions; the processor 902 is used to call the program instructions stored in the memory 903 to execute the tasks of the terminal device and network device in the corresponding embodiment of Figure 2. steps to perform.
  • the functions/implementation processes of the communication unit and processing unit in Figure 8 can be implemented by the processor 902 in Figure 9 calling the computer execution instructions stored in the memory 903.
  • the function/implementation process of the processing unit in Figure 8 can be implemented by the processor 902 in Figure 9 calling the computer execution instructions stored in the memory 903, and the function/implementation process of the communication unit in Figure 8 can be implemented by the processor 902 in Figure 9
  • the transceiver 901 is implemented.
  • a general-purpose computing device such as a computer including a CPU, a random access storage medium (Random Access Memory, RAM), a read-only storage medium (Read-Only Memory, ROM) and other processing elements and storage elements can be used.
  • a computer program (including program code) capable of executing each step involved in the above method is run on the device, and the method provided by the embodiment of the present application is implemented.
  • the computer program can be recorded on, for example, a computer-readable recording medium, loaded into the above-mentioned computing device through the computer-readable recording medium, and run therein.
  • the principles and beneficial effects of the communication device 90 in solving the problem provided in the embodiments of the present application are similar to the principles and beneficial effects of the terminal equipment and network equipment in the method embodiments of the present application. Please refer to the principle of implementation of the method. and beneficial effects are briefly described and will not be repeated here.
  • the aforementioned communication device (such as the communication device 80 and the communication device 90) may be, for example, a chip or a chip module.
  • Embodiments of the present application also provide a chip that can perform the relevant steps of the terminal equipment and network equipment in the foregoing method embodiments.
  • This chip is used for:
  • the DCI is used to trigger the random access process, or the DCI is used for scheduling data; or, at least based on the time domain resource position of the data, Determine the location of the GNSS measurement gap, and the DCI is used to schedule the data; where the GNSS measurement gap is used for GNSS measurements.
  • the chip is used to determine the position of the GNSS measurement gap based on at least the time domain resource position of the DCI. Specifically, it is used to: determine the GNSS measurement gap based on the time domain resource position and time offset of the DCI. The position of the measurement gap; the time offset is the duration between the GNSS measurement gap and the time domain resource of the DCI.
  • the chip is used to determine the position of the GNSS measurement gap based on at least the time domain resource position of the data. Specifically, the chip is used to: determine the position of the GNSS measurement gap based on the time domain resource position and time offset of the data. The position of the GNSS measurement gap; where the time offset is the duration between the GNSS measurement gap and the time domain resource of the data.
  • the chip before receiving the DCI, is further configured to: receive first indication information, where the first indication information is used to indicate the aforementioned time offset.
  • the chip is further configured to: receive second indication information, the second indication information being used to indicate the duration of the GNSS measurement gap.
  • the DCI is also used to indicate enabling the GNSS measurement gap.
  • the chip is also used to perform GNSS measurements within the GNSS measurement gap.
  • the chip is also used to perform GNSS measurements within the GNSS measurement gap if the historical GNSS measurement results are invalid; the historical GNSS measurement results are the results obtained from the latest GNSS measurement.
  • the failure of the historical GNSS measurement results includes: the timer corresponding to the historical GNSS measurement results times out.
  • the chip is further configured to: receive third indication information, where the third indication information is used to indicate the timing duration of the aforementioned timer.
  • the chip is further configured to: send timing reference indication information, where the timing reference indication information is used to indicate the reference validity period of the GNSS measurement results.
  • the chip after performing GNSS measurements within the GNSS measurement gap, the chip is also used to: send the physical random access channel PRACH, where the DCI is used to trigger the random access process.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • the operation performed by the chip can refer to the introduction of the terminal device in the embodiment corresponding to FIG. 2 above.
  • This chip is used for:
  • the first indication information is used to indicate the time offset
  • the time offset is the duration between the Global Navigation Satellite System GNSS measurement gap and the time domain resource of DCI.
  • DCI is used to trigger the random access process, or DCI is used to schedule data; or the time offset is GNSS
  • the chip is further configured to: send second indication information, and the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the DCI is also used to indicate enabling the GNSS measurement gap.
  • the chip is further configured to: send third indication information, where the third indication information is used to indicate the timing length of the timer corresponding to the GNSS measurement result.
  • the chip is further configured to: receive timing reference indication information, which is used to indicate the reference validity duration of the GNSS measurement results; and determine the timing duration of the aforementioned timer based on the reference validity duration.
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end position of the GNSS measurement gap and the first delay value
  • the first delay value is the starting position of the time domain resource of the data.
  • the delay between the starting position and the ending position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is determined by the ending position of the DCI time domain resource and the second delay value
  • the second delay value is The delay between the starting position of the data time domain resource and the end position of the DCI time domain resource.
  • the operation performed by the chip can refer to the introduction of the network device in the embodiment corresponding to Figure 2 above.
  • This chip is used for:
  • the DCI is used to trigger the random access process, or the DCI is used to schedule data; the DCI is also used to indicate the activation of the Global Navigation Satellite System GNSS measurement gap, and the GNSS measurement gap is used for GNSS measurements.
  • the chip before sending the DCI, is further configured to: send first indication information, and the first indication information is used to indicate a time offset; wherein the time offset is the GNSS measurement gap and the DCI The duration between time domain resources, DCI is used to trigger the random access process, or DCI is used to schedule data; or the time offset is the duration between the GNSS measurement gap and the time domain resource of the data, DCI is used to Schedule this data.
  • the chip is further configured to: send second indication information, and the second indication information is used to indicate the duration of the GNSS measurement gap.
  • the chip is further configured to: send third indication information, where the third indication information is used to indicate the timing length of the timer corresponding to the GNSS measurement result.
  • the chip is further configured to: receive timing reference indication information, which is used to indicate the reference validity duration of the GNSS measurement results; and determine the timing duration of the aforementioned timer based on the reference validity duration. .
  • the position of the GNSS measurement gap is before the time domain resource position of the DCI scheduled data, or the time domain resource position of the data is before the position of the GNSS measurement gap.
  • the starting position of the time domain resource of the data is determined by the end of the GNSS measurement gap.
  • the position is determined by the first delay value.
  • the first delay value is the delay between the starting position of the time domain resource of the data and the end position of the GNSS measurement gap; or, the starting position of the time domain resource of the data is given by
  • the end position of the time domain resource of the DCI is determined by the second delay value.
  • the second delay value is the delay between the starting position of the time domain resource of the data and the end position of the time domain resource of the DCI.
  • the operation performed by the chip can refer to the introduction of the network device in the embodiment corresponding to Figure 2 above.
  • the above-mentioned chip includes at least one processor, at least one first memory and at least one second memory; wherein the aforementioned at least one first memory and the aforementioned at least one processor are interconnected through lines, and the aforementioned first memory Instructions are stored in the memory; the aforementioned at least one second memory and the aforementioned at least one processor are interconnected through lines, and the aforementioned second memory stores data that needs to be stored in the aforementioned method embodiment.
  • each module contained therein can be implemented in the form of circuits and other hardware, or at least some of the modules can be implemented in the form of software programs, which run on the integrated circuit inside the chip.
  • the processor and the remaining (if any) modules can be implemented in hardware such as circuits.
  • the principles and beneficial effects of the chip provided in the embodiments of the present application are similar to the principles and beneficial effects of the terminal equipment and network equipment in the method embodiments of the present application. Please refer to the principles and beneficial effects of the implementation of the method. The effect is briefly described and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip module provided by an embodiment of the present application.
  • the chip module 100 can perform the relevant steps of the terminal equipment and network equipment in the foregoing method embodiments.
  • the chip module 100 includes: a communication interface 1001 and a chip 1002.
  • the communication interface is used for internal communication of the chip module, or for the chip module to communicate with external equipment; the chip is used to implement the functions of the terminal equipment and network equipment in the embodiment of the present application.
  • the chip module 100 may also include a storage module 1003 and a power module 1004.
  • the storage module 1003 is used to store data and instructions.
  • the power module 1004 is used to provide power to the chip module.
  • each module included in it can be implemented in the form of hardware such as circuits.
  • Different modules can be located in the same component of the chip module (such as chips, circuit modules, etc.) or Among different components, or at least some of the modules can be implemented in the form of software programs, which run on the processor integrated within the chip module, and the remaining (if any) modules can be implemented in hardware such as circuits.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program includes one or more program instructions.
  • the one or more program instructions are suitable for being loaded and executed by a communication device. Methods provided by method embodiments.
  • Embodiments of the present application also provide a computer program product containing a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute the method provided by the above method embodiments.
  • This embodiment of the present application also provides a measurement system, which may include the terminal device and network device in the corresponding embodiment of Figure 2 .
  • each device and product described in the above embodiments may be software modules/units or hardware modules/units, or they may be partly software modules/units and partly hardware modules/units.
  • each module/unit included in them may all use electronics. Circuits and other hardware methods are implemented, or at least some modules/units can be implemented by software programs. The software program runs on the integrated processor inside the chip. The remaining (if any) modules/units can be implemented by circuits and other hardware methods. Implementation; For each device and product applied or integrated in the chip module, each module/unit included in it can be implemented in the form of hardware such as circuits.
  • modules/units can be located in the same component of the chip module (such as a chip , circuit module, etc.) or in different components, or at least some modules/units can be implemented in the form of software programs that run on the processor integrated inside the chip module, and the remaining (if any) modules/units can It is implemented using circuits and other hardware methods; for each device and product that is applied or integrated into the terminal, each module/unit included in it can be implemented using circuits and other hardware methods.
  • modules/units can be located in the same component in the terminal (such as , chips, circuit modules, etc.) or in different components, or at least some modules/units can be implemented in the form of software programs that run on the processor integrated inside the terminal, and the remaining (if any) modules/units can It is implemented using hardware methods such as circuits.
  • Modules in the device of the embodiment of the present application can be merged, divided, and deleted according to actual needs.
  • the program instructions can be stored in a computer-readable storage medium.
  • the computer-readable storage medium Can include: flash disk, ROM, RAM, magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量方法及通信装置,应用于卫星通信技术领域。该方法包括:接收下行控制信息DCI,并至少根据DCI的时域资源位置,确定全球导航卫星系统GNSS测量间隙的位置,该DCI用于触发随机接入过程,或者,该DCI用于调度数据;或,至少根据该数据的时域资源位置,确定GNSS测量间隙的位置,该DCI用于调度该数据;其中,GNSS测量间隙用于GNSS测量。通过这种方式,有利于灵活地确定GNSS测量间隙的位置。

Description

一种测量方法及通信装置 技术领域
本申请涉及卫星通信技术领域,尤其涉及一种测量方法及通信装置。
背景技术
在卫星物联网系统中,卫星的运行轨道高度范围在几百至几万千米之间。由于卫星相对终端设备快速移动,终端设备与卫星之间以及卫星与基站之间存在非常大的多普勒频移,终端设备与基站之间的传播时延也会发生快速的变化。在卫星物联网系统中,进行数据传输的首要条件是终端设备获取自身位置信息,进一步的,才能维持上下行时频同步。
终端设备通过GNSS(Global Navigation Satellite System,全球导航卫星系统)测量可以获取自身位置信息。因此,如何确定GNSS测量间隙(Gap)的位置成为亟待解决的技术问题。
发明内容
本申请公开了一种测量方法及通信装置,有利于灵活地确定GNSS测量间隙的位置。
第一方面,本申请实施例提供了一种测量方法,所述方法包括:接收下行控制信息DCI;并至少根据DCI的时域资源位置,确定全球导航卫星系统GNSS测量间隙的位置,DCI用于触发随机接入过程,或者,该DCI用于调度数据;或,至少根据该数据的时域资源位置,确定GNSS测量间隙的位置,该DCI用于调度该数据;其中,GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,至少根据DCI的时域资源位置,确定GNSS测量间隙的位置的具体实施方式为:根据DCI的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;该时间偏移量为GNSS测量间隙与该DCI的时域资源之间的时长。
在一种可选的实施方式中,至少根据数据的时域资源位置,确定GNSS测量间隙的位置的具体实施方式为:根据该数据的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;其中,该时间偏移量为GNSS测量间隙与该数据的时域资源之间的时长。
在一种可选的实施方式中,接收前述DCI之前,该方法还包括:接收第一指示信息,该第一指示信息用于指示前述时间偏移量。
在一种可选的实施方式中,该方法还包括:接收第二指示信息,该第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,DCI还用于指示启用GNSS测量间隙。
在一种可选的实施方式中,该方法还包括:在GNSS测量间隙内进行GNSS测量。
在一种可选的实施方式中,该方法还包括:若历史GNSS测量结果失效,在GNSS测量间隙内进行GNSS测量;历史GNSS测量结果是最近一次GNSS测量所得到的结果。
在该技术方案中,有利于避免频繁地进行GNSS测量,从而有利于节省资源,延长终端设备的电池寿命。
在一种可选的实施方式中,历史GNSS测量结果失效,包括:历史GNSS测量结果对应的定时器超时。
在一种可选的实施方式中,该方法还包括:接收第三指示信息,该第三指示信息用于指示前述定时器的定时时长。
在一种可选的实施方式中,该方法还包括:发送定时参考指示信息,该定时参考指示信息用于指示GNSS测量结果的参考有效时长。
在一种可选的实施方式中,在GNSS测量间隙内进行GNSS测量之后,该方法还包括:发送物理随机接入信道PRACH,其中,DCI用于触发随机接入过程。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
第二方面,本申请实施例提供了另一种测量方法,所述方法包括:发送第一指示信息,第一指示信息用于指示时间偏移量;发送下行控制信息DCI;其中,时间偏移量为全球导航卫星系统GNSS测量间隙与DCI的时域资源之间的时长,DCI用于触发随机接入过程,或者,DCI用于调度数据;或者,时间偏移量为GNSS测量间隙与数据的时域资源之间的时长,DCI用于调度该数据;GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,该方法还包括:发送第二指示信息,第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,DCI还用于指示启用GNSS测量间隙。
在一种可选的实施方式中,该方法还包括:发送第三指示信息,第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
在一种可选的实施方式中,该方法还包括:接收定时参考指示信息,定时参考指示信息用于指示GNSS测量结果的参考有效时长;根据参考有效时长,确定前述定时器的定时时长。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
第三方面,本申请实施例提供了又一种测量方法,所述方法包括:确定下行控制信息DCI;并发送DCI;其中,DCI用于触发随机接入过程,或者,DCI用于调度数据;该DCI还用于指示启用全球导航卫星系统GNSS测量间隙,GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,发送前述DCI之前,该方法还包括:发送第一指示信息,第一指示信息用于指示时间偏移量;其中,时间偏移量为GNSS测量间隙与DCI的时域资源之间的时长,DCI用于触发随机接入过程,或者,DCI用于调度数据;或者,时间偏移量为GNSS测量间隙与数据的时域资源之间的时长,DCI用于调度该数据。
在一种可选的实施方式中,该方法还包括:发送第二指示信息,第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,该方法还包括:发送第三指示信息,第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
在一种可选的实施方式中,该方法还包括:接收定时参考指示信息,定时参考指示信息用于指示GNSS测量结果的参考有效时长;根据该参考有效时长,确定前述定时器的定时时长。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
第四方面,本申请实施例提供了一种通信装置,所述装置包括用于实现第一方面或第二方面或第三方面所述的方法的单元。
第五方面,本申请实施例提供另一种通信装置,包括处理器;该处理器,用于执行第一方面或第二方面或第三方面所述的方法。
在一种可选的实施方式中,该通信装置还可以包括存储器;该存储器用于存储计算机程序;处理器,具体用于从该存储器中调用计算机程序,执行第一方面或第二方面或第三方面所述的方法。
第六方面,本申请实施例提供一种芯片,该芯片用于执行第一方面或第二方面或第三方面所述的方法。
第七方面,本申请实施例提供一种芯片模组,该芯片模组包括通信接口和芯片,其中:通信接口用于进行芯片模组内部通信,或者用于该芯片模组与外部设备进行通信;该芯片用于执行第一方面或第二方面或第三方面所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被通信装置执行时使所述通信装置执行如第一方面或第二方面或第三方面所述的方法。
第九方面,本申请实施例提供一种包括计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面或第二方面或第三方面所述的方法。
在本申请实施例中,根据DCI的时域资源位置或根据DCI调度的数据的时域资源位置,确定GNSS测量间隙的位置,可以灵活地确定GNSS测量间隙的位置。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种测量方法的流程示意图;
图3是本申请实施例提供的一种GNSS测量间隙的时序图;
图4是本申请实施例提供的另一种GNSS测量间隙的时序图;
图5是本申请实施例提供的一种是否执行GNSS测量的场景示意图;
图6是本申请实施例提供的一种数据传输的时序图;
图7是本申请实施例提供的另一种数据传输的时序图;
图8是本申请实施例提供的一种通信装置的结构示意图;
图9是本申请实施例提供的另一种通信装置的结构示意图;
图10是本申请实施例提供的一种芯片模组的结构示意图。
具体实施方式
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。本申请实施例中的“至少一个”,指的是一个或多个,多个指的是两个或两个以上。本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示如下三种情况:单独存在A,同时存在A和B,单独存在B。其中,A、B可以是单数或者复数。字符“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。
本申请实施例中的“以下至少一项(个)”或其类似表达,指的是这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中涉及“的(of)”、“相应的(corresponding,relevant)”、“对应的(corresponding)”、“关联的(associated,related)”、“映射的(mapped)”有时可以混用。应当指出的是,在不强调区别时,所要表达的概念或含义是一致的。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个终端设备和一个网络设备,图1所示的设备数量和形态用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个终端设备101和一个网络设备102为例。
其中,本申请实施例中终端设备是一种具有无线收发功能的设备,可以称之为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、物联网终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如长期演进(long time evolution,LTE)、新空口(new radio,NR)、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端 设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端设备还可以是具有收发功能的装置,例如芯片模组。其中,芯片模组可以包括芯片,还可以包括其它分立器件。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,网络设备可以为接入网(access network,AN)设备、卫星,AN设备可以为无线接入网(radio access network,RAN)设备。其中,接入网设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。示例的,接入网设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、TRP、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)和/或分布单元(distributed unit,DU),或者接入网设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的接入网设备或者未来演进的PLMN中的接入网设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片模组。示例的,芯片模组可以包括芯片,还可以包括其它分立器件。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:非陆地网络(Non-terrestrial networks,NTN)(即卫星通信)、5G移动通信系统、5G NR系统。可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G系统或者其他通信网络等。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参见图2,为本申请实施例提供的一种测量方法的流程示意图。如图2所示,该测 量方法可以包括但不限于如下步骤:
S201、网络设备发送下行控制信息(Downlink Control Information,DCI)。相应的,终端设备接收该DCI。
网络设备确定DCI,然后向终端设备发送该DCI。其中,该DCI用于触发随机接入过程,或者,该DCI用于调度数据。用于触发随机接入过程的DCI可以承载于物理下行控制信道(Physical Downlink Control Channel,PDCCH)Order中。
S202、终端设备至少根据DCI的时域资源位置,确定GNSS测量间隙的位置,该DCI用于触发随机接入过程,或者,该DCI用于调度数据;或,终端设备至少根据数据的时域资源位置,确定GNSS测量间隙的位置,该DCI用于调度该数据;其中,GNSS测量间隙用于GNSS测量。
其中,GNSS测量间隙为一个时域窗口,时域窗口表示一段时域资源。终端设备接收到DCI后,可通过如下方式中的一种或多种确定GNSS测量间隙的位置:方式1:若DCI用于触发随机接入过程,终端设备至少根据DCI的时域资源位置,确定GNSS测量间隙的位置。方式2:若DCI用于调度数据,终端设备至少根据该数据的时域资源位置,确定GNSS测量间隙的位置。方式3:若DCI用于调度数据,终端设备至少根据该DCI的时域资源位置,确定GNSS测量间隙的位置。在本申请实施例中,时域资源位置(如GNSS测量间隙的位置)可以包括但不限于:该时域资源的起始位置和/或结束位置。
需要说明的是,终端设备可通过上述3种方式中的一种或多种确定GNSS测量间隙的位置是指:该3种方式可以单独使用也可以相互结合使用。示例性的,方式1和方式2结合使用是指:DCI用于触发随机接入过程的情况下,终端设备会通过方式1确定GNSS测量间隙的位置,并且,DCI用于调度数据的情况下,终端设备会通过方式2确定GNSS测量间隙的位置。
在一种实现方式中,终端设备至少根据DCI的时域资源位置,确定GNSS测量间隙的位置的具体实施方式可以为:终端设备根据DCI的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;其中,该时间偏移量为GNSS测量间隙与该DCI的时域资源之间的时长。
可选的,该时间偏移量可以为GNSS测量间隙的起始位置与该DCI的时域资源的结束位置之间的时长,此时,终端设备可以根据DCI的时域资源的结束位置和该时间偏移量,确定GNSS测量间隙的起始位置。示例性的,GNSS测量间隙的起始位置为DCI的时域资源的结束位置和该时间偏移量之和。示例性的,以图3所示的GNSS测量间隙的时序图为例,DCI的时域资源的结束位置在子帧n1,且时间偏移量为k个子帧,那么GNSS测量间隙的起始位置在子帧n1+k。
可选的,该时间偏移量还可以为GNSS测量间隙的结束位置与该DCI的时域资源的结束位置之间的时长,此时,终端设备可以根据DCI的时域资源的结束位置、该时间偏移量以及GNSS测量间隙的时长,确定GNSS测量间隙的起始位置和结束位置。示例性的,GNSS测量间隙的结束位置为DCI的时域资源的结束位置与该时间偏移量之和,GNSS测量间隙的起始位置为GNSS测量间隙的结束位置与GNSS测量间隙的时长之差。示例性的,若DCI的时域资源的结束位置在子帧n1,且时间偏移量为(k+m)个子帧,GNSS测量间隙的时长为m个子帧,那么GNSS测量间隙的结束位置在子帧n1+(k+m),GNSS测量间隙的开 始位置在子帧n1+(k+m)-m=n1+k。
需要说明的是,上述示例中时间偏移量的单位、GNSS测量间隙的时长的单位为子帧用于举例,在其他实现方式中,时间偏移量的单位、GNSS测量间隙的时长的单位还可以是毫秒、秒、时隙、符号(如正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号)、帧或其他单位,本申请实施例对此不做限定。
在一种实现方式中,终端设备至少根据前述数据的时域资源位置,确定GNSS测量间隙的位置的具体实施方式可以为:终端设备根据该数据的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;其中,该时间偏移量为GNSS测量间隙与该数据的时域资源之间的时长。
可选的,该时间偏移量可以为GNSS测量间隙的起始位置与该数据的时域资源的结束位置之间的时长,此时,终端设备可以根据该数据的时域资源的结束位置和该时间偏移量,确定GNSS测量间隙的起始位置。示例性的,GNSS测量间隙的起始位置为该数据的时域资源的结束位置和该时间偏移量之和。示例性的,以图4所示的GNSS测量间隙的时序图为例,DCI所调度的数据的时域资源的结束位置在子帧n2,且时间偏移量为k个子帧,那么GNSS测量间隙的起始位置在子帧n2+k。
可选的,该时间偏移量还可以为GNSS测量间隙的结束位置与该数据的时域资源的结束位置之间的时长,此时,终端设备可以根据该数据的时域资源的结束位置、该时间偏移量以及GNSS测量间隙的时长,确定GNSS测量间隙的起始位置和结束位置。示例性的,GNSS测量间隙的结束位置为该数据的时域资源的结束位置与该时间偏移量之和,GNSS测量间隙的起始位置为GNSS测量间隙的结束位置与GNSS测量间隙的时长之差。示例性的,若DCI所调度的数据的时域资源的结束位置在子帧n2,且时间偏移量为(k+m)个子帧,GNSS测量间隙的时长为m个子帧,那么GNSS测量间隙的结束位置在子帧n2+(k+m),GNSS测量间隙的开始位置在子帧n2+(k+m)-m=n2+k。
在一种实现方式中,网络设备还可以发送第一指示信息,相应的,终端设备接收该第一指示信息,该第一指示信息用于指示前述时间偏移量。网络设备可以在发送DCI之前,发送第一指示信息,相应的,终端设备在接收DCI之前接收该第一指示信息。该第一指示信息可以携带于高层信令、系统信息或前述DCI(即前述DCI还用于指示时间偏移量)中。示例性的,高层信令可以为RRC(Radio Resource Control,无线资源控制)信令。在另一种实现方式中,时间偏移量还可以通过协议预定义。
在一种实现方式中,网络设备还可以发送第二指示信息,相应的,终端设备接收该第二指示信息,该第二指示信息用于指示GNSS测量间隙的时长。网络设备可以在发送DCI之前,发送第二指示信息,相应的,终端设备在接收DCI之前接收该第二指示信息。该第二指示信息可以携带于高层信令、系统信息或前述DCI(即前述DCI还用于指示GNSS测量间隙的时长)中。在另一种实现方式中,GNSS测量间隙的时长还可以通过协议预定义。
在一种实现方式中,前述DCI还可以用于指示是否启用GNSS测量间隙。GNSS测量间隙为一个时域窗口,时域窗口表示一段时域资源。启用GNSS测量间隙可以表示:允许终端设备在该时域窗口内进行GNSS测量;不启用GNSS测量间隙可以表示:不允许终端设备在该时域窗口内进行GNSS测量。启用GNSS测量间隙的情况下,进一步的,终端设 备可以在该GNSS测量间隙内进行GNSS测量。需要说明的是,启用GNSS测量间隙的情况下,终端设备可以在该GNSS测量间隙内进行GNSS测量,也可以不在该GNSS测量间隙内进行GNSS测量,本申请实施例对此不做限定。
可选的,DCI可以显式指示或隐式指示是否启用GNSS测量间隙。
显式指示是指DCI中包括用于指示是否启用GNSS测量间隙的指示域。示例性的,该DCI包括指示信息a(即该指示域),该指示信息a用于指示是否启用GNSS测量间隙。以DCI中设定1比特来承载该指示信息a为例,指示信息a对应的比特位取值为0的情况下,指示信息a用于指示不启用GNSS测量间隙,指示信息a对应的比特位取值为1的情况下,指示信息a用于指示启用GNSS测量间隙。其中,该DCI还可以用于调度数据,或者,该DCI还可以用于触发随机接入过程。
隐式指示可以是指DCI的类型与是否启用GNSS测量间隙具有对应关系(如称为对应关系1),终端设备接收到DCI并译码后可以根据该对应关系1确定是否启用GNSS测量间隙。DCI的类型可以包括但不限于:用于触发随机接入过程的DCI、用于调度数据的DCI。示例性的,以对应关系1包括如下内容为例:用于触发随机接入过程的DCI与启用GNSS测量间隙具有对应关系,用于调度数据的DCI与启用GNSS测量间隙具有对应关系。若终端设备接收到用于触发随机接入过程的DCI,那么该DCI隐式指示启用GNSS测量间隙,换言之,终端设备接收到用于触发随机接入过程的DCI(即PDCCH Order)的情况下,默认启用GNSS测量间隙。若终端设备接收到用于调度数据的DCI,那么该DCI隐式指示启用GNSS测量间隙;若终端设备接收到的DCI不用于触发随机接入过程,也不用于调度数据,那么该DCI可以隐式指示不启用GNSS测量间隙。
或者,隐式指示还可以是指DCI中包括与是否启用GNSS测量间隙具有对应关系(如称为对应关系2)的信息(如称为信息b),终端设备可以通过该信息b以及该对应关系2确定是否启用GNSS测量间隙。其中,该信息b可以由DCI中原有的指示域承载,即无需在DCI中通过扩展新的指示域以指示是否启用GNSS测量间隙。示例性的,假设信息b通过DCI中的格式指示字段承载,且该格式指示字段占用1比特,对应关系2包括如下内容:格式指示字段对应的比特位取值为1与启用GNSS测量间隙具有对应关系,格式指示字段对应的比特位取值为0与不启用GNSS测量间隙具有对应关系。若终端设备接收到的DCI中的格式指示字段对应的比特位取值为1,那么该DCI隐式指示启用GNSS测量间隙;若终端设备接收到的DCI中的格式指示字段对应的比特位取值为0,那么该DCI隐式指示不启用GNSS测量间隙。其中,该DCI还可以用于调度数据,或者,该DCI还可以用于触发随机接入过程。
可选的,是否在GNSS测量间隙内进行GNSS测量除了通过DCI指示是否启用GNSS测量间隙触发之外,还可以通过历史GNSS测量结果是否失效来确定。历史GNSS测量结果是最近一次GNSS测量所得到的结果。在一种实现方式中,若历史GNSS测量结果失效,终端设备可以在GNSS测量间隙内进行GNSS测量。其中,历史GNSS测量结果失效,终端设备可以确定需要启用GNSS测量间隙,进一步的,终端设备可以在GNSS测量间隙内进行GNSS测量。可以理解的是,历史GNSS测量结果有效,终端设备可以确定不需要启用GNSS测量间隙,相应的,也就不进行GNSS测量。
在一种实现方式中,前述历史GNSS测量结果失效是指:历史GNSS测量结果对应的定时器超时。其中,历史GNSS测量结果对应的定时器是在得到该历史GNSS测量结果的情况下启动的。该定时器的定时时长为历史GNSS测量结果的有效时长,待定时器超时(或计时结束)时,该历史GNSS测量结果失效。定时器未超时(或计时未结束),那么历史GNSS测量结果有效。需要说明的是,每进行一次GNSS测量生成相应的GNSS测量结果的情况下,均可以启动对应的定时器。
示例性的,以历史GNSS测量结果的有效时长为3s为例,终端设备在完成GNSS测量并得到GNSS测量结果的情况下,可以启动该GNSS测量结果对应的定时器,该定时器从3s开始倒计时,在该定时器显示为0s的情况下,该定时器超时,此时,该GNSS测量结果失效。该定时器还可以为正计时器,示例性的,以历史GNSS测量结果的有效时长为3s为例,终端设备在完成GNSS测量并得到GNSS测量结果的情况下,可以启动该GNSS测量结果对应的定时器,该定时器从0s开始计时,在该定时器显示为3s或大于3s的情况下,该定时器超时,此时,该GNSS测量结果失效。
在另一种实现方式中,前述历史GNSS测量结果失效是指:历史GNSS测量结果的缓存时长大于该历史GNSS测量结果的有效时长。历史GNSS测量结果的缓存时长小于或等于该有效时长的情况下,该历史GNSS测量结果有效。
需要说明的是,历史GNSS测量结果失效可以单独触发在GNSS测量间隙内进行GNSS测量,此时,DCI可以不用于指示是否启用GNSS测量间隙。换言之,是否在GNSS测量间隙内进行GNSS测量可以仅参考历史GNSS测量结果是否失效,而不参考DCI的指示内容或者DCI不具有指示是否启用GNSS测量间隙的功能。示例性的,终端设备在GNSS测量间隙内执行GNSS测量后,就启动定时器,该定时器未超时(即历史GNSS测量结果有效)期间,终端设备不需要启动GNSS测量间隙执行GNSS测量。定时器超时(即历史GNSS测量结果失效),终端设备就可以启用GNSS测量间隙并在该GNSS测量间隙内执行GNSS测量。
或者,终端设备可以结合DCI的指示内容以及历史GNSS测量结果是否失效,以确定是否在GNSS测量间隙内进行GNSS测量。这种情况下,是否在GNSS测量间隙内进行GNSS测量需要参考历史GNSS测量结果是否失效以及DCI的指示内容。示例性的,DCI用于指示(隐式指示或显式指示)启用GNSS测量间隙,且历史GNSS测量结果失效的情况下,终端设备可以在GNSS测量间隙内进行GNSS测量;DCI用于指示(隐式指示或显式指示)启用GNSS测量间隙,且历史GNSS测量结果有效的情况下,终端设备可以不进行GNSS测量。以终端设备接收到PDCCH Order的情况下默认启用GNSS测量间隙(即DCI用于隐式指示启用GNSS测量间隙)为例,是否执行GNSS测量的场景示意图如图5所示,其中,PDCCH Order还用于触发随机接入过程。参见图5,终端设备在GNSS测量间隙1内执行GNSS测量后,就启动定时器1,执行GNSS测量得到GNSS测量结果1,定时器1的定时时长为GNSS测量结果1的有效时长;终端设备接收到PDCCH Order-1时定时器1未超时(即GNSS测量结果1有效),此时,该终端设备确定不需要启动GNSS测量间隙执行GNSS测量,在接收到PDCCH Order-1后发送PRACH。终端设备接收到PDCCH Order-2时定时器1已超时(即GNSS测量结果1失效),此时,该终端设备确定需要启动GNSS测量间隙 2执行GNSS测量,终端设备在GNSS测量间隙2内执行GNSS测量后,就启动新的定时器2,并且执行GNSS测量后发送PRACH。其中,定时器1和定时器2的定时时长相同。
或者,图5对应的示例中,PDCCH Order中可以设定1比特来承载前述指示信息a(图5未示出),前述指示信息a用于显式指示是否启用GNSS测量间隙,指示信息a对应的比特位取值为0的情况下,指示信息a用于指示不启用GNSS测量间隙,指示信息a对应的比特位取值为1的情况下,指示信息a用于指示启用GNSS测量间隙。以PDCCH Order-1和PDCCH Order-2中的指示信息a对应的比特位取值均为1为例,如图5所示,终端设备接收到PDCCH Order-1时定时器1未超时,该终端设备确定不需要启动GNSS测量间隙执行GNSS测量,在接收到PDCCH Order-1后发送PRACH。终端设备接收到PDCCH Order-2时定时器1已超时,该终端设备确定需要启动GNSS测量间隙2执行GNSS测量,终端设备在GNSS测量间隙2内执行GNSS测量后,就启动新的定时器2,并且执行GNSS测量后发送PRACH。
通过这种方式,有利于避免频繁地进行GNSS测量,从而有利于节省资源,延长终端设备的电池寿命。对于物联网终端设备而言,对电池寿命要求比较高,频繁的执行GNSS测量,会严重缩短设备的电池寿命。
在一种实现方式中,在通过上述方式确定不启用GNSS测量间隙或者确定不进行GNSS测量的情况下,终端设备可以执行如下步骤:若DCI用于触发随机接入过程,终端设备可以发送物理随机接入信道(Physical Random Access Channel,PRACH);若DCI用于调度数据,终端设备可以根据该DCI中的指示确定数据传输的时频资源并通过该时频资源传输该数据。其中,终端设备发送PRACH是指:在PRACH上发送随机接入请求。终端设备传输该数据是指:根据DCI中的调度信息进行上行数据发送或下行数据接收。例如,终端设备在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上发送上行数据,或,终端设备在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上接收下行数据。
在一种实现方式中,网络设备还可以发送第三指示信息,相应的,终端设备接收该第三指示信息,该第三指示信息用于指示前述定时器的定时时长。网络设备可以在发送DCI之前,发送第三指示信息,相应的,终端设备在接收DCI之前接收该第三指示信息。该第三指示信息可以携带于高层信令、系统信息或前述DCI(即前述DCI还用于指示定时器的定时时长)中。可选的,该第三指示信息可以占用1个比特或更多比特。以第三指示信息占用1比特为例,该1比特取值为1可以表示启用GNSS测量间隙,该1比特取值为0可以表示不启用GNSS测量间隙。在另一种实现方式中,定时器的定时时长还可以通过协议预定义。可选的,历史GNSS测量结果的有效时长可以由网络设备指示,或者可以由协议预定义,本申请实施例对此不做限定。
在一种实现方式中,网络设备可通过如下方式确定前述定时器的定时时长:终端设备上报定时参考指示信息,该定时参考指示信息用于指示GNSS测量结果的参考有效时长。相应的,网络设备接收该定时参考指示信息;并根据该参考有效时长,确定前述定时器的定时时长。可选的,该参考有效时长可以根据该终端设备的能力和/或终端设备的移动性信息确定。示例性的,若终端设备的电池容量较大,则参考有效时间可以较短。若终端设备的位置在较长的时间内能保持不变,那么参考有效时间可以较长。终端设备的位置在较短 的时间内保持不变,那么参考有效时间可以较短。可选的,网络设备可以将终端设备上报的参考有效时长确定为定时器的定时时长,或者,网络设备可以将终端设备上报的参考有效时长与预设时长之和作为定时器的定时时长,该预设时长可以由协议约定。
可选的,定时器的定时时长、历史GNSS测量结果的有效时长的单位可以是毫秒、秒、时隙、符号、帧或其他单位,本申请实施例对此不做限定。
在一种实现方式中,DCI用于触发随机接入过程的情况下,终端设备在GNSS测量间隙内进行GNSS测量之后,可以发送PRACH。换言之,DCI用于触发随机接入过程的情况下,终端设备在GNSS测量间隙内进行GNSS测量后发起随机接入过程,即GNSS测量间隙的位置在PRACH的时域资源位置之前。终端设备在GNSS测量间隙内进行GNSS测量后可以得到该终端设备的位置信息,该终端设备的位置信息可以用于计算定时提前(Timing Advance,TA)量,通过准确地计算该TA量,有利于提高终端设备发送PRACH并顺利接入网络的概率。
在一种实现方式中,DCI用于调度数据的情况下,GNSS测量间隙的位置可以在该数据的时域资源位置之前,或者,该数据的时域资源位置可以在GNSS测量间隙的位置之前。换言之,DCI用于调度数据的情况下,终端设备传输数据的时序可以为:先在GNSS测量间隙内进行GNSS测量,后传输数据;或者,终端设备先传输数据,后在GNSS测量间隙内进行GNSS测量。其中,“GNSS测量间隙的位置在该数据的时域资源位置之前”表示:终端设备先在GNSS测量间隙内进行GNSS测量,后传输数据。“该数据的时域资源位置在GNSS测量间隙的位置之前”表示:终端设备先传输数据,后在GNSS测量间隙内进行GNSS测量。
其中,GNSS测量间隙为一个时域资源。在本申请实施例中,两个时域资源(如GNSS测量间隙、数据的时域资源)的位置的前后关系可通过时域资源占用的时间单元所确定。该时间单元例如可以为帧、子帧、时隙、符号或其他时域上的单位,本申请实施例不做限定。以时间单元为符号为例,GNSS测量间隙的位置、数据的时域资源位置的前后关系可通过该两个时域资源占用的第一个符号或者最后一个符号确定。
示例性的,若GNSS测量间隙占用的第一个符号的符号索引小于数据的时域资源占用的第一个符号的符号索引,则认为相对于数据的时域资源位置,GNSS测量间隙的位置更靠前。或者,若GNSS测量间隙占用的最后一个符号的符号索引小于数据的时域资源占用的第一个符号的符号索引,则认为相对于数据的时域资源位置,GNSS测量间隙的位置更靠前。或者,若GNSS测量间隙占用的最后一个符号的符号索引小于数据的时域资源占用的最后一个符号的符号索引,则认为相对于数据的时域资源位置,GNSS测量间隙的位置更靠前。其中,某符号的符号索引用于表征该符号的索引位置。需要说明的是,对于两符号(如符号1和符号2),符号1的符号索引小于符号2的符号索引还可以描述为:符号1早于符号2。
在一种实现方式中,GNSS测量间隙占用的时间单元与数据的时域资源占用的时间单元在时域上不重叠,换言之,GNSS测量与数据传输是时分的,终端设备不会同时进行GNSS测量与数据传输。通过将数据传输与GNSS测量从时间上分开的方式,使得在终端设备进行长时间的数据传输的业务场景下,也可以执行GNSS测量,这样可以在不中断数据传输 的情况下,确保能获取终端设备准确的位置信息。对于物联网终端设备而言,GNSS测量与数据传输时分,可以降低物联网终端设备的复杂度。
在一种实现方式中,前述终端设备先在GNSS测量间隙内进行GNSS测量,后传输数据的情况下,该数据的时域资源的起始位置,可以由GNSS测量间隙的结束位置与第一时延值确定,该第一时延值为该数据的时域资源的起始位置相对该GNSS测量间隙的结束位置的时延。可选的,该数据的时域资源的起始位置为GNSS测量间隙的结束位置与该第一时延值之和。示例性的,如图6所示,若GNSS测量间隙的结束位置在子帧n,且第一时延值为k1个子帧,那么DCI所调度的数据的时域资源的起始位置在子帧n+k1。
前述终端设备先传输数据,后在GNSS测量间隙内进行GNSS测量的情况下,该数据的时域资源的起始位置,可以由DCI的时域资源的结束位置与第二时延值确定,该第二时延值为该数据的时域资源的起始位置相对该DCI的时域资源的结束位置的时延。可选的,该数据的时域资源的起始位置为DCI的时域资源的结束位置与该第二时延值之和。示例性的,如图7所示,若DCI的时域资源的结束位置在子帧n,且第二时延值为k2个子帧,那么DCI所调度的数据的时域资源的起始位置在子帧n+k2。
需要说明的是,图6中GNSS测量间隙的位置可根据DCI的时域资源位置和时间偏移量确定,该时间偏移量为GNSS测量间隙与该DCI的时域资源之间的时长,具体参见前文描述,此处不再赘述。图7中GNSS测量间隙的位置可根据DCI所调度的数据的时域资源位置和时间偏移量确定,该时间偏移量为GNSS测量间隙与该数据的时域资源之间的时长,具体参见前文描述,此处不再赘述。
可选的,第一时延值、第二时延值均可以通过前述DCI指示,或者,通过网络设备发送的第四指示信息指示,或者,由协议预定义。其中,该第四指示信息可以携带于高层信令或系统信息中。
可选的,第一指示信息、第二指示信息、第三指示信息、第四指示信息可以携带在同一信令或消息中,或者可以携带在不同的信令或消息中。示例性的,第一指示信息、第二指示信息、第三指示信息、第四指示信息携带在同一信令或消息中的情况下,GNSS测量间隙的时长、时间偏移量、定时器的定时时长可以使用同一比特信息指示,也可以使用不同的比特信息指示。
在一种实现方式中,终端设备可以处于RRC连接(RRC_Connected)态的情况下进行GNSS测量。示例性的,终端设备处于RRC_Connected态的情况下,可以接收用于触发随机接入过程的DCI,然后终端设备在处于RRC_Connected态期间在GNSS测量间隙内进行GNSS测量并得到终端设备的位置信息后,发起随机接入过程。又如,终端设备处于RRC_Connected态期间,可以接收用于调度数据的DCI,然后终端设备在处于RRC_Connected态期间先在GNSS测量间隙内进行GNSS测量并得到终端设备的位置信息,然后进行数据传输;或者,终端设备在处于RRC_Connected态期间先进行数据传输,然后在GNSS测量间隙内进行GNSS测量并得到终端设备的位置信息。
相较于只能在RRC空闲(RRC_Idle)态执行GNSS测量的方式,终端设备通过在RRC_Connected态期间执行GNSS测量,可以更好地适应更多场景。示例性的,若终端设备只能在RRC空闲(RRC_Idle)态执行GNSS测量,那么会导致终端设备无法支持长时间 的数据传输业务场景。因为终端设备需要先退出RRC_Connected态,然后进入RRC_Idle态才能执行GNSS测量,所以终端设备无法支持长时间的数据传输业务。在本申请实施例中,终端设备支持在RRC_Connected态期间执行GNSS测量,所以可以支持长时间的数据传输业务。另外,通过数据传输与GNSS测量时分的方式,可以使得数据传输与GNSS测量相互不干扰,还可以降低终端设备的复杂度。
在本申请实施例中,终端设备根据DCI的时域资源位置或根据DCI调度的数据的时域资源位置,确定GNSS测量间隙的位置,一方面可以灵活地确定GNSS测量间隙的位置。第二方面,终端设备支持在RRC_Connected态期间执行GNSS测量,使得终端设备可以支持长时间的数据传输业务。第三方面,通过数据传输与GNSS测量时分的方式,可以使得数据传输与GNSS测量相互不干扰,还可以降低终端设备的复杂度。
请参阅图8,图8是本申请实施例提供的一种通信装置的结构示意图。如图8所示,该通信装置80包括通信单元801和处理单元802。通信装置80可以执行前述方法实施例中终端设备、网络设备的相关步骤。
对于通信装置80用于实现上述实施例中终端设备的功能的情况:
通信单元801,用于接收下行控制信息DCI;
处理单元802,用于至少根据DCI的时域资源位置,确定全球导航卫星系统GNSS测量间隙的位置,DCI用于触发随机接入过程,或者,该DCI用于调度数据;或,至少根据该数据的时域资源位置,确定GNSS测量间隙的位置,该DCI用于调度该数据;其中,GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,处理单元802用于至少根据DCI的时域资源位置,确定GNSS测量间隙的位置时,具体用于:根据DCI的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;该时间偏移量为GNSS测量间隙与该DCI的时域资源之间的时长。
在一种可选的实施方式中,处理单元802用于至少根据数据的时域资源位置,确定GNSS测量间隙的位置时,具体用于:根据该数据的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;其中,该时间偏移量为GNSS测量间隙与该数据的时域资源之间的时长。
在一种可选的实施方式中,通信单元801还用于:接收第一指示信息,该第一指示信息用于指示前述时间偏移量。
在一种可选的实施方式中,通信单元801还用于:接收第二指示信息,该第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,DCI还用于指示启用GNSS测量间隙。
在一种可选的实施方式中,处理单元802还用于:在GNSS测量间隙内进行GNSS测量。
在一种可选的实施方式中,处理单元802还用于:若历史GNSS测量结果失效,在GNSS测量间隙内进行GNSS测量;历史GNSS测量结果是最近一次GNSS测量所得到的结果。
在一种可选的实施方式中,历史GNSS测量结果失效,包括:历史GNSS测量结果对应的定时器超时。
在一种可选的实施方式中,通信单元801还用于:接收第三指示信息,该第三指示信 息用于指示前述定时器的定时时长。
在一种可选的实施方式中,通信单元801还用于:发送定时参考指示信息,该定时参考指示信息用于指示GNSS测量结果的参考有效时长。
在一种可选的实施方式中,在GNSS测量间隙内进行GNSS测量之后,通信单元801还用于:发送物理随机接入信道PRACH,其中,DCI用于触发随机接入过程。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
具体的,在这种情况中,通信单元801、处理单元802所执行的操作可以参照上述图2对应的实施例中有关终端设备的介绍。
在一种实现方式中,对于通信装置80用于实现上述实施例中网络设备的功能的情况:
通信单元801,用于发送第一指示信息,第一指示信息用于指示时间偏移量;
通信单元801,还用于发送下行控制信息DCI;
其中,时间偏移量为全球导航卫星系统GNSS测量间隙与DCI的时域资源之间的时长,DCI用于触发随机接入过程,或者,DCI用于调度数据;或者,时间偏移量为GNSS测量间隙与数据的时域资源之间的时长,DCI用于调度该数据;GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,通信单元801还用于:发送第二指示信息,第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,DCI还用于指示启用GNSS测量间隙。
在一种可选的实施方式中,通信单元801还用于:发送第三指示信息,第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
在一种可选的实施方式中,通信单元801还用于:接收定时参考指示信息,定时参考指示信息用于指示GNSS测量结果的参考有效时长;处理单元802用于根据参考有效时长,确定前述定时器的定时时长。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
具体的,在这种情况中,通信单元801、处理单元802所执行的操作可以参照上述图2对应的实施例中有关网络设备的介绍。
在另一种实现方式中,对于通信装置80用于实现上述实施例中网络设备的功能的情况:
处理单元802,用于确定下行控制信息DCI;
通信单元801,用于发送DCI;
其中,DCI用于触发随机接入过程,或者,DCI用于调度数据;该DCI还用于指示启用全球导航卫星系统GNSS测量间隙,GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,通信单元801还用于:发送第一指示信息,第一指示信息用于指示时间偏移量;其中,时间偏移量为GNSS测量间隙与DCI的时域资源之间的时长,DCI用于触发随机接入过程,或者,DCI用于调度数据;或者,时间偏移量为GNSS测量间隙与数据的时域资源之间的时长,DCI用于调度该数据。
在一种可选的实施方式中,通信单元801还用于:发送第二指示信息,第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,通信单元801还用于:发送第三指示信息,第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
在一种可选的实施方式中,通信单元801还用于:接收定时参考指示信息,定时参考指示信息用于指示GNSS测量结果的参考有效时长;处理单元802还用于:根据该参考有效时长,确定前述定时器的定时时长。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
具体的,在这种情况中,通信单元801、处理单元802所执行的操作可以参照上述图2对应的实施例中有关网络设备的介绍。
通信装置80还可以用于实现图2对应实施例中终端设备、网络设备的其他功能,此处不再赘述。基于同一发明构思,本申请实施例中提供的通信装置80解决问题的原理与有益效果与本申请方法实施例中终端设备、网络设备解决问题的原理和有益效果相似,可以参见方法的实施的原理和有益效果,为简洁描述,在这里不再赘述。
请参阅图9,图9为本申请实施例提供的又一种通信装置90。可以用于实现上述方法实施例中终端设备的功能,或者,实现上述方法实施例中网络设备的功能。该通信装置90可以包括收发器901和处理器902。可选的,该通信装置还可以包括存储器903。其中,收发器901、处理器902、存储器903可以通过总线904或其他方式连接。总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性, 机械或其它的形式,用于装置、单元或模块之间的信息交互。本申请实施例中不限定上述收发器901、处理器902、存储器903之间的具体连接介质。
存储器903可以包括只读存储器和随机存取存储器,并向处理器902提供指令和数据。存储器903的一部分还可以包括非易失性随机存取存储器。
处理器902可以是中央处理单元(Central Processing Unit,CPU),该处理器902还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器902也可以是任何常规的处理器等。
一种示例中,当终端设备采用图9所示的形式时,图9中的处理器可以执行上述任一方法实施例中的终端设备执行的方法。
一种示例中,当网络设备采用图9所示的形式时,图9中的处理器可以执行上述任一方法实施例中的网络设备执行的方法。
在一种可选的实施方式中,存储器903,用于存储程序指令;处理器902,用于调用存储器903中存储的程序指令,以用于执行图2对应实施例中终端设备、网络设备所执行的步骤。具体的,图8的通信单元、处理单元的功能/实现过程均可以通过图9中的处理器902调用存储器903中存储的计算机执行指令来实现。或者,图8中的处理单元的功能/实现过程可以通过图9中的处理器902调用存储器903中存储的计算机执行指令来实现,图8中的通信单元的功能/实现过程可以通过图9中的收发器901来实现。
在本申请实施例中,可以通过在包括CPU、随机存取存储介质(Random Access Memory,RAM)、只读存储介质(Read-Only Memory,ROM)等处理元件和存储元件的例如计算机的通用计算装置上运行能够执行上述方法所涉及的各步骤的计算机程序(包括程序代码),以及来实现本申请实施例所提供的方法。计算机程序可以记载于例如计算机可读记录介质上,并通过计算机可读记录介质装载于上述计算装置中,并在其中运行。
基于同一发明构思,本申请实施例中提供的通信装置90解决问题的原理与有益效果与本申请方法实施例中终端设备、网络设备解决问题的原理和有益效果相似,可以参见方法的实施的原理和有益效果,为简洁描述,在这里不再赘述。
前述通信装置(如通信装置80、通信装置90),例如可以是:芯片、或者芯片模组。
本申请实施例还提供一种芯片,该芯片可以执行前述方法实施例中终端设备、网络设备的相关步骤。
对于芯片用于实现上述实施例中终端设备的功能的情况:
该芯片用于:
接收下行控制信息DCI;
至少根据DCI的时域资源位置,确定全球导航卫星系统GNSS测量间隙的位置,DCI用于触发随机接入过程,或者,该DCI用于调度数据;或,至少根据该数据的时域资源位置,确定GNSS测量间隙的位置,该DCI用于调度该数据;其中,GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,该芯片用于至少根据DCI的时域资源位置,确定GNSS测量间隙的位置时,具体用于:根据DCI的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;该时间偏移量为GNSS测量间隙与该DCI的时域资源之间的时长。
在一种可选的实施方式中,该芯片用于至少根据数据的时域资源位置,确定GNSS测量间隙的位置时,具体用于:根据该数据的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;其中,该时间偏移量为GNSS测量间隙与该数据的时域资源之间的时长。
在一种可选的实施方式中,接收DCI之前,该芯片还用于:接收第一指示信息,该第一指示信息用于指示前述时间偏移量。
在一种可选的实施方式中,该芯片还用于:接收第二指示信息,该第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,DCI还用于指示启用GNSS测量间隙。
在一种可选的实施方式中,该芯片还用于:在GNSS测量间隙内进行GNSS测量。
在一种可选的实施方式中,该芯片还用于:若历史GNSS测量结果失效,在GNSS测量间隙内进行GNSS测量;历史GNSS测量结果是最近一次GNSS测量所得到的结果。
在一种可选的实施方式中,历史GNSS测量结果失效,包括:历史GNSS测量结果对应的定时器超时。
在一种可选的实施方式中,该芯片还用于:接收第三指示信息,该第三指示信息用于指示前述定时器的定时时长。
在一种可选的实施方式中,该芯片还用于:发送定时参考指示信息,该定时参考指示信息用于指示GNSS测量结果的参考有效时长。
在一种可选的实施方式中,在GNSS测量间隙内进行GNSS测量之后,该芯片还用于:发送物理随机接入信道PRACH,其中,DCI用于触发随机接入过程。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
具体的,在这种情况中,芯片所执行的操作可以参照上述图2对应的实施例中有关终端设备的介绍。
在一种实现方式中,对于芯片用于实现上述实施例中网络设备的功能的情况:
该芯片用于:
发送第一指示信息,第一指示信息用于指示时间偏移量;
发送下行控制信息DCI;
其中,时间偏移量为全球导航卫星系统GNSS测量间隙与DCI的时域资源之间的时长,DCI用于触发随机接入过程,或者,DCI用于调度数据;或者,时间偏移量为GNSS测量间隙与数据的时域资源之间的时长,DCI用于调度该数据;GNSS测量间隙用于GNSS测 量。
在一种可选的实施方式中,该芯片还用于:发送第二指示信息,第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,DCI还用于指示启用GNSS测量间隙。
在一种可选的实施方式中,该芯片还用于:发送第三指示信息,第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
在一种可选的实施方式中,该芯片还用于:接收定时参考指示信息,定时参考指示信息用于指示GNSS测量结果的参考有效时长;根据参考有效时长,确定前述定时器的定时时长。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
具体的,在这种情况中,芯片所执行的操作可以参照上述图2对应的实施例中有关网络设备的介绍。
在另一种实现方式中,对于芯片用于实现上述实施例中网络设备的功能的情况:
该芯片用于:
确定下行控制信息DCI;
发送DCI;
其中,DCI用于触发随机接入过程,或者,DCI用于调度数据;该DCI还用于指示启用全球导航卫星系统GNSS测量间隙,GNSS测量间隙用于GNSS测量。
在一种可选的实施方式中,发送DCI之前,该芯片还用于:发送第一指示信息,第一指示信息用于指示时间偏移量;其中,时间偏移量为GNSS测量间隙与DCI的时域资源之间的时长,DCI用于触发随机接入过程,或者,DCI用于调度数据;或者,时间偏移量为GNSS测量间隙与数据的时域资源之间的时长,DCI用于调度该数据。
在一种可选的实施方式中,该芯片还用于:发送第二指示信息,第二指示信息用于指示GNSS测量间隙的时长。
在一种可选的实施方式中,该芯片还用于:发送第三指示信息,第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
在一种可选的实施方式中,该芯片还用于:接收定时参考指示信息,定时参考指示信息用于指示GNSS测量结果的参考有效时长;根据该参考有效时长,确定前述定时器的定时时长。
在一种可选的实施方式中,GNSS测量间隙的位置在DCI调度的数据的时域资源位置之前,或者,该数据的时域资源位置在GNSS测量间隙的位置之前。
在一种可选的实施方式中,该数据的时域资源的起始位置,由GNSS测量间隙的结束 位置与第一时延值确定,第一时延值为该数据的时域资源的起始位置相对GNSS测量间隙的结束位置的时延;或者,该数据的时域资源的起始位置,由DCI的时域资源的结束位置与第二时延值确定,第二时延值为该数据的时域资源的起始位置相对DCI的时域资源的结束位置的时延。
具体的,在这种情况中,芯片所执行的操作可以参照上述图2对应的实施例中有关网络设备的介绍。
在一种可能的实现方式中,上述芯片包括至少一个处理器、至少一个第一存储器和至少一个第二存储器;其中,前述至少一个第一存储器和前述至少一个处理器通过线路互联,前述第一存储器中存储有指令;前述至少一个第二存储器和前述至少一个处理器通过线路互联,前述第二存储器中存储前述方法实施例中需要存储的数据。
对于应用于或集成于芯片的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
基于同一发明构思,本申请实施例中提供的芯片解决问题的原理与有益效果与本申请方法实施例中终端设备、网络设备解决问题的原理和有益效果相似,可以参见方法的实施的原理和有益效果,为简洁描述,在这里不再赘述。
请参阅图10,图10为本申请实施例提供的一种芯片模组的结构示意图。该芯片模组100可以执行前述方法实施例中终端设备、网络设备的相关步骤,该芯片模组100包括:通信接口1001和芯片1002。
其中,通信接口用于进行芯片模组内部通信,或者用于该芯片模组与外部设备进行通信;该芯片用于实现本申请实施例中终端设备、网络设备的功能,具体参见图2对应实施例。可选的,芯片模组100还可以包括存储模组1003、电源模组1004。存储模组1003用于存储数据和指令。电源模组1004用于为芯片模组提供电能。
对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,计算机程序包括一条或多条程序指令,一条或多条程序指令适于由通信装置加载并执行上述方法实施例所提供的方法。
本申请实施例还提供一种包含计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行上述方法实施例所提供的方法。
本申请实施例还提供一种测量系统,该系统可以包括图2对应实施例中的终端设备和网络设备。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电 路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤可以通过程序指令及相关的硬件来完成,该程序指令可以存储于一计算机可读存储介质中,计算机可读存储介质可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
以上所揭露的仅为本申请一种实施例而已,仅仅是本申请一部分实施例,不能以此来限定本申请之权利范围。

Claims (35)

  1. 一种测量方法,其特征在于,所述方法包括:
    接收下行控制信息DCI;
    至少根据所述DCI的时域资源位置,确定全球导航卫星系统GNSS测量间隙的位置,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;或,至少根据所述数据的时域资源位置,确定GNSS测量间隙的位置,所述DCI用于调度数据;
    其中,所述GNSS测量间隙用于GNSS测量。
  2. 根据权利要求1所述的方法,其特征在于,所述至少根据所述DCI的时域资源位置,确定GNSS测量间隙的位置,包括:
    根据所述DCI的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;所述时间偏移量为所述GNSS测量间隙与所述DCI的时域资源之间的时长。
  3. 根据权利要求1所述的方法,其特征在于,所述至少根据所述数据的时域资源位置,确定GNSS测量间隙的位置,包括:
    根据所述数据的时域资源位置和时间偏移量,确定GNSS测量间隙的位置;
    其中,所述时间偏移量为所述GNSS测量间隙与所述数据的时域资源之间的时长。
  4. 根据权利要求2或3所述的方法,其特征在于,接收所述DCI之前,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述时间偏移量。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述GNSS测量间隙的时长。
  6. 根据权利要求1所述的方法,其特征在于,所述DCI还用于指示启用所述GNSS测量间隙。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述GNSS测量间隙内进行GNSS测量。
  8. 根据权利要求1或6所述的方法,其特征在于,所述方法还包括:
    若历史GNSS测量结果失效,在所述GNSS测量间隙内进行GNSS测量;所述历史GNSS测量结果是最近一次GNSS测量所得到的结果。
  9. 根据权利要求8所述的方法,其特征在于,所述历史GNSS测量结果失效,包括:
    所述历史GNSS测量结果对应的定时器超时。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示所述定时器的定时时长。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    发送定时参考指示信息,所述定时参考指示信息用于指示GNSS测量结果的参考有效时长。
  12. 根据权利要求7或8所述的方法,其特征在于,在所述GNSS测量间隙内进行GNSS测量之后,还包括:
    发送物理随机接入信道PRACH,其中,所述DCI用于触发随机接入过程。
  13. 根据权利要求1所述的方法,其特征在于,所述GNSS测量间隙的位置在所述数据的时域资源位置之前,或者,所述数据的时域资源位置在所述GNSS测量间隙的位置之前。
  14. 根据权利要求13所述的方法,其特征在于,所述数据的时域资源的起始位置,由所述GNSS测量间隙的结束位置与第一时延值确定,所述第一时延值为所述数据的时域资源的起始位置相对所述GNSS测量间隙的结束位置的时延;
    或者,
    所述数据的时域资源的起始位置,由所述DCI的时域资源的结束位置与第二时延值确定,所述第二时延值为所述数据的时域资源的起始位置相对所述DCI的时域资源的结束位置的时延。
  15. 一种测量方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示时间偏移量;
    发送下行控制信息DCI;
    其中,所述时间偏移量为全球导航卫星系统GNSS测量间隙与所述DCI的时域资源之间的时长,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;或者,所述时间偏移量为GNSS测量间隙与所述数据的时域资源之间的时长,所述DCI用于调度所述数据;所述GNSS测量间隙用于GNSS测量。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述GNSS测量间隙的时长。
  17. 根据权利要求15所述的方法,其特征在于,所述DCI还用于指示启用所述GNSS测量间隙。
  18. 根据权利要求15~17任一项所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于指示GNSS测量结果对应的定时器的定时时长。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    接收定时参考指示信息,所述定时参考指示信息用于指示GNSS测量结果的参考有效时长;
    根据所述参考有效时长,确定所述定时器的定时时长。
  20. 根据权利要求15所述的方法,其特征在于,所述GNSS测量间隙的位置在所述数据的时域资源位置之前,或者,所述数据的时域资源位置在所述GNSS测量间隙的位置之前。
  21. 根据权利要求20所述的方法,其特征在于,所述数据的时域资源的起始位置,由所述GNSS测量间隙的结束位置与第一时延值确定,所述第一时延值为所述数据的时域资源的起始位置相对所述GNSS测量间隙的结束位置的时延;
    或者,
    所述数据的时域资源的起始位置,由所述DCI的时域资源的结束位置与第二时延值确定,所述第二时延值为所述数据的时域资源的起始位置相对所述DCI的时域资源的结束位置的时延。
  22. 一种测量方法,其特征在于,包括:
    确定下行控制信息DCI;
    发送所述DCI;
    其中,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;所述DCI还用于指示启用全球导航卫星系统GNSS测量间隙,所述GNSS测量间隙用于GNSS测量。
  23. 根据权利要求22所述的方法,其特征在于,发送所述DCI之前,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示时间偏移量;
    其中,所述时间偏移量为所述GNSS测量间隙与所述DCI的时域资源之间的时长,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;或者,所述时间偏移量为所述GNSS测量间隙与所述数据的时域资源之间的时长,所述DCI用于调度所述数据。
  24. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述GNSS测量间隙的时长。
  25. 根据权利要求22~24任一项所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于指示GNSS测量结果对应的定时器的定时 时长。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    接收定时参考指示信息,所述定时参考指示信息用于指示GNSS测量结果的参考有效时长;
    根据所述参考有效时长,确定所述定时器的定时时长。
  27. 根据权利要求22所述的方法,其特征在于,所述GNSS测量间隙的位置在所述数据的时域资源位置之前,或者,所述数据的时域资源位置在所述GNSS测量间隙的位置之前。
  28. 根据权利要求27所述的方法,其特征在于,所述数据的时域资源的起始位置,由所述GNSS测量间隙的结束位置与第一时延值确定,所述第一时延值为所述数据的时域资源的起始位置相对所述GNSS测量间隙的结束位置的时延;
    或者,
    所述数据的时域资源的起始位置,由所述DCI的时域资源的结束位置与第二时延值确定,所述第二时延值为所述数据的时域资源的起始位置相对所述DCI的时域资源的结束位置的时延。
  29. 一种通信装置,其特征在于,所述装置包括通信单元和处理单元;
    所述通信单元,用于接收下行控制信息DCI;
    所述处理单元,用于至少根据所述DCI的时域资源位置,确定全球导航卫星系统GNSS测量间隙的位置,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;或,至少根据所述数据的时域资源位置,确定GNSS测量间隙的位置,所述DCI用于调度数据;
    其中,所述GNSS测量间隙用于GNSS测量。
  30. 一种通信装置,其特征在于,所述装置包括通信单元;
    所述通信单元,用于发送第一指示信息,所述第一指示信息用于指示时间偏移量;
    所述通信单元,还用于发送下行控制信息DCI;
    其中,所述时间偏移量为全球导航卫星系统GNSS测量间隙与所述DCI的时域资源之间的时长,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;或者,所述时间偏移量为GNSS测量间隙与所述数据的时域资源之间的时长,所述DCI用于调度所述数据;所述GNSS测量间隙用于GNSS测量。
  31. 一种通信装置,其特征在于,所述装置包括处理单元和通信单元;
    所述处理单元,用于确定下行控制信息DCI;
    所述通信单元,用于发送所述DCI;
    其中,所述DCI用于触发随机接入过程,或者,所述DCI用于调度数据;所述DCI 还用于指示启用全球导航卫星系统GNSS测量间隙,所述GNSS测量间隙用于GNSS测量。
  32. 一种通信装置,其特征在于,包括处理器;
    所述处理器,用于执行如权利要求1~28中任一项所述的方法。
  33. 一种芯片,其特征在于,所述芯片用于执行如权利要求1~28中任一项所述的方法。
  34. 一种芯片模组,其特征在于,所述芯片模组包括通信接口和芯片,其中:所述通信接口用于进行芯片模组内部通信,或者用于所述芯片模组与外部设备进行通信;所述芯片用于执行如权利要求1~28中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时,使得如权利要求1~28中任一项所述的方法被执行。
PCT/CN2023/097900 2022-06-01 2023-06-01 一种测量方法及通信装置 WO2023232121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210619278.1 2022-06-01
CN202210619278.1A CN117222030A (zh) 2022-06-01 2022-06-01 一种测量方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023232121A1 true WO2023232121A1 (zh) 2023-12-07

Family

ID=89026961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097900 WO2023232121A1 (zh) 2022-06-01 2023-06-01 一种测量方法及通信装置

Country Status (2)

Country Link
CN (1) CN117222030A (zh)
WO (1) WO2023232121A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828633A (zh) * 2017-04-17 2018-11-16 联发科技股份有限公司 捕获全球导航卫星系统信号的方法、用户设备及其存储器
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置
WO2022079692A1 (en) * 2020-10-15 2022-04-21 Lenovo (Singapore) Pte. Ltd. Random access procedure in a non-terrestrial network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828633A (zh) * 2017-04-17 2018-11-16 联发科技股份有限公司 捕获全球导航卫星系统信号的方法、用户设备及其存储器
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置
WO2022079692A1 (en) * 2020-10-15 2022-04-21 Lenovo (Singapore) Pte. Ltd. Random access procedure in a non-terrestrial network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Considerations on Doppler Compensation, Uplink Timing Advance and Random Access in NTN", 3GPP TSG RAN WG1 MEETING #98 R1-1908250, 17 August 2019 (2019-08-17), XP051764864 *
NOKIA, NOKIA SHANGHAI BELL: "Doppler Compensation, Uplink Timing Advance and Random Access in NTN", 3GPP TSG RAN WG1 #99 R1-1913017, 9 November 2019 (2019-11-09), XP051823750 *

Also Published As

Publication number Publication date
CN117222030A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
US11622361B2 (en) Mission critical data support in self-contained time division duplex (TDD) subframe structure
RU2713482C1 (ru) Способ прерывистого приема и устройство
US11071135B2 (en) Uplink transmission method based on uplink reference signal, terminal, and network device
WO2019191982A1 (zh) 传输信息的方法、终端设备和网络设备
US11228916B2 (en) Method and device for transmitting uplink information on unlicensed carrier
CN112567845A (zh) 无线通信方法和设备
WO2021036375A1 (zh) 一种通信方法和装置
WO2019062151A1 (zh) 一种资源指示方法、通信装置及网络设备
WO2018027818A1 (zh) 信息传输方法、基站和用户设备
EP3570607B1 (en) Reducing the transmission delay and improving the reliability of uplink data
CN115152318B (zh) 用于信道状态信息的事件触发测量
CN115118406A (zh) 上行传输方法、装置及用户设备
WO2019028887A1 (zh) 资源配置方法、装置以及存储介质
CN113677014A (zh) 一种确定反馈信息传输位置的方法及设备
WO2023232121A1 (zh) 一种测量方法及通信装置
WO2019153332A1 (zh) 一种数据传输的方法以及通信设备
CN114586426B (zh) 对数据传输配置的指示
WO2019100344A1 (zh) 双注册终端设备无线通信的方法、网络设备和终端设备
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
WO2019023912A1 (zh) 一种应答反馈方法、终端及网络设备
CN112217617B (zh) 信息传输方法及装置
CN111182630B (zh) 数据接收和发送的方法、设备及系统
CN116508361A (zh) 非活动状态下的周期性数据的传输
WO2023116746A1 (zh) 一种波束确定方法及其装置
US20230276464A1 (en) Methods and apparatuses for a sidelink resource re-evaluation procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815298

Country of ref document: EP

Kind code of ref document: A1