WO2023125030A1 - 火电厂海水淡化提锂系统和方法 - Google Patents

火电厂海水淡化提锂系统和方法 Download PDF

Info

Publication number
WO2023125030A1
WO2023125030A1 PCT/CN2022/139188 CN2022139188W WO2023125030A1 WO 2023125030 A1 WO2023125030 A1 WO 2023125030A1 CN 2022139188 W CN2022139188 W CN 2022139188W WO 2023125030 A1 WO2023125030 A1 WO 2023125030A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
lithium extraction
seawater desalination
thermal power
power plant
Prior art date
Application number
PCT/CN2022/139188
Other languages
English (en)
French (fr)
Inventor
杨豫森
李卫东
任立兵
张帅
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023125030A1 publication Critical patent/WO2023125030A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present disclosure relates to the technical field of lithium extraction from concentrated seawater, in particular to a lithium extraction process that uses seawater as a raw material and realizes low energy consumption and cost through the coupling of a thermal power plant desalination process and lithium extraction from seawater.
  • Lithium is one of the most important mineral resources in modern society. It is widely used in ceramic chemical industry, medicine, nuclear industry and the well-known lithium ion battery industry. With the popularity of electric vehicles and portable electronic devices, the scale of the lithium-ion battery market has increased significantly. It is estimated that in the next 30 years, one-third of the current global mineable lithium reserves will be consumed, which will lead to insufficient supply of lithium resources in the future. At present, the mineable lithium reserves in the world all come from ore and brine, totaling about 14 million tons. Extracting lithium salts from ores and brines consumes a lot of energy and brings serious pollution problems.
  • lithium can be extracted from it as a raw material for the future battery industry, which will greatly solve the global shortage of lithium mines.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose disclosed in this application is to propose a lithium extraction system for seawater desalination in thermal power plants.
  • a thermal power plant seawater desalination and lithium extraction system proposed in the present disclosure includes a seawater desalination device and a seawater lithium extraction device;
  • the seawater desalination device is connected to the power supply line of the thermal power plant or the peak-shaving frequency modulation power supply line, so as to supply power for the seawater desalination device through the surplus power of the thermal power plant;
  • the seawater desalination device is connected to the steam turbine extraction system of the thermal power plant, so as to provide heat for the seawater desalination device through the steam turbine extraction system;
  • the seawater lithium extraction device is connected to the seawater desalination device, so that the concentrated seawater generated during the seawater desalination process of the seawater desalination device is passed into the seawater lithium extraction device as a raw material for the seawater lithium extraction process;
  • the seawater lithium extraction device is connected to the power supply line of the thermal power plant or the peak-shaving frequency modulation power supply line, so as to supply power to the seawater lithium extraction device through the power consumption of the thermal power plant or the peak-shaving frequency modulation power supply line, and utilize the power of the seawater lithium extraction device Changes in production capacity and load generate variable power loads in response to the demand for peak-shaving and frequency-shaving auxiliary services of thermal power plants and power grids.
  • seawater lithium extraction device adopts any method or combination of evaporation crystallization, precipitation, adsorption, dialysis and electrochemical methods during the lithium extraction process.
  • seawater desalination process adopted by the seawater desalination device in the seawater desalination process is any one of multi-stage flash evaporation process, power plant waste heat evaporation process, electric heating evaporation process, and electric-driven multi-stage membrane process.
  • the evaporation process of the evaporative crystallization method adopts the natural air-drying method of the natural sun-dried salt factory, or adopts any one of electric heating or industrial waste heat heating methods.
  • the highly alkaline solution used in the precipitation method utilizes the highly alkaline solution produced by electrolysis of seawater or electrolysis of brine.
  • the removal process of calcium and magnesium ions in the raw material concentrated seawater in the precipitation method is as follows: the flue gas produced by the fuel boiler of a thermal power plant is passed into the concentrated seawater, and the carbon dioxide in the flue gas and the The calcium and magnesium ions in the concentrated seawater react to form precipitation products to realize the removal of calcium and magnesium ions.
  • the dialysis method is an electrodialysis method, which utilizes the peak-shaving and frequency-regulating surplus power of a thermal power plant or utility power to meet the electricity demand of the seawater lithium extraction process of the electrodialysis method.
  • the power supply in the process of lithium extraction by the electrochemical method utilizes the peak-shaving and frequency-regulating surplus power of thermal power plants or factory power.
  • the by-product hydrogen or chlorine generated during the lithium extraction process is stored through a hydrogen or chlorine tank.
  • a method for extracting lithium from seawater desalination in thermal power plants comprising:
  • S1 According to the production capacity of the seawater desalination device of the thermal power plant located at the seaside and the concentration, composition and flow of the waste concentrated seawater generated every day, plan and design the capacity and scale of the seawater lithium extraction device and its technical route;
  • the seawater lithium extraction device uses the thermal power plant's peak-shaving and frequency-adjusting power or factory power to meet the stable power supply of the seawater lithium extraction device, and uses the change in production capacity and load of the seawater lithium extraction device to generate variable power loads, thereby responding to thermal power plants and Demand for auxiliary services for peak regulation and frequency regulation of the power grid;
  • the seawater lithium extraction device uses electrodialysis or electrochemical process to realize the process of producing lithium from concentrated seawater discharged from the seawater desalination device as a raw material;
  • the seawater desalination device uses the surplus power and heat supply of the thermal power plant to meet the electricity and heat demand of the seawater desalination process.
  • FIG. 1 is a schematic structural diagram of a thermal power plant seawater desalination and lithium extraction system proposed by an embodiment of the present disclosure
  • Fig. 2 is a structural schematic diagram of a thermal power plant seawater desalination lithium extraction system in different lithium extraction methods of the present disclosure
  • Fig. 3 is a structural schematic diagram of a thermal power plant seawater desalination lithium extraction system in different lithium extraction methods of the present disclosure
  • Fig. 4 is the structural representation of the lithium extraction system of seawater desalination in thermal power plant when the present disclosure prepares lithium carbonate product
  • Fig. 5 is a structural schematic diagram of a thermal power plant seawater desalination and lithium extraction system in different desalination processes and lithium extraction methods of the present disclosure
  • Fig. 6 is a flowchart of a method for extracting lithium from seawater desalination in thermal power plants proposed by another embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a thermal power plant seawater desalination and lithium extraction system proposed by an embodiment of the present disclosure.
  • a seawater desalination and lithium extraction system of a thermal power plant includes a seawater desalination device 1 and a seawater lithium extraction device 2; the seawater desalination device 1 is connected to the power supply line of the thermal power plant 3 or the peak-shaving and frequency-regulating power supply line to pass the surplus power of the thermal power plant
  • the seawater desalination device 1 is connected to the peak regulation and frequency regulation control module 4, so that the surplus power of the thermal power plant can be supplied to the seawater desalination device 1 through the peak regulation and frequency regulation control module 3, and the seawater desalination device 1 is connected to the thermal power plant
  • the steam extraction system of the steam turbine 3 is used to supply heat for the seawater desalination device 1 through the steam turbine extraction system, and at the same time, the seawater desalinated by the seawater desalination device 1 is used in the power generation process of the thermal power plant, and the seawater lithium extraction device
  • the power supply line of power plant 3 or peak-shaving and frequency-regulating power supply line supplies power to seawater lithium extraction device 2, and uses the change of production load of seawater lithium extraction device 2 to generate variable power load to respond to the peak-shaving and frequency-regulating auxiliary service needs of thermal power plant 3 and power grid.
  • the water inlet of the seawater desalination device 1 is connected with a water inlet pipeline, and a hydraulic pump is arranged at the water inlet pipeline, and the seawater can be pumped into the seawater desalination device 1 through the water inlet pipeline through the hydraulic pump, and the seawater desalination device Seawater desalination is carried out in 1, and the desalinated fresh water can be used in the power generation process of thermal power plant 3.
  • the waste concentrated brine produced in the desalination process can be directly passed into seawater lithium extraction device 2 for seawater lithium extraction, which not only solves the problem of The salt concentration accumulation problem caused by the discharge of concentrated seawater into the sea, and the raw materials for the seawater lithium extraction process can be obtained at the lowest cost.
  • the seawater lithium extraction device 2 adopts any method or combination of evaporation crystallization, precipitation, adsorption, dialysis and electrochemical methods in the lithium extraction process, that is to say, it can Lithium extraction from seawater is carried out by any one of evaporation crystallization, precipitation, adsorption, dialysis, and electrochemical methods, and lithium can also be extracted by combining any of the above methods. It should be noted that the extraction of lithium from seawater by any of the evaporation crystallization method, precipitation method, adsorption method, dialysis method and electrochemical method is an existing technology, and will not be described in detail here.
  • the evaporation process of the evaporative crystallization method adopts the natural air-drying method of the natural sun-dried salt factory, or adopts any one of electric heating or industrial waste heat heating methods.
  • alkaline solution is usually added to carry out the precipitation reaction
  • the highly alkaline solution used in the precipitation method can be a highly alkaline solution produced by electrolysis of seawater or electrolysis of brine.
  • the removal process of calcium and magnesium ions in the raw material concentrated seawater in the precipitation method is: the flue gas generated by the fuel boiler of the thermal power plant is passed into the concentrated seawater, and the carbon dioxide in the flue gas reacts with the calcium and magnesium ions in the concentrated seawater to form The precipitated product realizes the removal of calcium and magnesium ions.
  • the dialysis method is an electrodialysis method, and utilizes the peak-shaving and frequency-regulating surplus electric power or factory power of the thermal power plant 3 to meet the electricity demand of the electrodialysis seawater lithium extraction process.
  • the power supply in the process of extracting lithium is also to use the peak-shaving and frequency-regulating surplus power of thermal power plants or factory power.
  • lithium-rich liquid is obtained in the process of extracting lithium by the lithium extraction device, usually lithium carbonate finished product is used, so in order to prepare lithium carbonate finished product, lithium carbonate precipitation tank 5 and lithium carbonate precipitation tank 5 are also included Connect the seawater lithium extraction device 3 to receive the lithium-rich liquid produced by the lithium extraction device 2, and react the lithium-rich liquid with the highly alkaline solution passed into the lithium carbonate precipitation tank 5 to generate lithium carbonate.
  • the accessory product hydrogen or chlorine is stored by hydrogen or chlorine tank 6.
  • the seawater desalination process adopted by the seawater desalination device 1 in the process of desalinating seawater is a multi-stage flash evaporation process, a power plant waste heat evaporation process, an electric heating evaporation process, and an electric-driven multi-stage membrane process. any kind.
  • a method for extracting lithium from seawater desalination in a thermal power plant includes the following operation steps S1 to S4.
  • S1 According to the production capacity of the seawater desalination unit 1 of the thermal power plant located at the seaside and the concentration, composition and flow of the waste concentrated seawater generated every day, plan and design the capacity, scale and technical route of the seawater lithium extraction unit 2;
  • the seawater lithium extraction device 1 utilizes the peak-shaving and frequency-adjusted power of thermal power plants or the factory power supply to meet the stable power supply of the seawater lithium extraction device 2, and uses the change in production capacity and load of the seawater lithium extraction device 2 to generate variable power loads, thereby responding Demand for auxiliary services for peak regulation and frequency regulation of thermal power plants 3 and power grids;
  • the seawater lithium extraction device 2 uses any method or combination of evaporation crystallization, precipitation, adsorption, dialysis, and electrochemical methods to realize the concentrated seawater discharged from the seawater desalination device 1 as a raw material to produce lithium The process; In some embodiments, utilize electrodialysis or electrochemical process to extract lithium;
  • the seawater desalination device 1 utilizes the surplus power and heat supply of the thermal power plant 3 to meet the electricity and heat demand of the seawater desalination process.
  • seawater lithium extraction devices especially electrodialysis devices or electrochemical lithium extraction devices, is the main reason why seawater lithium extraction devices have not been able to be industrialized on a large scale. Low cost to achieve large-scale lithium extraction.
  • the lithium extraction system of the present application is combined with the seawater desalination process, and the tail water of the seawater desalination process, that is, concentrated seawater is used as a raw material to realize the circular economy of seawater desalination and seawater lithium extraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本公开提出一种火电厂海水淡化提锂系统,包括海水淡化装置和海水提锂装置;海水淡化装置连接火电厂用电或调峰调频供电线路,以通过火电厂富余的电力为所述海水淡化装置供电;海水淡化装置连接火电厂的汽轮机抽汽系统,以通过所述汽轮机抽汽系统为所述海水淡化装置供热;海水提锂装置连接所述海水淡化装置,以使所述海水淡化装置淡化海水过程中产生的浓海水通入所述海水提锂装置作为海水提锂过程的原料;海水提锂装置连接火电厂用电或调峰调频供电线路。

Description

火电厂海水淡化提锂系统和方法
相关申请的交叉引用
本申请基于申请号为202111629350.0、申请日为2021年12月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及浓海水提锂技术领域,尤其涉及一种利用海水作为原料,通过火电厂海水淡化工艺与海水提锂的耦合实现低能耗成本的提锂工艺。
背景技术
锂是现代社会最重要的矿物资源之一,被广泛应用于陶瓷化工、医药、核工业以及广为人知的锂离子电池工业中。随着电动汽车及便携式电子设备的普及,锂离子电池市场的规模大幅上升,预计未来30年将消耗目前全球可开采锂储量的1/3,这将导致未来锂资源供给不足的问题。目前全球可开采锂储量均来自于矿石和卤水,共计约1400万吨。从矿石和卤水中提炼锂盐,会消耗大量的能源并带来严重的污染问题。相较于陆地上矿石和卤水中有限的锂资源,海水中储有2300亿吨的锂资源,是目前全球可开采锂资源总量的16000倍。因此,假如实现从海水中简便、可控和清洁提取锂,人类将获得几乎取之不尽用之不竭的锂资源。
国内外很多建设在海边的火力发电厂,其电厂用水采用海水淡化技术,每年产生大量的海水淡化后的浓缩海水废液,直接排入周边海域,如果持续这种排放将导致局部海域的盐分堆积,对海洋环境造成不良的后果。
如果能够利用海水淡化后排放的浓海水作为原料,从中提取锂作为未来电池行业原料,将极大地解决全球锂矿的短缺问题。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请公开的目的在于提出一种火电厂海水淡化提锂系统。
为达到上述目的,本公开提出的一种火电厂海水淡化提锂系统,包括海水淡化装置和海水提锂装置;
所述海水淡化装置连接火电厂用电或调峰调频供电线路,以通过火电厂富余的电力为所述海水淡化装置供电;
所述海水淡化装置连接火电厂的汽轮机抽汽系统,以通过所述汽轮机抽汽系统为所述海水淡化装置供热;
所述海水提锂装置连接所述海水淡化装置,以使所述海水淡化装置淡化海水过程中产生的浓海水通入所述海水提锂装置作为海水提锂过程的原料;
所述海水提锂装置连接火电厂用电或调峰调频供电线路,以通过所述火电厂用电或调峰 调频供电线路为所述海水提锂装置供电,并利用所述海水提锂装置的产能负荷变化产生变动的用电负荷以响应火电厂及电网的调峰调频辅助服务需求。
进一步地,所述海水提锂装置在提锂过程中采用蒸发结晶法、沉淀法、吸附法、渗析法和电化学法中任意一种方法或组合。
进一步地,所述海水淡化装置在淡化海水过程中采用的海水淡化工艺为多级闪蒸工艺、电厂余热蒸发工艺、电加热蒸发工艺、电驱动多级膜法工艺中的任意一种。
进一步地,所述蒸发结晶法的蒸发工艺采用天然晒盐厂的自然风干晾晒法,或采用电加热或工业余热加热方法中的任意一种。
进一步地,所述沉淀法中使用的高碱性溶液利用电解海水或电解盐水产生的高碱性溶液。
进一步地,所述沉淀法中的所述原料浓海水中的钙镁离子的去除工艺为:将火电厂燃料锅炉产生的烟气通入所述浓海水中,利用所述烟气中的二氧化碳与所述浓海水中的钙镁离子反应生成沉淀产物实现钙镁离子的去除。
进一步地,所述渗析法为电渗析法,利用火电厂的调峰调频富余电力或厂用电,满足所述电渗析法海水提锂过程的用电需求。
进一步地,所述电化学法提锂过程中供电利用火电厂的调峰调频富余电力或厂用电。
进一步地,所述提锂过程中产生的附属产物氢气或氯气通过氢气或氯气罐进行存储。
一种火电厂海水淡化提锂方法,包括:
S1:根据地处海边的火电厂的海水淡化装置的产能和每天产生的废弃浓海水的浓度、组分和流量,规划设计海水提锂装置的容量和规模及其技术路线;
S2:海水提锂装置利用火电厂调峰调频电力或厂用电供电,满足海水提锂装置的稳定供电,并利用海水提锂装置的产能负荷变化产生变动的用电负荷,从而响应火电厂及电网的调峰调频辅助服务需求;
S3:所述海水提锂装置利用电渗析法或电化学法工艺,实现从海水淡化装置排出的浓海水作为原料,制取锂的工艺;
S4:海水淡化装置利用火电厂的富余的电力和供热,满足海水淡化工艺的用电和用热需求。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例提出的火电厂海水淡化提锂系统的结构示意图;
图2是本公开不同提锂方法中火电厂海水淡化提锂系统的结构示意图;
图3是本公开不同提锂方法中火电厂海水淡化提锂系统的结构示意图;
图4是本公开制备碳酸锂产品时火电厂海水淡化提锂系统的结构示意图;
图5是本公开不同淡化工艺和提锂方法中火电厂海水淡化提锂系统的结构示意图;
图6是本公开另一实施例提出的火电厂海水淡化提锂方法流程图。
图中,1、海水淡化装置;2、海水提锂装置;3、火电厂;4、调峰调频控制模块;5、碳酸锂沉淀罐;6、氢气或氯气罐。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。相反,本公开的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本公开一实施例提出的火电厂海水淡化提锂系统的结构示意图。
参见图1,一种火电厂海水淡化提锂系统,包括海水淡化装置1和海水提锂装置2;海水淡化装置1连接火电厂3用电或调峰调频供电线路,以通过火电厂富余的电力为海水淡化装置1供电,也就是说,海水淡化装置1连接调峰调频控制模块4,以通过调峰调频控制模块3将火电厂富余电力供应海水淡化装置1进行,海水淡化装置1连接火电厂3的汽轮机抽汽系统,以通过汽轮机抽汽系统为海水淡化装置1供热,同时海水淡化装置1淡化后的海水用于火电厂发电过程中,海水提锂装置2连接海水淡化装置1,以使海水淡化装置1淡化海水过程中产生的浓海水通入海水提锂装置2中作为海水提锂过程的原料,不仅实现了海水淡化,并且淡化过程中产生的废气浓海水也能够进行回收利用,无需另外提供海水提锂装置在提锂过程中所需的原料浓海水,提高了资源利用率,降低了成本,海水提锂装置2连接火电厂3用电或调峰调频供电线路,以通过火电厂3用电或调峰调频供电线路为海水提锂装置2供电,并利用海水提锂装置2的产能负荷变化产生变动的用电负荷以响应火电厂3及电网的调峰调频辅助服务需求。
详细来说,海水淡化装置1的进水口处连接有进水管路,并且进水管路处设置有液压泵,通过液压泵能够将海水通过进水管路泵入海水淡化装置1中,在海水淡化装置1中进行海水淡化,淡化后的淡水可以用于火电厂3的发电过程中,另外,淡化过程中产生的废浓盐水可以直接通入海水提锂装置2中,用于海水提锂,不但解决浓海水排入大海造成的盐浓度堆积问题,而且可以最低成本获得海水提锂工艺的原料。
参阅图2,在一些实施例中,海水提锂装置2在提锂过程中采用蒸发结晶法、沉淀法、吸附法、渗析法和电化学法中任意一种方法或组合,也就是说,可以通过蒸发结晶法、沉淀法、吸附法、渗析法和电化学法中的任意一种方法进行海水提锂,也可以上述任意几种方法组合进行提锂。需要说明的是,通过蒸发结晶法、沉淀法、吸附法、渗析法和电化学法中的任意一种方法进行海水提锂均为现有技术,此处不再详细赘述。
在一些实施例中,蒸发结晶法的蒸发工艺采用天然晒盐厂的自然风干晾晒法,或采用电加热或工业余热加热方法中的任意一种。
需要详细说明的是,沉淀法在沉淀过程中通常是加入碱液进行沉淀反应,其中沉淀法中使用的高碱性溶液可以是利用电解海水或电解盐水产生的高碱性溶液。
另外,沉淀法中的原料浓海水中的钙镁离子的去除工艺为:将火电厂燃料锅炉产生的烟气通入浓海水中,利用烟气中的二氧化碳与浓海水中的钙镁离子反应生成沉淀产物实现钙镁离子的去除。
参阅图3,在一些实施例中,渗析法为电渗析法,利用火电厂3的调峰调频富余电力或厂用电,满足所述电渗析法海水提锂过程的用电需求,另外电化学法提锂过程中供电也是利用火电厂的调峰调频富余电力或厂用电。
参阅图4,在一些实施例中,提锂装置提锂过程中得到富锂液,通常使用的是碳酸锂成品,因此为了制备碳酸锂成品,还包括碳酸锂沉淀罐5,碳酸锂沉淀罐5连接海水提锂装置3,以接收提锂装置2产生的富锂液,并将富锂液与通入碳酸锂沉淀罐5中的高碱性溶液反应生成碳酸锂,另外,提锂过程中产生的附属产物氢气或氯气通过氢气或氯气罐6进行存储。
参阅图5,在一些实施例中,海水淡化装置1在淡化海水过程中采用的海水淡化工艺为多级闪蒸工艺、电厂余热蒸发工艺、电加热蒸发工艺、电驱动多级膜法工艺中的任意一种。
参考图6,在一些实施例中,一种火电厂海水淡化提锂方法,包括下列操作步骤S1至S4。
S1:根据地处海边的火电厂的海水淡化装置1的产能和每天产生的废弃浓海水的浓度、组分和流量,规划设计海水提锂装置2的容量和规模及其技术路线;
S2:海水提锂装置1利用火电厂调峰调频电力或厂用电供电,满足海水提锂装置2的稳定供电,并利用海水提锂装置2的产能负荷变化产生变动的用电负荷,从而响应火电厂3及电网的调峰调频辅助服务需求;
S3:所述海水提锂装置2利用蒸发结晶法、沉淀法、吸附法、渗析法和电化学法中任意一种方法或组合,实现从海水淡化装置1排出的浓海水作为原料,制取锂的工艺;在一些实施例中,利用电渗析法或电化学法工艺进行提锂;
S4:在一些实施例中,海水淡化装置1利用火电厂3的富余的电力和供热,满足海水淡化工艺的用电和用热需求。
本申请的有益效果为:
1)利用火电厂耦合海水淡化工艺,实现低能耗成本的海水淡化。
2)利用海水淡化产生的废弃排放的浓海水,不但解决浓海水排入大海造成的盐浓度堆积问题,而且可以最低成本获得海水提锂工艺的原料。
3)海水提锂装置特别是电渗析装置或电化学提锂装置的用电能耗,是海水提锂装置一直无法大规模产业化的主要原因,如果能结合火电厂或电网调峰调频,可低成本实现大规模提锂。
4)本申请的提锂系统和海水淡化工艺结合,利用海水淡化工艺的尾水即浓缩海水作为原料,实现了海水淡化和海水提锂的循环经济。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种火电厂海水淡化提锂系统,包括海水淡化装置和海水提锂装置;
    所述海水淡化装置连接火电厂用电或调峰调频供电线路,以通过火电厂富余的电力为所述海水淡化装置供电;
    所述海水淡化装置连接火电厂的汽轮机抽汽系统,以通过所述汽轮机抽汽系统为所述海水淡化装置供热;
    所述海水提锂装置连接所述海水淡化装置,以使所述海水淡化装置淡化海水过程中产生的浓海水通入所述海水提锂装置作为海水提锂过程的原料;
    所述海水提锂装置连接火电厂用电或调峰调频供电线路,以通过所述火电厂用电或调峰调频供电线路为所述海水提锂装置供电,并利用所述海水提锂装置的产能负荷变化产生变动的用电负荷以响应火电厂及电网的调峰调频辅助服务需求。
  2. 如权利要求1所述的火电厂海水淡化提锂系统,其中,所述海水提锂装置在提锂过程中采用蒸发结晶法、沉淀法、吸附法、渗析法和电化学法中任意一种方法或组合。
  3. 如权利要求1所述的火电厂海水淡化提锂系统,其中,所述海水淡化装置在淡化海水过程中采用的海水淡化工艺为多级闪蒸工艺、电厂余热蒸发工艺、电加热蒸发工艺、电驱动多级膜法工艺中的任意一种。
  4. 如权利要求2所述的火电厂海水淡化提锂系统,其中,所述蒸发结晶法的蒸发工艺采用天然晒盐厂的自然风干晾晒法,或采用电加热或工业余热加热方法中的任意一种。
  5. 如权利要求2所述的火电厂海水淡化提锂系统,其中,所述沉淀法中使用的高碱性溶液利用电解海水或电解盐水产生的高碱性溶液。
  6. 如权利要求5所述的火电厂海水淡化提锂系统,其中,所述沉淀法中的所述原料浓海水中的钙镁离子的去除工艺为:将火电厂燃料锅炉产生的烟气通入所述浓海水中,利用所述烟气中的二氧化碳与所述浓海水中的钙镁离子反应生成沉淀产物实现钙镁离子的去除。
  7. 如权利要求2所述的火电厂海水淡化提锂系统,其中,所述渗析法为电渗析法,利用火电厂的调峰调频富余电力或厂用电,满足所述电渗析法海水提锂过程的用电需求。
  8. 如权利要求7所述的火电厂海水淡化提锂系统,其中,所述电化学法提锂过程中供电利用火电厂的调峰调频富余电力或厂用电。
  9. 如权利要求8所述的火电厂海水淡化提锂系统,其中,所述提锂过程中产生的附属产物氢气或氯气通过氢气或氯气罐进行存储。
  10. 一种基于权利要求1-9任一所述的火电厂海水淡化提锂方法,包括:
    S1:根据地处海边的火电厂的海水淡化装置的产能和每天产生的废弃浓海水的浓度、组分和流量,规划设计海水提锂装置的容量和规模及其技术路线;
    S2:海水提锂装置利用火电厂调峰调频电力或厂用电供电,满足海水提锂装置的稳定供电,并利用海水提锂装置的产能负荷变化产生变动的用电负荷,从而响应火电厂及电网的调峰调频辅助服务需求;
    S3:所述海水提锂装置利用电渗析法或电化学法工艺,实现从海水淡化装置排出的浓海水作为原料,制取锂的工艺;
    S4:海水淡化装置利用火电厂的富余的电力和供热,满足海水淡化工艺的用电和用热需求。
PCT/CN2022/139188 2021-12-28 2022-12-15 火电厂海水淡化提锂系统和方法 WO2023125030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111629350.0 2021-12-28
CN202111629350.0A CN114291952B (zh) 2021-12-28 2021-12-28 一种火电厂海水淡化提锂系统和方法

Publications (1)

Publication Number Publication Date
WO2023125030A1 true WO2023125030A1 (zh) 2023-07-06

Family

ID=80970662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139188 WO2023125030A1 (zh) 2021-12-28 2022-12-15 火电厂海水淡化提锂系统和方法

Country Status (2)

Country Link
CN (1) CN114291952B (zh)
WO (1) WO2023125030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291952B (zh) * 2021-12-28 2023-10-13 中国华能集团清洁能源技术研究院有限公司 一种火电厂海水淡化提锂系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110008348A (ko) * 2009-07-20 2011-01-27 황필기 막 분리 및 증발법을 이용한 해수 및 이의 농축수 중에 함유된 리튬이온을 고농축시키는 방법 및 이를 위한 장치
CN210458376U (zh) * 2019-05-24 2020-05-05 赫普能源环境科技有限公司 一种利用火电厂的电能电解盐水制烧碱系统
CN112761747A (zh) * 2021-01-19 2021-05-07 山东电力工程咨询院有限公司 基于海水淡化和梯级用能的水热电联产系统及方法
CN113233623A (zh) * 2021-04-25 2021-08-10 深圳润德工程有限公司 一种电站温排水海水淡化系统及资源化利用方法
CN114014416A (zh) * 2021-11-23 2022-02-08 中国华能集团清洁能源技术研究院有限公司 一种海水多级浓缩电解提锂装置及方法
CN114291952A (zh) * 2021-12-28 2022-04-08 中国华能集团清洁能源技术研究院有限公司 一种火电厂海水淡化提锂系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171350B (zh) * 2017-07-17 2023-09-15 赫普热力发展有限公司 一种电力调峰系统及其方法
CN113502485B (zh) * 2021-07-12 2022-11-01 中国华能集团清洁能源技术研究院有限公司 火电厂电解海水制氢系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110008348A (ko) * 2009-07-20 2011-01-27 황필기 막 분리 및 증발법을 이용한 해수 및 이의 농축수 중에 함유된 리튬이온을 고농축시키는 방법 및 이를 위한 장치
CN210458376U (zh) * 2019-05-24 2020-05-05 赫普能源环境科技有限公司 一种利用火电厂的电能电解盐水制烧碱系统
CN112761747A (zh) * 2021-01-19 2021-05-07 山东电力工程咨询院有限公司 基于海水淡化和梯级用能的水热电联产系统及方法
CN113233623A (zh) * 2021-04-25 2021-08-10 深圳润德工程有限公司 一种电站温排水海水淡化系统及资源化利用方法
CN114014416A (zh) * 2021-11-23 2022-02-08 中国华能集团清洁能源技术研究院有限公司 一种海水多级浓缩电解提锂装置及方法
CN114291952A (zh) * 2021-12-28 2022-04-08 中国华能集团清洁能源技术研究院有限公司 一种火电厂海水淡化提锂系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAIZHEN ZHANG, DING HAO, XU ZHENLIANG: "Present Situation and Progress of Lithium Extraction from Salt Lake Brine and Seawater by Membrane Technology ", TECHNOLOGY OF WATER TREATMENT, vol. 43, no. 12, 5 December 2017 (2017-12-05), pages 1 - 7, XP093075954, DOI: 10.16796/j.cnki.1000-3770.2017.12.001 *

Also Published As

Publication number Publication date
CN114291952A (zh) 2022-04-08
CN114291952B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN110904464A (zh) 一种基于海上风电的海水电解制氢系统
CN104145420A (zh) 可再生能源发电系统
CN103227339A (zh) 产生可再生氢并截留二氧化碳的电化学系统、装置和方法
CN113502485B (zh) 火电厂电解海水制氢系统和方法
CN211848150U (zh) 一种基于海上风电的海水电解制氢系统
US9502720B2 (en) Seawater power generation system
WO2023125030A1 (zh) 火电厂海水淡化提锂系统和方法
CN109811358A (zh) 一种低品位热能驱动的电极液自循环式制氢方法
Sajna et al. Integrated seawater hub: A nexus of sustainable water, energy, and resource generation
CN103011313A (zh) 一种海水淡化供水系统
CN210458376U (zh) 一种利用火电厂的电能电解盐水制烧碱系统
CN103626246B (zh) 一种太阳能海水资源化处理方法
Alshebli et al. Energy and exergy analysis of a renewable energy-driven ion recovery system for hydroponic greenhouses
CN110845065A (zh) 一种基于船用发动机的新型海水制淡系统
Kumar et al. Freshwater supply for hydrogen production: An underestimated challenge
CN204873820U (zh) 一种液相合金与海水反应制备氢气的装置
CN109326836A (zh) 利用芒硝增强co2矿化电池产电性能的方法及其电池
Wang et al. Operation strategy optimization of an integrated proton exchange membrane water electrolyzer and batch reverse osmosis desalination system powered by offgrid wind energy
CN116145165A (zh) 一种电解高盐水制氢系统、电厂储能系统及方法
CN116553479A (zh) 一种利用低品质海上新能源的海水直接循环制氢系统及其工作方法
CN114014416A (zh) 一种海水多级浓缩电解提锂装置及方法
CN217104083U (zh) 一种基于可再生能源发电耦合海水淡化制氢系统
CN113860339A (zh) 一种利用可再生能源发电的固碳海水提镁能源系统及方法
CN113562915A (zh) 一种利用太阳能的低污染水电联产系统及其运行方法
CN215344097U (zh) 一种风电制氢储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE