WO2023125203A1 - 一种路损参考信号确定方法及相关装置 - Google Patents

一种路损参考信号确定方法及相关装置 Download PDF

Info

Publication number
WO2023125203A1
WO2023125203A1 PCT/CN2022/140751 CN2022140751W WO2023125203A1 WO 2023125203 A1 WO2023125203 A1 WO 2023125203A1 CN 2022140751 W CN2022140751 W CN 2022140751W WO 2023125203 A1 WO2023125203 A1 WO 2023125203A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
path loss
cell
terminal device
quasi
Prior art date
Application number
PCT/CN2022/140751
Other languages
English (en)
French (fr)
Inventor
沈众宜
韩静
张力
李红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125203A1 publication Critical patent/WO2023125203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method for determining a path loss reference signal and related devices.
  • Carrier aggregation refers to the aggregation of multiple carriers together to provide services for user equipment (user equipment, UE).
  • UE user equipment
  • each carrier can be regarded as a cell.
  • These aggregated cells can be divided into primary cells (primary cell, PCell) and secondary cells (secondary cell, SCell).
  • primary cell primary cell
  • secondary cell secondary cell
  • RRC radio resource control
  • the UE accesses the network, it first accesses the primary cell, and then the primary cell adds several secondary cells to the UE through a radio resource control (RRC) reconfiguration message, and activates these secondary cells, so that these secondary cells have physical
  • RRC radio resource control
  • the UE can subsequently access the activated secondary cell for communication and obtain corresponding services.
  • RRC radio resource control
  • the downlink path loss according to the path loss reference signal, so as to determine the uplink transmission power of the UE on the uplink channel, and complete the activation of the secondary cell.
  • the accuracy and efficiency of determining the uplink transmission power of the uplink channel are low, and additional activation delay may be generated.
  • the embodiment of the present application provides a method for determining a path loss reference signal and a related device.
  • a reference signal that can more realistically reflect the downlink path loss corresponding to the UE as the path loss reference signal
  • the downlink path loss can be accurately calculated. loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delays.
  • the embodiment of the present application provides a method for determining a path loss reference signal, the method including:
  • the terminal device receives activation information sent by the network device, where the activation information is used to indicate that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • the terminal device determines the target reference signal as a path loss reference signal, the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device, and the path loss reference signal is used to determine the path loss reference signal
  • the uplink transmit power of the above-mentioned uplink channel.
  • a method for determining a path loss reference signal is provided. Specifically, the terminal device receives the activation information sent by the network device, indicating that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel corresponding to the terminal device. When the first cell is activated, the terminal device needs to determine the uplink transmit power of its corresponding uplink channel, and the determination of the transmit power of the uplink channel needs to calculate the downlink path loss.
  • the terminal device determines the target reference signal as the path loss reference signal, wherein the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal equipment, and the path loss reference signal can be used to calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel to complete Activation of the first cell.
  • the method for determining the target reference signal as the path loss reference signal provided by the embodiment of the present application is not only applicable to the case where the path loss reference signal has not been configured on the network device after the activation of the first cell is completed. In this case, the above-mentioned target reference signal can still be determined as the path loss reference signal by using the method provided in the embodiment of the present application.
  • the terminal device when the terminal device is not configured with parameters for downlink path loss estimation, the terminal device usually obtains the synchronization signal block (SSB) of the master information block (master information block, MIB) as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmit power of the uplink channel.
  • SSB synchronization signal block
  • MIB master information block
  • the terminal device does not necessarily need to read the master information block of the first cell after receiving the activation information. If it is not clear, the uplink transmission power of the uplink channel determined by the terminal device may be inaccurate, or the terminal device needs to wait for the path loss reference signal configured by the network device, thus causing an additional activation delay of the first cell.
  • the terminal device after receiving the activation information sent by the network device, the terminal device determines the reference signal used to reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, calculates the downlink path loss, and then Determine the uplink transmission power of the uplink channel, so as to complete the activation of the first cell.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal. By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. Line loss, thereby improving the accuracy and efficiency of determining the uplink transmit power of the uplink channel, and eliminating additional activation delays.
  • the determining the target reference signal as the path loss reference signal includes:
  • the target reference signal is determined as the path loss reference signal.
  • the embodiment of the present application a possible implementation manner of determining the target reference signal as the path loss reference signal is provided. Specifically, if the configuration information corresponding to the first cell does not include the first parameter, the above target reference signal is determined as the path loss reference signal.
  • the first parameter is a parameter used for downlink path loss estimation
  • the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal.
  • the reference signal corresponding to the downlink path loss is used as the path loss reference signal, which can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delay.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the terminal device, and the second reference signal is a layer 1 measurement result reported by the terminal device corresponding reference signal.
  • the target reference signal may include but not limited to the first reference signal or the second reference signal or a reference signal having a quasi-co-location relationship with the first reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the first reference signal is a reference signal corresponding to the layer 3 measurement result reported by the terminal device
  • the second reference signal is a reference signal corresponding to the layer 1 measurement result reported by the terminal device.
  • the above layer 3 measurement result may be layer 3 reference signal received power (Layer 3 reference signal received power, L3-RSRP), and the first reference signal may be a reference corresponding to the reported multiple layer 3 reference signal received power Any one of the signals may also be the reference signal corresponding to the received power of the layer 3 reference signal with the highest reported received power, or the reference signal corresponding to the received power of the layer 3 reference signal reported within a specified time period, or it may be The reference signal corresponding to the latest reported received power of the layer 3 reference signal is not limited here, and can be selected according to a specific application scenario.
  • the above layer 1 measurement result may be Layer 1 reference signal received power (Layer 1 reference signal received power, L1-RSRP). Choose from the application scenarios.
  • the terminal device can use the above-mentioned first reference signal or the quasi-co-location with the first reference signal
  • the reference signal related to the reference signal is determined as the path loss reference signal, or the second reference signal or the reference signal having a quasi-co-location relationship with the second reference signal is determined as the path loss reference signal, and the downlink path loss is calculated to determine the path loss of the uplink channel.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal.
  • the path loss reference signal By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. Line loss, thereby improving the accuracy and efficiency of determining the uplink transmit power of the uplink channel, and eliminating additional activation delays.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • a possible implementation manner of the target reference signal is provided. Specifically, according to whether the first cell is a known cell or an unknown cell, it is determined whether the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal, or whether it includes the second reference signal or a reference signal related to the second reference signal.
  • the signal has a reference signal in a quasi-co-located relationship.
  • the terminal device when receiving the activation information, if the terminal device has reported the measurement result of the cell before, the cell is regarded as a known cell, otherwise, it is regarded as an unknown cell.
  • the target reference signal includes the above-mentioned first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal.
  • the configuration information corresponding to the first cell does not include the
  • the terminal device may determine the above-mentioned first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal as the path loss reference signal.
  • the target reference signal includes the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the terminal device may determine the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal as the path loss reference signal.
  • the target reference signal determined by the embodiment of the present application can more truly reflect the downlink path loss corresponding to the terminal device, and can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel. Eliminates additional activation delays.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a third reference signal or a reference signal having a quasi-co-location relationship with the third reference signal.
  • the third reference signal is a reference signal indicated by the spatial relationship of the uplink channel, such as a synchronization signal block, a channel state information reference signal, a sounding reference signal, and the like.
  • the terminal device may determine the above-mentioned third reference signal or a reference signal having a quasi-co-location relationship with the third reference signal as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the transmission of the first cell. activation.
  • the terminal device selects the reference signal indicated by the spatial relationship of the uplink channel configured by the network device or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the downlink channel corresponding to the terminal device.
  • Link path loss, and the uplink transmission power of the uplink channel can be determined through the path loss corresponding to the transmission direction indicated by the spatial relationship of the uplink channel. In this way, the terminal device and the network device can establish a consistent understanding of the downlink path loss, thereby Accurately calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminate additional activation delays.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal .
  • the fourth reference signal is a reference signal indicated by the transmission configuration indication information of the control resource set of the current downlink bandwidth.
  • the terminal device may determine the above-mentioned fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the transmission of the first cell. activation.
  • the terminal device selects the reference signal indicated by the transmission configuration indication information of the control resource set configured by the network device or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the path loss reference signal of the terminal device.
  • the downlink path loss and can establish a consistent understanding of the downlink path loss with the network equipment, so as to accurately calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminate additional activation delays.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes the fifth reference signal or a reference signal that has a quasi-co-location relationship with the fifth reference signal .
  • the terminal device needs to select a synchronization signal to perform precise timing synchronization with the first cell
  • the fifth reference signal is the signal selected by the terminal device for precise timing synchronization with the first cell. synchronization signal.
  • the terminal device may determine the above-mentioned fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the transmission of the first cell. activation.
  • the terminal device selects the synchronization signal used for precise timing synchronization of the first cell or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the downlink signal corresponding to the terminal device.
  • the downlink path loss improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminate additional activation delays.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal; the method further includes:
  • the target reference signal includes the sixth reference signal Or a reference signal that has a quasi-co-location relationship with the sixth reference signal.
  • the terminal device receives the downlink channel indication information sent by the network device, triggers random access, and determines the reference signal indicated by the downlink channel indication information as the sixth reference Signal.
  • the terminal device may determine the above-mentioned sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the transmission of the first cell. activation.
  • the terminal device selects the reference signal indicated by the downlink channel indication information used to trigger random access or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the corresponding channel of the terminal device.
  • the downlink path loss can be accurately calculated, the accuracy and efficiency of determining the uplink transmission power of the uplink channel can be improved, and the extra activation delay can be eliminated.
  • an embodiment of the present application provides a method for determining a path loss reference signal, the method including:
  • the network device sends activation information to the terminal device, where the activation information is used to indicate that a first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • the network device receives the first message sent by the terminal device, the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal is determined by a target reference signal, and the target reference signal includes a The reference signal is used to reflect the downlink path loss corresponding to the terminal device.
  • a method for determining a path loss reference signal is provided. Specifically, the network device sends activation information to the terminal device, indicating that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel corresponding to the terminal device. After the terminal device accesses the activated first cell, the network device receives the first message sent by the terminal device.
  • the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal may be determined by a target reference signal, where the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device, the path loss reference signal
  • the loss reference signal can be used to calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message.
  • the method for determining the target reference signal as the path loss reference signal provided by the embodiment of the present application is not only applicable to the case where the path loss reference signal has not been configured on the network device after the activation of the first cell is completed. In this case, the above-mentioned target reference signal can still be determined as the path loss reference signal by using the method provided in the embodiment of the present application.
  • the path loss reference signal is usually determined by the synchronization signal block of the main information block, and the downlink path loss is calculated to determine the uplink transmission power of the first message .
  • the terminal device does not necessarily need to read the master information block of the first cell. The determination is not clear, which may lead to inaccurate uplink transmission power of the determined first message, resulting in the failure of the network device to successfully receive the first message, or the need to wait for the network device to configure the path loss reference signal for the terminal device, resulting in the first cell Additional activation delay and additional reception delay for the first message.
  • the uplink transmission power of the first message received by the network device is determined by the path loss reference signal, and the path loss reference signal is determined by the target reference signal, and the target reference signal includes the The reference signal of the link path loss condition, so that the network device can successfully receive the first message.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal. By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. line loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminating the extra activation time delay of the first cell and the extra receiving time delay of the first message.
  • the configuration information corresponding to the first cell does not include a first parameter used for downlink channel path loss estimation, and the path loss reference signal is determined by the target reference signal.
  • the path loss reference signal is determined by the target reference signal.
  • the first parameter is a parameter used for downlink path loss estimation
  • the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device.
  • the reference signal corresponding to the downlink path loss situation is used as the path loss reference signal, which can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message, eliminating the additional activation delay of the first cell and Additional reception delay for the first message.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the terminal device, and the second reference signal is a layer 1 measurement result reported by the terminal device corresponding reference signal.
  • the target reference signal may include but not limited to the first reference signal or the second reference signal or a reference signal having a quasi-co-location relationship with the first reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the first reference signal is a reference signal corresponding to the layer 3 measurement result reported by the terminal device
  • the second reference signal is a reference signal corresponding to the layer 1 measurement result reported by the terminal device.
  • the above layer 3 measurement result may be the received power of the layer 3 reference signal
  • the first reference signal may be any one of the multiple reported reference signals corresponding to the received power of the layer 3 reference signal, or may be the reported
  • the reference signal corresponding to the received power of the layer 3 reference signal with the highest received power can also be the reference signal corresponding to the received power of the layer 3 reference signal reported within a specified time period, or the reference signal corresponding to the received power of the latest reported layer 3 reference signal.
  • the signal is not limited here and can be selected according to specific application scenarios.
  • the above layer 1 measurement result may be the received power of the layer 1 reference signal, and the selection of the second reference signal is similar to the selection of the first reference signal, which is not limited here and can be selected according to specific application scenarios.
  • the path loss reference signal may be the above-mentioned first reference signal or has an alignment with the first reference signal.
  • the reference signal of the co-location relationship is determined, or the path loss reference signal can be determined by the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal, and the downlink path loss is calculated to determine the uplink transmission of the first message power, so that the network device successfully receives the first message.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal.
  • the path loss reference signal By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. line loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminating the extra activation time delay of the first cell and the extra receiving time delay of the first message.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • a possible implementation manner of the target reference signal is provided. Specifically, according to whether the first cell is a known cell or an unknown cell, it is determined whether the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal, or whether it includes the second reference signal or a reference signal related to the second reference signal.
  • the signal has a reference signal in a quasi-co-located relationship.
  • the terminal device when receiving the activation information, if the terminal device has reported the measurement result of the cell before, the cell is regarded as a known cell, otherwise, it is regarded as an unknown cell.
  • the target reference signal includes the above-mentioned first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal.
  • the configuration information corresponding to the first cell does not include the
  • the path loss reference signal may be determined by a reference signal having a quasi-co-location relationship between the first reference signal and the first reference signal.
  • the target reference signal includes the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the path loss reference signal may be determined by the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal determined by the embodiment of the present application can more truly reflect the downlink path loss corresponding to the terminal device, and can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message , eliminating the extra activation delay of the first cell and the extra receiving delay of the first message.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a third reference signal or a reference signal having a quasi-co-location relationship with the third reference signal.
  • the third reference signal is a reference signal indicated by the spatial relationship of the uplink channel, such as a synchronization signal block, a channel state information reference signal, a sounding reference signal, and the like.
  • the path loss reference signal may be determined by the above-mentioned third reference signal or a reference signal having a quasi-co-location relationship with the third reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message. information.
  • the path loss reference signal is determined by the reference signal indicated by the spatial relationship of the uplink channel configured by the network device or the reference signal having a quasi-co-location relationship with it, which can more truly reflect the downlink corresponding to the terminal device.
  • the uplink transmission power of the first message can be determined according to the path loss corresponding to the transmission direction indicated by the spatial relationship of the uplink channel.
  • the terminal device and the network device can establish a consistent understanding of the downlink path loss, so as to accurately Calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminate the extra activation time delay of the first cell and the extra receiving time delay of the first message.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal .
  • the fourth reference signal is a reference signal indicated by the transmission configuration indication information of the control resource set of the current downlink bandwidth.
  • the path loss reference signal may be determined by the above-mentioned fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message. information.
  • the path loss reference signal is determined by the reference signal indicated by the transmission configuration indication information of the control resource set configured by the network device or the reference signal having a quasi-co-location relationship with it, which can more truly reflect the corresponding path of the terminal device.
  • Downlink path loss and can make the network equipment and terminal equipment establish a consistent understanding of the downlink path loss, so as to accurately calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminate the extra power of the first cell The activation delay and the additional reception delay of the first message.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes the fifth reference signal or a reference signal that has a quasi-co-location relationship with the fifth reference signal .
  • the terminal device needs to select a synchronization signal to perform precise timing synchronization with the first cell
  • the fifth reference signal is the signal selected by the terminal device for precise timing synchronization with the first cell. synchronization signal.
  • the path loss reference signal may be determined by the above fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message. information.
  • the path loss reference signal is determined by the synchronization signal used for precise timing synchronization between the terminal device and the first cell or the reference signal having a quasi-co-location relationship with it, which can more truly reflect the corresponding downlink of the terminal device.
  • improve the accuracy and efficiency of determining the uplink transmission power of the first message improve the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminate the extra activation delay of the first cell and the extra reception delay of the first message.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal; the method further includes:
  • the sixth reference signal is determined by the reference signal indicated by the downlink channel indication information.
  • the target reference signal includes the sixth reference signal Or a reference signal that has a quasi-co-location relationship with the sixth reference signal.
  • the network device sends downlink channel indication information to the terminal equipment to trigger random access of the terminal equipment, and instructs the reference signal indicated by the downlink channel indication information to be determined as The above-mentioned sixth reference signal.
  • the path loss reference signal is determined by the above-mentioned sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal, the downlink path loss is calculated, and then the uplink transmission power of the first message is determined, so that the network device can successfully receive the first message .
  • the path loss reference signal is determined by the reference signal indicated by the downlink channel indication information used to trigger the random access of the terminal device or the reference signal having a quasi-co-location relationship with it, which can more truly reflect the corresponding channel of the terminal device.
  • the downlink path loss can be accurately calculated, the accuracy and efficiency of determining the uplink transmission power of the first message can be improved, and the extra activation delay of the first cell and the extra reception delay of the first message can be eliminated.
  • an embodiment of the present application provides a communication device, and the device includes a module or unit for performing the method described in any one of the first aspect or the second aspect.
  • the communication device includes:
  • the transceiver unit is configured to receive activation information sent by the network device, the activation information is used to indicate that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • a processing unit configured to determine the target reference signal as a path loss reference signal, the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the communication device, and the path loss reference signal is used to determine The uplink transmit power of the uplink channel.
  • the processing unit is specifically configured to: if the configuration information corresponding to the first cell does not include the first parameter for performing downlink channel loss estimation, The reference signal is determined as the path loss reference signal.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the communication device, and the second reference signal is a layer 1 measurement result reported by the communication device corresponding reference signal.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal;
  • the transceiver unit is further configured to receive downlink channel indication information sent by the network device when the timing advance value of the first cell is invalid;
  • the processing unit is further configured to determine the reference signal indicated by the downlink channel indication information as the sixth reference signal.
  • the communication device includes:
  • a transceiver unit configured to send activation information to the terminal device, where the activation information is used to indicate that a first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • the transceiver unit is further configured to receive a first message sent by the terminal device, the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal is determined by a target reference signal, and the target The reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device.
  • the configuration information corresponding to the first cell does not include a first parameter used for downlink channel path loss estimation, and the path loss reference signal is determined by the target reference signal.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the terminal device, and the second reference signal is a layer 1 measurement result reported by the terminal device corresponding reference signal.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal;
  • the transceiver unit is further configured to send downlink channel indication information to the terminal device when the timing advance value of the first cell is invalid, and the sixth reference signal is indicated by the downlink channel indication information The reference signal is determined.
  • the embodiment of the present application provides a communication device, including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the method in any one of the above-mentioned first aspect to the second aspect and any possible implementation manner.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the embodiment of the present application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit, and transmit a signal through the output circuit, so that the processor executes the method of any aspect from the first aspect to the second aspect and any possible implementation manner. .
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the embodiment of the present application provides a communications device, including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter, so as to execute the method of any aspect from the first aspect to the second aspect and any possible implementation manner.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the communication device in the sixth aspect above may be one or more chips.
  • the processor in the communication device may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, which can Integrated in a processor, it can exist independently of that processor.
  • the embodiment of the present application provides a computer-readable storage medium, which is used to store computer programs (also referred to as codes, or instructions); when the computer programs run on a computer At this time, the method in any one of the first aspect to the second aspect and any possible implementation manner is realized.
  • computer programs also referred to as codes, or instructions
  • the embodiment of the present application provides a computer program product, the computer program product including: a computer program (also called code, or instruction); when the computer program is executed, it causes the computer to execute the above-mentioned The method of any aspect from the first aspect to the second aspect and any possible implementation manner.
  • a computer program also called code, or instruction
  • the embodiment of the present application provides a chip, the chip includes a processor, the processor is configured to execute instructions, and when the processor executes the instructions, the chip is made to perform any of the above-mentioned first to second aspects.
  • the chip further includes a communication interface, and the communication interface is used for receiving signals or sending signals.
  • the embodiment of the present application provides a communication system, including a terminal device and a network device.
  • a chip system in the eleventh aspect, includes a processor and an interface circuit, the processor is used to call and run the computer program (also called code, or instruction) stored in the memory from the memory, to realize The function involved in any aspect from the first aspect to the second aspect and any possible implementation manner; in a possible design, the chip system further includes a memory, and the memory is used to store necessary program instructions and data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the process of sending information and/or receiving information in the above method can be understood as The process by which a processor outputs information, and/or the process by which a processor receives input information.
  • the processor may output information to a transceiver (or a communication interface, or a sending module) for transmission by the transceiver. After the information is output by the processor, additional processing may be required before reaching the transceiver.
  • the transceiver or communication interface, or sending module
  • the information may require other processing before being input to the processor.
  • the sending information mentioned in the foregoing method can be understood as the processor outputting information.
  • receiving information may be understood as the processor receiving input information.
  • the above-mentioned processor may be a processor dedicated to executing these methods, or may is a processor, such as a general purpose processor, that performs the methods by executing computer instructions in a memory.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the arrangement of the memory and the processor.
  • the above at least one memory is located outside the device.
  • the at least one memory is located within the device.
  • part of the memory of the at least one memory is located inside the device, and another part of the memory is located outside the device.
  • processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the path loss reference signal is used as the path loss reference signal.
  • the path loss reference signal can be accurately Calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delay.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a path loss reference signal provided in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for determining a path loss reference signal provided in an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • This application provides a method for determining a path loss reference signal and a related device, which relate to the field of communication technology, and clearly stipulates which reference signal to use as a path loss reference signal.
  • the reference signal of the path loss condition is used as the path loss reference signal, which can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delay.
  • the cellular network system may include but not limited to: the fifth generation (5th generation, 5G) system, the Global System of Mobile communication (GSM) system, the code division multiple access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex, FDD) system, LTE time division duplex (Time Division Duplex, TDD) system, advanced long term evolution (Advanced long term evolution, LTE-A) system, new air interface (New Radio, NR) system, evolution system of NR system, non LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the licensed frequency band, NR (NR-based access to unlicensed spectrum, NR-U) system on the unlicensed
  • 5G Fifth Generation
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE
  • the satellite communication system may include various non-terrestrial network systems, for example, a satellite or an unmanned aircraft system (unmanned aircraft system, UAS) platform, and other networks for wireless frequency transmission, which will not be listed here.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • the satellite communication system may include various non-terrestrial network systems, for example, a satellite or an unmanned aircraft system (unmanned aircraft system, UAS) platform, and other networks for wireless frequency transmission, which will not be listed here.
  • FIG. 1 is a schematic structural diagram of a communication system provided in the embodiment of the present application.
  • the communication system 100 mainly includes two parts: an access network and a user equipment (user equipment, UE) 101.
  • the access network is used to implement functions related to wireless access, and mainly includes an access network (access network, AN) device 102, and the access network device includes a radio access network (radio access network, RAN) device and other Devices connected to the air interface (such as WiFi). Interfaces between network elements are shown in FIG. 1 . It should be understood that service interfaces may also be used for communication between network elements.
  • the UE may also be called terminal equipment.
  • the terminal device can communicate with one or more core networks (core network, CN) via the AN device.
  • the terminal equipment involved in the embodiment of the present application includes but is not limited to connection via wired lines, such as via public switched telephone network (Public Switched Telephone Networks, PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, direct cable connection and/or another data connection network; and/or via a wireless interface, such as: for a cellular network, a wireless local area network (Wireless Local Area Network, WLAN), such as a handheld digital television broadcast (Digital Video Broadcast-Handheld, DVB-H) digital television network, satellite network, AM-FM (Amplitude Modulation-Frequency Modulation, AM-FM) broadcast transmitter of the network; and/or another terminal equipment device configured to receive/transmit communication signals; and/or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area network
  • a terminal device arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • Examples of such terminal equipment include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet Personal digital assistants (PDAs) with intranet access, Web browsers, organizers, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptops and/or palmtops type receivers or other electronic devices including radiotelephone transceivers.
  • PCS Personal Communications System
  • PDAs Internet Personal digital assistants
  • GPS Global Positioning System
  • Terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the Internet of Things or Internet of Vehicles, terminal devices in 5G networks, future evolution of public land mobile communication networks ( public land mobile network (PLMN) terminal equipment and any form of terminal equipment in the future network.
  • PLMN public land mobile network
  • the AN device is a device for connecting a terminal device to a wireless network, and may specifically be a base station.
  • the base station may include various forms of base stations, for example: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • access point in wireless local area network (wireless local area network, WLAN), global system for mobile communications (global system for mobile communications, GSM) or code division multiple access (code division multiple access) access, CDMA) in the base station (base transceiver station, BTS), can also be wideband code division multiple access (wideband code division multiple access, WCDMA) in the base station (NodeB, NB), can also be the evolved base station in LTE (Evolved Node B, eNB or eNodeB), or relay stations or access points, or vehicle-mounted devices, wearable devices, and the next generation Node B (the next generation Node B, gNB) in 5G systems or future evolution of public land mobile networks
  • the base stations in the (public land mobile network, PLMN) network, etc., are not specifically limited in this embodiment of the present application.
  • Carrier Aggregation refers to aggregating multiple carriers together to provide services for UEs, which can improve the data transmission capacity of the communication system.
  • each carrier can be regarded as a cell.
  • the access network device 102 covers multiple cells (primary cell, secondary cell 1, secondary cell 2, ..., secondary cell n), and these aggregated cells can be divided into primary cell (Primary Cell, PCell) and secondary cell Cell (Secondary Cell, SCell).
  • a UE When a UE accesses the network, it first accesses the primary cell, and then the primary cell adds several secondary cells (such as secondary cell 1, secondary cell 2, ..., secondary cell n) to the UE through an RRC reconfiguration message, so that the UE can subsequently access Enter the secondary cell to communicate and obtain corresponding services.
  • secondary cells such as secondary cell 1, secondary cell 2, ..., secondary cell n
  • the primary cell may configure it in an activated (activated) state or a deactivated (deactivated) state.
  • the primary cell adjusts the status of each secondary cell through the Medium Access Control Element (MAC CE) for activation and deactivation of the secondary cell.
  • MAC CE Medium Access Control Element
  • the UE can send Sounding Reference Signal (SRS), report Channel State Information (CSI), and detect Physical Downlink Control Channel (Physical Downlink Control) on the secondary cell. Channel, PDCCH) and so on.
  • SRS Sounding Reference Signal
  • CSI Channel State Information
  • PDCCH Physical Downlink Control Channel
  • the UE does not send SRS, measure and report CSI, transmit uplink data, and detect PDCCH on the secondary cell.
  • intra-site carrier aggregation data transmission between cells can be understood as data transmission between different network elements (functional modules) in the access network device 102 corresponding to the cells.
  • the embodiment of the present application is not limited to be only applied to the communication system architecture shown in FIG. 1 .
  • the communication system to which the method for determining a path loss reference signal according to the embodiment of the present application can be applied may include more or fewer network elements or devices.
  • the devices or network elements in FIG. 1 may be hardware, or functionally divided software, or a combination of the above two.
  • the devices or network elements in FIG. 1 may communicate through other devices or network elements.
  • FIG. 2 is a schematic structural diagram of another communication system provided in the embodiment of the present application.
  • the communication system 200 mainly includes two parts: an access network and a user equipment (user equipment, UE) 101.
  • the access network is used to realize functions related to wireless access, and mainly includes access network (access network, AN) equipment (102, 103, 104, 105), and the access network equipment includes a radio access network (radio access network, RAN) equipment and other equipment (such as WiFi) accessed through the air interface.
  • AN access network
  • RAN radio access network
  • WiFi wireless local area network
  • Interfaces between network elements are shown in FIG. 2 . It should be understood that service interfaces may also be used for communication between network elements.
  • the UE and the AN device in the communication system shown in the embodiment of the present application are similar to the communication system in FIG. 1 above, and will not be repeated here.
  • the communication system 200 is applied in a carrier aggregation (Carrier Aggregation, CA) scenario, which can improve the data transmission capacity of the communication system. It is different from the carrier aggregation scenario of the communication system shown in FIG. 1 above.
  • This application implements
  • the multiple cells in the example are deployed in different access network devices, for example, the primary cell is deployed in the access network device 102, the secondary cell 1 is deployed in the access network device 103, and the secondary cell 2 is deployed in the access network device In 104 , the secondary cell n is deployed in the access network device 105 .
  • This deployment mode is also called inter-site carrier aggregation.
  • data transmission between cells can be understood as data transmission between different access network devices corresponding to each cell.
  • a UE accesses the network, it first accesses the primary cell, and then the primary cell adds several secondary cells (such as secondary cell 1, secondary cell 2, ..., secondary cell n) to the UE through an RRC reconfiguration message, so that the UE can subsequently access Enter the secondary cell to communicate and obtain corresponding services.
  • secondary cells such as secondary cell 1, secondary cell 2, ..., secondary cell n
  • the embodiment of the present application is not limited to be only applied to the communication system architecture shown in FIG. 2 .
  • the communication system to which the method for determining a path loss reference signal according to the embodiment of the present application can be applied may include more or fewer network elements or devices.
  • the devices or network elements in FIG. 2 may be hardware, or functionally divided software, or a combination of the above two.
  • the devices or network elements in FIG. 2 may communicate through other devices or network elements.
  • the UE when the UE accesses the network, it first accesses the primary cell, and then the primary cell adds several secondary cells (such as secondary cell 1.
  • the secondary cell 2, ..., secondary cell n) so that the UE can subsequently access the secondary cell for data transmission and obtain corresponding services.
  • the UE In order for the UE to successfully access the secondary cell for data transmission, the UE also needs to perform uplink synchronization or downlink synchronization with the accessed secondary cell.
  • the uplink synchronization and downlink synchronization between the UE and the secondary cell will be briefly described below.
  • TA Timing Advance
  • the principle of TA is to configure a timing advance (ie, TA value) for the UE, and adjust the uplink timing according to the configured TA value when the UE sends uplink data.
  • TA value a timing advance
  • the network device can calculate the TA value of the UE by measuring uplink signals such as the preamble or the Sounding Reference Signal (SRS) sent by the UE.
  • SRS Sounding Reference Signal
  • the network device sends a Timing Advance Command (TAC) to the UE, and informs the UE of the calculated TA value.
  • TAC can be carried in MAC CE.
  • the downlink synchronization refers to the synchronization on the UE side, that is, the UE obtains the synchronization of the timing and frequency of the network equipment.
  • the UE implements downlink synchronization by receiving a synchronization signal sent by a network device.
  • the synchronization signal includes a primary synchronization signal (Primary Synchronization Signal, PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS), carried in a synchronization signal block (Synchronization Signal Block, SSB).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the cell usually sends the SSB periodically, and the UE searches for and receives the SSB to obtain downlink synchronization with the secondary cell.
  • the terminal device needs to feed back the corresponding Hybrid Automatic Repeat Request (HARQ), then perform the activation process, and feedback CSI, indicating that the secondary cell has completed the activation process.
  • HARQ Hybrid Automatic Repeat Request
  • the activation process of the secondary cell includes multiple steps.
  • the activation process includes cell search, automatic gain control (automatic gain control, AGC), timing synchronization and other processes.
  • the frequency range 2 (Frequency Range 2, FR2) secondary cell since beam information is involved, the activation process needs to include more steps, for example, it also includes a reference signal (channel state information- reference signal (CSI-RS) activation time, configuration transmission configuration indicator (Transmission Configuration Indicator, TCI) time, and if the secondary cell to be activated is an unknown cell, the UE also needs to perform Layer 1 reference signal received power (Layer 1 reference signal received power, L1-RSRP) is measured and reported to tell the network beam information.
  • CSI-RS channel state information- reference signal
  • TCI Transmission Configuration Indicator
  • CSI information can be fed back on the corresponding PUCCH, indicating that the activation of the secondary cell is completed.
  • the following steps also need to be considered: determine the uplink transmit power of the uplink channel, determine the uplink transmit beam, and update the TA (if the TA fails).
  • the way to update the TA can be: when the TA value corresponding to the Timing Advance Group (TAG) where the secondary cell is located has expired, that is, the uplink synchronization with the network device has expired at this time, and the UE cannot directly send the uplink Data needs to re-acquire uplink synchronization before sending.
  • UE random access may be triggered by receiving physical downlink control channel indication information sent by a network device, and UE initiates a random access process to update a valid TA, thereby having the capability of sending uplink data.
  • the physical downlink control channel indication information also needs to clearly indicate the associated synchronization signal block (synchronization signal block, SSB).
  • the way to determine the uplink transmission power of the uplink channel may be: the UE calculates the downlink path loss, which can be obtained by obtaining the power of the channel sent by the network side and the power measured by the path loss reference signals (pathloss reference signals, PL-RS). downlink loss.
  • pathloss reference signals pathloss reference signals, PL-RS.
  • different reference signals may be selected as the path loss reference signals for calculating the downlink path loss, and thus the calculated downlink path loss and the uplink transmission power of the uplink channel will also be different.
  • the existing protocol it can be divided into four different cases mainly according to whether the network side configures the first parameter and the second parameter for the secondary cell, and in each case, a different reference signal is selected as the path loss reference signal.
  • the first parameter is a group of parameters configured by the network side for estimating uplink channel path loss
  • the second parameter is a group of parameters configured by the network side for determining the spatial relationship and power control of the uplink channel. Details are as follows:
  • the UE selects to obtain the synchronization signal block (SSB) of the master information block (master information block, MIB) as the path loss reference signal;
  • SSB synchronization signal block
  • the UE determines the path loss reference signal through the indication of the above-mentioned second parameter.
  • the spatial relationship of the uplink channel determined by the second parameter will indicate The reference signal used to determine the uplink spatial relationship will also support the identification ID of the path loss reference signal;
  • the UE selects the reference signal whose index (index) is 0 configured in the above-mentioned first parameter as the path loss reference signal;
  • the UE selects the transmission configuration of the control resource set of the current downlink bandwidth
  • the reference signal indicated by the indication information (control-resource set, CORESET) is used as the path loss reference signal.
  • the UE chooses to obtain the synchronization signal block of the MI B as the path loss reference signal, calculates the downlink path loss, and then determines the uplink path of the uplink channel. transmit power.
  • the UE does not necessarily need to read the primary information block of the secondary cell after receiving the activation information.
  • the present application provides a method for determining a path loss reference signal and a related device, which relate to the field of communication technology. It clearly stipulates which reference signal to use as the path loss reference signal. By selecting a reference signal that can more realistically reflect the downlink path loss corresponding to the terminal equipment as the path loss reference signal, the downlink path loss can be accurately calculated, thereby The accuracy and efficiency of determining the uplink transmission power of the uplink channel are improved, and additional activation delay is eliminated.
  • FIG. 3 is a schematic flowchart of a method for determining a path loss reference signal provided in an embodiment of the present application.
  • the method for determining a path loss reference signal is applied in the field of communication technologies.
  • the communication system to which the method for determining a path loss reference signal according to the embodiment of the present application is applied includes, but is not limited to, terminal equipment and network equipment.
  • the method for determining the path loss reference signal in the embodiment of the present application may include steps S301, S302, and S303, wherein, the execution sequence of steps S301, S302, and S303 is not limited in this embodiment of the present application.
  • the path loss reference signal determination method includes but not limited to the following steps:
  • Step S301 the terminal device receives the activation information sent by the network device, and correspondingly, the network device sends the activation information to the terminal device.
  • the activation information is used to indicate that the first cell is activated, and the first cell is a cell configured with an uplink channel.
  • the first cell may specifically be the above-mentioned secondary cell 1, secondary cell 2, ..., secondary cell n in FIG. 1 or FIG. 2 .
  • the uplink channel may include, but not limited to, uplink channels such as a physical uplink control channel (physical uplink control channel, PUCCH) and a physical uplink shared channel (physical uplink shared channel, PUSCH) corresponding to the terminal device.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the network device in the embodiment of the present application is the network device corresponding to the first cell, and specifically may be the network device 102 in the above-mentioned FIG. 1 .
  • the network device in this embodiment of the application may also be the first cell and the primary cell the corresponding network device.
  • the terminal device in the embodiment of the present application is a device equipped with a processor that can be used to execute instructions executed by a computer.
  • the device 101 is configured to select a reference signal that can more realistically reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, so as to accurately calculate the downlink path loss, thereby improving the efficiency of determining the uplink transmission power of the uplink channel Accuracy and efficiency, eliminating additional activation delays.
  • the network device in the embodiment of the present application is the network device corresponding to the first cell and the primary cell.
  • the primary cell currently accessed by the terminal device may correspond to the primary cell shown in Figure 1
  • the first cell in this embodiment of the application may correspond to the secondary cell 1, secondary cell 2, ..., secondary cell Any secondary cell in cell n.
  • the network device in the embodiment of the present application may correspond to the network device 102 in FIG. 1 above
  • the terminal device in the embodiment of the present application may correspond to the terminal device 101 in FIG. 1 above.
  • Step S302 the terminal device determines the target reference signal as the path loss reference signal.
  • the terminal device After receiving the activation information sent by the network device, it indicates that the secondary cell is in the process of being activated. During the activation process of the secondary cell, the terminal device needs to feed back the corresponding HARQ message, then activate the secondary cell, and feed back CSI, indicating that the secondary cell has completed the activation process, so that the terminal device can subsequently perform data transmission with the activated secondary cell , to obtain the corresponding service.
  • the terminal device during the activation process of the secondary cell configured with the uplink channel, for example, during the activation process of the secondary cell configured with the PUCCH, the terminal device also needs to determine the uplink transmit power of the uplink channel.
  • the downlink path loss can be calculated by acquiring the channel power sent by the network side and the power measured by the path loss reference signal, and then the uplink transmission power of the uplink channel can be determined according to the downlink path loss.
  • different reference signals may be selected as the path loss reference signals for calculating the downlink path loss, and thus the calculated downlink path loss and the uplink transmission power of the uplink channel will also be different.
  • the terminal device selects and obtains the synchronization signal block of the MIB as the path loss reference signal to calculate the downlink path loss, and then Determine the uplink transmit power of the uplink channel.
  • the terminal device does not necessarily need to read the master information block of the secondary cell after receiving the activation information. Therefore, it is not clear which reference signal the terminal device selects as the path loss reference signal at this time, which may result in inaccurate uplink transmission power of the uplink channel determined by the terminal device, or the terminal device needs to wait for the path loss reference signal configured by the network side, As a result, additional activation delay of the secondary cell is caused.
  • the terminal device determines the target reference signal as the path loss reference signal, wherein the The target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device.
  • the activation of the secondary cell is completed by determining the reference signal used to reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, calculating the downlink path loss, and then determining the uplink transmission power of the uplink channel.
  • the method for determining the target reference signal as the path loss reference signal provided in this step is not only applicable to the activation process of the above-mentioned secondary cell, after the activation of the secondary cell is completed, the method provided in this step can still be used to determine the above-mentioned target reference signal is the path loss reference signal.
  • the above-mentioned target reference signal can also be determined as the path loss reference signal according to the method in this step, and the downlink path loss can be accurately calculated. , so as to improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel.
  • this step clearly stipulates which reference signal is used as the path loss reference signal.
  • the reference signal can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delay.
  • the terminal device determines the target reference signal as the path loss reference signal, where the target reference signal includes parameters for reflecting The reference signal of the downlink path loss corresponding to the terminal equipment.
  • the target reference signal may include but not limited to the first reference signal or the second reference signal or a reference signal having a quasi-colocation (quasi-colocation, QCL) relationship with the first reference signal or a reference signal with the second
  • the reference signal is a reference signal having a quasi-co-located relationship.
  • the first reference signal is a reference signal corresponding to the layer 3 measurement result reported by the terminal device
  • the second reference signal is a reference signal corresponding to the layer 1 measurement result reported by the terminal device.
  • the above layer 3 measurement result may be layer 3 reference signal received power (Layer 3 reference signal received power, L3-RSRP), and the first reference signal may be a reference corresponding to the reported multiple layer 3 reference signal received power Any one of the signals may also be the reference signal corresponding to the received power of the layer 3 reference signal with the highest reported received power, or the reference signal corresponding to the received power of the layer 3 reference signal reported within a specified time period, or it may be
  • the reference signal corresponding to the latest reported received power of the layer 3 reference signal is not limited here, and can be selected according to a specific application scenario.
  • the above layer 1 measurement result may be Layer 1 reference signal received power (Layer 1 reference signal received power, L1-RSRP), the selection of the second reference signal is similar to the selection of the first reference signal, and the second reference signal may be a reported Any one of the multiple reference signals corresponding to the received power of the layer 1 reference signal, or the reference signal corresponding to the received power of the layer 1 reference signal with the highest received power reported, or the layer 1 reference signal reported within a specified time period
  • the reference signal corresponding to the reference signal received power may also be the reference signal corresponding to the latest reported layer 1 reference signal received power, which is not limited here and can be selected according to specific application scenarios.
  • the terminal device may determine the above-mentioned first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal as the path loss reference signal, or determine the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmit power of the uplink channel to complete the second Activation of a cell.
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal, or whether it includes the second reference signal or a reference signal related to the second reference signal.
  • the signal has a reference signal in a quasi-co-located relationship.
  • the cell when receiving the activation information, if the terminal device has reported the measurement result of the cell before, the cell is regarded as a known cell, otherwise, it is regarded as an unknown cell.
  • the target reference signal includes the above-mentioned first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal.
  • the terminal device may use the above-mentioned first reference signal or a reference signal that has a quasi-co-location relationship with the first reference signal Determined as the path loss reference signal.
  • the target reference signal includes the above-mentioned second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the terminal device may use the above-mentioned second reference signal or a reference signal that has a quasi-co-location relationship with the second reference signal Determined as the path loss reference signal.
  • the network side may indicate one of the corresponding reference signals as the path loss reference signal through signaling.
  • the signaling may be RRC signaling, MAC signaling, DCI signaling and the like.
  • the network side may simultaneously instruct the terminal device to select a corresponding reference signal as the path loss reference signal in the signaling for activating the secondary cell, or may instruct the terminal device to select a corresponding reference signal as the path loss reference signal through separate signaling. reference signal.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal.
  • the path loss reference signal By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. Line loss, thereby improving the accuracy and efficiency of determining the uplink transmit power of the uplink channel, and eliminating additional activation delays.
  • the target reference signal includes a third reference signal or a reference signal having a quasi-co-location relationship with the third reference signal.
  • the third reference signal is a reference signal indicated by the spatial relationship of the uplink channel, such as a synchronization signal block, a channel state information reference signal, a sounding reference signal, and the like.
  • the terminal device may use the above-mentioned third reference signal or a reference signal that has a quasi-co-location relationship with the third reference signal Determine it as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the activation of the first cell.
  • the terminal device selects the reference signal indicated by the spatial relationship of the uplink channel configured by the network device or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the downlink channel corresponding to the terminal device.
  • Link path loss, and the uplink transmission power of the uplink channel can be determined through the path loss corresponding to the transmission direction indicated by the spatial relationship of the uplink channel.
  • the terminal device and the network device can establish a consistent understanding of the downlink path loss, thereby Accurately calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminate additional activation delays.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal.
  • the fourth reference signal is a reference signal indicated by the transmission configuration indication information of the control resource set of the current downlink bandwidth.
  • the terminal device may use the above-mentioned fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal Determine it as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the activation of the first cell.
  • the terminal device selects the reference signal indicated by the transmission configuration indication information of the control resource set configured by the network device or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the path loss reference signal of the terminal device.
  • the path loss reference signal Corresponding to the downlink path loss, and can establish a consistent understanding of the downlink path loss with the network equipment, so as to accurately calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminate additional activation delays.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal.
  • the terminal device needs to select a synchronization signal for precise timing synchronization with the secondary cell
  • the fifth reference signal is the synchronization signal selected by the terminal device for precise timing synchronization with the secondary cell
  • the terminal device may use the above-mentioned fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal Determine it as a path loss reference signal, calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel, so as to complete the activation of the first cell.
  • the terminal device selects the synchronization signal used for precise timing synchronization of the secondary cell or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the downlink corresponding to the terminal device.
  • the path loss can be accurately calculated to accurately calculate the downlink path loss, improve the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminate additional activation delays.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal.
  • the terminal device receives the downlink channel indication information sent by the network device, triggers random access, and determines the reference signal indicated by the downlink channel indication information as the sixth reference signal .
  • the terminal device may use the above sixth reference signal or The reference signal having a quasi-co-location relationship with the sixth reference signal is determined as a path loss reference signal, the downlink path loss is calculated, and the uplink transmission power of the uplink channel is determined to complete the activation of the first cell.
  • the terminal device selects the reference signal indicated by the downlink channel indication information for triggering random access or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the corresponding channel of the terminal device.
  • the downlink path loss can be accurately calculated, the accuracy and efficiency of determining the uplink transmission power of the uplink channel can be improved, and the extra activation delay can be eliminated.
  • the network side when activating a secondary cell configured with an uplink channel, for example, when activating a secondary cell configured with a PUCCH, the network side must configure a path loss reference signal, which excludes the possibility of PUCCH data reception.
  • the capable secondary cell is not configured with a path loss reference signal.
  • the terminal device can directly calculate the downlink path loss accurately according to the path loss reference signal configured on the network side, greatly improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delays.
  • the above-mentioned The sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal is determined as a path loss reference signal, and the downlink path loss is calculated, and then the uplink transmission power of the uplink channel is determined, so as to complete the activation of the first cell;
  • the layer 3 measurement results reported by the terminal equipment for example, report The reference signal corresponding to the received power of layer 3 reference signal
  • the reference signal having a quasi-co-location relationship with it is used as the path loss reference signal.
  • the layer 1 measurement result reported by the terminal device such as , the reference signal corresponding to the reported layer 1 reference signal received power
  • the reference signal having a quasi-co-location relationship with it is used as the path loss reference signal to calculate the downlink path loss, and then determine the uplink transmit power of the uplink channel to complete the first cell activation of
  • the reference signal indicated by the spatial relationship of the uplink channel or the reference signal having a quasi-co-location relationship with it is also possible to use the reference signal indicated by the spatial relationship of the uplink channel or the reference signal having a quasi-co-location relationship with it as the path loss reference signal to calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel to complete the activation of the first cell ;
  • the path loss reference signal it is also possible to use the reference signal indicated by the transmission configuration indication information of the control resource set of the current downlink bandwidth or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, calculate the downlink path loss, and then determine the uplink transmit power of the uplink channel, to complete the activation of the first cell;
  • the specific way to determine the path loss reference signal can be adjusted according to different needs.
  • the final path should be determined based on the results of improving the accuracy of calculating the downlink path loss and the accuracy of determining the uplink transmit power of the uplink channel. loss of reference signal.
  • Step S303 the terminal device sends a first message to the network device, and correspondingly, the network device receives the first message sent by the terminal device.
  • the terminal device After the terminal device determines the path loss reference signal, calculates the downlink path loss, and then determines the uplink transmit power of the uplink channel, the activation process of the secondary cell is completed. After the terminal device accesses the activated secondary cell, the terminal device sends a first message to the network device, where the first message is an uplink message, and correspondingly, the network device receives the first message sent by the terminal device.
  • the transmission power of the terminal device for sending the first message is the above-mentioned uplink transmission power of the uplink channel determined according to the path loss reference signal. Therefore, the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal may be determined by a target reference signal, where the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device, The path loss reference signal can be used to calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message.
  • the path loss reference signal is usually determined by the synchronization signal block of the main information block, and the downlink path loss is calculated to determine the uplink transmission power of the first message .
  • the terminal device does not necessarily need to read the main information block of the secondary cell after receiving the activation information sent by the network device. If it is not clear, it may lead to inaccurate uplink transmission power of the first message, which may cause the network device to fail to receive the first message, or wait for the network device to configure the path loss reference signal for the terminal device, resulting in additional activation of the secondary cell delay and the additional reception delay of the first message.
  • the uplink transmission power of the first message received by the network device is determined by the path loss reference signal, and the path loss reference signal is determined by the target reference signal, and the target reference signal includes the The reference signal of the link path loss condition, so that the network device can successfully receive the first message.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal. By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminating the extra activation delay of the secondary cell and the extra receiving delay of the first message.
  • FIG. 4 is a schematic flowchart of another method for determining a path loss reference signal provided in an embodiment of the present application, which can also be understood as a modification or supplement to the flowchart of the method for determining a path loss reference signal in FIG. 3 above.
  • the communication system to which the method for determining a path loss reference signal according to the embodiment of the present application is applied includes, but is not limited to, a terminal device and a network device.
  • the terminal device in the foregoing FIG. 3 is equivalent to the terminal device in the embodiment of the present application
  • the network device in the foregoing FIG. 3 is equivalent to the network device in the embodiment of the present application.
  • the method for determining the path loss reference signal in the embodiment of the present application may include steps S401, S402, S403 and S404, wherein the execution order of steps S401, S402, S403 and S404 is not limited in the embodiment of the present application Specifically, the method for determining the path loss reference signal includes but is not limited to the following steps:
  • Step S401 the terminal device receives the activation information sent by the network device, and correspondingly, the network device sends the activation information to the terminal device.
  • the activation information is used to indicate that the first cell is activated, and the first cell is a cell configured with an uplink channel.
  • the first cell may specifically be the above-mentioned secondary cell 1, secondary cell 2, ..., secondary cell n in FIG. 1 or FIG. 2 .
  • the uplink channel may include, but not limited to, uplink channels such as a physical uplink control channel (physical uplink control channel, PUCCH) and a physical uplink shared channel (physical uplink shared channel, PUSCH) corresponding to the terminal device.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the network device in this embodiment of the present application is the network device corresponding to the first cell, and specifically may be the network device 102 in FIG. 1 above. Specifically, when the primary cell currently accessed by the terminal device and the secondary cell indicated by the first cell are deployed on the same network device (such as a base station), the network device in this embodiment of the application may also be the first cell and the primary cell the corresponding network device.
  • the terminal device in the embodiment of the present application is a device equipped with a processor that can be used to execute instructions executed by a computer.
  • the device 101 is configured to select a reference signal that can more realistically reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, so as to accurately calculate the downlink path loss, thereby improving the efficiency of determining the uplink transmission power of the uplink channel Accuracy and efficiency, eliminating additional activation delays.
  • the network device in the embodiment of the present application is the network device corresponding to the first cell and the primary cell.
  • the primary cell currently accessed by the terminal device may correspond to the primary cell shown in Figure 1
  • the first cell in this embodiment of the application may correspond to the secondary cell 1, secondary cell 2, ..., secondary cell Any secondary cell in cell n.
  • the network device in the embodiment of the present application may correspond to the network device 102 in FIG. 1 above
  • the terminal device in the embodiment of the present application may correspond to the terminal device 101 in FIG. 1 above.
  • Step S402 the network device sends downlink channel indication information to the terminal device, and the terminal device receives the downlink channel indication information sent by the network device accordingly.
  • the network device sends downlink channel indication information to the terminal device, where the downlink channel indication information is used to trigger random access of the terminal device.
  • the terminal device receives the downlink channel indication information sent by the network device, and performs random access.
  • Step S403 The terminal device determines the reference signal indicated by the downlink channel indication information or the reference signal having a quasi-co-location relationship therewith as the path loss reference signal.
  • the terminal device may set the downlink channel indication information to the The reference signal or the reference signal having a quasi-co-location relationship with it is determined as a path loss reference signal, the downlink path loss is calculated, and then the uplink transmission power of the uplink channel is determined to complete the activation of the first cell.
  • the terminal device selects the reference signal indicated by the downlink channel indication information for triggering random access or the reference signal having a quasi-co-location relationship with it as the path loss reference signal, which can more truly reflect the corresponding channel of the terminal device.
  • the downlink path loss can be accurately calculated, the accuracy and efficiency of determining the uplink transmission power of the uplink channel can be improved, and the extra activation delay can be eliminated.
  • Step S404 the terminal device sends the first message to the network device, and correspondingly, the network device receives the first message sent by the terminal device.
  • the terminal device After the terminal device determines the path loss reference signal, calculates the downlink path loss, and then determines the uplink transmit power of the uplink channel, the activation process of the secondary cell is completed. After the terminal device accesses the activated secondary cell, the terminal device sends a first message to the network device, where the first message is an uplink message, and correspondingly, the network device receives the first message sent by the terminal device.
  • the transmission power of the terminal device for sending the first message is the above-mentioned uplink transmission power of the uplink channel determined according to the path loss reference signal. Therefore, the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal may be determined by a target reference signal, where the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device, The path loss reference signal can be used to calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message.
  • the uplink transmission power of the first message received by the network device is determined by the path loss reference signal
  • the path loss reference signal is determined by the target reference signal
  • the target reference signal includes a downlink signal used to reflect the corresponding downlink of the terminal device.
  • the reference signal of the path loss condition so that the network device can successfully receive the first message.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal. By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminating the extra activation delay of the secondary cell and the extra receiving delay of the first message.
  • the terminal device and the network device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware, software, or a combination of hardware and software with reference to the units and method steps described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware, software, or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 5 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication device 50 may include a transceiver unit 501 and a processing unit 502 .
  • the transceiver unit 501 and the processing unit 502 may be software, or hardware, or a combination of software and hardware.
  • the transceiver unit 501 can implement a sending function and/or a receiving function, and the transceiver unit 501 can also be described as a communication unit.
  • the transceiver unit 501 may also be a unit integrating an acquisition unit and a sending unit, wherein the acquisition unit is used to implement a receiving function, and the sending unit is used to implement a sending function.
  • the transceiver unit 501 may be used to receive information sent by other devices, and may also be used to send information to other devices.
  • the communication device 50 may correspond to the terminal device in the method embodiment shown in FIG. 3 above, for example, the communication device 50 may be a terminal device or a chip in the terminal device.
  • the communication device 50 may include units for performing the operations performed by the terminal device in the method embodiment shown in FIG. 3 above, and each unit in the communication device 50 is to implement The operations performed by the terminal device in this example. Among them, the description of each unit is as follows:
  • the transceiver unit 501 is configured to receive activation information sent by a network device, where the activation information is used to indicate that a first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • the processing unit 502 is configured to determine the target reference signal as a path loss reference signal, where the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the communication device, and the path loss reference signal is used for Determine the uplink transmit power of the uplink channel.
  • a method for determining a path loss reference signal is provided. Specifically, the terminal device receives the activation information sent by the network device, indicating that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel corresponding to the terminal device. When the first cell is activated, the terminal device needs to determine the uplink transmit power of its corresponding uplink channel, and the determination of the transmit power of the uplink channel needs to calculate the downlink path loss.
  • the terminal device determines the target reference signal as the path loss reference signal, wherein the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal equipment, and the path loss reference signal can be used to calculate the downlink path loss, and then determine the uplink transmission power of the uplink channel to complete Activation of the first cell.
  • the method for determining the target reference signal as the path loss reference signal provided by the embodiment of the present application is not only applicable to the case where the path loss reference signal has not been configured on the network device after the activation of the first cell is completed. In this case, the above-mentioned target reference signal can still be determined as the path loss reference signal by using the method provided in the embodiment of the present application.
  • the terminal device when the terminal device is not configured with parameters for downlink path loss estimation, the terminal device usually obtains the synchronization signal block of the main information block and determines it as the path loss reference signal, calculates the downlink path loss, and then determines the uplink channel loss of the uplink channel. transmit power.
  • the terminal device does not necessarily need to read the master information block of the first cell after receiving the activation information. If it is not clear, the uplink transmission power of the uplink channel determined by the terminal device may be inaccurate, or the terminal device needs to wait for the path loss reference signal configured by the network device, thus causing an additional activation delay of the first cell.
  • the terminal device after receiving the activation information sent by the network device, the terminal device determines the reference signal used to reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, calculates the downlink path loss, and then Determine the uplink transmission power of the uplink channel, so as to complete the activation of the first cell.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal. By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. Line loss, thereby improving the accuracy and efficiency of determining the uplink transmit power of the uplink channel, and eliminating additional activation delays.
  • the processing unit 502 is specifically configured to: if the configuration information corresponding to the first cell does not include the first parameter for performing downlink channel loss estimation, the The target reference signal is determined as the path loss reference signal.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the communication device, and the second reference signal is a layer 1 measurement result reported by the communication device corresponding reference signal.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal;
  • the transceiver unit 501 is further configured to receive downlink channel indication information sent by the network device when the timing advance value of the first cell is invalid;
  • the processing unit 502 is further configured to determine the reference signal indicated by the downlink channel indication information as the sixth reference signal.
  • the communication device 50 may correspond to the network device in the method embodiment shown in FIG. 3 above, for example, the communication device 50 may be a network device or a chip in the network device.
  • the communication device 50 may include units for performing the operations performed by the network device in the method embodiment shown in FIG. 3 above, and each unit in the communication device 50 is to implement Examples of operations performed by network devices. Among them, the description of each unit is as follows:
  • the transceiver unit 501 is configured to send activation information to the terminal device, where the activation information is used to indicate that a first cell is activated, and the first cell is a cell with an uplink channel data receiving capability;
  • the transceiver unit 501 is further configured to receive a first message sent by the terminal device, the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal is determined by a target reference signal, the The target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device.
  • a method for determining a path loss reference signal is provided. Specifically, the network device sends activation information to the terminal device, indicating that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel corresponding to the terminal device. After the terminal device accesses the activated first cell, the network device receives the first message sent by the terminal device.
  • the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal may be determined by a target reference signal, where the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device, the path loss reference signal
  • the loss reference signal can be used to calculate the downlink path loss, and then determine the uplink transmission power of the first message, so that the network device can successfully receive the first message.
  • the method for determining the target reference signal as the path loss reference signal provided by the embodiment of the present application is not only applicable to the case where the path loss reference signal has not been configured on the network device after the activation of the first cell is completed. In this case, the method provided in the embodiment of the present application can still be used to determine the above-mentioned target reference signal as the path loss reference signal.
  • the path loss reference signal is usually determined by the synchronization signal block of the main information block, and the downlink path loss is calculated to determine the uplink transmission power of the first message .
  • the terminal device does not necessarily need to read the master information block of the first cell. The determination is not clear, which may lead to inaccurate uplink transmission power of the determined first message, resulting in the failure of the network device to successfully receive the first message, or the need to wait for the network device to configure the path loss reference signal for the terminal device, resulting in the first cell Additional activation delay and additional reception delay for the first message.
  • the uplink transmission power of the first message received by the network device is determined by the path loss reference signal, and the path loss reference signal is determined by the target reference signal, and the target reference signal includes the The reference signal of the link path loss condition, so that the network device can successfully receive the first message.
  • the embodiment of the present application clearly stipulates which reference signal is used as the path loss reference signal. By selecting a reference signal that can more truly reflect the downlink path loss corresponding to the terminal device as the path loss reference signal, the following can be accurately calculated. line loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the first message, and eliminating the extra activation time delay of the first cell and the extra receiving time delay of the first message.
  • the configuration information corresponding to the first cell does not include a first parameter used for downlink channel path loss estimation, and the path loss reference signal is determined by the target reference signal.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the terminal device, and the second reference signal is a layer 1 measurement result reported by the terminal device corresponding reference signal.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal;
  • the transceiver unit 501 is further configured to send downlink channel indication information to the terminal device when the timing advance value of the first cell is invalid, and the sixth reference signal is indicated by the downlink channel indication information The reference signal is determined.
  • each unit in the device shown in Fig. 5 can be respectively or all combined into one or several other units to form, or one (some) units can be further divided into functionally more It is composed of multiple small units, which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above-mentioned units are divided based on logical functions.
  • the functions of one unit may also be realized by multiple units, or the functions of multiple units may be realized by one unit.
  • the terminal-based device or the network device may also include other units.
  • these functions may also be implemented with the assistance of other units, and may be implemented cooperatively by multiple units.
  • reference signal is used as the path loss reference signal.
  • the reference signal can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delay.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 60 shown in FIG. 6 is only an example, and the communication device in the embodiment of the present application may also include other components, or include components with functions similar to those in FIG. 6 , or not include the components in FIG. 6 all parts.
  • the communication device 60 includes a communication interface 601 and at least one processor 602 .
  • the communication device 60 may correspond to any network element or device in a terminal device or a network device.
  • the communication interface 601 is used to send and receive signals, and at least one processor 602 executes program instructions, so that the communication device 60 implements the corresponding process of the method performed by the corresponding network element in the above method embodiments.
  • the communication device 60 may correspond to the terminal device in the method embodiment shown in FIG. 3 , for example, the communication device 60 may be a terminal device or a chip in the terminal device.
  • the communication device 60 may include components for performing the operations performed by the terminal device in the above method embodiments, and each component in the communication device 60 is respectively intended to implement the operations performed by the terminal device in the above method embodiments. The details can be as follows:
  • the terminal device receives activation information sent by the network device, where the activation information is used to indicate that the first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • the terminal device determines the target reference signal as a path loss reference signal, the target reference signal includes a reference signal used to reflect the downlink path loss corresponding to the terminal device, and the path loss reference signal is used to determine the path loss reference signal
  • the uplink transmit power of the above-mentioned uplink channel.
  • the determining the target reference signal as the path loss reference signal includes:
  • the target reference signal is determined as the path loss reference signal.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the terminal device, and the second reference signal is a layer 1 measurement result reported by the terminal device corresponding reference signal.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal; the method further includes:
  • the communication device 60 may correspond to the network device in the above method embodiment shown in FIG. 3 , for example, the communication device 60 may be a network device or a chip in the network device.
  • the communication device 60 may include components for performing the operations performed by the network device in the above method embodiments, and each component in the communication device 60 is respectively intended to implement the operations performed by the network device in the above method embodiments. The details can be as follows:
  • the network device sends activation information to the terminal device, where the activation information is used to indicate that a first cell is activated, and the first cell is a cell capable of receiving data on an uplink channel;
  • the network device receives the first message sent by the terminal device, the uplink transmission power of the first message is determined by a path loss reference signal, and the path loss reference signal is determined by a target reference signal, and the target reference signal includes a The reference signal is used to reflect the downlink path loss corresponding to the terminal device.
  • the configuration information corresponding to the first cell does not include a first parameter used for downlink channel path loss estimation, and the path loss reference signal is determined by the target reference signal.
  • the target reference signal includes a first reference signal or a second reference signal, or a reference signal that has a quasi-co-location relationship with the first reference signal, or a reference signal that has a quasi-co-location relationship with the second reference signal.
  • a reference signal of a co-location relationship wherein, the first reference signal is a reference signal corresponding to a layer 3 measurement result reported by the terminal device, and the second reference signal is a layer 1 measurement result reported by the terminal device corresponding reference signal.
  • the first cell is a known cell
  • the target reference signal includes the first reference signal or a reference signal having a quasi-co-location relationship with the first reference signal
  • the first cell is an unknown cell
  • the target reference signal includes the second reference signal or a reference signal having a quasi-co-location relationship with the second reference signal.
  • the target reference signal when the configuration information corresponding to the first cell includes a second parameter for determining the spatial relationship of the uplink channel, the target reference signal includes a third reference signal or A reference signal having a quasi-co-location relationship with the third reference signal, where the third reference signal is the reference signal indicated by the second parameter.
  • the target reference signal includes a fourth reference signal or a reference signal having a quasi-co-location relationship with the fourth reference signal
  • the fourth reference signal is a control resource set of the current downlink bandwidth The reference signal indicated by the transmission configuration indication information.
  • the target reference signal includes a fifth reference signal or a reference signal having a quasi-co-location relationship with the fifth reference signal, and the fifth reference signal is used for A reference signal for timing synchronization of a cell.
  • the target reference signal includes a sixth reference signal or a reference signal having a quasi-co-location relationship with the sixth reference signal; the method further includes:
  • the sixth reference signal is determined by the reference signal indicated by the downlink channel indication information.
  • reference signal is used as the path loss reference signal.
  • the reference signal can accurately calculate the downlink path loss, thereby improving the accuracy and efficiency of determining the uplink transmission power of the uplink channel, and eliminating additional activation delay.
  • the communication device may be a chip or a chip system
  • the communication device may be a chip or a chip system
  • the chip 70 includes a processor 701 and an interface 702 .
  • the number of processors 701 may be one or more, and the number of interfaces 702 may be more than one. It should be noted that the corresponding functions of the processor 701 and the interface 702 can be realized by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • the chip 70 may further include a memory 703 for storing necessary program instructions and data.
  • the processor 701 may be configured to call from the memory 703 an implementation program of one or more devices or network elements in the terminal device or network device of the path loss reference signal determination method provided by one or more embodiments of the present application, and execute the instructions contained in the program.
  • the interface 702 can be used to output the execution result of the processor 701 .
  • the interface 702 may be specifically used to output various messages or information of the processor 701 .
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiment of the present application is used to provide a storage space, and data such as an operating system and a computer program may be stored in the storage space.
  • Memory includes but not limited to random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or portable Read-only memory (compact disc read-only memory, CD-ROM).
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the above-mentioned computer-readable storage medium, and when the above-mentioned computer program is run on one or more processors, The methods shown in Fig. 3 and Fig. 4 above can be implemented.
  • the present application also provides a computer program product, the computer program product includes: a computer program, when the computer program is run on the computer, the above methods shown in Figure 3 and Figure 4 can be implemented .
  • the embodiment of the present application also provides a system, which includes at least one communication device 50 or 60 or chip 70 as described above, and is used to perform the steps performed by the corresponding network elements in any of the embodiments in FIG. 3 and FIG. 4 .
  • the embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any one of the above method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), a general processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC) , off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, system on chip (SoC), or central processing It can also be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit, MCU) ), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • NP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable controller
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the terminal equipment and network equipment in the above-mentioned various apparatus embodiments correspond completely to the terminal equipment and network equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units, for example, the communication unit (transceiver) executes the receiving method in the method embodiments. Or the step of sending, other steps besides sending and receiving may be performed by a processing unit (processor). For the functions of the specific units, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • references to "an embodiment” throughout this specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Thus, the various embodiments throughout the specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the project.
  • the expression includes at least one of the following: A, B, ..., and X"
  • the applicable entries for this item can also be obtained according to the aforementioned rules.
  • the terminal device and the network device can perform some or all of the steps in the embodiment of the present application, these steps or operations are only examples, and the embodiment of the present application can also perform other operations or various operations. out of shape.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk, and other media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种路损参考信号确定方法及相关装置,涉及通信技术领域。该方法包括:终端设备接收网络设备发送的激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;所述终端设备将目标参考信号确定为路损参考信号,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号,所述路损参考信号用于确定所述上行信道的上行发送功率。本方法通过选择一个能较为真实的反映UE所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。

Description

一种路损参考信号确定方法及相关装置
本申请要求于2021年12月30日提交中国专利局、申请号为2021116698102、申请名称为“一种路损参考信号确定方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种路损参考信号确定方法及相关装置。
背景技术
载波聚合(carrier aggregation,CA),是指将多个载波聚合在一起为用户设备(user equipment,UE)提供服务。对UE来说,每个载波可以看成一个小区。这些聚合在一起的小区,可以分为主小区(primary cell,PCell)和辅小区(secondary cell,SCell)。UE接入网络时,首先接入主小区,然后由主小区通过无线资源控制(radio resource control,RRC)重配置消息为UE添加若干个辅小区,并激活这些辅小区,使得这些辅小区具备物理上行控制信道(physical uplink control channel,PUCCH)等其他上行信道的数据接收能力,UE后续可以接入被激活的辅小区进行通信,获得相应的服务。
目前,在上述辅小区激活过程中,需要根据路损参考信号计算下行路损,从而确定UE在上行信道的上行发送功率,完成辅小区的激活。
但是,目前确定上行信道的上行发送功率的准确率和效率较低,还可能产生额外的激活时延。
发明内容
本申请实施例提供了一种路损参考信号确定方法及相关装置,通过选择一个能较为真实的反映UE所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
第一方面,本申请实施例提供了一种路损参考信号确定方法,该方法包括:
终端设备接收网络设备发送的激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
所述终端设备将目标参考信号确定为路损参考信号,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号,所述路损参考信号用于确定所述上行信道的上行发送功率。
本申请实施例中,提供了一种路损参考信号确定方法。具体为,终端设备接收网络设备发送的激活信息,指示第一小区被激活,该第一小区为具备终端设备对应的上行信道的数据接收能力的小区。在第一小区被激活的过程中,终端设备需要确定其对应的上行信道的上行发送功率,而确定上行信道的发送功率需要计算下行路损,因此,终端设备将目标参考信号确定为路损参考信号,其中,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,该路损参考信号可以用于计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。此外,本申请实施例提供的将目标参考信号确定为路损参考信号的方法不仅适用于第一小区激活过程中,在第一小区完成激活后,且网络设备一直未配置路损 参考信号的情况下,依然可以采用本申请实施例提供的方法,将上述目标参考信号确定为路损参考信号。
目前,在终端设备没有配置用于进行下行信道路损估计的参数的情况下,终端设备通常获取主信息块(master information block,MIB)的同步信号块(synchronization signal block,SSB)作为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率。但是在第一小区的激活过程中,终端设备在收到激活信息后,并不一定需要读取第一小区的主信息块,因此,此时终端设备选择何种参考信号作为路损参考信号并不明确,可能导致终端设备确定的上行信道的上行发送功率不准确,或者,终端设备需要等待网络设备配置的路损参考信号,从而导致第一小区额外的激活时延。
而本申请实施例中,终端设备在接收到网络设备发送的激活信息之后,将用于反映终端设备对应的下行链路路损情况的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述将目标参考信号确定为路损参考信号,包括:
在所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数的情况下,将所述目标参考信号确定为所述路损参考信号。
在本申请实施例中,提供了一种将目标参考信号确定为路损参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括第一参数的情况下,将上述目标参考信号确定为路损参考信号。其中,第一参数为用于进行下行信道路损估计的参数,目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号。与目前采用主信息块的同步信号块确定为路损参考信号的方式相比,本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,目标参考信号可以包括但不限于第一参考信号或第二参考信号或与第一参考信号具有准共址关系的参考信号或与第二参考信号具有准共址关系的参考信号。其中,第一参考信号为终端设备上报过的层3测量结果对应的参考信号,第二参考信号为终端设备上报过的层1测量结果对应的参考信号。具体的,上述层3测量结果可以是层3参考信号接收功率(Layer 3 reference signal received power,L3-RSRP),该第一参考信号可以是上报过的多个层3参考信号接收功率对应的参考信号中的任意一个,也可以是上报过的接收功率最高的层3参考信号接收功率对应的参考信号,还可以是指定时间段内上报的层3参考信号接收功率对应的参考信号,还可以是最新上报的层3参考信号接收功率对应的参考信号,此处不做限定,可根据具体的应用场景进行选择。上述层1测量结果可以是层1参考信号接收功率(Layer 1 reference signal received power,L1-RSRP),第二参考信号的选择与第一参考信号的选择类似,此处不做限定,可根 据具体的应用场景进行选择。通过本申请实施例,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第一参考信号或与第一参考信号具有准共址关系的参考信号确定为路损参考信号,或者,将上述第二参考信号或与第二参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,根据第一小区是已知小区还是未知小区来决定目标参考信号包括第一参考信号或与第一参考信号具有准共址关系的参考信号,还是包括第二参考信号或与第二参考信号具有准共址关系的参考信号。其中,在收到激活信息时,如果终端设备之前已经上报过该小区的测量结果,则将该小区视为已知小区,否则视为未知小区。当第一小区为已知小区时,目标参考信号包括上述第一参考信号或与第一参考信号具有准共址关系的参考信号,此时,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第一参考信号或与第一参考信号具有准共址关系的参考信号确定为路损参考信号。当第一小区为未知小区时,目标参考信号包括上述第二参考信号或与第二参考信号具有准共址关系的参考信号,此时,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第二参考信号或与第二参考信号具有准共址关系的参考信号确定为路损参考信号。通过本申请实施例确定的目标参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中包括用于确定上行信道的空间关系的参数的情况下,目标参考信号包括第三参考信号或与第三参考信号具有准共址关系的参考信号。其中,第三参考信号为上行信道的空间关系所指示的参考信号,如同步信号块、信道状态信息的参考信号、探测参考信号等。终端设备可以将上述第三参考信号或与第三参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。通过本申请实施例,终端设备选择网络设备配置的上行信道的空间关系所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,并且可以通过上行信道的空间关系所指示发送方向对应的路损确定上行信道的上行发送功率,此种方式下,终端设备与网络设备可以对下行路损建立一致理解,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号 具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,目标参考信号包括第四参考信号或与第四参考信号具有准共址关系的参考信号。其中,第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。终端设备可以将上述第四参考信号或与第四参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。通过本申请实施例,终端设备选择网络设备配置的控制资源集的传输配置指示信息所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,并且可以与网络设备对下行路损建立一致理解,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,目标参考信号包括第五参考信号或与第五参考信号具有准共址关系的参考信号。其中,在第一小区被激活的过程中,终端设备需要选择一个同步信号与第一小区进行精确的定时同步,第五参考信号即为终端设备选择的用于与第一小区进行精确定时同步的同步信号。终端设备可以将上述第五参考信号或与第五参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。通过本申请实施例,终端设备选择用于对第一小区进行精确定时同步的同步信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;所述方法还包括:
在所述第一小区的定时提前值失效的情况下,接收所述网络设备发送的下行信道指示信息;
将所述下行信道指示信息所指示的参考信号确定为所述第六参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,且在第一小区的定时提前值失效的情况下,目标参考信号包括第六参考信号或与第六参考信号具有准共址关系的参考信号。其中,在第一小区的定时提前值失效的情况下,终端设备接收网络设备发送的下行信道指示信息,触发随机接入,并将该下行信道指示信息所指示的参考信号确定为上述第六参考信号。终端设备可以将上述第六参考信号或与第六参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。通过本申请实施例,终端设备选择用于触发随机接入的下行信道指示信息所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
第二方面,本申请实施例提供了一种路损参考信号确定方法,该方法包括:
网络设备向终端设备发送激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
所述网络设备接收所述终端设备发送的第一消息,所述第一消息的上行发送功率由路损参考信号确定,所述路损参考信号由目标参考信号确定,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号。
本申请实施例中,提供了一种路损参考信号确定方法。具体为,网络设备向终端设备发送激活信息,指示第一小区被激活,该第一小区为具备终端设备对应的上行信道的数据接收能力的小区。在终端设备接入被激活后的第一小区后,网络设备接收终端设备发送的第一消息。其中,终端设备在向网络设备发送第一消息之前,需要确定其对应的上行信道的上行发送功率,即第一消息的上行发送功率,而确定上行信道的发送功率需要计算下行路损,因此,第一消息的上行发送功率由路损参考信号确定,而路损参考信号可以由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,该路损参考信号可以用于计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。此外,本申请实施例提供的将目标参考信号确定为路损参考信号的方法不仅适用于第一小区激活过程中,在第一小区完成激活后,且网络设备一直未配置路损参考信号的情况下,依然可以采用本申请实施例提供的方法,将上述目标参考信号确定为路损参考信号。
目前,在终端设备没有配置用于进行下行信道路损估计的参数的情况下,路损参考信号通常由主信息块的同步信号块确定,计算下行路损,进而确定第一消息的上行发送功率。但是在第一小区的激活过程中,终端设备在收到网络设备发送的激活信息后,并不一定需要读取第一小区的主信息块,因此,此时路损参考信号由何种参考信号确定并不明确,可能导致确定的第一消息的上行发送功率不准确,从而导致网络设备无法成功接收第一消息,或者,需要等待网络设备为终端设备配置路损参考信号,从而导致第一小区额外的激活时延以及第一消息额外的接收时延。
而本申请实施例中,网络设备接收的第一消息的上行发送功率由路损参考信号确定,且该路损参考信号由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,以实现网络设备成功接收第一消息。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数,所述路损参考信号由所述目标参考信号确定。
在本申请实施例中,提供了一种路损参考信号由目标参考信号确定的可能的实施方式。具体为,在第一小区对应的配置信息中不包括第一参数的情况下,路损参考信号由上述目标参考信号确定。其中,第一参数为用于进行下行信道路损估计的参数,目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号。与目前采用主信息块的同步信号块确定为路损参考信号的方式相比,本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效 率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,目标参考信号可以包括但不限于第一参考信号或第二参考信号或与第一参考信号具有准共址关系的参考信号或与第二参考信号具有准共址关系的参考信号。其中,第一参考信号为终端设备上报过的层3测量结果对应的参考信号,第二参考信号为终端设备上报过的层1测量结果对应的参考信号。具体的,上述层3测量结果可以是层3参考信号接收功率,该第一参考信号可以是上报过的多个层3参考信号接收功率对应的参考信号中的任意一个,也可以是上报过的接收功率最高的层3参考信号接收功率对应的参考信号,还可以是指定时间段内上报的层3参考信号接收功率对应的参考信号,还可以是最新上报的层3参考信号接收功率对应的参考信号,此处不做限定,可根据具体的应用场景进行选择。上述层1测量结果可以是层1参考信号接收功率,第二参考信号的选择与第一参考信号的选择类似,此处不做限定,可根据具体的应用场景进行选择。通过本申请实施例,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,路损参考信号可以由上述第一参考信号或与第一参考信号具有准共址关系的参考信号确定,或者,路损参考信号可以由上述第二参考信号或与第二参考信号具有准共址关系的参考信号确定,计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,根据第一小区是已知小区还是未知小区来决定目标参考信号包括第一参考信号或与第一参考信号具有准共址关系的参考信号,还是包括第二参考信号或与第二参考信号具有准共址关系的参考信号。其中,在收到激活信息时,如果终端设备之前已经上报过该小区的测量结果,则将该小区视为已知小区,否则视为未知小区。当第一小区为已知小区时,目标参考信号包括上述第一参考信号或与第一参考信号具有准共址关系的参考信号,此时,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,路损参考信号可以由上述第一参考信号与第一参考信号具有准共址关系的参考信号确定。当第一小区为未知小区时,目标参考信号包括上述第二参考信号或与第二参考信号具有准共址关系的参考信号,此时,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,路损参考信号可以由上述第二参考信号或与第二参考信号具有准共址关系的参考信号确定。通过本申请实施例确定的目标参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中包括用于确定上行信道的空间关系的参数的情况下,目标参考信号包括第三参考信号或与第三参考信号具有准共址关系的参考信号。其中,第三参考信号为上行信道的空间关系所指示的参考信号,如同步信号块、信道状态信息的参考信号、探测参考信号等。路损参考信号可以由上述第三参考信号或与第三参考信号具有准共址关系的参考信号确定,计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。通过本申请实施例,路损参考信号由网络设备配置的上行信道的空间关系所指示的参考信号或与其具有准共址关系的参考信号确定,能较为真实的反映终端设备所对应的下行链路路损情况,并且可以通过上行信道的空间关系所指示发送方向对应的路损确定第一消息的上行发送功率,此种方式下,终端设备与网络设备可以对下行路损建立一致理解,从而准确计算下行路损,提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,目标参考信号包括第四参考信号或与第四参考信号具有准共址关系的参考信号。其中,第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。路损参考信号可以由上述第四参考信号或与第四参考信号具有准共址关系的参考信号确定,计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。通过本申请实施例,路损参考信号由网络设备配置的控制资源集的传输配置指示信息所指示的参考信号或与其具有准共址关系的参考信号确定,能较为真实的反映终端设备所对应的下行链路路损情况,并且可以使网络设备与终端设备对下行路损建立一致理解,从而准确计算下行路损,提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,目标参考信号包括第五参考信号或与第五参考信号具有准共址关系的参考信号。其中,在第一小区被激活的过程中,终端设备需要选择一个同步信号与第一小区进行精确的定时同步,第五参考信号即为终端设备选择的用于与第一小区进行精确定时同步的同步信号。路损参考信号可以由上述第五参考信号或与第五参考信号具有准共址关系的参考信号确定,计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。通过本申请实施例,路损参考信号由用于终端设备与第一小区进行精确定时同步的同步信号或与其具有准共址关系的参考信号确定,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一 消息额外的接收时延。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;所述方法还包括:
在所述第一小区的定时提前值失效的情况下,向所述终端设备发送下行信道指示信息,所述第六参考信号由所述下行信道指示信息所指示的参考信号确定。
在本申请实施例中,提供了一种目标参考信号的可能的实施方式。具体为,在第一小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,且在第一小区的定时提前值失效的情况下,目标参考信号包括第六参考信号或与第六参考信号具有准共址关系的参考信号。其中,在第一小区的定时提前值失效的情况下,网络设备向终端设备发送下行信道指示信息,用于触发终端设备随机接入,并指示将该下行信道指示信息所指示的参考信号确定为上述第六参考信号。路损参考信号由上述第六参考信号或与第六参考信号具有准共址关系的参考信号确定,计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。通过本申请实施例,路损参考信号由用于触发终端设备随机接入的下行信道指示信息所指示的参考信号或与其具有准共址关系的参考信号确定,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
第三方面,本申请实施例提供了一种通信装置,该装置包括用于执行如第一方面或者如第二方面中任一项所述方法的模块或单元。
在一种可能的设计中,该通信装置包括:
收发单元,用于接收网络设备发送的激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
处理单元,用于将目标参考信号确定为路损参考信号,所述目标参考信号包括用于反映所述通信装置对应的下行链路路损情况的参考信号,所述路损参考信号用于确定所述上行信道的上行发送功率。
在一种可能的实施方式中,所述处理单元,具体用于在所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数的情况下,将所述目标参考信号确定为所述路损参考信号。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述通信装置上报过的层3测量结果对应的参考信号,所述第二参考信号为所述通信装置上报过的层1测量结果对应的参考信号。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指 示信息所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;
所述收发单元,还用于在所述第一小区的定时提前值失效的情况下,接收所述网络设备发送的下行信道指示信息;
所述处理单元,还用于将所述下行信道指示信息所指示的参考信号确定为所述第六参考信号。
关于第三方面以及任一项可能的实施方式所带来的技术效果,可参考对应于第一方面以及相应的实施方式的技术效果的介绍。
在另一种可能的设计中,该通信装置包括:
收发单元,用于向终端设备发送激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
所述收发单元,还用于接收所述终端设备发送的第一消息,所述第一消息的上行发送功率由路损参考信号确定,所述路损参考信号由目标参考信号确定,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号。
在一种可能的实施方式中,所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数,所述路损参考信号由所述目标参考信号确定。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;
所述收发单元,还用于在所述第一小区的定时提前值失效的情况下,向所述终端设备发送下行信道指示信息,所述第六参考信号由所述下行信道指示信息所指示的参考信号确定。
关于第三方面以及任一项可能的实施方式所带来的技术效果,可参考对应于第二方面以及相应的实施方式的技术效果的介绍。
第四方面,本申请实施例提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请实施例提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第六方面,本申请实施例提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
可以理解的是,上述第六方面中的通信装置可以是一个或多个芯片。该通信装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序(也可以称为代码,或指令);当所述计算机程序在计算机上运行时,使得上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法被实现。
第八方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令);当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面任一方面以及任一项可能的实施方式的方法。
第九方面,本申请实施例提供一种芯片,该芯片包括处理器,所述处理器用于执行指令,当该处理器执行所述指令时,使得该芯片执行上述第一方面至第二方面任一方面以及任一项可能的实施方式所述的方法。可选的,该芯片还包括通信接口,所述通信接口用于接收信号或发送信号。
第十方面,本申请实施例提供了一种通信系统,包括终端设备和网络设备。
第十一方面,提供了一种芯片系统,该芯片系统包括处理器和接口电路,处理器用于从存储器中调用并运行存储器中存储的计算机程序(也可以称为代码,或指令),以实现第一方面至第二方面任一方面以及任一项可能的实施方式所涉及的功能;在一种可能的设计中,该 芯片系统还包括存储器,存储器用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
此外,在执行上述第一方面至第二方面任一方面以及任一项可能的实施方式所述的方法的过程中,上述方法中有关发送信息和/或接收信息等的过程,可以理解为由处理器输出信息的过程,和/或,处理器接收输入的信息的过程。在输出信息时,处理器可以将信息输出给收发器(或者通信接口、或发送模块),以便由收发器进行发射。信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的信息时,收发器(或者通信接口、或发送模块)接收信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送信息可以理解为处理器输出信息。又例如,接收信息可以理解为处理器接收输入的信息。
可选的,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作。
可选的,在执行上述第一方面至第二方面任一方面以及任一项可能的实施方式所述的方法的过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是通过执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实施方式中,上述至少一个存储器位于装置之外。
在又一种可能的实施方式中,上述至少一个存储器位于装置之内。
在又一种可能的实施方式之中,上述至少一个存储器的部分存储器位于装置之内,另一部分存储器位于装置之外。
本申请中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可以被集成在一起。
本申请实施例中,明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的另一种通信系统的架构示意图;
图3为本申请实施例提供的一种路损参考信号确定方法的流程示意图;
图4为本申请实施例提供的一种路损参考信号确定方法的流程示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图对本申请实施例进行描述。
如背景技术部分所述,目前需要研究如何提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延的技术问题。本申请提供了一种路损参考信号确定方法及相关装置,涉及通信技术领域,明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
为了更清楚地描述本申请的方案,下面先介绍一些与路损参考信号确定方法相关的知识。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,卫星通信系统,卫星通信与蜂窝网络融合的系统。其中,蜂窝网络系统可以包括但不限于:第五代(5th generation,5G)系统、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTEbased access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如:设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及未来演进的其他通信系统等其他新的系统,本申请实施例也可以应用于这些通信系统。卫星通信系统可以包括各种非陆地网络系统,例如,卫星或无人机系统(unmanned aircraft system,UAS)平台等进行无线频率发射的网络,此处不再一一列举。
下面结合本申请实施例中的附图对本申请实施例进行描述。
示例性的,本申请实施例应用的通信系统100可参阅图1,图1为本申请实施例提供的一种通信系统的架构示意图。
如图1所示,该通信系统100主要包括接入网和用户设备(user equipment,UE)101两部分。其中,接入网用于实现无线接入有关的功能,主要包括接入网络(access network,AN)设备102,接入网络设备包括了无线接入网络(radio access network,RAN)设备以及其它通过空口接入的设备(比如WiFi)。各网元之间的接口如图1中所示。应理解,网元之 间还可以采用服务化接口进行通信。
UE,也可以称为终端设备。终端设备可以经AN设备与一个或多个核心网(core network,CN)进行通信。本申请实施例中涉及的终端设备包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接网络;和/或经由无线接口,如:针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如手持数字电视广播(Digital Video Broadcast-Handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(Amplitude Modulation-Frequency Modulation,AM-FM)广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。该终端设备的示例包括但不限于卫星电话或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历和/或全球定位系统(Global Positioning System,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、物联网或车联网中的终端设备、5G网络中的终端设备、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备以及未来网络中的任意形态的终端设备等。
AN设备,是一种将终端设备接入到无线网络的设备,具体可以为基站。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。具体可以为:无线局域网(wireless local area network,WLAN)中的接入点(access point,AP),全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及5G系统中的下一代节点B(the next generation Node B,gNB)或者未来演进的公用陆地移动网(public land mobile network,PLMN)网络中的基站等,本申请实施例对此不作具体限定。
由图1可以看出,通信系统100应用于载波聚合(Carrier Aggregation,CA)场景中,载波聚合指的是将多个载波聚合在一起为UE提供服务,可以提高通信系统的数据传输容量。对UE来说,每个载波可以看成一个小区。接入网络设备102覆盖了多个小区(主小区、辅小区1、辅小区2、….、辅小区n),这些聚合在一起的小区,可以分为主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell)。UE接入网络时,首先接入主小区,然后由主小区通过RRC重配置消息为UE添加若干个辅小区(如辅小区1、辅小区2、…、辅小区n),使得UE后续可以接入辅小区进行通信,获得相应的服务。
对于添加的辅小区,主小区可以将其配置为激活(activated)态或者去激活(deactivated) 态。主小区通过辅小区激活和去激活的媒体接入控制的控制元素(Medium Access Control-Control Element,MAC CE)来调整每个辅小区的状态。当某个辅小区处于激活态时,UE可以在该辅小区上发送探测参考信号(Sounding Reference Signal,SRS)、上报信道状态信息(Channel State Information,CSI)、检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)等。当某个辅小区处于去激活态时,UE在该辅小区上不发送SRS、不测量和上报CSI、不传输上行数据、不检测PDCCH。
图1中的多个小区部署在同一个接入网络设备102中,这种部署方式也称为站内(intra-site)载波聚合。站内载波聚合场景中,各个小区之间的数据传输可以理解为是接入网络设备102中与各个小区对应的各个不同网元(功能模块)之间的数据传输。
应理解,本申请实施例并不限定只应用于图1所示的通信系统架构中。例如,可以应用本申请实施例的路损参考信号确定方法的通信系统中可以包括更多或更少的网元或设备。图1中的设备或网元可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。图1中的设备或网元之间可以通过其他设备或网元通信。
示例性的,本申请实施例应用的通信系统200可参阅图2,图2为本申请实施例提供的另一种通信系统的架构示意图。
如图2所示,该通信系统200主要包括接入网和用户设备(user equipment,UE)101两部分。其中,接入网用于实现无线接入有关的功能,主要包括接入网络(access network,AN)设备(102、103、104、105),接入网络设备包括了无线接入网络(radio access network,RAN)设备以及其它通过空口接入的设备(比如WiFi)。各网元之间的接口如图2中所示。应理解,网元之间还可以采用服务化接口进行通信。
本申请实施例所示的通信系统中的UE和AN设备与上述图1中的通信系统类似,此处不再赘述。
由图2可以看出,通信系统200应用于载波聚合(Carrier Aggregation,CA)场景中,可以提高通信系统的数据传输容量,不同于上述图1所示的通信系统的载波聚合场景,本申请实施例中的多个小区分别部署在不同的接入网络设备中,如主小区部署在接入网络设备102中,辅小区1部署在接入网络设备103中,辅小区2部署在接入网络设备104中,辅小区n部署在接入网络设备105中。这种部署方式也称为站间(inter-site)载波聚合。站间载波聚合场景中,各个小区之间的数据传输可以理解为是与各个小区对应的各个不同接入网络设备之间的数据传输。UE接入网络时,首先接入主小区,然后由主小区通过RRC重配置消息为UE添加若干个辅小区(如辅小区1、辅小区2、…、辅小区n),使得UE后续可以接入辅小区进行通信,获得相应的服务。
应理解,本申请实施例并不限定只应用于图2所示的通信系统架构中。例如,可以应用本申请实施例的路损参考信号确定方法的通信系统中可以包括更多或更少的网元或设备。图2中的设备或网元可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。图2中的设备或网元之间可以通过其他设备或网元通信。
基于上述图1或图2中的通信系统所应用的载波聚合场景,UE接入网络时,首先接入主小区,然后由主小区通过RRC重配置消息为UE添加若干个辅小区(如辅小区1、辅小区2、…、辅小区n),使得UE后续可以接入辅小区进行数据传输,获得相应的服务。
为了UE能够顺利接入辅小区进行数据传输,UE还需要和接入的辅小区进行上行同步或下行同步。下面将对UE与辅小区之间的上行同步、下行同步进行简单说明。
由于小区内不同的UE与网络设备(网元)之间的距离不同,因此,不同UE的上行信号 到达网络设备的时间也有所差异。这种差异会导致小区内不同UE的上行信号之间互相产生干扰。为了减少这种干扰,应该使得小区内不同UE的上行信号到达网络设备的时刻尽量对齐。通常采用上行定时提前(Timing Advance,TA)机制来实现网络设备侧接收到上行信号的时间同步,即UE与辅小区之间的上行同步。
其中,TA的原理是,给UE配置一个定时提前量(即TA值),UE发送上行数据时按照配置的TA值调整上行定时。通过合理配置不同UE的TA值,可以实现不同UE的上行信号到达网络设备的时刻大致相同。此外,网络设备通过测量UE发送的前导信号(preamble)或者探测参考信号(Sounding Reference Signal,SRS)等上行信号,可以计算出UE的TA值。网络设备向UE发送定时提前指令(Timing Advance Command,TAC),将计算出的TA值告知UE。TAC可以承载于MAC CE中。
下行同步,是指UE侧的同步,即UE获得网络设备的定时和频率等同步。UE通过接收网络设备发送的同步信号来实现下行同步。该同步信号包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),承载于同步信号块(Synchronization Signal Block,SSB)中。小区通常周期性发送SSB,UE搜索并接收SSB以获得与辅小区之间的下行同步。
此外,在通过RRC重配置消息为UE添加若干个辅小区之后,还需要通过MAC信令来激活这些辅小区,使得这些辅小区具备数据收发的能力。现有协议对辅小区激活时延的规定为,终端设备在接收到辅小区的激活信息后,需要反馈对应的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ),然后进行激活过程,并反馈CSI,表示该辅小区完成了激活过程。使得UE后续可以接入被激活的辅小区进行数据传输,获得相应的服务。
其中,辅小区的激活过程包括多个步骤,对于频率范围1(Frequency Range 1,FR1)的辅小区,该激活过程包括小区搜索、自动增益控制(automatic gain control,AGC)、定时同步等过程。而对于频率范围2(Frequency Range 2,FR2)的辅小区,由于涉及波束信息,该激活过程需要包括更多步骤,比如,还包括用于CSI上报的信道状态信息的参考信号(channel state information-reference signal,CSI-RS)激活的时间、配置传输配置指示(Transmission Configuration Indicator,TCI)的时间,以及如果待激活的辅小区是未知小区,UE还需要进行层1参考信号接收功率(Layer 1 reference signal received power,L1-RSRP)测量并上报,告诉网络波束信息。目前,对于未配置上行信道的辅小区,在完成HARQ反馈、激活步骤后,即可在对应的PUCCH反馈CSI信息,表示该辅小区激活完成。对于配置了上行信道的辅小区,还需要考虑以下步骤:确定上行信道的上行发送功率、确定上行发送波束、更新TA(如果TA失效)。
更新TA的方式可以为:在辅小区所在的定时提前量组(Timing Advance Group,TAG)对应的TA值已经过期的情况下,即此时与网络设备的上行同步已经过期,UE无法直接发送上行数据,需要重新获得上行同步后再进行发送。具体可以通过接收网络设备发送的物理下行控制信道指示信息来触发UE随机接入,UE通过发起随机接入过程,更新有效TA,从而具备上行数据发送能力。其中,物理下行控制信道指示信息中还需要明确指示所关联的同步信号块(synchronization signal block,SSB)。
确定上行信道的上行发送功率的方式可以为:UE计算下行路损,具体可以通过获取网络侧发送的信道的功率以及对路损参考信号(pathloss reference signals,PL-RS)测得的功率计算得到下行路损。其中,在不同的应用场景下,可以选择不同的参考信号作为用于计算下行路损的路损参考信号,由此计算得到的下行路损以及上行信道的上行发送功率也会不同。
根据现有协议的规定,主要可以根据网络侧对辅小区是否配置了第一参数以及第二参数,分为四种不同的情况,并在各个情况下选择不同的参考信号作为路损参考信号。其中,第一参数是网络侧配置的一组用来进行上行信道路损估计的参数,第二参数是网络侧配置的一组用来确定上行信道的空间关系和功率控制的参数。具体情况如下:
一、如果辅小区对应的配置信息中没有配置上述第一参数,则UE选择获取主信息块(master information block,MIB)的同步信号块(synchronization signal block,SSB)作为路损参考信号;
二、如果辅小区对应的配置信息中配置了上述第一参数以及第二参数,则UE通过上述第二参数的指示确定路损参考信号,比如,第二参数确定的上行信道的空间关系会指示用于确定上行空间关系的参考信号,也会支持路损参考信号的标识ID;
三、如果辅小区对应的配置信息中配置了上述第一参数,但未配置上述第二参数,则UE选择上述第一参数中配置的索引(index)为0的参考信号作为路损参考信号;
四、如果辅小区对应的配置信息中没有配置上述第一参数和第二参数,且网络侧配置了第三参数(enableDefaultBeamPL-forPUCCH),此时,UE选择当前下行带宽的控制资源集的传输配置指示信息(control-resource set,CORESET)所指示的参考信号作为路损参考信号。
在上述第一种情况下,如果辅小区对应的配置信息中没有配置上述第一参数,则UE选择获取MI B的同步信号块作为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率。但是,在辅小区被激活的过程中,UE在收到激活信息后,并不一定需要读取该辅小区的主信息块。因此,此时UE选择何种参考信号作为路损参考信号并不明确,可能导致UE确定的上行信道的上行发送功率不准确,或者,UE需要等待网络侧配置的路损参考信号,从而导致辅小区额外的激活时延。
针对上述确定上行信道的上行发送功率的准确率和效率较低,还可能产生额外的激活时延的技术问题,本申请提供了一种路损参考信号确定方法及相关装置,涉及通信技术领域,明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
请参阅图3,图3为本申请实施例提供的一种路损参考信号确定方法的流程示意图,该路损参考信号确定方法应用于通信技术领域。
如图3所示,本申请实施例的路损参考信号确定方法应用的通信系统包括但不限于终端设备、网络设备。
如图3所示,本申请实施例的路损参考信号确定方法可以包括步骤S301、S302以及S303,其中,步骤S301、S302以及S303的执行顺序,本申请实施例对此不作限制,具体的,该路损参考信号确定方法包括但不限于如下步骤:
步骤S301:终端设备接收网络设备发送的激活信息,相应的,网络设备向终端设备发送激活信息。
其中,该激活信息用于指示第一小区被激活,该第一小区为配置了上行信道的小区。该第一小区具体可以是上述图1或图2中的辅小区1、辅小区2、…、辅小区n。该上行信道可以包括但不限于终端设备对应的物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)等上行信道。
本申请实施例中的网络设备为第一小区对应的网络设备,具体可以是上述图1中的网络 设备102。具体的,终端设备当前接入的主小区与第一小区所表示的辅小区部署在同一个网络设备(如基站)上时,本申请实施例中的网络设备还可以是第一小区与主小区对应的网络设备。本申请实施例中的终端设备为搭载了可用于执行计算机执行指令的处理器的设备,具体可以是如计算机、手机之类的终端设备等,具体还可以是上述图1或图2中的终端设备101,用于通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
需要注意的是,在本申请实施例中,以上述图1所示的站内载波聚合场景为例进行说明,即终端设备当前接入的主小区与第一小区所表示的辅小区部署在同一个网络设备(如基站)上,本申请实施例中的网络设备为第一小区与主小区对应的网络设备。具体的,终端设备当前接入的主小区可以对应于图1所示的主小区,本申请实施例中的第一小区可以对应于图1所示的辅小区1、辅小区2、…、辅小区n中的任意一个辅小区。相应的,本申请实施例中的网络设备可以对应于上述图1中的网络设备102,本申请实施例中的终端设备可以对应于上述图1中的终端设备101。
步骤S302:终端设备将目标参考信号确定为路损参考信号。
在接收到网络设备发送的激活信息后,表示辅小区处于被激活过程中。在辅小区的激活过程中,终端设备需要反馈对应的HARQ消息,然后进行辅小区激活,并反馈CSI,表示该辅小区完成了激活过程,使得终端设备后续可以与被激活的辅小区进行数据传输,获得相应的服务。
在本申请实施例中配置了上行信道的辅小区的激活过程中,比如,在配置了PUCCH的辅小区的激活过程中,终端设备还需要确定上行信道的上行发送功率。具体可以通过获取网络侧发送的信道的功率以及对路损参考信号测得的功率,计算得到下行路损,进而根据下行路损确定上行信道的上行发送功率。其中,在不同的应用场景下,可以选择不同的参考信号作为用于计算下行路损的路损参考信号,由此计算得到的下行路损以及上行信道的上行发送功率也会不同。
根据现有协议的规定,如果辅小区对应的配置信息中没有配置用来进行上行信道路损估计的参数,则终端设备选择获取MIB的同步信号块作为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率。
但是,在辅小区被激活的过程中,终端设备在收到激活信息后,并不一定需要读取该辅小区的主信息块。因此,此时终端设备选择何种参考信号作为路损参考信号并不明确,可能导致终端设备确定的上行信道的上行发送功率不准确,或者,终端设备需要等待网络侧配置的路损参考信号,从而导致辅小区额外的激活时延。
针对上述确定上行信道的上行发送功率的准确率和效率较低,还可能产生额外的激活时延的技术问题,在本步骤中,终端设备将目标参考信号确定为路损参考信号,其中,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号。通过将用于反映终端设备对应的下行链路路损情况的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成辅小区的激活。
此外,本步骤提供的将目标参考信号确定为路损参考信号的方法不仅适用于上述辅小区激活过程中,在辅小区完成激活后,依然可以采用本步骤提供的方法,将上述目标参考信号确定为路损参考信号。例如,在完成辅小区激活后,且网络设备也一直未配置路损参考信号的情况下,也可以按照本步骤的方法,将上述目标参考信号确定为路损参考信号,可以准确 计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率。
与现有协议的规定相比,本步骤明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
具体的,在辅小区对应的配置信息中没有配置用来进行上行信道路损估计的参数的情况下,终端设备将目标参考信号确定为路损参考信号,其中,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号。
在一些可能的实施例中,目标参考信号可以包括但不限于第一参考信号或第二参考信号或与第一参考信号具有准共址(quasi-colocation,QCL)关系的参考信号或与第二参考信号具有准共址关系的参考信号。
其中,第一参考信号为终端设备上报过的层3测量结果对应的参考信号,第二参考信号为终端设备上报过的层1测量结果对应的参考信号。
具体的,上述层3测量结果可以是层3参考信号接收功率(Layer 3 reference signal received power,L3-RSRP),该第一参考信号可以是上报过的多个层3参考信号接收功率对应的参考信号中的任意一个,也可以是上报过的接收功率最高的层3参考信号接收功率对应的参考信号,还可以是指定时间段内上报的层3参考信号接收功率对应的参考信号,还可以是最新上报的层3参考信号接收功率对应的参考信号,此处不做限定,可根据具体的应用场景进行选择。
上述层1测量结果可以是层1参考信号接收功率(Layer 1 reference signal received power,L1-RSRP),第二参考信号的选择与第一参考信号的选择类似,该第二参考信号可以是上报过的多个层1参考信号接收功率对应的参考信号中的任意一个,也可以是上报过的接收功率最高的层1参考信号接收功率对应的参考信号,还可以是指定时间段内上报的层1参考信号接收功率对应的参考信号,还可以是最新上报的层1参考信号接收功率对应的参考信号,此处不做限定,可根据具体的应用场景进行选择。
在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第一参考信号或与第一参考信号具有准共址关系的参考信号确定为路损参考信号,或者,将上述第二参考信号或与第二参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
进一步地,可以根据辅小区是已知小区还是未知小区来决定目标参考信号包括第一参考信号或与第一参考信号具有准共址关系的参考信号,还是包括第二参考信号或与第二参考信号具有准共址关系的参考信号。
其中,在收到激活信息时,如果终端设备之前已经上报过该小区的测量结果,则将该小区视为已知小区,否则视为未知小区。
具体的,当辅小区为已知小区时,目标参考信号包括上述第一参考信号或与第一参考信号具有准共址关系的参考信号。此时,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第一参考信号或与第一参考信号具有准共址关系的参考信号确定为路损参考信号。
当辅小区为未知小区时,目标参考信号包括上述第二参考信号或与第二参考信号具有准 共址关系的参考信号。此时,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第二参考信号或与第二参考信号具有准共址关系的参考信号确定为路损参考信号。
可选的,当终端设备上报了层1参考信号接收功率或层3参考信号接收功率后,网络侧可以通过信令指示其中一个对应的参考信号作为路损参考信号。其中,该信令可以是RRC信令、MAC信令、DCI信令等。
可选的,网络侧可以在激活辅小区的信令中同时指示终端设备选择一个对应的参考信号作为路损参考信号,也可以通过单独的信令指示终端设备选择一个对应的参考信号作为路损参考信号。
本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一些可能的实施例中,目标参考信号包括第三参考信号或与第三参考信号具有准共址关系的参考信号。
其中,第三参考信号为上行信道的空间关系所指示的参考信号,如同步信号块、信道状态信息的参考信号、探测参考信号等。
具体的,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第三参考信号或与第三参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
本申请实施例中,终端设备选择网络设备配置的上行信道的空间关系所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,并且可以通过上行信道的空间关系所指示发送方向对应的路损确定上行信道的上行发送功率,此种方式下,终端设备与网络设备可以对下行路损建立一致理解,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一些可能的实施例中,目标参考信号包括第四参考信号或与第四参考信号具有准共址关系的参考信号。
其中,第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
具体的,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第四参考信号或与第四参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
本申请实施例中,终端设备选择网络设备配置的控制资源集的传输配置指示信息所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,并且可以与网络设备对下行路损建立一致理解,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一些可能的实施例中,目标参考信号包括第五参考信号或与第五参考信号具有准共址关系的参考信号。
其中,在辅小区被激活的过程中,终端设备需要选择一个同步信号与辅小区进行精确的定时同步,第五参考信号即为终端设备选择的用于与辅小区进行精确定时同步的同步信号。
具体的,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,终端设备可以将上述第五参考信号或与第五参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
本申请实施例中,终端设备选择用于对辅小区进行精确定时同步的同步信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一些可能的实施例中,目标参考信号包括第六参考信号或与第六参考信号具有准共址关系的参考信号。
其中,在辅小区的定时提前值失效的情况下,终端设备接收网络设备发送的下行信道指示信息,触发随机接入,并将该下行信道指示信息所指示的参考信号确定为上述第六参考信号。
具体的,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,且在辅小区的定时提前值失效的情况下,终端设备可以将上述第六参考信号或与第六参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
本申请实施例中,终端设备选择用于触发随机接入的下行信道指示信息所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一些可能的实施例中,可以规定在激活配置了上行信道的辅小区时,比如,在激活配置了PUCCH的辅小区时,网络侧一定要配置路损参考信号,即排除了具备PUCCH数据接收能力的辅小区没有配置路损参考信号的情况。
此时,终端设备可以直接根据网络侧配置的路损参考信号准确计算下行路损,大大提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
可以理解的是,在上述多种可能的实施例中,选择何种参考信号作为目标参考信号,进而确定路损参考信号,将直接影响到计算下行路损的准确性,以及确定上行信道的上行发送功率的准确性。因此,在不同的应用场景中,需要基于能较为真实的反映终端设备所对应的下行链路路损情况的原则去选择合适的参考信号作为目标参考信号,进而确定路损参考信号,即应当基于提高计算下行路损的准确性,以及提高确定上行信道的上行发送功率的准确性的原则确定路损参考信号,而不应当仅以上述提供的有限个实施例对在不同的应用场景中确定路损参考信号构成限定。
比如,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,且在辅小区的定时提前值失效的情况下,可以按照上述实施例中的方法,将上述第六参考信号或与第六参考信号具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活;
也可以根据该辅小区是已知小区还是未知小区来决定选择何种参考信号作为路损参考信号,当该辅小区为已知小区时,将终端设备上报过的层3测量结果(比如,上报过的层3参考信号接收功率)对应的参考信号或与其具有准共址关系的参考信号作为路损参考信号,当该辅小区为未知小区时,将终端设备上报过的层1测量结果(比如,上报过的层1参考信号接收功率)对应的参考信号或与其具有准共址关系的参考信号作为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活;
还可以将上行信道的空间关系所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活;
还可以将当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号或与其具有准共址关系的参考信号作为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活;
还可以将上述终端设备选择的用于与该辅小区进行精确定时同步的同步信号或与其具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
具体采用何种方式确定路损参考信号可以根据不同的需要进行调整,应以提高计算下行路损的准确性,以及提高确定上行信道的上行发送功率的准确性的结果为导向来确定最终的路损参考信号。
步骤S303:终端设备向网络设备发送第一消息,相应的,网络设备接收终端设备发送的第一消息。
在终端设备确定路损参考信号,计算下行路损,进而确定上行信道的上行发送功率之后,辅小区完成激活过程。在终端设备接入被激活后的辅小区后,终端设备向网络设备发送第一消息,该第一消息为上行消息,相应的,网络设备接收终端设备发送的第一消息。
其中,终端设备发送第一消息的发送功率即为上述根据路损参考信号确定上行信道的上行发送功率。因此,第一消息的上行发送功率由路损参考信号确定,而路损参考信号可以由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,该路损参考信号可以用于计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。
目前,在终端设备没有配置用于进行下行信道路损估计的参数的情况下,路损参考信号通常由主信息块的同步信号块确定,计算下行路损,进而确定第一消息的上行发送功率。但是在辅小区的激活过程中,终端设备在收到网络设备发送的激活信息后,并不一定需要读取辅小区的主信息块,因此,此时路损参考信号由何种参考信号确定并不明确,可能导致确定的第一消息的上行发送功率不准确,从而导致网络设备无法成功接收第一消息,或者,需要等待网络设备为终端设备配置路损参考信号,从而导致辅小区额外的激活时延以及第一消息额外的接收时延。
而本申请实施例中,网络设备接收的第一消息的上行发送功率由路损参考信号确定,且该路损参考信号由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,以实现网络设备成功接收第一消息。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效率,消除辅小区额外的激活时延以及第一消息额外的接收时延。
请参阅图4,图4为本申请实施例提供的另一种路损参考信号确定方法的流程示意图,也可以理解为是上述图3中的路损参考信号确定方法流程图的变形或补充。
如图4所示,本申请实施例的路损参考信号确定方法应用的通信系统包括但不限于终端设备、网络设备。其中,上述图3中的终端设备相当于本申请实施例中的终端设备;上述图3中的网络设备相当于本申请实施例中的网络设备。
如图4所示,本申请实施例的路损参考信号确定方法可以包括步骤S401、S402、S403以及S404,其中,步骤S401、S402、S403以及S404的执行顺序,本申请实施例对此不作限制,具体的,该路损参考信号确定方法包括但不限于如下步骤:
步骤S401:终端设备接收网络设备发送的激活信息,相应的,网络设备向终端设备发送激活信息。
其中,该激活信息用于指示第一小区被激活,该第一小区为配置了上行信道的小区。该第一小区具体可以是上述图1或图2中的辅小区1、辅小区2、…、辅小区n。该上行信道可以包括但不限于终端设备对应的物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)等上行信道。
本申请实施例中的网络设备为第一小区对应的网络设备,具体可以是上述图1中的网络设备102。具体的,终端设备当前接入的主小区与第一小区所表示的辅小区部署在同一个网络设备(如基站)上时,本申请实施例中的网络设备还可以是第一小区与主小区对应的网络设备。本申请实施例中的终端设备为搭载了可用于执行计算机执行指令的处理器的设备,具体可以是如计算机、手机之类的终端设备等,具体还可以是上述图1或图2中的终端设备101,用于通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
需要注意的是,在本申请实施例中,以上述图1所示的站内载波聚合场景为例进行说明,即终端设备当前接入的主小区与第一小区所表示的辅小区部署在同一个网络设备(如基站)上,本申请实施例中的网络设备为第一小区与主小区对应的网络设备。具体的,终端设备当前接入的主小区可以对应于图1所示的主小区,本申请实施例中的第一小区可以对应于图1所示的辅小区1、辅小区2、…、辅小区n中的任意一个辅小区。相应的,本申请实施例中的网络设备可以对应于上述图1中的网络设备102,本申请实施例中的终端设备可以对应于上述图1中的终端设备101。
步骤S402:网络设备向终端设备发送下行信道指示信息,相应的,终端设备接收网络设备发送的下行信道指示信息。
在辅小区的定时提前值失效的情况下,网络设备向终端设备发送下行信道指示信息,该下行信道指示信息用于触发终端设备随机接入。相应的,终端设备接收网络设备发送的下行信道指示信息,进行随机接入。
步骤S403:终端设备将下行信道指示信息所指示的参考信号或与其具有准共址关系的参考信号确定为路损参考信号。
具体的,在辅小区对应的配置信息中不包括用于进行下行信道路损估计的参数的情况下,且在辅小区的定时提前值失效的情况下,终端设备可以将下行信道指示信息所指示的参考信号或与其具有准共址关系的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。
本申请实施例中,终端设备选择用于触发随机接入的下行信道指示信息所指示的参考信 号或与其具有准共址关系的参考信号作为路损参考信号,能较为真实的反映终端设备所对应的下行链路路损情况,从而准确计算下行路损,提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
步骤S404:终端设备向网络设备发送第一消息,相应的,网络设备接收终端设备发送的第一消息。
在终端设备确定路损参考信号,计算下行路损,进而确定上行信道的上行发送功率之后,辅小区完成激活过程。在终端设备接入被激活后的辅小区后,终端设备向网络设备发送第一消息,该第一消息为上行消息,相应的,网络设备接收终端设备发送的第一消息。
其中,终端设备发送第一消息的发送功率即为上述根据路损参考信号确定上行信道的上行发送功率。因此,第一消息的上行发送功率由路损参考信号确定,而路损参考信号可以由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,该路损参考信号可以用于计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。
本申请实施例中,网络设备接收的第一消息的上行发送功率由路损参考信号确定,且该路损参考信号由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,以实现网络设备成功接收第一消息。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效率,消除辅小区额外的激活时延以及第一消息额外的接收时延。
以上,结合图3至图4详细说明了本申请实施例提供的方法。
以下,结合图5至图7详细说明本申请实施例提供的装置。
可以理解的是,为了实现上述实施例中功能,终端设备以及网络设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件、软件、或硬件和软件相结合的形式来实现。某个功能究竟以硬件、软件、或是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
请参阅图5,图5为本申请实施例提供的一种通信装置的结构示意图。
如图5所示,该通信装置50可以包括收发单元501以及处理单元502。收发单元501以及处理单元502可以是软件,也可以是硬件,或者是软件和硬件结合。
其中,收发单元501可以实现发送功能和/或接收功能,收发单元501也可以描述为通信单元.。收发单元501还可以是集成了获取单元和发送单元的单元,其中,获取单元用于实现接收功能,发送单元用于实现发送功能。可选的,收发单元501可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。
在一种可能的设计中,该通信装置50可对应于上述图3所示的方法实施例中的终端设备,如该通信装置50可以是终端设备,也可以是终端设备中的芯片。该通信装置50可以包括用于执行上述图3所示的方法实施例中由终端设备所执行的操作的单元,并且,该通信装置50中的各单元分别为了实现上述图3所示的方法实施例中由终端设备所执行的操作。其中,各个单元的描述如下:
收发单元501,用于接收网络设备发送的激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
处理单元502,用于将目标参考信号确定为路损参考信号,所述目标参考信号包括用于反映所述通信装置对应的下行链路路损情况的参考信号,所述路损参考信号用于确定所述上行信道的上行发送功率。
本申请实施例中,提供了一种路损参考信号确定方法。具体为,终端设备接收网络设备发送的激活信息,指示第一小区被激活,该第一小区为具备终端设备对应的上行信道的数据接收能力的小区。在第一小区被激活的过程中,终端设备需要确定其对应的上行信道的上行发送功率,而确定上行信道的发送功率需要计算下行路损,因此,终端设备将目标参考信号确定为路损参考信号,其中,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,该路损参考信号可以用于计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。此外,本申请实施例提供的将目标参考信号确定为路损参考信号的方法不仅适用于第一小区激活过程中,在第一小区完成激活后,且网络设备一直未配置路损参考信号的情况下,依然可以采用本申请实施例提供的方法,将上述目标参考信号确定为路损参考信号。
目前,在终端设备没有配置用于进行下行信道路损估计的参数的情况下,终端设备通常获取主信息块的同步信号块确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率。但是在第一小区的激活过程中,终端设备在收到激活信息后,并不一定需要读取第一小区的主信息块,因此,此时终端设备选择何种参考信号作为路损参考信号并不明确,可能导致终端设备确定的上行信道的上行发送功率不准确,或者,终端设备需要等待网络设备配置的路损参考信号,从而导致第一小区额外的激活时延。
而本申请实施例中,终端设备在接收到网络设备发送的激活信息之后,将用于反映终端设备对应的下行链路路损情况的参考信号确定为路损参考信号,计算下行路损,进而确定上行信道的上行发送功率,以完成第一小区的激活。本申请实施例明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
在一种可能的实施方式中,所述处理单元502,具体用于在所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数的情况下,将所述目标参考信号确定为所述路损参考信号。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述通信装置上报过的层3测量结果对应的参考信号,所述第二参考信号为所述通信装置上报过的层1测量结果对应的参考信号。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指 示信息所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;
所述收发单元501,还用于在所述第一小区的定时提前值失效的情况下,接收所述网络设备发送的下行信道指示信息;
所述处理单元502,还用于将所述下行信道指示信息所指示的参考信号确定为所述第六参考信号。
在另一种可能的设计中,该通信装置50可对应于上述图3所示的方法实施例中的网络设备,如该通信装置50可以是网络设备,也可以是网络设备中的芯片。该通信装置50可以包括用于执行上述图3所示的方法实施例中由网络设备所执行的操作的单元,并且,该通信装置50中的各单元分别为了实现上述图3所示的方法实施例中由网络设备所执行的操作。其中,各个单元的描述如下:
收发单元501,用于向终端设备发送激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
所述收发单元501,还用于接收所述终端设备发送的第一消息,所述第一消息的上行发送功率由路损参考信号确定,所述路损参考信号由目标参考信号确定,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号。
本申请实施例中,提供了一种路损参考信号确定方法。具体为,网络设备向终端设备发送激活信息,指示第一小区被激活,该第一小区为具备终端设备对应的上行信道的数据接收能力的小区。在终端设备接入被激活后的第一小区后,网络设备接收终端设备发送的第一消息。其中,终端设备在向网络设备发送第一消息之前,需要确定其对应的上行信道的上行发送功率,即第一消息的上行发送功率,而确定上行信道的发送功率需要计算下行路损,因此,第一消息的上行发送功率由路损参考信号确定,而路损参考信号可以由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,该路损参考信号可以用于计算下行路损,进而确定第一消息的上行发送功率,以实现网络设备成功接收第一消息。此外,本申请实施例提供的将目标参考信号确定为路损参考信号的方法不仅适用于第一小区激活过程中,在第一小区完成激活后,且网络设备一直未配置路损参考信号的情况下,依然可以采用本申请实施例提供的方法,将上述目标参考信号确定为路损参考信号。
目前,在终端设备没有配置用于进行下行信道路损估计的参数的情况下,路损参考信号通常由主信息块的同步信号块确定,计算下行路损,进而确定第一消息的上行发送功率。但是在第一小区的激活过程中,终端设备在收到网络设备发送的激活信息后,并不一定需要读取第一小区的主信息块,因此,此时路损参考信号由何种参考信号确定并不明确,可能导致确定的第一消息的上行发送功率不准确,从而导致网络设备无法成功接收第一消息,或者,需要等待网络设备为终端设备配置路损参考信号,从而导致第一小区额外的激活时延以及第一消息额外的接收时延。
而本申请实施例中,网络设备接收的第一消息的上行发送功率由路损参考信号确定,且该路损参考信号由目标参考信号确定,该目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,以实现网络设备成功接收第一消息。本申请实施例明确规定了采用 何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定第一消息的上行发送功率的准确率和效率,消除第一小区额外的激活时延以及第一消息额外的接收时延。
在一种可能的实施方式中,所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数,所述路损参考信号由所述目标参考信号确定。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;
所述收发单元501,还用于在所述第一小区的定时提前值失效的情况下,向所述终端设备发送下行信道指示信息,所述第六参考信号由所述下行信道指示信息所指示的参考信号确定。
根据本申请实施例,图5所示的装置中的各个单元可以分别或全部合并为一个或若干个另外的单元来构成,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本申请的其它实施例中,基于终端设备或网络设备也可以包括其它单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。
需要说明的是,各个单元的实现还可以对应参照上述图3、图4所示的方法实施例的相应描述。
在图5所描述的通信装置50中,明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
请参阅图6,图6为本申请实施例提供的一种通信装置的结构示意图。
应理解,图6示出的通信装置60仅是示例,本申请实施例的通信装置还可包括其他部件,或者包括与图6中的各个部件的功能相似的部件,或者并非要包括图6中所有部件。
通信装置60包括通信接口601和至少一个处理器602。
该通信装置60可以对应终端设备或网络设备中的任一网元或设备。通信接口601用于收发信号,至少一个处理器602执行程序指令,使得通信装置60实现上述方法实施例中由对应网元所执行的方法的相应流程。
在一种可能的设计中,该通信装置60可对应于上述图3所示的方法实施例中的终端设备,如该通信装置60可以是终端设备,也可以是终端设备中的芯片。该通信装置60可以包括用于执行上述方法实施例中由终端设备所执行的操作的部件,并且,该通信装置60中的各部件分别为了实现上述方法实施例中由终端设备所执行的操作。具体可以如下所示:
终端设备接收网络设备发送的激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
所述终端设备将目标参考信号确定为路损参考信号,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号,所述路损参考信号用于确定所述上行信道的上行发送功率。
在一种可能的实施方式中,所述将目标参考信号确定为路损参考信号,包括:
在所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数的情况下,将所述目标参考信号确定为所述路损参考信号。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;所述方法还包括:
在所述第一小区的定时提前值失效的情况下,接收所述网络设备发送的下行信道指示信息;
将所述下行信道指示信息所指示的参考信号确定为所述第六参考信号。
在另一种可能的设计中,该通信装置60可对应于上述图3所示的方法实施例中的网络设备,如该通信装置60可以是网络设备,也可以是网络设备中的芯片。该通信装置60可以包括用于执行上述方法实施例中由网络设备所执行的操作的部件,并且,该通信装置60中的各部件分别为了实现上述方法实施例中由网络设备所执行的操作。具体可以如下所示:
网络设备向终端设备发送激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
所述网络设备接收所述终端设备发送的第一消息,所述第一消息的上行发送功率由路损参考信号确定,所述路损参考信号由目标参考信号确定,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号。
在一种可能的实施方式中,所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数,所述路损参考信号由所述目标参考信号确定。
在一种可能的实施方式中,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
在一种可能的实施方式中,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
在一种可能的实施方式中,在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
在一种可能的实施方式中,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;所述方法还包括:
在所述第一小区的定时提前值失效的情况下,向所述终端设备发送下行信道指示信息,所述第六参考信号由所述下行信道指示信息所指示的参考信号确定。
在图6所描述的通信装置60中,明确规定了采用何种参考信号作为路损参考信号,通过选择一个能较为真实的反映终端设备所对应的下行链路路损情况的参考信号作为路损参考信号,可以准确计算下行路损,从而提高确定上行信道的上行发送功率的准确率和效率,消除额外的激活时延。
对于通信装置可以是芯片或芯片系统的情况,可参阅图7所示的芯片的结构示意图。
如图7所示,芯片70包括处理器701和接口702。其中,处理器701的数量可以是一个或多个,接口702的数量可以是多个。需要说明的,处理器701、接口702各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实 现,这里不作限制。
可选的,芯片70还可以包括存储器703,存储器703用于存储必要的程序指令和数据。
本申请中,处理器701可用于从存储器703中调用本申请的一个或多个实施例提供的路损参考信号确定方法在终端设备或网络设备中一个或多个设备或网元的实现程序,并执行该程序包含的指令。接口702可用于输出处理器701的执行结果。本申请中,接口702可具体用于输出处理器701的各个消息或信息。
关于本申请的一个或多个实施例提供的路损参考信号确定方法可参考前述图3、图4所示各个实施例,这里不再赘述。
本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中的存储器用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,当上述计算机程序在一个或多个处理器上运行时,可以实现上述图3、图4所示的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序,当该计算机程序在计算机上运行时,可以实现上述图3、图4所示的方法。
本申请实施例还提供了一种系统,该系统包括了至少一个如上述通信装置50或通信装置60或芯片70,用于执行图3、图4任一实施例中相应网元执行的步骤。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro control ler unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中的终端设备以及网络设备和方法实施例中的终端设备以及网络设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种 情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,终端设备以及网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (23)

  1. 一种路损参考信号确定方法,其特征在于,包括:
    接收网络设备发送的激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
    将目标参考信号确定为路损参考信号,所述目标参考信号包括用于反映终端设备对应的下行链路路损情况的参考信号,所述路损参考信号用于确定所述上行信道的上行发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述将目标参考信号确定为路损参考信号,包括:
    在所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数的情况下,将所述目标参考信号确定为所述路损参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
  4. 根据权利要求3所述的方法,其特征在于,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
    所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;所述方法还包括:
    在所述第一小区的定时提前值失效的情况下,接收所述网络设备发送的下行信道指示信息;
    将所述下行信道指示信息所指示的参考信号确定为所述第六参考信号。
  9. 一种路损参考信号确定方法,其特征在于,包括:
    向终端设备发送激活信息,所述激活信息用于指示第一小区被激活,所述第一小区为具备上行信道的数据接收能力的小区;
    接收所述终端设备发送的第一消息,所述第一消息的上行发送功率由路损参考信号确定,所述路损参考信号由目标参考信号确定,所述目标参考信号包括用于反映所述终端设备对应的下行链路路损情况的参考信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一小区对应的配置信息中不包括用于进行下行信道路损估计的第一参数,所述路损参考信号由所述目标参考信号确定。
  11. 根据权利要求9或10所述的方法,其特征在于,所述目标参考信号包括第一参考信号或第二参考信号或与所述第一参考信号具有准共址关系的参考信号或与所述第二参考信号具有准共址关系的参考信号;其中,所述第一参考信号为所述终端设备上报过的层3测量结果对应的参考信号,所述第二参考信号为所述终端设备上报过的层1测量结果对应的参考信号。
  12. 根据权利要求11所述的方法,其特征在于,所述第一小区为已知小区,所述目标参考信号包括所述第一参考信号或与所述第一参考信号具有准共址关系的参考信号;或者,
    所述第一小区为未知小区,所述目标参考信号包括所述第二参考信号或与所述第二参考信号具有准共址关系的参考信号。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,
    在所述第一小区对应的配置信息中包括用于确定所述上行信道的空间关系的第二参数的情况下,所述目标参考信号包括第三参考信号或与所述第三参考信号具有准共址关系的参考信号,所述第三参考信号为所述第二参数所指示的参考信号。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述目标参考信号包括第四参考信号或与所述第四参考信号具有准共址关系的参考信号,所述第四参考信号为当前下行带宽的控制资源集的传输配置指示信息所指示的参考信号。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述目标参考信号包括第五参考信号或与所述第五参考信号具有准共址关系的参考信号,所述第五参考信号为用于对所述第一小区进行定时同步的参考信号。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述目标参考信号包括第六参考信号或与所述第六参考信号具有准共址关系的参考信号;所述方法还包括:
    在所述第一小区的定时提前值失效的情况下,向所述终端设备发送下行信道指示信息,所述第六参考信号由所述下行信道指示信息所指示的参考信号确定。
  17. 一种通信装置,其特征在于,包括用于执行如权利要求1至8或者如权利要求9至16中任一项所述方法的模块或单元。
  18. 一种通信装置,其特征在于,包括:处理器;
    当所述处理器调用存储器中的计算机程序或指令时,使如权利要求1至8中任一项所述的方法被执行,或权利要求9至16中任一项所述的方法被执行。
  19. 一种通信装置,其特征在于,包括:逻辑电路和通信接口;
    所述通信接口,用于接收信息或者发送信息;
    所述逻辑电路,用于通过所述通信接口接收信息或者发送信息,使如权利要求1至8中任一项所述的方法被执行,或权利要求9至16中任一项所述的方法被执行。
  20. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质用于存储指令或计算机程序;当所述指令或所述计算机程序被执行时,使如权利要求1至8中任一项所述的方法被实现,或权利要求9至16中任一项所述的方法被实现。
  21. 一种计算机程序产品,其特征在于,包括:指令或计算机程序;
    所述指令或所述计算机程序被执行时,使如权利要求1至8中任一项所述的方法被实现,或权利要求9至16中任一项所述的方法被实现。
  22. 一种通信系统,其特征在于,包括如权利要求17所述的通信装置,或权利要求18所述的通信装置,或权利要求19所述的通信装置。
  23. 一种通信系统,其特征在于,包括:终端设备和网络设备;
    所述终端设备用于执行如权利要求1至8中任一项所述的方法,所述网络设备用于执行如权利要求9至16中任一项所述的方法。
PCT/CN2022/140751 2021-12-30 2022-12-21 一种路损参考信号确定方法及相关装置 WO2023125203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111669810.2A CN116418471A (zh) 2021-12-30 2021-12-30 一种路损参考信号确定方法及相关装置
CN202111669810.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125203A1 true WO2023125203A1 (zh) 2023-07-06

Family

ID=86997788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140751 WO2023125203A1 (zh) 2021-12-30 2022-12-21 一种路损参考信号确定方法及相关装置

Country Status (2)

Country Link
CN (1) CN116418471A (zh)
WO (1) WO2023125203A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535605A (zh) * 2019-06-19 2019-12-03 中兴通讯股份有限公司 路损参考信号指示方法及装置、终端、基站及存储介质
CN111385078A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种辅助小区激活的方法和通信装置
CN112399543A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种功率控制参数配置方法、终端和网络侧设备
CN113728689A (zh) * 2019-06-14 2021-11-30 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385078A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种辅助小区激活的方法和通信装置
CN113728689A (zh) * 2019-06-14 2021-11-30 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN110535605A (zh) * 2019-06-19 2019-12-03 中兴通讯股份有限公司 路损参考信号指示方法及装置、终端、基站及存储介质
CN112399543A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种功率控制参数配置方法、终端和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE: "Discussion on PUCCH SCell activation and deactivation", 3GPP TSG-RAN4 MEETING #100-E R4-2112126, 6 August 2021 (2021-08-06), XP052038922 *

Also Published As

Publication number Publication date
CN116418471A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2020147615A1 (zh) 波束失败恢复方法、终端及基站
US20210136739A1 (en) Method and device for transmitting uplink signal
WO2018141205A1 (en) System and method for beam adaptation in a beam-based communications system
EP3962182B1 (en) Wireless communication method, terminal device and network device
US20210360548A1 (en) Service area for time synchronization
CN113170339A (zh) 一种测量间隔配置方法及装置、终端、网络设备
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
JP7426983B2 (ja) 信号報告の方法、端末装置、及びネットワーク装置
JP2023134649A (ja) サイドリンクにおける伝送モードの決定方法、端末装置及びネットワーク装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
US11540261B2 (en) Method for indicating number of transmitting ports of UE, UE and network device
WO2022082687A1 (zh) 数据传输方法、装置、可读存储介质和系统
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
US20230059284A1 (en) Facilitating explicit latency mode determination in beam switching
CN114449571B (zh) 强干扰条件下配置小区接入资源的方法及装置
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2023125203A1 (zh) 一种路损参考信号确定方法及相关装置
US11985026B2 (en) Processing method and device for link recovery process, and terminal
US20210153084A1 (en) Wireless communication method, terminal device, and network device
US11956668B2 (en) Duplicated data-based transmission method and related devices
CN116264730A (zh) 一种通信方法及相关装置
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2024051584A1 (zh) 配置的方法和装置
WO2023165408A1 (zh) 一种通信的方法和通信装置
WO2024031472A1 (zh) 一种无线通信方法及装置、设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914457

Country of ref document: EP

Kind code of ref document: A1