WO2023125021A1 - 一种力反馈装置和机器人 - Google Patents

一种力反馈装置和机器人 Download PDF

Info

Publication number
WO2023125021A1
WO2023125021A1 PCT/CN2022/139101 CN2022139101W WO2023125021A1 WO 2023125021 A1 WO2023125021 A1 WO 2023125021A1 CN 2022139101 W CN2022139101 W CN 2022139101W WO 2023125021 A1 WO2023125021 A1 WO 2023125021A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
force feedback
force
feedback device
piezoresistor
Prior art date
Application number
PCT/CN2022/139101
Other languages
English (en)
French (fr)
Inventor
李志林
安忠玉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023125021A1 publication Critical patent/WO2023125021A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/028Piezoresistive or piezoelectric sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges

Definitions

  • the present application relates to the field of electronic technology, in particular to a force feedback device and a robot.
  • an elastic air cavity is usually set at the foot end of the robot, and the torque is measured through the air pressure change generated by the deformation of the elastic air cavity to obtain the feedback force of the foot end; or a six-dimensional force/torque sensor is used to convert the six-dimensional force/torque
  • the torque sensor is installed between the sole of the robot and the ankle joint and/or between the manipulator and the wrist joint to measure the force of the interaction between the end effector (such as the manipulator or the sole of the foot, etc.) and the external environment.
  • the embodiment of the present application expects to provide a force feedback device and a robot, which can improve the force measurement accuracy of the end of the machine execution component.
  • the present application provides a force feedback device, which includes: an end body, which is arranged at the end of the machine execution part; at least one contact piece, the contact surface of which is used to receive external force; at least one piezoresistor, the end body is provided with a groove, The contact piece is fixed on the side surface of the groove, and the piezoresistor is fixed on the opposite surface of the contact surface of the contact piece; the piezoresistor is used to sense the deformation of the contact surface of the contact piece due to external force, so that the resistance value changes;
  • the force feedback circuit is electrically connected with the piezoresistor, and is used to respond to the resistance change of the piezoresistor, and generate a corresponding electrical signal to the processor, so that the processor can determine the force value of the contact based on the electrical signal, so that based on the force The value controls the machine execution part to perform the corresponding action.
  • the piezoresistor is directly fixed on the opposite surface of the contact surface of the contact, when the contact is in contact with an object, the piezoresistor can more sensitively change its resistance with the deformation of the contact, thereby improving Accuracy of force measurement at the end of machine actuating parts.
  • the processor can determine the hardness and material of the object contacted by the contact piece according to the force measurement results of the ends of the machine's executive parts, so as to improve the machine's autonomous adaptability to the environment.
  • the present application also provides a force feedback device, which includes: an end body, which is arranged at the end of the machine actuator; at least one contact piece, whose contact surface is used to receive external force; at least one piezoresistor, which is set on the contact surface of the contact piece.
  • the piezoresistor is used to sense the external force received by the contact surface of the contact and the resistance value changes;
  • the force feedback circuit is electrically connected to the piezoresistor for responding to the pressure
  • the resistance value of the sensing resistor changes, thereby generating a corresponding electrical signal to the processor, so that the processor can determine the force value of the contact based on the electrical signal, so as to control the machine execution parts to perform corresponding actions based on the force value.
  • the present application provides a robot, and the robot includes the force feedback device as provided in the present application.
  • FIG. 1 is a schematic structural diagram of a force feedback device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a partial structure of a force feedback device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a connection structure between a force feedback device and a processor provided by an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of an electric bridge provided in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a force feedback device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a force feedback device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another force feedback device provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a partial structure of another force feedback device provided by an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a force feedback device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of a partial structure of a force feedback device provided in an embodiment of the present application.
  • the force feedback device provided in this application The feedback device includes a terminal body 1, at least one contact piece 12, at least one piezoresistor 15 and a force feedback circuit 16; wherein,
  • the end body 1 is arranged at the end of the machine execution part 2, and the end body 1 is provided with a groove 11;
  • At least one contact piece 12 the contact surface of which is used to receive external force, the contact piece 12 is fixed on the side surface of the groove 11;
  • At least one piezoresistor 15 is fixed on the opposite surface of the contact surface of the contact member 12;
  • the piezoresistor 15 is used to sense the deformation of the contact surface of the contact member 12 due to receiving an external force, thereby changing the resistance value;
  • the force feedback circuit 16 is electrically connected to the piezoresistor 15, and is used to respond to the resistance change of the piezoresistor 15, and generate a corresponding electrical signal to the processor, so that the processor determines the force value of the contact member 12 based on the electrical signal, Therefore, the machine execution part 2 is controlled to perform corresponding actions based on the force value.
  • At least one end body 1 can be fixed to the execution end of each machine execution part 2 , and there can be one or more grooves 11 opened on each end body 1 .
  • the multiple grooves 11 may be evenly distributed in the end body 1 , or unevenly distributed, or symmetrically distributed in the end body 1 .
  • at least one contact piece 12 may be fixed on the side surface of each groove 11 , and the shape of each contact piece 12 may be the same as or different from that of the corresponding groove 11 .
  • each contact piece 12 may be in the form of a sheet, and each contact piece 12 is fixed on the side surface of the groove 11, so that the contact surface of the contact piece 12 Facing the outside of the terminal body 1 , the opposite surface of the contact surface of the contact piece 12 faces the inside of the terminal body 1 .
  • the piezoresistor 15 can be pasted on the opposite surface of the contact surface of the contact piece 12 by an adhesive, so as to realize the fixing of the piezoresistor 15 and the opposite surface of the contact surface of the contact piece 12; 15 can be electrically connected to the force feedback circuit 16 through wires; wherein, the force feedback circuit 16 can include an amplifier circuit and a resistor electrically connected to the amplifier circuit, and is integrated on a circuit board.
  • the piezoresistor 15 is electrically connected to the resistor through wires and forms an electrical signal loop.
  • the electrical signal may be a current or a voltage or a radio signal. In practical applications, when the resistance of the piezoresistor 15 changes, the total resistance of the force feedback circuit 16 will change simultaneously, thereby changing the electrical signal output by the force feedback circuit 16 .
  • the force feedback circuit 16 can establish communication with the processor through a wireless network, or can be connected with the processor through a signal line.
  • the force feedback circuit 16 establishes communication with the processor through the wireless network, the output end of the force feedback circuit 16 and the receiving end of the processor can be electrically connected to the wireless communication module.
  • the force feedback circuit 16 can exchange data with the processor through the wireless communication module.
  • the force feedback circuit 16 is connected to the processor through the signal line, if the force feedback circuit 16 is located outside the end body 1, the signal line can pass through the groove 11 and be unified inside the end body 1 to the machine execution part 2 and the end body.
  • the processor can be an integrated circuit (Integrated Circuit, IC) signal processor.
  • the force feedback circuit 16 After the force feedback circuit 16 outputs the electrical signal, it can perform preprocessing on the electrical signal, such as analog-to-digital conversion, signal filtering and/or preliminary digital signal Processing, etc.; after the electrical signal is converted into a corresponding digital signal, the digital signal is transmitted to the processor through the I/O interface of the processor. Afterwards, the processor can identify the external force on the contact surface of each contact element corresponding to the digital signal through a preset software system algorithm.
  • the processor can generate the spherical normal force matrix of the end according to the recognition result, so as to judge the shape and hardness of the contact surface of the end contact that may be in contact with the contact object.
  • the preprocessing of electrical signals can be completed by an inertial measurement (Inertial Measurement Unit, IMU) processor.
  • IMU Inertial Measurement Unit
  • FIG. 3 is a schematic diagram of the connection structure between a force feedback device and a processor provided in the present application.
  • the main board establishes communication with the processor; wherein, the force feedback circuit 16, the main board and the processor are electrically connected through signal wires, the main board can be a small board or a large board, and a power supply can be set on the main board for power feedback circuit 16 Power supply; the motherboard and the processor can be connected through a transfer port, that is, the output end of the motherboard is electrically connected to the conversion port through a transfer cable, and the conversion port realizes data interaction with the processor through a signal line or a wireless communication module.
  • the processor can be set inside the machine or outside the machine; in practical applications, the signal processor can be electrically connected between the output end of the force feedback circuit 16 and the input end of the processor.
  • the signal processor is electrically connected between the main board and the processor.
  • the signal processor is used to perform signal processing on the electrical signal output by the force feedback circuit 16 to obtain the signal to be analyzed and send it to the processor; signal processing refers to the use of digital signal processing methods to process the above-mentioned electrical signal; such as analog-to-digital conversion and/or or signal filtering etc.
  • the processor After the processor receives the signal to be analyzed, it will analyze the signal to be analyzed to generate the force matrix of the contact surface of the contact 12, and then combined with visual recognition, the object that exerts an external force on the contact surface of the contact 12, that is, the contact object Identify and get the recognition result.
  • the recognition result includes at least one of the following: material, hardness and shape.
  • the processor can optimize the movement of the machine based on the recognition results. Exemplarily, when the machine is a quadruped robot, the processor can identify the contact objects that the quadruped robot touches during different terrain movements, and obtain the recognition result; then, optimize the above-mentioned quadruped robot according to the recognition result.
  • the movement mode of the terrain wherein, the processor can establish a training model according to the recognition result to realize the optimization of the movement mode of the quadruped robot on the corresponding terrain.
  • the piezoresistor 15 since the piezoresistor 15 is directly fixed on the opposite surface of the contact surface of the contact piece 12, when the contact piece 12 comes into contact with the contact object, the piezoresistor 15 can be more sensitively The resistance value changes with the deformation of the contact member 12 , thereby improving the force measurement accuracy of the end of the machine execution part 2 .
  • the contact surface of the contact piece 12 is higher than a part of the outer surface of the terminal body 1 , or, the contact surface of the contact piece 12 is flush with a part of the outer surface of the terminal body 1 .
  • the part of the outer surface of the end body 1 refers to the part of the outer surface where the end body 1 intersects with the side surface of the groove 11; wherein, the part of the outer surface can be the outer surface of the end body 1 and the side surface of the groove 11
  • the intersecting surface can also be an area whose size is within a preset range.
  • the contact surface of the contact piece 12 when the contact surface of the contact piece 12 is flush with the part of the outer surface of the end body 1, the contact surface of the contact piece 12 can touch the contact object with a flat outer surface and the contact object with a local convex outer surface; When the contact surface of the contact piece 12 is higher than the part of the outer surface of the end body 1, it can also contact the contact object with a local depression on the outer surface; if the contact surface of the contact piece 12 is lower than the part of the outer surface of the end body 1, then When the contact piece 12 is in contact with the contact object, it may happen that the contact object cannot penetrate into the groove 11 to make contact with the contact piece, or when in contact, the contact object and the outer surface of the end body 1 partially conflict, causing the contact object to be applied to The external force of the contacts 12 is reduced.
  • the contact surface of the contact piece 12 when the contact surface of the contact piece 12 is flush with part of the outer surface of the end body 1, the side surface of the contact piece 12 intersecting with the contact surface and one of the adjacent grooves 11 There is a gap 13 between the side surfaces, and the gap 13 is used to support the contact surface and its edge can extend to the side surface of the groove 11 due to receiving an external force, so that the deformation of the contact piece 12 is not hindered.
  • the above-mentioned gap 13 can be elongated or arc-shaped; and the number of gaps 13 between the side surface of each contact 12 and the side surface of the adjacent groove 11 can be one or more Exemplarily, as shown in Figure 1, there are two gaps 13 between the side surface of each contact 12 and the side surface of the adjacent groove 11, and the gap 13 is arc-shaped and connected to the inside of the groove 11 spatial connectivity.
  • the groove 11 and the gap 13 can be obtained by grooving.
  • the gap 13 can provide a deformation space for the contact 12; thereby reducing the side surface of the groove 11 to the side surface of the contact 12
  • the impact caused by the stretching of the contact piece 12 ensures the deformation range of the contact piece 12, reduces the influence on the deformation degree of the contact piece 12, and then improves the accuracy of the change of the resistance value of the piezoresistor 15, and improves the end of the machine actuator 2. The accuracy of the force measurement.
  • the end body 1 is spherical.
  • the end body 1 can also be in the shape of a cube or an ellipsoid, etc.; and the end body 1 can be a solid structure or a hollow structure; wherein, if the end body 1 is a solid structure, the contact surface of the contact piece 12 There is a space for the deformation of the contact piece 12 between the opposite surface of the groove 11 and the inner bottom wall of the groove 11.
  • the contact surface of the contact piece 12 can be a curved surface or a plane; the embodiment of the present application does not limit it.
  • the end body 1 is spherical, and the inside of the end body 1 can be hollow, and the groove 11 can be a through groove, so that the inner space of the end body 1 It communicates with the external space of the end body 1 , and the contact surface of the contact piece 12 is a curved surface, and the curvature of the curved surface is the same as that of the outer surface of the end body 1 .
  • the opposite surface of the contact surface of the contact piece 12 can also be a curved surface, and the outer surface of the end body 1 has the same curvature.
  • the end body 1 when the end body 1 is spherical, the outer surface of the end body 1 is a curved surface. At this time, the contact surface of the contact member 12 is more likely to be in contact with the contact object, that is, to improve the accuracy of the force feedback device for sensing the contact object. Moreover, the spherical design is adopted, and the external force received by the contact surface of the contact member 12 is always along the normal direction, so that the normal force component can be obtained, and the measurement accuracy of the end of the machine actuator 2 on the direction of the contact object can be improved.
  • the force feedback circuit 16 is electrically connected to the piezoresistor 15 to form a bridge, and the piezoresistor 15 includes strain resistance.
  • the force feedback circuit 16 includes three resistors, and the resistance values of the three resistors are all fixed values.
  • the piezoresistor 15 is electrically connected with three resistors to form a rectangle, so as to realize the electrical connection with the force feedback circuit 16 and form a bridge, and the bridge can measure the resistance of the piezoresistor 15 .
  • the strain resistance includes a resistance strain gauge.
  • the shape of strain resistance can be wire type or foil type.
  • the resistance value of the strain resistance is related to the shape of the strain resistance, such as the length of the strain resistance when it is a wire type, and the cross-sectional area when the strain resistance is a foil type, when the contact 12 is deformed by force, the strain The shape of the resistance will change along with the contact 12, and then the resistance will change.
  • FIG. 4 is a schematic structural diagram of an electric bridge provided in the embodiment of the present application.
  • the electric bridge refers to a Wheatstone bridge.
  • the three resistors are respectively the first resistor R 1 , the second resistor R 2 and the third resistor R 3 , and the piezoresistor (such as strain resistance) is R x .
  • R 1 , R 2 , R 3 and R x are electrically connected to form a quadrilateral ABCD; that is, the first end of R 1 is electrically connected to the first power supply end and the first end of the piezoresistor; the first end of R 1 The second end is electrically connected with the first end of the processor and the first end of R2 ; the second end of R2 is electrically connected with the first end of R3 and the second power supply end; the second end of R3 The end is electrically connected with the second end of the processor and the second end of the piezoresistor.
  • the first power supply terminal is a power supply terminal
  • the second power supply terminal is a ground terminal
  • the first power supply terminal is a ground terminal
  • the second power supply terminal is a power supply terminal.
  • R 1 , R 2 , R 3 and R x are called the four arms of the bridge, one of the diagonal points A and C is grounded, and the other point is electrically connected to the power supply; the diagonal points D and B The point is connected to the processor to send the corresponding voltage signal value to the processor.
  • the voltage signal value can be calculated by formula 1-1, and formula 1-1 is as follows:
  • V x is the voltage signal value sent to the processor by the force feedback circuit 16 as the resistance value of the strain resistance changes
  • V cc is the voltage value of the power supply of the force feedback circuit 16
  • ⁇ R x is the variation of the strain resistance
  • R x is the initial resistance value of the strain resistance
  • k is the gage coefficient of the strain resistance
  • is the strain value of the strain resistance.
  • the electric bridge is more sensitive to the resistance change of the resistance
  • the force feedback circuit 16 is electrically connected with the piezoresistor 15 to form a bridge, which can improve the sensitivity of the force feedback circuit 16 to the resistance change of the piezoresistor 15 and accuracy, so that the force measurement accuracy of the end of the machine execution part 2 can be improved.
  • FIG. 5 is a schematic structural diagram of a force feedback device provided in the embodiment of the present application.
  • the force feedback device provided in the embodiment of the present application further includes at least one air joint panel 14 1.
  • the material of the air junction panel 14 is an uncharged material, and the opposite surface of at least one air junction panel 14 and the contact surface of the contact 12 forms an uncharged space, and the piezoresistor 15 is in the uncharged space.
  • At least one air joint panel 14 can be fixed on the opposite surface of the contact surface of each contact piece 12, and at least one air joint panel 14 can be fixed to the opposite surface of the contact surface of each contact piece 12 by an adhesive.
  • the multiple air joint panels 14 may also be fixed to adjacent air joint panels 14 by adhesive.
  • the air junction panel 14 may be cylindrical, arc-shaped or plate-shaped with a hollow interior; and the above-mentioned dead space may be a closed space, which is not limited in the embodiment of the present application.
  • the air connection panel 14 can protect the piezoresistor 15, and protect the piezoresistor 15 from deformation under the influence of external forces other than the external force received by the contact surface of the contact 12, and the air connection
  • the non-charged space formed by the opposite surface of the contact surface of the panel 14 and the contact 12 reduces the free charge between the piezoresistor 15 and the air connection panel 14, thereby protecting the resistance of the piezoresistor 15 from being affected by free charges , to improve the force measurement accuracy of the end of the machine execution part 2.
  • FIG. 6 is a schematic structural diagram of a force feedback device provided in the embodiment of the present application.
  • the force feedback device provided in the embodiment of the present application also includes a protective cover 3, 3 is used to wrap the end body 1, and the material of the protective cover 3 is a flexible material.
  • the protective sheath 3 is used to protect the end body 1 .
  • the shape of the protective sheath 3 and the end body 1 can be the same, if the end body 1 is spherical, then the protective sheath 3 is spherical.
  • the protective sheath 3 is wrapped outside the terminal body 1 , so that the inner surface of the protective sheath 3 can be attached to the outer surface of the terminal body 1 , and the contact piece 12 can be wrapped in the protective sheath 3 .
  • the flexible material used to make the protective cover 3 may be rubber material.
  • the protective cover 3 can prevent the end from being worn, and can also prevent the contact surface of the contact 12 from being in direct contact with the contact, thereby reducing the damage probability of the contact 12 and the pressure of the piezoresistor 15 except the contact 12. The external force received by the contact surface is disturbed, thereby improving the force measurement accuracy of the end of the machine execution part 2 .
  • Figure 7 and Figure 8 are schematic structural views of another force feedback device provided by the embodiment of the present application, wherein Figure 7 and Figure 8 do not show the force feedback circuit; as shown in Figure 7 and Figure 8, the force feedback device provided by the present application Devices include:
  • the end body 1 is arranged at the end of the machine execution part 2;
  • At least one contact 12 the contact surface of which is used to receive external force
  • At least one piezoresistor 15 is arranged on the opposite surface of the contact surface of the contact member 12, and is fixed on the outer surface of the end body 1;
  • the piezoresistor 15 is used to sense the external force received by the contact surface of the contact member 12 to change the resistance value
  • the force feedback circuit 16 is electrically connected to the piezoresistor 15, and is used to respond to the resistance change of the piezoresistor 15, and generate a corresponding electrical signal to the processor, so that the processor determines the force value of the contact member 12 based on the electrical signal, Therefore, the machine execution part 2 is controlled to perform corresponding actions based on the force value.
  • the piezoresistor 15 is arranged on the opposite surface of the contact surface of the contact piece 12, and is fixed on the outer surface of the end body 1, that is, the piezoresistor 15 is arranged on the contact surface of the contact piece 12. Between the opposite surface of the surface and the outer surface of the end body 1.
  • the contact piece 12 will deform, and at the same time stretch to the outer surface of the terminal body 1 and apply pressure to the piezoresistor 15, and the piezoresistor 15 senses the force from the contact.
  • the pressure of the contact member 12 changes, the resistance value will change, thereby affecting the electrical signal output by the force feedback circuit 16.
  • the processor After the processor receives the electrical signal output by the force feedback circuit 16, it can determine the contact of the contact member 12 according to the above electrical signal. The force value of the surface, that is, the magnitude of the external force received; finally, the processor can issue corresponding instructions according to the force value to control the machine execution unit 2 to perform corresponding actions.
  • the piezoresistor 15 when the piezoresistor 15 is used to respond to the contact between the contact piece 12 and the contact object, the contact piece 12 is deformed in the direction of the piezoresistor 15 due to the external force received by the contact surface of the contact piece 12, thereby
  • the resistance value change caused by applying pressure to the piezoresistor 15 changes the electrical signal output by the force feedback circuit 16, and directly feeds back the magnitude of the force to the processor through the electrical signal, improving the force measurement accuracy of the end of the machine actuator 2,
  • the processor can also determine the hardness and material of the contact object according to the measurement results, thereby improving the machine's self-adaptation to the environment. sex.
  • the piezoresistor 15 includes a force sensitive resistor.
  • the force-sensitive resistor can convert mechanical force into an electrical signal, that is, the resistance value of the force-sensitive resistor can change with the magnitude of the external force it receives.
  • the resistance value of the force sensitive resistor can be changed by the pressure applied to the force sensitive resistor due to the deformation of the contact member 12, which can improve the accuracy of the electrical signal fed back to the processor by the force feedback device and improve the force feedback. Sensitivity of a device to external forces received by an object in contact.
  • An embodiment of the present application further provides a robot, and the robot includes the force feedback device as provided in the present application.
  • the contact objects touched by different terrains are accurately sensed and measured; according to the measurement results, the hardness and material of the contact objects can also be determined, thereby improving the autonomous adaptability of the robot to the environment.
  • references to “one embodiment” or “an embodiment” or “some embodiments” or “other embodiments” or “for example” or “another example” throughout the specification mean the same as the embodiment A related particular feature, structure or characteristic is included in at least one embodiment of the present application.
  • appearances of "in one embodiment” or “in an embodiment” or “in some embodiments” or “for example” or “another example” and the like throughout this specification do not necessarily refer to the same embodiment .
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments.
  • the above descriptions of the various embodiments tend to emphasize the differences between the various embodiments, the same or similar points can be referred to each other, and for the sake of brevity, details are not repeated herein.
  • the disclosed device may be implemented in other ways.
  • the above-described embodiments are only illustrative, for example, multiple modules or components may be combined, or may be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling, or direct coupling, or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manipulator (AREA)

Abstract

本申请提供了一种力反馈装置和机器人,其中上述装置包括端体、至少一个接触件、至少一个压感电阻和力反馈电路;其中,端体设置于机器执行部件的端部;至少一个接触件的接触面用于接受外力;端体设置有凹槽,接触件固定在凹槽的侧表面,压感电阻固定在接触件的接触面的相对面并与力反馈电路连接,压感电阻用于感应接触件的接触面因接受外力而发生的形变,从而发生阻值变化;力反馈电路用于响应压感电阻的阻值变化,产生相应的电信号给处理器,以便处理器基于电信号确定接触件的受力值,从而基于受力值控制机器执行部件执行相应动作。

Description

一种力反馈装置和机器人
相关申请的交叉引用
本申请基于申请号为202111619617.8、申请日为2021年12月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本申请涉及电子技术领域,尤其涉及一种力反馈装置和机器人。
背景技术
多足机器人系统中,通常在机器人的足端设置弹性气腔,通过弹性气腔形变产生的气压变化测量力矩,以得到足端反馈力;或使用六维力/力矩传感器,将六维力/力矩传感器安装在机器人的脚掌与踝关节之间和/或机械手与腕关节之间,以测量末端执行器(例如机械手或者脚掌等)与外界环境交互的受力情况。然而,上述两种结构采集的受力值均存在较大误差。
发明内容
本申请实施例期望提供一种力反馈装置和机器人,能够提高机器执行部件的端部的受力测量精度。
本申请的技术方案是这样实现的:
本申请提供一种力反馈装置,装置包括:端体,设置于机器执行部件的端部;至少一个接触件,其接触面用于接受外力;至少一个压感电阻,端体设置有凹槽,接触件固定在凹槽的侧表面,压感电阻固定在接触件的接触面的相对面;压感电阻,用于感应接触件的接触面因接受外力而发生的形变,从而发生阻值变化;力反馈电路,与压感电阻电性连接,用于响应压感电阻的阻值变化,产生相应的电信号给处理器,以便处理器基于电信号确定接触件的受力值,从 而基于受力值控制机器执行部件执行相应动作。
如此,由于压感电阻直接固定在接触件的接触面的相对面,因此当接触件与物体发生接触时,压感电阻能够更为灵敏地随着接触件的形变而发生阻值变化,从而提高机器执行部件的端部的受力测量精度。处理器可以根据机器执行部件的端部的受力测量结果,确定接触件接触的物体的硬度和材质,从而提高机器对环境的运动自主适应性。
本申请还提供一种力反馈装置,装置包括:端体,设置于机器执行部件的端部;至少一个接触件,其接触面用于接受外力;至少一个压感电阻,设置在接触件的接触面的相对面以及固定在端体的外表面;压感电阻,用于感应接触件的接触面接受的外力而发生阻值变化;力反馈电路,与压感电阻电性连接,用于响应压感电阻的阻值变化,从而产生相应的电信号给处理器,以便处理器基于电信号确定接触件的受力值,从而基于受力值控制机器执行部件执行相应动作。
本申请提供一种机器人,机器人包括如本申请提供的力反馈装置。
附图说明
图1为本申请实施例提供的一种力反馈装置的结构示意图;
图2为本申请实施例提供的一种力反馈装置的局部结构示意图;
图3为本申请实施例提供的一种力反馈装置与处理器的连接结构示意图;
图4为本申请实施例提供的一种电桥结构示意图;
图5为本申请实施例提供的一种力反馈装置的结构示意图;
图6为本申请实施例提供的一种力反馈装置的结构示意图;
图7为本申请实施例提供的另一种力反馈装置的结构示意图;
图8为本申请实施例提供的另一种力反馈装置的局部结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清 楚、完整地描述。
图1是本申请实施例提供的一种力反馈装置的结构示意图,图2是本申请实施例提供的一种力反馈装置的局部结构示意图,如图1和2所示,本申请提供的力反馈装置包括端体1、至少一个接触件12、至少一个压感电阻15和力反馈电路16;其中,
端体1,设置于机器执行部件2的端部,端体1设置有凹槽11;
至少一个接触件12,其接触面用于接受外力,接触件12固定在凹槽11的侧表面;
至少一个压感电阻15,固定在接触件12的接触面的相对面;
压感电阻15,用于感应接触件12的接触面因接受外力而发生的形变,从而发生阻值变化;
力反馈电路16,与压感电阻15电性连接,用于响应压感电阻15的阻值变化,产生相应的电信号给处理器,以便处理器基于电信号确定接触件12的受力值,从而基于受力值控制机器执行部件2执行相应动作。
可以理解地,当接触件12的接触面受到外力时,接触件12将会发生形变;随着接触件12的形变,压感电阻15的阻值将会发生变化,从而使得力反馈电路16输出相应的电信号,处理器在接收到力反馈电路16输出的电信号后,可以根据上述电信号确定接触件12的接触面的受力值,即受到的外力的大小;之后,处理器可以根据受力值发出对应的指令,以控制机器执行部件2执行对应的动作。
需要说明的是,每个机器执行部件2的执行端可以固定至少一个端体1,每个端体1上开设的凹槽11可以是一个或多个。当凹槽11为多个时,多个凹槽11可以在端体1均匀分布,或者非均匀分布,或者在端体1对称分布。其中,每个凹槽11的侧表面可以固定至少一个接触件12,每个接触件12的形状可以与对应的凹槽11相同,也可以不相同。在实际应用中,机器执行部件2根据处理器发出的指令,执行对应动作的过程中,若机器执行部件2的动作范围内存在障碍物,则随着上述动作的执行,固定在机器执行部件2的端体1上的接触 件12可能会与上述障碍物发生接触;此时,接触件12的接触面将会接受到来自接触件12与障碍物接触而产生的外力,并发生形变,从而使得压感电阻15的阻值发生变化。
本申请实施例中,示例性地,如图1和2所示,每个接触件12可以呈片状,且每个接触件12固定在凹槽11的侧表面,使得接触件12的接触面朝向端体1的外部,接触件12的接触面的相对面朝向端体1的内部。
本申请实施例中,压感电阻15可以通过粘结剂粘贴在接触件12的接触面的相对面上,以实现压感电阻15与接触件12的接触面的相对面的固定;压感电阻15可以通过导线与力反馈电路16电性连接;其中,力反馈电路16可以包括放大电路以及与放大电路电性连接的电阻,并集成在电路板上。压感电阻15通过导线与电阻电性连接并形成电信号回路。这里,电信号可以是电流或者电压或无线电信号。在实际应用中,当压感电阻15发生阻值变化时,力反馈电路16的总阻值将同时发生变化,从而改变力反馈电路16输出的电信号。
需要说明的是,力反馈电路16可以通过无线网络与处理器建立通讯,也可以通过信号线与处理器连接。当力反馈电路16通过无线网络与处理器建立通讯时,力反馈电路16的输出端以及处理器的接收端可以电性连接无线通讯模块。在实际应用中,随着压感电阻15阻值的变化,力反馈电路16可以通过无线通讯模块与处理器进行数据交互。当力反馈电路16通过信号线与处理器连接时,若力反馈电路16位置在端体1的外部,则信号线可以贯穿凹槽11在端体1内部统一汇总至机器执行部件2与端体1的连接处,并接入处理器;若力反馈电路16固定在端体1的内部,则信号线之间的端体1内部统一汇总至机器执行部件2与端体1的连接处,并接入处理器。示例性地,处理器可以是集成电路(Integrated Circuit,IC)信号处理器,力反馈电路16输出电信号后,可以对电信号进行预处理,如模数转换、信号滤波和/或初步数字信号处理等;将电信号转换为对应的数字信号后,通过处理器的I/O接口将数字信号传输到处理器。之后,处理器可以通过预设的软件系统算法,识别数字信号中对应的每个接触件的接触面受到的外力。此时,若端部呈球状,则处理器可以根据识别结果生 成端部球面法向力矩阵,从而判断端部接触件的接触面可能接触到接触物的形状及硬度等。其中,对于电信号的预处理,可以通过惯性测量(Inertial Measurement Unit,IMU)处理器完成。
本申请实施例中,示例性地,图3是本申请提供的一种力反馈装置与处理器的连接结构示意图,如图3所示,压感电阻15与力反馈电路16构成电桥后通过主板与处理器建立通讯;其中,力反馈电路16、主板和处理器之间通过信号线电性连接,主板可以是小板或者大板,且主板上可以设置电源,用于为力反馈电路16供电;而主板与处理器可以通过转接端口实现连接,即主板的输出端通过转接排线与转换端口电性连接,转换端口则通过信号线或无线通信模块与处理器实现数据交互。
本申请实施例中,处理器可以设于机器内部,也可以设于机器外部;在实际应用中,力反馈电路16的输出端与处理器的输入端之间可以电性连接信号处理器,当力反馈电路16的输出端电连接有主板时,则上述信号处理器电性连接在主板与处理器之间。其中,信号处理器用于对力反馈电路16输出的电信号进行信号处理以得到待解析信号并发送至处理器;信号处理指利用数字信号处理方法对上述电信号进行处理;如模数转换和/或信号滤波等。处理器在接收到待解析信号后,将对待解析信号进行解析从而生成接触件12的接触面的受力矩阵,之后结合视觉识别,对向接触件12的接触面施加外力的物体,即接触物进行识别并得到识别结果。识别结果包括以下至少一种:材质、硬度和形状。最后,处理器可以根据识别结果,对机器的运动方式进行优化。示例性地,当机器为四足机器人时,处理器可以对四足机器人在不同地形运动过程中接触到的接触物进行识别,并得到识别结果;之后,根据识别结果优化上述四足机器人在相应地形的运动方式;其中,处理器可以通过根据识别结果建立训练模型,实现对四足机器人在相应地形的运动方式的优化。
可以理解的是,本申请实施例中由于压感电阻15直接固定在接触件12的接触面的相对面,因此,当接触件12与接触物发生接触时,压感电阻15能够更为灵敏地随着接触件12的形变而发生阻值变化,从而提高机器执行部件2 的端部的受力测量精度。
在本申请的一些实施例中,接触件12的接触面高于端体1的外表面的局部,或者,接触件12的接触面与端体1的外表面的局部齐平。
需要说明的是,端体1的外表面的局部指端体1与凹槽11的侧表面相交的部分外表面;其中,部分外表面可以是端体1的外表面和凹槽11的侧表面相交面,还可以是尺寸在预设范围内的区域。
可以理解的是,接触件12的接触面与端体1的外表面的局部齐平时,则接触件12的接触面可以接触到外表面平整的接触物和外表面局部凸起的接触物;当接触件12的接触面高于端体1的外表面的局部时,还可以接触到的外表面局部凹陷的接触物;若接触件12的接触面低于端体1的外表面的局部,则接触件12与接触物接触时,可能会发生接触物无法探入凹槽11内与接触件进行接触,或在接触时,接触物与端体1的外表面局部发生抵触,导致接触物施加至接触件12的外力被减小。因此,当接触件12的接触面与端体1的外表面的局部齐平时,或者高于端体1的外表面的局部时,不仅可以扩大机器执行部件2的端部的受力测量范围,还可以提高机器执行部件2的端部的受力测量的精度。
在本申请的一些实施例中,在接触件12的接触面与端体1的外表面的局部齐平的情况下,与接触面相交的接触件12的侧表面与相近的凹槽11的一侧表面之间具有空隙13,空隙13用于支持接触面因接受外力而其边沿能够向凹槽11的侧表面伸展,从而接触件12的形变不受阻碍。
需要说明的是,上述空隙13可以是长条形,也可以是弧形;且每个接触件12的侧表面与相近的凹槽11的一侧表面之间的空隙13数量可以是一个或者多个;示例性地,如图1所示,每个接触件12的侧表面与相近的凹槽11的一侧表面之间具有2个空隙13,且空隙13呈弧形并与凹槽11内部的空间连通。
在本申请的一些实施例中,若接触件12与凹槽11的外侧壁为一体连接,则可以通过切槽加工的方式得到凹槽11和空隙13。
可以理解的是,在接触件12因为接触件12的接触面接受外力而发生形变时,空隙13可以为接触件12提供形变空间;从而减小凹槽11的侧表面对接触 件12的侧表面的伸展造成的影响,保证接触件12的形变范围,减小对接触件12的形变程度的影响,进而提高压感电阻15的阻值的变化量的精确度,提高机器执行部件2的端部的受力测量的精度。
在本申请的一些实施例中,端体1呈球状。
需要说明的是,端体1还可以呈立方体状或椭球状等;且端体1可以为实心结构,也可以为中空结构;其中,若端体1为实心结构,则接触件12的接触面的相对面与凹槽11的内底壁之间留有供接触件12形变的空间,适应性地,接触件12的接触面可以为曲面,也可以为平面;本申请实施例不作限定。
在本申请的一些实施例中,示例性地,如图1所示,端体1呈球状,且端体1的内部可以中空设置,凹槽11可以是通槽,使得端体1的内部空间与端体1的外部空间连通,接触件12的接触面为曲面,且该曲面的弧度与端体1的外表面相同。其中,接触件12的接触面的相对面也可以为曲面,并端体1的外表面弧度相同。
可以理解的是,端体1呈球状时,端体1的外表面为曲面,此时接触件12的接触面更易于与接触物发生接触,即提高该力反馈装置感知接触物的精确度,且采用球形设计,接触件12的接触面接受到的外力始终沿法线方向,从而可以获得法向力分力,提高机器执行部件2的端部的对接触物所在方向的测量测量精度。
在本申请的一些实施例中,力反馈电路16与压感电阻15电性连接构成电桥,且压感电阻15包括应变电阻。
需要说明的是,力反馈电路16包括3个电阻,3个电阻的阻值均为固定值。压感电阻15与3个电阻电性连接组成一矩形,以实现与力反馈电路16的电性连接并构成电桥,该电桥可以对压感电阻15的阻值进行测量。示例性地,应变电阻包括电阻应变片。应变电阻的形态可以为丝式或箔式等。在实际应用中,由于应变电阻的阻值与应变电阻的形态有关,如应变电阻为丝式时的长度、应变电阻为箔式时的横截面积,因此当接触件12受力变形时,应变电阻的形态将随着接触件12一起变化,进而发生电阻变化。
在本申请的一些实施例中,示例性地,图4是本申请实施例提供的一种电桥结构示意图,如图4所示,电桥指惠斯通电桥,若力反馈电路16中的3个电阻分别为第一电阻R 1、第二电阻R 2和第三电阻R 3,压感电阻(如应变电阻)为R x时。R 1、R 2、R 3和R x电性连接将组成四边形ABCD;也就是,R 1的第一端与第一供电端以及所述压感电阻的第一端电性连接;R 1的第二端与所述处理器的第一端以及R 2的第一端电性连接;R 2的第二端与R 3的第一端以及第二供电端电性连接;R 3的第二端与所述处理器的第二端以及所述压感电阻的第二端电性连接。其中,对于第一供电端和第二供电端不做限定,第一供电端为电源端时,第二供电端为地端;第一供电端为地端时,第二供电端为电源端。
其中,R 1、R 2、R 3和R x称为电桥的四个臂,对角A点和C点中的其中一个点接地,另一个点与电源电连接;对角D点和B点与处理器连接,用于向处理器发送对应的电压信号值,电压信号值可以通过式1-1计算得到,式1-1如下所示:
Figure PCTCN2022139101-appb-000001
其中,V x为随着应变电阻阻值的变化,力反馈电路16发送至处理器的电压信号值,V cc为力反馈电路16的电源的电压值,ΔR x为应变电阻的变化量,R x为应变电阻的初始阻值,k为应变电阻的灵敏系数,ε为应变电阻的应变值。
可以理解的是,电桥对电阻的阻值变化更加敏感,通过力反馈电路16与压感电阻15电性连接构成电桥,可以提高力反馈电路16对压感电阻15的阻值变化的灵敏度和精确度,从而可以提高机器执行部件2的端部的受力测量精度。
在本申请的一些实施例中,图5是本申请实施例提供的一种力反馈装置的结构示意图,如图5所示,本申请实施例提供的力反馈装置还包括至少一个空接面板14,空接面板14的材料为不带电荷材料,至少一个空接面板14与接触件12的接触面的相对面形成不带电空间,压感电阻15在不带电空间内。
需要说明的是,每个接触件12的接触面的相对面均可以固定至少一个空接面板14,至少一个空接面板14可以通过粘结剂与每个接触件12的接触面的相 对面固定,当每个接触件12的接触面的相对面上固定的空接面板14为多个时,多个空接面板14也可以通过粘结剂与相邻的空接面板14固定。其中,空接面板14可以为内部中空设置的圆柱形、弧形或板状;且上述不带电空间可以为一个封闭空间,本申请实施例不作限定。
可以理解的是,空接面板14可以对压感电阻15起到保护作用,保护压感电阻15不会在除接触件12的接触面接受的外力之外的外力影响下发生形变,且空接面板14与接触件12的接触面的相对面形成的不带电空间,减少压感电阻15与空接面板14之间的自由电荷,从而保护压感电阻15的阻值不会受到自由电荷的影响,以提高机器执行部件2的端部的受力测量精度。
在本申请的一些实施例中,图6是本申请实施例提供的一种力反馈装置的结构示意图,如图6所示,本申请实施例提供的力反馈装置还包括保护套3,保护套3用于包裹端体1,保护套3的材料为柔性材料。
需要说明的是,保护套3用于对端体1起保护作用。其中,保护套3与端体1的形状可以相同,如端体1呈球状,则保护套3为球状。另外,保护套3包裹在端体1外,可以使得保护套3的内表面与端体1的外表面贴合,并将接触件12包裹在保护套3内。示例性地,用于制作保护套3的柔性材料可以是橡胶材料。
可以理解的是,保护套3可以避免端部被磨损,还可以避免接触件12的接触面与接触物直接接触,从而减少接触件12的损坏概率以及压感电阻15受到的除接触件12的接触面接受的外力干扰,从而提高机器执行部件2的端部的受力测量精度。
图7和图8是本申请实施例提供的另一种力反馈装置的结构示意图,其中,图7和图8未示出力反馈电路;如图7和图8所示,本申请提供的力反馈装置包括:
端体1,设置于机器执行部件2的端部;
至少一个接触件12,其接触面用于接受外力;
至少一个压感电阻15,设置在接触件12的接触面的相对面,且固定在端 体1的外表面;
压感电阻15,用于感应接触件12的接触面接受的外力而发生阻值变化;
力反馈电路16,与压感电阻15电性连接,用于响应压感电阻15的阻值变化,产生相应的电信号给处理器,以便处理器基于电信号确定接触件12的受力值,从而基于受力值控制机器执行部件2执行相应动作。
本申请实施例中,如图8所示,压感电阻15设置在接触件12的接触面的相对面,且固定在端体1的外表面,即压感电阻15设于接触件12的接触面的相对面与端体1的外表面之间。在实际应用中,当接触件12的接触面受到外力时,接触件12将会发生形变,同时向端体1的外表面伸展并向压感电阻15施加压力,压感电阻15感应到来自接触件12的压力时将会发生阻值的变化,从而影响力反馈电路16输出的电信号,处理器在接收到力反馈电路16输出的电信号后,可以根据上述电信号确定接触件12的接触面的受力值,即受到的外力的大小;最后处理器可以根据受力值发出对应的指令,以控制机器执行部件2执行对应的动作。
可以理解的是,本申请实施例中利用压感电阻15响应于接触件12与接触物发生接触时,接触件12因为接触件12的接触面受到的外力而向压感电阻15方向发生形变从而对压感电阻15施加压力而产生的阻值变化,改变力反馈电路16输出的电信号,通过电信号向处理器直接反馈力的大小,提高机器执行部件2的端部的受力测量精度,从而达到提高处理器对接触面与接触物接触时的力的测量结果的精确度的目的;且处理器还可以根据测量结果,确定接触物的硬度和材质,从而提高机器对环境的运动自主适应性。
本申请实施例中,压感电阻15包括力敏电阻。
需要说明的是,力敏电阻能够将机械力转换为电信号,即力敏电阻可以的阻值可以随接受的外力大小而改变。
可以理解的是,力敏电阻的阻值可以接触件12因为形变而施加至力敏电阻的压力而进行改变,这样可以提高力反馈装置反馈至处理器的电信号的精确度,并提高力反馈装置对接触物接受的外力的敏感度。
本申请实施例还提供一种机器人,机器人包括如本申请提供的力反馈装置。
可以理解的是,上述机器人的运动过程中不同地形接触到的接触物进行精确的感知和测量;根据测量结果,还可以确定接触物的硬度和材质,从而提高机器人对环境的运动自主适应性。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”或“一些实施例”或“另一些实施例”或“例如”或“又如”等等意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”或“在一些实施例中”或“例如”或“又如”等等未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如对象A和/或对象B,可以表示:单独存在对象A,同时存在对象A和对象B,单独存在对象B这三种情况。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备,可以通过其它的方式实现。以上所描述的实施例仅仅是示意性的,例如,多个模块或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另 外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的设备实施例。
以上,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种力反馈装置,所述装置包括:
    端体,设置于机器执行部件的端部,所述端体设置有凹槽;
    至少一个接触件,其接触面用于接受外力,所述接触件固定在所述凹槽的侧表面;
    至少一个压感电阻,固定在所述接触件的接触面的相对面,用于感应所述接触件的接触面因接受外力而发生的形变,从而发生阻值变化;
    力反馈电路,与所述压感电阻电性连接,用于响应所述压感电阻的阻值变化,产生相应的电信号给处理器,以便所述处理器基于所述电信号确定所述接触件的受力值,从而基于所述受力值控制所述机器执行部件执行相应动作。
  2. 根据权利要求1的力反馈装置,其中,所述接触件的接触面高于所述端体的外表面的局部。
  3. 根据权利要求1的力反馈装置,其中,所述接触件的接触面与所述端体的外表面的局部齐平。
  4. 根据权利要求3的力反馈装置,其中,
    与所述接触面相交的所述接触件的侧表面与相近的所述凹槽的一侧表面之间具有空隙,所述空隙用于支持所述接触面因接受外力而其边沿能够向所述凹槽的侧表面伸展,从而所述接触件的形变不受阻碍。
  5. 根据权利要求1至4任一项的力反馈装置,其中,所述装置还包括至少一个空接面板,所述空接面板的材料为不带电荷材料,所述至少一个空接面板与所述接触件的接触面的相对面形成不带电空间,所述压感电阻在所述不带电空间内。
  6. 根据权利要求5所述的力反馈装置,其中,所述空接面板的内部中空。
  7. 根据权利要求5或6所述的力反馈装置,其中,所述空接面板为圆柱形、弧形或板状的面板。
  8. 根据权利要求1的力反馈装置,其中,所述力反馈电路与所述压感电阻电性连接构成电桥。
  9. 根据权利要求8所述的力反馈装置,其中,所述力反馈电路包括第一电阻、第二电阻和第三电阻;
    所述第一电阻的第一端与第一供电端以及所述压感电阻的第一端电性连接;
    所述第一电阻的第二端与所述处理器的第一端以及所述第二电阻的第一端电性连接;
    所述第二电阻的第二端与所述第三电阻的第一端以及第二供电端电性连接;
    所述第三电阻的第二端与所述处理器的第二端以及所述压感电阻的第二端电性连接。
  10. 根据权利要求9所述的力反馈装置,其中,所述第一供电端为电源端,所述第二供电端为地端。
  11. 根据权利要求1的力反馈装置,其中,所述装置还包括保护套,所述保护套用于包裹所述端体。
  12. 根据权利要求11所述的力反馈装置,其中,所述保护套的材料为柔性材料。
  13. 根据权利要求12所述的力反馈装置,其中,所述保护套的材料为橡胶材料。
  14. 根据权利要求1至13任一项的力反馈装置,其中,所述压感电阻包括应变电阻。
  15. 根据权利要求14所述的力反馈装置,其中,所述应变电阻包括电阻应变片。
  16. 根据权利要求14所述的力反馈装置,其中,所述应变电阻形态为丝式或箔式。
  17. 根据权利要求1的力反馈装置,其中,所述端体呈球状。
  18. 一种力反馈装置,所述装置包括:
    端体,设置于机器执行部件的端部;
    至少一个接触件,其接触面用于接受外力;
    至少一个压感电阻,设置在所述接触件的接触面的相对面,且固定在所述 端体的外表面;所述压感电阻,用于感应所述接触件的接触面接受的外力而发生阻值变化;
    力反馈电路,与所述压感电阻电性连接,用于响应所述压感电阻的阻值变化,产生相应的电信号给处理器,以便所述处理器基于所述电信号确定所述接触件的受力值,从而基于所述受力值控制所述机器执行部件执行相应动作。
  19. 根据权利要求18的力反馈装置,其中,所述压感电阻为力敏电阻。
  20. 一种机器人,所述机器人包括权利要求1至17任一项的力反馈装置,或者,所述机器人包括权利要求18或19所述的力反馈装置。
PCT/CN2022/139101 2021-12-27 2022-12-14 一种力反馈装置和机器人 WO2023125021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111619617.8A CN116352765A (zh) 2021-12-27 2021-12-27 一种力反馈装置和机器人
CN202111619617.8 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023125021A1 true WO2023125021A1 (zh) 2023-07-06

Family

ID=86936388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139101 WO2023125021A1 (zh) 2021-12-27 2022-12-14 一种力反馈装置和机器人

Country Status (2)

Country Link
CN (1) CN116352765A (zh)
WO (1) WO2023125021A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299045A (ja) * 2003-03-14 2004-10-28 Sony Corp ロボット装置
JP2011169749A (ja) * 2010-02-18 2011-09-01 Advanced Telecommunication Research Institute International 触覚センサおよびそれを備えたロボット
CN103175637A (zh) * 2011-12-20 2013-06-26 精工爱普生株式会社 传感器器件、传感器模块、力检测装置、机器人
US20130168336A1 (en) * 2011-12-28 2013-07-04 Korea Research Institute Of Standards And Science Structure and method for attaching tactile sensor to curved surface
CN105520738A (zh) * 2015-12-18 2016-04-27 山东大学 一种基于交叉定量递归计算的指力协调性测试分析仪
CN112857630A (zh) * 2021-01-15 2021-05-28 之江实验室 一种软体机器人手的三维凸面柔性触觉传感器及制造方法
CN113720504A (zh) * 2021-07-30 2021-11-30 深圳纽迪瑞科技开发有限公司 一种压力感应装置及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299045A (ja) * 2003-03-14 2004-10-28 Sony Corp ロボット装置
JP2011169749A (ja) * 2010-02-18 2011-09-01 Advanced Telecommunication Research Institute International 触覚センサおよびそれを備えたロボット
CN103175637A (zh) * 2011-12-20 2013-06-26 精工爱普生株式会社 传感器器件、传感器模块、力检测装置、机器人
US20130168336A1 (en) * 2011-12-28 2013-07-04 Korea Research Institute Of Standards And Science Structure and method for attaching tactile sensor to curved surface
CN105520738A (zh) * 2015-12-18 2016-04-27 山东大学 一种基于交叉定量递归计算的指力协调性测试分析仪
CN112857630A (zh) * 2021-01-15 2021-05-28 之江实验室 一种软体机器人手的三维凸面柔性触觉传感器及制造方法
CN113720504A (zh) * 2021-07-30 2021-11-30 深圳纽迪瑞科技开发有限公司 一种压力感应装置及电子设备

Also Published As

Publication number Publication date
CN116352765A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
Tomo et al. A new silicone structure for uSkin—A soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot iCub
US8101904B2 (en) Compliant tactile sensor for generating a signal related to an applied force
Kappassov et al. Tactile sensing in dexterous robot hands
US7669480B2 (en) Sensor element, sensor device, object movement control device, object judgment device
US20110083517A1 (en) Sensor system
US20180188872A1 (en) Pressure sensor, haptic feedback device and related devices
US10795521B2 (en) Pressure and shear sensor
Agrawal et al. An Overview of Tactile Sensing
Torres-Jara et al. A soft touch: Compliant tactile sensors for sensitive manipulation
CN100478662C (zh) 三维指力传感器及其信息获取方法
Cutkosky et al. Force and tactile sensing
Muscari et al. Real-time reconstruction of contact shapes for large area robot skin
US10871860B1 (en) Flexible sensor configured to detect user inputs
Buescher et al. Augmenting curved robot surfaces with soft tactile skin
Schmitz et al. Touch sensors for humanoid hands
CN108760105A (zh) 一种角度可调型仿生毛发传感结构
CN112659162A (zh) 触觉感知指尖装置及机器人
US11906372B2 (en) Capacitance sensor and measurement device
WO2023125021A1 (zh) 一种力反馈装置和机器人
JP2006305658A (ja) ロボットフィンガ
Fiedler et al. A low-cost modular system of customizable, versatile, and flexible tactile sensor arrays
Cirillo et al. Force/tactile sensors based on optoelectronic technology for manipulation and physical human–robot interaction
CN214409910U (zh) 一种手指压力与姿态双模态柔性传感系统
Dahiya et al. System approach: A paradigm for robotic tactile sensing
Meng et al. Electronic skin with shape sensing and Bending-Insensitive pressure sensing for soft robotic grippers object recognition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE